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Abstract

Poor medication adherence is a global phenomenon that has received a significant amount

of research attention yet remains largely unsolved. Medication non-adherence can blur drug

efficacy results in clinical trials, lead to substantial financial losses, increase the risk of

relapse and hospitalisation, or lead to death. The most common methods of measuring

adherence are post-treatment measures; that is, adherence is usually measured after the

treatment has begun. What the authors are proposing in this multidisciplinary study is a new

technique for predicting the factors that are likely to cause non-adherence before or during

medication treatment, illustrated in the context of potential non-adherence to COVID-19

antiviral medication. Fault Tree Analysis (FTA), allows system analysts to determine how

combinations of simple faults of a system can propagate to cause a total system failure.

Monte Carlo simulation is a mathematical algorithm that depends heavily on repeated ran-

dom sampling to predict the behaviour of a system. In this study, the authors propose a new

technique called Non-Adherence Tree Analysis (NATA), based on the FTA and Monte Carlo

simulation techniques, to improve adherence. Firstly, the non-adherence factors of a medi-

cation treatment lifecycle are translated into what is referred to as a Non-Adherence Tree

(NAT). Secondly, the NAT is coded into a format that is translated into the GoldSim software

for performing dynamic system modelling and analysis using Monte Carlo. Finally, the Gold-

Sim model is simulated and analysed to predict the behaviour of the NAT. NATA is dynamic

and able to learn from emerging datasets to improve the accuracy of future predictions. It

produces a framework for improving adherence by analysing social and non-social adher-

ence barriers. Novel terminologies and mathematical expressions have been developed

and applied to real-world scenarios. The results of the application of NATA using data from

six previous studies in relation to antiviral medication demonstrate a predictive model which

suggests that the biggest factor that could contribute to non-adherence to a COVID-19 anti-

viral treatment is a therapy-related factor (the side effects of the medication). This is closely

followed by a condition-related factor (asymptomatic nature of the disease) then patient-

related factors (forgetfulness and other causes). From the results, it appears that side
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effects, asymptomatic factors and forgetfulness contribute 32.44%, 22.67% and 18.22%

respectively to discontinuation of medication treatment of COVID-19 antiviral medication

treatment. With this information, clinicians can implement relevant interventions and mea-

sures and allocate resources appropriately to minimise non-adherence.

Introduction

The current global crisis caused by the COVID-19 has resulted in a worldwide search for effec-

tive antiviral treatments and vaccines, many of which are currently undergoing clinical trials

with a few recently approved. However, in the case of antiviral treatments, a failure to adhere

to the antiviral medication regime could render any otherwise successful antiviral treatment

ineffective. Investigating new techniques to predict and combat non-adherence could signifi-

cantly influence the success of the use of developed antiviral treatments in the fight against dis-

eases. This study attempts to investigate a new technique, which would allow successful

prediction of critical non-adherence factors (such as fear of side effects, or lack of symptoms

driving complacency) and help shape suitable interventions to ensure treatment of diseases

(like COVID-19) are effective. The technique allows for learning from future incremental

non-adherence studies and enables the additional data from those studies to be aggregated to

improve the prediction accuracy of the algorithm used in this study.

Non-adherence

A large proportion of patients (especially those with chronic diseases) are non-adherent to

their medication regimen [1, 2]. This has led many researchers to the conclusion that non-

adherence poses a significant challenge in medical practice [3, 4]. Some authors [5] class non-

adherence as an “epidemic”, while the World Health Organisation (WHO) [1] considers it as

“a worldwide problem with striking magnitude”. Patients’ non-adherence to treatment inter-

ventions could have grave consequences; it could blur the efficacy of treatments [6], create

large financial costs to sponsors [7], cause adverse events or even lead to death in some cases

[8].

Non-adherence to medications is not limited to any particular disease–acute or chronic; it

affects all diseases [9] and can be influenced by the timing, consistency and persistence of tak-

ing medications. Barriers to medication adherence can vary significantly, ranging from

patient-related barriers to treatment-related barriers. Care providers, the healthcare system

and medical staff also contribute to non-adherence [4, 10]. Given this variation in barriers to

adherence, there is no single intervention that will effectively minimise medication non-adher-

ence [4, 11]. For example, behavioural modification is one way to improve adherence however,

this is a very challenging solution to implement as human behaviour is not easily altered. Beha-

vioural modification can take the forms of education, motivation, support and monitoring

[12]. Tackling individual aspects of non-adherence can be done, however, there is a need for a

multidisciplinary approach to medication non-adherence [12].

There are various techniques for assessing non-adherence. Though some are classic, such as

pill counting, others employ more sophisticated approaches [13]. Methods for measuring

medication adherence can be generally put in two main categories: direct and indirect [3]. The

former provides proof that patients have taken their medication as prescribed while the latter

cannot provide such proof. Direct methods include body fluid sampling, direct observation of

patient and measurement of biological markers [6]. Indirect methods, which are more widely
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implemented, include pill count, patient questionnaire [14], self-report forms, and electronic

monitoring devices. Medication adherence is characterised by three main components: initia-

tion (the point when the patient takes the first dose as prescribed), implementation (period of

dosing regimen complying with prescription) and discontinuation (the point when the patient

stops taking medication as prescribed) [15].

Measuring medication adherence can be challenging due to the use of adherence measures

that have poor accuracy and reliability [16]. Most of the methods for measuring adherence are

performed during the implementation phase of adherence [3]. Sometimes adherence measure-

ments are performed during the discontinuation phase [17]. There is limited literature on the

methods for measuring adherence before the initiation phase. Self-report methods of measur-

ing adherence are usually performed during the implementation phase. However, these self-

reporting tools can be used as historical data to measure adherence before the initiation phase

of other future treatments. The Medication Adherence Reasons Scale (MAR-Scale) and the

Morisky Medication Adherence Scale (MMAS) can be used to measure adherence before the

initiation stage [18, 19]. Knowing the common reasons for a patient’s non-adherence to medi-

cations that they take for their chronic medical conditions can help clinicians or pharmacists

design interventions that will increase the chances of the patient adhering to the new medica-

tion before the patient starting the medication. The MMAS scale requires the patient to have

other chronic medical conditions for which they are taking medications. The MAR-Scale is

unable to fully capture and analyse system conditions that may contribute to non-adherence

but may not be directly associated with the patient or the medication.

Algorithmic or machine learning techniques for the detection and identification of diseases

[20–22] exist, but there is very limited literature on how such techniques might be used to help

support/predict adherence for medical treatments. Several techniques proposed for improving

adherence are complex and/or ineffective, therefore, they are unable to realise the full benefits a

treatment could deliver [16]. It is rational to assess and measure patients’ likely non-adherence

before the initiation stage of medication treatment to improve adherence. The authors have

developed a novel approach and algorithm that employs a proven (in engineering settings) prob-

abilistic risk assessment technique to estimate the likelihood of non-adherence to medication

before the initiation stage. The results of this study help clinicians to identify and assess barriers

to adherence; this aids them in the development of non-adherence mitigating strategies and allo-

cation of resources to improve adherence before the initiation stage of medication adherence.

This study makes the following contributions to literature and practice:

• It introduces a technique for predicting the non-adherence behaviour of patients using prob-

abilistic risk analysis techniques.

• Clinicians can model and analyse non-adherence measures at any stage of the medication

regimen (before, during or after) using an evolutionary mechanism based on simulation.

• The proposed technique is not limited to a specific treatment and it is capable of capturing

various internal and external data; this is a feature other techniques do not possess.

• The proposed technique can learn from new incremental studies and aggregate the data for

prediction analysis.

Organisation of this article

This article is organised as follows: the proposed method and the framework upon which it is

based are discussed in the next section; these are followed by an application of the proposed

method on a COVID-19 case study, some discussions and concluding remarks.
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Method

Fault Tree Analysis (FTA)

Fault Tree Analysis (FTA) [23], since its inception, has been used mostly in the engineering

sector. It is a tree-like graphical representation of how basic components failures (basic events)

of a system can propagate to cause a total system failure (lead to a top-event). In FTA, an event

is an outcome of a component’s functionality; the outcome could be ‘failed’ (not functioning

as expected) or ‘operational’ (functioning as expected). Events are logically connected using

the Boolean gates AND, OR and sometimes the Priority-AND (PAND) gates–depicted in Fig

1. The AND gate (conjunction) represents the situation where all children events of an output

event need to occur for the output event to occur. The OR (disjunction) gate represents the sit-

uation where at least one child event of an output event need to occur to trigger the occurrence

of the output event. The Priority-AND (PAND) gate represents the scenario where all the chil-

dren events of an output event occur in a strict sequence–one after another–for the output

event to occur.

In Fig 1X, the output event Q is triggered when its input (or child) events A and B have

occurred within a given time, t. In Fig 1Y, the output event Q is triggered after a given time, t,
when at least one of its input events–A or B–have occurred. Fig 1Z depicts the PAND gate

where the output event Q is triggered after a given time t only when its input event A occurs

before B. For a detailed description of how FTA is performed, the reader is referred to Vesely

et al. [23]. In a logical expression, the AND, OR and PAND gates are represented by the sym-

bols, Ʌ, ꓦ and< respectively.

Once a system has been translated into a fault tree, it can be analysed logically (qualita-

tively). The logical analysis involves the determination of minimal cut sets (MCS) using Bool-

ean algebra. MCS is the smallest combination of basic events that are necessary and sufficient
to cause the top event. Necessary means each basic event in the MCS is needed for the top

event to occur and sufficient means the MCS does not need the occurrence of additional events

to cause the top event occurrence.

In addition to creating MCS, the logical analysis also reveals single points of failure of a sys-

tem and the relationships between components. Quantitative analysis or probabilistic analysis

involves the evaluation of the probability of the system failing using the MCSs. The probability,

P, of the PAND, AND and OR (in order of precedence), within a given time t, for events

X1. . .Xn can be calculated using Eqs (1), (2) and (3) respectively [23]. Eq (1) is limited to

Fig 1. FTA logic gates.

https://doi.org/10.1371/journal.pone.0247109.g001
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exponentially distributed independent events.
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To improve the overall reliability of the system, one could perform criticality/sensitivity

analysis [23] to determine how individual components contribute to the system failure. The

results of a sensitivity analysis enable investigators to implement mitigating strategies, know

the quality of components to use and allocate resources appropriately to improve the overall

reliability of the system.

GoldSim software

Most traditional FTA-based techniques have some limitations; they are mostly limited to ana-

lytical approaches with exponentially distributed component failures, they cannot capture

repairable events and they are unable to process other system environment data, such as the

time of operation. To evaluate real-world scenarios, one needs to overcome such limitations

because real-world events are dynamic, mostly repairable, and could have different failure dis-

tributions. These limitations are addressed by GoldSim software [24]. GoldSim is a software

capable of performing the modelling and probabilistic analysis of complex real-world systems

using Monte Carlo simulation. It has features for representing the classical Boolean gates AND

and OR. The PAND gate can be modelled accurately using dynamic and intuitive elements in

GoldSim.

Non-Adherence Tree Analysis (NATA)

The authors could not identify any published article utilising fault tree analysis to investigate

medication regime non-adherence. The only similar use of fault tree analysis looked at medical

errors [25]–not non-adherence to a medication regime. The authors propose the Non-Adher-

ence Tree Analysis (NATA)–a systematic and holistic technique heavily based on the fault tree

analysis technique. Unlike FTA where the primary focus of the investigation is the reliability of

a system using failure data (such as failure rate), in this study the primary focus on the investi-

gation in NATA is non-adherence (failure to complete a necessary course of medication)

using factors that trigger non-adherence (such as stopping a medication because of side effects

or because symptoms have ceased). NATA follows the guidelines of the classical FTA, how-

ever, new terms are defined in this study to reflect its novel domain of application; these terms

have been adapted from classical FTA definitions [23]. This novel application and develop-

ment of a computational technique enabling prediction of likely non-adherence to a medica-

tion regime based on previous studies identifying causes of non-adherence represent an

original contribution to the literature.
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In this study, examples will be based on this scenario: in a study, 20 patients (out of 100
patients) fail to take their medication as prescribed during a 10-day medication regimen. Out of
the 20 non-adherent patients, 6 were non-adherent due to forgetfulness (FORG), 4 due to side
effects (SIDE) and 10 due to other factors (OTHER).

Days of Medication Adherence (DoM). This is the total number of days a medication

should be taken in a treatment regimen for a given study.

Number of participants (NoP). This is the total number of participants in a study.

Non-Adherence (NA). This is known as the top event in classical FTA. NA represents the

situation where a prescription to a medication regimen has not been followed as instructed.

Meaning, NA is discontinuation in adherence to the medication before the end of the pre-

scribed period [15].

Non-adherence tree (NAT). A graphical top-down deductive structure that represents

the non-adherence factors as nodes with Boolean logic gates connecting these nodes to show

the relationship between them. Fig 2 is a simple NAT for the scenario. When creating NATs,

additional information such as the time of operation, replacements, repair/resolution, etc., can

be included in the rectangle of the corresponding non-adherence factor.

Non-Adherence Factor (NAF). This is synonymous to an event in FTA. It is a binary out-

come indicating if a factor leading to medication discontinuation has occurred or not. It is

true when the factor has occurred and false otherwise. This could be FORG, SIDE or OTHER.

Basic NAF. This is synonymous to a basic event in FTA. It is a discrete NAF that cannot

be decomposed into other NAFs. This is FORG and SIDE; OTHER could be broken into other

NAFs if need be.

Non-Adherence Count (NAC). This is the cumulative number of patients who are non-

adherent in a study, clinical trial or medication administration process. This is calculated as

the sum of the count of all the occurrences of NAFs. This can be expressed as:

NAC ¼
Xn

i¼1

CountðNAFiÞ ð4Þ

From the scenario, using Eq 4, one can conclude that,

NAC ¼ CountðFORGÞ þ CountðSIDEÞ þ CountðOTHERÞ ¼ 6þ 4þ 10 ¼ 20

Fig 2. A non-adherence tree (NAT).

https://doi.org/10.1371/journal.pone.0247109.g002
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NAC could also be expressed in terms of the number of days elapsed using NACX, where X
is the number of days. For example, NAC3 = 8, means 8 participants were non-adherent by

Day 3 (counting from Day 1) of a medication regimen.

GrandNoP. This represents the total number of non-adherent patients from n different

studies and it can be evaluated as:

GrandNoP ¼
Xn

i¼1

NoPi ð5Þ

Non-Adherent Rate per Study (NARS). This is the number of occurrences of a particular

NAF per the NoP and can be defined as:

NARS ¼
NAF
NoP

ð6Þ

Therefore, using Eq 6, the NARS for FORG in the scenario can be evaluated as

NARSFORG ¼
6

100
¼ 0:06

Non-Adherent Rate (NAR). This is synonymous to failure rate or hazard function in

FTA. NAR is the rate of occurrences (NAR) per the duration of the medication regimen

(DOM). NAR can be expressed as,

NAR ¼
NARS
DoM

ð7Þ

Therefore, the NAR for FORG can be evaluated using Eq 7 as

NARFORG ¼
0:06

10
¼ 0:006

Weighted NAR (WNAR). where NARs are to be sourced from multiple studies, a

weighted NAR is recommended. The WNAR for a particular NAF from n studies can be evalu-

ated as:

WNARNAF ¼
Xn

i¼1

NARNAFðiÞ � NoPi

GrandNoP
ð8Þ

Non-Adherence Factor Probability. This is the probability that a particular NAF will

occur and it is represented by P(NAF). The determination of the P(NAF) is based on the prob-

ability distribution of the NAF. For example, given a duration (d) of 1 and 10 days respectively,

if FORG is exponentially distributed, P(FORG) can be evaluated using:

PðFORGNACÞ ¼ 1 � e� ðNAR�dÞ ð9Þ

PðFORGNAC1Þ ¼ 1 � e� ðNAR�dÞ ¼ 1 � e� ð0:006�1Þ ¼ 0:005982

PðFORGNAC10Þ ¼ 1 � e� ðNAR�dÞ ¼ 1 � e� ð0:006�10Þ ¼ 0:058235

Non-Adherence Probability. This is the overall non-adherence probability–the probabil-

ity that there will be discontinuation as a result of NAFs at the end of a medication regimen.

Represented by P(NA), the non-adherence probability can be evaluated from Eq 3. Therefore,

PLOS ONE Non-Adherence Tree Analysis (NATA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0247109 February 19, 2021 7 / 16

https://doi.org/10.1371/journal.pone.0247109


from the scenario, given a duration (d) of 10 days, the estimate of P(NA) is

PðNAÞ ¼ 1 � ð1 � PðFORGÞÞ � ð1 � PðSIDEÞÞ � ð1 � PðOTHERÞÞ ¼ 0:18127

This corresponds reasonably well to the scenario in the above example—in which 20

patients are non-adherent out of a total of 100 by the end of the ten-day period–suggesting

20% or 0.2 non-adherence.

Results

To demonstrate the usefulness of NATA, it is applied to a COVID-19 treatment intervention

clinical trial. Several clinical trials of drugs targeting COVID-19 have been registered in China

[26]. Remdesivir, a nucleotide analogue, and chloroquine, an anti-malarial compound, have

both shown inhibition of the new coronavirus [27]. As of April 2020, several clinical trials are

testing the therapeutic efficacy of remdesivir and hydroxychloroquine (ClinicalTrials.gov:

NCT04280705, NCT04329923) for COVID-19 treatment. If any of these drugs are shown to be

safe and efficacious, they could become the first drug approved for the treatment of COVID-

19. In a hospitalized setting, “there is less consideration given to adherence” [28] therefore,

this study will only consider the out-patient settings. It is assumed that the treatment for out-

patients, who usually have mild symptoms, is a tablet that will be administered for 10 days by

the patients themselves—one pill per day—for a study population of 1000 patients. The

Fig 3. A NAT for COVID-19 intervention.

https://doi.org/10.1371/journal.pone.0247109.g003
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diagram in Fig 3 is a NAT for a hypothetical treatment intervention for COVID-19 using the

WHO’s dimensions [1, 5] and NAFs from six studies [29–34].

In Fig 3, non-adherence has been classified into the 5 WHO dimensions: Social/Economic-

related factors (SocRel), Patient-related factors (PatRel), Condition-related factors (ConRel),
Healthcare-related factors (HeaRel) and Therapy-related factors (TheRel). These top-level

NAFs have sub-NAFs that are based on factors for non-adherence of oseltamivir, an oral anti-

viral medication that inhibits influenza viral replication. This antiviral medication is chosen

because of the similarities in symptoms between influenza infection and COVID-19. Six stud-

ies (covering different demographics and geographic locations) have been used in the determi-

nation of these sub-NAFs; they are henceforth referred to as Study 1 [29], Study 2 [30], Study 3
[31], Study 4 [32], Study 5 [33] and Study 6 [34].

In general, there is a strong correlation between family/social support networks for patients

and their adherence to a medication regimen [35]. Patients with COVID-19 require self-isola-

tion to avoid the spread of the disease. Therefore, limited social support (SocSup) and limited

healthcare access (HeaAcc) have been considered as NAFs contributing to SocRel. Since this

intervention is novel, it is assumed that a NAF in the HeaRel category is “lack of prior knowl-

edge of adherence” (PriKno) [1, 5] in addition to limited tablets (NoTab) and clinical improve-

ment (ClinImp). The medicine delivery system in the hospital can also contribute to HeaRel if

both the ICT (IctSys) and manual (ManSys) delivery systems fail. NAFs contributing to PatRel
include patients’ forgetfulness (Forgot), choice of not taking the medication (NoMed) and

other patient-related factors (Other). ConRel and TheRel have only one NAF each–no symp-

toms (NoSym) and side effects (SidEff) respectively.

Logical analysis

Using basic Boolean logic, the MCS for non-adherence can be evaluated as:

Non� Adherence ¼ SocRel
W

PatRel
W

ConRel
W

HeaRel
W

TheRel

¼ ðSocSup
W

HeaAccÞ
W
ðNoMed

W
Forgot

W
OtherÞ

W
NoSys

W
ðClinImp

W
NoTab

W
ðIctSys

V
ManSysÞ

W
PriKnoÞ

W
SidEff

¼ SocSup
W

HeaAcc
W

NoMed
W

Forgot
W

Other
W

NoSys
W

ClinImp
W

NoTab
W

PriKno
W

SidEff
W
ðIctSys

V
ManSysÞ

The MCS reveals that there are ten single points of failure in the system. Both IctSys and

ManSys need to occur together to trigger discontinuation therefore they are not considered

single points of failure. With a quick scan at these single points of failure, investigators can

determine which aspect of the system need backups. For example, NoTab is a factor that could

be easily and quickly improved to enhance adherence; not all the other factors can be quickly

improved. For a detailed analysis on which factor contributes most to non-adherence, proba-

bilistic analysis is required. Probabilistic analysis can only occur when NARs have been

determined.

Non-Adherence Rates (NARs)

It is assumed that the recruited ambulatory participants would fail to adhere to their medica-

tion due to HeaAcc resulting in a WNAR of 1.2E-4/day. It is also assumed that PriKno [1, 5],

has an initial WNAR of 1.5E-4. This rate reduces by 8 per cent of the initial WNAR multiplied

by the number of elapsed day to represent the increasing knowledge of adherence by the medi-

cal team. The IctSys and ManSys sub-systems responsible for ordering and dispensing the

medicine fail at daily rates of 8.12E-5 and 5.34E-5 with mean-delay-time-until-repair of 4

hours and 2 hours respectively. There is a 2-day delay time until the medication is delivered in

case of NoTab. From results presented in Belmaker et al. [29], it is estimated that the WNAR
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(per day) for SocSup for patients taking oseltamivir who are under age 25, between ages 25 and

45 inclusive and over age 45 are 4.138E-4, 1.379E-4, and 2.069E-4 respectively. Table 1 is a

summary of NAFs, NARSs, NARs and WNARs from the six studies [29–34].

Probabilistic analysis

A GoldSim model was created from the NAT in Fig 3 using the data in Table 1. The system

was simulated over 10 days with a time-step of one hour. For each time-step, 1000 iterations

were performed to simulate the behaviour of each participant. Fig 4 is a graph depicting the

mean P(NA) and the NAC over ten days. P(NA) on Day 0 is zero, however, as the days prog-

ress towards Day 10, it approaches 1; on Day 10, it reaches 0.22 with a 5% and 95% confidence

bounds of 0.2 and 0.25 respectively and a standard deviation of 0.42. Missing at least one pill

(of the 10 pills) results in non-adherence. The results predict that 776 participants would take

all their medications (10 pills) as prescribed in ten days; 224 participants would miss at least

one pill. This result aligns with the results of the six studies: adherence to such treatment is

Table 1. NAFs, NARSs, NARs and WNARs from six studies.

Study (S) NoTabs SidEff NoMed ClinImp Forgot NoSym Other

S1 (NoP = 201, DoM = 10) 5 3 4 - - - 13

NARS 2.488E-02 1.493E-02 1.990E-02 - - - 6.468E-02

NAR (per day) 2.488E-03 1.493E-03 1.990E-03 - - - 6.468E-03

S2 (NoP = 33, DoM = 5) - 1 - 1 - - 4

NARS - 3.030E-02 - 3.030E-02 - - 1.212E-01

NAR (per day) - 6.061E-03 - 6.061E-03 - - 2.424E-02

S3 (NoP = 331, DoM = 6) - 9 - - 21 - 7

NARS - 2.719E-02 - - 6.344E-02 - 2.115E-02

NAR (per day) - 4.532E-03 - - 1.057E-02 - 3.525E-03

S4 (NoP = 313, DoM = 7) - 20 - - - 42 16

NARS - 6.390E-02 - - - 1.342E-01 5.112E-02

NAR (per day) - 9.128E-03 - - - 1.917E-02 7.303E-03

S5 (NoP = 326, DoM = 5) - 24 - - 7 13 4

NARS - 7.362E-02 - - 2.147E-02 3.988E-02 1.227E-02

NAR (per day) - 1.472E-02 - - 4.294E-03 7.975E-03 2.454E-03

S6 (NoP = 246, DoM = 10) - 24 1 - 22 - 9

NARS - 9.756E-02 4.065E-03 - 8.943E-02 - 3.659E-02

NAR (per day) - 9.756E-03 4.065E-04 - 8.943E-03 - 3.659E-03

WNAR 3.448E-04 8.315E-03 3.448E-04 1.379E-04 4.897E-03 5.931E-03 5.002E-03

https://doi.org/10.1371/journal.pone.0247109.t001

Fig 4. Probability of non-adherence and non-adherent participants.

https://doi.org/10.1371/journal.pone.0247109.g004
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very high. The NAF contributing the most to P(NA) is the PatRel. Meaning, patient-related

factors are strongly correlated to non-adherence.

Cumulatively over the 10 days, the average number of patients who would be non-adherent

increases steadily. By the end of Day 1, it is estimated that 21 would miss their pills. From Day

1 to the end of Day 5, it is estimated that 105 participants would miss at least one pill. At the

end of the medication regimen, it is estimated that 224 patients would miss at least one of their

pills. However, the number of new daily cases on non-adherence had no clear pattern; there

were no new cases on some days whilst only 2 new cases of non-adherence would be observed

on Day 10. The average NAC to NoP ratio in the six studies is 0.17; the NAC to NoP ratio for

the COVID-19 case study is 0.22. The difference in ratios is due to the additional NAFs (such

as SocSup, HeaAcc and PriKno) added to give a more accurate dynamic of the behaviour of

non-adherence to the COVID-19 disease.

Discussion

Based on the NATA results for the case study, a COVID-19 treatment is likely to have the non-

adherence probability predicted in Fig 4. Given the high rate of contagiousness, significant

financial and economic burden, and the number of deaths COVID-19 has caused, there is a

need for the result to improve–that is, increase overall adherence rate. At a glance, it seems

that patient-related factors contribute the most to non-adherence. However, patient-related

factors are not solely responsible for non-adherence; other factors also contribute to non-

adherence–this affirms results in previous studies [1]. Further investigation of the results gives

us a different picture. In Fig 5, it can be seen that patient-related factors contribute about 40%

to the non-adherence probability. However, when individual NAFs are considered, SidEff is

the biggest contributor, closely followed by Forgot, NoSym, Other, etc. This means that clini-

cians hoping to improve the patients’ adherence to a COVID-19 medication treatment should

concentrate on reducing these factors–most importantly, SidEff. NoSym is known to have a rel-

atively high ratio in known COVID-19 cases [36].

This study has established that NATA can reveal the non-adherence factors clinicians need

to know to allocate resources targeting those non-adherence factors. It is assumed that, given

the information produced by NATA, clinicians decide to reduce Forgot, Other, NoSym and

SidEff by 20% each through measures such as using a pillbox, software app, information/edu-

cation [37], trust in physician [38] and psychological ownership [39]. The GoldSim model was

Fig 5. Contribution of NAFs to NA.

https://doi.org/10.1371/journal.pone.0247109.g005
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updated and re-run to determine the impact of the changes on non-adherence; the results are

displayed in Fig 6. As expected, the overall non-adherence of the improved system has reduced

by nearly 4% at a mean of 0.187, 5% and 95% confident intervals of 0.17 and 0.21 respectively

and a standard deviation of 0.39. This reduced the mean number of tablets wasted from 224 to

187 –saving 37 pills that could potentially increase the evaluation of the efficacy of the treat-

ment by 0.37%.

The significant changes made to the improved model using very generous reduction rates

of 20% have enhanced adherence by 3.7%–not as much as one would have expected. The rea-

son for this big change but relatively little impact is that all NAFs would have to be reduced to

make significant changes to the overall non-adherence. The results of this case study affirm

that no single factor can fully minimise non-adherence [4, 11] and provides empirical proof.

However, it is still clear that the four main contributing NAFs are SidEff, Forgot, NoSym and

Other; these are factors clinicians should seek to improve to minimise non-adherence.

Contribution of this study

The contributions of this study are as follows:

1. It introduces a novel multidisciplinary technique for predicting the non-adherence behav-

iour of patients using techniques in the engineering and medical domains. To the best

knowledge of the authors, this is the first full-scale implementation of a specific probabilis-

tic risk analysis technique in predicting non-adherence through the development of differ-

ent terminologies and formulae.

2. Most non-adherence measures are implemented during or after the initiation of the inter-

vention. This study allows for the analysis of non-adherence measures at any stage of the

medication regimen (before, during or after) using an evolutionary machine learning

mechanism for refining probability estimates using incremental non-adherence data. The

ability to predict non-adherence factors before the initiation stage enables clinicians to put

implement appropriate measures to improve adherence; this can potentially increase the

efficacy of medications, save cost in clinical trials and save lives.

3. The proposed technique is not limited to a particular medication intervention; it is inher-

ently scalable. Due to its complex simulation algorithms, it is capable of modelling and ana-

lysing entities in the medical adherence realm and any other external entities (such as

systems, processes, data, etc.) that interacts with it. Non-adherence measuring techniques

with such features are extremely rare.

4. This study predicts future patients’ behaviour for a COVID-19 antiviral treatment using

some extant datasets. The developed model can learn from new incremental studies and

Fig 6. Improvement of contribution of NAFs to NA.

https://doi.org/10.1371/journal.pone.0247109.g006
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aggregate the data for prediction analysis and enhance its capability to improve its predic-

tive power as more datasets are created.

Limitation

The data used in the COVID-19 case study are based on a similar drug–oseltamivir–of a simi-

lar disease. The authors assume that the behaviour of COVID-19 patients would be similar to

that of the patients who took oseltamivir from six studies. The six studies from which the data

was extracted were diverse in terms of demographics and population; therefore, for a geo-

graphically specific application, the data may need to be streamlined. The simulation for the

case study was modelled to run for ten consecutive days, which is not an accurate reflection of

real-world studies where participants of a trial start on different days. NATA is not a stand-

alone solution for addressing all the issues with non-adherence; it depends on the results of

studies and techniques such as the Medication Adherence Reasons Scale or the Morisky Medi-

cation Adherence Scale (MMAS) for data to perform its analysis. In the future, data for NAFs

can be sourced from Big Data and/or Artificial Intelligence-enabled systems where possible.

Since the proposed technique uses existing tools to improve its predictive power as more data-

sets are created, in future, it will be useful to see the role some machine learning algorithms

[20], such as neural networks [21], can play in the development of a dynamic dataset.

Conclusion

Non-adherence to a medication regimen is widespread. In addition to financial losses, non-

adherence can blur the efficacy of drugs and lead to loss of lives. Most adherence measuring

techniques are implemented after the patient has started the medication regimen. This article

has explored the use of Fault Tree Analysis (FTA)–an engineering technique for probabilistic

risk analysis–to predict the nature of non-adherence. It proposes the Non-Adherence Tree

Analysis (NATA) based on classical FTA for modelling and analysing a medication regimen.

New definitions and mathematical expressions have been developed to enable the aggregation

of various non-adherence data from different studies to feed into the prediction of the non-

adherence behaviour of a particular study. Based on the results NATA produces, health profes-

sionals and clinicians can implement strategies and allocate resources to help improve adher-

ence. NATA can serve as a framework for analysing non-adherence factors in clinical trials

and other drug administration processes. The authors have applied NATA to a hypothetical

COVID-19 treatment; the results reveal the factors clinicians should concentrate on to mini-

mise non-adherence. In future, research on the application of NATA in a medication regimen

with high non-adherence rates could prove fruitful.
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1. De Geest S, Sabaté E. Adherence to long-term therapies: Evidence for action. Eur J Cardiovasc Nurs

2003; 2:323. https://doi.org/10.1016/S1474-5151(03)00091-4 PMID: 14667488

2. Wiecek E, Tonin FS, Torres-Robles A, Benrimoj SI, Fernandez-Llimos F, Garcia-Cardenas V. Temporal

effectiveness of interventions to improve medication adherence: A network meta-analysis. PLoS One

2019; 14:e0213432. https://doi.org/10.1371/journal.pone.0213432 PMID: 30861014

3. Osterberg L, Blaschke T. Adherence to medication. N Engl J Med 2005; 353:487–97. https://doi.org/10.

1056/NEJMra050100 PMID: 16079372

4. Shubber Z, Mills EJ, Nachega JB, Vreeman R, Freitas M, Bock P, et al. Patient-Reported Barriers to

Adherence to Antiretroviral Therapy: A Systematic Review and Meta-Analysis. PLOS Med 2016; 13:

e1002183. https://doi.org/10.1371/journal.pmed.1002183 PMID: 27898679

5. ASA, ASCP. Medication Adherence–Where Are We Today? Overview 2006. http://www.

adultmeducation.com/overviewofmedicationadherence_4.html (accessed August 12, 2016).

6. Vernon A, Fielding K, Savic R, Dodd L, Nahid P. The importance of adherence in tuberculosis treatment

clinical trials and its relevance in explanatory and pragmatic trials. PLoS Med 2019; 16. https://doi.org/

10.1371/journal.pmed.1002884 PMID: 31821323

7. Cutler RL, Fernandez-Llimos F, Frommer M, Benrimoj C, Garcia-Cardenas V. Economic impact of med-

ication non-adherence by disease groups: A systematic review. BMJ Open 2018; 8:16982. https://doi.

org/10.1136/bmjopen-2017-016982 PMID: 29358417

8. Wu J-R, Moser DK. Medication Adherence Mediates the Relationship Between Heart Failure Symp-

toms and Cardiac Event-Free Survival in Patients With Heart Failure. J Cardiovasc Nurs 2018; 33:40–

6. https://doi.org/10.1097/JCN.0000000000000427 PMID: 28591004

9. Costa E, Giardini A, Savin M, Menditto E, Lehane E, Laosa O, et al. Interventional tools to improve med-

ication adherence: Review of literature. Patient Prefer Adherence 2015; 9:1303–14. https://doi.org/10.

2147/PPA.S87551 PMID: 26396502

10. Brown MT, Bussell JK. Medication adherence: WHO cares? Mayo Clin Proc 2011; 86:304–14. https://

doi.org/10.4065/mcp.2010.0575 PMID: 21389250

11. Martin LR, Williams SL, Haskard KB, Dimatteo MR. The challenge of patient adherence. Ther Clin Risk

Manag 2005; 1:189–99. https://doi.org/10.1089/bar.2012.9960. PMID: 18360559

12. Kleinsinger F. The Unmet Challenge of Medication Nonadherence. Perm J 2018; 22:18–033. https://

doi.org/10.7812/TPP/18-033 PMID: 30005722

13. Aldeer M, Javanmard M, Martin RP. A Review of Medication Adherence Monitoring. Appl Syst Innov

2018; 1:1–27. https://doi.org/10.3390/asi1020014.

14. Moon SJ, Lee WY, Hwang JS, Hong YP, Morisky DE. Accuracy of a screening tool for medication

adherence: A systematic review and meta-analysis of the Morisky Medication Adherence Scale-8.

PLoS One 2017; 12. https://doi.org/10.1371/journal.pone.0187139 PMID: 29095870

15. Vrijens B, Geest S De, Hughes DA, Przemyslaw K, Demonceau J, Ruppar T, et al. A new taxonomy for

describing and defining adherence to medications. Br J Clin Pharmacol 2012; 73:691–705. https://doi.

org/10.1111/j.1365-2125.2012.04167.x PMID: 22486599

PLOS ONE Non-Adherence Tree Analysis (NATA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0247109 February 19, 2021 14 / 16

https://doi.org/10.1016/S1474-5151%2803%2900091-4
http://www.ncbi.nlm.nih.gov/pubmed/14667488
https://doi.org/10.1371/journal.pone.0213432
http://www.ncbi.nlm.nih.gov/pubmed/30861014
https://doi.org/10.1056/NEJMra050100
https://doi.org/10.1056/NEJMra050100
http://www.ncbi.nlm.nih.gov/pubmed/16079372
https://doi.org/10.1371/journal.pmed.1002183
http://www.ncbi.nlm.nih.gov/pubmed/27898679
http://www.adultmeducation.com/overviewofmedicationadherence_4.html
http://www.adultmeducation.com/overviewofmedicationadherence_4.html
https://doi.org/10.1371/journal.pmed.1002884
https://doi.org/10.1371/journal.pmed.1002884
http://www.ncbi.nlm.nih.gov/pubmed/31821323
https://doi.org/10.1136/bmjopen-2017-016982
https://doi.org/10.1136/bmjopen-2017-016982
http://www.ncbi.nlm.nih.gov/pubmed/29358417
https://doi.org/10.1097/JCN.0000000000000427
http://www.ncbi.nlm.nih.gov/pubmed/28591004
https://doi.org/10.2147/PPA.S87551
https://doi.org/10.2147/PPA.S87551
http://www.ncbi.nlm.nih.gov/pubmed/26396502
https://doi.org/10.4065/mcp.2010.0575
https://doi.org/10.4065/mcp.2010.0575
http://www.ncbi.nlm.nih.gov/pubmed/21389250
https://doi.org/10.1089/bar.2012.9960
http://www.ncbi.nlm.nih.gov/pubmed/18360559
https://doi.org/10.7812/TPP/18-033
https://doi.org/10.7812/TPP/18-033
http://www.ncbi.nlm.nih.gov/pubmed/30005722
https://doi.org/10.3390/asi1020014
https://doi.org/10.1371/journal.pone.0187139
http://www.ncbi.nlm.nih.gov/pubmed/29095870
https://doi.org/10.1111/j.1365-2125.2012.04167.x
https://doi.org/10.1111/j.1365-2125.2012.04167.x
http://www.ncbi.nlm.nih.gov/pubmed/22486599
https://doi.org/10.1371/journal.pone.0247109


16. Nieuwlaat R, Wilczynski N, Navarro T, Hobson N, Jeffery R, Keepanasseril A, et al. Interventions for

enhancing medication adherence. 2014. https://doi.org/10.1002/14651858.CD000011.pub4.

17. Torres-Robles A, Wiecek E, Cutler R, Drake B, Benrimoj SI, Fernandez-Llimos F, et al. Using dispens-

ing data to evaluate adherence implementation rates in community pharmacy. Front Pharmacol 2019;

10:1–9. https://doi.org/10.3389/fphar.2019.00001 PMID: 30728774

18. Morisky DE, Ang A, Krousel-Wood M, Ward HJ. Predictive validity of a medication adherence measure

in an outpatient setting. J Clin Hypertens 2008; 10:348–54. https://doi.org/10.1111/j.1751-7176.2008.

07572.x.

19. Unni EJ, Sternbach N, Goren A. Using the Medication Adherence Reasons Scale (MAR-Scale) to iden-

tify the reasons for non-adherence across multiple disease conditions. Patient Prefer Adherence 2019;

13:993–1004. https://doi.org/10.2147/PPA.S205359 PMID: 31308635

20. Sedik A, Iliyasu AM, El-Rahiem BA, Abdel Samea ME, Abdel-Raheem A, Hammad M, et al. Deploying

machine and deep learning models for efficient data-augmented detection of COVID-19 infections.

Viruses 2020; 12. https://doi.org/10.3390/v12070769 PMID: 32708803

21. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya U. Automated detection of

COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med 2020; 121:103792.

https://doi.org/10.1016/j.compbiomed.2020.103792 PMID: 32568675

22. Pereira RM, Bertolini D, Teixeira LO, Silla CN, Costa YMG. COVID-19 identification in chest X-ray

images on flat and hierarchical classification scenarios. Comput Methods Programs Biomed 2020;

194:105532. https://doi.org/10.1016/j.cmpb.2020.105532 PMID: 32446037

23. Vesely WE, Stamatelatos M, Dugan JB, Fragola J, Minarick J, Railsback J. Fault Tree Handbook with

Aerospace Applications. Washington DC: NASA Office of Safety and Mission Assurance; 2002.

24. GoldSim Technology Group. A Dynamic Simulation Approach to Reliability Modeling and Risk Assess-

ment Using GoldSim 2020. https://media.goldsim.com/Documents/WhitePapers/GoldSim_Reliability_

and_PRA.pdf (accessed February 05, 2020).

25. Goedecke T, Ord K, Newbould V, Brosch S, Arlett P. Medication Errors: New EU Good Practice Guide

on Risk Minimisation and Error Prevention. Drug Saf 2016; 39:491–500. https://doi.org/10.1007/

s40264-016-0410-4 PMID: 26940903

26. Brüssow H. The Novel Coronavirus–A Snapshot of Current Knowledge. Microb Biotechnol 2020:1751–

7915.13557. https://doi.org/10.1111/1751-7915.13557.

27. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the

recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30:269–71. https://doi.org/10.

1038/s41422-020-0282-0 PMID: 32020029

28. Kim J, Combs K, Downs J, Tillman F. Medication adherence: The elephant in the room. US Pharm

2018; 43:30–4.

29. Belmaker I, Lyandres M, Bilenko N, Dukhan L, Mendelson E, Mandelboim M, et al. Adherence with osel-

tamivir chemoprophylaxis among workers exposed to poultry during avian influenza outbreaks in south-

ern Israel. Int J Infect Dis 2009; 13:261–5. https://doi.org/10.1016/j.ijid.2008.06.037 PMID: 18922718

30. Chishti T, Oakeshott P. Do general practice patients who are prescribed Tamiflu® actually take it? Br J

Gen Pract 2010; 60:535. https://doi.org/10.3399/bjgp10X514891.

31. Choo D, Hossain M, Liew P, Chowdhury S, Tan J. Side effects of oseltamivir in end-stage renal failure

patients. Nephrol Dial Transplant 2011; 26:2339–44. https://doi.org/10.1093/ndt/gfq737 PMID:

21193643

32. McVernon J, Mason K, Petrony S, Nathan P, LaMontagne AD, Bentley R, et al. Recommendations for

and compliance with social restrictions during implementation of school closures in the early phase of

the influenza A (H1N1) 2009 outbreak in Melbourne, Australia. BMC Infect Dis 2011; 11:1–7. https://doi.

org/10.1186/1471-2334-11-1 PMID: 21199579

33. Strong M, Burrows J, Stedman E, Redgrave P. Adverse drug effects following oseltamivir mass treat-

ment and prophylaxis in a school outbreak of 2009 pandemic influenza a(H1N1) in June 2009, Sheffield,

United Kingdom. Eurosurveillance 2010; 15:1–6. https://doi.org/10.2807/ese.15.19.19565-en.

34. Wallensten A, Oliver I, Lewis D, Harrison S. Compliance and side effects of prophylactic oseltamivir

treatment in a school in South West England. Eurosurveillance 2009; 14:1–4. https://doi.org/10.2807/

ese.14.30.19285-en.

35. Gu L, Wu S, Zhao S, Zhou H, Zhang S, Gao M, et al. Association of social support and medication

adherence in Chinese patients with type 2 diabetes mellitus. Int J Environ Res Public Health 2017;

14:1522. https://doi.org/10.3390/ijerph14121522 PMID: 29211039

36. Nishiura H, Kobayashi T, Suzuki A, Jung S-M, Hayashi K, Kinoshita R, et al. Estimation of the asymp-

tomatic ratio of novel coronavirus infections (COVID-19). Int J Infect Dis 2020. https://doi.org/10.1016/j.

jebdp.2020.101499 PMID: 33303095

PLOS ONE Non-Adherence Tree Analysis (NATA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0247109 February 19, 2021 15 / 16

https://doi.org/10.1002/14651858.CD000011.pub4
https://doi.org/10.3389/fphar.2019.00001
http://www.ncbi.nlm.nih.gov/pubmed/30728774
https://doi.org/10.1111/j.1751-7176.2008.07572.x
https://doi.org/10.1111/j.1751-7176.2008.07572.x
https://doi.org/10.2147/PPA.S205359
http://www.ncbi.nlm.nih.gov/pubmed/31308635
https://doi.org/10.3390/v12070769
http://www.ncbi.nlm.nih.gov/pubmed/32708803
https://doi.org/10.1016/j.compbiomed.2020.103792
http://www.ncbi.nlm.nih.gov/pubmed/32568675
https://doi.org/10.1016/j.cmpb.2020.105532
http://www.ncbi.nlm.nih.gov/pubmed/32446037
https://media.goldsim.com/Documents/WhitePapers/GoldSim_Reliability_and_PRA.pdf
https://media.goldsim.com/Documents/WhitePapers/GoldSim_Reliability_and_PRA.pdf
https://doi.org/10.1007/s40264-016-0410-4
https://doi.org/10.1007/s40264-016-0410-4
http://www.ncbi.nlm.nih.gov/pubmed/26940903
https://doi.org/10.1111/1751-7915.13557
https://doi.org/10.1038/s41422-020-0282-0
https://doi.org/10.1038/s41422-020-0282-0
http://www.ncbi.nlm.nih.gov/pubmed/32020029
https://doi.org/10.1016/j.ijid.2008.06.037
http://www.ncbi.nlm.nih.gov/pubmed/18922718
https://doi.org/10.3399/bjgp10X514891
https://doi.org/10.1093/ndt/gfq737
http://www.ncbi.nlm.nih.gov/pubmed/21193643
https://doi.org/10.1186/1471-2334-11-1
https://doi.org/10.1186/1471-2334-11-1
http://www.ncbi.nlm.nih.gov/pubmed/21199579
https://doi.org/10.2807/ese.15.19.19565-en
https://doi.org/10.2807/ese.14.30.19285-en
https://doi.org/10.2807/ese.14.30.19285-en
https://doi.org/10.3390/ijerph14121522
http://www.ncbi.nlm.nih.gov/pubmed/29211039
https://doi.org/10.1016/j.jebdp.2020.101499
https://doi.org/10.1016/j.jebdp.2020.101499
http://www.ncbi.nlm.nih.gov/pubmed/33303095
https://doi.org/10.1371/journal.pone.0247109


37. Agyepong IA, Ansah E, Gyapong M, Adjei S, Barnish G, Evans D. Strategies to improve adherence to

recommended chloroquine treatment regimes: A quasi-experiment in the context of integrated primary

health care delivery in Ghana. Soc Sci Med 2002; 55:2215–26. https://doi.org/10.1016/s0277-9536(01)

00366-5 PMID: 12409135

38. Lee YY, Lin JL. The effects of trust in physician on self-efficacy, adherence and diabetes outcomes.

Soc Sci Med 2009; 68:1060–8. https://doi.org/10.1016/j.socscimed.2008.12.033 PMID: 19162386

39. Mifsud M, Molines M, Cases AS, N’Goala G. It’s MY health care program: Enhancing patient adherence

through psychological ownership. Soc Sci Med 2019; 232:307–15. https://doi.org/10.1016/j.socscimed.

2019.05.015 PMID: 31125799

PLOS ONE Non-Adherence Tree Analysis (NATA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0247109 February 19, 2021 16 / 16

https://doi.org/10.1016/s0277-9536%2801%2900366-5
https://doi.org/10.1016/s0277-9536%2801%2900366-5
http://www.ncbi.nlm.nih.gov/pubmed/12409135
https://doi.org/10.1016/j.socscimed.2008.12.033
http://www.ncbi.nlm.nih.gov/pubmed/19162386
https://doi.org/10.1016/j.socscimed.2019.05.015
https://doi.org/10.1016/j.socscimed.2019.05.015
http://www.ncbi.nlm.nih.gov/pubmed/31125799
https://doi.org/10.1371/journal.pone.0247109

