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Definition of Terms  
 

Activation-
deactivation dynamics 

A mechanical muscle property describing the relationship between 
muscle excitation and creating force, and the activation ceasing and 
falling to zero.  Encompasses the delay between neural activation 
arriving at the muscle and developing force and the delay between 
neural excitation and relaxation.  

  
Aponeurosis The fibrous connective tissue responsible for connecting muscles to 

bone, enveloping muscles, binding muscles together and binding 
muscles to other tissues. 

  
Cadence The number of revolutions of the crank arm performed per minute 

(rpm). 
  
Chainring A large cog which carries the chain on the bicycle and is attached to the 

crank. 
  
Crank angle 
 

The angle of the crank within the 0 - 360-degree pedal cycle. 
 

Crank length The length of the crank arm. 
  
Crank orientation The placement of the crank in relation to the major and minor axes of 

the non-circular chainring. 
  
Dead centres The area of the pedal cycle when one of the pedals is at the top dead 

centre (0°) and the other is at the bottom dead centre (180°) where 
little propulsive force can be exerted. 

  
Degrees of freedom  The number of independent movements a rigid body has. 
  
Drivetrain A system comprising the components on the bicycle used to transmit 

power from the cyclist to the rear wheel. 
  
Eccentricity  Value depicting the deviation of a curve from circularity. 
  
Efficiency The ratio of mechanical work accomplished to the metabolic energy 

expended to complete the work 
  
Elliptical chainring Refers specifically to a chainring whereby the features are oval in shape 

and have bi-axis symmetry.  
  
EMG Intensity EMG signal resolved in time and frequency permitting an 

approximation of the signal power within a given frequency band at 
each time point. 

  
Excursion Angle of the corresponding joint. 
  
Fascicle Bundles of muscle fibres bound together by the perimysium.  
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Load Continuous application of an opposing force (Watts).  In the SRM High 
Performance Ergometer, resistance is created through adding an 
electromagnetic field through a metal disk. 

  
Moment arm Length between a joint axis and the line of force acting on the joint.  

Larger moment arms create greater load about the joint axis via 
leverage. 

  
Motor neuron A nerve cell forming part of the pathway along which impulses pass 

from the brain or spinal cord to a muscle. 
  
Motor unit A motor neuron and the muscle fibres innervated by its axon. 
  
Muscle-tendon unit A muscle together with the attached tendons. 
  
Muscle-tendon unit 
shortening velocity 

The velocity at which the muscle-tendon unit complex shortens. 

  
Muscle activation The neural signal sent from the central nervous system to the muscle. 
  
Muscle belly A muscle without the attached tendons. 
  
Muscle architecture Arrangement of muscle fibres within a muscle relative to the axis of 

force generation. 
  
Musculoskeletal 
system 
 

The system of the muscles, bones and connective tissue responsible 
for converting activation signals from the central nervous system into 
mechanical output. 

  
Muscle-tendon unit 
length 

The distance from the muscle origin to insertion.  Strongly influences 
the force producing capacities of the complex.   

  
Neuromusculoskeletal 
system 

The combination of the central nervous system and the 
musculoskeletal system.  Functional movement is reliant on the 
synergy of these systems.   
 

Non-circular chainring Encompasses any chainring shape where the features deviate from a 
traditional circle. 

  
Pedal cycle A complete revolution of the pedal/crank arm. 
  
Pedal speed Linear velocity of the pedal. 
  
Pedalling rate The cycle frequency of the pedal. 
  
Segment Division of body parts into a series of segments linked together by 

joints. 
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Thesis Abstract 
 

Optimisation of movement strategies during cycling is an area which has gathered a lot of 

attention over the past decade.  Resolutions to augment performance have involved 

manipulations of bicycle mechanics, including chainring geometries.  Elliptical chainrings 

are proposed to provide a greater effective diameter during the downstroke, manipulating 

mechanical leverage and resulting in greater power production during this period.   

A review of the literature indicates that there is a pervasive gap in our understanding of 

how the theoretical underpinnings of elliptical chainrings might be translated to practical 

use.  Despite reasonable theory of how these chainrings might enforce a variation in crank 

angular velocity and consequently alter force production, performance-based analyses 

have struggled to present evidence of this. 

The purpose of this thesis was to provide a novel approach to this problem by combining 

experimental data with musculoskeletal modelling and evaluating how elliptical chainrings 

might influence crank reactive forces, joint kinematics, muscle-tendon unit behaviour and 

muscle activation.  One main study was proposed to execute this analysis, and an 

anatomically constrained model was subsequently used to determine the joint kinematics 

and muscle-tendon unit behaviour. Bespoke elliptical chainrings were designed for this 

study and as such, different levels of chainring eccentricity (i.e. ratio of major to minor axis) 

and positioning against the crank were presented whilst controlling the influence of other 

variables known to affect the neuromuscular system such as cadence and load.   

 

Findings presented in this thesis makes a new and major contribution in our understanding 

of the neuromusculoskeletal adaptations which occur when using elliptical chainrings, 

showing alterations in crank reaction force, muscle-tendon unit velocities, joint kinematics 

and muscle excitation over a range of cadences and loads, and provides direction for where 

the future of this research might be best applied. 

Keywords: Elliptical chainrings; Cycling; Musculoskeletal modelling; Principal Component 

Analysis; Electromyography 
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 General Introduction 
 

The advent of the modern bicycle is a mark of centuries of engineering success.  Originating 

as the célérifère in 1790, the design of the bicycle has undergone countless innovations 

and manipulations in a bid to make it a safe and accessible transportation option for all 

(Figure 1.1).   At first, major adjustments were needed, and consequently components such 

as a braking system, pedals, steerable front wheels, equal sized wheels with rubber tires 

and a lightweight frame were introduced over time. Accordingly, it has become an 

extremely efficient form of locomotion, making it no surprise that cycling has become such 

a popular mode of transport, with recreational and competitive sporting activity 

contributing to multiple levels of the global economy.   

 

Figure 1.1 Origin of the modern bicycle. The célérifère bicycle of the late 18th Century and a modern-day road 
bicycle, a design which has largely plateaued aside from minor mechanical modifications aimed at reducing 
the impact of environmental factors. Figures adapted from Lallement's (1866) patent for the original French 
velocipede and Bikecad (2018). 

Over the course of the 21st Century, bicycle technology has evolved past its initial design 

flaws and now minor modifications are responsible for its optimisation with the objective 

of reducing the energy cost of travelling a given distance.  Cycle racing is one of the few 

sports where performance is ascertained by physical output in direct contact with a 

mechanical device, and as a result, much work has gone into understanding the factors that 

affect the bicycle and the cyclist in a bid to create the most mechanically efficient model 

across disciplines.  One area which has received lots of attention is the crank-pedal 

interface and how factors such as crank length (Martin and Spirduso, 2001; Barratt et al., 

2016) and anterior-posterior foot position on the pedal (Van Sickle and Hull, 2007) can 

affect cycling performance.  Another consideration has been the design of non-circular 
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chainrings as a replacement of traditional circular chainrings in a bid to optimise cycling 

performance and/or efficiency (Hull et al., 1991; Hue et al., 2001; O’Hara et al., 2012).   

Non-circular chainrings were first described in 1896 (Sharp, 1896), but drew little attention 

and quickly faded out of popularity.  However, they underwent a resurgence in the late 

1970s, with designs such as the Shimano Biopace (Okajima, 1983), the Harmonic that was 

later relaunched as the O’symetric (Malfait et al., 2006) and the Q-Ring (Cordova et al., 

2014) perhaps being the most well-known. The use of non-circular chainrings is prolific 

across all cycling levels and disciplines. Q-Rings have been used by professional riders in 

victory in major events such as Tour de France, Giro d’Italia, Vueltra a España, Ironman and 

UCI MTB World Cup (RotorBike, 2020). The more unusually shaped O’Symetric chainrings 

have also led to victories across major events and is favoured by Team INEOS athlete Chris 

Froome, winning three Tour de France titles whilst using these systems (O’Symetric, 2020).  

Despite their prevalence within amateur and professional cycling communities, there are 

still a lot of uncertainties surrounding their use.  It remains a contentious issue within the 

topic of non-circular chainrings of how performance-related variables are affected.  Since 

their resurgence 50 years ago, little headway has been made in establishing how they might 

be used to optimise performance under experimental conditions with physiological and 

biomechanical parameters being affected in different ways within the literature (Bini and 

Dagnese, 2012).  As such better insight needs to be provided to coaches and cyclists. 

In addition to recreational and competitive arenas, cycling offers an excellent paradigm in 

laboratory experiments given its quasi-constrained nature in which the foot remains in 

contact with the pedal which rotates in a fixed motion and the pelvis can be kept in contact 

with the saddle.  This level of kinematic control allows the researcher to independently 

alter cadence and load variables and explore the associated muscle-tendon unit behaviour.  

As such, cycling is an extremely valuable tool to investigate the in vivo response of the 

neuromuscular system to locomotion in a non-invasive manner.  With this in mind, given 

the outcome of the pedalling motion is heavily reliant on the configuration of the bicycle, 

further manipulation of the mechanical components can serve as an additional element to 

study the effects of altered task mechanics on the response of the muscle-tendon unit and 

muscle activation dynamics.  One way this could be achieved is through the use of non-

circular chainrings, similar to those used in competition. 
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The purpose of this thesis was therefore to examine the acute neuromusculoskeletal 

responses to custom-made elliptical chainrings (Hope Tech, Barnoldswick, UK) in 

comparison to a circular chainring.  There are different designs of non-circular chainrings 

available, but this thesis will investigate the effects of an elliptical shape. Several 

biomechanical parameters were collated in order to achieve this such as joint kinematics, 

reaction forces, muscle-tendon unit behaviour and muscle activation.  Chapter Two will 

critically review the key concepts behind this topic and introduce the neuromusculoskeletal 

parameters that might contribute to acute adaptations to the elliptical chainrings. 
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Chapter 2. Literature Review 
 

The overarching aim of this thesis is to quantify the acute adaptations of the 

neuromusculoskeletal system in response to cycling with elliptical chainrings of differing 

eccentricity and crank orientation.  A secondary aim is to contribute to understandings of 

in vivo behaviour of the neuromusculoskeletal system during human locomotion, which has 

previously been difficult due to methodological challenges.  The existing relevant literature 

will subsequently be introduced, reviewed and discussed.  The focus of this review will be 

on those findings with specific relevance to the experimental chapters in this thesis, 

specifically the reaction forces at the pedal expressed during cycling, joint kinematics, 

muscle tendon unit behaviour and muscle activation dynamics. 

2.1 Optimisation of the bicycle 
 

Minimising metabolic cost is thought of as being a key factor of locomotion in humans and 

animals.  Whilst a walking human might consume about 0.75 cal/g/km, energy 

consumption is reduced to about 0.15 cal/g/km over a given distance when using a bicycle, 

leading to a five-fold decrease in metabolic cost.  This is in conjunction with a 3- to 4- fold 

increase in travelling velocity, giving cycling a marked advantage over walking.  The 

improvement in metabolic  cost is not just limited to human locomotion, but also surpasses 

machinery and other animals too, seemingly outdoing the course of natural evolution and 

making them number one in terms of moving creatures and machines (Fig 2.1; Wilson, 

1973).  The bicycle’s evolution to the feat of engineering available today has therefore 

culminated in it being one of the most metabolically efficient forms of locomotion.  Despite 

this there are still avenues for improvement through tailoring the bicycle equipment and 

large efforts have gone into exploring how to optimise metabolic (Hull et al., 1992; Hue et 

al., 2008) and mechanical work (Zamparo et al., 2002; Samozino et al., 2006). One area of 

interest is the product of the forces acting upon the bicycle and rider. 
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Figure 2.1 Rankings of travelling animals and machinery in terms of energy consumed whilst moving a 

certain distance as a function of body weight.  Adapted from Wilson (1973). 

 

2.2 Components of force   

Cycling performance can be determined by the amount of propulsive forces produced 

versus the amount of resistive force that must be overcome.  Augmentation of propulsive 

forces with simultaneous decrements in resistive forces will result in greater performance.  

The propulsive forces are often affected by internal biomechanical factors, external 

mechanical factors and their subsequent interactions.  Alternately, resistive forces are a 

function of environmental forces and internal mechanical forces such as operations of the 

muscle fibre force-length-velocity profiles (Figure 2.2; Too, 1990).   
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Figure 2.2 Factors affecting cycling performance.  Adapted from Too (1990). 

Internal mechanical factors include joint friction during movement, synovial fluid viscosity, 

and stiffness within the muscle fibres, connective tissue and collagen. Insufficient hydration 

can result in a decrease in levels of compliance within the collagen and increase in stiffness 

within connective tissues and muscle fibres which result in increments in internal resistive 

forces within the muscle fibres during contraction and movement (Haut and Haut, 1997; 

Maganaris et al., 2004; McDaniel et al., 2007).  Heat applied externally to the muscle, joint 

and surrounding tissues acts to increase the temperature of the muscle fibres and 

consequently decrease the viscosity of the synovial fluid within the joint capsule, thus 

decreasing internal frictional forces and total resistive forces inhibiting muscle contraction 

and movement (Faulkner et al., 2013).  Heat generated internally by the active contraction 

of muscle through a ‘warm up’ is generally more effective in enhancing potentiation of 

contractile complex and muscle activation (Škof et al., 2007) than external heat application. 

Warming up will also ensure that there is adequate lubrication of synovial fluid and the 

boundary lubricant lubricin (PRG4) in articulating cartilage surfaces placed under load, 

producing a coefficient of friction (μ) on the order of ~0.01 or less and thus helping to 

reduce damage of these surfaces during motion (Jay and Waller, 2014).  These parameters 

are universally understood.  Elite cycling competitors are ensured to be of adequate 

hydration levels prior to training and competition.  Warm ups are commonplace, and more 

recently, specially designed heat pads have been implemented prior to elite competition 

to ensure that muscles remain at an optimum temperature between warm up and race 

onset (Faulkner et al., 2013). 
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There also exists a wealth of widely recognised information describing how environmental 

factors such as gravity, friction and air resistance influence cycling performance (Barry et 

al., 2015; Davies, 1980; Fintelman et al., 2015; Welbergen and Clijsen, 1990).  The extent 

to which they impede the rider is governed by a plethora of considerations as identified in 

Figure 2.3.   The axiomatic nature of environmental influences has made these factors far 

more predictable than those determining propulsion, thus allowing them to be uncoupled 

from the maintenance/maximisation of propelling the bicycle, and creates a paradigm 

which is well suited to modelling approaches (Defraeye et al., 2010; Blocken et al., 2013).  

As such, much has been done to minimise the impact of the resistive forces on the cyclist, 

whilst optimisation strategies concerning propulsion forces still presents challenges.   

 

Figure 2.3 Environmental factors affecting cycling performance.  Adapted from Too (1990). 

Consequentially, the large emphasis placed upon reducing resistive forces dominates much 

of the performance strategies in place, and potentially limits consideration of how 

propulsive force could be maximised.  This is in part due to the complexity of the 

interactions between the internal biomechanical variables related to force/torque 

development and power production (Figure 2.4).  The intricacy of such relationships means 



8 
 

that they are seldom considered in the engineering of equipment and they remain largely 

misunderstood.  Proficient manipulation of such variables can result in the modification of 

effective muscle force/torque/power production and the way this is transferred to the 

bicycle.  

External mechanical factors presenting constraints are those imposed on the cyclist 

through the structural configuration of the bicycle and how it is engineered to interact with 

power transmission.  There is an array of possibilities which include: seat tube angle; seat 

height; seat to pedal distance; crank arm length; handlebar positioning; chainring shape 

and diameter; foot-pedal position; gear ratios; wheel size, mass, diameter and inertial 

properties; body position, orientation, and joint configuration; and power transmission 

losses resulting from friction.  Careful manipulation of these parameters has the ability to 

alter joint angle kinematics, muscle fibre length, resistance load, muscle mechanical 

advantage, and the ability to produce force/torque/power (Burke, 1986). 

 

 

Figure 2.4 Internal biomechanical factors affecting cycling performance. Adapted from Too (1990). 

Propulsive force is, therefore, a function of the interplay between internal biomechanical 

factors in developing force, torque and power.  However, this notion is convoluted further 

when considering that alterations in bicycle geometry not only affect propulsive forces, but 
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also influence the type of resistive forces met in terms of environmental factors and the 

resulting interaction between these variables. Such changes have the ability to alter joint 

angles, muscle lengths and muscle moment arm lengths, therefore, affecting the 

effectiveness of force production via alterations in the tension-length, force-velocity-power 

relationships of multi-joint muscles, ultimately manifesting itself as a change in the 

energetics of cycling.  Due to the complexity of musculoskeletal dynamics much of what is 

understood about skeletal muscle function during human locomotion has been indirectly 

inferred from correlations between anatomical classification, inverse dynamics analysis 

and electromyographic activity (EMG) analyses; however, there is a difficulty in developing 

causal relationships between muscle excitation and task performance during locomotion 

from these correlations alone (Kautz and Neptune, 2002).  However, the implementation 

of mathematical arguments used to drive models have enabled researchers to gain 

valuable insight in those parameters and phenomena (Zajac, 1989; Winters, 1990) 

previously difficult to elucidate when solely relying on experimental data  (Biewener et al., 

1998; Shadwick et al., 1999).  Using cycling as a paradigm to weave experimental data into 

model-driven simulations has provided insight into how forces interact between the leg 

segments and the external environment (Kautz et al., 1994; Raasch et al., 1997; Rankin and 

Neptune, 2008). Through the development of open-source simulation software (e.g. 

OpenSim; Delp et al., 2007), researchers can now investigate questions about muscle 

behaviour during locomotion and locomotion performance resulting from alterations in 

muscle behaviour.  Within the context of this thesis, integrating musculoskeletal simulation 

and experimental data will be used to explore how the neuromusculoskeletal system 

responds to changes in drivetrain kinematics. 

2.3 Decomposition of pedal forces   

Developments in strain-gauge technology have led to an improved understanding of the 

interaction between pedal force and resultant crank torque.  Pedal forces are commonly 

described in component terms, with those responsible for developing torque around the 

crank spindle being described as being propulsive forces.  These loads are described as the 

normal (acts in the direction of the pedal arm) and tangential (acts tangentially to the circle 

being described by the pedal), or as labelled in Figure 2.5, FN and FT (Newmiller et al., 1988).  

It is only the FT which contribute to the turning of the crank. With prior knowledge of the 
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pedal angle in relation to the crank angle, these components can be mathematically 

resolved into effective (FE) and ineffective (FIN) components. The FE acts perpendicularly to 

the crank, generating a torque that is transmitted through the bicycle chain and to the 

wheel.  It is seen to vary substantially throughout the pedal cycle, with peak torque typically 

occurring at approximately 100° past top dead centre.  Most studies report negative FE in 

the recovery phase, indicating that the effective component of pedal force is acting against 

the direction to crank propulsion, and resulting in resistive force for the contralateral leg.  

The FIN component acts parallel to the crank arm and thus only acts to lengthen or compress 

the crank, and thus produces no useful external work in propelling the crank (Figure 2.5).  

The two schemes of force components at the crank and the pedal are related, however 

their relationship is dependent upon the positioning of the crank.  The vector sum of the FE 

and FIN is the total force applied to the pedal and is referred to as the resultant force (FR).   

 

Figure 2.5 Schematic of forces acting on the pedal and relationship of crank angle on these schemes: 

resultant force (FR), horizontal force (FX), vertical force (FY), tangential force (FT), normal force (FN), effective 
force (FE) and ineffective force (FIN) applied to the pedal. TC represents the torque created about the crank 
centre generated by FE.  Adapted from Coyle et al. (1991). 

When considering the impact of the force components on cycling performance, pedal force 

effectiveness is a commonly used measure. It is defined as the ratio between the force 

magnitude perpendicular to the crank arm (i.e. producing a moment of force and 

consequently, work on the crank) and the FR generated on the pedals, or the sine of the 

angle between pedal force and crank (Bini et al., 2013). It has been used as a gold standard 
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measure of pedalling technique, as applying optimally orientated forces on the pedal 

during cycling is a major component of skilled performance (Dorel et al., 2009).  From an 

energetics perspective, energy usage could be considered wasteful given the lack of the 

ineffective static component of force overall contribution to external power. An increase 

in exercise intensity seems to be associated with an optimisation of the force applied to 

the pedals, and a decrease in effectiveness leads to an increase in oxygen uptake (Patterson 

and Moreno, 1990).  

As already identified, FIN produced at the bottom or top dead centres of the crank cycle 

does not contribute toward angular motion of the crank and, ultimately, crank propulsion; 

however, this does not mean this component is free of energy cost, given a requirement to 

convert the potential energy stored in the muscle-tendon units at the top dead centre to 

kinetic energy towards the bottom of the pedal cycle (Kautz and Hull, 1993).  Similarly, if 

there is no resistance on the bicycle wheel, an energy requirement persists in order to keep 

pedalling, resulting in augmented internal work production.  Changing the direction of the 

limb’s motion over the course of bottom dead centre  does not require energy from the 

ipsilateral leg, however, there is an energy cost associated with the contralateral leg lifting 

the other leg and the inertial effect of converting potential to kinetic energy which 

contributes to the angular momentum through the bottom dead-centre.  Improving the 

effectiveness of the pedalling technique, whereby the contribution of FIN is reduced whilst 

simultaneously increasing the ratio of FE to FR applied to the pedal, would increase the 

metabolic energy through increasing the magnitude of biceps femoris and its action as a 

hip and knee flexor (Mornieux et al., 2010).  Despite the intention of this technique being 

to efficiently orient the total force on the pedal, due to the constrained position of body 

segments on the bicycle and of the muscle in respect to the bones, a certain amount of FIN 

is needed to work efficiently. 

Maximising FE relative to total force implies minimising the FIN, however, due to the 

constrained position of body segments on the bicycle and of the muscle in respect to the 

bones, a certain amount of FIN is needed to work efficiently.  This is represented in Figure 

2.6, which depicts the manner in which pedal forces vary throughout the pedal cycle.  Here, 

it can be seen that peak crank torque occurs at around 100° past top dead centre, and 

forces are most vertically orientated at top and bottom dead centre, which is where FE are 
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close to zero, whilst, considerable FIN are dominant in this sector.  Abolishing these FIN 

altogether would lead to significant muscle work given their role in supporting movement 

direction, despite no muscular work contributing to their production, signifying that they 

are not altogether wasted (Broker, 2003).     

 

Figure 2.6 Pedal vector force. Visualisation of the resulting pedal forces during one complete cycle.  Arrow 
lengths represent the magnitude and directions of the applied force.  Figure is adapted from Broker (2003). 

Muscular forces accelerate the legs whilst the foot-pedal connection ensures that the 

resulting movement of the foot follows a constrained, circular path around the crank axis.  

Consequently, pedal forces not only reflect muscular activity, but also depend on external 

forces.  As a result, the applied pedal force cannot be understood independent of the 

dynamics of the cycling movement.  With this in mind, researchers presented a method of 

separating these distinct components of pedal force (Kautz and Hull, 1993), and, as such, 

enhancing the understanding of the mechanical cost of cycling.  Consequently, two further 

force components have been identified, separating the total pedal load into muscular-

based torque production which leads to moments generated in the hip, knee and ankle 

joints; and naturally occurring non-muscular forces which may influence pedal or crank 

forces (e.g centripetal, Coriolis and gravitational; Fregly and Zajac, 1996).  The relationship 

between these components is highlighted in Figure 2.7.   
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Figure 2.7 Muscular and non-muscular pedal loading vectors. Visualisation of the (A) muscular and (B) non-
muscular pedal forces during one complete cycle.  Arrow lengths represent the magnitude and directions of 
the applied force.  The muscular and non-muscular components sum to create the total pedal load depicted 
in Figure 2.6.  Figures are adapted from Broker (2003).   

Further to this, muscular forces have been found to reduce as pedal speed increases owing 

to the contractile properties of the muscle, while non-muscular pedal forces increase 

linearly with pedal rate (Neptune and Herzog, 1999).  Given that gravitational forces have 

been found to be largely unaffected by cadence transitions (Brown et al., 1996), the 

augmented contribution of non-muscular components to total pedal forces at increased 

cadences could be attributed to the influence of crank inertial load (kgˑm2), creating a 

centripetal force about the crank (Baum and Li, 2003) and interacting with the muscular 

components in, what could best be described, as a quadratic relationship (Figure 2.8).  

Crank inertial load has the effect of dampening changes in the crank angular velocity over 

the course of a pedal cycle (Edwards et al., 2007) and given that during steady state cycling 

with conventional drivetrain kinematics, fluctuations in the velocity of the cranks exist 

(Gregor et al., 1991); the effect of this component should be carefully considered when 

employing alternate task mechanics which might seek to manipulate crank angular velocity 

(Rankin and Neptune, 2008).  This is could be of great importance within the context of 

understanding the mechanics of drivetrain kinematics as altered crank inertial loads have 

been found to impact propulsion biomechanics as noted by Hansen and colleagues (2002), 

with peak torque being found to be greater at higher inertial loads.   
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Figure 2.8 Relationship between pedal force components and cadence. Diagram to show the quadratic 
relationship between cadence and muscular and non-muscular components and their contribution to total 
pedal force when at fixed power outputs.  Adapted from Neptune and Herzog (1999).   

2.4 Skeletal muscle contractile properties 

  

An individual’s ability to perform functional movements is determined by a range of 

mechanical properties, including the force and power producing capabilities of the skeletal 

muscle and the interaction of how the force and power outputs are coordinated between 

different muscle groups.  The ability of whole muscle to generate force is dependent on its 

architecture and size. This is because a muscle’s effective physiological cross-sectional area 

(PCSA; calculated using muscle volume, fascicle length and pennation angle) is 

representative of its total area of muscle fibres, which is directly proportional to the 

maximum force that it can produce and is therefore indicative of force-generating capacity 

(Powell et al., 1984). Meanwhile, the ability of the individual muscle fibres to generate force 

is governed by the principles of activation, length and velocity (Gordon et al., 1966; Hill, 

1953).   Fascicle length influences the distance over which muscles can contract to do work 

[work (J) = distance (change in length; m) × force (N)] and therefore the contractile ability 

(excursion and velocity) of the muscle.  These concepts are well understood in isolation, 
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however, may not be representative of how the muscle behaves in vivo and in unison with 

tendinous tissue (tendons and aponeuroses).  Whilst it is typical for  voluntary movements 

to occur when the muscle undergoes concentric contraction and shortens, other muscles 

may actively lengthen during eccentric contractions, allowing energy to be dissipated for 

control of inertial movements, or to undergo brief periods of active stretch prior to 

shortening, acting to enhance force development and the amount of work performed.  

Additionally, muscles may develop force isometrically, consequently performing little 

mechanical work but providing greater and more economical force generation and allowing 

for tendon elastic energy recovery.  Under each of these conditions, muscle force and 

velocity are affected by the timing of muscle activation and deactivation, as well as the 

variance in external load during the locomotive activity, making force and velocity time 

varying entities, which rarely remain constant. Therefore, it is important to understand how 

these properties function in relation with each other (Biewener and Roberts, 2000). 

For a given mass of muscle, fascicle length and PCSA are inversely proportional, and based 

upon their limb location and primary function, they typically specialise towards a greater 

working range or force production, and a trade-off exists between these two entities 

(Lieber and Friden, 2000).  Within vertebrate species,  general pattern has been established 

that many proximal limb muscles are specialised for doing mechanical work (with long 

parallel-fibred muscles), whilst distal muscles are specialised in the generation of large 

forces and storing and recovering mechanical energy as an energy saving mechanism due 

to their pennate architecture and compliant tendons.  This is because parallel fibres cause 

a larger muscle shortening than pennate fibres (Biewener and Roberts, 2000), and 

consequent to then acting at a lower part of the length tension relationship, have higher 

force depression (Burkholder and Lieber, 1996), while a muscle with pennate fibres with a 

larger PCSA has a higher peak force (Wilson and Lichtwark, 2011).   Joint torque is produced 

by the force exerted by these muscle fibres and the tendinous tissue is deformed in the 

process.  The relationship between length of muscle-tendon unit complex and muscle 

fibres is consequently altered by the variation in moment arm.  Therefore, taking into 

account that fibre length and contraction velocity affect the force development capacity in 

line with force-length and force-velocity relationships, tendon mechanical properties can 

impact the relationship of muscle force to joint angle and/or to angle velocity (Muraoka et 
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al., 2001). 

The characteristic force-length relationship demonstrates that the greatest force 

production occurs at a specific length (Figure 2.9A), defined as the optimal fibre length (LO), 

dictating that at shorter or longer lengths the muscle’s ability to generate force depreciates 

in accordance with a reduction in the effective overlap of contractile proteins (Huxley and 

Simmons, 1971). More recently, it has also been proposed that, under isovolumetric 

conditions, radial forces occurring during contraction require alterations in myosin and 

actin dynamics through changes in the lattice spacing that also augment the effects of 

variations in length and the length-tension curve (Williams et al., 2013).  The effects of 

muscle shortening velocity on muscular force production were first reported by A.V. Hill 

(1938).  The hyperbolic equation primarily presented force as decreasing with increased 

shortening velocity (Figure 2.9B).  These traditional force- and power-velocity relations are 

determined from protocols that allow the muscle to become fully excited before 

shortening, and therefore, are not influenced by activation-deactivation dynamics.  

Additionally, despite these relations typically being portrayed as continuous functions, they 

are formed from isolated contractions in which the muscle shortens against several 

discrete loads.  Conversely to the discrete velocities and loads used to determine traditional 

force-velocity properties, a variable muscle shortening velocity is associated with most 

functional movements.  During locomotion, velocity will generally be at zero at the start 

and end of a movement (i.e., maximal and minimal joint extension) and peak velocity will 

be reached at some intermediary point within the movement.   Movements such as this 

will often produce a sinusoidal length trajectory, and therefore, velocity will follow a cosine 

function.  Because velocity varies substantially within a given movement variation, 

relationships between average muscle force and average shortening velocity may not be 

immediately apparent (Martin, 2007).  At slow shortening velocities, muscles are still 

capable of producing relatively large forces, however, an exponential decrease in force 

generating capacity is observed as the speed of shortening increases until the muscle 

reaches its maximum shortening velocity (Vmax) (Caiozzo and Baldwin, 1997).   
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Figure 2.9 Schematic illustrating the relationship between contractile properties and the production of 
muscle force. A hypothetical length-tension relationship of skeletal muscle, where the active tension (A; red 
line) generated by the muscle reaches a maximum at the optimum contractile element overlap (Lo) and 
decreases as the muscle is shortened or lengthened.  Passive tension (P; blue line) is generated by the 
connective tissue with and around the muscle, increasing as the muscle is stretched to longer lengths.  The 
total muscle tension (T; black line) is determined by the contributions of both the active and passive elements.  
(B) A hypothetical force-velocity curve for skeletal muscle, where eccentric (lengthening) and concentric 
(shortening) contractions are capable of producing muscle forces.  As the velocity of shortening increases, 
there is an exponential decrease in maximum force capacity of the muscle until reaching the maximum 
shortening velocity (Vmax). (C) A hypothetical action potential and subsequent contraction for skeletal muscle, 
where the electrical signal of depolarisation of the fibre leading to the peak in muscle tension is met with a 
delay during the rise in muscle stimulation (excitation dynamics) followed by the delay during the build-up of 
tension (contraction dynamics). 

Additionally in the muscle-tendon unit (MTU), a ratio between the MTU velocity (Vmtu) and 

fibre velocity (Vf) represents a phenomenon known as MTU gearing. Here, the compliance 

and stretch of the tendons can result in an uncoupling and displacement between the 

velocities, allowing the muscle belly to shorten at rates in keeping with the muscle fibres 

optimal velocity. This indicates that focusing entirely on the shortening velocity of the fibres 

might not give an accurate depiction of what is happening in the muscle as a whole in the 

process of translating muscle fibre forces into joint torques (Wakeling et al., 2011).  

Wakeling and colleagues (2011) reported increases in MTU gearing ratios occurring at 
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higher cadences, postulating that this allowed the slowest fascicles in the muscles of the 

triceps surae to contribute more usefully to contractile force at faster pedalling rates.  A 

thorough understanding of the length and velocity properties of the muscle are therefore 

imperative, given they may constrain force production, and the subsequent impact this has 

on the ability to generate mechanical power in dynamic movements such as running and 

cycling (Biewener, 2016). 

2.5 Implications of mechanical muscle properties during cyclic locomotion 

During cyclic locomotor tasks, the intrinsic properties of the muscles impose constraints 

that the nervous system overcomes by activating and deactivating at a suitable point in 

time, whilst controlling the magnitude of force (de Koning et al., 1991; Jacobs & van Ingen 

Schenau, 1992).  The coordination requirements that this places on the muscle highlights 

why mechanical interactions observed during maximally activated, isolated muscles do not 

always translate across to locomotion.  Subsequently, optimal coordination strategies are 

task dependent.  The outcome during a submaximal task might be to optimise the patterns 

toward energy expenditure conservation (Anderson and Pandy, 2001) or minimise 

neuromuscular fatigue (Neptune and Hull, 1999). Alternatively, during maximal 

locomotion, it is probable that the optimal intermuscular coordination strategy would 

exploit the mechanical properties of the muscle (activation and deactivation dynamics and 

force-velocity-length relationships) (Jacobs & van Ingen Schenau, 1992; van Soest and 

Casius, 2000). 

Cycling provides an ideal paradigm to study these principles as the foot-pedal interface 

ensures that the lower limbs remain kinematically constrained over a repetitive motion, 

with an amenability to manipulation and modelling, therefore allowing researchers to 

investigate mechanical muscle properties via altered joint kinematics (Martin and Spirduso, 

2001).  Utilisation of cycling as a model for such investigations allows for movements to be 

performed under both submaximal and maximal conditions, yet remain predictable and 

consistent, whilst considering mechanical muscle properties (Dick et al., 2017) and 

intermuscular coordination patterns (Wakeling et al., 2010; Blake et al., 2012).   

Over the course of a pedal cycle, the leg undergoes a cyclic action of flexion and extension, 

with the course of the joints being predominately dictated by the fixed entities which are 
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bicycle geometry, pedal spindle path and leg segment length.  Despite this, a certain level 

of freedom is available for the cyclist to alter the movement of the leg through 

manipulating motion at the ankle and hip joints.  These biomechanical ‘degrees of freedom’ 

allow the cyclist to choose to position their ankle in a heel up or down pedalling style, and 

to modify the amount of side-to-side rocking at the pelvis.  Despite this allowing for some 

degree of variation over the course of the pedal cycle, the possible movement patterns 

during cycling are far fewer than those in other movements such as swimming, running or 

walking. 

During the downstroke, when the leg is extending, the hip and knee joints go through the 

largest ranges of motion, and it is the muscles which act upon these joints which provide 

the largest contribution to overall cycling power (Ericson, 1988) and generate the largest 

joint moments (Mornieux et al., 2007).  The largest and most powerful hip extensor muscle 

is the gluteus maximus.  The most important knee extensor muscle group is the quadriceps 

femoris, which is comprised of four separate muscles, with the vastus medialis and lateralis 

having the largest impact on force production.  The knee extensors and hip extensors 

consist of two of the largest muscle groups in the human body and are consequently well 

suited to produce high power outputs.  During the leg extension phases, there is a 

significant power contribution from the ankle extensors (plantar flexors), the most 

important being the gastrocnemius and soleus muscles.  Nonetheless, joint velocity is much 

lower at the ankle joint, and consequently joint powers and muscle force contribution to 

mechanical power production is lower than that of the hip or knee (Ericson, 1988).  In 

addition to production of power, this muscle group also play an important role in stiffening 

the ankle joint so that the power created at the knee and hip extensors can be transferred 

to the pedal (Martin and Nichols, 2018).  Due to the constrained nature of the cycling 

motion, joint powers are only responsible for propulsive action during certain portions of 

the pedal cycle, which remains relatively constant regardless of changes in cadence and 

power output (Mornieux et al., 2007).  Despite this, it is possible to implement an alteration 

in joint moments and powers, adopted through a change in position (Caldwell et al., 1999) 

or bicycle geometry such as seat height (Sanderson and Amoroso, 2009) or crank length 

(Too, 1990), ultimately manipulating strain and strain rates for given joint motions (Rome 

et al., 1988).    
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Considering the whole muscle in detail generates an ability to discern the type of 

functionality they allow for, as their ability to produce power is dependent on the volume 

and architecture.  Parallel fibred muscles (such as the bicep femoris and semitendinosus of 

the hamstring group) are arranged so that the fibres run along the length and in the 

direction of force transmission. Pennate fibred muscles (such as rectus femoris and vastus 

lateralis of the quadriceps groups, classified as bipennate and unipennate respectively) 

have shorter fibres, packed at an angle that does not correspond with the main axis of force 

transmission.  The significance of this is related to the length of fascicles such formation 

allows for.  The majority of muscles in the leg are responsible for either eliciting or resisting 

movement, and so joint angle changes that ensue during muscle lengthening or shortening 

help in fulfilling their function, which is subject to change at different points of a locomotive 

action (da Silva et al., 2016).  Muscles with long fibres and short moment arm can produce 

large angular displacement and a high angular velocity with a small torque and initial 

acceleration (Biewener and Roberts, 2000).  Conversely, short fibred muscles with long 

moment arms produce larger joint torques and movement forces.   

One of the primary requirements of a muscle is shortening to generate tension and leading 

to the performance or absorption of mechanical work.  Peak power is developed at around 

one third of maximum contraction velocity and peak efficiency of performing mechanical 

work at a lower velocity (Woledge et al., 1985).  Where exactly this value falls is dependent 

on the shape of the power-velocity curve.  Therefore, a muscle’s PSCA needs to be sufficient 

at generating forces at appropriate velocities and adequately long fibres to operate at a 

strain rate around or below that corresponding to peak efficiency or peak power. Those 

muscles needing to generate both high force and perform work such as the knee extensors 

are subject to a trade-off which limits the LO.  Short fibres reduce the costs associated with 

the generation of high forces; however, long fibres reduce sarcomere shortening velocity 

for a given fibre shortening speed and thus reduce the cost of performing mechanical work.  

It is also important to consider that larger muscle volumes also increase limb inertia and 

muscle inertia as during submaximal contractions the actively contracting fibres must work 

to accelerate both their own mass, and the mass of the remaining inactive fibres (Ross and 

Wakeling, 2016). 
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Muscle force is also dependent on the activation state, which is determined from the 

electrical signals, elicited by the nervous system via the motor neurons.  When the signal is 

above a certain threshold, an action potential occurs and results in the depolarisation of a 

muscle cell.  Such an event initiates the release of calcium ions from the sarcoplasmic 

reticulum and triggers a cascade of events culminating in the binding of myosin heads to 

nearby actin filaments allowing cross bridges to form and generate force (Huxley and 

Simmons, 1971; Neptune and Kautz, 2001).  The delay between the neural excitation 

arriving at the muscle and the development of force (Figure 2.9C) and the subsequent 

relaxation when muscle force returns to zero is encompassed within activation-

deactivation dynamics, and primarily results from calcium kinetics and cross bridge 

attachment and detachment rates (Zajac, 1989). The summation of these principles are 

outlined in Figure 2.9. 

To achieve functional movement, the appropriate number and combination of motor units 

and hence muscle fibres, must be recruited.  Most skeletal muscles contain a mixture of 

fibre types. These can be classified by their characteristic movement rates, neural inputs 

and metabolic properties, and consequently can be distinguished into “slow twitch” (type 

I) and “fast twitch” fibres (type II), of which there are two major subtypes in humans: types 

IIA and IIX; depending on cellular metabolic programming (Schiaffino and Reggiani, 2011).  

The response to stimuli varies significantly between the fibre types, and whereas fast twitch 

fibres fatigue more rapidly, they possess a higher maximum shortening velocity and faster 

activation-deactivation rates compared to slow twitch fibres.  Some contention has arisen 

concerning the way in which they are recruited.  Whilst the ‘size principle’ is the generally 

accepted rule, which purports that the neural recruitment of motor units is governed by 

their size, recruiting the smallest α-motoneurons first and following sequentially with the 

recruitment of increasingly larger motor units until the force demands are met (Henneman 

et al., 1965).  This is then reversed, as motor units are de-recruited from largest to smallest 

as the force demands decrease (Henneman et al., 1965).  Orderly recruitment of slow to 

fast twitch muscle fibres provides a convenient method of ensuring the more fatigue 

resistant fibres are enlisted first, and therefore allowing faster motor units to be reserved 

for high intensity tasks and an overall smooth increment in force production (Zajac and 

Faden, 1985). 
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Since this pivotal work in motor unit recruitment patterns was proposed, there have been 

reports that orderly recruitment may not always be favourable, and variance might actually 

occur in some cases to meet specific task mechanical needs, with evidence provided in 

animal studies (Hoffer et al., 1987; Hodson-Tole and Wakeling, 2007) and human 

locomotion (Von Tscharner and Goepfert, 2006; Blake and Wakeling, 2015).  When 

considering the impact this has on cycling performance, it is conceivable that cycling at a 

low cadence with a constant power output will require high muscle forces to be obtained 

per cycle, which could be achieved through progressive recruitment of higher threshold 

motor units to meet this demand.  However, the mechanical demands of high cadence 

cycling dictate that faster twitch muscle fibres contribute more to maximum power given 

their force-velocity-power properties (Beelen and Sargeant, 1991; Blake and Wakeling, 

2015). 

2.6 Situational specificity  
 

Just as the recruitment of muscle fibres cannot be generalised across all locomotive 

situations, studies examining joint level mechanical outputs during cycling have highlighted 

how maximal cycling is not simply a scaled-up version of submaximal cycling.  The extent 

of this can be seen in the significant differences in joint kinematics  between submaximal 

and maximal cycling; and more specifically, a greater proportion of the pedal cycling is 

spent in extension rather than flexion during maximal cycling as compared with 

submaximal (Martin and Brown, 2009; Elmer et al., 2011).  Additionally, maximal cycling 

places greater reliance on hip extension and knee flexion as well as greater contribution for 

the upper body (Elmer et al., 2011; Mcdaniel et al., 2014).  In addition to the way in which 

fibres are recruited at augmented pedal speeds, muscle force is also affected by cycle 

frequency via excitation state.  More specifically, muscle excitation has been found to be 

incomplete at high cadences in association with a shift in activation-deactivation dynamics 

seen in the muscle in accordance with the altered joint actions, which consequently 

reduces force output in comparison with a muscle in a fully activated state (Caiozzo and 

Baldwin, 1997; Martin, 2007).   This effect is joint dependent (Elmer et al., 2011), and the 

extent of phase shift (timing of the activation) is different across muscles (Blake and 

Wakeling, 2015).  Further, research from Blake and Wakeling (2015) suggests that 
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adaptation in the timing of activation is sensitive to cadence increments rather than 

workload.  This is an important consideration when procuring insight into any alteration in 

mechanical demands during cycling, and results from one paradigm may not be 

generalisable to the other.  

During the course of a pedal cycle, the movement pattern represents the nervous system’s 

attempt to resolve the specific constraints it is confronted with, such as speed 

requirements, load variations and task imposed alterations in movement patterns 

(resulting from changes in external mechanical properties), whilst optimising neural and 

muscular parameters (activation, force, power, efficiency).  Despite this, the movement 

pattern which minimises metabolic cost is not automatically selected during human cycling 

(Marsh and Martin, 1997), and it appears that more than the neuromuscular component is 

responsible for selecting the preferred cadence (Neptune and Hull, 1999).  Taken together, 

care must be taken when interpreting results; selection of cadence is complex and the 

parameters that control performance under a variety of conditions remain poorly 

understood. However, the implementation of a mechanical interface in cycling makes 

manipulating singular variables a more accessible option than other forms of locomotion 

when exploring optimal control models.  As such changing the mechanics of the pedalling 

task can offer insight into how offsetting the movement pattern of the lower limb can affect 

muscle-tendon mechanics and intermuscular coordination patterns.  There is currently a 

lack in understanding of how perturbing traditional movement patterns during in vivo 

cycling can change muscle-tendon unit behaviour across a range of medium to high 

cadences and configuring such a design could offer significant insight into how the central 

nervous system and musculoskeletal system interacts during functional movements.  One 

way that this can be achieved could be through the use of non-circular chainrings.  

2.7 The use of non-circular chainrings  

 

Since the invention of the derailleur in 1905, and consequently the ability to change gears, 

the mechanics of the drivetrain has remained relatively unchanged.  However, there 

remains apparent constraints with the transfer of power from the body to the drivetrain, 

which are reliant upon a series of components such as crank length (Martin and Spirduso, 

2001; Barratt et al., 2016), anterior-posterior foot position on the pedal (Van Sickle and 
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Hull, 2007), seat height (Sanderson and Amoroso, 2009) and seat tube angle (Verma et al., 

2016). All of these factors are responsible for affecting the moment about the ankle and/or 

hip, and ultimately the ability to apply maximum effective force. Yet, torque production 

remains a near sinusoidal entity, when ‘power vacuums’ are created at the top and bottom 

of the pedal cycle, known as “dead spots” and effective force production is severely 

compromised (Figure 2.7). With this in mind, multiple optimisation analysis studies have 

tried to identify a shape for the most effective application of force throughout the pedal 

cycle through altering the drive radius of the chainring (Kautz and Hull, 1995; Purdue et al., 

2010; Rankin and Neptune, 2008) and consequently manipulating the crank angular 

velocity (Hull et al., 1992).   This can be achieved on the basis that as the chainring rotates 

with the crank, the chainring radius encountered by the chain varies depending on which 

pedal cycle quadrant it is in (Figure 2.10).  Altering the orientation of the crank against the 

major and minor axes enables the user to manipulate where in the cycle the smallest and 

largest radii are met.  An optimal orientation has been identified as allowing the largest 

radius to be utilised during the downstroke, providing a greater propulsion around the 

crank. 

 

Figure 2.10 Schematic of the positioning of elliptical chainrings throughout the pedal cycle. The position of 

the crank angle is labelled on the inside of each chainring and the crank is moving in a clockwise direction. 

Simulation based approaches of these chainring systems have indicated that an increase in 

net joint torques may occur when using a non-circular chainring (Kautz and Hull, 1995), 
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however, this study failed to include muscle mechanics within their model, which likely 

would have reduced the torques predicted at the joints.  Miller and Ross (1980) developed 

a theoretical model of crank torque developed by muscles as a function of crank angle and 

velocity and used an optimisation approach to identify the crank angular velocity profile 

that might maximise average crank power. The result of this was a velocity profile that 

slowed down the crank during the downstroke to allow muscles to generate power for 

longer, and an increase in power delivered to the rear wheel.  However, this model included 

just one degree of freedom, thus does not adequately present a precise geometric 

representation of the musculoskeletal system.  The implications of this are important, 

particularly in a situation where muscle forces are being predicted within a system that 

does not account for force sharing behaviour across muscles and joints (Jinha et al., 2006), 

and results should be interpreted accordingly. 

Rankin and Neptune (2008) built further onto the model of Kautz and Hull (1995) by 

including individual muscle actuators and using a dynamic optimisation framework to 

identify an optimal chainring shape that maximises average crank power. This work 

predicted that an eccentricity (see Figure 2.12 for definition) of 1.29 would increase 

average crank power by 3.0% at 90 rpm.  The authors dismissed the contribution of intrinsic 

muscle properties to this finding, in that the fibre lengths and velocities of their 

musculoskeletal model remained almost identical during their active states between the 

optimal and circular chainrings across all the pedalling conditions.  Instead, they attribute 

increases in crank power to the slower crank angular velocity predicted to occur during the 

downstroke (Figure 2.11B). They therefore proposed that the muscles would have more 

time to generate power and transfer it to the pedal, and hence greater external power 

would be produced.  In particular, hip and knee extensors, and ankle plantar flexors 

produced increased muscle work in the downstroke, whilst in the upstroke, there was a 

small increase in iliacus psoas and tibialis anterior work (Rankin and Neptune, 2008).  It is 

important to note that Hill-type muscle models were used in this study, which neglect 

history dependent effects such as force enhancement following stretch shortening (Herzog 

et al., 2000); force depression following shortening contractions (Huijing, 1998); the 

heterogeneity of muscle fibres and subsequent impact on recruitment patterns and force 

predictions (Lai et al., 2018); and activation-deactivation adaptations during fast cyclical 
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motions (Askew and Marsh, 1998; Blake and Wakeling, 2015).  However, using a first order 

differential equation to couple muscle activation and neural excitation pattern (Raasch et 

al., 1997), Rankin and Neptune (2008) did account for the activation-deactivation 

dynamics. They consequently found activation-deactivation dynamics were a key 

determinant of optimal chainring eccentricity, meaning that the higher and lower pedalling 

rates resulted in a requirement for different eccentricities and crank orientations (Figure 

2.11A), which yielded different crank angular velocities (Figure 2.11B). 

 

Figure 2.11 (A) Optimal chainring shapes and (B) angular velocity profiles for each pedalling rate normalised 
to the constant velocity of a circular chainring over the course of a complete pedal cycle.  Chainring shape 
was predicted using dynamic optimisation to identify the shape that maximises average crank power.  The 
solid, dash-dot and dotted line represent the optimal chainring shape/velocity at 60, 90 and 120 rpm, 
respectively.  Reprinted from J Biomech, Vol 41, Rankin JW and Neptune RR. ‘A theoretical analysis of an 
optimal chainring shape to maximise crank power during isokinetic pedalling.’ pp 1494-1502, 2008 (Figure 4 
& Figure 3, respectively). 

The principle of altering crank angular velocity with the use of non-circular chainrings has 

been incorporated into chainring design by multiple companies, in the hope of successfully 

applying theory into practice and improving performance. Three major design elements are 

utilised (Figure 2.12): orientation, which is the determination of angle between the 

centreline of the cranks and the major axis of the chainring; the eccentricity value, which is 

the ratio of largest to smallest diameter of the chainring and determines; and the form 

factor, which defines the perimeter of the chainring through the presence of arcs, ovals, 

angles, flat sections and ellipses (Malfait et al., 2010).  Such geometries cause a shift in gear 

ratio throughout a single pedal cycle, as the chainring rotates with the crank, making the 

top and bottom dead centres seemingly amount to that of a smaller diameter chainring. 
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Additionally, more teeth are available for connection with the chain during the downstroke, 

and theoretically in a position to generate greater force whilst the joint-action power is 

high and a more effective downstroke. 

 

 

Figure 2.12 Schematic highlighting the degrees of freedom available in the design of non-circular chainrings. 
(A) Is a reflection of the ratio of eccentricity available within the system which is dependent on the radii of 
the major and minor axes, and (B) the skew, which is a reflection of the perpendicularity of the major and 
minor axes. 

Despite the modelling-based evidence for increments in average power for complete cycles 

(Rankin and Neptune, 2008), significant results from empirical studies are elusive, with 

some studies finding enhanced power production (Hue et al., 2008; O'Hara et al., 2012), 

whilst others report no change (Horvais et al., 2007; Leong et al., 2017).  The source of 

these inconsistencies probably lies in the array of methodologies employed.  There is very 

much a trend towards empirical, performance driven studies, concentrating on augmenting 

a particular parameter of performance, be it metabolic (Hue et al., 2001), average power 

production (O'Hara et al., 2012), or maximal cycling power (Leong et al., 2017).  

Additionally, the study of power production is broad and dependent on whether load is 

held constant or open to manipulation; if cadence is constant or freely chosen; and if peak 

or average power is desired, all factors that differ amongst studies evaluating the effects 

of chainring geometry on performance.  A summary highlighting the diversity of some of 

these approaches can be found in Table 2.1.    
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Table 2.1 Selected references on comparisons between circular and non-circular chainrings. 

In summary, the range of methodologies utilised, and consequential mix of results makes 

it impossible to generalise and leaves unanswered questions regarding exactly what effect 

the altered chainring geometry has on the neuromusculoskeletal system. The force 

generated by the muscle is dependent not just on its size and architecture, but also its 

activation state and force-length and force-velocity properties.  We do not currently 

understand the effects of chainring design on joint behaviour, muscle contractile and 

activation-deactivation dynamics, but with information of these fundamental properties, 

we will be in a better position to predict how elliptical chainrings might influence 

performance and provide future direction to the study of non-circular chainrings. 

 

Note: Outcomes are in comparison with the circular chainring employed in the study.  Studies are listed in alphabetical order. 
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2.8 Measuring muscle behaviour in vivo  

 

As previously eluded to, little is known about the in vivo behaviours of skeletal muscles 

during human locomotion as opportunities for directly measuring the forces placed on 

muscles, bones and joints are severely limited in humans. Primary properties such as force-

velocity, force-time and force-length relations are typically investigated using reductionist 

techniques, by controlling all external factors and the variable of interest in manipulated 

whilst force is measured.  For example, force-velocity relationships are typically established 

using data collated from protocols which allow the muscle to become fully excited 

(eliminated force-time) before shortening across some predetermined range of length 

(controlling for force-length).  Such techniques have been instrumental in forming 

foundations of understanding surrounding muscle function.  Nonetheless, their direct 

application to voluntary movement is flawed considering the highly controlled nature the 

results were achieved under (Martin, 2007).  They are unable to determine where exactly 

during functional movements excitation may occur on a force-time basis, influences of 

variable shortening velocities and resistive forces, and shortening from one length to 

another.  Concomitant to this, the properties associated with the force-time, force-length 

and force-velocity paradigms are known to be influenced by history dependent effects, 

such as stretch-induced force enhancement (Edman et al., 1978), and shortening-induced 

force depression (Herzog et al., 2000).   

In order to explore the influences of non-circular chainring design on the 

neuromusculoskeletal system, alternate approaches must be taken to avoid the need for 

extrapolation from studies on isolated muscle.  Other techniques have been enlisted to 

evaluate animal muscle behaviour in vivo through the use of implanted sensors such as 

sonomicrometry, tendon buckles and intramuscular electromyography (EMG) to record 

fascicle lengths, forces and excitation respectively.  As such, valuable insight has been 

gained into how the energetics and performance of muscle is determined by the 

mechanical and physiological properties through activities such as hopping (Biewener et 

al., 1998; Azizi and Roberts, 2010), running (Roberts et al., 1997) and flying (Berg-Robertson 

and Biewener, 2012).  Due to the ethical and technical issues implicated by the invasive 

nature of these procedures, optic-fibre techniques and tendon buckles are not replicated 
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in humans as easily, although some research laboratories have been successful in 

performing locomotor tasks using such apparatus during running (Komi, 1996) and cycling 

(Gregor et al., 1987).   

Instead, human movement has been analysed using other tools such as force plates, 

motion capture and intramuscular and surface EMG, allowing for quantitative descriptions 

of the kinematics, kinetics and muscle coordination patterns behind body-segmental 

movement.  From this, methods of deducing muscle and tendon function have been 

introduced to overcome some of the gaps in our understanding.  Joint level analyses can 

provide insight to the physiologically relevant mechanical muscle properties across 

multiple joints (Martin and Brown, 2009), and allows researchers to observe how force and 

power are generated by various muscle groups, transferred across the limb and exerted.  

There are issues with this form of investigation, given that muscle fibre strain and strain 

rates are difficult to predict from joint movements alone given the role of tendinous 

structures in uncoupling the strain and strain rates of muscle fibre from the whole MTU 

(Wakeling et al., 2011).  Additionally, the rotation of muscle fibres in pennate muscles 

during contraction means that muscle fibre velocities can also be uncoupled from the 

shortening velocities of the MTU (Randhawa et al., 2013). 

Muscle function is dependent on the principles of the force-length-velocity relationship, 

however, as this cannot be measured directly in vivo it must be estimated using alternative 

techniques.  Modelling is an attractive method, as the model can be made as simple or as 

complex as the research question requires, given that the body can be split into a system 

of anatomical segments, connected by joints and acted upon by the muscles, tendons and 

other internal structures. This is a controlled way of obtaining a system that can interact 

with the environment and produce a purposeful movement. In this way, musculoskeletal 

models can provide an avenue for estimating the internal loading of anatomical structures 

and advancing our understanding of energetics and the control of movement.  Although 

these models can vary in complexity, ranging from a single degree of freedom (DOF) and 

its corresponding actuator, to multiple DOF models with several body segments and 

muscles.  Notwithstanding this, models of varying intricacy should continue to represent 

the skeleton anatomy, inertial characteristics of the body segments and properties 

associated with the muscular and neural systems with an adequate level of accuracy 
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needed to answer the specific question in mind.  To achieve this level of detail, the 

fundamental parts of the musculoskeletal model can be represented in software via 

mathematical expressions used to determine the dynamics of motion.  One open-source 

simulation software available is OpenSim (Delp et al., 2007), and enables the users to model 

lower and upper extremities to examine the biomechanical consequences of movements 

such as walking (Arnold et al., 2013), running (Lai et al., 2016), and cycling (Lai et al., 2017).   

There are certain flaws associated with this approach given the accuracy of a simulation is 

dependent upon the accuracy of the mathematical model underpinning the 

neuromusculoskeletal model.  As previously alluded to, the in vivo empirical evidence 

driving this is limited, and more needs to be collated in terms of musculoskeletal geometry 

and joint kinematics to influence predictive models. Models are only as good as the 

understanding of the system it is attempting to explain and the data which drives it, 

consequentially, synergistic approaches combining computational modelling used in 

conjunction with experimental cycling data would allow kinematic data to be coupled with 

the muscle-tendon behaviour and allow for a better understanding of the association 

between the two. 

2.9 Summary   

The implementation of an altered chainring geometry, and subsequent modification of 

angular velocity can impact the leg during cycling, thus having consequences for the 

contractile state of the muscles.  The muscle’s ability to exert power is dependent on its 

intrinsic properties, and a manipulation of pedal velocity could have implications for the 

timing of muscle activation and deactivation, muscle tendon unit and joint kinematics, 

therefore affecting the muscle’s ability to produce power.   However, such detailed 

experimental data have never previously been reported and it remains unclear what 

effects, if any, chainring geometry has on cycling performance.  This could be a result of the 

varying techniques used to assess their impact, using both in vivo performance based tests 

(Hue et al., 2007; Hull, 1992; Leong et al., 2017) and modelling based studies (Rankin and 

Neptune, 2008).  The gap which currently exists between the theoretical and empirical 

suggests a need to explore the effects of altered chainring geometries with a different 

approach, moving away from performance-based approaches by first uncovering the 
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mechanisms affected by alterations in task mechanics.  Elucidating muscle function is not 

straightforward, however, combining the techniques discussed above can offer insight into 

the relationships between the complex dynamic systems involved in cycling tasks.   

2.9.1 Outline and specific aims of this thesis   

The overall goal of this thesis was to assess the acute responses of the 

neuromusculoskeletal system to alterations in chainring eccentricity and the orientation of 

the crank against their major and minor axes, with the underlying aim of using the elliptical 

chainrings as a platform to understand more about how the human neuromuscular system 

behaves in vivo. The specific research objectives were therefore to determine whether 

manipulations of chainring geometry and crank orientation would alter: 

(a) patterns of crank angular velocity through the pedal cycle; 

(b) the components of force expressed at the crank; 

(c) the kinematics of the hip, knee and ankle joints; 

(d) behaviours (length and velocity) of muscle-tendon units of the leg; and 

(e) muscle activation patterns across proximal and distal leg muscles. 

The data One experimental study was performed, using instrumented cranks, 

electromyography and motion capture, to collect a large biomechanical data set, required 

to address these objectives.  The 3D marker trajectories were incorporated within a 

subject-specific scaled musculoskeletal model, allowing smoothed anatomically 

constrained joint kinematics and muscle-tendon unit lengths to be generated.  Chapter 

Three assesses changes in the crank angular velocity, reactive forces and joint kinematics 

caused by the use of elliptical chainrings over a range of cadence and load conditions.  

Chapter Four assesses the alterations in MTU lengths and velocities of the soleus, medial 

gastrocnemius and vastus lateralis.  Chapter Five, assesses how muscle activation patterns 

change in response to the altered joint and MTU behaviours recorded in previous chapters.  

Chapter Six integrates all these results and critically appraises the new findings, discussing 

potential consequences for understanding neuromusculoskeletal function and cycling 

performance. 
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Chapter 3. Effects of chainring geometry on crank kinematics and 

kinetics, and kinematics of lower limb joints during cycling 
 

3.1. Introduction  

Optimisation of movement strategies during cycling is an area that has gathered a lot of 

attention over the past decade.  Interventions to augment performance have included 

alterations in saddle height, seat tube angle, crank length, crank-pedal mechanics and 

manipulation of chainring geometries (Gonzalez and Hull, 1989; Rankin and Neptune, 2008; 

Sanderson and Amoroso, 2009).  A musculoskeletal model devised by Yoshihuku and 

Herzog (1990) suggests that pedalling with a fixed value of crank angular velocity does not 

allow for maximal power production.  Consequently, manipulations of drivetrain 

technology aimed at forcing the path of the foot along a non-constant angular velocity 

profile have been developed. One method of doing this is to alter the geometry of the 

chainring. Specifically, it has been proposed that pedalling with a circular chainring evokes 

a quasi-constant crank angular velocity (owing to the equidistant radius from the crank 

centre to the chain driving the rear wheel). However, non-circular chainrings (both skewed 

and ellipses), will promote a more varied crank angular velocity profile, as a result of the 

varied radius from the crank centre to the chain driving the rear wheel. Non-circular 

chainrings therefore have the potential to produce slower crank velocities during the 

downstroke and provide greater time for cyclists to apply forces to the crank (Rankin and 

Neptune, 2008). 

Using an optimisation framework, preliminarily theoretical work by Hull and colleagues 

determined that implementing a variable angular velocity profile, congruent with that of 

an elliptical shape, could promote a 48% reduction in muscle mechanical work relative to 

a constant angular velocity profile (Hull et al., 1991).  This was in keeping with an earlier 

simulation-based study from Miller and Ross (1980), which highlighted that a varying crank 

angular velocity was optimal for delivering power to the rear wheel.  Subsequent studies 

attempted to validate these optimisation observations using empirical evidence, however, 

after failing to distinguish any metabolic differences between a circular chainring, their 

custom designed elliptical chainrings and the skewed ellipse associated with the Shimano 

Biopace (devised by Okajimi, 1983), the authors did not take their work any further (Hull et 
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al., 1992).  Since then, more work has attempted to understand the performance effects of 

using non-circular chainrings, with mixed results (Hue et al., 2007; O’Hara et al., 2012; 

Hintzy and Horvais, 2016).  This lack of clear evidence supporting an in vivo performance 

advantage has dominated the study of non-circular chainrings for the past 20 years and left 

the area stagnated.   

A possible explanation for the equivocal results surrounding the use of non-circular 

chainrings may be the lack of adequate preliminary work in the area, as there is a jump 

from theoretical work (Kautz and Hull, 1995; Rankin and Neptune, 2008) to in vivo 

performance-based studies (Horvais et al., 2007; Leong et al., 2017).  While the overarching 

aim of intervention-based in vivo studies is to optimise performance (Weinberg and Burton, 

2000), this is a complex parameter to target, given the ambiguous nature of what 

constitutes ‘good performance’.  In cycling, performance optimisation is mainly related to 

the measurement of time or distance.  Depending on the event (i.e. endurance, time trial, 

sprint), cycling demands predominately dictate the need to cover a fixed distance as quickly 

as possible, or to go as far as possible in a fixed amount of time.  Performance 

improvements are then determined as being when the athlete is able to surpass previous 

attempts via an improved time or cycling further.  Owing to the etymology, a literature 

search in the optimisation of cycling performance finds different points of view emerge, 

with an almost equivalent meaning.  As such, it is possible to uncover results pertaining to 

cycling efficiency (Hansen et al., 2002; Korff et al., 2007), muscular efficiency (Neptune and 

Herzog., 1999; Zameziati et al., 2006; Carpes, Diefenthaeler et al., 2010), mechanical 

efficiency (Umberger et al., 2006; Wakeling et al., 2010) and mechanical effectiveness 

(Zameziati et al., 2006; Korff et al., 2007; Mornieux et al., 2010), all of which are related to 

alterations in cycling ‘performance’.   

Consequently, a new approach was deemed important if we are to better understand the 

effects of elliptical chainrings on the cyclist and cycling performance. To this end, a clear 

understanding of the neuro-mechanical effects of elliptical chainrings seems important, if 

their uses are to be directly related to consequences for cycling performance.  Quantifying 

the responses of lower limb kinematics and crank kinematics and kinetics is a required first 

step for better understanding of the effects of altered chainring geometry. Such data have, 

however, yet to be reported in the literature, and therefore represents a significant gap in 
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understanding the effects of elliptical chainrings on pedalling technique and how cyclists 

interact with the bike. 

The purpose of this chapter is therefore to evaluate how acute use of different elliptical 

chainrings influences crank angular velocity, kinematics of the lower limb joints and 

patterns of force application at the crank.  I hypothesise that there will be greater variation 

of crank angular velocity within the pedal cycle when using elliptical compared to circular 

chainrings, with the degree and magnitude of changes dependent on the degree of 

eccentricity and orientation of the crank to the elliptical chainring’s major axis. Additionally, 

it is predicted that altered crank angular velocity profiles will impact pedalling technique, 

altering the time spent in the downstroke of the pedal cycle and consequentially providing 

a longer time for FE to be applied, and a reduction in FIN at the top and bottom dead centres. 

3.2. Methods 
 

3.2.1 Protocol and Data Acquisition  

Four well-trained male cyclists (age: 39.5 ± 17.7 years, mass: 78.9 ± 11.4 kg, height: 184.8 

± 11.9 cm) and four well-trained female cyclists (age: 36 ± 15 years, mass: 61.2 ± 5.1 kg, 

height: 167.4 ± 2.3 cm) volunteered for the study.  All participants met at least five of the 

ten-point criteria system developed by Jeukendrup and colleagues (2000) for the 

classification of trained, well-trained, elite and world class cyclists, as determined by a 

questionnaire completed prior to taking part.  All but one participant were from road 

cycling training backgrounds, the remaining participant competed in triathlon events.  All 

participants gave informed consent to take part in the study, which was approved by 

Manchester Metropolitan University, Faculty of Science and Engineering, Local Ethics 

Committee and complied with the principles laid down by the Declaration of Helsinki.   

Participants reported to the laboratory at Manchester Metropolitan University and 

performed the trials on a stationary cycling ergometer (Indoor Trainer, Schoberer Rad 

Messtechnik (SRM), Jülich, Germany).  The geometry of the cycle trainer was matched to 

the participant’s own bicycle, and they brought their own shoes with cleats and pedals.  

Cadence, effective and ineffective forces applied to the crank arms were recorded using 

instrumented cranks (Powerforce, Radlabor, Freiburg, Germany) allowing the bilateral 
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recording of reaction forces at 2000 Hz.  A manual calibration of the cranks was performed 

using a known weight, rotated over a pedal cycle, to determine the necessary offset and 

correction values for the precise calculation of each force component.  The crankarm length 

used was the same for all participants (172.5 mm).  Participants were presented with three 

different chainring geometries, a 61-tooth circular chainring and two elliptical chainrings of 

two different levels of eccentricity (i.e., the ratio of major to minor axes lengths), 1.13 (E1) 

and 1.34 (E2), each with 52 teeth and in which the major and minor axes were 

perpendicular.  E1 and E2 were also fitted at two different orientations to the crank arm as 

identified in Figure 3.1, one orientation had the arm closer to the minor axis (E1-, E2-) typical 

of the orientation used for cycling; the other orientation had the arm closer to the major 

axis (E1+, E2+). This altered positioning reduced and increased the distance between the 

crank centre and the drive chain at different points in the pedal cycle, included to 

manipulate the location of any crank angular velocity effects and facilitate study of 

neuromuscular mechanics in this and later thesis chapters.   The elliptical chainrings were 

designed and manufactured specifically for the study (Hope Technology, Barnoldswick, UK; 

Figure 3.1). 

Three-dimensional kinematics were acquired using a Vicon optical capture system (Vicon 

Nexus version 2.5, Vicon Motion Systems LTD, Oxford, UK) with ten high-speed cameras 

(Vicon Nexus) sampling at 100 Hz.  Reflective markers were positioned bilaterally over the 

following specific anatomical landmarks of the pelvis and lower limbs: iliac crest, anterior 

superior iliac spine, greater trochanter, lateral and medial epicondyle, lateral and medial 

malleolus, calcaneus, and at the anterior aspect of the I metatarsophalangeal joint and 

lateral aspect of the V metatarsophalangeal joint (secured to the shoe).  Five markers were 

positioned on the pelvis and rigid marker triads were secured to the thigh, shank and an 

ultrasound probe in order to obtain time histories of their positions.  
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Figure 3.1. Geometries of elliptical chainrings. A. E1- has an eccentricity (deviation from circularity) of 1.13 
and the crank arm was orientated 67° behind the major axis and 23° forward of the minor axis. B. E1+ 40° 
forward of the major axis and 50° behind the minor axis. C. E2-

 has an eccentricity of 1.34 and was orientated 
65° behind the major axis and 25° forward of the minor axis and, (D) E2+ 51° forward of the major axis and 39° 
behind the minor axis.   

On the left lower limb, surface electromyography (EMG) electrodes were placed over the 

mid-bellies of the soleus, medial gastrocnemius, lateral gastrocnemius, tibialis anterior, 

vastus medialis, rectus femoris, vastus lateralis, bicep femoris, semitendinosus and gluteus 

maximus.  EMG signals were also collected from the right lower limb over the vastus 

medialis, vastus lateralis, bicep femoris, and semitendinosus.  The skin overlying these 

muscles was carefully prepared.  Hair was shaved off, the outer layer of epidermal cells was 

abraded, and oil and dirt were removed from the skin with an alcohol swab.  Surface 

electrodes (Trigno Wireless EMG, Delsys Inc, USA) with a fixed inter-electrode distance of 

10 mm were placed on the muscle site using strong adhesive tape and further secured using 

stretchable adhesive bandages to minimise the movement of artefacts during the trials. 

Signals from both EMGs and instrumented pedals were sampled at 2000 Hz through a 16-

bit data acquisition card (USB-6210, National Instruments Corp, Austin, TX) linked to a host 

computer equipped with data acquisition software (Vicon).   Data sources were 

synchronised in Vicon using a common trigger signal.  The data collected from the EMG 

electrodes is presented in Chapter Five.   
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Figure 3.2 Experimental set-up. This thesis integrates in vivo experimental data: i. motion capture; ii. B-mode 
ultrasonography; iii. EMG and; iv. instrumented cranks (A) and a subject-specific scaled musculoskeletal 
model using inverse kinematics to calculate joint angle changes, with joint kinematic definitions (B). Angle 
definitions: θH – Hip angle; θK – knee angle; θA – ankle angle. 

Participants warmed up using the circular chainring at a self-selected power output and 

cadence for five minutes before commencing the data collection protocol.  Participants 

performed the first of the experimental trials with the circular chainring. Individual trials 

randomised first by the cadence and load combinations, were set at cadences of 90, 110, 

130 and 150 rpm and power outputs of 200, 250 and 300 W, with the exception that no 

trial of 150 rpm was conducted at 300 W because of the difficulty of achieving this 

combination.  Feedback for the cadence control was provided to the participant via a digital 

power meter (Power Control 7, SRM) positioned within their line of sight on the bike handle 

bars.  Once the target cadence was achieved in a given trial, data collection was initiated 

and continued for 30 seconds. Between consecutive trials, the load was decreased, and 

participants were requested to continue pedalling for a minimum of 1 minute at 
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approximately 100 W.  Participants were instructed to maintain a seated position with 

hands on the drop handlebars throughout the data acquisition.    The next trial was not 

initiated until the participant self-reported that they had recovered enough from the 

previous trial to continue.   

Following completion of all cadence × load conditions with the circular chainring, 

participants were asked to dismount the ergometer whilst the chainring was changed.  The 

two elliptical chainrings and crank orientations were introduced in a randomised, 

counterbalanced design with four ordering sequences. The randomisation was designed to 

minimise the impact of fatigue on the measurements obtained in the study.  Participants 

pedalled for two minutes on a low load prior to the condition being commenced to become 

accustomed to the chainring.  This was deemed sufficient by  Neptune and Herzog (2000) 

who proposed that 10 – 20 crank cycles was enough to promote muscle coordination 

adaptation in response to altered task mechanics.  The participants did not perform 

familiarisation sessions with the elliptical chainring as it was deemed important to record 

the acute neuromusculoskeletal responses resulting from an altered chainring geometry. 

It is unclear whether neuromuscular coordination would adapt with training. O’Hara and 

colleagues (2012) found increases in mean power and mean speed during a 1km time trial 

using elliptical chainrings following a five week training plan and owing to the ambiguity 

surrounding the nature of the mechanisms promoting these results, it was deemed a viable 

precaution to employ. The same cadence-power output protocol was followed for each of 

the elliptical chainring conditions as the circular chainring condition.  The respective load 

used to achieve the required mechanical power output was different between the circular 

and elliptical rings to account for the known alteration in drivetrain kinematics induced by 

having different size chainrings (i.e. 61 vs 52 teeth) (Hansen et al., 2002). 

3.3. Data Analysis  

3.3.1 Crank kinetics and kinematics  

The top dead centre (TDC) of the crank revolution was defined as 0°, and the bottom dead 

centre (BDC) was defined as 180°.  Crank angle was defined using the position of known 

markers and shoe and cleat dimensions to predict a “virtual” pedal centre and the entire 

pedal revolution was used to analyse pedal force.  Crank angular velocity was calculated as 

the first-time derivative of the crank angle over the course of the pedal cycle.  Resultant 
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force (FR) was calculated from the recorded effective force (FE) and the ineffective force 

(FIN) at each degree of the crank angle (𝜃) for both left and right pedal forces: 

                                                                         𝐹R(𝜃)   =  √𝐹E(𝜃)2+ 𝐹IN(𝜃)2 

Examining the effective force (FE) acting to propel the crank relative to the resultant force 

(FR) provides an index of force effectiveness (IFE), an established method of quantifying 

pedalling technique (Korff et al., 2007). Therefore, IFE was calculated for the complete 

crank revolution (IFE0 – 360) according to Korff and colleagues (2007). 

                                                   IFE = 
∫ 𝐹E(𝜃)

360
0

∫ 𝐹R(𝜃)
360

0

× 100% 

IFE was further quantified in four quadrants of the pedal revolution sections: Q1 (315° - 

45°), Q2 (45° - 135°), Q3 (135° - 225°), and Q4 (225°-315°). 

3.3.2 Musculoskeletal Simulation to Calculate Leg Joint Angles  

Using the open-source software OpenSim v3.3 (Delp et al., 2007), a musculoskeletal model 

(Lai et al., 2017) was scaled to each participant’s anthropometry.  Musculoskeletal models 

offer the ability to smooth the kinematics data obtained under experimental conditions 

and produce a consistent, anatomically constrained, representation of the movement that 

occurred.  For this simulation, the left leg segment of the model was removed, along with 

its corresponding actuators (Figure 3.2B).  A multi-stage process was used to scale the mass 

and inertia tensor of the model and the dimensions of the body segments (Delp et al., 

2007).  This involved measurement-based scaling to compute the scale factors for each 

segment using the experimentally measured marker positions recorded from a static 

calibration trial taken on the ergometer.  In this procedure, virtual markers were created 

and placed on the model based on the anatomical location of the experimental markers.  

Following this, the model’s geometry was adjusted in accordance with the anatomical 

segment length, width and depth.  The mass properties of the body segments were also 

adjusted proportionally in this process, allowing the total mass of the participant to be 

reproduced.  Total actuator length percentages were preserved through accordant scaling 

of the muscle fibre lengths and tendon slack lengths. 

Eq. 3.1 

Eq. 3.2 



41 
 

Hip, knee and ankle kinematics were calculated using OpenSim’s inverse kinematics 

function, to find the best matching values for the generalised coordinates of the model by 

minimising the error value between the experimentally derived data and model-based 

markers (Lu and O’Connor, 1999) in three-dimensional space.  For the musculoskeletal 

model, recorded iliac crest positioning was used to determine hip joint angles, which is 

reported to provide a more accurate approximation of hip joint centre than tracking the 

superior aspect of the greater trochanter or assuming a fixed hip joint centre (Neptune and 

Hull, 1995).  Joint kinematics from the inverse kinematics were exported from OpenSim 

and all secondary analysis of joint angle behaviour was completed using custom-written 

programs in Mathematica 11 software (Wolfram Research, Champaign, IL).   Joint excursion 

was defined as the difference between maximum and minimum joint angle for the 

corresponding joint. 

3.3.3 Principal component analysis to quantify the main features of kinetic and 

kinematics data  

Dominant patterns in the kinetic (crank forces) and kinematic (crank angular velocity; joint 

angles) datasets were decomposed using principal component (PC) analysis into a series of 

orthogonal patterns of variability in all analysed pedal cycles (Deluzio et al., 1997).  In short, 

data were arranged into a P × N matrix A, where waveforms observations from the collated 

data were interpolated to 100 time points per cycle (P) and multiplied by the number of 

time points analysed (8 participants × 5 conditions × 11 trials × 26 pedal cycles; N).  

To determine the PC of the data, the covariance matrix B was calculated from the data of 

matrix A, and the PC weightings were determined from the eigenvectors 𝜁of covariance 

matrix B.  The ranking of each PC was given by the eigenvalue for each eigenvector-

eigenvalue pair with the greatest absolute eigenvalues corresponding to the main PCs.  The 

relative proportion of the crank forces and kinematic data explained by each PC was given 

by 𝜁′𝐁𝜁.  The PC analysis did not include subtraction of the mean before calculation 

meaning the eigenvectors did not describe the set of orthogonal components that 

maximise the variance of data from the mean (Ramsey and Silverman, 1997). Instead, this 

approach allowed the eigenvectors to describe the set of orthogonal components that 

maximise the variability of the entire data with the first PC (PC I) representing the mean 

(Wakeling and Rozitis, 2004). 
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The loading scores for each PC for the P time points were given by 𝜁′𝐀. To interpret the 

biomechanical meaning of each PC, the joint kinematic and crank force and angular velocity 

waveforms were reconstructed from the vector product of the PC weighting and their 

loading scores. This was done for each pedal cycle using the first three PCs in accordance 

with the 90% trace criterion; which dictates that when the cumulative percentage of the 

total variation that is explained by the retained PC exceeds 90%, all further principal 

components are discarded (Chau, 2001).  PC analysis and reconstruction of data was carried 

using a custom-written program in Mathematica 11 software (Wolfram Research, 

Champaign, IL).   

3. 4 Statistics  

General linear model analysis of variance (ANOVA) was used to identify the effect of 

chainring eccentricity, cadence and load on the loading scores for the first three PCs from 

the lower limb kinematics and force data. The interactions between chainring condition, 

cadence and power output, with subject as a random factor, were also determined.  A post 

hoc Tukey test was performed to determine the location of the significant differences 

between chainring condition for a given cadence or power output.  Where significant 

interactions were found between chainring conditions and cadence, the loading scores 

were separated into cadences and reconstructed independently to enable visualisation of 

the effects of chainring eccentricity on the dependent variables.  

Descriptive statistics (mean, standard deviation and effect size) were used to describe how 

far PC loading scores differed for crank forces and joint excursions when using an elliptical 

chainring in comparison to a circular ring.  Effect sizes allow for the quantification of the 

difference between two groups (the circular chainring in comparison to the elliptical 

chainring condition) and emphasises the magnitude of this difference (Cano-Corres et al., 

2012).  Effect sizes were corrected for bias using Hedges and Olkin’s factor (1985).  Effect 

sizes were interpreted on the basis of Cohen’s (1988) classification scheme: effect sizes 

<0.5 were considered to be small, effect sizes between 0.5 and 0.8 were considered to be 

moderate and effect sizes >0.8 were considered to be large.  Statistical analyses were 

processed using Minitab version 18 (Minitab Inc., State College, PA).  All data are presented 

as means ± SD, and statistical tests were deemed significant at α = 0.05. 
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3.5 Results   

3.5.1 Cadence Selection  

Although cadence was prescribed to the participants prior to each trial, within the 30 

second data collection window, there was margin for human error, causing the actual 

cadence to deviate slightly.  Table 3.1 contains the mean cadences attained during each 

condition.  There was no significant effect of chainring condition on cadence (P = 0.698).  

All participants were able to complete all cycling conditions across the range of cadences 

between 90 and 150 rpm, and power outputs of 200-300 watts and cadence was 

comparable across the different chainring conditions.   

Table 3.1. Cadences achieved across the 11 conditions 

Prescribed Cadence 

Power 

90 

200 W 

90 

250 W 

90 

300 W 

110 

200 W 

110  

250 W 

110  

300 W 

130  

200 W 

130 

250 W 

130 

300 W 

150 

200 W 

150  

250 W 

Circular 90±1 
 

91±1 
 

90±1 
 

110±1 
 

111±1 
 

110±1 
 

131±1 
 

130±1 
 

130±2 
 

151±1 
 

149±2 
 

E1- 91±1 
 

90±2 
 

90±1 
 

110±1 
 

109±1 
 

110±1 
 

130±1 
 

129±1 
 

128±1 
 

150±2 
 

149±0 
 

E1+ 91±1 
 

91±2 
 

90±1 
 

109±1 
 

109±1 
 

110±1 
 

129±1 
 

129±1 
 

129±1 
 

149±1 
 

149±1 
 

E2- 91±1 
 

91±1 
 

90±1 
 

110±1 
 

110±1 
 

109±1 
 

128±1 
 

129±1 
 

129±1 
 

151±1 
 

149±1 
 

E2+ 90±1 
 

90±0 
 

90±1 
 

110±1 
 

110±1 
 

110±1 
 

130±1 
 

129±1 
 

129±1 
 

150±2 
 

148±3 
 

Note: data represented as mean ± SD rpm.  Number presented in the first row denotes the prescribed cadence (rpm); 
and in the second row, the power (watts) in which the trial was completed at.   

3.5.2 Crank angular velocity fluctuations  

The circular chainrings were associated with a 3% change crank angular velocity over the 

course of the pedal cycle, with respect to peak to nadir differences. The elliptical chainrings 

effectively manipulated peak crank angular velocity (Figure 3.3B), where there was a 8% 

change in peak to nadir difference between the E1- condition and circular chainring. In the 

E2- condition this difference increased to 18%.  When examining the non-optimal crank 

orientations, peak to nadir differences in crank angular velocity increased by 14% in the E1+ 

condition and 40% in the E2+ condition.  The crank orientations placed ahead of the major 

axes (E1+ and E2+), and thus at a ‘non-optimal’ angle, increased the downstroke and 

upstroke velocity, allowing less time to be spent in these quadrants (Q2 and Q4). 

Additionally, they slowed crank velocity in Q1 and Q3 and so it took more time to travel 

through the top and bottom of the pedal cycles (Figure 3.3A). 
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Figure 3.3 Crank speed variations during the pedal cycle. (A) Percentage of time to complete the pedal cycle 
devoted to each quadrant where Q1 denotes top of the pedal cycle, Q2 denotes the downstroke, Q3 denotes 
the bottom of the pedal cycle, and Q4 denotes the upstroke, and; (B) visual representation of the for crank 
angular velocity (ωc),reconstructed from the first three principal components (deg.s-1). Chainring conditions 
are represented in grey scale.    

3.5.3 Crank forces  

The PC-based waveform reconstruction revealed distinct features in both frequency and 

timing of the crank force variable in the different cycling conditions (Figure 3.4; Column II). 

The first PC weight for crank forces, representing the mean, explained more than 94% of 

the signal variability (Figure 3.4), and so, the results below focus primarily on this 

component.  Statistical analysis showed that the FE and FIN loading scores were significantly 

affected by chainring condition (P < 0.001), and these differences are highlighted in the 

reconstructed waveforms (Figure 3.5).  However, the crank force responses were also 

different between the left and right pedals.  Subsequent post hoc analysis revealed that all 

five chainring conditions elicited significantly different effective force for the right crank, 

with chainring condition E2- (Figure 3.5) displaying the largest increment in peak FE 

compared with the circular and E1- and E1+ chainrings conditions.  Changing the crank angle 
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to the opposing orientation (E1+ and E2+) significantly decreased peak FE as compared to E1-

, E2- and circular conditions across all pedal speeds (Figure 3.5).  Broadly speaking, larger 

degrees of chainring eccentricity were associated with larger peak FE during the 

downstroke and a similar FE in the upstroke (Figure 3.5), whilst the same degrees of 

eccentricity when placed at a non-optimal crank orientation resulted in a lower peak FE 

output, but larger degrees of phase shift.   

 

Figure 3.4 Principal component weighting for (A) the hip joint, (B) the knee joint (C) the ankle joint (D) 

effective force (E) ineffective force, and (F) resultant force.  Embedded values depict the proportion of the 

signal that this component describes.  Where PC I describes the mean of the data.     

There was also a significant interaction between chainring condition and cadence, and as 

such, the loading scores for FE and FIN have been broken down into individual cadence 

conditions to highlight the distinct variability (Figure 3.5).  Using the PC reconstructions to 

visualise the crank force waveform, it is possible to discern that the E1 condition had a 

smaller effect on FE in both left and right pedals compared to E2.  Nevertheless, with 
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increasing pedal speed, there is an observable trend of increased peak FE (P < 0.0001) in the 

elliptical chainrings, and post hoc analysis of the different cadence conditions shows that 

E1- only began to elicit a significantly greater FE at 110 rpm and 130 rpm in comparison to 

the circular chainring. 

A stark observation made clear in the reconstructions is that the bilateral asymmetries in 

FE are particularly evident with increasing cadence.  That is, at 110 rpm a subtle phase drift 

in the decline of positive FE application begins to occur in the left pedal, this effect increases 

through 130 rpm and was substantial at 150 rpm, where peak FE was achieved at 145° in 

the left pedal as opposed to 97° in the right pedal (Figure 3.5; Column I).  The extent of the 

asymmetries is more convoluted when considering the effect sizes as shown in Table 2.2.  

For example, at 90 rpm, the left FE changes are related to an effect size of 0.01 in PC I as 

compared to -0.08 for the right pedal (small effects). However, PC II (which indicates phase 

shifts in the application of force) has an effect size of -1.1 for the left (large effect), whilst 

the right pedal was small at -0.03.  These opposing trends are pervasive across the cadences 

and chainrings, and larger effect sizes alternate between the left and right pedals.   

Analysis of the FIN components also shows a significant effect of chainring condition (P < 

0.001), and again a chainring × cadence interaction (P < 0.001), so this variable has also 

been broken down by cadence (Figure 3.5; Column II).  Analysis of the PC-reconstructed 

waveform shows decrements in FIN with the elliptical chainrings when presented at the E1+ 

and E2+ crank angles. However, when at the E1- and E2- crank orientations, there was an 

increase in FIN.  This pattern is present in both left and right pedals, an effect that increases 

with eccentricity, up until 130 rpm; at this point the effect decreases and at 150 rpm, there 

is an increase in FIN with chainring eccentricity.  FIN also displayed differing results between 

the two pedals; the circular, E1- and E2- chainring were all significantly different to one-

another in the right pedal, but only E1- was significantly different to the circular chainring in 

the left pedal.    

Peak maximum and minimum FR also displayed a parabolic relationship with cadence. 

Forces shifted later in the pedal cycle as cadence increased, into a wider peak in the right 

pedal at 150 rpm in comparison to a narrow peak in the left pedal in addition to a shift in 

FR magnitude.  There was a significant effect of chainring condition (P < 0.001), where 

elliptical rings E1- and E2- led to an increase in peak FR, which was prevalent across cadence 



47 
 

conditions.  In contrast with the FE pedal force profiles, E2+ displayed a direct relationship 

with cadence in the left pedal which culminated in a significantly higher peak resultant 

force at 150 rpm. 

 

Figure 3.5 Principal component reconstruction of pedal forces. Visual representation of the first three 

principal component loading scores for the effective (first column), ineffective (second column) and resultant 

(third column) pedal forces for each chainring; broken into cadence blocks over the course of a pedal cycle 

regardless of resistance.  The chainring conditions for the right pedal forces are represented in grey scale and 

are represented in red for the left pedal forces.   
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Table 3.2 Effect sizes describing how far the mean pedal force principal component loading score for each 

experimental chainring condition is from the circular chainring. 

 

 

 

  90 rpm   

Condition LEPCI  LEPCII REPCI REPCII 

E1- 0.01 -1.10 -0.08 -0.03 

E1+ 0.22 0.22 -0.25 0.98 

E2- -0.52 -2.39 0.38 -0.47 

E2+ 0.49 1.21 -0.57 2.21 

  110 rpm   

Condition LEPCI LEPCII REPCI REPCII 

E1- 0.00 -1.2 -0.19 -0.48 

E1+ 0.46 0.24 -0.59 0.82 

E2- -0.22 -2.44 0.15 -0.96 

E2+ 0.81 1.02 -0.89 2.6 

  130 rpm   

Condition LEPCI LEPCII REPCI REPCII 

E1- -0.11 -0.54 0.01 -1.05 

E1+ 0.31 0.03 -0.1 -0.09 

E2- -0.42 -1.94 0.6 -1.37 

E2+ 0.36 0.53 -0.46 2.37 

  150 rpm   

Condition LEPCI LEPCII REPCI REPCII 

E1- 0.01 -0.25 -0.34 -0.02 

E1+ 0.53 -0.35 -0.57 0.64 

E2- 0.04 -1.15 -0.21 -0.31 

E2+ 0.16 0.26 -0.53 1.34 

Note:  Left effective principal component I (magnitude; LEPCI); Left effective principal component II (phase; LEPCII); Right 

effective principal component I (magnitude; REPCI); Right effective principal component II (phase; REPCII). 
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3.5.4 Index of Force Effectiveness  

The IFE data are presented in Figure 3.6. Here there was a significant effect of chainring 

condition on IFE in two of the pedal cycle quadrants in the right pedal (Q1: P < 0.001; Q2: 

P = 0.088; Q3: P = 0.302; Q4: P < 0.001; Figure 3.6A), and no significant result in the left 

pedal (Q1: P = 0.355; Q2: P = 0.957; Q3: P = 0.676; Q4: P = 0.065; Figure 3.6B). 

Post hoc analysis in the right pedal revealed different relationships between the chainrings 

at different portions of the pedal cycle. During Q1 in the right pedal E2- IFE was significantly 

lower than the other chainrings across all cadences, and E1+ and E2+ had significantly higher 

IFE than E1-.  In Q3, there was a significant cadence × chainring interaction (P < 0.001), and 

at 130 rpm, E1- and E2- had significantly greater IFE than the circular chainring, whilst E1+ 

was significantly lower.  In Q4, as cadence surpassed 130 rpm, E2- had a significantly greater 

IFE than the other chainrings whilst the significant difference between E2+ and the other 

chainring closed at cadence increased (Figure 3.6A).  

Whilst there were no significant effects of pedal cycle quadrant on IFE with the different 

chainring conditions, there were significant interactions (P < 0.001).  At 90 rpm in Q1 and 

Q3, E2- had a significantly greater IFE than the other conditions, which was not present in 

the other cadences; at 110 rpm in Q1, the circular chainring had a significantly greater IFE; 

and in Q3, there were no further interactions.  In Q4, E2- had a significantly greater IFE at 

cadences 90 and 130 rpm than the circular chainrings, and E1- was significantly lower at 130 

rpm than other conditions. 
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Figure 3.6 Representation of the index of mechanical effectiveness at the four quadrants in the pedal cycle 

for the five chainring conditions in the right (A) and left (B) pedals.  Q1 (from 315° to 45°), Q2 (45° to 135°), 

Q3 (135° to 225°), and Q4 (225° to 315°) in a clockwise direction.  * denotes a significant main effect of 

chainring condition on IFE across the quadrant; ** denotes a significant cadence × chainring interaction at 

the identified pedal speed.   
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3.5.5 Joint kinematics  

The PCs from the joint kinematics are shown above in Figure 3.4. In the ankle joint 

kinematics there was a large amount of inter-subject variation, indicating that participants 

adopted different patterns of ankle motion; however, PC I still captured 73% of the 

variability in the waveforms (Figure 3.3C).  There was a significant effect of chainring on the 

ankle joint PC I loading score (P < 0.001).  PC II weighting in the ankle explained 19% of the 

variability and captures a phase shift occurring across conditions (Figure 3.3C).  Differing 

biomechanical features (e.g. magnitude and timing) encapsulated by each PC loading score 

were determined during the reconstruction of the waveforms, where individually including 

each loading score allowed for the visualisation of the altered waveform and subsequent 

detection of the feature it was responsible for describing.  There was a significant effect of 

chainring condition on PC II loading score (P < 0.001).  The extent of ankle flexion and 

extension were visualised using PC reconstruction (Figure 3.7C).  An increase in ankle 

excursion during Q2 and Q4 was observed, which was evidenced as an increase in ankle 

extension at the BDC and a larger degree of flexion at TDC in the elliptical chainrings.  This 

was seen to the largest extent in E2+, whilst E1- had a significantly greater extension than 

the circular chainring (P < 0.001).  Owing to a significant cadence × chainring interaction in 

PC I and II loading scores (P < 0.001), the loading scores were further dissected into their 

cadence groupings and reconstructed accordingly (Figure 3.8).  The effect of the different 

chainring conditions varied depending on the cadence, however E2+ was associated with 

the largest ankle joint excursion throughout.  There was a significant effect of chainring 

condition on PC I and PC II loading scores for 90, 110 and 130 rpm (P < 0.001), however 

there was no significant effect of chainring at 150 rpm (P = 0.072; Figure 3.6D).  At the 

slowest cadence, this effect was associated with increased ankle plantar flexion in the E1- 

condition, and to a lesser extent E2- than the circular chainring (Figure 3.6A).  When cadence 

increased to 110 rpm, there was no significant difference between the circular and the 

largest elliptical chainring when presented in the E2- orientation, but E1- was associated with 

a significantly greater degree of ankle extension than the other chainrings.  Greater 

excursions in ankle angle were observed in conditions E1+ and E2+ (Figure 3.8B).  When 

cadences reached 130 rpm, there was a significant decrease in ankle excursion with in the 

E1- condition, and no significant difference between the circular and E2- chainrings, whilst 
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E2+ maintained the largest joint angle (Figure 3.6C).   These relationships are highlighted 

further in Table 3.2, which presents the degree of ankle joint excursions and the post hoc 

comparisons. 

The PC weightings displayed in Figure 3.3 show that PC I captured 94% and 99% of the 

variability in joint range of motion in the hip and knee respectively.  There was a significant 

effect of chainring condition on the PC I and PC II loading scores for the knee joint angle (P 

< 0.001) and hip joint angle (P < 0.001), in addition to significant effects of cadence (P < 

0.001) and interactions between condition and cadence (P < 0.001) in both variables, and 

a significant effect of load in the hip joint angle (P < 0.001).  In the reconstruction of the hip 

joint kinematics (Figure 3.7A), the significant effect of elliptical chainring condition 

represented an increased rate of extension during the downstroke (Q2), concurrent with 

the altered crank angular velocity (Figure 3.3B). Increased extension of the hip was 

observed at BDC (Q3) with the elliptical chainrings in comparison to the circular ring (E1-: +7°; 

E2-: +5°), and a greater proportion of the pedal cycle was spent with the hip extending.   

Conversely, the effects of chainring condition on knee joint kinematics are not as visible in 

the PC reconstructions (Figure 3.7B), however, post hoc analysis suggests that there is a 

significant difference between the three chainrings and the manipulation of crank 

orientation, but no significant difference between the conditions with the crank oriented 

ahead of the major axes (E1+ and E2+). 
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Figure 3.7 Principal component reconstructions of lower limb joint kinematics. Visual representation of the 
first three principal components for the hip (A), knee (B) and ankle (C) joint angles containing all cadence and 
resistance combinations.  Chainring conditions are represented in greyscale.    
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Figure 3.8 Principal component reconstructions of ankle joint excursions.  Visual representation of the first 

three principal components for ankle joint, separated to show the effects of chainring condition at each cadence setting.  

Chainring conditions are represented in greyscale. 
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130 RPM 

Chainring 
Condition 

Joint Excursion (°) PC I PC II 

E1- 21.2 A A 
Circular 22.6 B A 
E2- 22.7 B A 
E1+ 23.8 B A 
E2+ 28.1 C B 

 

 

 

 

 

 

 

 

 

 

 

110 RPM 

Chainring 
Condition 

Joint Excursion (°) PC I PC II 

E2- 22.9 A A 
Circular 23.2 A A 
E1- 23.7 B B 
E1+ 24.6 C A C 
E2+ 27.7 D C 

90 RPM 

Chainring 
Condition 

Joint Excursion (°) PC I PC II 

E1+ 

Circular 
22.0 
22.8 

A 
B 

C 
A 

E1- 23.8 C B 
E2- 24.0 A A 
E2+ 28.6 D D 

150 RPM 

Chainring 
Condition 

 Joint Excursion (°) 

E2- 

Circular 
E1- 

E1+ 

E2+ 

25.7 
26.0 
27.0 
28.0 
29.9 

Table 3.3 Ankle joint excursions from the principal component reconstructions and post-hoc 

analyses of principal components one (magnitude) and two (phase). Letters presented in third 

and fourth column denote post-hoc analysis results. Conditions that do not share a letter are 

significantly different. 
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3.6 Discussion  

The objectives of this study were to determine the effects of changing the geometry and 

crank orientation of the chainring on (1) crank angular velocity, (2) lower limb kinematics, 

and (3) crank force profiles and pedalling technique.  It was found that elliptical chainrings 

with an eccentricity of 1.13 and above significantly altered the crank angular velocity profile 

(Figure 3.4B).  As predicted, the changes in crank angular velocity slowed the downstroke 

and upstroke (Q2 &Q4) and lessened the time spent in the top and bottom of the pedal 

cycle (Q1 & Q3).  In association with this, lower limb segments were found to differ with 

chainring condition, with larger excursions about the ankle and hip joints, observed when 

the elliptical chainrings were used than with a circular chainring (Figure 3.7), and to a lesser 

extent in the knee.  With respect to the crank force profiles, the most notable finding 

suggests that the effect of chainring eccentricity is cadence dependant, with more 

prominent increments of peak FE observed at 110 and 130 rpm.  Additionally, striking 

asymmetries in force application patterns were found between left and right pedals at the 

faster cadences, which was an unexpected finding. 

3.6.1 Elliptical Chainrings alter Crank Angular Velocity Patterns 

The hypothesis that chainring eccentricity and crank orientation would alter crank angular 

velocity in both phase and magnitude was supported (Figure 3.3).  This finding is in 

agreement with research by Miller and Ross (1980), who developed a theoretical model of 

crank torque developed by muscles as a function of crank angle and velocity profile. They 

used optimisation to identify the crank angular velocity profile that maximised average 

crank power.  This resulted in a velocity profile which slowed the crank during Q2, allowing 

for the muscles to generate power for a longer duration.  The elliptical chainrings were 

found to have significant effect on crank angular velocity, altering the timing within the 

pedal cycle (Figure 3.4A), and when used in positions E1- and E2-, more time was spent in 

the power producing portion of the pedal cycling, and less time was spent in Q1 and Q3.  

This finding confirms the association between elliptical chainrings and a variable crank 

angular velocity as identified in previous theoretical work (Hull et al., 1991; Rankin and 

Neptune, 2008). The experimental data analysed here therefore confirms that elliptical 

chainrings do influence crank angular velocities in vivo and therefore do have the potential 

to affect force application at the pedal through altered musculoskeletal mechanics. 
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3.6.2 Elliptical Chainrings Alter Joint Kinematics  

There were clear effects of the elliptical chainrings on lower limb joint excursions.  The joint 

angle kinematics from the hip, knee and ankle were significantly altered (Figure 3.7) by 

changes in chainring eccentricity and crank orientation. This supports Rankin and Neptune 

(2008), who proposed that altering crank angular velocity using non-circular chainrings 

could be used to manipulate the leg kinematics throughout a pedal cycle. There were 

however differences in the magnitude of changes observed in each of the joints, and the 

interactions with cadence found in each joint. This indicates a complex response in limb 

mechanics occurs to the different chainring conditions studied here that could have 

implications for the resulting muscle mechanics. 

When interpreting the reconstructions of principal components presented in Figure 3.7, it 

is notable that a comparison across the joints shows that the hip and ankle joints 

underwent the largest change in range of motion as a result of altered chainring 

geometries.  However, the ankle kinematics were subject to the largest degrees in 

variability, as evidence by the PC weighting attributed in Figure 3.4C. In order to meet the 

task requirement during cycling, the neuromuscular system has been found to freely 

choose combinations of joint actions, made possible by the multiple degrees of freedom 

available between the pedal platform and the lower limb segments  (Boyd et al., 1997).  

Martin and Brown reported that during maximal cycling, cyclists exploited ankle movement 

to increase the time spent extending the leg during the downstroke and thus increasing 

average power. This action was proposed to decrease fatigue during a 30 s maximal cycling 

trial (Martin and Brown, 2009).   Here, the longer time spent in the downstroke (Figure 

3.3A) was also associated with altered ankle angle kinematics, although the range of 

motion associated with each chainring condition was seen to vary across the different 

cadences (Figure 3.8). A reduction in ankle range of motion in conditions E1- and E2- in 

comparison to the circular chainring was observed in Figure 3.8C, and could be attributed 

to a strategy for simplifying the cycling task in conjunction with an increased cadence which 

may have caused fatigue (Murian et al., 2008).  Little change was observed at the knee and 

it could be argued that knee joint actions were preserved as the dominant power producing 

muscle which cross this joint (the vasti complex) required conservation of its length 
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characteristics (Martin and Brown, 2009).  This will be explored in greater detail in the next 

chapter. 

3.6.3 Elliptical Chainrings Alter Crank Kinetics 

Significant differences in the pattern of force application at the pedal were also found to 

occur between chainring conditions, suggesting that the alterations in crank angular 

velocity do influence force production and transfer to the crank. This follows from an earlier 

study in which the proportion of the pedal cycle occupied by the leg extension phase during 

maximal single leg cycling power was manipulated through the employment of a 20mm 

off-centre drive sprocket with a conventional circular circumference (Martin et al., 2002). 

It was shown that both instantaneous power and average power over a complete 

revolution were 12% and 8% greater, respectively when the leg extension phase occupied 

58% of the cycle time vs. the traditional 50%.  The increase in instantaneous power resulted 

from increased muscle excitation allowed by the increased time and reduced crank velocity 

for the leg extension phase (Martin et al., 2002).  Interestingly, although the theoretical 

premise for the use of non-circular chainrings has been the argument that altered crank 

angular velocity provides a longer period for power production in the downstrokes and 

upstrokes, this study demonstrated that the timing of force application throughout the 

peak cycle does not change. Instead the work here highlights that the magnitude of peak 

FE is affected during Q2 which is in keeping with earlier work by Strutzenberger and 

colleagues (2014) who reported an increase in magnitude of tangential force during the 

downstroke; an effect which in the current study, is sensitive to cadence (Figure 3.5; 

Column I).  Additionally to this, as crank angular velocity increased through Q3 during the 

E1- and E2- conditions (Figure 3.4; Column I), there was a reduction in the negative work 

performed by the left crank across all cadences (as observed in the reconstructions in 

Figure 3.4; Column I), allowing for an increase in work production. Therefore, while changes 

in crank angular velocity were similar to those predicted the concomitant effects on force 

application are not as initially predicted. 

Cadence alterations have previously been found to affect pedal forces and joint kinematics 

(Kautz and Hull, 1993; Marsh and Martin, 1995). In corollary with this, the enhanced FE in 

the E1- and E2- conditions with increasing cadence justifies further consideration of how the 
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internal pedal forces interact with the bicycle.  Muscular forces accelerate the legs while 

the foot-pedal connection constrains the resulting movement so that the pedal axis follows 

a circular path about the crank.  Consequently, the applied pedal force cannot be 

understood independent of the dynamics of cycling movement, and in particular to how 

gravitational and inertial forces contribute to how the foot travels about the axis  (Kautz 

and Hull, 1993).  Decomposing the pedal kinetic measurements into muscular and non-

muscular components would further substantiate the understanding of the mechanisms 

controlling the alterations in peak FE observed here in response to cadence. 

Pedal forces are understood to have a quadratic relationship when plotted as a function of 

cadence (Figure 2.8). Whilst activation based muscular forces contributing to force 

development and transfer to the crank have been found to decrease linearly from 

approximately 155 N at 60 rpm to 85 N at 120 rpm;  non-muscular forces, such as 

gravitational and inertial forces, increase linearly with increasing cadences from near 70 N 

at 60 rpm to about 125 N at 120 rpm (Neptune and Herzog, 1999).  Moreover, gravitational 

effects remain fairly constant across cadence conditions at the same body position (Brown 

et al., 1996), the increase in the non-muscular component reflects an increase of the 

inertial influence on pedal forces at greater cadences (Baum and Li, 2003). 

Previous work into the consequences of increased crank inertial loads on freely chosen 

pedal speed and gross efficiency have observed increases in peak crank torque and changes 

in torque (Fregly et al., 2000; Hansen et al., 2002), which is thought to arise as a result of 

amplified stimulation of mechanoreceptors in the legs. Additionally, increased torque 

changes would require an enhanced rate of force development to occur within the active 

muscles (Hansen et al., 2002), possibly to allow torque to be produced within the 

appropriate portion of the pedal cycle. In relation to results presented within this chapter 

it is reasonable to draw similarities between Hansen and colleagues (2002) work and the 

results presented here.  Figure 3.5 highlights that the FE profiles in conditions E1- and E2-, 

were affected significantly only in terms of their magnitude, which was represented as an 

increase in peak force application over pedal speeds of 110 rpm, with no significant impact 

on negative work during the pedal cycle (in Q4).  Thus, it could be argued that principles 

governing the efficaciousness of non-circular chainrings are centred around centripetal 

force, and the altered velocities within the drivetrain kinematics.  
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Similarities between the cadence interactions with crank forces reported in this chapter 

can be drawn with the unpublished theoretical work from Malfait et al. (2012), showing 

eccentricity and crank orientation dependent alteration in the hip and knee joint moments 

and powers that were found to increase exponentially with pedalling rate (up to 140 rpm).  

Also of note were the increases in the dynamic peak muscle power, particularly affecting 

the hip extensors (hamstring complex) and knee extensors (vasti muscle complex). This 

finding may in part explain why previous studies, using submaximal (i.e. slow cadence) 

cycling protocols, found equivocal results pertaining to physiological and performance 

variables of cycling with non-circular chainrings. Most of these studies use cadences 

ranging between 60 – 120 rpm and therefore do not test conditions under which the 

chainrings have an appreciable effect on force development.  This is further supported by 

the fact that although Rankin and Neptune (2008) predicted no such cadence effect, 

despite including pedalling rates of up to 120 rpm in their SIMM (Musculographics, Inc) 

constructed musculoskeletal model, the model used did not take into account the inertia 

and gravitational forces affecting the leg muscles. Equally, Hue and colleagues (2006) found 

no differences in the time taken to complete a 1 km time trial between  non-circular and 

circular chainrings.  However, they did note that subjects with the highest lower limb 

muscle volumes produced their fastest times with the non-circular chainrings, suggesting a 

benefit to having greater mass about the crank, which could increase the effects of crank 

inertial properties with greater benefits seen with the non-circular chainrings.    

Although there is evidence of enhanced sprint-style cycling performance owing to the 

employment of a non-circular chainring (Hue et al., 2001) the work presented here is 

seemingly the first to connect non-muscular components of force production and potential 

performance benefits of elliptical chainrings.  As such, future work should consider a 

thorough analysis of decomposed force components when considering the implications of 

altered chainring geometry. An association between augmented crank inertia and elliptical 

chainrings does not seem inconceivable, given the equation to calculate crank inertia 

proposed by Fregly and colleagues (2000) considers the rotational inertia of entities 

affecting drive chain kinematics and gear ratio (Eq 3.3).  As such, it appears important to 

explore this notion further within a controlled laboratory environment if we are to 

understand how best to exploit the biomechanical prospects of such systems.   
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{IX + (RX/RY)2(IY +  IZ)}𝛳1 =  𝑇𝐶  −  {(𝑅𝑋/𝑅𝑌)𝑅𝑍𝐹𝑍} 

 

 

where 

𝐼𝐸𝑓𝑓 = effective rotational inertia about the crank due to rigid bodies about the crank axis 

(i.e., chainrings, pedals and crank arms) and about the flywheel or rear wheel axis (e.g., the 

freewheel) 

IX = combined rotational inertia of the chainring, pedals and crank arms about the crank 

axis 

IY , IZ = rotational inertia of the ergometer freewheel and fly-wheel, respectively, about 

their axis of rotation 

𝛳1= angle of the crank measured with respect to top dead centre 

𝑇𝐶  = crank torque due to the pedal forces produced by both legs 

𝑅𝑋/𝑅𝑌 = gear ratio 

𝑅𝑍 = radius of the ergometer flywheel 

𝐹𝑍 = frictional resistance force applied to the flywheel by the band brake 

𝑇𝐸𝑓𝑓 = effective resistance torque about the crank axis 

Within this equation, there is the possibility of elliptical chainrings altering the outcome at 

IX, whereby mass or size of the ellipse could cause an altered mass distribution relative to 

the crank axis; and also at 𝑅𝑋/𝑅𝑌 as elliptical chainrings have been described as being a 

ratio of crank-angle dependent effective radius of the front chainring to the rear cog.  

Quasi-elliptical chainring have been found to substantially manipulate the gear ratio over 

the course of the pedal cycle in comparison to small variations detectable with a circular 

chainring, and consequentially alter the effective chainring radius via a fluctuation in the 

number of teeth in contact with the chain (van Soest, 2014).  Therefore, altering chainring 

geometry would have the ability to manipulate 𝐼𝐸𝑓𝑓 and/or 𝑇𝐸𝑓𝑓, and consequently crank 

(IEff)Ergometer (TEff)Ergometer 

Eq. 3.3 
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inertia.    However, the effects of the elliptical chainrings may not just be non-muscular as 

the orientation of the crank relative to the major axis (which is not represented in Eq 3.3) 

also influenced forces measured and therefore, any effects that varied with chainring 

orientation are additional to these.   

It is important to bear in mind the possible bias in these responses, given that the 

musculoskeletal model used in this study was unilateral.  Nonetheless, it is possible that 

elliptical chainrings could exacerbate differences in imbalances in leg dominance and as 

they are contrary to the participant’s formal training of pedalling technique initiating an 

imbalance in ankle stiffness between left and right joints, a notion supported by the 

asymmetries observed between left and right FE (Figure 3.5; Column I).  As such, even larger 

joint excursions could have been seen in the contralateral side, causing a change length 

and velocity characteristics of the plantarflexor muscles, and consequently, an alteration in 

force production seen at that pedal.  However, it does raise validity issues in that 

generalising joint kinematics to the opposing leg may not be appropriate.   

3.6.3 Effects of Elliptical Chainrings on Index Effectiveness 

The breakdown of mechanical effectiveness into quadrants within a pedal cycle (Figure 3.6) 

offers further perspective into the effects of both chainring eccentricity on force 

application and also left/right discrepancies in pedalling technique.  A surprising result is 

that within Q4 the bilateral asymmetries appear to be particularly large. This discrepancy 

is most likely related to the fact that IFE is a calculation based upon ratios between FE and 

FR.   When considering the negative FE and low FR present during Q4, calculating ratios when 

using negative values can lead to major fluctuations appearing, despite the possibility that 

the different chainring conditions might only be responsible minor deviations in IFE values.  

As a result, this quadrant may not give the most representative feedback and must be 

interpreted with caution. 

However, when referring to the crank force results presented (Figure 3.5) the peak FE 

occurs between 90° and 180° in both the left and right crank, thus Q2 and Q3 (Figure 3.6) 

could give the best indicator of pedalling technique when the IFE is used as a measure, and 

the results in these quadrants, do indicate some degree of asymmetry.  At 130 rpm in the 

right pedal Q3, the IFE in the E1- and E2- conditions were significantly greater than the 
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circular chainring, suggesting that through the BDC (Q3) at 130 rpm, the participants were 

better able to orient the expressed crank forces into contributing toward a propulsive 

action when the elliptical chainrings were used.  Interestingly, commercially available non-

circular chainrings, such as the “Shimano Biopace” (Okajima, 1983) and “Eng 10” (Hull et 

al, 1992), orient the smallest chainring radius toward the major axis, making the design 

similar to the non-optimal conditions, E1+ and E2+ in this study. These have been shown to 

be unsuccessful in reducing the time spent by the foot in the top (Q1) and bottom (Q3) of 

the pedal cycle and increase maximal crank angular velocity through the downstroke 

(Malfait et al., 2010).  The commercially available non-circular chainrings are typically used 

with the crank orientation that is detrimental to their aim. They may be more successfully 

used if the crank orientation was altered to be nearer the one used here. As such, the 

elliptical geometry of the chainrings presented in this thesis allowed maximal crank angular 

velocity to be achieved at 0° and 180° in conditions E1- and E2- (Figure 3.3B).  This was 

achieved through precise alignment of the smallest radius of the chainring and minimises 

the mechanical constraints of pedalling through this Q3 and adds further evidence that 

position against the crank when using elliptical chainrings is important within the context 

of IFE. 

3.6.4 Pedalling Asymmetries  

Much of the research quantifying kinetics and kinematic variables in cycling has focused on 

a single leg (Sanderson and Black, 2003), however, questions of asymmetry are an 

important consideration when assessing the implications of implementing a change in 

mechanical behaviour, as identifying differences is vital for reducing knee loads transmitted 

by the dominant leg, which could lead to overuse injuries.  When examining the effects of 

chainring geometry on the patterns of force production (Figure 3.5), there are bilateral 

differences, the size of which are affected by cadence.  For example, a larger peak FE occurs 

in the left pedal at 90 rpm and 110 rpm in the E2- condition, which is supported in terms of 

effect size as presented in Table 3.3.  As such, the PC I loading score denotes a higher effect 

size in the left pedal (-0.52) than the right (0.38) at 90 rpm, and again to a smaller extent at 

110 rpm (-0.22 and 0.15, respectively; Table 3.3).   

An interesting observation is the bilateral asymmetries in pedal forces with increments in 

cadence.   That is, as cadence increases, there is a clear shift in phase in the left pedal, and 
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the peak FE occurs closer to 180°, than to 90°.  The asymmetries between the left and right 

crank force responses are pervasive throughout the conditions studied. There is a 

consistent overall pattern; in that E2-, and to a lesser extent E1-, creates the larger changes 

in peak FE compared to the circular.  E1+ and E2+, conversely amounted to a degradation in 

peak FE development (Figure 3.5), and as previously suggested that when presented at 

alternative crank angles, it was not possible to effectively orient the force around the crank 

when pedalling in conjunction with an increased angular velocity.  A pedalling rate induced 

bilateral asymmetry is not uncommon (Cavanagh et al., 1974; Sargeant and Davies, 1977), 

however, there issues of etymology whereby this can cover a variety of differences such as 

applied pedal forces, mean pedal forces or total work output.  There is a tendency among 

humans to preferentially use one side of the body in voluntary motor acts, known as lateral 

preference (Carpes et al., 2007a).  Previous studies indicate there is an advantage of the 

preferred limb to that of the contralateral in terms of neuromuscular control, and lower 

muscle activation and frequency during dynamic tasks (Adam et al., 1998), and imbalances 

in bilateral force production are known to be in the region of 5 – 20 % (Carpes et al., 2010).  

It has also been reported that the dominant leg might also not contribute as much positive 

average power as the contralateral leg during pedalling, perhaps owing to a greater hip 

extensor moment in the non-dominant leg (Smak et al., 1999).  In the study conducted by 

Smak and colleagues they highlight one subject in particular who displayed a minor shift in 

phase in crank torque in their non-dominant leg when cycling at 120 rpm.  To explain this, 

they propose a contribution from altered differences in knee and hip moment patterns, 

rather than the ankle joint, perhaps resulting from differences in strength and/or motor 

control deficits in the non-dominant side (Smak et al., 1999).   

Shifts in phase just as the one reported by Smak and colleagues (1999) and the one 

reported here are unusual and scarcely identified elsewhere.  However, it is important to 

acknowledge that PC analysis is capable of detecting dominant patterns in the data that 

may be overlooked by other forms of analysis.  PC analysis specifically allows for the 

assessment of waveform data and subsequent reconstruction, allowing for fuller details 

than is typically reported in experiments investigating cycling asymmetries, which typically 

focus on mean variables and the use of asymmetry indexes (Carpes et al., 2007a) allowing 

the result to be described as percentage values (Robinson et al., 1987).  However, PC have 
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successfully been utilised in the past to detect asymmetries in time-dependent kinematic 

responses to walking in amputee subjects (Crenshaw and Richards, 2006) suggesting that 

is a viable method of deducing differences.  Given the prevalence of disproportionality well 

documented in lower limb work in gait studies (Cuk et al., 2001; Herzog et al., 1989), it is 

perhaps not surprising that such asymmetries exist.   What may be of interest is that as the 

demands of the task increased through increments in cadence, the asymmetry was 

exacerbated, an effect which is typically attributed with running and augmented muscular 

effort (Cavagna, 2006).  The opposite has seen to be apparent in other cycling studies as 

Carpes and colleagues previously demonstrated by increasing the demands of the task by 

increasing power output was found to have the opposite effect during an incremental 

maximal test and a reduction in pedalling asymmetries was observed (Carpes et al., 2007b).  

Similarly, Carpes and colleagues also found that increases in voluntary crank torque output 

during a simulated 40 km time-trial competition were associated with increases in pedalling 

symmetry (Carpes et al., 2007a).  The authors attribute the symmetry observed during high 

intensity cycling to the influence of fatigue on motor unit recruitment, and that as intensity 

of the cycling task increases, there is an increase of common bilateral input (Boonstra et 

al., 2008), promoted by augmented excitability and neural coupling by inter-hemispheric 

cortical communication and part of the multi-factorial strategies which minimise lateral 

differences (Anguera et al., 2007; Teixeria & Caminha, 2003). 

In contrast with this, Bini and Hume (2015) reported large inter-limb asymmetries for the 

FR (11-21%) and FE (36-54%) in competitive cyclists (n =10) during a 4-km time trial, which 

was performed maximally and at a self-selected cadence.  Also of note in this study, was a 

strong correlation (r = -0.72) between the asymmetry index results and FE, and participants 

who displayed larger asymmetries had an enhanced cycling performance than those with 

smaller asymmetries.  As per this study, asymmetry indices were smaller for the FR 

compared with that of the FE (Figure 3.5).  This is postulated to occur due to a coupling 

effect between kinetics and kinematics in measures of FE, but not so FR, which is in line with 

results put forward by Carpes and colleagues (2007a), who found direct links between 

asymmetry, peak torque output and limb dominance.  This seemingly contests popular 

notions of asymmetries leading to reductions on performances, however, it is important to 

note that conceptually at least, during cycling, total power production likely results in a 
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superior performance. 

One factor that could have an influence on asymmetry in cycling performance is fatigue of 

the participant.  As the protocol used here was demanding and data were collected within 

a single session, the effects of fatigue were considered in the design of the study.  More 

specifically, well-trained cyclists were used and the ordering of pedalling/resistance 

combinations and chainring conditions were randomly assigned within each subject.  A 

further ANOVA test was run for each test to determine whether joint angles and pedal 

forces loading score values were affected by the progression of pedal cycles during the test, 

and for each variable the test returned a non-significant value (P > 0.999).    

3.6.6 Summary 

This chapter investigated how altering chainring eccentricity would affect crank angular 

velocity over the course of the pedal cycle, and how this would in turn impact the joint 

kinematics and crank force patterns. The findings demonstrate that manipulating chainring 

eccentricity and orientation of the crank relative to the major axis of the chainring is an 

effective method of altering crank angular velocity over the course of the pedal cycle.  The 

impact this has on crank force was found to be dependent on cadence. When pedalling at 

130 rpm, an eccentricity of 1.13 (E1-) was enough to elicit an increment in peak FE, with 

concomitant alterations in joint kinematics and mechanical effectiveness.  Larger 

eccentricities of 1.34 (E2-) promoted an even larger response in peak force production at 

this cadence.  The cadence dependent effects in these data support speculations that the 

effects of chainring geometry is a product of non-muscular components of force 

production, namely increased crank inertia.  In addition to this finding, large asymmetries 

in left/right pedal kinetics arose which may impact the way in which these results are 

interpreted and generalised due to altered interactions in either limb.   

When splitting the leg into its respective segments of thigh, shank and foot, the pedalling 

motion determines both segment orientation and rate of joint angle change, thus segment 

kinematics are determined by the drivetrain kinematics, which in turn affects the 

intersegmental moments (Hull and Jorge., 1985).  The skeletal muscles spanning the leg 

joints are primarily responsible for developing these moments, thus it might be predicted 

that the muscle force requirements are altered.  This has previously been shown to be the 
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case for joint moments (Marsh et al., 2000), negative muscle work (Neptune and Herzog, 

1999) and muscle activation (Neptune and Hull, 1999).  The results presented here show 

that patterns of joint excursion were altered across the leg joints.  Changes in joint range 

of motion are known to be a marker of muscle length and torque producing capabilities 

(Charteris and Goslin, 1986), and therefore suggesting muscle-tendon unit lengths and 

velocities and muscle activation patterns could be affected by use of elliptical chainrings, 

factors that will be discussed in detail in Chapters Four and Five.  
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Chapter 4. Are muscle-tendon unit kinematics affected by chainring 

eccentricity at different pedalling cadences and loads? 
 

4.1 Introduction  

In the previous chapter, employing different chainring geometries was shown to evoke 

changes in both the crank angular velocity and the kinematics of the lower limb joints.  It 

could therefore be suggested that the working lengths and contraction velocities of the 

muscle-tendon unit (MTU) complexes acting upon the leg joints would be altered as well 

(Too, 1990). Although MTU dynamics have not been previously investigated in respect to 

non-circular chainrings, this is an important element of neuromuscular control given the 

potential interactions between the muscle fibre force-length and force-velocity properties, 

tendon dynamics and excitation patterns (Lieber and Friden, 2000).    Therefore, to better 

understand the implications of alterations in hip, knee and ankle joint kinematics as well as 

variations in crank angular velocity profiles, the resultant behaviour of the muscles acting 

on these joints needs to be considered in greater depth. 

Skeletal muscle’s capacity for force production depends upon the length and shortening 

velocities over which the fibres operate during the task.  The fibres of each muscle have an 

optimum length (Lo) for force production and at shorter or longer lengths, the fibre’s 

capacity to produce force is constricted owing to a reduced effective overlap of its 

contractile proteins (Huxley and Hanson, 1954) and changes in the lattice spacing (Williams 

et al., 2013).  The velocity of active fibre lengthening and shortening also influences the 

force producing capacity of the muscle fibres.  When acting at slow shortening velocities, 

the muscles are capable of producing relatively large forces (Hill, 1938).  However, when 

the velocity of shortening increases, there is an exponential decrease in the force until 

reaching maximum shortening velocity (Figure 2.9; Vmax).  These intrinsic properties 

influence the way force can be produced and the ability to generate the necessary 

mechanical power during dynamic movements such as running and cycling (Biewener, 

2016). As changes in MTU kinematics could have an impact of fibre behaviour, quantifying 

differences in MTU length and velocities related to altered chainring geometries is 

therefore an important first step to understanding potential neuro-mechanical effects of 

the chainrings. 
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Previously, Rankin and Neptune (2008) implemented a musculoskeletal model and 

simulation with the aim of using a dynamic optimisation framework to identify the 

chainring shape that might maximise average crank power.  An elliptical chainring with an 

eccentricity of 1.29 (Figure 2.11) was identified as being the optimal shape by allowing 

crank power to increase by 3.0% when pedalling at 90 rpm relative to a circular chainring. 

This alteration in power was attributed to increased mechanical work from the vasti muscle 

complex, gluteus maximus, soleus and gastrocnemius during the downstroke and the 

iliopsoas and tibialis anterior during the upstroke.  However, the authors dismissed any 

contributions of altered force-length-velocity relationships, given that fibre lengths and 

velocities were predicted to remain nearly identical between optimal and circular 

chainrings across all the experimental cadences (Rankin and Neptune, 2008).    Rankin and 

Neptune (2008) employed a Hill-type model to represent the behaviour of the 15-lower 

extremity MTUs under observation, however, only the fibre lengths and velocities were 

reported in their findings.  Whilst this provides valuable insight, it raises more questions.   

The authors postulated that the optimal chainrings evoked a longer amount of time for the 

downstroke (Q2, Figure 3.3A), increasing power generated in the muscles and resulting in 

an increase in external work.  However, increases in muscle work must be generated 

somehow, such as an increase in force.  Given the uncoupling in velocities that can occur 

between the MTU and fascicles (Wakeling et al., 2011) the effects of tendon stretch on 

force and power production should not be overlooked.  Furthermore, joint kinematics were 

not reported by Rankin and Neptune (2008), aside from mentioning that hip motion was 

fixed in the model.  As established in Chapter Three of this thesis, alterations in kinematics 

of the hip, knee and ankle were associated with changes in chainring geometry and crank 

orientation (Figure 3.7).  The evidence presented here therefore suggests that MTU 

trajectories behave differently to the intrinsic muscle adaptations reported by Rankin and 

Neptune (2008).   

The primary aim of this study was to explore the associations between chainring 

eccentricity and crank orientation on the behaviour of the MTU in the lower limb muscles 

for pedalling at different cadences and loads.  More specifically, due to the previously 

observed changes in timing and magnitude of crank angular velocity (Figure 3.3B) and 

kinematics (Figure 3.7), it was predicted that alterations in the length and velocity of the 
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soleus (SOL), medial gastrocnemius (MG) and vastus lateralis (VL) MTUs would occur. 

Significant differences in ankle joint plantar and dorsiflexion angles were reported in 

Chapter Three between the different chainring conditions (Figure 3.7C), consequently it 

was hypothesised that the SOL and MG MTU lengths and velocities would vary significantly 

between these conditions.  In contrast, smaller differences in knee joint kinematics were 

observed (Figure 3.7B), and as such, it was hypothesised that VL MTU lengths and velocities 

would not differ between chainrings.   

4.2 Methods  
This chapter utilises data from eight well-trained cyclists (4 male, 4 female; age: 37.8 ± 15.3 

years, mass: 70.1 ± 12.5 kg, height 176.1 ± 12.2 cm).  Data acquisition is described in 

Chapter Three, but briefly, participants performed eleven 30 second trials as various power 

(200 W – 300 W, in steps of 50 W) and cadence (90 – 150 rpm in steps of 20 rpm) on an 

indoor cycling ergometer indoor trainer (Schoberer Rad Messtechnik (SRM), Jülich, 

Germany). They were presented with elliptical chainrings (Hope Technology, Barnoldswick, 

UK) of two levels of eccentricity (E1: 1.13 & E2: 1.34) and fitted at an optimal (E1- & E2-)  and 

non-optimal  (E1+ & E2+)  crank orientation (Figure 3.1) whilst three-dimensional kinematic 

data (100 Hz, Vicon, Oxford, UK) were recorded. 

4.2.1 Muscle-Tendon Unit Modelling  

Kinematics data were used to drive a subject-specific musculoskeletal model (Lai et al., 

2017) in OpenSim v3.3 (Delp et al., 2007), as detailed in Chapter Three.  Each model was 

scaled to each subject’s height and weight, allowing muscle fibre and tendon slack lengths 

to remain the same percentage of the scaled total actuator length.  The top dead centre 

denoted the start of each pedal cycle, with joint angles calculated using inverse kinematics 

analysis, and consequently muscle-tendon unit lengths were calculated from each model 

(Figure 4.1).   
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Figure 4.1 Example MTU length and velocity data from a representative participant cycling with a circular 
chainring. (A) The model is positioned with crank at the top dead centre, and the four zones of the pedal 
cycle depicted (Q1 top; Q2 downstroke; Q3 bottom; Q4 upstroke).  The muscles are represented as red lines, 
and raw MTU lengths for the soleus (SOL), medial gastrocnemius (MG) and vastus lateralis (VL) are highlighted 
for the first 5-seconds of data acquistion from a single trial of one participant, with calculated MTU velocities 
also provided and, (B) Plot shows the raw MTU length traces from the musculoskeletal model highlighting the 
timing differences in soleus (blue) and medial gastrocnemius (Red).  Data are for five seconds at 90 rpm and 
250 Watts.   

4.3 Data Analysis   

The inverse kinematics analysis in OpenSim was used to predict SOL, MG and VL MTU 

length, and subsequently MTU velocity was calculated as the first-time derivative of MTU 

length across the pedal cycle using custom written code (Mathematica 11 software, 

Wolfram Research, Champaign, IL).  The monoarticular (soleus; SOL) and biarticular (medial 

gastrocnemius; MG) ankle plantar flexor muscles were selected to observe the impact of 
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the altered ankle joint kinematics. Vastus lateralis (VL) was selected, as one of the largest 

contributors to total power production in cycling, to identify whether external alterations 

at the crank produced musculotendon adaptations in proximal segments despite the small 

changes in knee joint kinematics observed. 

MTU lengths and velocities were interpolated to 100 points per pedal cycle.  The primary 

patterns in MTU behaviour over the pedal cycle were determined using principal 

component (PC) analysis. Data were arranged into a P × N matrix A, where the interpolated 

MTU length or velocity data points per cycle (P = 100) were organised into N = 8 participants 

× 5 conditions × 11 trials × 26 pedal cycles rows.  The mean was not subtracted beforehand, 

as has been described previously (Wakeling and Rozitis, 2004), so that it was represented 

by the first PC.  In order to visualise the primary differences in MTU length and velocity 

waveforms for each condition, they were reconstructed from the vector sum of the MTU 

weightings and loading scores for the first PC for SOL, MG, VL length and VL velocity and 

the first five PCs for SOL and MG shortening velocity. The number of PCs included for each 

variable was chosen to ensure >90% of the variability were accounted for within the 

reconstructions (Chau, 2001). PCA was completed using custom written code in 

Mathematica (Mathematica 11 software, Wolfram Research, Champaign, IL). 

4. 4 Statistics  

General linear model analysis of variance (ANOVA) was used to identify the effects of 

chainring eccentricity, crank orientation, cadence and load on the loading scores for the 

first PC (PCILS) for MTU length and VL MTU velocity and first five PCs (PCI-VLS) for SOL and 

MG MTU velocity.  Additionally to the main effects, the model included two-way interaction 

terms between chainring condition, cadence and load on SOL, MG, and VL MTU length and 

velocity, with subject defined as a random factor.  A post hoc Tukey test was performed to 

determine where the significant differences between chainring condition for a given 

cadence or load occurred. Statistical analyses were completed using Minitab version 18 

(Minitab Inc., State College, PA).  All data are presented as means ± SD, and statistical tests 

were deemed significant at α = 0.05.  
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4.5 Results 
 

4.5.1 Principal Component Loading Scores  

The number of PC loading scores (PCLS) used to reconstruct the MTU length and velocity 

waveforms (Figure 4.2) was in accordance with 90% trace criterion (Chau, 2001), whereby 

the cumulative percentage of PC weightings explained 90% of the total variability.  This 

percentage varied depending on which muscle and whether they were explaining MTU 

lengths or velocities.  

 

Figure 4.2 Principal component weightings for the patterns of (A) MTU lengths and (B) MTU velocities for 
each muscle.  The embedded value represents the percentage of the signal explained by each component.  
Where PC I explains the mean of the data. 

4.5.2 Soleus MTU lengths and velocities  

The soleus MTU shortened during the downstroke of the pedal cycle, whilst the ankle was 

plantar flexing, prior to lengthening after the pedal went past 180°.  There were no 
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significant main effects of chainring eccentricity or crank orientation on the PCILS for SOL 

MTU length (P = 0.097; Figure 4.3A&B).  There was a significant effect of cadence (P < 

0.0001) and load (P < 0.0001) on SOL MTU length. 

There was significant effect of cadence across all five SOL shortening velocity PC loading 

scores (P < 0.0001) and as could be expected, SOL MTU shortening velocities tended to 

increase systematically with cadence.  Chainring eccentricity (Figure 4.3; column I) and 

crank orientation (Figure 4.3; column II) significantly affected the first five SOL MTU velocity 

PC loading scores (P < 0.0001), and a chainring condition × cadence interaction (P < 0.0001) 

was also found. As such, the MTU velocity waveforms were separated and reconstructed 

in their respective cadence groups, presented in Figure 4.2.  Over the course of the pedal 

cycle, there was an increase in both maximum lengthening velocity (E1- = +0.017 mˑs-1, E2- 

= +0.05 mˑs-1, E1+ =+ 0.037 mˑs-1, E2- = + 0.083 mˑs-1) and maximum velocity of shortening 

(E1+ = -0.019mˑs-1, E2+ = -0.045mˑs-1, E1+ =-0.032mˑs-1, E2- = -0.054mˑs-1) in the elliptical 

chainrings compared to the circular chainring (0.102 mˑs-1 and -0.109 mˑs-1, for lengthening 

and shortening velocities, respectively; Table 4.2).  Additionally, the chainring eccentricity 

resulted in the peaks of shortening and lengthening velocities occurring at different points 

in the pedal cycle than the circular chainring (Table 4.3 & Figure. 4.3C-J), with the optimal 

crank orientation leading to peaks occurring later in the pedal cycle and the alternate crank 

orientation resulting to the peaks occurring earlier in the pedal cycle. 
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Figure 4.3 Principal component reconstructions of soleus muscle-tendon unit lengths and shortening 
velocities. Visual representation of the soleus MTU length using the first PC loading score (A & B), and  velocity 
using the first five PC loading scores (C - J) when using three different chainring eccentricities presented at an 
optimal crank angle (first column) and chainrings presented at an alternate crank angle (second column).  
MTU lengths reconstructions are pooled across cadences and loads, whilst shortening velocity 
reconstructions are completed independently for respective cadences, pooled across loads. The shaded 
portion indicates shortening velocity. 
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4.3.3 Medial gastrocnemius MTU lengths and velocities  

Figure 4.4 shows reconstructed MG MTU lengths and velocity waveforms. In contrast to 

the SOL, the MG MTU was lengthening during the first 90° of the pedal cycle, before 

beginning to shorten in the second phase of the downstroke (Q2, 45o – 135o). It then 

continued to shorten past peak plantar flexion of the ankle (at 180° of the pedal cycle), until 

the ankle had almost returned to a neutral position just after 270° of the pedal cycle (Figure 

4.4 A, C, E & G). 

There was a significant effect of cadence on PCILS (P < 0.0001) with the MG MTU functioning 

at shorter lengths with increasing cadence. A significant cadence x chainring interaction (P 

= 0.015) was also found for MG MTU lengths (Figures 4.4 & 4.5).  Specifically, at 90 rpm 

there was a significant effect of chainring condition on MG MTU length (P < 0.0001), post 

hoc analysis revealed that whilst the circular chainring and E2- had no significant difference 

between them, E1-, E1+ and E2+ were all associated with a significantly shorter length than 

the aforementioned conditions.  Despite this, there was a similar range of lengths across 

all of the chainring conditions at each of the cadences, with a total MTU length change of 

0.02 ± 0.001 m within a pedal cycle (Figure 4.4 & Figure 4.5; column II).  There was a 

significant effect of chainring condition on MG MTU length when cycling at 130 rpm (P < 

0.0001), where the elliptical chainrings resulted in longer MG MTU lengths (Figure 4.4), 

(circular < E1- < E2-).  The peaks and nadirs did however occur at the same point in the pedal 

cycle and the total range of lengths were the same for each condition (0.02m; Figure 4.4; 

column I).  The alternate crank orientations (E1+ and E2+) at 130 rpm were associated with 

a small, but significant decrease in total length change across the pedal cycle, and post hoc 

analysis showed this decrease was significantly different from the circular, E1- and E2- trials,  

but not between each other (Figure 4.5; column I).  There was no significant effect of 

chainring condition when pedalling at 110 rpm (P = 1.57) and whilst a significant effect was 

present at 150 rpm (P < 0.002), post hoc analysis did not reveal the location of these 

differences.  Further details of this are highlighted in Table 4.1.   

MG MTU velocities are shown in Figure 4.4; column II, where it can be seen that 

lengthening velocity peaked between 0° and 90° of the pedal cycle, and peak shortening 

occurred between 180° and 270° of the pedal cycle.  The elliptical chainrings were 

associated with delayed attainment of peak lengthening or shortening velocity of MG 
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(Figure 4.4; column II), and the alternate crank orientation led to the peak lengthening and 

shortening velocities occurring earlier in the pedal cycle (Figure 4.5; column II).  There was 

an increase in the magnitude of shortening and lengthening velocities when the elliptical 

chainrings were employed, however, there was a larger effect on maximum shortening 

velocity than maximum lengthening velocity.  Aside a continued alteration in timing, once 

the cadence reached 150 rpm, there was no significant effect of chainring condition on the 

magnitude of shortening and lengthening velocity (Figure 4.4H).  The main effects of the 

chainring conditions on lengthening and shortening velocities are summarised in Table 4.2.  

There was a significant effect of chainring condition on the timing of peak lengthening and 

shortening velocity (P < 0.0001), which was variable across cadences.  The timing effects 

are highlighted in Table 4.3.   
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Figure 4.4 Principal component reconstructions of medial gastrocnemius MTU lengths and velocities for 
optimal crank orientation. Reconstructions used the first principal component for MTU length (first column), 
and the first five principal components for MTU shortening velocity (second column) when using three 
different elliptical chainrings presented with the optimal crank orientation. Reconstructions are completed 
independently for respective cadences, pooled across loads. The shaded portion of graphs in the second 
column indicates shortening velocity. 
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Figure 4.5 Principal component reconstruction of medial gastrocnemius MTU lengths and velocities, for 
alternate crank orientation. Reconstructions used the first principal component for MTU length (first 
column), and the first five principal components for MTU shortening velocity (second column) when using 
three different elliptical chainrings presented with the alternate crank orientation. Reconstructions are 
completed independently for respective cadences, pooled across loads. The shaded portion of graphs in the 
second column indicates shortening velocity. 

4.5.4 Vastus lateralis MTU lengths and velocities  

Figure 4.6 shows reconstructed VL MTU lengths and velocity waveforms. VL underwent a 

period of shortening through the downstroke, reaching minimum length in all chainring 

conditions at 160° of the pedal cycle. There was a significant effect of chainring condition 

on PCILS for VL MTU lengths (P < 0.0001), where the degree of eccentricity was associated 

with a decrease in minimum length (Figure 4.6; Column I).  A significant chainring × cadence 
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interaction in PCILS was also found (P < 0.0001), indicating the shortest MTU length varied 

with cadence (Figure 4.7; column I). At 90 rpm, there was a significant difference in MTU 

length between the circular and elliptical chainrings; and observing the reconstructions 

(Figure 4.6A), it is possible to see a 0.001 m difference between the conditions at bottom 

dead centre.  At the same time point, the E2+ condition was associated with a 0.004 m 

shorter length in comparison to the circular chainring.  At 110 rpm, E2- was associated with 

a significant difference in length (P < 0.0001), and the reconstructions in Figure 4.5C 

highlights a decrease in maximum length over top dead centre and a decrease in minimum 

length over bottom dead centre.  Post hoc analysis showed that E1- also significantly 

differed from the circular chainring, and a decrease in minimum length over the bottom 

dead centre was visible (Figure 4.6C).  Orientating the crank to a non-optimal angle (E1+ and 

E2+) increased the peak-to-peak length change of the VL MTU to 0.048 m, compared with 

0.045 m in the circular condition, 0.044 m in E2- and 0.046 m in E1-.   

There was a significant effect of chainring condition on PCILS in the VL MTU velocity (P < 

0.0001), and a cadence × chainring interaction (P < 0.0001).  The reconstruction of the 

waveforms (Figure 4.6; Column II) allows subtle differences to be observed between the 

chainrings when used at different cadences.  Unlike the SOL and MG MTU shortening 

velocities, only the PCILS was needed to reconstruct these data, given the amount of 

variability explained within the first PC (Figure 4.1C), and subsequently, there was no phase 

effect in the VL  velocity given that the main characteristics are explained in a single PC.  At 

90 rpm (Figure 4.6B), post hoc analysis revealed a significant increase in magnitude of 

shortening and lengthening velocities between the elliptical chainrings and the circular.  

Post hoc analysis showed no significant difference between the crank orientations and 

elliptical chainrings at 90 rpm.   There was a systematic increase in lengthening velocity as 

cadence increased to 110 rpm across all chainrings (Figure 4.6D), however, the overall 

effect of PCILS across the chainrings was similar to the previous cadence.  When cadence 

increased to 130 rpm, there was a significant chainring effect, which resulted in the circular 

chainring having a lower peak shortening and lengthening velocity than the four other 

chainring conditions, which had no significant difference between each other.  At 150 rpm, 

all chainring conditions were significantly different from each other, and elliptical chainring 

conditions were associated with increased shortening and lengthening velocities. 
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Figure 4.6 Principal component reconstructions of vastus lateralis MTU lengths and shortening velocities. 
Reconstructions used the first principal component for MTU length (first column) and MTU shortening 
velocity (second column) when using three different elliptical chainrings presented with the optimal and 
alternate crank orientations. Reconstructions are completed independently for respective cadences, pooled 
across loads. The shaded portion of graphs in the second column indicates shortening velocity. 

4.6 Discussion  

In the previous chapter, crank angular velocity was identified as being altered by the 

different chainrings, such that altering the chainring eccentricity was effective in increasing 

peak effective force during the downstroke phase of the pedal cycle.  This study sought to 
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investigate whether the changes in force application and crank angular velocity, elicited by 

the different chainrings and positioning of the crank, were associated with altered soleus, 

medial gastrocnemius and vastus lateralis MTU kinematics over the range of cadences and 

loads studied.  The main findings show that the MTU kinematics studied here were 

significantly influenced by the elliptical chainrings, with the most striking result being the 

altered velocities of the SOL and MG MTU (Table 4.2) as well as shifts in where during the 

pedal cycle peak lengthening and shortening velocity occurred (Table 4.3). 

Table 4.1 Post hoc comparisons indicating direction of MTU length changes in each muscle for 
different chainrings relative to circular chainring, and cadence conditions
 

Note: Arrows indicate elliptical chainrings directional difference in peak MTU length in comparison to circular chainring.  

denotes an increase in operating length;  denotes a decrease in operating length; and — denotes no significant 

difference.   

 

Table 4.2 Post hoc comparisons indicating direction of MTU velocity changes in each muscle for 
different chainrings relative to circular chainring, and cadence conditions .
 

Note: Arrows indicate elliptical chainrings directional difference in MTU velocity in comparison to circular chainring.   

denotes an increase in lengthening velocity;  denotes an increase in shortening velocity, and; — denotes no significant 

difference.   

 

Table 4.3 Alteration in position of pedal cycle (in degrees) of peak lengthening and shortening 
velocity in the triceps the SOL (top two rows) and MG (bottom two rows)
 

Note: Positive values indicate a shift in peak lengthening/shortening velocity to later in the pedal cycle and negative values 
indicate a shift to earlier in the pedal cycle.  Values represented in degrees.  All values are significantly different from the 
circular chainring.  Shaded rows represent alterations in the SOL and clear rows represent alterations in the MG. 

 

 

 CR E1- E2- E1+ E2+ 

Cad 90 110 130 150 90 110 130 150 90 110 130 150 90 110 130 150 
SOL — — — — — — — — — — — — — — — — 

MG  —  — — —    —     —   

VL   —              

 CR E1- E2- E1+ E2+ 
Cad 90 110 130 150 90 110 130 150 90 110 130 150 90 110 130 150 
SOL   — —             

MG    —     — —  —     

VL —    —    —    —    

  CR E1- E2- E1+ E2+ 

Cad 90 110 130 150 90 110 130 150 90 110 130 150 90 110 130 150 
Short +6 +14 +14 +10 +19 +22 +25 +25 -6 -16 -6 -3 -17 -19 -16 -8 

Len +10 +15 +16 +9 +22 +22 +29 +29 -7 -12 -8 -9 -22 -25 -23 -18 

Short +7 +11 +13 +19 +17 +15 +17 +32 -13 -14 -13 -11 -25 -21 -28 -18 

Len +4 +5 +7 +11 +6 +14 +20 +27 -8 -8 -6 -10 -17 -21 -19 -15 
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4.6.1 Do changes in crank angular velocities explain changes in MTU velocities? 

There is a well-established relationship between crank speed and the rate of change in fibre 

(Neptune and Herzog, 2000) and MTU (Brennan et al., 2018) lengths; and as crank speed 

increases, the series elastic tissue stretches at a greater velocity in order to contend with 

the increased force demands (Muraoka et al., 2001).  This is typically associated with 

increments in cadence; however, here it was hypothesised that the alterations in the speed 

of the pedal over the course of a revolution (whilst maintaining a specific pedal frequency) 

caused by the elliptical chainrings would also impact the MTU velocity. 

This study has shown for the first time, that the SOL, MG and VL MTU are significantly 

affected by a varied profile of crank angular velocity. The shifts in the occurrence of peak 

lengthening and shortening velocity associated with the different elliptical chainring 

conditions were in accordance with the variation in crank angular velocity associated with 

the respective chainring condition.  The peak lengthening or shortening velocity was found 

to occur later in the pedal cycle when using the chainrings E1- and E2- than the circular 

chainring (Figures 4.3, 4.4 & 4.5).  This coincides with the slowing of crank angular velocity 

during the down- and upstroke (Q2 & Q4) identified in Chapter Three (Figure 3.3B).  

Conversely, conditions E1+ and E2+ were associated with an advance in peak lengthening and 

shortening velocity, occurring during the slowing of crank angular velocity over the top and 

bottom dead centres (Q1 & Q3) induced by these conditions.  There was a significant 

interaction between cadence and chainring in both the SOL and MG MTU velocities, and 

the degree of shift varied across cadences in both MTUs (Figure 4.3). In these results, 

different behaviours are apparent between the SOL and MG values, despite them being 

considered synergists and both spanning the ankle joint. This reveals some striking non-

uniformity within the same synergistic group, that will be discussed later in this chapter.   

In addition to the shifts in the location of peaks in shortening and lengthening velocities, 

the magnitudes of the peaks varied significantly between the chainring conditions in the 

SOL and MG (Figures 4.4, 4.5 & 4.6).  An increase in eccentricity of the chainring was 

associated with an increase in shortening and lengthening velocities in both MTUs, for both 

crank orientations.  The combination of altered timing and magnitude in the MTU velocities 

has important ramifications, as despite increments in the shortening velocity occurring 



84 
 

whilst using chainrings E1+ and E2+, the altered timing could limit the contribution to 

effective mechanical output at the crank. The triceps surae are responsible for transferring 

force from the limb to the crank (Raasch et al., 1997), and if the timing of shortening-

lengthening velocity is not conducive for force production (Neptune and Kautz, 2001) then 

power may be lost when the crank is slowing down during the downstroke when the 

elliptical chainrings are in use.   

The effects of altered crank angular velocity on the VL MTU were far more subtle than seen 

in MG and SOL, nonetheless, they were significant (Figure 4.6).  This was unsurprising 

considering the significant, yet small effects of the elliptical chainrings on the knee joint 

kinematics presented in Figure 3.7B.  From these findings, it could be suggested that the 

elliptical chainring conditions have a larger effect on the distal muscles; rather than the 

muscles in the proximal segments of the legs.  Given the larger changes in SOL and MG 

MTU behaviours compared to VL MTU, and that both VL and SOL are monoarticular, it 

would appear that location in the limb is of greater importance than the number of joints 

spanned in determining the effects of using different elliptical chainrings.  Although it is not 

possible to confirm whether this is the case here, based upon the small number of muscles 

studied, it would be an interesting avenue to explore in greater detail through performing 

additional simulations on the musculoskeletal models to provide data from other MTUs in 

the leg. It is also important to acknowledge individual muscles possess their own force-

velocity properties owing to their size and fibre type, and the performance characteristics 

they exude in response to the same task will likely reflect this (Zajac, 1989). Therefore, the 

differences between muscles found here could also result more from their individual 

properties than their location in the limb per se. 

4.6.2 Do changes in joint kinematics explain changes in MTU lengths? 

Muscle-tendon unit behaviour has been identified as being closely related to the behaviour 

of the joints to which they insert (Too, 1990).  Alterations in joint kinematics were observed 

across the hip, knee and ankle (Figure 3.7), however, the responses in MTU length in 

conjunction with altered chainring geometry was more subtle than the MTU velocity 

behaviour.  The SOL MTU length did not exhibit a significant response to the elliptical 

chainrings (Figure 4.3A).  There were significant differences in MG MTU length between 
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the different chainring conditions.  The largest distinction was 130 rpm (Figure 4.4E), where 

a significant difference between the elliptical chainrings and the circular was observable, 

and E2- was associated with the MTU operating at a longer length than the circular, and E1- 

conditions.  This does follow the same pattern of effective crank force observed at this 

cadence in the previous chapter (Figure 3.5; column I), with peak MTU length and peak 

effective force occurring at the same position of the pedal cycle during Q2.  However, 

despite operating over different lengths, the total length changes observed across all the 

chainrings over the course of the pedal cycle was similar.   

The reduction in maximum length of the MG MTU (Figure 4.4; column I) with increments 

in cadence is consistent with earlier work (Gregor et al., 1987; Sanderson et al., 2006).  

Sanderson and colleagues (2006) attributed the effect to a concomitant reduction in ankle 

joint range of motion, given that, in their work, the knee kinematics were not affected by 

cadence manipulation to the same degree.  However, data here show that ankle joint 

kinematics were seen to undergo the largest range of motion at 150 rpm (Figure 3.8D), 

coinciding with the narrowest range of MTU operating lengths (Figure 4.4G& Figure 4.5G) 

and no significant change in knee kinematics (Fig. 3.7). There are some key distinctions 

between the work presented in this chapter and that of Sanderson and colleagues (2006) 

that may explain this difference.  Firstly, the cadences used in their study varied between 

50 and 110 rpm, and the speeds of 90 to 150 rpm used in this study might have elicited 

different joint kinematics.  Additionally, instead of an anatomically constrained model 

driven by experimental data like the one presented in this chapter, Sanderson et al (2006) 

used the equations developed by Grieve et al (1978) to calculate muscle length as a percent 

of segment length, which may not serve as an accurate method of predicting fascicle 

behaviour. 

The behaviour of the shorter MG MTU lengths despite greater ankle joint range of motion 

suggests that there is an uncoupling between MTU behaviours and joint kinematics. In the 

previous chapter, a general increase in ankle joint range of motion with increased cadence 

across chainring conditions was found. We anticipated these effects would be evident in 

the MG MTU lengths.  Additionally, in the SOL MTU there was no significant interaction 

between cadence and chainring, despite the ankle joint range of motion substantially 

increasing when the cadence reached 150 rpm (Table 3.3).  This aspect was particularly 
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surprising, as SOL is a monoarticular muscle, yet the length changes observed here are 

uncoupled from the ankle kinematics. It is difficult to explain these results, particularly as 

the joint angle and MTU data are derived from the same model. How are larger ranges of 

ankle joint motion associated with a reduction in MG MTU length? This may indicate that 

the small changes in knee kinematics are important for determining the MTU behaviours. 

Equally, how can the SOL MTU length not be influenced by the changes in ankle joint angle 

that occur at faster cadence? This may suggest that movements out of the sagittal plane 

(not quantified in my kinematics analysis, but included in the MTU calculations) can be 

more influential on MTU lengths than first appreciated. These are aspects of the link 

between joint kinematics and MTU behaviours that warrant further investigation with the 

use of appropriate musculoskeletal model. 

4.6.3 Do MTUs within a synergistic group respond similarly to altered chainring 

geometries? 

In addition to the observations regarding the responses of the MTU to altered crank angular 

velocity and joint kinematics, there were additional interesting results to emerge from this 

data set.  The MG MTU lengthened during the first 90o of the pedal cycle, before shortening 

from 90 – 180o. Conversely, the SOL MTU was shortening through this whole period (Figure 

4.3; C-J). This period of the pedal cycle is considered to be the propulsive phase, which is 

the largest contributor to forward motion.  As already eluded to, the ankle plantar flexor 

musculature is primarily responsible for the transmission of the forces generated at the hip 

to the pedal (Raasch et al., 1997).  The significance of this is that when cycling under 

conventional conditions, with a circular chainring, the reaction forces at the pedal during 

the downstroke would typically cause ankle dorsiflexion and requires the triceps surae to 

maintain a stiff ankle or contribute to the pedal force through active plantarflexion. The 

differences in behaviours between the MG and SOL may suggest they contribute differently 

to force transmission and ankle stiffening. The SOL shortening velocity was low around top 

dead centre, enabling the MTU to work close to isometric to initiate plantar flexion. Initial 

lengthening of the MG may facilitate energy storage, release during the subsequent 

shortening and propulsive portion of the pedal cycle. 

The positioning of the muscle in comparison with adjacent muscles and differences in 
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moment arm, along with muscle’s position relative to fixed non-muscular structures such 

as bone and fascia will alter with any change of joint position. This positioning has been 

seen to affect resulting net joint moments in synergistic muscles (Maas and Sandercock, 

2010).  The individual components of triceps surae are seen to act independently within 

this study, with the MG lengthening whilst SOL is shortening (Figure 4.1B).  It should be 

noted that the proximal tendon of the gastrocnemius crosses the knee joint, therefore 

flexion and extension of the knee joint invokes length changes of the MG without any (or 

at least very small on account of force transmission) changes of MTU length in the SOL. The 

increased extension at the knee when the elliptical chainrings were used were so small 

(~4°, Figure. 3.7) that it is unlikely to have affected the ability of the gastrocnemius to 

generate force. The distal gastrocnemii and SOL both form the long, compliant Achilles 

tendon, which is much longer than their respective muscle fibres (Trestik and Lieber, 1993). 

This large tendon length to muscle fibre ratio is proposed to allow enhanced energy 

recycling within the tendon during locomotion (Roberts and Azizi, 2011).   Further, Hoy et 

al (1990) estimated that the MG moment arm is slightly larger than the SOL moment arm, 

and consequently the large differences in peak force between these muscles is reduced.  

The authors predicted that this difference allows the two moment arms to work together 

to provide a longer duration force as they generate similar torques around the ankle joint 

(Hoy et al., 1990). Additionally, the opposing behaviour of SOL and MG could contribute to 

shearing between separate portions of the Achilles tendon, similar to that previously 

suggested to occur for overland locomotion (Bojsen-Møller et al., 2004).  This is interesting 

as our understanding of the SOL is quite often limited to extrapolated insight from our 

knowledge of the MG, however, despite functional synergy between these plantar flexor 

muscles, the mechanical behaviour of the SOL and MG MTU and fascicles have been 

previously been shown to differ during walking and running (Lai et al., 2015); and now they 

have also been observed to behave differently during cycling.   

4.6.4 What are the implications of altered MTU velocities? 

As previously mentioned, earlier research by Rankin and Neptune (2008) discounted the 

role of intrinsic contractile behaviour in the augmentation of average force when using a 

dynamically optimised non-circular chainring.  There were dissimilarities between the 

dataset presented here and that of Rankin and Neptune’s (2008), firstly this is an 
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examination of the MTU behaviour, and the outcomes are subject to the influence of 

tendinous structures previously discussed.  Secondly, the chainrings eccentricities were 

developed to maximise crank power over three prescribed cadences in the study by Rankin 

and Neptune (2008), and further, were purported to support an increase in power by 

allowing a longer period of the pedal cycle to be available for power production equating 

to an increase in external work.  In contrast with this, average power was controlled in this 

study, and this allowed for the observation that instead of a longer duration of force 

production during the downstroke, there was an increment in peak effective force which, 

depending on the crank orientation, occurred slightly before or after peak effective force 

in the circular chainring (Figure 3.5).  The effect of altering the timing of peak shortening 

and lengthening velocities in the triceps surae are an important consideration, as previous 

studies have shown that peak muscle power occurs at approximately one-third of 

maximum contraction velocity (Sargeant, 1994), and influencing where during the pedal 

cycle this occurs could therefore have consequences for how forces are directed about the 

crank.  Lastly, in Rankin and Neptune’s (2008) observations lengths and shortening 

velocities of the muscle fibres were only considered during their active states, whilst the 

PC analysis performed here allowed the patterns of MTU behaviour to be statistically 

considered during all points of the pedal cycle.   

It is important to note the contribution that MTU gearing might have played in the 

discrepancies between the work conducted by Rankin and Neptune (2008) and the work 

presented in this chapter. It is well documented that there can be an uncoupling between 

the tendon and fascicle velocities in the ankle plantar flexors during cycling (Dick and 

Wakeling, 2017; Griffiths, 1991; Lichtwark et al., 2007; Wakeling et al., 2011; Brennan et 

al., 2018), meaning it is not possible to generalise between behaviour of the contractile 

apparatus and MTU. Therefore, there is a limitation of using estimates of MTU length 

changes to infer contractile dynamics of the muscle, as this does not account for the effects 

of series elasticity in the tendinous connective tissues; and further, the decoupling has been 

observed to be heightened during augmented muscle activity, resulting in increased 

stiffness in the active muscle fibres (Lauber et al., 2014).  Ultrasonography has been 

employed as a method of imaging the muscle fascicles, allowing the length changes and 

velocities to be robustly measured during many different locomotor tasks (Van Hooren et 
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al., 2020).  Therefore, this chapter had originally aimed to compare the MTU data with 

fascicle data collected via B-mode ultrasonography. In total, 47080 frames of MG fascicle 

data were recorded and a computational approach was employed to automatically track 

and process the changes in fascicle geometry during cycling (Darby et al., 2013). However, 

due to the high pedalling cadences used in this study, the deformations of muscle tissue 

between frames was too large to allow reliable tracking of fascicle length using these 

computational techniques.  An alternative computational approach is therefore required 

and, therefore, these images remain a component of my dataset that requires further 

analysis, with additional time required to identify the optimum analysis solution for robust 

measurements to be attained.   

4.6.6 Conclusion   

This study provides new evidence that manipulating the pattern of crank angular velocity 

via the use of elliptical chainrings is associated with alterations in operating lengths and 

velocities of lengthening and shortening of the SOL, MG and VL MTUs.  Under in vivo 

conditions, a muscle performing repetitive contractions cannot instantaneously develop 

force as the shortening phase begins or instantaneously relax before the onset of the 

subsequent lengthening phase.  Consequently, factors regulating the kinetics of activation 

and relaxation must also be determinants of the mechanical work under these conditions 

(Caiozzo and Baldwin, 1997).  Therefore, these alterations in MTU kinematics must be 

considered within the context of neuromuscular control to fully understand their potential 

impact on cycling performance. The features of muscle recruitment during the cycle tasks 

studied here will therefore be explored in the next chapter.   
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Chapter 5. Muscle excitation patterns are altered in response to 

chainring geometry 

 

5.1 Introduction 

  
One of the basic problems in biomechanics, is understanding how motor patterns such as 

muscle activation timing and magnitude contribute to the performance of common motor 

tasks, like walking, running and cycling (Herzog, 2017).  Little is known about the neural 

basis of movement control, in part due to the large number of degrees of freedom in the 

musculoskeletal system, and questions have arisen within scientific literature as to whether 

movement control strategies are the same across movements or unique and task 

dependent.  As a step towards increasing our understanding of movement control, the goal 

of this work was to investigate the changes in muscle recruitment patterns in response to 

altered task mechanics.  Pedalling was used as a movement paradigm since it consists of 

quasi-constrained cyclical movements that allow for accurate control of test conditions, 

such as pedalling cadence and load (Neptune and Herzog, 2000). 

Changing the functional demands placed upon the muscles can influence the mechanical 

dynamics of the muscular contraction (Mileva and Turner, 2003; Sanderson and Amoroso, 

2009).  The response or adaptations of the neuromuscular system are reflected in the 

timing and amplitude of skeletal muscle excitation, which can influence the force and 

power production of the muscle (Askew and Marsh, 1998). These behaviours can be 

recorded using electromyography (EMG), with the myoelectric signal providing insight into 

the neuromuscular drive to the muscles. 

During multi-muscle contractions, the spatiotemporal patterns of myoelectric signals 

describe the features of muscle coordination.  Neuromuscular coordination pertains not 

only to the activation of different muscles in relation to one another, but also the activation 

of individual muscles in relation to the kinematics of that muscle (Hull and Hawkins, 1990). 

As multiple muscles can act upon the same joint, there are theoretically many different 

coordination strategies available to achieve the same motor goal (Crouzier et al., 2018).   

The responses of individual muscles to changes in mechanical demand can present as 

alterations in the onset and offset of excitation as well as the amplitude of excitation.  
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During cycling, these features are known to be affected by cadence, which is well 

documented within the literature (Marsh and Martin, 1995; Neptune et al., 1997; Wakeling 

and Horn, 2009).  The excitation response of the individual muscles to increments in 

cadence is mixed, and whilst most muscles demonstrate a systematic shift in the timing of 

their activation during the pedal cycle, the degree of this shift appears different for each 

muscle, influencing the mechanical contribution they make toward the pedalling action 

(Wakeling and Horn, 2009; Blake and Wakeling, 2015).  The influence of workload on 

muscle excitation is less well documented. However, Blake and Wakeling (2015) showed 

that power output was critically limited by the duration of muscle excitation when pedalling 

faster than 120 – 140 rpm. This led from previous work suggesting that power output and 

limb motion efficiency is limited by the coordination patterns between muscles, and not 

that of the maximum power achievable by the individual muscle groups (Wakeling and 

Horn, 2009).  

During cycling, effective muscle coordination is required to provide an effective force 

profile, given that activation patterns can affect the direction (Herrmann and Flanders, 

1998), magnitude and duration (Blake and Wakeling, 2015) of the external force developed.  

The force generation achieved to propel the bicycle forward had been attributed 

predominantly to the mono-articular muscles (i.e. vastus complex), during the propulsion 

phase. Biarticular muscles, activated at the top (rectus femoris) and bottom (gastrocnemii, 

semitendinosus, biceps femoris) of the pedal cycle, may assist in directing the pedal forces 

and redistributing net moments over the joints during these phases (Lima Da Silva et al., 

2016). Therefore they contribute to the effectiveness of the pedalling technique through 

synchronising the smooth transfer of mechanical energy from the limbs to the crank 

(Raasch et al., 1997) 

Studies examining muscular activity responses to non-circular chainrings using both 

maximal (Horvais et al., 2007) and submaximal (Horvais et al., 2007; Dagnese et al., 2011) 

trials have failed to find consistent changes in amplitude and timing of contraction in the 

muscles studied.  Neptune and Herzog (2000) investigated whether chainring shape 

affected activation patterns, and found significant shifts in timing of muscle excitation with 

alterations in changes in pedal speed in the soleus, medial gastrocnemius, tibialis anterior, 

vastus medialis and gluteus maximus; but not in the biceps femoris or rectus femoris.  
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Additionally, the shifts were reported as being minor and seemingly accounted for the 

altered activation dynamics requiring muscle force to be produced in the same region of 

the crank cycle.  Winters and Stark (1988) contended that average time constraints 

imposed by activation-deactivation dynamics range between 20 to 110 ms, therefore 

suggesting requirement for a 2-10° phase advance to account for the crank angular velocity 

changes associated with elliptical chainrings. However, Neptune and Herzog (2000) 

conducted their study at 200 watts with a cadence 90 rpm. It is unclear whether the 

alteration in timing of muscle excitation they found in conjunction with non-circular 

chainrings is consistent across other cadences, an important consideration given the 

cadence effects on force production and MTU kinematics found in previous chapters in this 

thesis.   

The findings reported in the previous chapters of this thesis show that range of motion in 

the ankle and hip joint were increased when an elliptical chainring was used (Figure 3.7).  

Consequently, there was an adaptation in MTU behaviour whereby operating lengths and 

shortening velocities of the soleus, medial gastrocnemius and vastus lateralis were 

significantly affected (Figure 4.3 – 4.6).  These alterations varied the crank forces, whereby 

increments in peak effective force were observed (Figure 3.5).  Taken together, it is feasible 

to predict that alterations in muscle activation would occur in response to use of the 

elliptical chainrings. Therefore, the purpose of this study was to investigate the interaction 

between load, cadence and elliptical chainrings on excitation characteristics of the lower 

extremity muscles during cycling. The following hypotheses were examined: that the phase 

and the magnitude of EMG intensity would change in response to the different chainrings, 

but differences in response will occur between proximal and distal muscles. Specifically, it 

was hypothesised that the muscles of the triceps surae complex would show increased 

levels of EMG intensity with a significant change in phase, such that EMG intensity would 

occur within different portions of the pedal cycle (due to alterations in muscle-tendon unit 

velocity profiles, Figures 4.3-4.5) in response to chainring geometry and crank orientation. 

In contrast, no difference in magnitude nor phase of quadriceps EMG intensity will occur 

(due to the small changes in MTU velocity seen in VL, Figure 4.6).  
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 5.2 Methods 

  
In this chapter, data were used from eight well-trained cyclists (4 male, 4 female; age: 37.8 

± 15.3 years, mass: 70.1 ± 12.5 kg, height 176.1 ± 12.2 cm) performing 30 second bouts of 

pedalling effort of varying loads and cadence using chainrings of two levels of eccentricity 

and with two crank orientations relative to the major axis (Figure 3.1).  Data acquisition for 

this study is described in Chapter Three.  In addition to the previously described 

methodology for kinetics and kinematics data, bipolar surface electromyography (EMG) 

electrodes (Trigno Wireless EMG, Delsys Inc, USA) with a fixed inter-electrode distance of 

10 mm were placed over the mid-bellies of the soleus (SOL), medial gastrocnemius (MG), 

lateral gastrocnemius (LG), vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), 

semitendinosus (ST), biceps femoris (BF) and gluteus maximus (GMAX) of the right leg.  

Before placement, the skin overlying each muscle was carefully prepared, with hair shaven 

off, the outer layer of epidermal cells abraded, and oil and dirt were removed from the skin 

with an alcohol swab.  The EMG electrodes were paired with a host computer which was 

equipped with data acquisition software (Delsys). Data were sampled at 2000 Hz through 

a 16-bit data acquisition card (USB-6210, National Instruments Corp, Austin, TX) and 

synchronised with other data types through the Vicon optical capture system software  

(Vicon Nexus version 2.5, Vicon Motion Systems LTD, Oxford, UK)  to ensure continuity 

between joint kinematics and crank forces.    

5.2.1 Analysis of experimental data  

5.2.1.1 EMG Intensities   

EMG signals for each muscle were resolved into their intensities in both time and frequency 

space during each pedal revolution using EMG-specific wavelet analysis (Figure 5.1; Von 

Tscharner, 2000). A filter bank of ten non-linearly scaled wavelets were defined by their 

frequency bandwidth, centre frequency and time resolution using the methods described 

by Von Tscharner (2000).  The wavelets had a frequency bandwidth spanning ~10 – 432 Hz, 

which was achieved by discounting intensities in the first wavelet to eliminate noise from 

movement artefact. The EMG intensities (the power of the signal) were interpolated to 100 

points per cycle, starting at the top dead centre, and normalised to the mean for each 

muscle for each participant across all trials.  EMG intensities were calculated as being the 
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sum of the intensities across all 10 wavelet domains for each time point, providing the 

energy envelope around the square of the signal, as is visible in Figure 5.1.  Additionally, 

the total EMG intensity for each individual muscle per pedal cycle was calculated as the 

sum of the interpolated intensities across all wavelets, to provide indication of a total 

muscle response (Blake and Wakeling, 2015). 

Principal component (PC) analysis was used to determine the primary EMG intensity 

pattern (waveform) for each muscle.  Data were arranged into a P × N matrix A, where the 

interpolated EMG intensity data points per cycle (P = 100) were organised into N = 8 

participants × 5 conditions × 11 trials × 26 pedal cycles rows.  The mean was not subtracted 

beforehand, as has been described previously (Wakeling and Rozitis, 2004), allowing the 

total variability to be explained with PCI approximating the mean.   In order to visualise the 

primary differences in EMG intensity for each condition and calculate the magnitude of 

excitation, the EMG intensity waveforms were reconstructed from the vector sum of the 

PC weightings and loading scores for the first ten PCs.  PC analysis was completed using 

custom written code using Mathematica (Mathematica 11 software, Wolfram Research, 

Champaign, IL). 

 

Figure 5.1 Experimental data from a representative participant cycling with a circular chainring. Plots show 

raw EMG recordings from the soleus, medial gastrocnemius, lateral gastrocnemius, vastus medialis, rectus 

femoris, vastus lateralis, biceps femoris, semitendinosus and gluteus maximus; with normalised EMG 

intensities for the respective muscle groups shown below with corresponding colours.  Data is shown for five 

crank cycles pedalling at 90 rpm and 250 Watts using a circular chainring. 

5.2.1.2 Calculation of Activation Burst Duration & Duty Cycle  

In order to calculate the duration of muscle excitation per pedal cycle, an onset/offset 

threshold of 5% of the difference between minimum and maximum EMG intensity was 

TRICEPS SURAE QUADRICEPS HAMSTRINGS 
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selected (Figure 5.2). The portion of the intensity waveform above this threshold was used 

to determine the duration of muscle excitation in each pedal cycle (Blake and Wakeling, 

2015). The duty cycle was calculated as the duration of muscle excitation relative to the 

duration of the complete pedal cycle, determined from kinematics, and was also calculated 

from the EMG intensities for each muscle per pedal cycle. 

 

Figure 5.2 Schematic of EMG burst duration as a function of crank angle depicting the threshold of 5% of 
the difference between minimum and maximum value. The period between onset and offset (vertical 
dotted lines) represents the duration of the active muscle.   

5.2.1.3 Phase Shift 

Changes in the relative timing of the EMG excitation within the pedal cycle were also 

calculated for each muscle.  A shift registration method (Ramsay and Silverman, 2005) was 

used to separately determine how features of the raw EMG intensity waveforms varied 

between chainrings over the four different cadences.  This approach applies a cross-

correlation between the EMG intensity for each cycle and the mean EMG intensity and 

identifies the phase shift that offers the greatest correlation with the reference mean EMG 

intensity.  Here a positive phase shift indicates activation occurred later in the pedal cycle, 

while a negative phase shift indicates activation occurred earlier. 

5. 3 Statistics  

General linear model analysis of variance (ANOVA) was used to identify the effect of 

chainring eccentricity, crank orientation, cadence and load on the loading scores for the 

first five PCs (PCI-VLS) for EMG intensity in each muscle.  Additionally, two-way interaction 

between chainring condition, cadence and load on the muscles was determined, with 

subject defined as a random factor in all analyses.  A post hoc Tukey test was performed to 



96 
 

determine where the significant differences between chainring condition for a given 

cadence or load occurred. Statistical analyses were processed using Minitab version 18 

(Minitab Inc., State College, PA).  All data are presented as means ± SD, and statistical tests 

were deemed significant at α = 0.05.  

5.4 Results  

5.4.1 Multi-Muscle Excitation Patterns  

The multi-muscle excitation patterns for each chainring-cadence combination can be seen 

in Figure 5.3.  Alterations in the magnitude of EMG intensity is represented through 

changes in the colouring of the muscle excitation. In comparison to the circular chainring, 

increases in EMG intensity are evident in the distal muscles such as SOL and MG when the 

elliptical chainrings are used. In contrast, a decrease in EMG intensity is apparent in the 

quadriceps (e.g. VL, VM and RF) at the faster cadences (e.g. 150 rpm).  Changes in the timing 

and duration of activation can be observed across muscles (e.g. a double burst in RF 

excitation is visible in the elliptical chainring conditions), although whether any systematic 

changes occur is harder to determine.  The timing (phase), duration and magnitude of EMG 

signals have therefore been formally quantified and are presented in fuller detail for each 

muscle in the following sections.  
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Figure 5.3 Muscle coordination patterns for each chainring-cadence combination. EMG intensity pattern for 
each chainring (rows) and cadence (columns) combination normalised to the maximum for each condition. 
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5.4.2 Triceps Surae   

5.4.2.1 EMG Intensity Waveforms  

Figure 5.4 shows the PC loading score based reconstructions of the EMG intensity 

waveforms, and depicts that the triceps surae became active during the downstroke, in Q2 

of the pedal cycle. EMG intensity waveform loading scores were significantly different 

between chainrings (SOL: P < 0.0001; MG: P < 0.0001; LG: P < 0.0001), but not load (SOL: P 

= 0.892; MG: P = 0.895; LG: P = 0.941) or cadence (SOL: P = 0.604; MG: P = 0.981; LG: P = 

0.953). Additionally, there was no interaction between chainring condition and cadence 

(SOL: P = 0.951; MG: P = 1.000; LG: P =0.994).  The elliptical chainrings were associated with 

an increase in magnitude of EMG intensity, which increased in conjunction with the level 

of eccentricity in the SOL; however, in the MG and LG, condition E1- resulted in a greater 

increase in EMG intensity magnitude in comparison with E2-.  When the elliptical chainrings 

were orientated ahead of the major axis and in the non-optimal position (Figure 3.1; E1+ & 

E2+) there was also an increase in magnitude of EMG intensity in comparison with the 

circular chainring, however, this was not as large as when presented at an optimal crank 

angle (E1- and E2-).   

The total EMG intensities per pedal cycle for each muscle were also calculated and are 

displayed in Figure 5.5 (Column I).  Statistical analysis showed that there was a significant 

difference associated with total EMG intensity and chainring condition (SOL: P = 0.014; MG: 

P = 0.004; LG: P = 0.034), cadence conditions (SOL: P < 0.0001; MG: P < 0.0001; LG: P < 

0.0001), and a small significant effect of load in the SOL (P = 0.049), but not MG or LG (MG: 

P = 0.263; LG: P = 0.76). 
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Figure 5.4 Principal component reconstructions of triceps surae EMG intensity. Visual representation of the 

first ten principal component loading scores for EMG intensity for the muscles of the triceps surae.   Cadence 

and load are pooled, and waveforms are presented over the course of a pedal cycle. 

5.4.2.2 Burst Durations and Duty Cycles  

Box and whisker plots showing burst durations and duty cycles for each muscle in the 

triceps surae complex are shown in Figure 5.5 (Columns III & IV). Between the chainring 

conditions, SOL, MG, and LG displayed significant differences in burst durations (P = 0.001; 

P < 0.0001; P < 0.0001, respectively; Figure 5.5; Column IV) and duty cycles (P < 0.0001; P < 

0.0001; P = 0.001, respectively; Figure 5.5; Column III).  There was also a significant main 

effect of cadence on both burst duration (P <  0.0001; P < 0.0001; P < 0.0001) and duty cycle 

(P <  0.0001; P < 0.0001; P < 0.0001) and a significant chainring × cadence interaction on 

duty cycle (SOL: P = 0.004; MG: P < 0.0001; LG: P = 0.006) and burst duration  (SOL: P < 

0.0001; MG: P = 0.001; LG: P = 0.048).  In the SOL, there was a trend for the E2+ condition 

to increase activation duration in comparison to the other chainrings, which was evident in 

the post hoc comparisons, where activation duration for E2+ was significantly longer than 

the other chainrings. This was apparent at cadences 90, 110 and 130 rpm.  However, at 150 

rpm, the differences between chainring conditions were less.  The opposite was observed 

in the MG and LG, despite significant differences at all cadence intersections, the spread 

between the chainring conditions is much larger at 150 rpm than the slower cadences.  In 
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Figure 5.5 (Columns III & IV), it is apparent that when pedalling at 150 rpm, there is longer 

burst duration and duty cycle in the circular chainring condition compared with the 

elliptical chainrings in the SOL.   

5.4.2.3 Phase Shifts  

Significant systematic phase shifts of EMG intensity to earlier in the pedal cycle were found 

with conditions E1- and E2- for all muscles in the triceps surae (SOL: P < 0.0001; MG: P = 

0.018; LG: P < 0.0001; Figure 5.5; Column II) in comparison to the circular chainring.  This 

pattern was found to occur across the four cadences.  Conversely, conditions E1+ and E2+ 

were associated with a shift in EMG intensity to later in the pedal cycle.  There was no 

significant effect of cadence on the EMG intensity phasing across the three muscles (SOL: 

P = 0.877; MG: P = 0.316; LG: P = 0.155), and no significant chainring × cadence interaction 

(SOL: P = 0.214; MG: P = 0.338; LG: P = 0.856). 
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Figure 5.5 Total EMG Intensity, relative phase shifts, duty cycles and burst duration of EMG intensity in the triceps surae with pooled power outputs.  Values are shown 

as box and whisker plots (median, interquartile range, SD and outliers) for eight participants and the five different chainring conditions represented as different colours across 

the range of four cadences.    * denotes a significant main effect of chainring condition.
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5.4.3 Quadriceps    

4.4.3.1 EMG Intensity  

The reconstructed EMG intensity waveforms for the quadriceps muscles are shown in 

Figure 5.7. Overall, assessment of the PCA loadings scores revealed a decrease in EMG 

intensity across the VM, RF and VL when using the elliptical chainrings in comparison to the 

circular chainring (VM: P < 0.0001; RF: P < 0.0001; VL: P < 0.0001; Figure 5.6).  This was 

more prevalent in the biarticular muscle RF, than the monoarticular muscles VM and VL.  

Post hoc analysis showed that conditions E1- and E2- were significantly different to the 

circular chainring. The reconstructed EMG intensity waveforms show the largest difference 

in RF over the course of the pedal cycle was in Q1, whilst the crank passed through the top 

dead centre and moved toward 90° in the pedal cycle (Figure. 5.6).  PC loading scores from 

conditions E1+ and E2+ were also significantly different from those from the other three 

chainring conditions, and whilst the waveforms for RF contained lower EMG intensity than 

the circular chainring, the EMG intensity remained higher than the E1- and E2- conditions.   

Further post hoc examination of PC loading scores from VM and VL (Figure 5.6) showed 

similar results across the two muscles, however, the magnitude of excitation was larger in 

the VL than the VM.  Significant differences in PC loading scores for circular and E1- chainring 

conditions were present, which was coupled with an observable increment in EMG 

intensity in Q1 and the first half of Q2 in the circular chainring (Figure 5.8).  There was no 

significant cadence effect on PC loading scores across the three quadriceps muscles (VM: P 

= 0.471; RF: P = 0.407; VL: P =0.631), nor a significant chainring × cadence interaction (VM: 

P = 0.984; RF: P = 0.973; VL: P =0.946).   

Analysis of the total EMG intensities (Figure 5.7; Column I) showed different responses 

between chainring conditions across the three muscles (VM: P = 0.375; RF: P = 0.003; VL: P 

< 0.0001), whilst there was a consistent, significant effect of cadence (VM: P < 0.0001; RF: 

P < 0.0001; VL: P < 0.0001) and load (VM: P = 0.004; RF: P = 0.03; VL: P < 0.0001). From 

these data a relatively large degree of variation is apparent across participants, however, 

in the RF and VL, there is a trend toward lower total EMG intensity values in the E1- and E2- 

conditions, and an increase in the E1+ and E2+ conditions in comparison with the circular 

chainring. 
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Figure 5.6 Principal component reconstructions of quadriceps EMG intensity. Visual representation of the 

first ten principal component loading scores for EMG intensity for the muscles of the quadriceps.   Cadence 

and load are pooled, and waveforms are presented over the course of a pedal cycle. 

5.4.3.2 Burst Durations and Duty Cycles  

There was no significant effect of chainring condition on VM burst duration (P = 0.076) or 

duty cycle (P = 0.068), but there was an effect of cadence on both parameters (P < 0.0001 

both cases).  This presented itself as a decrease in burst duration as cadence increased 

(Figure 5.7; Column IV), and an increase in the proportion of the pedal cycle the muscle was 

active (Figure 5.7; Column III).  There was a significant effect of chainring condition on the 

burst durations (P < 0.0001; P = 0.004) and duty cycles (P < 0.0001; P = 0.002) of the RF and 

VL, respectively. Post hoc analysis of the VL data showed significant difference between the 

circular and E1- conditions, where the elliptical chainring was associated with a decrease in 

burst duration (Figure 5.7; Column IV) and duty cycle (Figure 5.7; Column III), having 

seemingly the opposite effect as the RF displayed.  There were cadence effects on duty 

cycle (P < 0.0001) and burst duration (P < 0.0001) in both the RF and VL, with the same 

pattern of increments in cadence as seen in the VM. In the RF, post hoc analysis of the both 

duty cycle and burst duration showed a significant difference between the circular and E2- 

conditions, and examination of the plots in Figure 5.7 (Columns III & IV) show an increase 

in duty cycle and excitation time associated with the E2- in comparison with the circular and 

E1- conditions.  This was particularly prevalent at 150 rpm, where large alterations between 
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both elliptical chainrings and the circular chainring can be observed with the elliptical 

chainrings associated with longer excitation time in line with the level of eccentricity, 

however, there was no significant chainring × cadence interaction (P = 0.559).   

5.4.3.3 Phase Shift  

There was a significant effect of chainring on the EMG intensity phase across all three 

quadricep muscles (VM: P < 0.0001; RF: P < 0.0001; VL: P < 0.0001; Figure 5.7; Column II).  

There was once again a trend for the elliptical chainring conditions to be associated with a 

shift in EMG intensity to earlier in the pedal cycle compared to the circular chainring.  

Across the three quadriceps muscles, post-hoc comparisons revealed a significant 

difference in phase between the E2- condition and the circular and E1- conditions.  

Conditions E1+ and E2+ were again associated with a shift in EMG intensity to occur later in 

the pedal cycle in comparison to the circular and elliptical chainrings used with the crank 

optimally orientated.  There was no significant effect of cadence on total EMG intensity 

(VM: P = 0.588; RF: P = 0.366; VL: P < 0.780).   There was a small significant chainring × 

cadence interaction in the RF (P = 0.046), but none in the VM nor VL (P = 0.071 & P = 0.857, 

respectively). 
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Figure 5.7  Total EMG Intensity, relative phase shifts, duty cycles and burst duration of EMG intensity in the quadriceps with pooled power outputs.  Values are shown as 

box and whisker plots (median, interquartile range, SD and outliers) for eight participants and the five different chainring conditions represented as different colours across 

the range of four cadences.  * denotes a significant main effect of chainring condition.    
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5.4.4 Hamstrings and GMAX  
 

5.4.4.1 EMG Intensity  

The reconstructed EMG intensity waveforms for the hamstring muscles and GMAX are 

shown in Figure 5.8. There was a significant difference in PC loading scores for the 

hamstrings (BF & ST) and the GMAX (BF: P < 0.0001; ST: P < 0.0001; GMAX: P < 0.0001). The 

reconstructions show a decrease in EMG intensity with increasing chainring eccentricity.  In 

the BF, post hoc comparisons highlight a significant difference in PC loading scores between 

all three chainring eccentricities, but no effect of crank orientation, which is evident in the 

reconstruction (Figure 5.8).  This is also the outcome of the post hoc comparisons in the ST, 

however, reconstructions reveal this difference to be more subtle than in the BF (Figure 

5.8).  Post hoc analysis on GMAX showed significant differences in PC loading scores 

between the circular and E1- conditions, where the EMG intensity waveform was observed 

as being significantly lower in the elliptical chainring than the circular.  The reconstruction 

of the GMAX shows an increase in intensity in the E2- at 90° during peak excitation, above 

that of the circular, however, no significant differences in the PC loading scores were found 

in the post-hoc comparison.  There was no significant cadence effect on EMG intensity PC 

loading scores in the hip extensor muscles (BF: P = 0.995; ST: P = 0.693; GMAX: P = 0.830), 

neither was any chainring x cadence interaction found (BF: P = 0.967; ST: P = 0.996; GMAX: 

P = 0.992). 

Analysis of the sum of the EMG intensities (Figure 5.9; Column I) showed significant 

differences between chainring conditions in each of the hamstring muscles and GMAX (ST: 

P = 0.007; BF: P < 0.0001; GMAX: P = 0.0017). There were also significant differences in total 

EMG intensity of each muscle between cadences (ST: P < 0.0001; BF: P < 0.0001; GMAX: P 

< 0.0001), and loads (ST: P = 0.026; BF: P = 0.02; GMAX: P = 0.007).  There was a general 

trend towards a lower total EMG present across all of these muscles when using an elliptical 

chainring in comparison to the circular, which was most noticeable in condition E1-.  At 150 

rpm, there was a large decrease in total EMG intensity across all of the elliptical chainring 

conditions in comparison with the circular in the ST, BF and GMAX. 
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Figure 5.8 Principal component reconstructions of EMG intensity of the hamstring muscles (BF and ST) and 
GMAX. The waveforms have been reconstructed using the first ten principal component weights x loading 
scores representing >95% of the variability. Cadence and load conditions are pooled, and waveforms are 
presented over the course of a pedal cycle. 

5.4.4.2 Burst Durations and Duty Cycles  

There was a significant effect of chainring condition on duty cycle in each muscle (BF: P = 

0.032; ST: P = 0.013; GMAX: P = 0.005) and on burst duration in the BF (P = 0.043) and 

GMAX (P = 0.006), but not the ST (P = 0.496).  Post hoc comparison of the BF duty cycle and 

burst durations show that the E2- condition significantly differs from the circular chainring, 

but despite there being no chainring × cadence interaction in burst duration (P = 0.815), 

nor duty cycle (P = 0.847), the differences between the two chainrings do not follow a 

systematic pattern across the cadences (Figure 5.9; Columns III & IV).  At 90 rpm, there is 

an increase in duty cycle with the E2- condition; however, at cadences 110 and 150 rpm, 

the two conditions are similar in terms of excitation duration and at 130 rpm there is a 

decrease in duty cycle.  Conversely, there is a significant chainring × cadence effect in the 

ST duty cycle (P =0.008) and to a lesser extent in the GMAX duty cycle (P = 0.048).  Post hoc 

analysis of both the ST and GMAX identified the duty cycles when using the elliptical 

chainrings as being significantly different from the circular, however, this response did not 

differ significantly between elliptical chainrings conditions.  Scrutiny of the ST plots (Figure 

5.9; Columns III & IV) shows various responses across cadences.  However, there does 

appear to be a predominant trend for the elliptical chainring conditions to decrease muscle 

excitation, at both crank orientations, similarly to the differences identified in the ST EMG 
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intensity waveforms (Figure 5.8).  Figure 5.9 (Column III) shows the chainring effects on 

duty cycle to be particularly evident at 130 and 150 rpm. Differences in the burst durations 

are also evident at these two cadences, where differences are also clear for the 90 rpm 

cadence.  However, once again, the changes in patterns are not systematic across the 

cadences.  At 90 rpm, the elliptical chainrings are associated with an increase in activation 

time in comparison to the circular chainring, however, at 130 and 150 rpm, there is a 

shorter activation time in the elliptical chainring conditions when presented at an optimal 

crank angle (E1- and E2-). There was a significant effect of cadence on the burst durations 

(BF: P = 0.043; ST: P < 0.001; GMAX: P = 0.006), and duty cycle (BF: P < 0.0001; ST: P < 

0.0001; GMAX: P < 0.0001).  Whereby a systematic increase in duty cycle and decrease in 

burst duration with increasing cadence was noted across the three muscles. 

5.4.4.3 Phase Shift  

There was a significant effect of chainring condition on the EMG intensity phase in the 

hamstring muscles and GMAX (Figure 5.9; Column II).  This followed the same patterns as 

the previously discussed muscle groups, whereby conditions E1- and E2- were associated 

with a phase advance in EMG intensity, and with E1+ and E2+ EMG activation occurred later 

in the pedal cycle.  There was no significant effect of cadence on the phase (BF: P = 0.931; 

ST: P = 0.333; GMAX: P = 0.647), and neither was a chainring x cadence interaction found 

(BF: P = 0.567; ST: P = 0.754; GMAX: P = 0.453). 
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Figure 5.9 Total EMG Intensity, relative phase shifts, duty cycles and burst duration of EMG intensity in the hamstrings with pooled power outputs. Values are shown as 
box and whisker plots (median, interquartile range, SD and outliers) for eight participants and the five different chainring conditions represented as different colours across 
the range of four cadences.  * denotes a significant main effect of chainring condition.    
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5.4.5 Total Muscle Response  

Ten PC loading scores used to reconstruct the EMG intensity, with the cumulative percentage 

to the PC weightings explaining 98% of the total variability.  An ANOVA was performed on the 

loading scores for the pooled nine muscles to detect an overall chainring response on EMG 

intensity.  There was a significant effect of chainring (P < 0.0001) on PCILS.  Further scrutiny 

determined that this was lowest in the circular condition, with no significant difference 

between the circular and E1- condition.  Chainrings E2- and E2+ were significantly different and 

associated with larger loading scores, whilst E1+ was linked to the largest difference in loading 

score. 

5.6 Discussion  

This study investigated the influence of using different elliptical chainrings on muscle 

excitation across a range of cadence and load demands.  One of the primary contributions of 

this research is that it amalgamates previously inconsistent findings concerning muscle 

excitation responses to changes in chainring geometry and crank orientation, by assessing the 

interaction between chainring condition and cadence and load on muscle recruitment. In 

agreement with the hypothesis that EMG phase and magnitude would be influenced by the 

elliptical chainrings, alterations in muscle coordination patterns were evident across chainring 

conditions and cadences in the muscles studied. This was seen as increased EMG intensity in 

the triceps surae when using elliptical chainrings, with differences in phase of the EMG 

intensity occurring, the direction of which was dependent on the crank orientation.  Also as 

predicted, differences in excitation changes between proximal and distal muscle groups did 

occur, however the patterns were not in line with initial predictions.  The response of the 

quadriceps, hamstrings and GMAX to the elliptical chainrings were opposing to that of the 

triceps surae, however a decrease in EMG intensity was observed rather than no significant 

difference in magnitude, and a phase shift did occur congruent with that of the triceps surae.  

Taken together the results from the circular chainrings contain very similar features of muscle 

activation found in previous experiments.  The muscle coordination patterns, revealed in the 

array plots (Figure 5.3) are also very similar to those reported by Blake and Wakeling (2015) 

and Wakeling and Horn (2009) as well as others (Dorel et al., 2009; Hug et al., 2013; Neptune 
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and Herzog, 2000).  Equally, the increments and decrements of duty cycle and burst duration, 

respectively, as cadence advanced, were reported by Blake and colleagues (2015). These 

similarities therefore evidence that the dataset presented here are representative of muscle 

activations resulting from cycling with a circular chainring. The changes seen with the use of 

the elliptical chainrings can also therefore be considered representative of the effects of their 

use, which is further supported by the fact that similar changes in EMG phase related to use 

of elliptical chainrings have also been found previously (Neptune and Herzog, 2000). 

5.6.1 Adaptations in the triceps surae    

The triceps surae were active during the downstroke and between crank angles of 60° and 

150° across all chainring conditions (Figures 5.3 & 5.4) which was consistent with previous 

cycling studies using a conventional circular chainring under similar mechanical demands 

(Blake and Wakeling, 2015).  Although there were statistically significant shifts in muscle 

activation timings between the elliptical and circular chainrings (Figure 5.5; Column II), these 

phase shifts were minor in absolute terms.  This is in keeping with previous reports suggesting 

a 2-10° phase advance in muscle activity was required when using elliptical chainrings in order 

to contend with the altered crank angular velocity profile (Winters and Stark, 1988).  This 

could be attributed to the activation-deactivation dynamics associated with muscle force 

development interacting with the requirement for muscle forces to be produced in the same 

region of the pedal cycle, and therefore limiting the size of phase shift that can usefully occur.   

Significant increases in EMG intensity amplitude in the SOL, MG and LG were noted when 

using the elliptical chainrings in the optimal crank orientation position (Figure 5.4), with the 

muscles becoming active in Q2, a region of slow crank angular velocity in conditions E1- and 

E2- (Figure 3.3B).  Previous cycling studies have suggested that these muscles are important 

for the transfer of force to the crank (Martin and Nichols, 2018).  The increase in EMG intensity 

in the triceps surae during the slower region of the crank velocity is not surprising when 

considering the increases in MTU velocity observed in the SOL (Figure 4.3) and MG (Figure 

4.4) in Chapter Four. Specifically, if the MTU velocities reflect fibre kinematics, then it is 

possible that this reduction indicates the muscle may be working within force-velocity related 

changes in force production. The increased EMG intensity is, however, somewhat paradoxical 
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when considering that the triceps surae are typically associated with decreased activity during 

slower pedalling rates (Sanderson et al., 2006; Blake and Wakeling, 2015), however, during 

the slowest part of the pedal cycle (Q2 & Q4) there was an increase in both EMG intensity and 

MTU velocities here (Figures 4.3 & 4.4) in the E1- and E2- conditions. 

During the SOL’s most active phase (Q2; Figure 5.4) it was shortening (Figure 4.3A), and the 

velocity of lengthening and shortening increased when the elliptical chainrings were used.   

When the MG was most active, slightly later in Q2 (Figure 5.4), it transitioned from 

lengthening to shortening (Figure 4.4 & 4.5; Column I) and therefore seems to be undergoing 

a stretch-shortening cycle that could lead to force enhancement in this muscle (Herzog & 

Leonard, 2000).  The differences in SOL and MG MTU lengths reported in Chapter 4 are 

striking, and further differences in the behaviours of these synergists are found here, with 

regard cadence related changes in burst duration and duty cycle.  Specifically, the SOL duty 

cycle rose from 45% at 90 rpm in the circular chainring to 79% at 150 rpm, whilst the MG went 

from 50.5% to 64.6% between these cadences. This further highlights that the triceps surae 

seem to respond independently, with the longer duration recruitment of the SOL potentially 

a strategy to help maintain the ankle moment.  Differences in duty cycles between cadences 

in the SOL was at its largest when the circular chainring was used with smaller differences 

occurring when the elliptical chainrings were employed (Figure 5.5), and as cadence 

increased, the duty cycle was lower in the elliptical chainrings compared to the circular.  

Larger duty cycles are considered a limitation of the activation-deactivation dynamics of a 

muscle (Blake and Wakeling, 2015) and result in an increase in negative muscular work and 

unnecessary co-contraction of antagonistic muscle pairs (Neptune and Herzog, 1999; 

Neptune and Kautz, 2001). The alterations in crank angular velocity caused by the elliptical 

chainrings may therefore lead to more favourable excitation-contraction coupling conditions 

in muscles such as soleus and support more economic locomotion. 

5.6.2 Adaptations in the quadriceps     

Changes in muscle excitation patterns were quite different in muscles in the proximal, 

compared to distal, segment of the leg.  The vasti muscles are one of the leading power 

producing muscles in the pedal cycle, as they generate mechanical energy in Q1, which is then 
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transferred into the triceps surae and to the crank as the pedal cycle progresses  (Raasch et 

al., 1997). As in MG, the VL EMG activity began to rise as the MTU was lengthening, persisting 

as the MTU transitioned to shortening. This muscle, therefore, may also enhance force 

production through the stretch-shortening cycle (Herzog and Leonard, 2000). Given the 

similar VM activity pattern (Figure 5.6) and anatomical location it is possible it may also utilise 

this force enhancement mechanism, although given the differences in SOL and MG this should 

not be assumed.  

The elliptical chainrings were shown to lead to slower crank angular velocity in the region of 

the pedal cycle the vasti are active (Figure. 3.3), with significant but small effects on VL MTU 

velocity (Figure. 4.7). The vasti were however able to maintain power output in the different 

chainring conditions with lower activation (Figure. 5.6), indicating (in VL at least) a decoupling 

of the MTU kinematics and the activation pattern.  The greater time spent in Q1 with the 

elliptical chainrings therefore seems to have reduced the activation required from these 

motor muscles to generate forces at the pedals. Further work is required to identify whether 

these changes are related to alterations in muscle fibre kinematics (as opposed to MTU 

kinematics), potentially highlighting the interplay between MTU gearing and neuromuscular 

drive to the muscles (Wakeling et al., 2011). 

The RF displayed larger reductions in EMG intensity with the elliptical chainrings in 

comparison to the VM and VL (Figure 5.6).  Previous studies have suggested that the 

biarticular RF is important in propelling the crank through flexion-extension transitions of the 

limb and transferring the mechanical energy across joints (Raasch et al., 1997).  In comparison 

to this, the primary function of the VM and VL are to act as major power producers.  

Participants were instructed to maintain a specifically selected cadence (which was complied 

with, see Table 3.1), and consequently a constant power output was sustained throughout 

the trial.  Conditions E1+ and E2+ were associated with increased crank angular velocity during 

Q2, with a concomitant reduction in effective force (Figure 3.5; Column I) and both VM and 

VL had greater EMG intensity in this quadrant in E2+.  The shifts in phase were significant 

across the quadriceps, but were however small, in-keeping with the previously identified 2-

10° alteration in phase key in maintaining the required muscle force. Subtle differences in 
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activity of the vasti therefore occur with use of the elliptical chainrings studied here. One 

interesting avenue for future work would be to explore the potential influence of MTU and/or 

fibre length changes in light of altered activation phase within a work-loop based framework 

(Josephson, 1985) to better explore consequences for force and power production. The 

changes in activation and MTU kinematics however seem much smaller than the resulting 

effects on crank angular velocity and effective forces, highlighting the complexity of 

understanding the integration between neuromuscular mechanics and system level 

production of movement production.  

5.6.3 Adaptations in the hamstrings and GMAX  

The hamstrings (ST & BF) were active during the transition between Q2 and Q3 and into Q4, 

whilst GMAX was active at the end of Q4 into Q1 and the initial portion of Q2 (Figure 5.8), 

which is in accordance with previous studies (Neptune and Herzog, 2000; Blake and Wakeling, 

2015).  The changes in EMG intensity in the hip extensors was similar to the quadriceps, as 

EMG intensity was found to significantly decrease across the ST, BF and GMAX in conjunction 

with the elliptical chainring conditions.  The GMAX is considered to be an important power 

producer during the pedal cycle, and changes in its activation patterns are similar to those 

seen in the power producers of VL and VM discussed above.  In contrast, the hamstrings are 

classified as being critical muscles for the transition between extension and flexion and the 

orientation of force at the pedal across the bottom of the pedal cycle (Raasch et al., 1997).  

There was a decrease in ineffective crank force (Figure 3.3; Column II) and a rise in resultant 

crank force (Figure 3.3; Column III) in this region of the pedal cycle when using the elliptical 

chainrings, as the decrease in EMG intensity in the ST and BF (Figure 5.8).  These changes in 

EMG intensity however contrast to those seen in LG and MG, the other biarticular muscles 

credited with transferring energy across joints and orientation of forces at the pedal. This 

highlights that whilst groups of muscles may be accredited with similar roles, specifics of their 

anatomical location and intrinsic properties likely play a larger role in determining their 

individual behaviours and contributions to pedalling. 
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5.6.4 What are the implications of alterations in muscle coordination?  

Any alterations in muscle coordination have important implications for muscular efficiency, 

as the coordination of the lower extremity excitation during cycling affects the direction, 

amplitude and duration of the mechanical force expressed at the crank (Blake and Wakeling, 

2015).  Previous studies have shown a negative correlation between total EMG intensity and 

mechanical efficiency (Wakeling et al., 2010; Blake et al., 2012) as increased efficiency when 

pedalling at a constant load and cadence has been shown to result from a decrease in muscle 

excitation (Blake et al., 2012). Workload has been found to significantly influence muscle 

activity, in that, as workload increases, activation levels in the SOL, MG, VM, RF, BF, ST, GM 

and gluteus medius have been shown to increase (Ericson et al., 1985).  However, as seen in 

the EMG changes reported here, this response is non-uniform and activity of muscles such as 

GM has been found to be much more susceptible to alterations in load than the VL, VM, MG 

and LG (Ericson et al., 1986). This again indicates the complexity of understanding how 

neuromuscular mechanics contribute to the completion of everyday tasks, highlighting the 

importance of probing different levels and elements of the neuromuscular system, rather 

than suggesting results from one or two muscles can be representative of all muscles in the 

system.  

Blake and colleagues (2012) suggested a relationship between relative efficiency and 

mechanical output, as they saw muscle excitation was minimised with increasing cadences. 

Here, the decrease in EMG intensity across the proximal leg segment muscles occurred in 

conjunction with the increased mechanical output at the crank (Figure 3.3) when the elliptical 

chainrings were used and could therefore represent an increase in relative efficiency for these 

conditions. There was however, an increase in EMG intensity across the distal muscles (SOL, 

LG and MG) that could cancel any gains in efficiency seen from the behaviour of the proximal 

muscles.   Indeed, Brennan and colleagues (2019) suggest that increases in activation, 

observed as high-frequency, short-duration contractions during augmented cadences are less 

economical.  Nevertheless, Blake and Wakeling (2013) established a positive correlation 

between total EMG intensity and metabolic power.  By conducting the total muscle response 

in this chapter, it was evident that the circular chainring was associated with a lower total 

muscle EMG, although this was not significantly different from E1-.  It was determined in Blake 
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and Wakeling (2013) that the prescribed muscle weighting coefficient had a significant effect 

on the estimation of metabolic power from the EMG and gas exchange sources, indicating 

that individual muscle importance is relative.  In their study, proximal muscles received a 

higher weighting coefficient, and as much are more important in determining efficiency and 

metabolic power than the distal muscles.  As such, it is important to note that all the muscles 

were equally weighted in the analysis performed in this chapter, and future work might 

consider the impact of adjusting this to assess whether elliptical chainrings lowered the total 

muscle response in light of the reduction in total EMG intensity present in these conditions. 

5.7 Conclusion  

This chapter investigated the influence of elliptical chainrings on muscle activation during 

cycling, and the subsequent relationship between the muscle activation adaptations with 

cadence and load.  In dynamic movement tasks, the need for a specified combination of 

angular segmental motions further constrains the coordination solutions available to the 

neuromuscular system.  However, alterations were found here in conjunction with changes 

in chainring geometry and crank orientation, consequently the variation in results presented 

highlights the complexity of adaptations in the neuromuscular system to alteration in motor 

task demand.  Having quantified responses of the musculoskeletal system from crank kinetics 

and kinematics and joint kinematics (Chapter 3), through MTU kinematics (Chapter 4) and 

muscle activation patterns (Chapter 5) the final chapter of this thesis will collate these findings 

in the context of the wider literature and objectives stated at the end of Chapter 2.    
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Chapter 6. General Discussion  

The overall goal of this thesis was to investigate the acute responses of the 

neuromusculoskeletal system to alterations in chainring eccentricity and the orientation of 

the crank against their major and minor axes, with the underlying aim of using the elliptical 

chainrings as a platform to understand more about how the human neuromuscular system 

behaves in vivo. Previous research on the effects of non-circular chainrings has primarily 

focused on either the direct performance implications (Horvais et al., 2007; Hintzy and 

Horvais, 2016; Leong et al., 2017), or utilised computational approaches to predict system 

adaptations that may occur (Kautz and Hull, 1995; Purdue et al., 2010; Rankin and Neptune, 

2008).  Consequently, there are pervasive gaps in our understanding of elliptical chainrings 

and the work I have completed provides a valuable bridge between the theoretical inferences 

and the empirical findings.  

“In theory there is no difference between theory and practice, while in practice there is.” 

Benjamin Brewster, 1882 

After a critical review of the literature (Chapter Two) it was clear that more work needed to 

be completed to establish better understanding of how the neuromusculoskeletal system 

reacts to a perturbation in task mechanics caused by alterations in chainring geometry, 

cadence and load; and subsequently how they integrate their response individually and 

between one another.   It was contended that determining the adaptations in mechanical 

force output, joints and muscle-tendon unit kinematics and muscle coordination patterns 

would provide some of the insight required.  To quantify the acute responses to these 

elliptical chainrings, it was necessary to complete an array of assessments within a cadence 

and load controlled experimental protocol.  In addition to the successful manipulation of the 

crank angular velocity profile between each of the chainring conditions, there are a few major 

findings from this research that will be discussed below. 
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6.1 Internal and external effects of elliptical chainrings    

In Chapter Three, the crank angular velocity profile associated with the two elliptical 

chainrings was identified, including the effects of altering the crank orientation.  Within this 

chapter, joint kinematics were found to be affected; however, the ankle produced the largest 

alteration in range of motion in response to the altered chainring geometry, whilst knee and 

hip motions were largely preserved.  It was suggested that this could represent a strategy to 

maintain the mechanical environment within which the power-producing muscles in the 

quadriceps and gluteus maximus operated. In contrast, the muscles of the triceps surae 

complex were subject to greater perturbations at the ankle joint, particularly through bottom 

dead centre (Q3) of the pedal cycle where increased ankle plantar flexion was observed 

(Figure 3.7). 

Alterations in crank force resulting from the use of the elliptical chainrings were also 

established in Chapter 3, and a cadence-dependant influence of the elliptical chainrings on 

effective and ineffective forces over the course of the pedal cycle was determined.  As such, 

the effect of elliptical chainrings on effective force was larger as cadence increased up to 130 

rpm.  Between the cadences of 130 and 150 rpm, a critical limit was seemingly met, and there 

was a decrease in range of crank forces between the chainring conditions observed at 150 

rpm.  Another interesting finding of this chapter were the asymmetries in crank force 

production between the left and right leg that became evident as cadence increased.  As such, 

at cadences 130 and 150 rpm, there was a visible shift in the crank angle at which peak 

effective force in the left crank was achieved (Figure 3.5; Column I), and consequentially, an 

alteration in the pattern of resultant force (Figure 3.5; Column III).  This is in contention with 

previous observations in cycling research, whereby increases in intensity are typically met 

with increases in symmetry (Carpes et al., 2007a; Carpes et al., 2007b). Cyclists mostly work 

at moderate intensities during training and prolonged competition (Golich and Broker, 1996), 

however, when tasked with cycling at high cadence, asymmetries could emerge due from 

greater consistency in the kinematics of the dominant leg and consequently, its ability to 

orient pedal forces (Edeline et al., 2004).   

Such findings highlight the value of using principal component analysis as a means of 
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quantifying variability and revealing temporal patterns of change in recorded data. As no a 

priori assumptions of the potential location of differences in data were required, and the 

waveform across the pedal cycle was assessed, the approach can be considered to allow an 

unbiased assessment of these data. The PCA approach therefore not only effectively 

distinguished differences in the waveform shape between chainring conditions, but also 

highlighted other variability in the waveform data that was not intentionally being 

investigated. Each PC weighting reveals a feature of the variability within the data set and the 

individual contributions from each PC weighting were used to express an estimated waveform 

explaining more than 90% of the variability. Identifying these individual components and their 

contributions to the net pattern of effective force enabled the shift in the pattern of effective 

crank force production that may have been missed if just the mean of the data were used. 

Prior to commencing the analysis of these data, a one-legged musculoskeletal model was 

deemed appropriate to provide an accurate representation of neuromusculoskeletal system 

response.  This was based on the kinematics data collected, which included a static calibration 

trial taken on the bike, but none of the participant standing on the ground. When establishing 

the model, it became clear that, although requested to, participants had not sat symmetrically 

on the bike during the static trial and as such creating a two-legged model with appropriate 

error was not feasible. As the literature largely suggests forces are applied symmetrically 

between the right and left pedals due to the constrained path of the cranks and pedals (Kautz 

et al., 1991) it was decided a one-legged model would be appropriate to meet the objectives 

set. However, on reflection of the mechanical output at the crank, it is clear that left and right 

lower body segments have not behaved in the same way.  It is a common assumption within 

the cycling literature that performance is symmetric between the legs, due in part to the 

methodology employed to analyse the mechanical outputs.  In contrast, the results presented 

here suggest that there is a degree of asymmetry present and that this is cadence dependant.  

Due to the implications for performance and possible injury risk, this area warrants further 

investigation. 

Chapter Four extended the participant specific musculoskeletal simulations developed in 

Chapter Three, providing predictions of MTU behaviour of the SOL, MG and VL.  This was a 
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novel approach as predictions of MTU lengths and velocities have not previously been 

quantified using an anatomically constrained model.  While the elliptical chainrings had little 

effect on the MTU lengths, velocity changes were much greater.  The triceps surae were 

affected to a larger extent than VL, with changes in the timing of lengthening and shortening 

velocities and an increase in magnitude in association with increasing chainring eccentricities.  

Alterations in MTU  velocity were also observed in the vastus lateralis, however, these effects 

were more subtle, and likely reflected the smaller changes in knee compared to ankle 

kinematics seen.  The consistencies evident between the joint and MTU kinematics in the 

model were unsurprising, however, there were some outcomes of the simulation which were 

unexpected and highlight the strengths of using an anatomically constrained model.  The 

discrepancies observed between larger ankle joint ranges of motion and decreases in medial 

gastrocnemius MTU lengths when pedalling at high cadences (150 rpm) contradict previous 

reports (Gregor et al., 1987; Sanderson et al., 2006). These reports predicted MTU lengths 

from joint kinematics based on marker trajectories, with no constraints on physically plausible 

skeletal movements imposed. This means skin motion artefacts could influence joint 

kinematics, a factor that does not influence the predictions from the musculoskeletal 

simulations used here. Therefore, there is a need to consider this type modelling and 

simulation approach when examining the behaviour of the musculoskeletal system during 

dynamic tasks, particularly where large ranges of joint motion occur.  However, this type of 

analysis is a time-consuming process and as such, the sample size of this dataset was just 

eight, despite nineteen participants taking part in the original study.  Future could be 

improved by increasing the number of participants to ensure findings are widely 

generalizable, although it should be noted that the PCA approach ensured that the variability 

within this specific data set were quantified.   

The use of a musculoskeletal model has provided a novel perspective on the response of the 

muscle-tendon unit mechanics, however, the behaviour of the muscle fibres cannot be 

inferred from this, and additional work is needed if we are to understand the relationship 

between contractile tissue and the series elastic element. I had aimed to be able to address 

this element, and had collected ultrasound data from the MG. However, at the high cadences 

large inter-frame muscle deformations occurred that were too big for current computational 
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image analysis approaches to robustly quantify. Therefore, the planned muscle fascicle data 

were not considered reliable enough and have not been included here.  Work will be 

commenced to resolve this issue, and therefore the data set I have accrued will in the future 

be used to investigate the behaviour of both the MTU and fascicle elements.   

The final experimental chapter (Chapter Five) examined the effects of the elliptical chainrings 

on the activation patterns of nine leg muscles.  Wavelet analysis was performed as a means 

of extracting a deeper understanding of the excitation pattern by considering the EMG 

intensity spectral properties and recovering additional information encoded in the EMG signal 

(von Tscharner, 2000; Wakeling, 2009; Wakeling and Rozitis, 2004).  The advantage of using 

this approach and measuring EMG intensity in this study, is that the wavelets have been 

specifically designed for analysis of EMG data, as their time resolutions are mapped against 

excitation-contraction coupling and hence force production. This means time constants are 

consistent within this data analysis, and between others using this method, making the results 

directly comparable to others who have used the technique unlike other methods such as 

calculating the root mean square (von Tscharner, 2000).  Using this method also presents an 

opportunity for further downstream analyses such as consideration of the relative efficiency 

associated with the chainring conditions (Blake and Wakeling, 2015) and also the relationship 

between EMG intensity and metabolic power (Blake et al., 2013) which could present as an 

interesting avenue for future work to determine the wider (e.g. system level) effects of using 

elliptical chainrings. 

From the EMG analysis, striking differences in the responses of the proximal and distal 

muscles to the elliptical chainrings emerged.  Whilst it was originally hypothesised that the 

pattern of activation in the power-producing muscles of the quadriceps would be preserved, 

due to the small changes in knee kinematics and VL MTU behaviours, there was a reduction 

in EMG intensity pervasive across the proximal muscles in conjunction with the elliptical 

chainrings. In contrast, there was an increase in EMG intensity seen across the distal limb 

muscles.  In addition, biarticular muscles responsible for transferring force across the joints 

to the crank (RF, MG & LG) showed a larger response to the elliptical chainrings than the 

monoarticular muscles (VM, VL & GMAX), which are considered to be responsible for 
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generating the force.  Furthermore, systematic changes in the phase of muscle excitation 

were observed between the chainring conditions, and whilst chainrings E1- and E2- were 

associated with excitation occurring earlier in the pedal cycle than the circular chainring, 

conditions E1+ and E2+ were associated with a later activation.  This was in opposition of the 

changes in MTU velocity timing observed with the different chainrings in Chapter Four, 

whereby E1+ and E2+ were associated with a phase advance in lengthening and shortening 

velocity and E1- and E2- were associated with a delay. The MTU velocities could be decoupled 

from the fascicle velocities (Dick and Wakeling, 2017; Wakeling et al., 2011), and therefore 

the data presented cannot be fully interpreted or understood until fascicle behaviours are 

quantified. However, results like this highlight the challenges of assessing responses of the 

neuromusculoskeletal system to alterations in external mechanics, given that much is still not 

understood about the complexity of  neuromuscular drive being translated from motor unit 

excitation through to net joint torque production and completion of dynamic tasks such as 

cycling.   

As previously mentioned, it is important to consider that the sample size data are presented 

from is eight throughout this thesis. Data from the same participants were used for the crank 

reaction force analysis, were scaled in the musculoskeletal model and included in the EMG 

signal analysis.  EMG data are however considered much noisier than kinematics or kinetic 

data (Chowdhury et al., 2013).  Therefore, within the context of EMG analysis, variability in 

the individual responses in excitation patterns could affect the results and are highlighted by 

the data spread evident in presented results (Figures 5.5, 5.7 & 5.9; Columns III & IV). This has 

influenced the patterns of change in burst durations and duty cycles seen across the individual 

muscles in response to different chainrings.  A clearer trend for changes could be provided by 

increasing the number of participants analysed in this chapter and/or also increasing the 

number of pedal cycles analysed. However, it also highlights the individuality of muscle 

recruitment (Hug et a., 2008) and responses of the neuromuscular system to task demands 

and mechanics, noted as a current challenge for the biomechanics community to address 

(Herzog, 2017). 
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6.2 Where do we go from here?  

In this thesis, a more comprehensive understanding has been established regarding how the 

neuromusculoskeletal system is affected when external mechanics at the crank are 

manipulated.  This initial piece of research has emphasised that although changes are present, 

they vary across different levels of the system (e.g. joint versus MTU versus muscle activation) 

and highlight why it is not possible to predict consistent effects on cycling performance. While 

the key objectives of the thesis have been met, more questions that warrant investigation in 

the future are now apparent.  Recommendations for future work are therefore: 

a. To create a rigid ankle structure to assess whether the greater perturbations 

experienced at the ankle in association with the elliptical chainrings have an impact 

on the crank reactive force; 

b. calculate the crank inertial load of the different chainrings to better understand how 

they impact the muscular and non-muscular components of force production, and 

how this relates to the cadence interactions observed in this thesis; 

c. to assess the freely chosen cadence when using the elliptical chainrings and measure 

the impact this has on gross efficiency; 

d. quantify fascicle length and velocity from recorded ultrasound data, and compare 

them to reported MTU behaviours (i.e. MTU gearing) and activation patterns;   

e. assess the implications of the alterations in MTU, fascicle behaviour and activation 

patterns on mechanical power output within a work-loop based framework; 

f. further analyse EMG intensity data to determine the implications of chainring 

geometry on relative muscle efficiency and metabolic power. 

One further avenue which would be interesting to explore, although not directly related 

to the study of elliptical chainrings, would be to develop a two-legged musculoskeletal 

muscle and investigate the association between the asymmetrical pedal force profiles and 

joint, MTU and fascicle kinematics and muscle activation. This should include 

consideration of power production at faster cadences, and whether differences in 

asymmetries exist between cyclists with different levels of experience and performance. 
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6.3 Summary  

The overarching aim in completing a pedalling task, is to successfully accelerate the crank 

against frictional and inertial loads.  The extent to which elliptical chainrings help or hinder 

specific aspects of performance is still unknown.  However, the experimental data I have 

presented confirm certain theoretical predictions regarding the effects of elliptical chainrings.  

An increased amount of time spent during the downstroke (Q2) in conditions E1- and E2- were 

observed, with an increment in effective crank force production and decrease in ineffective 

force evident during the downstroke.  Concurrent with this, a clear response of the 

neuromusculoskeletal system was detected in association with alterations in chainring 

geometry and crank orientation, presenting as adaptations in joint kinematics, muscle-tendon 

unit velocity and muscle coordination patterns.  From a practical standpoint, the use of non-

circular chainrings in professional sport and link to victory suggests that their effects are not 

deleterious, and the ultimate goal of research in this area would be ascertain how the changes 

presented here link to cycling performance.  From a fundamental science standpoint, altering 

the drivetrain kinematics has convincingly shown that elliptical chainrings can be used as a 

method of manipulating muscle-tendon unit behaviour and muscle excitation patterns that 

in future could be used as a means of generating greater understanding of the mechanical 

behaviour of these complex systems in vivo. 
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