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ABSTRACT 

The occurrence of synthetic opioid fentanyl and its derivatives has grown 

significantly in forensic casework in recent years. This poses a threat for public 

health, as it has been reported that minute quantities of fentanyl are enough to 

induce an overdose. Approximately 32,400 people died because of synthetic 

opioids in the United States in 2018, and the current situation has been 

described as an “opioid epidemic”.  

The increase in fentanyl abuse has been associated with the emergence of a 

large variety of fentanyl analogues. These novel compounds are more difficult 

to identify by forensic chemists and may not be detected when they emerge, 

because they have yet to be characterised and added to mass spectral 

databases. Another insidious phenomenon has been contributing to the 

increase in overdoses: fentanyl and its analogues have often been mixed into 

or sold as other illicit drugs. Most commonly, fentanyl has been found in heroin 

samples, a practice which may occur unbeknown to drug users and increase 

the risk of overdose. 

This thesis aimed to solve these challenges associated with fentanyl detection, 

to aid in forensic casework and harm reduction. In Chapter II, eighteen common 

fentanyl analogues were synthesised, fully characterised, and submitted to 

presumptive colour tests, TLC and FT-IR analysis. A GC-MS method was 

developed to separate target analogues and allow their detection and 

quantification in seized heroin samples. Chapter III focused on fluorofentanyl 

regioisomers, which could not be separated by GC-MS. An orthogonal 

benchtop 19F NMR method was developed to differentiate and quantify these 



analogues. Chapter IV focused on the eosin Y colour test, which can be used 

to detect fentanyl analogues. The mechanism of the reaction between eosin Y 

and heroin/fentanyl was investigated by NMR. UV-Vis spectrophotometry and 

RGB detection were used to develop a quantitative version of the test. Finally, 

in Chapter V, a principal component analysis (PCA) model based on MS data 

from fentanyl analogues was developed. The model was able to group 

analogues based on their structural class and identify structural modifications 

in novel compounds. 
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CHAPTER I 

INTRODUCTION 

1.1 Fentanyl 

1.1.1 Overview 

The term “opiate” is generally used to designate alkaloids obtained from the 

opium poppy Papaver somniferum. They can be either completely natural, such 

as codeine (1a) and morphine (1b), or semi-synthetic, in the way that heroin 

(1c) is chemically derived from morphine through acetylation (Figure 1.1). 

Some entirely laboratory-made compounds, such as fentanyl (2), are called 

synthetic “opioids”; although its chemical structure is quite far from that of its 

natural counterparts, fentanyl exhibits similar effects due to its strong affinity 

towards the body’s opioid receptors. Activation of these receptors leads to 

analgesia and euphoria, but potentially to physical dependence, constipation 

and respiratory depression. [1, 2] 

 

 



 

Figure 1.1. Chemical structure of common opiates and fentanyl. 

 

Fentanyl was first patented as an analgesic by Janssen Pharmaceutical in 

1965 and eventually reached widespread medical use, due to its very strong 

and fast action. [3, 4] Depending on the assay, it has been estimated around 

100-300 times more potent than morphine. [5-7] Although it used to be 

administered as an intravenous injection, it is now available in many non-

invasive, rapid-onset administration routes. [8] This includes transdermal 

patches, [9] nasal sprays, buccal or sublingual tablets and transmucosal 

lollipops. [10] It is commonly used as an analgesic during and after surgery, 

[11, 12] to manage acute pain, [11] chronic pain in cancer patients, [8] 

breakthrough pain (i.e. sudden pain flares linked to chronic conditions) [13] and 

even to control pain in children. [14] 

Fentanyl use carries a high risk of side-effects and addiction, and it should not 

be prescribed indiscriminately. However, side-effects occur in less than 10% of 

patients who are already tolerant to opioids. [13] Davis also cautions that 

patients should be screened for abuse and addiction risk before fentanyl is 

administered. [13] 



1.1.2 Recreational use and opioid epidemic 

Because of their euphoria-inducing effects, resembling those of heroin, fentanyl 

and its analogues have been used recreationally. Certain analogues of fentanyl 

are used medicinally, but many non-medicinal analogues have been illegally 

synthesised and sold on drug markets. This poses a threat for public health, as 

it has been reported that minute quantities of fentanyl are enough to induce an 

overdose.  

The first large outbreak of deaths happened in California between 1979 and 

1988, where 112 deaths were related to α-methylfentanyl abuse (3, Figure 1.2). 

Frequent isolated outbreaks have been reported since then. [15] Since 2013, 

however, fentanyl abuse and overdose-related deaths have kept rising across 

North America (and Europe, to a lesser extent). [16-18] The current situation 

has been described as an “opioid epidemic”. [19, 20] In the United States alone, 

the Center for Disease Control reports that approximately 32,400 people died 

because of synthetic opioids in 2018. [21] 

 

Figure 1.2. Chemical structure of α-methylfentanyl (3).  

 

Illicit fentanyl comes mainly from two sources. Firstly, diversion of 

pharmaceutical supplies. This includes inappropriate or over-prescribing by 

medical practitioners, theft, collection from hospital waste, sale of unused 

prescription by patients, fraudulent prescriptions, as well as misuse and sale 



by medical staff. [22] The problem is compounded by the drug’s high potential 

for addiction, even during legitimate treatment. Fentanyl and its analogues are 

also produced clandestinely. Fentanyl entering the United States comes 

primarily from synthesis laboratories in China, where poor regulation allows 

precursors to be diverted from legitimate pharmaceutical uses. [23] A lower 

percentage comes from criminal organisations in Mexico, which synthesise 

fentanyl from precursors shipped from China. [24] Following the scheduling of 

precursors 4-ANPP and NPP (Figure 1.3, 4-5) by Chinese authorities in 2017, 

India emerged as a precursor supplier for Mexican organisations. [24] It 

remains to be seen whether the scheduling of fentanyl and all its analogues by 

China, in May of 2019, will have a significant impact on the quantity and the 

sources of fentanyl supplied to North America.  

 

Figure 1.3. Chemical structure of fentanyl precursors 4-ANPP (4) and NPP (5). 

 

An insidious phenomenon which has been contributing to the increase in 

synthetic opiates-related overdoses is the fact that fentanyl and its analogues 

have often been mixed into or sold as other illicit drugs. Since the 1980s, 

numerous cases have been reported where death was due to heroin 

contaminated with fentanyl. [25, 26] It has been surmised that this practice 

increased demand and profit margins, due to the increased high experienced 

by consumers and the much greater potency of fentanyl. [27] Fentanyl 

analogues have also been sold in combination with U-47700 as “fake Norco” 

(a formulation of acetaminophen and hydrocodone), and have been detected 



in street samples of cocaine, and even purportedly sold as 3’,4’-

methylenedioxymethamphetamine (MDMA) – which potentially may have more 

serious implications to wider drug using communities. [28-35] These practises 

are likely to occur unbeknown to consumers [27] and, in the case of 

adulteration, the poor mixing techniques used by dealers can result in variable 

doses of fentanyl in illicit samples [36]. This combination of factors greatly 

increases the risk of fentanyl overdose. The development of simple, sensitive 

methods for the screening of fentanyl and its analogues at trace level in 

complex mixtures is therefore crucial for public health protection.  

1.1.3 Pharmacology 

Common fentanyl administration routes include intravenous, intramuscular and 

intrathecal injections, as well as an array of non-invasive routes (transdermal, 

intranasal, buccal or sublingual). [9, 10, 37] As opposed to other opiates, it is 

rarely administered as oral tablets. [37] 

Pharmacokinetics depend on the administration route and high inter-individual 

variability has been reported. [8, 38, 39] Fentanyl has a large volume of 

distribution (3.5 – 5.9 L kg-1). [11] After intravenous injection, it diffuses rapidly 

from blood plasma: 80% of the injected dose leaves plasma in 5 min, [40] and 

98.6% in 1 h. [41] This is due to extensive diffusion to highly vascularised 

tissues (brain, heart, lung, liver, kidney), then to muscle and fat. [42] The latter 

tissues act as storage sites and slowly release fentanyl back into the plasma, 

resulting in a relatively long elimination half-time (3.1 – 7.9 h). [11, 43] 

With an octanol-water partition coefficient log P = 2.9 at pH = 7.4, fentanyl is 

highly lipophilic in comparison to morphine (log P = 1.4). Even though most of 

the fentanyl found is plasma (84%) is bound to erythrocytes, α1-acid 



glycoprotein and albumin, its ability to cross the blood-brain barrier is still 133 

times larger than that of morphine. [11, 44] This may be the main reason behind 

the high potency of fentanyl compared to morphine. Both compounds have 

similar μ-opioid receptor (MOR) agonist strength. [45]  

In a study on healthy volunteers, in the 72 h following an i.v. dose, 

approximately 77% of fentanyl metabolites were recovered in urine and 8% in 

stool, while less than 8% of the dose was excreted intact. [41] Fentanyl is 

metabolised by cytochrome P450 3A4, predominantly in the liver but also in the 

duodenum. [46] The major metabolic pathways previously reported are shown 

in Figure 1.4. In liver microsome studies, more than 99% of fentanyl was 

metabolised as norfentanyl (6), an inactive metabolite resulting from N-

dealkylation. [46] Minor metabolites resulted from amide hydrolysis, leading to 

4, or from hydroxylation of fentanyl or norfentanyl. [46, 47] In metabolite 2-OH, 

the exact position of the hydroxyl group was not determined and hydroxylation 

may occur at different positions of the structure; detection of 7, on the other 

hand, confirmed hydroxylation of norfentanyl of the propionyl moiety.  

 

Figure 1.4. Major metabolic pathways of fentanyl.  

 



Fentanyl is a strong agonist of the MOR, which is found across the central and 

peripheral nervous system as well as the intestinal tract. [48] It also has a 

weaker affinity for δ- and κ-opioid receptors. [48] Figure 1.5 shows the average 

positioning of fentanyl and morphine in the MOR binding pocket over molecular 

dynamics simulations performed by Lipiński et al. [49] There is little similarity 

in the positioning of the two ligands, although they both form an ionic interaction 

with Asp147. The piperidine ring of fentanyl also interacts with hydrophobic 

residues Gln124, Ile322 and Tyr326. The N-phenethyl chain interacts with 

Tyr326 and, depending on its rotation, with Ile322, Ile296 and Trp293. On the 

phenylpropanamide side, the amide group can interact with polar residues 

Gln124 or Thr218, while the ethyl and phenyl groups interact with a group of 

seven hydrophobic residues. 

 

Figure 1.5. Average positioning and intermolecular interactions of fentanyl and 
morphine in the MOR binding pocket (reported by Lipiński et al. [49]) 

 

Fentanyl acts at the MOR located in the spinal cord and brain; the desired effect 

is analgesia (or euphoria, for illicit users), while the most dangerous side-effect 

is respiratory depression. [11] Opioid effects measured by 



electroencephalography show only a 3 to 5 minute lag behind the increase in 

plasma concentration (Cp), indicating a rapid onset of effects. [50] Both the 

intensity of analgesia and respiratory depression are directly correlated to Cp, 

with a therapeutic window between 0.6 and 2.0 ng mL-1. [11, 51] Higher 

concentrations may cause significant respiratory depression, and potentially 

overdose. It has been reported that quantities as low as 2 mg of fentanyl could 

induce an overdose, but this value is based on the LD50 in monkeys, 

extrapolated to humans. [52]  

1.1.4 Synthesis and analogues 

The increase in fentanyl abuse has been associated with the emergence of a 

large variety of fentanyl analogues: between 2013 and 2019, the United 

Nations Office on Drugs and Crime (UNODC) reported more than 75 New 

Psychoactive Substances (NPS) with opioid effect (including fentanyl 

analogues) in its Early Warning Advisory and this number keeps growing. [53] 

This quick emergence of synthetic analogues of controlled drugs constitutes a 

challenge for their identification, because of the time it takes before extensive 

chemical characterisation of these analogues is disseminated in academic 

journals or specialised databases. [19, 28] This likely leads to an under-

reporting of cases, as analytical methods remain limited and medical and 

forensic practitioners may not routinely test for new analogues [54, 55]. 

The retrosynthetic analysis of fentanyl (Figure 1.6) reveals a straightforward 

and flexible synthesis. Fentanyl comprises four major moieties: (i) phenethyl 

chain (red), (ii) piperidine ring (blue), (iii) aniline (green) and (iv) acyl chain 

(orange). Each part is added in a different step, using simple and easily 

accessible reagents. Alterations to the general structure are easily achieved by 

changing one (or more) of these reagents.  



 

Figure 1.6. Retrosynthetic analysis of fentanyl. 

 

Figure 1.7 illustrates the common nomenclature of fentanyl analogues, with 

prefixes indicating the position of substituents. One exception to this rule is the 

modification of the amide chain, which is typically denoted by adding the name 

of the new moiety in front of the compound name (like in butyrfentanyl 11).  

 

Figure 1.7. Numbering of the fentanyl molecule and nomenclature of some 
methylated analogues. 

 

The most commonly modified part of the structure is the amide chain, which is 

often replaced with other alkyl, cycloalkyl, aryl and alkenyl groups. Substitution 



of the N-phenyl ring with fluoro-, chloro-, methyl-, hydroxyl- or methoxy- groups 

is also common. [15, 22, 56-64] In fewer derivatives, substitution can also occur 

on the piperidine ring [65-67] and the phenethyl chain. [65, 68-70] The 

phenethyl chain can be replaced by a benzyl or methyl chain. Finally, both 

phenyl rings have been replaced with other aromatic rings (thiophene, 

ethyltetrazolone, furan, and a variety of nitrogen heterocycles). [65, 66, 71] 

Most derivatives combine more than one modification. 

A common modification for analogues used in the medical field as analgesics 

is substitution at the 4-position (Figure 1.8), but synthesis of these compounds 

is much more complex. [66] Substituents include methoxymethyl- (sufentanil 

12/Sufenta®, alfentanil 13/Alfenta®/Rapifen®) or a methyl ester (carfentanil 

14/Wildnil®, thiafentanil 15/Thianil®, remifentanil 16/Ultiva®). [65, 66, 72] 

Carfentanil especially has been associated with a high number of overdoses 

following illicit use, and its potency is estimated to be 100 times stronger than 

that of fentanyl. [73, 74] Phenyl-bearing derivatives (4-phenylfentanyl, 

trefentanil), as well as their thiazolo- and thiophenyl- equivalents, have been 

prepared but do not have any medical use. [66] 

 

Figure 1.8. Chemical structure of 4-substituted fentanyl derivatives. 



Drug manufacturers used to make new analogues in an attempt to avoid 

legislation. [28] Before legislation was introduced to cover possible analogues, 

most governmental and intergovernmental agencies had a reactive approach 

to scheduling new fentanyl derivatives. In Sweden, for instance, the scheduling 

of acetyl-, butyr- and para-fluorobutyrfentanyl in 2015 caused a wave of new 

analogues to emerge, which were banned only to be replaced again. [19] 

Manufacturers may also turn to analogues for their increased potency, to 

explore possible novel effects or because of changes in the supply of starting 

materials. [28]  

1.2 Fentanyl detection 

To summarise, the main challenges of fentanyl detection are: (i) the proper 

identification / discrimination of analogues and (ii) the detection of fentanyl and 

its analogues at low concentration in complex matrices, such as in heroin 

samples. Analytical techniques should aim to address these challenges. 

Although no one technique is perfectly suited to every situation, the ideal 

method would balance selectivity and sensitivity against instrument complexity 

and cost/accessibility. Techniques which have previously been used to detect 

fentanyl and its analogues, or which have been used for controlled drugs and 

could be applied to fentanyl, are described in order of complexity. 

1.2.1 Presumptive tests 

Colorimetric tests are used for the presumptive identification of illicit drugs, with 

the advantage of being portable and giving a very quick result. A number of 

colour tests could be used to detect fentanyl, or differentiate it from compounds 

it may be found in mixtures with (i.e. heroin, cocaine, MDMA and their 

adulterants). Of the following, only Marquis’ and eosin Y are known to react 

with fentanyl, and they have not been tested on analogues. 



Scott's reagent, cobalt(II) thiocyanate, is generally used to detect cocaine but 

is known to react positively with many other drugs. [75] It is suspected that 

cocaine acts a bidentate N,O-ligand on the cobalt centre, resulting in a colour 

change from red to blue. [76] 

The nitric acid test is known to react with various opiates, such as morphine, 

codeine and heroin. [77] It proceeds through nitration (electrophilic aromatic 

substitution) of the electron-rich phenyl ring found in these compounds. The 

resulting colour, different for all three opiates mentioned, depends on the 

nature of the substituents on the aromatic ring.  

Marquis’ reagent, a mixture of formaldehyde and sulfuric acid, reacts with 

various opiates to give a pink to violet colour, whereas fentanyl produces an 

orange to dark brown colour. [26] Amphetamine derivatives also react to 

produce various colours. Morphine reacts with two formaldehyde molecules, 

through consecutive aromatic substitutions and dehydrations, to produce dimer 

19 (Figure 1.9). [77] Amphetamines (20) only react with one formaldehyde 

molecule, and the mechanism for fentanyl is likely similar, resulting in 

carbocation 21 (Figure 1.9).  

  



 

Figure 1.9. Chemical structure of the coloured products formed by Marquis’ 
reagent with morphine and amphetamine derivatives. 

 

Eosin Y (2’, 4′, 5′, 7′-tetrabromofluorescein, see Figure 1.10) has been used in 

multi-dye sensors for the detection of controlled drugs. [78] It has recently been 

proposed as a colorimetric test to differentiate fentanyl from cocaine. [79] At 

pH 7, the reagent has a peach colour. It changes to light pink in the presence 

of various controlled drugs, but produces a much darker shade of pink when 

mixed with fentanyl. The mechanism of this reaction is not currently known. 

 

Figure 1.10. Chemical structure of eosin Y. 

 



Although colour tests may have legitimate applications in an operational 

setting, their reliability tends to be limited. Analogues can cause misleading 

results, mixtures cannot be correctly identified, and results are strongly 

dependent on analyte concentration. Coupled with the subjective nature of 

colour-based results, these factors mean that this method should be carefully 

limited to presumptive testing and results confirmed using other analytical 

techniques.  

Thin-layer chromatography (TLC), which has been used to analyse illicit drugs, 

could also be considered a presumptive technique. [80-82] It can provide useful 

separation for screening mixtures and has been used to discriminate fentanyl 

analogues. [83] 

1.2.2 Spectroscopic methods 

Spectroscopic techniques, such as Raman, FT-IR and NMR, are much more 

specific and sensitive than colour tests. They mostly give quick results, 

depending on acquisition settings, and portable versions are available for on-

site analysis. However, their main drawback is the lack of separation, and 

mixture components producing overlapping signals can impede identification 

or quantification. 

Portable Raman spectroscopy has been used for on-site identification of 

psychoactive drugs during music events. [84] The technique worked with only 

73% accuracy (compared to GC-MS results) and mostly identified traditional 

drugs of abuse (e.g. MDMA, ketamine, cocaine and amphetamine). The 

authors noted that the technique only reports the major component in a mixture, 

[84] so it is unlikely to detect fentanyl in heroin. Surface-enhanced Raman 

spectroscopy (SERS), however, has been used for the detection and 



quantification of fentanyl in heroin (as low as 1% w/w). [85] Fentanyl is detected 

by a C-C-C benzene trigonal stretch band which does not overlap heroin 

signals, though the specificity of this band is unclear. The technique also relies 

on the absence of other fillers in the mixture. In a more recent development, 

sensitivities as low as 0.0001 mol% fentanyl in heroin were reached by 

conducting SERS with a microfluidic octanol extraction chip. [86] Another study 

has shown that the Raman spectra of fentanyl and precursors 4-ANPP and 

NPP are very similar but may be distinguished using a partial least squares – 

discriminant analysis (PLS-DA) algorithm. [87] Similar approaches have shown 

that principal component analysis (PCA) applied to Raman spectroscopy data 

can differentiate fentanyl analogues from other classes of illicit drugs, but not 

from each other. [88, 89] 

Infrared spectroscopy has also been used for on-site drug safety testing in UK 

city centres, although the agreement of the FT-IR results with MS analysis was 

not reported. [90] A recent study applied FT-IR to the detection of fentanyl in 

seized samples. [91] It showed that samples containing 10% or less fentanyl 

were more likely to give a negative result by FT-IR analysis. Infrared imaging 

has also been used to separately analyse mixture components, by relying on 

the poor mixing of drug samples, but this has yet to be applied to fentanyl 

detection. [92] 

Like the previous techniques, benchtop 1H NMR spectroscopy has been used 

to identify illicit drug samples, with 93% accuracy across 416 samples. [93] 

NMR analysis also provides structural information about unknown compounds: 

it can detect structural similarities between members of the same drug family 

and aid in the identification of novel drugs. [93, 94] Benchtop 1H NMR has also 

been used to differentiate fentanyl analogues, including certain regioisomeric 

derivatives. [95] While high-field qNMR can be used to quantify fentanyl down 



to 1% concentrations in mixtures, [91] benchtop instruments lack this kind of 

sensitivity.  

1.2.3 Chromatographic methods 

Chromatographic methods tend to be better suited to the analysis of real-world 

samples, because of their ability to separate mixtures. However, instruments 

can be more expensive than those required for the techniques previously 

described, are often not portable, and require specialised staff for maintenance 

and operation.  

Multiple studies have reported the analysis of fentanyl and some of its 

analogues (see Table 1.1). Sisco et al. have reported very sensitive direct 

analysis in real-time mass spectrometry [DART-MS, Limit of Detection = 0.08 

– 0.35 ng] and ion mobility spectrometry [IMS, Limit of Detection = 1.0 – 10.0 

ng] screening methods, but neither of these techniques facilitated efficient 

separation of the eighteen analogues within the study. [96] High performance 

liquid chromatography (HPLC) has been applied in a number of studies [97-99] 

including one validated method, which has been developed and utilized to 

quantify fentanyl within bulk forensic samples of heroin. [98] Hyphenated 

techniques (LC-MS, LC-MS2 and UPLC-MS2) have also been applied to detect 

fentalogues and their metabolites in blood [100-103], urine [101] and 

wastewater. [104] Although these methods are impressively quick, they were 

not optimized to chromatographically resolve the targeted analytes, which can 

lead to ion suppression when analyzing low-concentration, adulterated street 

samples. [105] More importantly, the published method(s) rely on equipment 

that is prohibitively expensive for smaller forensic laboratories, which normally 

rely on gas chromatography-mass spectrometry (GC-MS) as a primary method 

of analysis. [106] The United Nations Office on Drugs and Crime (UNODC) 



have recently published guidelines for the identification and analysis of fentanyl 

and its analogues – primarily focused on their detection within in biological 

samples. [107] Bravo et al., Strano-Rossi et al. and Misailidi et al. have also 

independently developed GC-MS methods for the determination of sufentanil 

[108], alfentanil [108], 2-furanylfentanyl [109] and ocfentanil [109] in 

toxicological/post-mortem samples. Abonamah et al. recently reported an 

especially interesting nano-LC-EI-MS, a semi-portable instrument which could 

be used for on-site detection of heroin, fentanyl, acetylfentanyl, butyrfentanyl 

and carfentanil, though it could not separate the later two. [110] Surprisingly, 

simple validated GC-MS methods with the ability to separate and quantify an 

array of fentalogues, for the routine analysis of bulk samples, both in their pure 

form and in the presence of other controlled substances or adulterants have 

not yet been reported in the literature.  



Table 1.1. Comparison of analytical methods for detection/quantification of fentanyl (2), its derivatives and other 
drugs studied herein. 

Technique Matrix 
Run Time 
(min) 

LODa 
(μg/mL unless stated) 

LOQb 

(μg/mL unless stated) 

Linear Range 
(μg/mL unless stated) 

Reference 

TD-DART-MSc −d −d 8 – 0.22 ng (LOD90)
e −d 0 – 10 ng per wipe [96] 

IMSf −d −d 1 ng – 5 ng (LOD90)
e −d 1 – 100 ng per wipe [96] 

GC-MSg Blood, 
Plasma 

17 0.4 x 10-3 – 4.62 x 10-3 1.3 x 10-3 – 14 x 10-3 20 x 10-3 – 1.5 [111] 

GC-MSg Urine 23 0.08 x 10-3 0.5 x 10-3 0.5 x 10-3 – 50 x 10-3 [108] 

GC-MSg Blood 12 0.15 x 10-4 – 0.3 x 10-4 0.5 x 10-4 – 1 x 10-3 0.5 x 10-4 – 0.1 [109] 

HPLC-UVh Bulk powder 20 −d
 (qualitative) −d (qualitative) −d (qualitative) [97] 

HPLC-UVh Bulk powder 30 16.2 x 10-2 – 1.36 54.0 x 10-2 – 4.55 5.0 – 120.0 [98] 

HPLC-ADi Serum −d 1.0 x 10-3 – 7.5 x 10-1 −d −d [99] 

HPLC-ADi Bulk powder 30 0.45 – 2.93 1.49 – 9.76 10.0 – 120.0 [98] 

LC-MSj Blood −d 0.2 x 10-3 – 0.6 x 10-3 0.6 x 10-3 – 2.0 x 10-3 −d [100] 

LC-MS-MSk Blood, Urine 20 8.0 x 10-5 – 2.0 x 10-3 1.0 x 10-4 1.0 x 10-4 – 0.76 [101] 

LC-MS-MSk Blood 13.5 17.0 x 10-3 – 56.0 x 10-3 0.1 x 10-3 – 0.5 x 10-3 0.1 x 10-3 – 50 x 10-3 [102] 

LC-MS-MSk Blood 5 −d 0.1 x 10-3 – 1.0 x 10-3 0.1 x 10-3 – 40 x 10-3 [103] 

UPLC-MS-MSl Wastewater 8 3.0 x 10-8 – 2.1 x 10-7 1.0 x 10-7 – 7.0 x 10-7 1.0 x 10-7 – 1.0 x 10-3 [104] 

nLC-EI-MSm Bulk powder 10-15 1.6 ng/mL −d 5 – 20 ng [110] 

Key: aLimit of detection; bLimit of quantification; cThermal desorption-direct analysis in real-time-mass spectrometry; dNot disclosed; 
eLOD90 is the lowest mass which can be detected per wipe with a 90% probability of true detection; fIon mobility spectrometry; gGas 
chromatography-mass spectrometry; hHigh performance liquid chromatography (utilising ultraviolet detection); iHigh performance liquid 
chromatography (utilising amperometric detection); jLiquid chromatography-mass spectrometry; kLiquid chromatography-mass 
spectrometry-mass spectrometry (or LC-MS2); lUltra performance liquid chromatography-mass spectrometry-mass spectrometry (or 
UPLC-MS2); mNano-liquid chromatography-electron ionization-mass spectroscopy.
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1.2.4 Statistical analysis and clustering algorithms 

As discussed previously, novel drug analogues can be difficult to identify, 

because they have yet to be added to mass spectral databases. The 

development of detection methods aims to make the detection of known 

analogues more accessible, to help harm reduction and decrease under-

reporting. However, it is inherently a reactive approach to the issue, and as 

long as new analogues keep appearing, new detection methods will have to be 

developed. Proactive solutions should therefore be considered to quickly 

identify future analogues. Efforts should focus on the development of predictive 

models which, when confronted with an unknown drug analogue, not present 

in their database, can still identify common features and discern how the 

analogue differs from the parent drug. 

Multivariate analysis has previously been used to determine the synthetic route 

used to manufacture fentanyl samples based on an inventory of contaminants 

detected by GC-MS, LC-MS-MS and ICP-MS. [112] It also helped identify 

fentanyl analogues based on their Raman spectra. [88] Principal component 

analysis has been used to differentiate regioisomeric synthetic drugs, including 

regioisomers of fluorofentanyl, by highlighting differences in specific m/z ion 

ratios. [113-115] Recently, spectral similarity mapping was applied to group 

fentanyl analogue mass spectra based on their match factors. [116] Part of this 

thesis will focus on the development of a model using principal component 

analysis (PCA) and hierarchical clustering algorithms to group fentanyl 

analogues in structural families, based on their mass spectra. The model can 

automatically classify novel analogues to aid structural elucidation. 



42 

 

1.3 Objectives 

This thesis aims to solve different challenges associated with the analysis of 

fentanyl analogues in a forensic context. In Chapter II, eighteen common 

fentanyl analogues will be synthesised, fully characterised, and submitted to 

presumptive colour tests, TLC and FT-IR analysis. A GC-MS method will be 

developed to separate target analogues and allow their detection and 

quantification in seized heroin samples. Chapter III will focus on fluorofentanyl 

regioisomers, which cannot be separated by GC-MS. An orthogonal benchtop 

19F NMR method will be developed to differentiate and quantify these 

analogues. Chapter IV will focus on the eosin Y colour test. The mechanism of 

the reaction between eosin Y and heroin/fentanyl will be investigated by NMR. 

UV-Vis spectrophotometry and RGB detection will be used to develop a 

quantitative version of the test. Finally, Chapter V will describe a principal 

component analysis (PCA) model based on MS data from fentanyl analogues. 

The model will be able to group analogues based on their structural class and 

identify structural modifications in novel compounds. 

 

  



43 

 

CHAPTER II 

SYNTHESIS AND DETECTION OF AMIDE-CHAIN FENTANYL 

DERIVATIVES 

2.1 Overview  

By far the most commonly encountered modification of the fentanyl structure is 

the variation of the amide chain. It is the easiest portion to modify synthesis-

wise, as the amide bond is formed in the last reaction step. In the case of 

fentanyl, this is done via the reaction between the drug precursor 4-anilino-N-

phenethylpiperidine (4-ANPP, 4) and propionyl chloride. Acyl chlorides bearing 

a variety of alkyl, alkenyl, aryl, heteroaryl groups are indeed widely available, 

which gives easy access to a variety of analogues. This is illustrated by the fact 

that acetylfentanyl (2015) and butyrylfentanyl (2016) were some of the first 

analogues to emerge in the current resurgence of the drug, and there is an 

ever-growing range of derivatives bearing new amide chains. [15] 

Therefore, this study starts with the development of detection and quantification 

methods for amide-chain analogues of fentanyl. Eighteen target compounds 

were synthesised (see Figure 2.1; see section 2.2 for more details). Analogues 

were included mainly based on reports found in the scientific literature or made 

by official organisations (e.g. the Drug Enforcement Agency). A selection can 
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be found in Table 2.1 and includes reports of overdoses, identification by early 

warning systems, law enforcement seizures or scheduling as controlled drugs.  

Selected analogues include alkyl (2a-e) and cycloalkyl (2f-i) derivatives. 

Although cyclohexylfentanyl (2i) was not found in the literature, it was included 

in this study as the logical continuation of the cycloalkyl series. Branched alkyl 

compounds 2j and 2k were also included to determine whether detection 

methods can discriminate regioisomers of 2c and 2d, respectively.  

The reasoning behind the inclusion of fluorinated compounds 2l and 2m is two-

fold. Firstly, the introduction of fluorine atoms, especially the use of a 

trifluoromethyl group as a bioisostere for a methyl group, has been observed 

in the design of various controlled drugs, such as phenethylamines and 

diphenidines. [117, 118] This is generally done to block potential metabolic 

oxidation sites, because fluorine atoms can replace hydrogen atoms without 

significantly altering the geometry of the molecule, thus preserving the 

biological activity but slowing down metabolism. The amide chain gets 

hydroxylated during the metabolism of fentanyl, meaning that such derivatives 

could potentially emerge. On the other hand, trifluoroacetylation has been 

reported as a useful GC derivatization for the analysis of amines, including 

amphetamines and fentanyl metabolites, to greatly improve their 

chromatographic properties. [119, 120] This type of derivatisation could be 

used for the analysis of fentanyl precursor (and metabolite) 4-ANPP.  

The study also includes common fentalogues methoxyacetylfentanyl (2n), two 

furanylfentanyl isomers (2o-p), acrylfentanyl (2q) and phenylfentanyl (2r).  
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Figure 2.1. Synthesis of fentanyl analogues 2a-r and structure of controlled 
drugs and adulterants (1a-c, 23-27) included in this study. Reagents and 
conditions: (a) RCOCl (2.0 eq.), iPr2NEt (2.0 eq.), DCM (0.1 M), 0°C to r.t., 2 h; 
(b) HCl (3 M in CPME, 1.0 eq.), Et2O or acetone (0.1 M), r.t., 10 min (15-64%). 
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Table 2.1. A selection of literature references where target fentalogues 2a-r 
have been reported. 

Compound Common Name References 

2a Acetylfentanyl [28, 121-126] 

2b Fentanyl [25, 35, 55, 124-127] 

2c Butyrylfentanyl [62, 122-128] 

2d Valerylfentanyl [123, 129, 130] 

2e Hexanoylfentanyl [129, 131, 132] 

2f Cyclopropylfentanyl [123, 124, 128, 133, 134] 

2g Cyclobutylfentanyl [135] 

2h Cyclopentylfentanyl [123, 130] 

2i Cyclohexylfentanyl N/A 

2j Isobutyrylfentanyl [124, 130] 

2k Isovalerylfentanyl N/A 

2l Trifluoroacetylfentanyl N/A 

2m Pentafluorofentanyl N/A 

2n Methoxyacetylfentanyl [123, 128, 129, 136] 

2o 2-Furanylfentanyl [32, 123-126, 129, 137] 

2p 3-Furanylfentanyl [138] 

2q Acrylfentanyl 
[64, 123, 124, 126, 129, 
139] 

2r Phenylfentanyl [129, 132] 

 

This chapter focuses on the testing and development of analytical methods to 

detect and/or quantify these 18 target fentalogues as well as common 

controlled drugs and adulterants with which they have been found in mixtures 

(see Figure 2.1). It will start with presumptive detection methods, i.e. 

colorimetric tests and thin-layer chromatography, which, though they do not 

allow confident identification and must be employed with caution, are rapid and 

can be used on the field. Reliable identification of the 18 fentalogues by mass 

spectrometry will then be discussed, along with a comparison of their electron 

ionisation (EI-MS) fragmentation patterns. A GC-MS method will then be 

developed for the separation of target analytes. This method will be adapted 

and fully validated for quantification. Finally, the methods previously discussed 

will be applied to screen seized heroin samples, provided by law enforcement, 

for the presence of fentalogues. 
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2.2 Synthesis 

Synthesis was adapted from the procedure reported by Valdez et al., starting 

from 4-ANPP (4, Figure 2.1). [4] Acylation with an acyl chloride, followed by 

reaction with hydrogen chloride, afforded 18 amide-chain fentalogues (2a-r) as 

their hydrochloride salt with 15-64% yield. Synthesised materials were fully 

characterised: ATR-FTIR and NMR (1H, 13C, 19F) and high-resolution mass 

spectrometry (HRMS) data are reported in Section 7.12. ATR-FTIR and NMR 

(1H, 13C, 19F) spectra are reported in the Appendix. EI-MS spectra are reported 

in section 2.6 (Figure 2.3 and Figure 2.4).   

Although high-field NMR analysis is not routinely used in forensic casework, it 

may be useful to outline some similarities across fentanyl NMR spectra for 

characterisation purposes. This is also relevant for recently reported 

techniques which employ low-field 1H NMR for NPS identification, and identify 

NPS classes based on common spectral features. [93] Table 2.2 summarises 

the 1H NMR data for fentalogues 2a-r. A numbering reference for this table can 

be found in Figure 2.2. Spectra are relatively consistent in the aromatic region, 

with deshielding of protons 17-19 compared to other aromatic protons. The 

latter usually appear as one multiplet, though they can be separated in some 

analogues (2g, 2k, 2l and 2m).  

Table 2.2 clearly highlights the consistency in piperidine and ethyl chain 

protons signals for all analogues. These signals are most indicative of the 

fentanyl backbone. Overlap with the amide chain occurs in some compounds 

(2a, 2g, 2h, 2I, 2k, and 2n), but signals can easily be resolved using 2D 

correlation spectroscopy (1H-1H or 1H-13C).  
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Amide chain proton signals are specific to each fentalogue studied and thus 

allow their identification. 2l and 2m must be identified by 13C and 19F NMR, as 

their amide chains do not bear protons. The benzoyl signals of 2r overlap the 

other aromatic protons in the molecule, but identification is possible by 13C 

NMR.  

 

Figure 2.2. Numbering reference for fentanyl (2b).

 

d) 
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Table 2.2. 1H NMR attribution of fentalogues 2a-r. 

 

 Aromatic protons Piperidine ring and ethyl chain protons a Amide chain protons b 

 17-19 2, 6 3,5 
1, 16, 

20 
12 

10a/ 
14a 

8/10b/ 
14b 

7 
11a/ 
13a 

11b/ 
13b 

22 23 24 25 26 27 

2a 
7.58-
7.40  
(m) 

7.34-7.17 (m) 
4.69 
(tt) 

3.52 
(d) 

3.20-
3.04 (m) 

3.02-
2.93 (m) 

1.92 
(d) 

1.70-
1.55 
(m) 

1.70-
1.55 
(m) 

- - - - - 

2b 
7.50-
7.42 
(m) 

7.33-7.21 (m) 
4.71 
(t) 

3.51 
(d) 

3.26-
3.02 (m) 

2.99-
2.95 (m) 

1.92 
(d) 

1.62 
(q) 

1.82 
(q) 

0.87 (t) - - - - 

2c 
7.51-
7.44 
(m) 

7.33-7.22 (m) 
4.71 
(t) 

3.51 
(d) 

3.20-
3.06 (m) 

2.99-
2.95 (m) 

1.92 
(d) 

1.62 
(q) 

1.79 (t) 
1.42 
(sext) 

0.71 (t) - - - 

2d 
7.53-
7.40 
(m) 

7.35-7.17 (m) 
4.71 
(t) 

3.51 
(d) 

3.20-
3.04 (m) 

3.03-
2.94 (m) 

1.91 
(d) 

1.63 
(q) 

1.81 (t) 
1.39 

(quint) 
1.1 

(sext) 
0.71 
(td) 

- - 

2e 
7.51-
7.43 
(m) 

7.33-7.22 (m) 
4.71 
(t) 

3.52 
(d) 

3.21-
3.02 (m) 

3.02-
2.87 (m) 

1.92 
(d) 

1.61 
(q) 

1.81 (t) 
1.41 

(quint) 
1.14-1.02 (m) 0.77 (t) - 

2f 
7.53-
7.43 
(m) 

7.33-7.21 (m) 
4.69 
(tt) 

3.51 
(d) 

3.25-
3.05 (m) 

3.00-
2.96 (m) 

1.93 
(d) 

1.67 
(q) 

1.00 
(bs) 

0.75 (t) / 
0.56-0.54 (m) 

- - - 

2g 
7.49-
7.41 
(m) 

7.32-
7.29  
(m) 

7.24-7.16  
(m) 

4.67 
(tt) 

3.51 
(d) 

3.19-
3.05 (m) 

2.99-
2.95 (m) 

1.91 
(d) 

1.66-
1.51 
(m) 

2.73 
(quint) 

2.15-
2.06 
(m) 

- 
2.15-

2.06 (m) - - 

1.66-1.51 (m) 

2h 
7.48-
7.44 
(m) 

7.32-7.21 (m) 
4.69 
(t) 

3.51 
(d) 

3.20-
3.03 (m) 

3.02-
2.94 (m) 

1.91 
(d) 

1.70-
1.39 
(m) 

2.23 
(quint) 

1.70-1.39 (m) 
- 

 1.29 (bs)  

2i 
7.52-
7.44  
(m) 

7.33-7.21 (m) 
4.67 
(t) 

3.51 
(d) 

3.20-
3.02 (m) 

3.01-
2.93 (m) 

1.94-
1.76 
(m) 

1.67-
1.51  
(m) 

1.94-
1.76  
(m) 

1.67-
1.51  
(m) 

1.32 (q) 
/ 

0.78 (q) 

1.46 (d) 
/ 

1.06 (q) 

1.32 (q)  
/  

0.78 (q) 

1.67-
1.51 
(m) 
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Table 2.2. 1H NMR attribution of fentalogues 2a-r. (cont.) 

Key: a a and b are axial and equatorial protons on the same carbon; b Amide chain protons are numbered moving away from the carbonyl.

 Aromatic protons Piperidine ring and ethyl chain protons a Amide chain protons b 

 17-19 2, 6 3,5 
1, 16, 

20 
12 

10a/ 
14a 

8/10b/ 
14b 

7 
11a/ 
13a 

11b/ 
13b 

22 23 24 25 26 27 

2j 
7.52-
7.43 
(m) 

7.33-7.21 (m) 
4.68 
(t) 

3.51 
(d) 

3.20-
3.03 

3.02-
2.94 (m) 

1.91 
(d) 

1.62 
(q) 

2.11 
(sep) 

0.88 (d) - - - 

2k 
7.52-
7.41 
(m) 

7.31 
(t) 

7.26-7.17 (m) 
4.72 
(tt) 

3.51 
(d) 

3.20-
3.03 (m) 

3.01-
2.93 (m) 

2.01-
1.87 
(m) 

1.63 
(q) 

1.71 
(d) 

2.01-
1.87 
(m) 

0.73 (d) - - 

2l 
7.53-
7.47 
(m) 

7.37 
(t) 

7.31 
(t) 

7.26-
7.18  
(m) 

4.67 
(tt) 

3.55 
(d) 

3.20-
3.09 (m) 

3.01-
2.94 (m) 

2.05 
(d) 

1.69 
(q) 

- - - - - - 

2m 
7.61-
7.46 
(m) 

7.43-
7.36 
(m) 

7.35-
7.28 
(m) 

7.26-
7.20 
(m) 

4.68 
(tt) 

3.55 
(d) 

3.24-
3.07 (m) 

3.03-
2.93 (m) 

2.10-
2.00 
(m) 

1.89-
1.54 
(m) 

- - - - - - 

2n 
7.52-
7.43 
(m) 

7.35-7.19 (m) 
4.69 
(t) 

3.56-
3.49 
(m) 

3.20-
3.04 (m) 

3.01-
2.94 (m) 

1.93 
(d) 

1.64 
(q) 

3.56-
3.49 
(m) 

3.20-
3.04 
(m) 

- - - - 

2o 
7.53-
7.46 
(m) 

7.35-7.19 (m) 
4.83 
(tt) 

3.56 
(d) 

3.24-
3.09 (m) 

3.05-
2.95 (m) 

2.04 
(d) 

1.76 
(q) 

- 
5.38 
(s) 

6.32 
(dd) 

7.66 (s) - - 

2p 
7.55-
7.46 
(m) 

7.43-7.14 (m) 
4.83 
(t) 

3.55 
(d) 

3.25-
3.09 (m) 

3.05-
2.96 (m) 

2.02 
(d) 

1.76 
(q) 

- 
5.98 
(s) 

6.75 (s) 
7.55-

7.46 (m) 
- - 

2q 
7.53-
7.44 
(m) 

7.34-7.19 (m) 
4.75 
(t) 

3.53 
(d) 

3.21-
3.06 (m) 

3.02-
2.93 (m) 

1.97 
(d) 

1.69 
(dd) 

5.71 
(dd) 

6.15 
(dd) / 
5.53 
(dd) 

- - - - 

2r 7.35-7.11 (m) 
4.82 
(bs) 

3.58 
(d) 

3.24-
3.11 (m) 

3.04-
2.97 (m) 

2.11 
(d) 

1.8 
(dq) 

7.35-7.11 (m) 
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2.3 Presumptive colour tests 

Colorimetric tests were chosen strategically to differentiate fentanyl analogues 

from common drugs of abuse, with which they have been found in mixtures, 

and their adulterants. Tests were carried out according to the United Nations 

recommended guidelines, on pure powders. [77, 140] Results are reported in 

Table 2.3. Procedures to prepare the presumptive test solutions are reported 

in Section 7.1. 

Scott’s test did not prove specific enough to discriminate fentalogues from 

cocaine, or even heroin: it gave a positive (blue) result for cocaine (27), 

procaine (24b), all fentanyl analogues (2a-r) and heroin after 5 minutes (1c).  

The nitric acid test gave positive results with MDMA and paracetamol. The only 

target compounds that reacted with the test were 4-ANPP, 2- and 3-

furanylfentanyl (2o-p). The difference between 4-ANPP and most fentalogues 

can be explained by their reactivity towards electrophilic aromatic substitution; 

4-ANPP is an aromatic amine rather than an amide, and an amine substituent 

activates the aromatic ring more than an amide because in the latter the 

carbonyl draws some of the electron density away from the nitrogen. In furanyl 

derivatives, the colour change may have resulted from nitration of the furan 

ring.  

With Marquis’ reagent, 4-ANPP (4) and fentanyl analogues (2a-r) all gave 

positive colour changes. A notable exception was 3-furanylfentanyl (1p), which 

turned into a brown precipitate in an orange solution. Marquis’ reagent 

successfully discriminated fentalogues from cocaine and all adulterants tested 

(24a-b, 25, 26), none of which react to the test. It also differentiated fentalogues 

from MDMA (23), codeine, morphine and heroin (1a-c), though it is unclear how 
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the test would perform on mixtures, as the brown and purple colorations may 

interfere with each other. As will be discussed in section 2.9, matrix interference 

can also affect the outcome of the test.  

Eosin Y changes to light pink in the presence of various controlled drugs, but 

produces a very specific, darker shade of pink when mixed with fentanyl. The 

mechanism of this reaction is currently not known, but it will be explored more 

in-depth in Chapter 4. Although most common drugs and adulterants tested 

gave a light pink colour, this result is significantly different from that obtained 

with fentalogues to allow successful discrimination. All fentanyl analogues 

tested produced the expected dark pink colour, except 2m that gave a light pink 

result. This shows that Eosin Y can discriminate between most fentanyl 

analogues and common drugs of abuse. 

A combination of the Marquis and Eosin Y seems most appropriate to 

differentiate fentalogues from common controlled drugs and adulterants. The 

nitric acid test provides only moderately useful results, as it does not react with 

most fentalogues, but can be used to identify traditional opiates (morphine, 

codeine, heroine) and to differentiate precursor 4-ANPP. Scott’s reagent did 

not allow discrimination of cocaine from fentalogues. 
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Table 2.3. Reactions of fentalogues (2a-r) and other drugs studied herein with 
the Marquis, Scott, Nitric acid and Eosin Y tests. Note: A dash indicates the 
absence of a discernible colour change.  

 Scott Nitric Acid Marquis Eosin Y 

 Immediate 
colour 

Colour 
after 5 

min 

Immediate 
colour 

Colour 
after 5 

min 

Immediate 
colour 

Colour after 
5 min 

Immediate 
colour 

Colour 
after 5 

min 

4 Blue Blue Orange 
Dark 

Yellow 
Orange Dark brown Light pink Light pink 

2a Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2b Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2c Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2d Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2e Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2f Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2g Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2h Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2i Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2j Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2k Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2l Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2m Blue Blue ─ ─ Orange Dark brown Light pink Light pink 

2n Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

2o Blue Blue ─ 
Light 

Yellow 
Orange Dark brown Dark pink Dark pink 

2p Blue Blue ─ 
Light 

Yellow 
Brown Orange Dark pink Dark pink 

2q Blue Blue ─ ─ Orange a Dark brown b Dark pink Dark pink 

2r Blue Blue ─ ─ Orange Dark brown Dark pink Dark pink 

23 ─ ─ Yellow Yellow 
Dark 

purple 
Dark purple Light pink Light pink 

24a ─ ─ ─ ─ ─ ─ Peach Peach 

24b Blue Blue ─ ─ ─ ─ Light pink Light pink 

25 ─ ─ ─ ─ ─ ─ Light pink Light pink 

26 ─ ─ Orange 
Yellow-
orange 

─ ─ Light pink Light pink 

27 Blue Blue ─ ─ ─ ─ Light pink Light pink 

1a ─ ─ 
Brown-
orange 

Yellow Violet Violet Light pink Light pink 

1b ─ ─ Orange 
Yellow-
orange 

Purple Purple Light pink Light pink 

1c ─ Blue Yellow Green Violet Violet Light pink Light pink 

aBrown precipitate forms; bBrown precipitate separates from orange solution. 
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An additional test was performed using a mixture of fentanyl and heroin at 

different concentrations in methanol (Table 2.4).  

Table 2.4. Results of presumptive colour tests for mixtures of fentanyl and 
heroin. 

Concentration  
(mg/mL) 

Marquis Eosin Y 

Heroin 
(1c) 

Fentanyl 
(2b) 

Immediate 
colour 

Colour after  
5 min 

Immediate 
colour 

Colour after 
5 min 

5 0 Purple Purple Peach Light Pink 

5 
0.05 

(1% w/w) 
Purple Purple Peach Light Pink 

5 
0.1 

(2% w/w) 
Purple Purple Peach Light Pink 

5 
0.25 

(5% w/w) 
Purple Purple Peach Light Pink 

0 5 ─ ─ Peach Dark pink 

0 10 Brown Brown Peach Dark pink 

 

Positive controls were performed to show that both tests allow detection of the 

pure materials in methanolic solutions (at 10 mg/mL). Neither Marquis’ nor the 

Eosin Y tests allowed detection of fentanyl in low concentration mixtures (up to 

5% w/w), only producing a positive result for heroin. This is consistent with 

Marinetti’s findings, which show that Marquis’ test can only distinguish fentanyl 

from heroin when it is the major component of a mixture. [26] In fact, at a 

concentration as high as 5 mg/mL in methanol, a pure solution of fentanyl gave 

a negative result. This highlights a limitation of presumptive tests with mixtures 

that could prove problematic when analysing actual samples (see section 2.9). 

2.4 Thin-layer chromatography (TLC) 

TLC analysis of 25 fentalogues has been reported by Suzuki et al., which 

included derivatives 2a-c and 2j. [141] Using a chloroform-benzene-methanol 
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(10:2:1) eluent, they were unable to fully separate these compounds (2c and 

2j co-eluted). 

In the present study, TLC analysis of 4-ANPP (4), fentalogues 2a-r and heroin 

(1c) was performed using a dichloromethane-methanol (9:1 v/v) eluent 

containing 1% triethylamine. TLC plates were developed using a modified 

Dragendorff-Ludy-Tenger reagent, producing orange spots for all analytes. 

Results are reported in Table 2.5. Fentanyl analogues could be separated with 

a varying degree of success. For alkyl derivatives 2a-e, RRf values increased 

with the length of the carbon chain (from RRf = 0.91 to 1.10) and only 2b and 

2c co-elute. Cycloalkyl derivatives 2f-i exhibited the same trend but were fully 

separated from each other.  

Separation was less evident for most isomeric compounds. Cyclobutylfentanyl 

(2g, RRf = 1.05) eluted very close to valeryfentanyl (2d, RRf = 1.06), while 

isobutyrylfentanyl (2j, RRf = 1.00) co-eluted with butyrylfentanyl (2c). TLC did, 

however, manage to separate isovalerylfentanyl (2k, RRf = 1.09) from its 

isomers 2g and 2d, as well as 2- and 3-furanylfentanyl from each other (2o and 

2p, RRf = 1.04 and 1.09, respectively). Less polar fluorinated derivatives 2l and 

2m clearly separated from others (RRf = 1.32 and 1.40). All fentalogues were 

clearly separated from 4-ANPP (4, RRf = 0.76) and heroin (1c, RRf = 0.43). 
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Table 2.5. Thin-layer chromatography results for 4-ANPP (4), fentalogues 2a-r 
and heroin (1c). 

Compound Rf
a RRf

b 

4 0.36 0.76 

2a 
0.46 

(0.63)c 
0.91 

2b 
0.51 

(0.67)c 
1.00 

2c 
0.51 

(0.70)c 
1.00 

2d 0.54 1.06 

2e 0.58 1.10 

2f 0.53 1.02 

2g 0.55 1.05 

2h 0.57 1.09 

2i 0.59 1.13 

2j 
0.51 

(0.70)c 
1.00 

2k 0.55 1.09 

2l 0.69 1.32 

2m 0.74 1.40 

2n 0.42 0.88 

2o 0.51 1.04 

2p 0.54 1.09 

2q 0.59 1.14 

2r 0.54 1.10 

1c 0.22 0.43 

Key: aRetention factor (DCM-MeOH (9:1 v/v) with 1% Et3N); bRelative Retention Factor (with 
respect to fentanyl, 2b); cRetention factor reported by Suzuki et al. (CHCl3-benzene-MeOH 
(10:2:1 v/v/v)).  

These results indicate that separation of all eighteen analogues by TLC is 

difficult. Although this technique does offer a higher discrimination power than 

colorimetric tests, it should be reserved for presumptive purposes. Identification 

of controlled drugs must exclusively be conducted using more powerful 

techniques, such as GC-MS.  
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2.5 Infrared spectroscopy 

ATR-FTIR spectra of fentalogues 2a-r are reported in Section 7.13. All 

compounds are characterised by weak to medium aromatic and aliphatic C−H 

bands (~3050-2850 cm-1), weak to medium ammonium salt N−H bands 

(~2600-2400 cm-1) and a strong amide C=O stretching band (~1680-1620 cm-

1 depending on the amide group).  

To test the possibility to discriminate analogues by their infrared spectra, a 

library containing compounds 2a-r was built on the PerkinElmer Spectrum 

software (version 10.5.3). An individual sample was then removed from the 

library, and a database search was performed to find the second closest match 

(leave-one-out validation). Match scores close to 100% would mean that the 

technique is not able to differentiate a compound from its most similar 

analogue. As shown in Table 2.6, all match scores are less than or equal to 

82%, which indicates a good ability to discriminate compounds based on their 

infrared spectra.  
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Table 2.6. Leave-one-out validation of the ATR-FTIR method with analogues 
2a-r.  

Compound Closest match Match score 

2a 2h 76% 

2b 2c 82% 

2c 2b 82% 

2d 2e 81% 

2e 2k 82% 

2f 2q 76% 

2g 2e 74% 

2h 2k 77% 

2i 2d 68% 

2j 2g 72% 

2k 2e 82% 

2l 2p 43% 

2m 2r 37% 

2n 2l 38% 

2o 2p 37% 

2p 2l 43% 

2q 2f 76% 

2r 2e 60% 

 

Most likely, compounds are differentiated by infrared bands in the fingerprint 

region (1500-500 cm-1), but problems are likely to arise when analysing 

mixtures. This will be discussed in section 2.9. 

2.6 Electron ionisation mass spectrometry 

Electron ionisation mass spectra of fentalogues 2a-r were acquired and are 

reported in Figure 2.3 and Figure 2.4. 
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Figure 2.3. Electron ionisation mass spectra of fentalogues 2a-i. 
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Figure 2.4. Electron ionisation mass spectra of fentalogues 2j-r. 
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As EI-MS fragmentation patterns are generally specific to certain fentalogues, 

this technique is a powerful tool for identification. The mass spectrum of 

fentanyl, shown in Figure 2.5, serves as a typical example. Figure 2.6 shows 

the fragmentation pathways leading to the observed fragments. [141] Fragment 

28 (m/z = 245) constitutes the base peak and arises through α,β cleavage of 

the phenylethyl chain; fragment 29 (m/z = 202) is formed through subsequent 

contraction of the piperidine ring. Fragments 28 and 29 are thus generally 

specific to each fentalogue, as their mass varies depending on the amide chain 

of the compound. This is not the case for the other fragments which are 

present, with the same mass, in most fentalogues studied. Cleavage of the 

C─N amide bond in 28 leads to fragment 30 (m/z = 189), while 31 (m/z = 146) 

can arise from 29 or 30 through previously described mechanisms. Fragments 

30 and 31, because they ultimately result from the loss of the amide chain, are 

common to most fentalogues studied (Figure 2.3). 

Benzyl (32, m/z = 105) and tropylium (33, m/z = 91) cations come from the 

scission of the phenethyl chain. Phenyl cation 34 (m/z = 77), though it could 

come from further fragmentation of 33, actually comes mostly from scission of 

the N─Ph bond, as will be explained in Chapter 3 (Section 3.6). Finally, acylium 

ion 35 has been attributed to the m/z = 57 peak.  
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Figure 2.5. EI-MS spectrum of fentanyl (2b) and structure of main fragments. 

 

Figure 2.6. EI-MS fragmentation of fentanyl (2b) leading to the observed 
fragments. 
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Other fentanyl derivatives show analogous fragmentation patterns. Notable 

exceptions include cycloakyl derivatives. Cyclopropylfentanyl (2f, Figure 2.7) 

produces a relatively abundant acylium ion 36 (m/z = 69), while cyclopropyl 

cation 37 (m/z = 41) is also observed. Compounds with larger rings (2g-i) only 

significantly produce fragments analogous to 37. Unsaturated derivatives 2o-r 

also produce abundant acylium cations akin to 36.  

 

Figure 2.7. EI-MS spectrum of cyclopropylfentanyl (2f) and structure of 
fragments 36 and 37. 

 

All three oxygen-containing derivatives (2n-p) exhibit a relatively abundant 

fragment at m/z = 158. The fact that it has the same mass for all of them implies 

that it does not contain the amide moiety. This mass can only correspond to 

 

 

36 

37 
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piperidine-contraction fragments 38 or 39 (see Figure 2.8); the mechanism 

leading to their formation is not readily explained, but a rearrangement 

involving the oxygen-containing amide chain is likely. 

 

Figure 2.8. Potential m/z = 158 fragments of fentalogues 2n-p. 

 

2.7 Qualitative GC-MS analysis 

The qualitative GC-MS method used in this study required straightforward 

solvation of the samples in methanol (0.1 mg/mL). No derivatization step was 

required. The complete GC-MS experimental procedure is reported in Section 

7.4. 

GC-MS methods have previously been reported by the Scientific Working 

Group for the Analysis of Seized Drugs (SWGDRUG) for fentalogue analysis. 

However, a representative SWGDRUG method (100 °C for 1.0 min, ramp to 

280 °C at 12 °C/min and hold for 9.0 min) proved unsuitable for separating the 

18 derivatives studied. 

An initial optimisation of the temperature gradient was performed until the 

following conditions were reached: 100-200 °C at 30 °C/min, 200-235 °C at 

10 °C/min, hold 6 min, 235-250 °C at 3 °C/min, hold 11 min, 250-260 °C/min at 

1 °C/min, 260-280 °C at 10 °C/min, hold 1 min. A representative chromatogram 



65 

 

is shown in Figure 2.9. This very careful temperature gradient achieved 

separation of most fentalogues from each other, five controlled substances 

(cocaine, codeine, heroin, MDMA, morphine) and four adulterants 

(paracetamol, benzocaine, caffeine and procaine). Two pairs of compounds 

(2f/2n and 2h/2o) still co-eluted, but they can be separated based on their mass 

spectra when using a Selected Ion Monitoring (SIM) method. 

 

Figure 2.9. Exemplar chromatogram demonstrating GC-MS separation of 18 
fentalogues (2a-r), MDMA (23), benzocaine (24a), acetaminophen (26), 
caffeine (25), eicosane (internal standard, E), procaine (24b), cocaine (27), 
codeine (1a), morphine (1b), 4-ANPP (4) and heroin (1c). 

 

Before moving on to SIM analysis, however, further optimisation was 

necessary. Although the method provided satisfactory separation, the 38-

minute runtime made it much too long for use in an operational context. 

Examination of the chromatogram (Figure 2.9) reveals sections where the 
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method could be shortened. This is corroborated when looking at the resolution 

data, a measure of how far a peak is from the one before it (see Table 2.7). A 

resolution of at least 2 indicates that two compounds are separated; resolutions 

higher than 10 (some even as high as 30) can be reduced to shorten the 

runtime. Additionally, time can be saved at the start of the run, as the first peak 

only elutes after 4.1 minutes.  

Table 2.7. Retention time and resolution for target fentalogues, controlled drugs 
and adulterants (see Figure 2.9 for chromatogram). 

 
tR  

(min) 
Resolution   tR  

(min) 
Resolution 

23 4.10 -  2b 18.77 2.1 

24a 4.27 4.9  2q 19.18 2.9 

26 4.79 9.4  2c 20.59 9.9 

25 5.80 17  2k 21.27 3.4 

24b 7.14 12  2f 22.16 3.9 

27 8.87 31.7  2n 22.18 3.9 

1a 11.48 38.7  2d 23.69 2.2 

2m 12.03 6.3  2g 26.82 3.4 

1b 12.34 3.3  2e 27.63 1.7 

4 12.63 3.1  2h 30.43 10.4 

2l 12.89 2.2  2o 30.60 0.7 

1c 16.89 36.6  2p 31.13 1.9 

2a 17.47 5.3  2i 34.70 8.4 

2j 18.45 7.9  2r 37.54 8 

 

Making the necessary modifications, a new temperature gradient was 

optimised: 175-235 °C at 30 °C/min, hold 7 min, 235-270 °C at 30 °C/min, hold 

7.5 min, 270-290 °C at 30 °C/min, hold 2 min, reducing the total runtime to a 

much more acceptable 20.33 min (see Figure 2.10). Adequate separation of 

the analytes was retained (see Table 2.8 for resolution data).  
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Figure 2.10. Exemplar chromatogram demonstrating the optimal GC-MS 
method of 18 fentalogues (2a-r), MDMA (23), benzocaine (24a), 
acetaminophen (26), caffeine (25), eicosane (internal standard, E), procaine 
(24b), cocaine (27), codeine (1a), morphine (1b), 4-ANPP (4) and heroin (1c). 

 

The use of SIM-mode analysis solves the issue of co-eluting compounds and 

increases the sensitivity of the method. Instead of scanning for all possible ions, 

three ions per compound are monitored: one for quantification, usually the most 

abundant and specific, and two for confirmatory analysis (see Table 2.7). 

Because only a partial mass spectrum is obtained, SIM analysis is less specific 

than scan analysis. The two confirmatory ions can be used to remedy this: 

when analysing an unknown sample, ratios between the three monitored ions 
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are calculated and compared to those of a reference SIM spectrum. For 

conclusive identification, the difference between the unknown sample and the 

reference spectrum should fall within a pre-defined tolerance window, as 

prescribed by the World Anti-Doping Agency (WADA) in their published 

guidelines. [142] Ion ratios for each analyte are reported in Table 2.7 for 

reference purposes.  

SIM analysis was thus used to separate co-eluting fentalogues 2f/2n and 

2h/2o. Because these derivatives all bear different amide chains, their base 

peaks, analogous to fragment 28 in Figure 2.6, all have different masses. By 

monitoring only the base peak for quantification, methoxyacetylfentanyl 2n 

(m/z = 261.1, Figure 2.11b) was separated from cyclopropylfentanyl 2f 

(m/z = 257.1, Figure 2.11c) and cyclopentylfentanyl 2h (m/z = 285.1, Figure 

2.11d) from 2-furanylfentanyl 2o (m/z = 283.1, Figure 2.11e).  
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Table 2.7.  EI-MS ions used for identification of analytes via Selective Ion 
Monitoring (SIM), relative intensity of each ion (relative to base peak) and 
precision (%RSD) of the relative intensities (cont.) 

1b 

SIM ions 285.1 215.1 162.1  

2e 

SIM ions 287.2 189.1 146.0 

Relative 
intensities (%) 

100.0 33.0 45.4  
Relative 

intensities (%) 
100.0 53.7 57.3 

Precision 
(% RSD, n = 3) 

- 4.8 6.0  
Precision 

(% RSD, n = 3) 
- 0.5 0.1 

4 

SIM ions 189.0 146.1 93.0  

2h 

SIM ions 285.1 189.1 146.0 

Relative 
intensities (%) 

83.0 100.0 11.7  
Relative 

intensities (%) 
100.0 65.8 50.4 

Precision 
(% RSD, n = 3) 

0.3 - 11.3  
Precision 

(% RSD, n = 3) 
- 4.7 3.2 

2l 

SIM ions 285.1 242.0 189.1  

2o 

SIM ions 283.1 240.0 95.0 

Relative 
intensities (%) 

100.0 33.6 8.7  
Relative 

intensities (%) 
57.7 29.1 100.0 

Precision 
(% RSD, n = 3) 

- 0.9 6.4  
Precision 

(% RSD, n = 3) 
1.6 2.8 - 

1c 

SIM ions 369.0 327.2 268.1  

2p 

SIM ions 283.1 240.0 95.0 

Relative 
intensities (%) 

62.7 100.0 67.5  
Relative 

intensities (%) 
100.0 59.7 73.4 

Precision 
(% RSD, n = 3) 

2.3 - 4.0  
Precision 

(% RSD, n = 3) 
- 1.5 1.1 

2a 

SIM ions 231.1 189.1 146.0  

2i 

SIM ions 299.1 189.1 146.0 

Relative 
intensities (%) 

100.0 38.1 52.2  
Relative 

intensities (%) 
100.0 63.2 48.0 

Precision 
(% RSD, n = 3) 

- 1.7 1.2  
Precision 

(% RSD, n = 3) 
- 0.4 0.7 

2j 

SIM ions 259.1 189.1 146.0  

2r 

SIM ions 293.1 250.0 105.0 

Relative 
intensities (%) 

100.0 59.6 54.0  
Relative 

intensities (%) 
86.7 30.6 100.0 

Precision 
(% RSD, n = 3) 

- 1.5 1.9  
Precision 

(% RSD, n = 3) 
6.7 3.2 - 
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Figure 2.11. SIM mode chromatogram of a mixture of 2f, 2h, 2n, 2o-p. a) Total 
ion chromatogram; b) Monitoring of m/z = 261.1 (2n); c) Monitoring of m/z = 
257.1 (2f); d) Monitoring of m/z = 285.1 (2h); e) Monitoring of m/z = 283.1 (2o-
p). 

2f + 2n 

2f 

2n 

2h + 2o 

2o 2p 

2h 
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2.8 Quantitative GC-MS analysis 

The quantitative GC-MS method (SIM mode), was developed and validated in 

accordance with the ICH guidelines (see Section 7.4 for experimental 

procedure). [143] A summary of GC-MS validation data is reported in Table 

2.8. As previously discussed, resolution was satisfactory except for compounds 

2f/2n and 2h/2o. Most peaks proved relatively symmetrical (As value close to 

1) except MDMA (23, As = 2.4), caffeine (25, As = 2.4) and paracetamol (26, As 

= 5.6) because of their amine or alcohol moieties. Paracetamol especially tailed 

a lot, due to its polar alcohol moiety, and though this could be resolved by prior 

derivatization it did not prevent validation in this case. Limits of detection and 

quantification were determined based on signal-to-noise (S/N) ratio. For 

fentalogues, these were 0.008 – 0.125 μg/mL (LOD) and 0.025 – 0.415 μg/mL 

(LOQ). For other controlled substances and adulterants they were 0.007 – 

0.822 μg/mL (LOD) and 0.023 – 2.742 μg/mL (LOQ).  

Due to the level of sensitivity required for the detection of fentanyl analogues 

as low-concentration adulterants in seized samples, the LOD/LOQs 

determined in SIM mode were compared to those in scan mode (Table 2.9). 

For fentalogues, SIM analysis proved 72 to 1280 times more sensitive than 

scan mode, confirming that it is more suitable for this application.   

Calibration standards were prepared over a 2.5–25.0 μg/mL concentration 

range, using eicosane as an internal standard, to produce a calibration curve 

for each analyte (see calibration curve equations below Table 2.8). All eighteen 

substituted fentalogues demonstrated a linear response (r2 = 0.997–0.999) with 

satisfactory repeatability (RSD = 0.3 – 4.5%, n = 6). The method was also 

suitable for quantification of the other controlled substances and adulterants, 
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demonstrating linear response (r2 = 0.992 –0.999) with reasonable repeatability 

(RSD = 0.7 – 6.9%, n = 6). 

The accuracy of the method was determined using a percentage recovery 

study (see Table 2.10). Spiked samples were prepared in triplicates at three 

concentration levels over a range of 80–120% of a target concentration 

(15 μg/mL). The result of these injections is fed back into the calibration curve 

and the experimental concentration is compared with the theoretical 

concentration (assay recovery). The relative error shows how the mean assay 

recovery diverges from an expected 100%. Acceptable recoveries (100 ± 3%) 

were obtained for all analytes.  

The precision (inter- and intraday precision) was calculated from six replicate 

injections of a spiked sample (10 μg/mL), analysed on two consecutive days 

(see Table 2.11). Most analytes showed acceptable precision, with intraday 

RSDs between 0.8 and 4.0% and interday RSDs between 0.7 and 2.4%, apart 

from two exceptions: paracetamol (26, intraday: 7.9%, interday: 6.2%) and 

morphine 1b (intraday: 6.9%, interday: 8.0%). Both of these analytes have poor 

response factors and/or peak shape, and thus high standard deviations are 

observed around the target concentration.  

The GC-MS method was deemed suitable for the analysis of seized heroin 

samples. 



73 

 

Table 2.8. Summary of GC-MS validation data (SIM mode) for the quantification of fentalogues (2a-r), controlled substances (4, 23, 
27, 1a-c) and relevant/common adulterants (24a-b, 25 and 26).  NB. tR (eicosane, IS) = 3.47 min (see Figure 2.10 for chromatogram). 

 
tR 

(min) 
RRTa Rs

b As
c 

Nd 

(plates) 
He 

(x10-4 mm) 
LODah 

(g/mL) 

LOQai 

(g/mL) 
r2 

Precision (% RSD, n = 6) 

 
2.5 

g/mL 

5 

g/mL 

10 

g/mL 

15 

g/mL 

20 

g/mL 

25 

g/mL 

23 2.04 0.17 - 2.4 136219 2.20 0.023 0.007 0.996f 3.6 2.1 1.3 2.5 1.4 3.2 

24a 2.11 0.18 3.9 1.6 228879 1.31 0.023 0.007 0.992g 6.7 2.9 1.9 2.1 0.9 3.0 

26 2.36 0.20 9.3 5.6 93224 3.22 0.793 0.238 0.992h 5.8 6.4 4.0 3.5 1.7 3.4 

25 3.0 0.25 18.2 2.4 200019 1.50 0.045 0.014 0.994i 6.8 4.3 1.6 1.8 1.4 2.3 

24b 3.91 0.33 14 1.2 196150 1.53 0.046 0.014 0.999j 1.5 1.6 1.7 0.9 1.8 1.6 

27 5.37 0.45 30.3 1.4 140356 2.14 0.030 0.009 0.999k 2.2 1.2 2.0 0.8 1.7 1.0 

1a 7.75 0.65 33.7 1.0 136584 2.20 0.073 0.022 0.998l 1.7 1.6 2.0 0.8 1.9 1.8 

2m 8.20 0.68 4.8 1.0 113948 2.63 0.025 0.007 0.999m 1.6 1.1 2.2 1.0 1.8 1.7 

1b 8.52 0.71 3.3 1.0 135096 2.22 2.742 0.822 0.999n -aj 6.9 3.8 3.3 2.7 2.0 

4 8.77 0.73 2.7 1.3 119168 2.52 0.090 0.027 0.999o 1.2 1.3 2.4 1.1 1.9 1.9 

2l 8.99 0.75 2.0 1.6 105886 2.83 0.049 0.015 0.999p 1.1 0.9 2.0 1.1 1.8 1.5 

1c 11.09 0.92 24.5 1.0 515458 0.58 0.236 0.071 0.998q 2.3 1.6 2.9 0.7 1.9 2.5 

2a 11.36 0.95 4.5 1.0 540884 0.56 0.026 0.008 0.997r 0.5 1.2 2.1 1.4 2.0 2.6 

2j 11.84 0.99 7.3 1.4 510511 0.59 0.058 0.017 0.997s 0.7 0.9 2.1 1.2 2.3 2.3 
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Table 2.8. Summary of GC-MS validation data (SIM mode) for the quantification of fentalogues (2a-r), controlled substances (4, 23, 
27, 1a-c) and relevant/common adulterants (24a-b, 25 and 26).  NB. tR (eicosane, IS) = 3.47 min (see Figure 2.10 for chromatogram). 
(cont.) 

 
tR 

(min) 
RRTa Rs

b As
c 

Nd 

(plates) 
He 

(x10-4 mm) 
LODah 

(g/mL) 

LOQai 

(g/mL) 
r2 

Precision (% RSD, n = 6) 

 
2.5 

g/mL 

5 

g/mL 

10 

g/mL 

15 

g/mL 

20 

g/mL 

25 

g/mL 

2b 11.99 1.00 2.3 1.2 460776 0.65 0.034 0.010 0.998t 0.5 1.0 2.2 1.4 2.2 2.3 

2q 12.19 1.02 2.8 1.4 541711 0.55 0.044 0.013 0.997u 1.1 1.1 2.4 1.5 2.1 2.5 

2c 12.85 1.07 8.9 0.9 418336 0.72 0.047 0.014 0.997v 0.7 1.1 2.4 1.5 2.3 2.4 

2k 13.16 1.10 3.8 1.2 393893 0.76 0.044 0.013 0.997w 1.1 0.7 2.2 1.5 2.3 2.3 

2f 13.60 1.13 4.8 1.5 343508 0.87 0.082 0.025 0.998x 0.8 1.4 2.4 1.3 2.1 2.2 

2n 13.60 1.13 4.8 1.2 343508 0.87 0.043 0.013 0.998y 1.2 1.3 2.1 1.4 2.2 2.5 

2d 14.25 1.19 7.1 1.2 377429 0.80 0.052 0.016 0.997z 0.8 1.1 2.3 1.3 2.1 2.5 

2g 15.68 1.31 14 1.0 322327 0.93 0.077 0.023 0.997aa 1.1 1.1 2.5 1.2 2.3 2.5 

2e 15.95 1.33 2.5 1.1 333544 0.90 0.038 0.011 0.997ab 0.4 1.0 2.2 1.3 2.2 2.3 

2h 17.25 1.44 9.9 1.0 271035 1.11 0.138 0.042 0.997ac 1.0 0.3 2.4 1.2 2.2 2.5 

2o 17.31 1.44 0.5 1.1 273246 1.10 0.413 0.124 0.997ad 3.2 1.1 4.5 1.4 2.7 2.8 

2p 17.57 1.47 2.4 1.0 281061 1.07 0.415 0.125 0.998ae 4.5 1.8 2.2 1.3 2.3 4.0 

2i 18.77 1.61 12.4 1.3 249699 1.20 0.051 0.015 0.997af 1.1 0.8 2.4 1.3 2.2 2.5 

2r 19.62 1.74 9.7 1.1 247424 1.21 0.092 0.028 0.997ag 0.9 1.2 2.5 1.1 2.3 2.6 

 

Key: a Relative Retention Time (with respect to fentanyl, 2b); b Resolution; c Asymmetry (or tailing) factor; d Number of theoretical plates; e Height of a theoretical 
plate; f y=0.3731x-0.1005; g y=0.5935x-0.6021; h y=0.1037x-0.1519; i y=0.3539x-0.2284; j y=0.1587x+0.1199; k y=0.0742x+0.0602; l y=0.0488x+0.0531; 
m y=0.1322x+0.1305; n y=0.0129x-0.0235; o y=0.0904x+0.0401; p y=0.1642x+0.1149; q y=0.0208x+0.0295; r y=0.0926x+0.1140; s y=0.0846x+0.1060; 
t y=0.0930x+0.1058; u y=0.0924x+0.1122; v y=0.0926x+0.1140; w y=0.0936x+0.1139; x y=0.0963x+0.1098; y y=0.1004x+0.0963; z y=0.0911x+0.1138; 
aa y=0.0924x+0.1198; ab y=0.0943x+0.1206; ac y=0.0866x+0.1103; ad y=0.0904x+0.1040; ae y=0.0863x+0.1045; af y=0.0951x+0.1214; ag y=0.0852x+0.0906; ah Limit 
of detection (calculated using a signal-to-noise ratio of 3:1); ai Limit of quantification (calculated using a signal-to-noise ratio of 10:1); aj Not determined as 
concentration is below the LOQ for morphine (1b). 
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Table 2.9. Comparison of GC-MS limits of detection/quantification determined 
in scan mode and selective ion monitoring (SIM) mode for fentalogues (2a-r), 
controlled substances (4, 23, 27, 1a-c) and relevant/common adulterants (24a-
b, 25 and 26). 

  Scan Mode 
Selective Ion 

Monitoring (SIM) 
Mode 

Ana
lyte 

tR 
(min) 

LODa 

(g/mL) 

LOQb 

(g/mL) 

LODa 

(g/mL) 

LOQb 

(g/mL) 

23 2.04 2.2 0.6 0.023 0.007 

24a 2.11 0.8 0.3 0.023 0.007 

26 2.36 9.7 2.9 0.793 0.238 

25 3.0 1.5 0.5 0.045 0.014 

24b 3.91 7.4 2.2 0.046 0.014 

27 5.37 6.7 2.0 0.030 0.009 

1a 7.75 21.6 6.5 0.073 0.022 

2m 8.20 13.9 4.2 0.025 0.007 

1b 8.52 210.5 63.2 2.742 0.822 

4 8.77 11.2 3.4 0.090 0.027 

2l 8.99 9.8 2.9 0.049 0.015 

1c 11.09 31.0 9.3 0.236 0.071 

2a 11.36 33.3 10.0 0.026 0.008 

2j 11.84 29.9 9.0 0.058 0.017 

2b 11.99 28.5 8.6 0.034 0.010 

2q 12.19 34.6 10.4 0.044 0.013 

2c 12.85 35.3 10.6 0.047 0.014 

2k 13.16 30.7 9.2 0.044 0.013 

2f 13.60 25.1 7.5 0.082 0.025 

2n 13.60 24.7 7.4 0.043 0.013 

2d 14.25 29.3 8.8 0.052 0.016 

2g 15.68 37.0 11.1 0.077 0.023 

2e 15.95 37.4 11.2 0.038 0.011 

2h 17.25 38.4 11.5 0.138 0.042 

2o 17.31 29.8 8.9 0.413 0.124 

2p 17.57 41.1 12.3 0.415 0.125 

2i 18.77 40.2 12.1 0.051 0.015 

2r 19.62 42.5 12.7 0.092 0.028 

Key: aLimit of detection (calculated using a signal-to-noise ratio of 3:1); bLimit of quantification 
(calculated using a signal-to-noise ratio of 10:1). 
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Table 2.10. GC-MS recovery results for fentalogues (2a-r), controlled 
substances (4, 23, 27, 1a-c) and relevant/common adulterants (24a-b, 25 and 
26). 

Analyte 

Assay recovery a Mean 
recovery 

(%) 

%RSD 
(n = 3) 

Relative 
Error b 

(%) 
12 μg/mL 

(%, n = 3) 
15 μg/mL 

(%, n = 3) 
18 μg/mL 

(%, n = 3) 

23 98.8 100.2 99.4 99.5 0.7 -0.5 

24a 97.3 99.1 99.8 98.7 1.3 -1.3 

26 101.1 103.0 101.3 101.8 1.0 1.8 

25 100.4 100.9 101.5 101.0 0.6 1.0 

24b 99.1 100.5 98.4 99.3 1.1 -0.7 

27 99.1 100.3 98.5 99.3 0.9 -0.7 

1a 98.5 99.7 97.6 98.6 1.1 -1.4 

2m 99.5 100.5 98.2 99.4 1.1 -0.6 

1b 101.4 99.2 100.0 100.2 1.1 0.2 

4 97.8 98.9 97.0 97.9 1.0 -2.1 

2l 98.1 99.3 97.3 98.3 1.0 -1.7 

1c 97.4 101.1 96.9 98.5 2.3 -1.5 

2a 98.9 100.1 97.5 98.8 1.3 -1.2 

2j 98.2 100.0 97.3 98.5 1.4 -1.5 

2b 99.0 100.4 97.3 98.9 1.6 -1.1 

2q 98.6 99.3 97.2 98.4 1.1 -1.6 

2c 98.9 100.0 97.2 98.7 1.5 -1.3 

2k 98.4 100.0 97.2 98.5 1.4 -1.5 

2f 98.0 99.8 97.4 98.4 1.3 -1.6 

2n 99.0 99.5 97.1 98.5 1.3 -1.5 

2d 98.7 99.8 97.3 98.6 1.3 -1.4 

2g 98.8 100.2 97.3 98.7 1.5 -1.3 

2e 98.7 100.1 97.2 98.7 1.4 -1.3 

2h 98.5 100.3 97.0 98.6 1.7 -1.4 

2o 97.0 98.6 97.2 97.6 0.9 -2.4 

2p 97.2 98.3 96.6 97.4 0.9 -2.6 

2i 98.2 99.6 97.3 98.4 1.2 -1.6 

2r 98.9 99.8 97.5 98.7 1.2 -1.3 

Key: a Determined as a percentage ratio between the experimental concentration (calculated 
from the calibration curve) and the known concentration (12, 15 or 18 μg/mL); b Deviation 
between the average experimental recovery and a 100% recovery. 
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Table 2.11. Summary of GC-MS repeatability (intraday precision) and 
intermediate precision (interday precision) for fentalogues (2a-r), controlled 
substances (4, 23, 27, 1a-c) and relevant/common adulterants (24a-b, 25 and 
26). 

Analyte 
Intraday 

precision a 
(%RSD, n = 12) 

Interday 
precision b 

(%RSD, n = 12) 

23 1.0 1.7 

24a 2.6 2.1 

26 7.9 6.2 

25 4.0 2.2 

24b 1.7 1.6 

27 2.0 0.7 

1a 0.8 0.9 

2m 6.9 8.0 

1b 1.0 0.7 

4 0.8 1.1 

2l 1.3 1.1 

1c 0.9 0.9 

2a 1.6 1.0 

2j 1.5 0.9 

2b 1.4 0.9 

2q 1.6 1.1 

2c 1.3 1.0 

2k 3.7 2.4 

2f 1.3 0.9 

2n 1.1 1.4 

2d 1.1 0.9 

2g 1.3 1.2 

2e 1.5 1.2 

2h 1.1 0.8 

2o 2.1 1.7 

2p 1.8 1.8 

2i 1.3 1.3 

2r 1.2 1.1 

Key: aRelative standard deviation of twelve injections (10 μg/mL) performed over a short time 
interval; bRelative standard deviation of twelve injections (10 μg/mL) performed over two 
consecutive days.  
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2.9 Analysis of seized heroin samples 

Seven seized heroin samples, arbitrarily labeled SS-1 – SS-7, were obtained 

from Greater Manchester Police.  Samples weighed between 0.07 – 1.04 g and 

were suspected to contain heroin (1c). 

Samples were submitted to the analytical techniques previously reported in this 

chapter. Presumptive colour tests were first carried out. All seven samples 

gave positive reactions with Marquis’ reagent, producing a brownish-purple 

colour. On the one hand, the purple tint potentially indicates the presence of 

heroin or another opioid. The brown colour, however, appeared to be caused 

by the inherent colour of the sample matrix, which dissolved in sulfuric acid. 

This highlights a weakness of Marquis’ test, in that it may produce uncertain 

results with complex matrices and cannot lead to the confident identification of 

fentanyl in real-life samples. Additionally, previous studies have shown that 

Marquis’ test can only detect fentanyl mixed with heroin when it is the major 

component of the mixture. [26] The Eosin Y test, however, is pH-neutral and 

does not dissolve the sample matrix. Only one of the samples (SS-1) gave a 

positive reaction with Eosin Y (deep pink) potentially indicating the presence of 

fentanyl (2b) or a structural analogue. The seven samples gave inconclusive 

results with both Scott’s reagent and concentrated nitric acid.  

Thin layer chromatographic (TLC) analysis was performed. All samples 

showed significant levels of adulteration, as multiple unidentified spots were 

revealed under UV light and when developed with the Dragendorff-Ludy-

Tenger reagent. Comparison with a reference heroin sample indicated the 

presence of heroin (1c, RRf = 0.43) in all seven samples. Only one sample (SS-

1) produced a TLC spot that matched the fentanyl reference sample (2b, 

RRf = 1.00).  
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FT-IR analysis indicated the clear presence of heroin in samples SS-5 to SS-

7, as spectra were very similar to that of the reference material. Samples SS-1 

to SS-4 appear heavily adulterated. Figure 2.12 and Figure 2.13 show 

reference spectra for fentanyl and heroin, respectively, while Figure 2.14 and 

Figure 2.15 show representative spectra for adulterated heroin samples (SS-1 

and SS-2). Though the presence of heroin is possible, based on the ester C=O 

bands at ~1756 and ~1727 cm-1, formal identification of the drug is not possible 

due to the level of mixture. A band at ~1644 cm-1, observed only in SS-1, may 

be indicative of fentanyl, but the level of mixture again makes identification 

impossible.  

Table 2.12 shows the highest matches resulting from a library search for each 

seized sample. Sample SS-1 only shows heroin with a relatively low match 

score (69%). Samples SS-2 to 4 show multiple components, also with low 

match scores which may be due to adulteration. Heroin was not detected in 

SS-3 and SS-4 by FTIR. SS-5 to 7, on the other hand, all came back as heroin 

with a good score (89-90%), which may indicate the absence of infrared-active 

adulterants. Fentanyl or its analogues were not detected. Subtracting the 

highest match spectrum and searching the database again led to no significant 

match. 
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Table 2.12 Infrared match scores for seized heroin samples SS-1 to 7. 

Seized sample Highest matches (match scores) 

SS-1 Heroin (69%) 

SS-2 
Acetaminophen (68%) 

Heroin (44%) 
Caffeine (43%) 

SS-3 
Acetaminophen (59%) 

Caffeine (56%) 

SS-4 
Caffeine (71%) 

Acetaminophen (61%) 

SS-5 Heroin (89%) 

SS-6 Heroin (89%) 

SS-7 Heroin (90%) 
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Figure 2.12. ATR-FTIR spectrum of fentanyl (2b). 
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Figure 2.13. ATR-FTIR spectrum of heroin (1c). 
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Figure 2.14. ATR-FTIR spectrum of seized heroin sample SS-1. 
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Figure 2.15. ATR-FTIR spectrum of seized heroin sample SS-2. 
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Preliminary GC-MS analysis of the samples was performed in scan mode. 

Representative chromatograms are shown in Figure 2.16. Qualitative analysis 

confirmed the presence of heroin (1c, tR = 11.1 min) in all seven samples. 

Samples SS-1 – SS-4 also contained caffeine (25, tR = 3.0 min) and 

paracetamol (26, tR = 2.4 min) as the primary adulterants. Samples SS-2 – SS-

4 contained a minor peak attributed to diacetamate (40, tR = 2.6 min), confirmed 

by comparison to the NIST mass spectrum library. Compound 40 has been 

observed to form via transacetylation between paracetamol (26) and o-

acetylsalicylic acid (aspirin) after storage for prolonged periods. [144] It may 

have arisen in these samples from a similar interaction between paracetamol 

(26) and heroin (1c). Samples SS-2 – SS-7 contained 6-mono-acetylmorphine 

(6-MAM, 41, tR = 9.9 min), as confirmed by comparison with a commercial 6-

MAM reference solution. The presence of the hydrolysis product 6-MAM is 

postulated to arise if heroin samples are stored in damp conditions over a 

period of time. [145] The chemical structures of minor components 40 and 41 

are shown in Figure 2.17. As shown in Figure 2.16, sample SS-1 was the only 

one to indicate the presence of fentanyl (2b, tR = 12.0 min) in scan mode 

analysis, which agreed with the preliminary tests carried out on this sample.  
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Figure 2.16. Qualitative scan mode GC–MS analysis of heroin samples SS-1 
to SS-7 (0.1 mg/mL in methanol). Key: DAAP = N,O-diacetylaminophenol; 6-
MAM = 6-monacetylmorphine; E = eicosane (internal standard). 
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Figure 2.17. Chemical structure of compounds 40 and 41, detected in seized 
heroin samples. 

 

All samples were then submitted to the more sensitive SIM method, in case 

any low-concentration fentalogues had been missed in scan mode. Figure 2.18 

shows a comparison of sample SS-1 analysed in scan (1.12a) and SIM (1.12b) 

mode. SIM analysis leads to a much lower baseline and improved sensitivity. 

Although it had been missed in scan mode (see Figure 2.18c), fentanyl was 

found in sample SS-2 when SIM analysis was performed, due to the enhanced 

sensitivity of this method (see Figure 2.18d). Figure 2.18e shows an example 

of the fentanyl SIM mass spectrum obtained from SS-1. Fentanyl, or one of its 

analogues, were not found in any other sample. As described previously (see 

section 2.7), ion ratios of the supposed fentanyl signals in SS-1 and SS-2 were 

compared to those obtained from fentanyl reference spectra (see Table 2.13). 

Relative ion intensities were within the tolerance windows prescribed by WADA 

guidelines when compared to the pure reference material, confirming the 

identification of fentanyl in SS-1 and SS-2. [142]  
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Table 2.13. Comparison of EI-MS ion ratios of the fentanyl reference and the 
supposed fentanyl signal in seized heroin samples SS-1 and SS-2. 

2b 

SIM ions 245.1 189.1 146.0 

Relative intensities 
(%) 

100.0 44.0 58.5 

Precision  
(% RSD, n = 3) 

- 0.9 1.0 

SS-1 
(2b) 

SIM ions 259.1 189.1 146.0 

Relative intensities 
(%) 

100.0 45.0 60.4 

Precision 
(% RSD, n = 3) 

- 0.4 1.0 

SS-2 
(2b) 

SIM ions 259.1 189.1 146.0 

Relative intensities 
(%) 

100.0 52.8 65.5 

Precision 
(% RSD, n = 3) 

- 2.0 0.7 
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Figure 2.18. Qualitative GC–MS analysis heroin samples SS-1 and SS-2 (0.1 
mg/mL in methanol). a) SS-1 in scan mode; b) Total ion chromatogram of SS-
1 in SIM mode (m/z = 245.1, 189.0, 146.0); c) SS-2 in scan mode; d) Total ion 
chromatogram of SS-1 in SIM mode (m/z = 245.1, 189.0, 146.0); e) SIM 
spectrum of peak (tR = 12.0 min) corresponding to fentanyl (2b). 
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In order to quantify the components present in seized samples, and especially 

fentanyl, SS-1 – SS-7 were reanalyzed (in triplicate) using the validated GC-

MS method. Quantification results are reported in Table 2.14. All samples 

contained heroin at levels ranging between 17.8 – 82.9% w/w. The lower purity 

samples (SS-1 – SS4) contained significant levels of caffeine (3.7 – 20.5% w/w) 

and paracetamol (5.9 – 28.6% w/w). Samples SS-1 and SS-2 were found to 

contain fentanyl at 6.29±0.01% w/w and 0.288±0.008% w/w respectively. This 

corresponds to 4.403±0.007 mg and 0.35±0.01 mg within the bulk samples.  

It should be noted that this analysis does not account for 100% of the mass of 

samples. This can be partly explained by the presence of varying amounts of 

insoluble materials in samples; dissolution of these samples in methanol for 

GC-MS analysis leaves brown insoluble material that was filtered off. Other 

compounds, such as sugars, may be soluble in methanol but not volatile 

enough for GC-MS analysis. Common heroin diluents include lactose, maltose, 

mannitol, sodium bicarbonate and starch. [146] 
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Table 2.14. Qualitative and quantitative analysis of seized samples (SS-1 – SS-
7) obtained from Greater Manchester Police. Note: A dash indicates a 
compound was not detected. 

Sample 
No. 

Weight 
(g) 

Heroin 
(% w/w) 

Paracetamol 
(% w/w) 

Caffeine 
(% w/w) 

Fentanyl 
(% w/w) 

Other components 

SS-1 0.07 53.1±0.8 5.9±0.5 3.69±0.06 6.29±0.01 ─ 

SS-2 0.12 20.5±0.8 26.8±1.5 14.8±0.8 0.288±0.008a 

Diacetyl-p-
aminophenol (40), 
6-Mono-
acetylmorphine (41) 

SS-3 0.11 25.5±0.7 27.1±0.6 16.9±0.7 ─ 

Diacetyl-p-
aminophenol (40), 
6-Mono-
acetylmorphine (41) 

SS-4 0.73 17.8±0.4 28.6±2.0 20.5±1.3 ─ 

Diacetyl-p-
aminophenol (40), 
6-Mono-
acetylmorphine (41) 

SS-5 1.04 82.9±2.7 ─ ─ ─ 
6-Mono-
acetylmorphine (41) 

SS-6 0.95 74.7±1.6 ─ ─ ─ 
6-Mono-
acetylmorphine (41) 

SS-7 0.15 82.2±3.1 ─ ─ ─ 
6-Mono-
acetylmorphine (41) 

Key: aComponent only detected in SIM mode. 

This is a clear demonstration that the method developed in this study is more 

suitable for fentanyl detection (and quantification) than previously available 

methods. Fentanyl was only detected in SS-1 because it was present at a very 

high concentration. Fentanyl present in SS-2, on the other hand, was missed 

by every available analytical method, including a generic GC-MS scan, which 

is normally used for routine analysis of seized samples. The newly developed 

method allows quantification of fentanyl at relevant concentrations and is, 

therefore, better suited for harm reduction and intelligence gathering.  

It must be noted that due to the small number of samples (n = 7), these results 

are not representative of the prevalence of heroin samples contaminated with 

fentanyl in Manchester or the UK. A much wider sample range would need to 
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be analysed to establish general trends. The method presented would allow 

the production of such information, as it facilitates the routine screening of 

suspected heroin samples which may contain fentalogues, including at trace 

levels.  

2.10 Conclusion 

Analytical methods for the detection and quantification of 18 target fentalogues 

were tested and optimised using reference material synthesised in-house. 

Colorimetric tests, namely a combination of the Marquis and Eosin Y tests were 

shown to allow presumptive discrimination of fentalogues from common 

controlled drugs and adulterants. Thin-layer chromatography allowed partial 

separation of fentalogues from each other, and full separation from heroin. 

Formal separation and identification of fentanyls, however, requires more 

advanced techniques and was achieved using GC-EI-MS. Fragmentation 

patterns common to all fentalogues and fragments specific to certain 

compounds were described. A GC-MS separation method was optimised and 

fully validated for quantification at low concentrations (LOD: 0.008 – 

0.125 μg/mL and LOQ: 0.025 – 0.415 μg/mL). 

The analytical methods described were applied to seven seized heroin 

samples. The Eosin Y colour test and TLC analysis allowed the presumptive 

detection of fentanyl in one sample (SS-1). FTIR analysis only allowed the clear 

identification of heroin in samples containing no caffeine or paracetamol. It did 

not allow the detection of fentanyl in SS-1. An initial GC-MS screening 

confirmed the presence of fentanyl in only one sample (SS-1). The optimised 

SIM method showed a greatly improved sensitivity and allowed the detection 

of fentanyl in a second, lower-concentration sample (SS-2). Using the 
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optimised quantification method, fentanyl concentration was determined in 

both SS-1 and SS-2 at 6.29±0.01% w/w and 0.288±0.008% w/w, respectively. 

This chapter focused on a selection of fentanyl analogues that were most 

relevant at the time this study was conducted. Though new derivatives are still 

emerging in seizures and early warning systems, this constituted an initial 

framework for fentalogue separation and detection by GC-MS in seized 

samples, to which new compounds can always be added. However, certain 

emerging compounds, such as fluorinated fentanyl regioisomers, may pose 

different analytical challenges and require the development of specific 

detection methods.  
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CHAPTER III 

SYNTHESIS AND DETECTION OF FLUORINATED FENTANYL 

REGIOISOMERS 

3.1 Overview  

An increasingly common modification of the fentanyl structure is the 

introduction of a fluorine substituent. Most commonly, fluorine substitution 

occurs on the aniline ring of the fentanyl molecule. For instance, ortho-, meta- 

and para-fluorofentanyl have been reported across Europe and, in some cases, 

have been linked to overdoses (see Figure 3.1, 42a-c). [57-60] Similar 

derivatives such as para-fluorobutyrfentanyl (43), para-fluoroisobutyrfentanyl 

(44) or ocfentanyl (45) have been reported in seizures as well as cases of acute 

poisonings. [61-64] 

Fluorination in other positions has yet to be frequently observed. One 

difluorinated analogue, 2’-fluoro-ortho-fluorofentanyl (47), was identified within 

a seizure in China. [147] Although this was the first example of fluorination on 

the phenethyl moiety of fentanyl, it highlights the possibility that 2’-, 3’- and 4’-

fluoro derivatives such as 46a-c could appear. Spahn et al. reported that 3-

fluorofentanyl (48, also known as NFEPP) only targeted inflamed tissue in mice 

and did not produce effects sought from opioid abuse (sedation, euphoria), 

making this compound unlikely to emerge on recreational drug markets. [1]  
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Figure 3.1. Chemical structure of known and potential fluorinated fentalogues. 

 

The emergence of regioisomeric derivatives of known synthetic drugs is a 

constant challenge in forensic casework. The availability of regioisomeric 

starting materials renders the synthesis of regioisomeric derivatives extremely 

simple. These compounds tend to exhibit similar chemical and 
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chromatographic properties, and their mass spectra are often equivalent. This 

complicates the identification of specific drug regioisomers, hence why specific 

analytical methods have been developed by other research groups to identify 

regioisomers of synthetic cannabinoids, fluoroamphetamines, 

chloroamphetamines and cathinones. [148-153] 

The same challenge applies to the identification of regioisomers of 

fluorofentanyl. This chapter starts with the synthesis of reference material for 

eight fluorinated regioisomers of fentanyl (see Figure 3.2, 42a-c, 46a-c, 47, 

48). Only propionyl derivatives were included, since this study focuses on the 

separation of regioisomers, while the differentiation of fentalogues bearing 

different amide chains was outlined in Chapter 2. Target compounds, as well 

as fentanyl, heroin, paracetamol and caffeine will be submitted to presumptive 

detection methods and GC-MS analysis. Because of the difficulty of 

discriminating fluorinated fentalogues using GC-MS, benchtop NMR will be 

evaluated as an orthogonal detection method for successful identification. NMR 

will also be validated for quantification of target compounds. 

3.2 Synthesis 

The hydrochloride salts of fluorofentanyls (42a-c, 46a-c, 47, 48) were prepared 

using procedures adapted from the literature (see Figure 3.2). Starting from N-

phenethylpiperidone 5, anilines bearing a fluorine at different positions were 

introduced by reductive amination to obtain fluorinated 4-ANPP derivatives 

49a-c. Acylation with propionyl chloride and reaction with ethereal HCl 

produces target compounds 42a-c. Synthesis of 46a-c derivatives started with 

the acylation of 1-Boc-4-phenylaminopiperidine 50 to obtain compound 51. Boc 

deprotection, alkylation with fluorophenethyl bromide regioisomers and 

reaction with HCl afforded compounds 46a-c. Synthesis of 47 was performed 
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in a similar way, starting with an additional step consisting in the reductive 

amination between 1-Boc-4-piperidone 52 and 2-fluoroaniline. Finally, 

synthesis of 3-fluorofentanyl (48) followed the same steps, starting from 1-Boc-

3-fluoro-4-piperidone (55).  

 

Figure 3.2. Synthesis of target fluorofentanyls (42a-c, 46a-c, 47, 48) and 
structure of controlled drugs and adulterants included in this study. Reagents 
and conditions: (a) ArNH2, AcOH, NaBH(OAc)3, DCE, r.t., 48 h; (b) Propionyl 
chloride (2.0 eq.), iPr2NEt (2.0 eq.), DCM (0.1 M), 0 °C to r.t., 2 h; (c) HCl (3 M 
in CPME, 1.0 eq.), Et2O or acetone (0.1 M), r.t., 2 h; (d) 1. TFA/DCM (1:3) (0.3 
M), 0 °C to r.t., 1 h, 2. Ar(CH2)2Br, Cs2CO3, ACN, reflux, 5 h.  
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The products were fully characterized: ATR-FTIR and NMR (1H, 13C, 19F) and 

high-resolution mass spectrometry (HRMS) data are reported in Section 7.12. 

ATR-FTIR and NMR (1H, 13C, 19F) spectra are reported in the Appendix. EI-MS 

spectra are reported in Section 3.6 (Figure 3.4).   

It was shown in Chapter 2 that fentalogues produced 1H NMR spectra that were 

indicative of their common backbone, and that specific derivatives could be 

differentiated based on signals associated with their amide chains. Most 

fluorinated regioisomers studied in this chapter share common features in their 

piperidine, ethyl chain and amide chain signals, as highlighted in Table 3.1. 

One glaring exception is 3-fluorofentanyl (48): its piperidine signals have 

different chemical shifts and couplings from the other derivatives, because of 

the presence of a fluorine atom. Another exception was observed in 

compounds 42a and 47, which bear a fluorine in the ortho position of the aniline 

ring. In most fentalogues, piperidine signals are split between axial and 

equatorial protons, because of differences in their chemical environments. For 

instance, protons 11-axial and 11-equatorial have different chemical shifts from 

each other. Incidentally, because fentanyl is symmetrical, 11-axial coincides 

with 13-axial, while 11-equatorial coincides with 13-equatorial. The 

corresponding signals were arbitrarily labelled 11a/11b and 13a/13b. In 

compounds 42a and 47, proton 11a has a different chemical shift from 13a, 

meaning that their chemical environments are not equivalent due to the 

presence of the ortho fluorine on the aniline ring. The presence of this fluorine 

must somehow slow down or prevent the rotation around the C12-N bond, 

resulting in different chemical environments for protons 11 and 13. 

Fluorinated regioisomers can be differentiated through differences in their 

aromatic region, as shown in Figure 3.3. Signal attribution required an analysis 
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of 1H-1H and 1H-13C correlation spectra and 13C-19F coupling constants 

observed in 13C NMR (reported in Section 7.10.2). While 1H NMR spectra 

indicate a specific substitution pattern, the presence of a fluorine atom can only 

be determined by 19F NMR and mass spectrometry.  
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Figure 3.3. Aromatic region (7.025 – 7.750 ppm) of the high-field 1H NMR 
spectra of fluorofentanyls 42a-c, 46a-c, 47, 48 in DMSO-D6.  
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Table 3.1. 1H NMR attribution of fentalogues 42a-c, 46a-c, 47, 48 and numbering reference for fentanyl (2b). 

 

Key: a a and b are axial and equatorial protons on the same carbon. 

 

d) 

 

 Piperidine ring and ethyl chain protons a Amide chain protons 

 12 10a 14a 10b 14b 8 7 13a 11a 11b 13b 22 23 

42a 
4.75 
(tt) 

3.52 
(t) 

3.21-3.04 
(m) 

3.01-2.92 (m) 1.98 (d) 1.93-1.49 (m) 1.93-1.49 (m) 0.89 (t) 

42b 
4.7 
(t) 

3.52 
(d) 

3.22-3.04 
(m) 

3.04-2.92 (m) 2.04-1.80 (m) 1.63 (qd) 2.04-1.80 (m) 0.89 (t) 

42c 
4.71 
(t) 

3.52 
(d) 

3.24-3.03 
(m) 

3.03-2.91 (m) 1.92 (m) 1.6 (qd) 1.83 (q) 0.88 (t) 

46a 
4.72 
(tt) 

3.53 
(d) 

3.19-3.06 
(m) 

3.05-2.97 (m) 1.93 (m) 1.6 (qd) 1.81 (q) 0.87 (t) 

46b 
4.69 
(tt) 

3.48 
(d) 

3.21-3.01 
(m) 

3.01-2.92 (m) 1.9 (m) 1.58 (qd) 1.79 (q) 0.84 (t) 

46c 
4.72 
(tt) 

3.51 
(d) 

3.21-3.03 
(m) 

2.99-2.90 (m) 1.93 (m) 1.58 (qd) 1.82 (q) 0.87 (t) 

47 
4.74 
(tt) 

3.54 
(t) 

3.23-3.08 
(m) 

3.08-2.95 (m) 2.00 (d) 1.95-1.49 (m) 1.95-1.49 (m) 0.89 (t) 

48 
4.81 
(dd) 

3.83 
(t) 

3.72-3.43 
(m) 

3.35-3.13 
(m) 

3.08-2.87 (m) 1.94-1.75 (m) 5.35 (d) – 
1.59 
(qd) 

1.94-1.75 (m) 0.9 (t) 
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3.3 Presumptive colour tests 

Fluorinated fentalogues, fentanyl and heroin were submitted to the Marquis, 

nitric acid and Eosin Y colorimetric tests; results are reported in Table 3.2. 

Heroin (1c) could easily be differentiated from fentanyl (2b) and its fluorinated 

analogues (42a-c, 46a-c, 47, 48) using the nitric acid or Marquis’ tests. Heroin 

produced a green colour with the former while fentalogues do not react, and a 

distinctive deep violet colour with the latter. 

The results of Marquis’ test, however, varied depending on the fluorofentanyl 

tested. Compounds 42a-c and 48 reacted the same way as fentanyl, producing 

a dark brown colour. Interestingly, fluorination of the phenethyl ring (46a-c, 47) 

appeared to hinder the reaction. This is most likely because it proceeds through 

formylation of the aromatic ring by formaldehyde, catalysed by sulfuric acid. 

[77] The presence of a fluorine atom deactivates the ring for electrophilic 

aromatic substitution.  

This reveals an important fact about the potential mechanism of the reaction 

between fentalogues and Marquis’ reagent: formylation mostly occurs at the 

phenethyl ring, not the aniline ring. Any modification of this moiety is therefore 

likely to prevent a conclusive colour change from appearing, leading to a false 

negative result. This illustrates how presumptive colour tests can prove 

unreliable when testing for emerging drug analogues.  

The Eosin Y test allows effective discrimination between fentanyl analogues 

and common drugs and adulterants. This also applied to fluorinated 

fentalogues, except for 42c and 48, which produced a false negative result.  
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Table 3.2. Reactions of fluorofentalogues (42a-c, 46a-c, 47, 48), fentanyl and 
heroin with the Marquis, nitric acid and Eosin Y tests. Note: A dash indicates 
the absence of a discernible colour change. 

 Nitric Acid Marquis Eosin Y 

 Immediate 
colour 

Colour after 
5 min 

Immediate 
colour 

Colour 
after 
5 min 

Immediate 
colour 

Colour 
after 
5 min 

1c Yellow Green Violet Violet Light pink 
Light 
pink 

2b ─ ─ Orange 
Dark 

brown 
Dark pink 

Dark 
pink 

42a ─ ─ Orange 
Dark 

brown 
Dark pink 

Dark 
pink 

42b ─ ─ Orange 
Dark 

brown 
Dark pink 

Dark 
pink 

42c ─ ─ Orange 
Dark 

brown 
Light pink 

Light 
pink 

46a ─ ─ 
Light 

orange 
Orange-
brown 

Dark pink 
Dark 
pink 

46b ─ ─ ─ Light pink Dark pink 
Dark 
pink 

46c ─ ─ ─ Pink Dark pink 
Dark 
pink 

47 ─ ─ 
Light 

orange 
Orange-
brown 

Dark pink 
Dark 
pink 

48 ─ ─ Orange 
Dark 

brown 
Light pink 

Light 
pink 

 

3.4 Thin-layer chromatography (TLC) 

TLC analysis of the target compounds was carried out using an eluent of 

dichloromethane-methanol (9:1 v/v) containing 1% triethylamine. The plates 

were developed with modified Dragendorff-Ludy-Tenger reagent. The Rf 

values showed clear separation of the ortho/meta/para series (42a-c, Rf = 0.52, 

0.49 and 0.46, respectively). Separation was less defined between 47 (Rf = 

0.50) and 2b (Rf = 0.51). 42c (Rf = 0.46) co-eluted with 46a (Rf = 0.46) and 46b 

(Rf = 0.47). 46c (Rf = 0.44) and 48 (Rf = 0.64) were clearly separated from all 

other derivatives. Despite their similar chromatographic properties, partial 
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discrimination of the target fluorofentanyls was possible under these TLC 

conditions.  

Table 3.3 Thin-layer chromatography results for fentalogues 42a-c, 46a-c, 47, 
48 and fentanyl 2b.  

Compound Rf
a RRf

b 

42a 0.52 1.01 

42b 0.49 0.96 

42c 0.46 0.91 

46a 0.46 0.91 

46b 0.47 0.93 

46c 0.44 0.87 

47 0.50 0.99 

48 0.64 1.26 

2b 0.51 1.0 

Key: aRetention factor (DCM-MeOH (9:1 v/v) with 1% Et3N); bRelative 
Retention Factor (with respect to fentanyl, 2b). 

 

3.5 Infrared spectroscopy 

ATR-FTIR spectra of fentalogues 42a-c, 46a-c, 47 and 48 are reported in 

Section 7.13. Similarly to the compounds studied in Chapter II, they are 

characterised by weak to medium aromatic and aliphatic C−H bands (~3050-

2850 cm-1), weak to medium ammonium salt N−H bands (~2600-2400 cm-1) 

and a strong amide C=O stretching band (~1660-1640 cm-1). A C-F stretch 

should be observed in the fingerprint region, around 1200 cm-1, [154] but is 

difficult to identify.  
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Again, a leave-one-out validation was performed (Table 3.4). All match scores 

are less than or equal to 73%, which indicates a good ability to discriminate 

compounds.  

Table 3.4. Leave-one-out validation of the ATR-FTIR method with analogues 
42a-c, 46a-c, 47, 48. 

Compound 
Second highest 

match 
Match score 

42a 47 72% 

42b 2e 39% 

42c 2g 32% 

46a 47 65% 

46b 2b 73% 

46c 46a 57% 

47 42a 72% 

48 2k 58% 

 

3.6 Electron ionisation mass spectrometry 

Electron ionisation mass spectra of fentalogues 42a-c, 46a-c, 47, 48 are 

reported in Figure 3.4.  
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Figure 3.4. Electron ionisation mass spectra of fentalogues 42a-c, 46a-c, 47, 
48. 

 

The general EI-MS fragmentation pattern of fentanyl has been discussed and 

is represented in Figure 2.6. The main initial loss of a benzyl radical produced 

a fragment at m/z = 245, followed by three major fragments of m/z = 202, 189 

42a 

42b 

42c 

46a 

46b 

46c 

47 48 
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and 146. In the same way, fluorofentanyls 46a-c, readily lose a benzyl cation 

upon fragmentation to form a cation of m/z = 245 (Figure 3.5). Their main 

fragments did not contain a fluorine atom and were therefore equivalent to 

those of fentanyl. The only difference with fentanyl was a fragment of 

m/z = 109, which could be attributed to a fluorinated tropylium ion. In fentanyl, 

the corresponding tropylium ion has an m/z of 91.  

 

Figure 3.5. Initial EI-MS fragmentations of 2’-, 3’- and 4’-fluorofentanyl (46a-c). 

 

Isomers 42a-c all retained a fluorine atom in their main fragments (see Figure 

3.6). They were thus easily differentiated from fentanyl, but not from each other, 

by their mass spectra.  
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Figure 3.6. EI-MS fragmentation of ortho-, meta-, para-fluoro fentanyl (42a-c). 

 

Compound 47, by losing a fluorobenzyl radical, produced essentially the same 

fragment ions as compounds 42a-c, outlined in Figure 3.6. However, its three 

heaviest fragments (m/z = 263, 207 and 164) were of disproportionately strong 

intensity compared to 42a-c. 48 produced fragment ions with the same mass 

as those reported in Figure 3.6, with one additional ion at m/z = 186, which was 

not readily explained. 

3.7 Qualitative GC-MS analysis 

A GC-MS method was optimized to separate the target compounds (see Figure 

3.7), using the following temperature gradient: 100 to 200 °C at 30 °C/min, 200 

to 230 at 10 °C/min, 230 to 260 at 30 °C/min, 260 to 265 at 1 °C/min, hold for 

1 min for a 13.3 min total runtime.  Only partial chromatographic resolution was 

achieved, due to their similar chromatographic properties. Target fentalogues 

were fully separated from heroin (1c) and adulterants acetaminophen (26) and 

caffeine (25). The method also separated compounds 42a-c. Despite an 

optimization of the temperature program, however, compounds 46a-c co-

eluted and could not be resolved by SIM analysis as they produced the same 
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fragment ions. SIM ions and their relative intensities are reported in Table 3.5. 

In a similar way, 42b partially co-eluted with 47, and the two produced the same 

MS ions. Although 48 co-eluted with 2b, they were differentiated in SIM mode. 

 

Figure 3.7. Exemplar GC-MS chromatogram of target fluorofentanyls (42a-c, 
46a-c, 47, 48), fentanyl (2b), heroin (1c), acetaminophen (26), caffeine (25) 
and eicosane (internal standard, E). 
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Table 3.5. EI-MS ions used for identification of analytes via Selective Ion 
Monitoring (SIM), relative intensity of each ion (relative to base peak) and 
precision (%RSD) of the relative intensities. 

26 

SIM ions 109.0 151.0 80.0  

42a 

SIM ions 263.1 207.0 164.0 

Relative 
intensities (%) 

100.0 36.0 20.1  
Relative 
intensities (%) 

100.0 39.1 51.7 

Precision 
(% RSD, n = 3) 

N/A 0.5 0.3  
Precision 
(% RSD, n = 3) 

N/A 0.5 1.1 

25 

SIM ions 194.1 109.0 82.0  

46a 

SIM ions 245.1 189.1 146.0 

Relative 
intensities (%) 

100.0 46.9 19.8  
Relative 
intensities (%) 

100.0 35.5 49.7 

Precision 
(% RSD, n = 3) 

N/A 0.7 0.6  
Precision 
(% RSD, n = 3) 

N/A 0.8 0.3 

1c 

SIM ions 369.2 327.2 268.1  

46b 

SIM ions 245.1 189.1 146.0 

Relative 
intensities (%) 

66.5 100.0 62.3  
Relative 
intensities (%) 

100.0 36.0 49.3 

Precision 
(% RSD, n = 3) 

1.2 N/A 1.9  
Precision 
(% RSD, n = 3) 

N/A 1.3 1.3 

42b 

SIM ions 263.1 207.0 164.0  

46c 

SIM ions 245.1 189.1 146.0 

Relative 
intensities (%) 

100.0 32.4 38.2  
Relative 
intensities (%) 

100.0 36.6 52.8 

Precision 
(% RSD, n = 3) 

N/A 1.0 0.3  
Precision 
(% RSD, n = 3) 

N/A 0.4 0.8 

47 

SIM ions 263.1 207.0 164.0  

2b 

SIM ions 245.1 189.1 146.0 

Relative 
intensities (%) 

100.0 38.9 52.1  
Relative 
intensities (%) 

100.0 35.2 47.5 

Precision 
(% RSD, n = 3) 

N/A 1.8 0.5  
Precision 
(% RSD, n = 3) 

N/A 1.1 1.9 

42c 

SIM ions 263.1 207.0 164.0  

48 

SIM ions 263.1 207.0 164.0 

Relative 
intensities (%) 

100.0 30.9 42.3  
Relative 
intensities (%) 

100.0 52.8 8.3 

Precision 
(% RSD, n = 3) 

N/A 1.2 0.9  
Precision 
(% RSD, n = 3) 

N/A 2.6 3.8 

 

3.8 Quantitative GC-MS analysis 

The quantitative GC-MS method (SIM mode), was developed and validated in 

accordance with the ICH guidelines. [143] To avoid peak overlap between 

analytes which produced indistinguishable SIM ions, target compounds were 

organized into three groups, each validated separately from the others 
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(Group I:  heroin 1c, fentanyl 2b, caffeine 25, acetaminophen 26 and 46b; 

Group II:  42a-c and 46c; Group III: 46a, 47 and 48). 

A summary of GC-MS validation data is reported in Table 3.6. As discussed 

previously, fentalogues are well resolved from heroin and its adulterants, but 

poorly resolved from each other. Fluorinated fentalogues peaks proved very 

symmetrical (As value close to 1). Limits of detection and quantification were 

determined based on signal-to-noise (S/N) ratio. For fentalogues, these were 

0.009 – 0.020 μg/mL (LOD) and 0.031 – 0.067 μg/mL (LOQ). For other 

controlled substances and adulterants they were 0.034 – 0.068 μg/mL (LOD) 

and 0.113 – 0.227 μg/mL (LOQ). This is comparable to the method reported in 

Chapter II (see Section 2.8). Limits of detection and quantification in SIM mode 

were compared to those calculated for scan mode (Table 3.7). For fentalogues, 

the SIM method proved between 455 – 1261 times more sensitive than scan 

mode.  

Calibration standards were prepared over a 5.0–25.0 μg/mL concentration 

range, using eicosane as an internal standard, to produce a calibration curve 

for each analyte (see calibration curve equations below Table 3.6). All 

substituted fentalogues demonstrated a linear response (r2 = 0.998–0.999) with 

satisfactory repeatability (RSD = 0.3 – 3.9%, n = 6). The method was also 

suitable for quantification of the other controlled substances and adulterants, 

demonstrating linear response (r2 = 0.993 –0.998) with reasonable repeatability 

(RSD = 1.1 – 7.4 %, n = 6). 

The accuracy of the method was determined using a percentage recovery 

study (see Table 3.8). Spiked samples were prepared in triplicates at three 

concentration levels over a range of 80–120% of a target concentration 
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(15 μg/mL). The result of these injections is fed back into the calibration curve 

and the experimental concentration is compared with the theoretical 

concentration (assay recovery). The relative error shows how the mean assay 

recovery diverges from an expected 100%. Acceptable recoveries (100 ± 3%) 

were obtained for all analytes.  

The precision (inter- and intraday precision) was calculated from six replicate 

injections of a spiked sample (10 μg/mL) and analysed on two consecutive 

days (see Table 3.9). Most analytes showed acceptable precision, with intraday 

RSDs between 1.7 and 4.6%, apart from paracetamol (interday: 6.5%), similar 

to the method developed in Chapter II. 

Although the GC-MS analysis of fluorinated fentalogues was fully validated, co-

elution of compounds with the same m/z ions (46a-c) prevented the 

identification of specific regioisomers. Identification of regioisomers would have 

to be confirmed using a different technique, such as NMR. 1H and 19F NMR 

spectroscopy are proposed as alternative detection and quantification 

techniques to resolve this issue.  

 



113 

 

Table 3.6. Summary of GC-MS validation data (SIM mode) for the quantification of fentalogues (2b, 42a-c, 46a-
c, 47, 48), heroin (1c) and common adulterants (25, 26).  NB. tR (eicosane, IS) = 3.47 min (see Figure 3.7 for 
chromatogram). 

Analyte 
tR 

(min) 
RRTa Rs As 

N 
(plates) 

r2 LOQn 

(μg/mL) 
LODo 

(μg/mL) 

Precision (%RSD, n = 6) 

5 
μg/mL 

10 
μg/mL 

15 
μg/mL 

20 
μg/mL 

25 
μg/mL 

26 4.88 0.39 - 6.1 418362 0.993b 2.074 0.622 7.4 4.7 4.3 5.9 3.3 

25 5.69 0.46 33.0 1.8 501999 0.997c 0.113 0.034 4.0 2.1 1.9 2.5 2.4 

IS 6.49 0.52 27.8 1.1 871966 N/A N/A N/A N/A N/A N/A N/A N/A 

1c 11.51 0.93 109.0 1.0 553506 0.998d 0.227 0.068 5.3 4.8 1.4 2.1 1.1 

42b 11.79 0.95 4.3 1.0 564224 0.999e 0.040 0.012 2.8 0.3 2.4 1.3 1.1 

47 11.87 0.95 1.1 1.0 514321 0.999f 0.044 0.013 1.1 1.6 1.5 1.6 1.1 

42c 11.99 0.96 1.7 1.0 506423 0.998g 0.045 0.013 2.1 1.0 2.4 1.2 1.2 

42a 12.14 0.98 2.1 1.1 459280 0.999i 0.057 0.017 3.1 1.2 1.4 1.2 1.2 

46a 12.16 0.98 0 1.0 533666 0.999h 0.031 0.009 1.2 0.6 1.3 1.5 0.9 

46b 12.24 0.98 1.6 1.1 450960 0.999j 0.057 0.017 3.7 1.9 1.6 2.2 1.7 

46c 12.27 0.99 0 1.2 433778 0.998k 0.045 0.013 2.2 1.3 2.1 1.0 1.4 

2b 12.44 1.00 2.4 1.1 468388 0.999l 0.055 0.017 3.9 2.4 1.0 2.5 1.3 

48 12.47 1.00 0 1.1 464368 0.999m 0.067 0.020 1.9 1.6 1.2 1.3 1.5 

 Key: a Relative retention time (in relation to fentanyl); b y=0.1438x-0.6305; c y=0.1920x-0.0628; d y=0.0597x – 0.0761; e y=0.2547x-
0.0635; f y=0.1804x-0.0761; g y=0.2546x-0.1061; h y=0.2463x-0.1634; i y=0.2070x-0.0634; j y=0.2295x-0.2382; k y=0.2442x-0.0907; l 
y=0.2173x-0.4763; m y=0.2420x-0.2908; n Limit of detection (calculated using a signal-to-noise ratio of 3:1); o Limit of quantification 
(calculated using a signal-to-noise ratio of 10:1). 
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Table 3.7. Comparison of GC-MS limits of detection/quantification determined 
in scan mode and selective ion monitoring (SIM) mode for fentalogues (2b, 
42a-c, 46a-c, 47, 48), heroin (1c) and common adulterants (25, 26). 

  Scan mode 
Selective ion 

monitoring (SIM) mode 

Analyte 
tR 

(min) 
LODa 

(μg/mL) 
LOQb 

(μg/mL) 
LODa 

(μg/mL) 
LOQb 

(μg/mL) 

26 4.88 76.5 23.0 2.074 0.622 

25 5.69 1.6 0.5 0.113 0.034 

1c 11.51 62.0 18.6 0.227 0.068 

42b 11.79 33.0 9.9 0.040 0.012 

47 11.87 29.8 8.9 0.044 0.013 

42c 11.99 30.8 9.2 0.045 0.013 

42a 12.14 35.9 10.8 0.057 0.017 

46a 12.16 39.1 11.7 0.031 0.009 

46b 12.24 27.3 8.2 0.057 0.017 

46c 12.27 27.3 8.2 0.045 0.013 

2b 12.44 25.0 7.5 0.055 0.017 

48 12.47 36.3 10.9 0.067 0.020 

Key: aLimit of detection (calculated using a signal-to-noise ratio of 3:1); bLimit of quantification 
(calculated using a signal-to-noise ratio of 10:1). 
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Table 3.8. GC-MS recovery results for fentalogues (2b, 42a-c, 46a-c, 47, 48), 
heroin (1c) and common adulterants (25, 26). 

Analyte 

Assay recoverya Mean 
recovery 

(%) 

%RSD 
(n = 3) 

Relative Errorb 
(%) 12 μg/mL 

(%, n = 3) 
15 μg/mL 

(%, n = 3) 
18 μg/mL 

(%, n = 3) 

42b 98.4 97.3 97.0 97.6 0.8 -2.4 

47 98.7 98.2 99.0 98.6 0.4 -1.4 

42c 97.5 97.0 97.0 97.2 0.3 -2.8 

42a 98.1 97.5 98.8 98.1 0.7 -1.9 

46a 99.7 98.2 99.2 99.0 0.7 -1.0 

46b 103.0 103.1 99.6 101.9 2.0 1.9 

46c 98.1 97.9 96.7 97.6 0.7 -2.4 

2b 102.7 102.8 100.1 101.9 1.5 1.9 

48 98.0 98.6 98.9 98.5 0.4 -1.5 

1c 102.8 102.8 100.3 102.0 1.4 2.0 

26 102.0 102.6 102.3 102.3 0.3 2.3 

25 103.1 100.3 100.6 101.3 1.5 1.3 

Key: a Determined as a percentage ratio between the experimental concentration (calculated 
from the calibration curve) and the known concentration (12, 15 or 18 μg/mL); b Deviation 
between the average experimental recovery and a 100% recovery. 
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Table 3.9. Summary of GC-MS repeatability (intraday precision) and 
intermediate precision (interday precision) for fentalogues (2b, 42a-c, 46a-c, 
47, 48), heroin (1c) and common adulterants (25, 26). 

Analyte 
Intraday 

precisiona 
(%RSD, n = 12) 

Interday 
precisionb 

(%RSD, n = 12) 

26 4.6 6.5 
25 2.9 2.6 
1c 2.8 1.9 

42b 1.8 3.6 

47 3.8 3.9 

42c 3.8 3.1 

42a 3.3 3.1 

46a 3.7 3.7 

46b 3.7 3.5 

46c 1.7 4.1 

2b 3.4 4.2 

48 4.3 3.6 

Key: a Relative standard deviation of twelve injections (10 μg/mL) performed over a short time 
interval; b Relative standard deviation of twelve injections (10 μg/mL) performed over two 
consecutive days.  
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3.9 Qualitative NMR analysis 

It was highlighted in Section 3.2 that 1H NMR could be used to differentiate 

fluorinated fentanyl analogues based on their aromatic signals. A recent study 

also reported using 1H benchtop NMR for the qualitative identification of certain 

fluorofentanyls (42a-c and 48). [95]  

Although 1H NMR allowed the identification of fluorofentanyl regioisomers, and 

potentially their quantification, its effectiveness may be limited in adulterated 

mixtures where signal overlaps are likely. The use of 19F NMR circumvents this 

issue – fluorine atoms do not typically occur in the drugs and adulterants 

commonly mixed with fentanyl, such as heroin, acetaminophen and caffeine. 

19F NMR would therefore allow the quantification of fluorofentanyls in mixtures.  

Overlaid 19F NMR spectra of the target fluorofentanyls are shown in Figure 3.8 

and chemical shifts of each fluorine signal are reported in Table 3.10. The same 

pattern was observed for each aromatic ring: the 19F NMR signals of the ortho 

and para isomers were shielded by the electron-donating effect of the 

substituent (amide or alkyl chain), and this effect was more observable in the 

ortho compounds. In 3-fluorofentanyl (48), the fluorine is located on an aliphatic 

ring and thus is extremely shielded (-119.4 ppm). All target compounds 

produced fully resolved signals using high-field 19F NMR and could easily be 

identified and separated in a potential mixture (Figure 3.8b). This shows that, 

confronted with a suspected fluorofentanyl sample, 19F NMR can be used to 

inform which ring is substituted and at which position. Difluorinated compound 

47 produced two signals, equivalent to those of 2’-fluorofentanyl 46a and ortho-

fluorofentanyl 42a (Figure 3.8b). This simplifies the identification of potential 

new difluorinated compounds, as a simple 19F NMR analysis and comparison 
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to reference chemical shifts can help determine the fluorine substitution 

pattern, without the need for more complex and time-consuming 2D analysis. 

 

 

Figure 3.8. (a) Overlay of high-field 19F NMR spectra of target fluorofentanyls 
(42a-c, 46a-c, 48); (b) High-field 19F NMR of compound 47. 
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42c 

42a 
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Figure 3.9. (a) Overlay of low-field 19F NMR spectra of target fluorofentanyls 
(42a-c, 46a-c, 48); (b) Low-field 19F NMR of compound 47. 

 

Low-field 19F NMR detection of fluorofentanyls was also investigated. Low-field 

benchtop NMR instruments have the advantage of being much more affordable 

than their high-field counterparts, easier to use and potentially field-deployable. 

Previous studies have reported the reliable identification of illicit drugs [93] and 

42b 

42c 
42a 

46b 

46a 

46c 48 
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fentanyl derivatives [95] by low-field 1H NMR. Figure 3.9 shows an overlay of 

the low-field 19F NMR spectra of target fluorofentanyls. The use of benchtop 

NMR resulted in a loss of resolution: two signals coincide (46b and 42c) but 

are still partially resolved. Benchtop 19F NMR proved suitable for the 

discrimination of fluorinated regioisomers of fentanyl (except 46b and 42c). 

These also co-elute by TLC, so proper identification of these derivatives would 

require 1H NMR or GC-MS analysis.  

Another scenario which must be accounted for is the unlikely, but possible, 

analysis of a mixture of two fluorofentanyls, for instance 42a and 46a. 

Combinations of different fentalogues have previously been found in casework. 

[155-157] This mixture would appear similar to difluorinated compound 47, 

which produces the same 19F NMR signals. A sample of 2’-fluoro ortho-

fluorofentanyl would easily be differentiated from a mixture of 2’-fluorofentanyl 

(46a) and ortho-fluorofentanyl (42a) by TLC or GC-MS, or alternatively by 

measuring the ratio between both fluorine signals in the 19F NMR spectrum.  

Five standard solutions containing varying ratios of 46a/42a were prepared. 

Benchtop 19F NMR spectra of each sample were acquired; the integration of 

46a (2’ fluorine signal) was divided by the sum of both signals. The resulting 

graph is shown in Figure 3.10. A linear relationship is obtained which enables 

the quantification of the proportion of 46a and 42a present in a mixture by 

analysing the ratio of their signals. A solution containing only difluorinated 47 

was run, and a signal ratio of 0.524 was obtained (see Figure 3.10, orange 

line).  

While this ratio will always be constant for compound 47, only a mixture of 

51:49 46a/42a would produce the exact same ratio as 47 – any other 
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concentration would produce a different ratio and be easily differentiable. In the 

rare case where a signal ratio of 51:49 was obtained, other methods previously 

discussed are required to correctly identify the sample.  

 

Figure 3.10. 19F NMR signal ratio of a 46a and 42a mixture (integration of 
46a/(46a+42a)) against the concentration of 46a. The orange line marks the 
signal ratio observed in a pure solution of 47.  

 

3.10 Quantitative low-field 19F NMR analysis 

A quantitative low-field 19F NMR method was developed and validated in 

accordance with the ICH guidelines. [143] A summary of NMR validation data 

is reported in Table 3.10. The LOD and LOQ (based on signal-to-noise ratio) 

were of 73.8 – 403.3 μg mL−1 and 286.9 – 1344.3 μg mL−1 respectively. Though 

this technique is not nearly as sensitive as GC-MS (LOD = 0.009 – 

0.020 μg/mL), this data shows that fentalogue detection would be possible at 

the low concentrations expected in seized samples.  

y = 0.0099x + 0.0222
R² = 0.9979
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Calibration standards were prepared over a 5.0–15.0 mg/mL concentration 

range to produce a calibration curve for each analyte. TFA was added as a 

chemical shift reference, but no internal standard was necessary to normalise 

analyte signals. All substituted fentalogues demonstrated a linear response (r2 

= 0.994–0.999) with satisfactory repeatability (RSD = 0.9 – 9.7 %, n = 6). 

The accuracy of the method was determined using a percentage recovery 

study (see Table 3.11). Spiked samples were prepared in triplicates at three 

concentration levels over a range of 80–120% of a target concentration 

(10 mg/mL). Acceptable recoveries (100 ± 3%) were obtained for all analytes.  

Table 3.10. Low-field 19F NMR validation data for the quantification of 
fluorofentanyls (42a-c, 46a-c, 47, 48). See Figure 3.9 for representative 
spectra. 

Analyte 
Chemical 

shift 
(ppm)a 

r2 LODb 

(μg/mL) 
LOQc 

(μg/mL) 

Precision (%RSD, n = 6) 

5 
mg/mL 

8 
mg/mL 

10 
mg/mL 

12 
mg/mL 

15 
mg/mL 

42b -114.064 0.999 105.2 350.7 3.3 2.2 2.4 1.6 1.4 

46b -115.698 0.999 104.1 347.0 4.1 2.8 2.8 2.0 1.6 

42c -115.977 0.996 75.6 251.8 4.8 4.7 2.5 2.3 3.0 

46c -118.556 0.995 130.6 435.3 5.3 2.5 4.2 1.8 2.3 

46a -120.762 0.999 86.1 286.9 4.3 3.3 0.9 2.4 1.1 

42a -122.048 0.995 73.8 246.1 5.8 4.8 2.6 4.1 2.4 

48 -199.434 0.996 403.3 1344.3 9.7 4.5 2.7 5.2 4.7 

47 (2’) -120.657 0.994 108.6 361.9 3.1 4.0 3.5 4.0 2.9 

47 (o) -122.047 0.994 117.9 393.0 6.1 4.5 4.7 4.3 2.2 

Key: a Referenced to trifluoroacetic acid (TFA); b Limit of detection (determined using a signal-
to-noise ratio of 3:1); c Limit of quantification (determined using a signal-to-noise ratio of 10:1). 
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Table 3.11. Low-field 19F NMR recovery results for fentalogues (42a-c, 46a-c, 
47, 48). 

Key: a Determined as a percentage ratio between the experimental concentration (calculated 
from the calibration curve) and the known concentration (12, 15 or 18 μg/mL); b Deviation 
between the average experimental recovery and a 100% recovery. 

Finally, the possibility to detect a fluorinated fentanyl in a mixture with heroin 

using this method was tested. A solution containing 42 mg/mL heroin (1c) and 

1 mg/mL ortho-fluorofentanyl (42a) was prepared. This corresponds to a 

42a/1c ratio of 2.4% w/w. The solution was first analysed by benchtop 1H NMR 

using the Pulsar benchtop NMR spectrometer. The resulting spectrum 

appeared to be that of pure heroin (see Figure 3.11a). When compared against 

a previously developed low-field 1H NMR drug database, [93] which includes 

ortho-fluorofentanyl 42a, heroin was the only component identified in the 

sample with a 97.4% match score, while 42a was not detected. Increasing the 

number of scans in increments from 16 – 4096 yielded the same result, with 

negligible change in the match score. 

Low-field 19F NMR analysis using the developed method revealed the presence 

of 42a, within the LOQ, demonstrating the applicability of this method to 

adulterated heroin samples (see Figure 3.11b). 

Analyte 

Assay recovery a 
Mean 

recovery (%) 
%RSD 
(n = 3) 

Relative Error b 
(%) 8 mg/mL 

(%, n=3) 
10 μg/mL 
(%, n=3) 

12 μg/mL 
(%, n=3) 

42b 98.5 100.3 99.4 99.4 0.9 -0.6 

46b 97.7 103.6 102.2 101.2 3.0 1.2 

42c 96.9 100.4 96.6 98.0 2.1 -2.0 

46c 101.6 103.3 102.7 102.5 0.8 2.5 

46a 99.4 101.9 102.3 101.2 1.5 1.2 

42a 101.8 103.1 96.7 100.6 3.4 0.6 

48 100.9 102.4 100.2 101.2 1.1 1.2 

47 (2’) 103.9 99.8 102.7 102.1 2.1 2.1 

47 (o) 97.6 98.4 100.7 98.9 1.6 -1.1 
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Figure 3.11. (a) Low-field 1H NMR spectrum of an ortho-fluorofentanyl 
(42a)/heroin (1c) mixture (2.4 %w/w); (b) Low-field 19F NMR spectrum of an 
ortho-fluorofentanyl (42a)/heroin (1c) mixture (with TFA as reference). 

 

The specificity of this technique must be discussed. When confronted with a 

seized heroin sample, the detection of a fluorine peak cannot lead to the formal 

identification of a fluorinated fentalogue. However, it should be considered that 

none of the adulterants commonly mixed with heroin bear fluorine atoms. 

Considering this context, the detection of a fluorine peak, at a chemical shift 

consistent with a fluorofentanyl, should be a cause of suspicion which leads to 

 

 

 

 

 

 

a) 

b) 

TFA 

42a 
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the use of other confirmatory methods. In that sense, 19F NMR can be used 

orthogonally to other techniques, as well as for quantification. 

3.11 Conclusion 

In conclusion, it was shown that fluorinated regioisomers of fentanyl, which are 

increasingly common on drug markets, cannot be fully discriminated using 

methods outlined in Chapter II (i.e. colour tests, TLC, infrared spectroscopy or 

GC-MS). GC-MS afforded partial discrimination, but the co-elution of 

compounds with the same major m/z fragments prevented a conclusive 

identification. A GC-MS quantification method was developed, as it could still 

be useful for single-component samples or samples containing non co-eluting 

compounds. 19F benchtop NMR was proposed as an orthogonal method for the 

identification and quantification of fluorinated regioisomers of fentanyl. Most 

fentalogues investigated, except 42c and 46b, produced distinct signals in low-

field 19F NMR and a quantification method was developed using this technique. 

Benchtop NMR is a simpler, faster and cheaper method than GC-MS. Despite 

its lower sensitivity than GC-MS, benchtop 19F NMR showed sufficiently low 

LODs and LOQs, and it was shown that it could detect ortho-fluorofentanyl 42a 

in a 2.4 %w/w heroin mixture, a common challenge for the detection of fentanyl 

analogues.  
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CHAPTER IV 

INVESTIGATION OF THE EOSIN Y COLORIMETRIC TEST 

4.1 Overview 

Eosin Y (22, see Figure 4.1 for structure) has been used in chemical dye 

sensors because of its ability to change colour in contact with various analytes. 

As is the case for many presumptive colour tests, the chemical mechanism 

leading to this colour change has yet to be explained. A recent study reported 

that the dye reacts with fentanyl, and not cocaine, to produce a characteristic 

deep pink colour. [158] Results reported in Chapter II and III show that the dye 

reacts in the same way with a variety of fentanyl analogues, while none of the 

other drugs and adulterants investigated did. This specificity could be 

harnessed for the reliable detection of fentanyl analogues using a simple eosin 

Y test, usable onsite by police enforcement, by drug users for personal harm 

reduction, etc. Commercial versions of the Marquis test are already available 

for opioid detection, but they are known to be unreliable, especially in mixtures 

or with low concentrations of analyte. This chapter will therefore focus on the 

validation of the eosin Y test for the detection of fentanyl. The mechanism of 

the reaction between eosin Y and fentanyl will be investigated, objective 

methods (spectrophotometry, RGB detection) will be assessed for colour 

change detection and if the eosin Y colour test can be used quantitatively will 

be determined. 
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4.2 Detection of fentalogues 

In previous chapters, the eosin Y test proved particularly useful for 

discriminating fentalogues from other controlled drugs, their adulterants and 

even the precursor 4-ANPP (see Table 4.1). Table 4.2 presents the 

identification of compounds based on the test, to highlight the percentage of 

false positives/negatives. 36 compounds were tested, including 25 

fentalogues. All non-fentalogues were correctly identified, while only 3 

fentalogues did not react (8.3% false negatives). 

Table 4.1. Results of the eosin Y test with compounds investigated in Chapter 
II and III. 

Compound 
Colour 

after 5 min 
 Compound 

Colour 
after 5 min 

 Compound 
Colour 

after 5 min 

4 Light pink  2m Light pink  1b Light pink 

2a Dark pink  2n Dark pink  1c Light pink 

2b Dark pink  2o Dark pink  42a Dark pink 

2c Dark pink  2p Dark pink  42b Dark pink 

2d Dark pink  2q Dark pink  42c Light pink 

2e Dark pink  2r Dark pink  46a Dark pink 

2f Dark pink  23 Light pink  46b Dark pink 

2g Dark pink  24a Peach  46c Dark pink 

2h Dark pink  24b Light pink  48 Light pink 

2i Dark pink  25 Light pink  47 Dark pink 

2j Dark pink  26 Light pink    

2k Dark pink  27 Light pink    

2l Dark pink  1a Light pink    

 

Table 4.2. Identification of fentalogues and other drugs and adulterants made 
using the eosin Y test. 

Eosin Y identification Fentalogue Other 

Fentalogue 
22/25 

(91.7% true positive) 
0/11 

(0% false positive) 

Other 
3/25 

(8.3% false negative) 
11/11 

(100% true negative) 
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However, simply knowing the empirical effectiveness of a test is not enough to 

determine its applicability in real-life situations. Applying any analytical 

technique without knowing how it works is dangerous and increases the risk of 

unforeseen false positives/negatives. Knowledge of the mechanism of the 

chemical reaction leading to a colour change is essential and must be 

investigated before a presumptive test is used in forensic casework.  

4.3 Investigation of the reaction mechanism 

The eosin Y reaction mechanism was investigated using three analytes: 

caffeine, heroin and fentanyl. While the first two produce the same colour 

change, caffeine was included as a control, since its reaction with eosin Y has 

been partially investigated in a previous study. [159] NMR was used as the 

main diagnostic tool to monitor changes in eosin Y and the target molecules. 

Experiments were conducted in DMSO-D6 and D2O buffered to pH = 7. 

1H and 13C NMR spectra of commercial eosin Y, commercial caffeine free-base 

and synthesised fentanyl hydrochloride in DMSO-D6 and buffered D2O are 

reported in Section 7.12 for reference. Analysis of the DMSO-D6 1H NMR 

spectrum of commercial eosin Y revealed that it was in its fully protonated form 

(as shown in Figure 1.10), as evidenced by a carboxylic acid and a phenol OH 

signal. Small peaks are visible in the aromatic region which may belong to the 

deprotonated products or other impurities (95% purity, according to the 

retailer). 

As heroin is an expensive reference material, especially in the quantities 

required to perform this study, it was isolated from seized heroin samples in its 

free-base form (see Section 7.12.4 for procedure). 1H and 13C NMR spectra 
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are reported in Section 7.12.4; attribution of signals was done using 1H-1H and 

1H-13C NMR correlation spectra, which are also reported. 

4.3.1 NMR experiments (DMSO) 

Original tests were carried out in DMSO-D6, as it dissolves the target analytes 

and is aprotic, thus limiting the impact of the solvent in eventual acid-base 

reactions.  

Caffeine did not react with eosin Y in DMSO: no colour change was observed, 

and their NMR signals remained unchanged in the spectrum of the mixture (see 

Figure 4.1). Caffeine has been reported to react with eosin Y in an aqueous 

buffer, [159] indicating that this reaction is dependent on the choice of solvent. 

This may be due to the fact that, as proposed by Okuom et al., the colour 

change is due to the deprotonation of caffeine by eosin Y. [159] However, acid 

dissociation constants are solvent-dependent: water would dissolve the 

resulting caffeine anion better than DMSO, making caffeine less acidic in the 

latter solvent. [160] Eosin Y may also need to be in its deprotonated form to 

react, which it is at pH = 7 in water, but not in DMSO. 
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Figure 4.1. 1H NMR spectra (400 MHz, DMSO-D6) of a) Eosin Y and caffeine; 
b) Caffeine; c) Eosin Y; d) Chemical structure of eosin Y. 

 

Heroin, which is more strongly basic than caffeine, did react with eosin Y in 

DMSO, producing a colour change from orange to pink in the NMR tube. In the 

1H NMR spectrum, the disappearance of eosin’s carboxylic acid peak and a 

a) Eosin Y + Caffeine 

b) Caffeine 

c) Eosin Y 
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shift of the heroin signals was observed (see Table 4.3 and Figure 4.2). Protons 

9, 15, 16 and 19 (see Figure 4.2d for reference), which are in proximity to the 

tertiary amine, are especially deshielded. This could indicate the protonation of 

heroin by the eosin Y carboxylic acid. This is confirmed by reacting heroin free-

base with anhydrous HCl (1.0 eq.) and isolating the resulting salt to acquire an 

NMR (see Figure 4.2c); a comparison of NMR signals in heroin HCl and the 

eosin Y – heroin mixture supports the hypothesis that there has been 

protonation. The colour change would thus result from the deprotonation of 

eosin Y and the delocalisation of the resulting electron pair across the aromatic 

rings. This hypothesis was reinforced with a simple experiment, using a simpler 

tertiary amine: eosin Y and triethylamine were mixed in DCM, which resulted 

in a drastic colour change.  
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Table 4.3. 1H NMR chemical shifts of heroin and the eosin Y – heroin mixture (DMSO-D6) 

Proton 2 1 7/8 6 5 9 10’ 14 16’ 19 10 17 16 18 15’ 15 

Heroin (ppm) 6.73 6.59 5.50 
5.15-
5.10 

5.03 3.32 2.97 2.73 2.47 2.32 2.27 2.22 2.17 2.07 2.02 1.60 

Heroin + Eosin 
(ppm) 

6.87 6.71 5.20 5.67 5.5 4.17 3.32 3.00 2.80 2.92 2.80 2.24 2.26 2.06 2.05 1.91 

 

 

Figure 4.2. 1H NMR spectra (400 MHz, DMSO-D6) of a) Heroin free-base; b) Heroin free-base and eosin Y; c) 
Heroin protonated with HCl (1.0 eq.); d) Chemical structure of heroin.

 

d) 

a) Heroin free-base 

b) Heroin + Eosin Y 

c) Heroin HCl 
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All the eosin Y signals in the mixture were slightly shifted from the pure eosin 

Y solution (see Figure 4.3c-d). To establish what species was being observed, 

eosin Y was reacted with 1 equivalent NaOH to selectively form its monoanion, 

and 2 equivalents for the dianion. 1H NMR spectra of these two mixtures were 

acquired (Figure 4.3a-b). Proton signals in the mixture match up perfectly with 

the monoanionic species, pointing to a 1:1 acid-base reaction between eosin 

Y and heroin. 

 

Figure 4.3. 1H NMR spectra (400 MHz, DMSO-D6) of a) Eosin Y deprotonated 
with NaOH (2 eq.); b) Eosin Y deprotonated with NaOH (1 eq.); c) Eosin Y; d) 
Eosin Y and heroin free-base. 

 

a) Eosin Y + NaOH (2 eq.) 

b) Eosin Y + NaOH (1 eq.) 

c) Eosin Y 

d) Eosin Y + Heroin 
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Fentanyl HCl was investigated next. Though it bears a tertiary amine, like 

heroin, fentanyl is already protonated. It did not react with eosin Y in DMSO 

(see Figure 4.4). Therefore, like with caffeine, the reaction between fentanyl 

and eosin Y is dependent on the solvent.  

 

Figure 4.4. 1H NMR spectra (400 MHz, DMSO-D6) of a) Fentanyl HCl and eosin 
Y; b) Fentanyl HCl; c) Eosin Y. 

 

Reacting fentanyl free-base with eosin Y does lead to a reaction, however. As 

it did with heroin, eosin Y appears to be deprotonated to the monoanionic 

species (Figure 4.5) while the fentanyl free-base appears to be protonated 

(Figure 4.6), pointing to a 1:1 acid-base reaction. 

a) Fentanyl HCl + Eosin Y 

b) Fentanyl HCl 

c) Eosin Y 
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Figure 4.5. 1H NMR spectra (400 MHz, DMSO-D6) of a) Eosin Y deprotonated 
with NaOH (1 eq.); b) Eosin Y; c) Fentanyl free-base and eosin Y. 

a) Eosin Y + NaOH (1 eq.) 

b) Eosin Y 

c) Fentanyl (free-base) + Eosin Y 
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Figure 4.6. 1H NMR spectra (400 MHz, DMSO-D6) of a) Fentanyl HCl; b) 
Fentanyl free-base and eosin Y; c) Fentanyl free-base. 

 

 

 

 

 

 

a) Fentanyl HCl 

b) Fentanyl (free-base) + Eosin Y 

c) Fentanyl (free-base) 



137 

 

4.3.2 NMR Experiments (D2O) 

Further tests were conducted in D2O, buffered with anhydrous K2HPO4 and 

adjusted to pH = 7 with concentrated DCl, to mimic typical test conditions. The 

residual water peak was removed from 1H NMR spectra using solvent 

suppression; chemical shifts were referenced to 3-(trimethylsilyl)propionic-

2,2,3,3-d4 acid. 

Figure 4.7 compares the individual spectra of caffeine and eosin Y in buffered 

D2O against the mixture. At pH = 7, caffeine exists in its neutral form (pKa of 

the C-8 proton = 14.0, pKa of the ammonium salt = 0.6). [161] A shift could be 

observed in the eosin Y signals (Figure 4.7d-e), but the caffeine protons 

remained relatively unchanged (Figure 4.7a-b). This is very different to what 

was reported by Okuom et al. [159] Though they observed a very similar shift 

in eosin Y signals, they also saw substantial shielding of the caffeine signals. 

Comparison of chemical shifts shows that the caffeine reference spectrum in 

Figure 4.7 is consistent with theirs, and the difference lies in the mixture 

spectrum.  
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Figure 4.7. 1H NMR spectra (400 MHz, D2O) of a) Caffeine; b) Caffeine and 
eosin Y; c) Eosin Y; d) Caffeine and eosin Y (6.5-8.7 ppm region); e) Eosin Y 
(6.5-8.7 ppm region) 

 



139 

 

To try to explain the eosin Y shift, the eosin Y monoanion and dianion 

previously obtained were analysed in D2O and compared to the neutral 

compound. Unsurprisingly, no difference could be observed between the three 

spectra. Eosin Y, which bears two acidic protons (pKa = 2.0, 3.8), [162] should 

exist in its dianionic form at pH = 7. Neutral eosin Y and the monoanion were 

therefore deprotonated by the buffer, and the observed spectrum corresponds 

to the dianionic species. This may seem like a trivial experiment, but it indicates 

that whatever transformation occurs in the caffeine mixture is unlikely to be only 

a protonation of eosin Y; the buffer would simply deprotonate the conjugate 

acid of lower pKa. There must, therefore, be some form of equilibrium or 

interaction with caffeine, which prevents this transformation from reverting.  

What Okuom et al. propose is that eosin Y carboxylate (pKa of the conjugate 

acid = 3.8) [162] deprotonates caffeine at the C-8 position (pKa = 14.0), positing 

that “this proton is very labile and can be abstracted easily at pH = 7.” [159] 

This is simply untrue: the equilibrium depicted in Figure 4.8 should favour the 

formation of the weakest acid/base pair, or the “acid” with the highest pKa. The 

dianionic eosin Y is not a strong enough base, as evidenced by the pKa of its 

conjugate acid, to deprotonate caffeine. While the study reported a decrease 

in the relative intensity of the “labile” C-8 proton peak, this was not observed 

here. Also, though the authors imply that there is a mixture of protonated and 

deprotonated caffeine is present in solution, they only report one set of peaks.  
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Figure 4.8. Acid-base equilibrium between caffeine and eosin Y. 

 

Heroin was investigated next. With a pKa of 7.95 in water, [163] 90% of the 

drug should be ionised in the pH = 7 buffer, making it mostly soluble. Therefore, 

the NMR spectrum of heroin (Figure 4.9a) is that of a soluble protonated 

species, but the ammonium proton signal is not visible as it is being exchanged 

with the solvent. When heroin was mixed with eosin Y, no change was 

observed in the heroin signals (Figure 4.9). The eosin Y signals in the mixture 

were shifted downfield or upfield by up to 0.1 ppm, depending on the signal. 

(Figure 4.10) This is similar to the results obtained with caffeine.  

Again, if eosin Y were protonated by heroin in these conditions, it would 

instantly be deprotonated by the buffer. There must be an interaction between 

eosin Y and heroin, causing the shift in eosin Y signals.  

Eosin Y was not completely soluble in the buffer, and particles had to be 

removed by decantation, which may explain why eosin Y signals in Figure 4.9c 

are much weaker than the heroin signals. Even a minute quantity of eosin Y 

reacting with heroin may cause a noticeable colour change; the overwhelming 

excess of heroin would remain unreacted, and no significant change in 

chemical shift or integration of the heroin signals may be detected. This may 
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also be the reason why no shift was observed in the caffeine signals in Figure 

4.7. 

Looking at eosin Y and heroin, the simplest explanation may be an ionic 

interaction between the two. Eosin Y would go from a free dianionic species to 

one where its carboxylate interacts with heroin. This involvement of the 

carboxylate electrons in an ionic interaction may be enough to shift the 

aromatic proton signals, but also produce a colour change.  

 

 

Figure 4.9. 1H NMR spectra (400 MHz, D2O) of a) Heroin free-base; b) Eosin 
Y; c) Heroin free-base and eosin Y. 

a) Heroin 

b) Eosin Y 

c) Heroin + Eosin Y 



142 

 

 

Figure 4.10. Aromatic region of the 1H NMR spectra (400 MHz, D2O) of a) 
Eosin Y; b) Heroin free-base and eosin Y. 

 

Fentanyl was investigated next. In buffered D2O, fentanyl HCl should exist in 

its protonated form (pKa = 8.4). This is confirmed by a comparison with spectra 

of fentanyl HCl and free-base in DMSO; the pH = 7 spectrum corresponds 

almost exactly to the HCl salt spectrum in DMSO. 

The reaction between fentanyl and eosin Y produces a deep pink precipitate. 

Filtration removes this precipitate, leaving a colourless solution. Analysis of the 

supernatant reveals only unmodified fentanyl HCl (Figure 4.11).  

a) Eosin Y 

b) Heroin + Eosin Y 
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Figure 4.11. 1H NMR spectra (400 MHz, D2O) of a) Fentanyl HCl; b) Eosin Y; 
c) The supernatant obtained from mixing fentanyl HCl and eosin Y. 

 

The precipitate was analysed in DMSO-D6, as it was insoluble in water (see 

Figure 4.12c). No eosin Y peak was observed. The aromatic region remains 

mostly unchanged from fentanyl (Figure 4.12b), apart from a slight deshielding 

in some of the signals. The propionyl signals are consistent with fentanyl, but 

the piperidine ring and phenethyl-chain signals are shifted and very broad, and 

no NH+ signal is visible. This points to a deprotonation of the ammonium salt, 

confirmed by a comparison with fentanyl free-base (Figure 4.12a). Figure 4.13 

clearly shows the similarity between the precipitate and fentanyl free-base, 

except for small differences in chemical shifts and the broadening of piperidine 

a) Fentanyl 

b) Eosin Y 

c) Fentanyl + Eosin Y supernatant 
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and phenethyl signals. The same phenomenon occurred in 13C NMR spectra: 

no difference in shift is observed in the aliphatic region, only a broadening of 

certain signals (see Figure 4.14). 

 

Figure 4.12. 1H NMR spectra (400 MHz, DMSO-D6) of a) Fentanyl free-base; 
b) Fentanyl HCl; c) The precipitate obtained from mixing fentanyl HCl and eosin 
Y. 

 

 

 

a) Fentanyl free-base 

b) Fentanyl HCl 

c) Fentanyl + Eosin Y precipitate 
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Figure 4.13. Chemical structure of fentanyl and 1H NMR spectra (400 MHz, 
DMSO-D6) of a) Fentanyl free-base; b) Fentanyl HCl; c) The precipitate 
obtained from mixing fentanyl HCl and eosin Y; d) Chemical structure of 
fentanyl. 

 

d) 
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Figure 4.14. 13C NMR spectra (400 MHz, DMSO-D6) of a) The precipitate 
obtained from mixing fentanyl HCl and eosin Y; b) Fentanyl free-base. 

 

A comparison of IR spectra is consistent with the NMR analysis. The spectrum 

of the precipitate (Figure 4.15), when compared with fentanyl HCl (Figure 4.16), 

shows the absence of ammonium salt peaks at 2449 and 2403 cm-1. The 

precipitate looks very similar to fentanyl free-base (Figure 4.17), but small 

differences in wavenumbers set both compounds apart.

a) Fentanyl + Eosin Y precipitate 

b) Fentanyl free-base 

7 

10/14 

12 8 22 

11/13 

23 



147 

 

 

Figure 4.15. ATR-FTIR spectrum of the precipitate obtained from fentanyl and eosin Y. 
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Figure 4.16. ATR-FTIR spectrum of fentanyl hydrochloride. 
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Figure 4.17. ATR-FTIR spectrum of fentanyl free-base.
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Because the precipitate is pink, it follows that some eosin Y has precipitated 

with fentanyl. Eosin Y peaks are invisible in the precipitate, but even in amounts 

undetectable by NMR, eosin Y, which is a very potent dye, can produce an 

intense coloration. Moreover, eosin Y peaks were already quite weak in the 

original stock solution (see Figure 4.11b), because of its low solubility in 

buffered D2O. It is also possible that some eosin Y remains in solution and gets 

trapped in the filter when the filter is isolated: it has been observed that filtration 

of an aqueous solution of eosin Y through a 0.45 μm filter completely removes 

the dye, resulting in a colourless solution. The filter can then be washed with 

methanol to release an orange eosin Y solution. It is thus conceivable that the 

quantity of eosin Y remaining in the precipitate is undetectable by NMR. GC-

MS analysis of the precipitate only reveals the presence of fentanyl, but eosin 

Y is not volatile enough to be detected.  

In 1H-1H COSY (see Figure 4.18), couplings are only observable in the 

propionyl chain and in the aromatic region. All couplings between the 

broadened piperidine and phenethyl signals have disappeared, which is very 

unlike fentanyl free-base.  
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Figure 4.18. 1H-1H COSY spectrum of the precipitate obtained from fentanyl 
and eosin Y (400 MHz, DMSO-D6). 

 

The fact that only part of the molecule is so affected points to a certain 

exchange or “fluxionality” happening in this portion of the molecule on the NMR 

timescale. [164, 165] As an example, if the CH2-CH3 bond of the fentanyl 

molecule were fixed in space, all protons of the methyl group would have 

different chemical environments. In reality, rotation around this bond happens 

so quickly in comparison to the NMR timescale that all CH3 protons have 

effectively the same chemical environment, resulting in an averaged signal of 

a neatly defined triplet. However, if such a process happened at a slower rate, 

it could be observed in NMR as a widening of peaks as signals would be only 
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partially averaged. The rate of some such processes can be changed simply 

by modifying observation conditions such as temperature or pH. [164] 

In this case, a possible candidate for such a process is the axial-equatorial 

equilibrium of the piperidine ring. Jones et al. reported the conformational ΔG° 

values of a similar molecule, 4-p-chlorophenyl-1-ethylpiperidine (see Figure 

4.19). [166] They noted that the aromatic substituent favoured an equatorial 

conformation by a ΔG° of 3.0 kcal/mol, but that inversion of the N-ethyl chain 

occurred much more readily, with a ΔG° of only 0.87 kcal/mol (in benzene). 

According to their calculations, this meant that 81% of the population existed 

as the equatorial-equatorial conformer and 19% as the equatorial-axial. In 

normal conditions, inversion between both conformers would occur very quickly 

and would not be detectable by NMR spectroscopy. 

 

Figure 4.19. Conformational equilibria of 4-p-chlorophenyl-1-ethylpiperidine 
and corresponding ΔG° values calculated by Jones et al. [166] 

 

As reported by Jackman and Sternhell in their explanation of time-dependent 

effects in NMR spectroscopy, the rate of certain intramolecular motions can be 

changed by a modification of pH. [164] The conformational equilibrium between 
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equatorial and axial piperidine conformers can conceivably be slowed down by 

an acid-base equilibrium induced by the presence of small quantities of a weak 

acid, since protonation of the piperidine would make the inversion more difficult. 

Protonated eosin Y is a weak acid, and the presence of eosin Y in the pink 

precipitate is, after all, what differentiates it from regular fentanyl free-base. 

To test the hypothesis of fluxionality, 1H NMR spectra were taken at increasing 

temperatures (see Figure 4.20). A noticeable change occurred in the signal at 

1.91 ppm, tentatively attributed to protons 11/13 of the piperidine ring,which 

started to split at higher temperatures. This is consistent with a quicker 

conformational inversion of the piperidine ring. In contrast, the CH2 quartet 

(1.83 ppm) started to coalesce at higher temperatures. A shift was observed in 

most of the other signals, but no significant change in multiplicity.   
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Figure 4.20. 1H NMR spectra (400 MHz, DMSO-D6) of the precipitate obtained 
from fentanyl and eosin Y, taken at 25, 40, 50 and 60°C.  

 

The observed colour change may thus partly be explained by the deprotonation 

of fentanyl by eosin Y. After all, fentanyl does not readily form an insoluble free-

base when dissolved in the buffer, so it follows that it is being deprotonated by 

eosin Y. Then, eosin Y co-precipitates with fentanyl free-base. The colour of 

eosin Y depends on what solvent it is dissolved in, and it has a different colour 

in its solid state. The characteristic colour of the precipitate is therefore due to 

it containing eosin Y as a solid (deep pink) rather than being dissolved on its 

own in water (peach) or in a mixture with caffeine/heroin (light pink).  
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Some trends can be observed in this study. First of all, eosin Y reacts with 

amines. This includes tertiary and aromatic amines (fentanyl, heroin, caffeine) 

but results from Table 4.1 show that it also reacts with MDMA, a secondary 

amine. It did not react with benzocaine (aromatic amine) but it did with procaine, 

which only differs from the former in that it contains an aliphatic tertiary amine 

on its ester chain. 

Secondly, with reactive analytes, the colour change produced depends on 

whether the analyte precipitates when it comes in contact with eosin Y. This is 

the case for most fentanyl analogues, but not all. For instance, 3-fluorofentanyl 

does not precipitate and produces the same colour change as heroin. The 

colour change may thus solely depend on the pKa of the amine. While fentanyl 

HCl has a pKa of 8.44 in water, 3-fluorofentanyl HCl has a lower pKa of 6.8, 

closer to that of heroin. [1, 167]  

It may seem that, because eosin Y can react with all tertiary amines in a certain 

pKa range, this test lacks in selectivity for forensic purposes. However, 

compounds that are likely to be found in mixtures with fentanyl do not bear such 

an amine. That is, to be truly effective, a presumptive test does not need to 

exclude all existing chemical compounds, but simply the suspected population 

of substances that may be encountered with or confused for fentanyl in forensic 

cases. The fact that it produces a specific colour change with fentanyl 

derivatives and not with heroin, cocaine, MDMA and their adulterants is proof 

enough of the selectivity of this test.  

However, another issue must be addressed to make this eosin Y test reliable, 

and that is the inherent subjectivity of presumptive colour tests. 
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4.4 Standardisation of colorimetric tests 

The results shown in Table 4.1 are based on an appreciation of the colour 

change with the naked eye. Colour perception is deeply subjective, making 

presumptive colour tests less reproducible across different experimenters. This 

can be avoided by defining colour in quantitative terms: when a substance 

absorbs certain wavelengths in the visible light spectrum, its colour is a result 

of the remaining (reflected) wavelengths.  

4.4.1 Visible light spectrophotometry 

The colour of a substance is directly linked to its visible light absorption 

spectrum, and the fentanyl-eosin Y colour change can be measured using 

spectrophotometry. Figure 4.21 shows the visible light absorption spectra of 

eosin Y on its own and as a mixture with heroin and fentanyl. While the eosin 

Y solution has an absorbance maximum at λ = 517 nm, a shoulder is clearly 

visible in the fentanyl-eosin spectrum at λ = 550 nm. Fentanyl does not absorb 

in the visible light spectrum, so it can reasonably be assumed that the peak at 

550 nm results from the fentanyl-eosin interaction and leads to the colour 

change. 

The eosin Y – heroin mixture should produce a pink colour, which appears 

distinct from that of eosin Y on its own. This is not observed in Figure 4.21a, 

because the colour change is susceptible to the concentration of the eosin Y 

solution used. Spectra in Figure 4.21 were acquired at only 20 μM eosin Y, 

rather than the 150 μM used for presumptive tests. This is because a 150 μM 

eosin Y solution saturates the detector of the spectrophotometer, and 

absorbance maxima cannot be detected. While fentanyl still reacts at this lower 

concentration, it takes a much higher dye content to produce a colour change 
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with heroin, hence why the heroin-eosin Y spectrum shows no difference from 

the eosin Y solution. This higher sensitivity for fentanyl may allow the detection 

of fentanyl in heroin samples, as was previously observed in Chapter 2 with 

sample SS-1.  

 

Figure 4.21. a) Visible light absorption spectra of eosin Y (red) and a 
heroin/eosin Y mixture (blue); b) Visible light absorption spectrum of a 
fentanyl/eosin Y mixture. 

 

Using this technique, the absorbance at a wavelength specific to the eosin Y – 

fentanyl mixture can be measured. Because absorbance is proportional to the 
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concentration of the attenuating species, according to the Beer-Lambert law, 

this technique could be used to quantify fentanyl. 

To achieve this, the optimal concentration of eosin Y had to be determined. A 

stock solution of fentanyl was prepared at 1 mg/mL in methanol. Volumes 

ranging between 0.1 – 1 mL (0.1 – 1 mg fentanyl) were transferred to vials and 

evaporated in vacuo. The dried solids were reconstituted in aqueous eosin Y 

at varying concentrations (150, 500, 750 or 1500 μM). Before acquisition, the 

eosin Y solution was used as a blank on the spectrophotometer. This subtracts 

the high-intensity absorbance due to the excess eosin Y. Figure 4.22 shows 

the resulting spectrum, with the subtracted region between 450 – 550 nm, and 

a defined fentanyl – eosin Y maximum centred on λ = 568 nm.  

 

 

Figure 4.22. Visible light absorption spectrum of 500 mg fentanyl reconstituted 
in 150 μM eosin Y (2 mL) after eosin Y subtraction.  
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Reconstitution in 2 mL eosin Y at concentrations 150, 500 or 750 μM proved 

insufficient to fully react with higher amounts of fentanyl. Figure 4.23 shows an 

example calibration graph using 2 mL of the 750 μM solution, which plateaus 

at 800 mg fentanyl. The 1500 μM eosin Y solution proved unusable: its 

absorbance was so intense that the blank subtracted the fentanyl – eosin Y 

peak. Instead, samples were reconstituted in 5 mL of the 750 μM eosin Y 

solution. Though this dilutes samples more and thus decreases sensitivity, it 

provides a high enough quantity of eosin Y to completely react with 1 mg 

fentanyl. 

 

Figure 4.23. Absorbance at λ = 568 nm of fentanyl reconstituted in eosin Y 
750 μM (2 mL).  

 

The detection wavelength was optimised next. Using the same five solutions of 

fentanyl reconstituted in 5 mL eosin Y at 750 μM, absorbance was measured 

at wavelengths ranging from 568 to 600 nm. The resulting calibrations graphs 
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were plotted and the R2 calculated to determine which wavelength resulted in 

the most linear graph. Results are reported in Table 4.4. Increasing the 

detection wavelength to λ = 590 nm resulted in the most linear graph, likely 

because the subtracted region of the absorbance spectrum is noisier and less 

reproducible. This comes with a loss of sensitivity, however, and wavelengths 

higher than 590 nm could not be used, as they returned an absorbance of 0 for 

the 0.1 mg fentanyl sample. The resulting calibration graph at 590 nm is shown 

in Figure 4.24.  

To determine whether this method was also suitable to detect fentanyl in heroin 

samples, 1 mg heroin was reconstituted in 5 mL eosin Y (750 μM). At λ = 

590 nm, a negligible absorbance of 0.0035 AU was obtained. In comparison, 

0.1 mg fentanyl results in an absorbance of 0.0700 AU, showing that there is 

minimal interference from heroin at this wavelength. 

Table 4.4. Determination coefficient (R2) of the fentanyl calibration graph (0.1 
– 1.0 mg reconstituted in 5 mL eosin Y 750 μM) at different detection 
wavelengths.  

Wavelength (nm) R2 

568 0.9788 

570 0.9811 

575 0.9854 

580 0.9880 

585 0.9898 

590 0.9908 
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Figure 4.24. Absorbance at λ = 590 nm of fentanyl reconstituted in eosin Y 
750 μM (5 mL). 

 

With encouraging first results, a full calibration was prepared, with six replicates 

for each concentration. Results are shown in Table 4.5. This experiment 

highlighted a lack of reproducibility across multiple replicates of the same 

concentration, as evidenced by the very high relative standard deviation 

values. This time, absorbance at 1.00 mg fentanyl was lower than at 0.50 or 

0.75 mg. This is most likely due to suspensions in solution: as discussed 

previously, the reaction between fentanyl and eosin Y causes fentanyl free-

base to precipitate. The presence of solid matter in the light path causes the 

absorbance to be unreproducible. Filtration before analysis is not an option, as 

this removes all colour from the solution. The addition of a co-solvent was also 
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tested: methanol does not completely dissolve the particles, while DMSO 

results in the loss of the pink colour. 

Table 4.5. Calibration of fentanyl reconstituted in 5 mL eosin Y 750 μM. 

Fentanyl quantity 
(mg) 

Average 
absorbance 

(n = 6) 

%RSD 
(n = 6) 

0.10 0.0479 41.4 

0.25 0.1621 29.5 

0.50 0.6747 28.6 

0.75 0.6806 9.4 

1.00 0.5852 12.3 

 

Visible light spectrophotometry remains very useful as a way of standardising 

presumptive colour tests. In the case of eosin Y, it provides quick and simple 

detection of fentanyl in seized heroin samples. However, it is only suitable for 

qualitative, and not quantitative, analysis. Solgels were explored as an 

alternative solution to this problem.  

4.4.2 Qualitative solgel analysis 

Solgels are polymer gels made from colloidal solutions of monomers. In this 

case, they were synthesised from a solution of tetraethoxysilane and eosin Y, 

so the test reagent would be incorporated in the resulting gel after 

polymerisation. Solgels have been used previously as a support for the Simon 

presumptive reagent, and were used for MDMA quantification. [168] Results 

were photographed using a smartphone and quantification was based on RGB 

values. The advantage is that solgels create a homogeneous medium, even if 

particulates are present, and the measurement of RGB values is based entirely 

on colour, or reflected light, rather than absorbance.  
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An initial optimisation of the solgel preparation was performed. A 2:1:2 mixture 

of tetraethoxysilane, aqueous HCl (0.04 M) and ethanol was prepared (solution 

A) and mixed with eosin Y in an aqueous pH = 7 buffer (solution B). Solutions 

A and B were mixed in a 1:2 ratio and 75 μL of the resulting solgel was quickly 

transferred to a 200 μL Eppendorf tube before the polymerisation started. 

150 μL of a 0.1 mg/mL fentanyl solution in methanol was added to the 

polymerised solgel. Tests performed using 150 or 500 μM eosin Y as solution 

B showed no visible colour change, while 1000 μM proved optimal. Colour 

changes at this concentration were observed from 0.1 to 1.0 mg/mL fentanyl 

(see Table 4.6). Photographs were taken with a Huawei Mate 10 Pro 

smartphone and RGB values were measured with the paint.net free software 

(version 4.2.12), using the average from a 51 x 51 pixels grid in the center of 

the vial. While the R value remained mostly stable, the G value decreased and 

the B value increased with the fentanyl concentration. The G value showed the 

highest relative change. Though tubes were photographed in similar 

conditions, differences in lighting can explain the imperfect relationship 

between G value and concentration observed in Table 4.6.  

Table 4.6. RGB values for solgels prepared with 1000 μM eosin Y mixed with 
increasing concentrations of fentanyl. 

Fentanyl 
concentration 

(mg/mL) 
R valuea G valuea B valuea 

0 162 72 50 

0.10 158 69 47 

0.25 158 72 52 

0.50 158 63 49 

0.75 159 48 54 

1.00 161 35 64 

Key: a RGB values determined from a photograph of the solgel vial, by sampling 
a 51 x 51 pixels grid using the paint.net software. 
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The MDMA study was conducted using a custom-built photography box, with a 

white interior and uniform LED lighting, in which the samples were introduced 

before being photographed. [168] Though the use of a smartphone is a clear 

advantage of this acquisition method, by making detection accessible to 

virtually anyone, the requirement of a special photography box negates this 

advantage. Ideally, one should be able to take the photograph in any kind of 

environment and still get a reliable result, but RGB values are extremely 

susceptible to lighting conditions. 

Figure 4.25 shows an example of this. Each picture shows the same two solgel 

vials photographed in three different settings. Blank methanol (150 μL) was 

added to the vial on the left and a 1 mg/mL solution of fentanyl (150 μL) to the 

one on the right. Photographs were taken at varying angles, with different 

lighting conditions. In Figure 4.25a, which was taken in natural light, 

heterogeneous shadows and lightings can be seen on the surface. The 

photograph in Figure 4.25b was taken in a lower lighting environment, which 

the phone camera automatically compensates for, resulting in higher R and G 

values. The third photograph (Figure 4.25c) was taken with back-lighting 

coming from the windows, causing the solgels to appear darker.  
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Figure 4.25. Photographs of solgels taken in three different lighting conditions, 
reacted with blank methanol (left) and 1 mg/mL fentanyl (right). RGB values of 
the fentanyl-solgel mixture: a) R: 191, G: 62, B: 74; b) R: 215, G: 81, B: 71; c) 
R: 153, G: 49, B: 47 

 

RGB values can vary greatly depending on the position and intensity of light 

sources, the position of windows, the time of day, how close the experimenter 

is from the samples, and so forth. This poses a problem when trying to 

standardise colorimetric tests based on RGB values: all photographs must be 

taken in a standard environment with constant, even lighting. To try and 

circumvent this issue, results obtained in thirteen different lighting conditions 

were analysed (Table 4.7). Each time, the same vials containing blank 

methanol and fentanyl (1 mg/mL) were photographed side-by-side.  
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Table 4.7. RGB values of solgel vials photographed side-by-side in different 
lighting conditions (see Section 7.9 for photographs). 

Lighting 
Conditions 

Blank 
Fentanyl 
1 mg/mL 

R G B R G B 

1 187 93 62 194 62 70 

2 193 96 70 195 68 74 

3 190 94 68 191 62 74 

4 212 116 93 209 81 105 

5 177 82 45 172 58 56 

6 155 69 39 153 49 47 

7 171 81 55 164 53 62 

8 164 79 52 156 50 57 

9 177 86 59 175 59 66 

10 205 110 57 215 81 71 

11 156 76 45 166 54 51 

12 202 107 74 208 78 83 

13 142 71 46 146 51 52 

 

Table 4.8 reports the average G value for the conditions tested (Gstd). As 

discussed previously, the green value tends to decrease proportionally to the 

concentration of fentanyl, and it could be used for detection. However, with 

varying lighting conditions, a high variability (19% RSD) in the G value of the 

standard solution was observed (see Table 4.8, Gstd). In an effort to reduce this 

variability, the red value, which remains constant between samples, was used 

a sort of internal standard to account for differences between samples. By 

using the G/R ratio of the vial containing the fentanyl standard, the RSD 

decreased to 7.0%. To decrease this further, the blank vial was used as an 

external standard to account for differences in lighting conditions. After all, the 

blank should always have the same colour, independent of the fentanyl 

concentration. The sample G/R ratio was divided by the blank G/R ratio, and a 

standard deviation of 3.7% was obtained. 
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Table 4.8. Comparison of RGB standardisation methods with eosin Y solgels. 

 

RGB Standardisation 

Gstd (G / R)std 
(G / R)std
(G / R)blank

 

Average 
(n = 13) 

62 0.34 0.69 

Standard deviation 
(n = 13) 

12 0.02 0.03 

Relative standard 
deviation (%)  

(n = 13) 
19 7.0 3.7 

 

This simple modification made the test much more reliable across all conditions 

tested and eliminated the need for a specialised photography set or box. This 

technique could easily be applied to standardise other colour tests.  

4.4.3 Quantitative solgel analysis 

The possibility to quantify fentanyl using the eosin Y solgel test was then tested. 

To obtain a calibration curve, six replicate samples were tested at ten 

concentrations of fentanyl from 0.1 to 1.0 mg/mL. Results were standardised 

using the G/R ratio of the standard divided by the blank. The resulting 

calibration graph is shown in Figure 4.26.  
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Figure 4.26. Calibration of fentanyl with eosin Y solgel RGB detection, a) 0.1 – 
1.0 mg/mL concentration range; b) 0.5 – 1.0 mg/mL concentration range. 
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At low concentrations, between 0.1 and 0.4 mg/mL, the measured colour 

change is relatively weak, resulting in a non-linear calibration curve. However, 

a linear response range can be observed between 0.5 and 1.0 mg/mL, with a 

relatively good R2 of 0.986, as shown in Figure 4.26b. Samples can easily be 

diluted to fall within this range. The lowest concentration (0.5 mg/mL) 

corresponds to only 75 μg of fentanyl in a volume of 150 μL, showing the 

surprisingly high sensitivity of this method.  

However, the technique did not prove selective enough for fentanyl detection. 

A variety of common drugs and adulterants were reacted with the eosin Y solgel 

(see Table 4.9). A G/R ratio close to 1.00 indicates an absence of reaction. All 

compounds tested reacted with the solgel at this concentration. Two heroin 

samples which did not contain fentanyl, SS-4 and SS-5, were also tested and 

reacted with the solgel.  

Table 4.9. Test results of common drugs and adulterants and seized heroin 
samples SS-4 – 5. 

Test compound 
(5 mg/mL) 

G/R ratio 

MDMA 0.76 

Codeine 0.82 

Procaine 0.56 

Caffeine 0.82 

Paracetamol 0.78 

Benzocaine 0.96 

Morphine 0.90 

Heroin 0.97 

SS-4 0.62 

SS-5 0.88 
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Therefore, the solgel method could not be applied to quantify fentanyl in 

mixtures with the substances tested, greatly reducing its usefulness. This is 

due to the lack of specificity of the RGB method of detection: even though 

fentanyl and MDMA, for instance, produce visibly different colours when 

reacting with eosin Y, the RGB measurement cannot differentiate them. This 

was an advantage of visible light spectrophotometry over RGB detection, 

because it allowed the monitoring of very specific wavelengths. Thus, the solgel 

detection method was not investigated further.  

 

4.5 Conclusion 

In conclusion, the reaction between the eosin Y dye and illicit drugs, including 

heroin and fentanyl, was investigated. It was determined that eosin Y reacts 

with heroin through an acid-base reaction, resulting in a colour change from 

peach to pink, a result which is observed with most amines. It reacts similarly 

with fentanyl, with the exception that the reaction leads to the precipitation of 

fentanyl free-base. It is suggested that the characteristic deep pink colour 

observed with fentanyl is due to the co-precipitation of eosin Y, which has a 

different colour in solid form than in solution.  

Although the test cannot be used for the quantification of fentanyl in mixtures, 

it can still be used for qualitative analysis. This is especially reliable when using 

UV-Vis spectrophotometry, because the fentanyl – eosin Y mixture absorbs at 

a specific wavelength. Solgel detection coupled with RGB measurement, on 

the other hand, can be indicative of the presence of fentanyl but it lacks in 

selectivity, and is susceptible to interference from other components found in 

mixtures (e.g. heroin, caffeine, paracetamol). 
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Nevertheless, the developed methodology can, and should, be applied to the 

standardisation of colorimetric tests. For instance, the RGB standardisation 

method described in this chapter could serve to make MDMA detection with 

the solgel Simon test much more accessible, by eliminating the need for 

specialist photography equipment. [168] In a broader perspective, the reaction 

mechanisms leading to colour changes should be investigated, using NMR and 

other techniques, to better understand colour tests. Interference tests should 

always be carried out with compounds likely to be found in mixtures with the 

drug of interest, to assess the risks of false positives. Where possible, tests 

should not rely on visual examination but on objective colour detection 

methods, such as UV-Vis spectrophotometry or RGB detection.  
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CHAPTER V 

PRINCIPAL COMPONENT ANALYSIS MODEL FOR FENTANYL 

ANALOGUE CLASSIFICATION 

5.1 Overview 

This quick emergence of synthetic analogues of controlled drugs constitutes a 

challenge for their identification, because of the time it takes before extensive 

chemical characterisation of these analogues is disseminated in academic 

journals or specialised databases. [19, 28] Because fentanyl (2b) is 

synthesised using simple reagents, modifications of its structure are easily 

introduced by using different starting materials, resulting in completely new 

drugs. These novel analogues can be harder to identify, because they have yet 

to be added to mass spectral databases. The development of detection 

methods, as discussed in Chapters II and III, aims to make the detection of 

known analogues more accessible, to help harm reduction and decrease 

under-reporting. However, it is inherently a reactive approach to the issue, and 

as long as new analogues keep appearing, new detection methods will have to 

be developed. Proactive solutions should, therefore, be considered to quickly 

identify future analogues. Efforts should focus on the development of predictive 

models which, when confronted with an unknown drug analogue, not present 

in their database, can still identify common features and discern how the 

analogue differs from the parent drug. 
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Mass spectrometry data appears to be the ideal technique for this purpose, 

partly because of its widespread use: multiple gas chromatography-mass 

spectrometry (GC-MS) methods have been reported for the detection of 

fentanyl and its derivatives. [108, 109, 111, 169]  Moreover, m/z ions are 

indicative of specific modifications and their position on the molecule. How 

easily characteristic fragments can be identified by an experimenter depends 

on the complexity of mass spectra: fentanyl analogue spectra can comprise 

hundreds of m/z peaks. Techniques based on dimensionality reduction, such 

as principal component analysis (PCA), are therefore perfectly suited for this 

type of analysis and can highlight unsuspected trends in spectral data. New 

observations can also be projected onto the PCA model to see how they relate 

to known analogues. [170] 

Multivariate analysis has previously been used to determine the synthetic route 

used to manufacture fentanyl samples based on an inventory of compounds 

detected by GC-MS, LC-MS/MS and ICP-MS. [112] It also helped identify 

fentanyl analogues based on their Raman spectra. [88] Principal component 

analysis has been used to differentiate regioisomeric synthetic drugs, including 

regioisomers of fluorofentanyl (42a-c), by highlighting differences in specific 

m/z ion ratios. [113-115]  

Recently, spectral similarity mapping was applied to group fentanyl analogues 

based on their mass spectra. [116] Clustering separated compounds in three 

groups, based on the number of major peaks that shifted (0, 1 or 3) between 

an analogue and fentanyl. For instance, group 1 (0 shifts) was composed of 

fentanyl and the analogues modified at the phenethyl chain, because this 

modification does not cause a shift in the base peaks, which result from a loss 

of this chain. Modifications of the amide chain caused one major shift and 
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substitution of the aniline ring caused three, resulting in only three classes. This 

was a limitation of the model, in that it worked with the position rather than the 

nature of substituents: for instance, compounds bearing a fluorine, chlorine, 

methoxy or methyl substituent on their aniline ring would still cluster together, 

which makes little sense.  

This chapter deals with the elaboration of a model which separates data into 

more meaningful classes, based on the nature and position of their 

substituents. The model was built using principal component analysis (PCA) to 

organise analogues based on the intensity of their common m/z ions. Coupled 

with hierarchical clustering, this allowed the reliable classification of fentanyl 

analogues into structural classes. The model used the mass spectra of 54 

analogues; an evaluation of the model, using 67 analogues not previously 

included, showed that it can accurately identify structural modifications in 

“unknown” compounds. 

5.2 Data handling 

The 121 analogues used in this study are reported in Table 5.1 (see section 

7.12.3 for a full description of their chemical structures). Compounds 

highlighted in green have been synthesised in-house; this includes a 

combination of compounds reported in Chapters II (2a-r) and III (42a-c, 46a-c, 

47, 48), as well as additional analogues synthesised specifically to increase the 

numbers of compounds available in certain classes. The latter analogues may 

not have been encountered in forensic casework, but they are plausible 

structures based on a combination of commonly observed modifications of 

fentanyl (2b). The synthesis of these analogues is described in Section 7.11. 

Mass spectra were acquired by GC-MS, as described in Section 7.4.  
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The mass spectra of the remaining compounds were available on the online 

SWGDRUG spectral library (version 3.7, released June 4th, 2020). [171]  

Table 5.1. List of fentanyl analogues included in this study. 

 

 

  

MODEL BUILDING 

Fentanyl analogue No Fentanyl analogue No 

Isobutyryl N-benzyl- 58 Acryl- 2q 

N-Benzyl- 59 Butyryl- 2c 

Cyclopropyl-N-benzyl- 60 Propionyl- [aka. Fentanyl] 2b 

p-Fluoro-isobutyryl-N-benzyl- 61 Cyclopropyl- 2f 

p-Fluoro-N-benzyl- 62 Isobutyryl- 2j 

Phenyl-N-benzyl- 63 3’-Fluoro- 46b 

p-Fluoro-acetyl-N-benzyl- 64 4'-Fluoro- 46c 

m-Methyl- 65 2'-Fluoro- 46a 

o-Methyl-acetyl- 66 m-Fluoro-acryl- 82 

m-Methyl-acetyl- 67 m-Fluoro-methoxyacetyl- 83 

4’-Methyl-acetyl- 68 p-Fluoro-acryl- 84 

β-Methyl-acetyl- 69 p-Fluoro-acetyl- 85 

2’-Methyl- 70 p-Fluoro-cyclopropyl- 86 

p-Methyl-tetrahydrofuranyl- 71 3-Fluoro-butyryl- 87 

Tetrahydrofuranyl- (3-isomer) 72 3-Fluoro-tetrahydrofuranyl- 88 

β-Methyl- 73 3-Fluoro- 48 

Heptanoyl- 74 p-Chloro-butyryl- 89 

m-Methyl-furanyl- 75 p-Chloro- 90 

(E)-2-Methyl-2-butenoyl- 76 p-Chloro-cyclopentyl- 91 

4’-Fluoro-cyclopropyl- 77 p-Methoxy-acryl- 92 

Benzoyl- (phenyl) 2r p-Methoxy-methoxyacetyl- 93 

2,2,3,3-Tetramethylcyclopropyl- 78 p-Methoxy- 94 

2,2-Dimethylpropanoyl- 79 p-Methoxy-valeryl- 95 

4’-Fluoro-butyryl- 80 o-Methoxy-butyryl- 96 

Furanyl- 2o m-Fluoro- 42b 

4’-Fluoro-methoxyacetyl- 81 o-Fluoro- 42a 

Methoxyacetyl- 2n p-Fluoro- 42c 
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Table 5.1. List of fentanyl analogues included in this study. (cont.) 

EVALUATION 

Fentanyl analogue No Fentanyl analogue No 

m-Fluoro-N-benzyl- 97 Thiophenyl- (3-isomer) 129 

p-Fluoro-N-benzyl-furanyl- 98 3'-Methyl- 130 

Acetyl-N-benzyl- 99 o-Fluoro-furanyl- 131 

Furanyl-N-benzyl- 100 Acetyl- 2a 

Methoxyacetyl-N-benzyl- 101 iso-Valeryl- 2k 

Butyryl-N-benzyl- 102 Valeryl- 2d 

Acryl-N-benzyl- 103 Hexanoyl- 2e 

p-Fluoro-N-benzyl- cyclopropyl- 104 Cyclobutyryl- 2g 

Tetrahydrofuranyl-N-benzyl- 105 2’-fluoro-o-fluoro- 47 

4-ANPP 4 p-Fluoro-butyryl- 132 

((E)-But-2-enoyl)- 106 p-Fluoro-isobutyryl- 133 

(2-Methyl)butyryl- 107 p-Fluoro-cyclopentyl- 134 

Ethoxyacetyl- 108 p-Fluoro-tetrahydrofuranyl- 135 

Cyclopropylacetyl- 109 p-Fluoro-crotonyl- 136 

o-Methyl-acryl- 110 m-Fluoro-isobutyryl- 137 

p-Methyl-acetyl- 111 o-Fluoro-butyryl- 138 

o-Methyl- 10 o-Fluoro-isobutyryl- 139 

m-Methyl-cyclopropyl- 112 p-Fluoro-valeryl- 140 

o-Methyl-furanyl- 113 p-Fluoro-furanyl- (3-isomer) 141 

p-Methyl-furanyl- 114 2,3-Benzodioxoyl- 142 

m-Methyl-methoxyacetyl- 115 p-Chloro-furanyl- 143 

o-Methyl-cyclopropyl- 116 m-Fluoro-butyryl- 144 

4'-Fluoro-furanyl- 117 p-Fluoro-furanyl- 145 

m-Methoxy-furanyl- 118 m-Fluoro-furanyl- 146 

o-Methoxy-furanyl- 119 m-Fluoro-isobutyryl 147 

p-Methoxy-furanyl- 120 3-Fluoro-isobutyryl 148 

p-Chloro-furanyl- (3-isomer) 121 p-Chloro-cyclobutyryl- 149 

3'-Methyl-acetyl- 122 p-Chloro-isobutyryl- 150 

4'-Methyl- 123 p-Chloro-methoxyacetyl- 151 

α-Methyl-acetyl- 124 p-Chloro-valeryl- 152 

α-Methyl-butyryl- 125 p-Chloro-acryl- 153 

α-Methyl- 126 p-Methoxy-butyryl- 154 

4'-Fluoro-acetyl- 127 p-Methoxy-methoxyacetyl- 155 

2'-Methyl-acetyl- 128   

 

Compounds were separated into generic structural classes. Approximately half 

the compounds in each class (at least three) were selected to build the model, 

for a total of 54 compounds. These classes did not inform the clustering 

performed in Section 5.4, but served to have an even representation of possible 
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structural modifications in the model. The remaining 67 compounds were 

retained for a subsequent evaluation of the model’s accuracy.  

EI-MS spectra for compounds were extracted in .csv format. Relative 

intensities were calculated from m/z = 41 to m/z = 352, with the base peak 

normalised to 1 (see Table 5.2 for an excerpt of the dataset). The full dataset 

contained 54 observations (compounds) of 312 variables (m/z ions). This 

represents too many variables to extract meaningful information at a glance, 

making it difficult to evaluate whether compounds which share structural 

features also share common m/z ions for instance. Principal component 

analysis (PCA), by reducing the number of variables, will make these trends 

more easily visible. A full description of this procedure is reported in Section 

7.10. 

Table 5.2. Relative intensities for five fentanyl analogues.  

Compound 

Relative intensity (%) 

m/z = 
41 

m/z = 
42 

m/z = 
43 

m/z = 
44 

m/z = 
45 

m/z = 
46 

… 
m/z = 
352 

Fentanyl (2b) 0.113 0.417 0.067 0.000 0.000 0.000 … 0.000 

Butyryl fentanyl (2c) 0.144 0.279 0.361 0.184 0.000 0.000 … 0.000 

Methoxyacetyl 
fentanyl (2n) 

0.088 0.338 0.058 0.000 0.623 0.020 … 0.000 

Cyclopropyl 
fentanyl (2f) 

0.514 0.391 0.063 0.141 0.000 0.000 … 0.000 

Isobutyryl fentanyl 
(2j) 

0.246 0.393 0.867 0.198 0.000 0.000 … 0.000 

 

The dataset was imported into the R statistical computing software (version 

3.6.3). Further data clean-up was performed to remove noise. Variables (m/z 

ions) with a variance below 0.0001 were excluded as an initial clean-up, which 

reduced the dataset to 176 variables. This removed ions absent from all 

analogues, or ions that occurred very strongly in only one (or very few) 
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compounds. Higher variance thresholds were tested and led to a loss of 

valuable information when building the model.  

Principal component analysis was performed with mean centering and data 

scaling using the PCA function from the FactoMineR package (version 2.2). 

[172] Data visualisation was performed using the factoextra (version 1.0.7) 

and), ggcorrplot (version 0.1.3) and clustertend (version 1.4) packages. [173-

175] 

PCA was used to reduce the number of dimensions to a small number of 

principal components (PCs). Before selecting how many PCs should be 

retained, the information represented by each of the first principal components 

was examined.  

Figure 5.1a shows a projection of the model compounds on PCs 1 and 2. This 

is only a representation of the first two principal components, but the PCA 

generated 53 components in total. The first principal component, PC1, is the 

one that explains the most variance in the data, PC2 explains the second most 

variance, and so forth, until 100% of the total variance is explained. Later 

components explain only a trivial portion of the variance and need not be 

retained in the model. There is no strict criterion to decide how many PCs 

should be retained when building a PCA model. According to Kaiser, this can 

be determined using eigenvalues, a measure of the variance explained by each 

principal component. [176] Each PC has an inherent eigenvalue; when 

normalised so that the sum of eigenvalues across all PCs is 10, a PC with an 

eigenvalue greater than 1 should be retained. Eigenvalues for each PC are 

reported in a Scree plot (Figure 5.2). Only PC1 fits Kaise’s criterion, while PC2 

is slightly under. However, in this case, the first PCs explain only a small portion 
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of the data. This may be due to the nature of the data, and the overall variability 

of m/z ions: much of the variance can remain in further PCs. This, however, 

does not mean that the first few PCs are not sufficient to highlight relevant 

trends in the data. A recent study using mass spectral data from synthetic 

phenethylamines and tryptamines obtained similarly low values of variance 

explained by the first PCs. [177] In this case, PCs were selected based on their 

importance in separating structural classes, rather than on the eigenvalue 

criterion. 
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Figure 5.1. a) Projection of model fentanyl analogues on principal components 
PC1 and PC2; b) Correlation circle of m/z values projected on principal 
components PC1 and PC2, coloured according to cos2 values (cos2 > 0.3). 
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Figure 5.2. Scree plot of the eigenvalues for the first ten principal components.  

 

Therefore, before eliminating any PCs, the ions best represented by each 

component were examined. This gives a better understanding of the underlying 

dynamics behind each PC, and helps determine if valuable information is lost 

by eliminating specific PCs. Figure 5.1b shows a correlation circle of all 

variables (ions) projected onto PC1 and PC2. Variables are coloured based on 

their cos2, a measure of their distance from the center of the plot. Variables 

with a high cos2 (orange) are best represented by the principal components. 

Incidentally, variables in the same quadrant of the circle are positively 

correlated to each other, while variables in opposite quadrants are negatively 

correlated. This explains why, for instance, some variables have a positive 

value when projected onto PC1 (e.g. m/z = 148) and others a negative (e.g. 
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m/z = 172 and 173), although the positive/negative sign is arbitrary. Ultimately, 

ions with the highest cos2 are most characteristic of compounds projected in a 

given direction. Only the major fragment ions of fentanyl have been 

characterised, so the structure of ions of low mass or weak intensity may not 

be known. Still, PCA shows that these unknown ions can be characteristic of 

certain classes of compounds, revealing previously unsuspected trends which 

allow clustering. This is a clear advantage of using PCA: its potential for 

abstraction. Without knowing how every single ion arise, they can still be used 

by the model to establish fentanyl classes. Certain ions will be discussed here 

to describe the first PCs; a more in-depth discussion of the structures of 

characteristic ions will be done in Section 5.4.  

PC1 on its positive axis, appears strongly characteristic of fluorinated 

derivatives (m/z = 164, 207), especially those bearing a propionyl amide chain 

(m/z = 263, 42a-c). It also separates 3-fluoro- (48, 87-88) and methoxyaniline 

(92-96) derivatives from the bulk, to a lesser extent. Positive values of PC2 

characterises most amide derivatives and fluorophenethyl- (46a-c, 77, 80-81) 

compounds, while negative values are representative of chloro- (89-91) and 

fluoro-aniline (42a-c, 82-86) compounds. N-Benzyl analogues (58-64) gather 

in the lower left quadrant (Figure 5.1a) and are most strongly characterised by 

m/z = 82, 91, 172, 173 and 174 (Figure 5.1b). These are piperidine or tropylium 

(m/z = 91) fragments which arise more strongly in N-benzyl than N-phenethyl 

derivatives. [178] 

Projections on PCs 3-4 are shown in Figure 5.3 and PCs 5-6 in Figure 5.4. PC3 

characterises chloro-aniline compounds (89-91), and PC4 is representative of 

methoxy-aniline compounds (92-96). PC5 serves mainly to discriminate 3-

fluoro compounds (48, 87-88) from the bulk. PC6 does not appear to contribute 
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significantly to clustering, showing a rather even distribution of compounds 

along its axis. Few m/z ions are strongly represented by PC6. PCs beyond PC6 

explain decreasing proportions of the total variance and are unlikely to 

contribute to the model. Therefore, the first five PCs were retained, which 

explain 40.0% of the total variance in the data. 

The ion at m/z = 263 is specific to ortho-, meta- and para-fluorofentanyl (42a-

c), and includes the propionyl amide chain. It is strongly characterised by PC1, 

leading the three derivatives to project far on this axis. Ions bearing an amide 

moiety tend to be compound-specific and poorly explain variance in the data. 

The difference with m/z = 263 is that it is found in multiple compounds which 

all produce very similar mass spectra. This means a disproportionate number 

of derivatives produce the m/z = 263 ion, which may be skewing the PCA. The 

same phenomenon occurs for 2’-, 3’- and 4’-fluorofentanyl (46a-c), which 

project far away from other 4’-fluorinated derivatives on the PC4 axis. The 

inclusion of more derivatives of each class would probably lessen this 

phenomenon. This is not problematic per se, but it must be kept in mind when 

defining what constitutes a “class” of fentalogues within this model. 
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Figure 5.3. a) Projection of model fentanyl analogues on principal components 
PC3 and PC4; b) Correlation circle of m/z values projected on principal 
components PC3 and PC4, coloured according to cos2 values (cos2 > 0.3). 
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Figure 5.4. a) Projection of model fentanyl analogues on principal components 
PC5 and PC6; b) Correlation circle of m/z values projected on principal 
components PC5 and PC6, coloured according to cos2 values (cos2 > 0.3). 
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5.3 Hierarchical clustering 

The next step in this process was to assign samples into clusters based on 

their proximity in the PCA space. First, the clustering tendency of the data was 

assessed. This is important because clustering algorithms will force random 

data into clusters, even if they are not statistically significant. The Euclidean 

distance was used as a measure of the similarity of two elements in a 

distribution and is defined in Equation 1:  

  Eqn. 1 

 

where p and q are two vectors of length n. Thus, it measures the distance 

between two points or individuals in n dimensions. 

The clustering tendency was assessed using the Hopkins method, which 

randomly samples n points (𝑝1, … , 𝑝𝑛) from the dataset. For each point 𝑝𝑖, it 

finds its nearest neighbour 𝑝𝑗 and calculates the Euclidean distance between 

them, noted as 𝑥𝑖 = 𝑑(𝑝𝑖, 𝑝𝑗). A random dataset is then generated containing 

n points (𝑞1, … , 𝑞𝑛) with the same variation as the original dataset. The same 

process is applied to calculate 𝑦𝑖 = 𝑑(𝑞𝑖 , 𝑞𝑗), the Euclidean distance between 

points in the “simulated” dataset. The Hopkins statistic is defined in Equation 2: 

                                     Eqn. 2 

 

The Hopkins statistic compares sum of the distance between points in the 

dataset of interest (𝑥𝑖) and a random dataset (𝑦𝑖), the assumption being that 

𝑑(𝑝, 𝑞) =    (𝑝𝑖 − 𝑞𝑖)
2

𝑛

𝑖=1

 

𝐻 =  
 𝑦𝑖
𝑛
𝑖=1

 𝑥𝑖
𝑛
𝑖=1 +  𝑦𝑖

𝑛
𝑖=1
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the data in the random dataset should be evenly distributed. If H is close to 0.5, 

the data is uniformly distributed. Values closer to 0 indicate a non-uniform 

distribution, or a high clustering tendency. Using the hopkins function from the 

clustertend R package, H = 0.203 was obtained, meaning the data has a 

tendency to cluster. This value does not, however, the number of clusters or 

which individuals they include. 

A visual exploration of clusters can be done using a dissimilarity matrix (see 

Figure 5.5). The colour is proportional to the distance between individuals; red 

means the distance between individuals is close to 0, while blue means the 

distance is maximal within this dataset. The appearance of red boxes across 

the diagonal axis indicates the presence of clusters. This is clearly visible here, 

as a number of clusters appear in the data, which generally correlate with 

analogue structural classes. From bottom left to top right, groups of compounds 

include: 1) methoxyaniline derivatives (92-96); 2) fluoroaniline propionyl 

derivatives (42a-c); 3) 3-fluoro derivatives (48, 87-88); 4) chloroaniline 

derivatives (89-91); 5) fluorophenethyl propionyl derivatives (46a-c); 6) a large 

group of poorly separated derivatives containing potential sub-clusters; 7) N-

benzyl derivatives (58-64); 8) fluoroaniline derivatives (82-86).  
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Figure 5.5. Dissimilarity matrix of the 54 fentanyl derivatives PCA.  

 

Hierarchical ascendant classification was then applied to the model using the 

HCPC (Hierarchical Clustering on Principal Components) algorithm from 

FactoMineR. This is based on an agnes (agglomerative nesting) clustering 

algorithm. This type of algorithm classes individuals hierarchically based on 

their proximity in the PCA space; it starts with as many classes as there are 

individuals, then groups classes in a way that maximises intervariability, or the 

difference between classes. [172, 179] 
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Inter-variability is represented by the inter-class inertia which is defined in 

Equation 3:  

  

Eqn. 3 

 Total inertia Intra-class inertia Inter-class inertia 

where xiq represents the PCA coordinates of the ith individual from cluster q, �̅�𝑞 

is the average (or center of gravity) of cluster q, �̅� is the average of the full 

dataset, Q is the total number of clusters and I the total number of individuals. 

Inter-class inertia is the sum of the squared distances between the mean of 

each cluster and the mean of the full dataset, and thus represents how different 

clusters are from each other. By contrast, intra-variability, or intra-class inertia, 

is the sum of the squared distances between each member of a class and the 

average of that class, and thus represents the homogeneity of a given cluster. 

Ideally, the best partition should maximise inter-class inertia and minimise intra-

class inertia. 

The ascendant hierarchical classification starts with as many classes as there 

are individuals; at this point, classes are completely homogeneous. As such, 

the intra-class inertia is 0, while inter-class inertia is maximised. Although this 

is technically a perfect partition, it does not group individuals into useful, 

understandable classes. To achieve this, the model must suffer a certain loss 

of inter-class inertia, for the benefit of having a more general classification; the 

trick is in mitigating this loss of inertia. Grouping classes together can only lead 

to a decrease in the inter-class inertia, because the intra-class inertia increases 

  (𝑥𝑖𝑞 − �̅�)
2

=

𝐼
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(i.e. classes become less homogeneous). Equation 4 describes how the inertia 

of two classes a and b decreases when they are grouped together:  

 

Eqn. 4 

 

where ma and mb are the numbers of individuals in classes a and b and d2(a,b) 

is the squared distance between the centers of gravity of a and b. Thus, when 

a and b are grouped together, inertia is decreased by a value proportional to 

the distance between both classes, weighted by the number of individuals in 

each class. HCPC uses Ward’s method, which aims to make the negative term 

of this equation as small as possible; it starts with as many classes as there 

are individuals, then groups the two classes that lead to the smallest loss of 

inertia, then the next smallest loss, and so forth until this iterative process builds 

a full dendrogram. [172, 179] The height of a branch represents the loss of 

inertia when two sub-groups are grouped together. The resulting dendrogram 

for the present model is shown in Figure 5.6.  

𝐼𝑛𝑒𝑟𝑡𝑖𝑎(𝑎)+ 𝐼𝑛𝑒𝑟𝑡𝑖𝑎(𝑏) = 𝐼𝑛𝑒𝑟𝑡𝑖𝑎(𝑎 ∪ 𝑏) −  
𝑚𝑎𝑚𝑏
𝑚𝑎 +𝑚𝑏

𝑑2(𝑎, 𝑏) 
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Figure 5.6. Initial hierarchical dendrogram of fentanyl analogues data. 

 

Clusters generated through HCPC are defined by “cutting” the dendrogram at 

an appropriate level. Therefore, the number of classes can be defined by the 

user, but the composition of these classes arises solely from the clustering 

algorithm described. Again, no absolute criterion exists to determine the 

optimal number of clusters.  

One possible criterion is the relative inertia gain. Table 5.2 shows how much 

inter-class inertia is gained by separating a class in two. For instance, starting 

from the top of the dendrogram, separating the whole dataset into two classes 

results in an inertia gain of 13.0, or 18.4% of the total inertia. HCPC considers 

the grouping with the highest relative gain as the optimal partition, forming ten 
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classes in this case. The resulting partition is shown in Figure 5.7a. This 

grouping accounts for 80.1% of the total inertia and, beyond that, the gain in 

inertia is relatively small (Table 5.3). The problem can also be considered in 

reverse: by grouping individuals in 7 classes, 19.9% of the inter-class inertia 

was lost, but the creation of relevant classes potentially made the model more 

general. Grouping more classes together, however, might result in too high a 

loss of inertia. 
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Table 5.3. Inter-cluster inertia gains. 

 

Grouping 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 
10-
11 

11-
12 

12-
13 

13-
14 

14-
15 

15-
16 

Inertia 
gain 

13.0 12.5 10.3 8.8 6.5 5.3 3.0 2.6 1.9 1.4 0.8 0.4 0.4 0.4 0.3 

% inertia 
gain 

18.4 17.8 14.7 12.5 9.3 7.5 4.3 3.7 2.7 2.0 1.1 0.6 0.6 0.6 0.5 

Cumul. 
% 

18.4 36.2 50.9 63.4 72.6 80.1 84.4 88.1 90.8 92.8 93.9 94.5 95.1 95.6 96.1 
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Figure 5.7. Dendrograms created from the hierarchical clustering of fentanyl 
analogues. a) k = 7 clusters; b) k = 11 clusters. 
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A more formal approach developed by Tibshirani et al. uses the “gap statistic” 

to determine an optimal number of clusters. [180] The gap statistic is defined 

in Equation 5: 

 Eqn. 5 

 

This method calculates the total intra-cluster variation 𝑊𝑘 in the dataset for an 

increasing number of clusters 𝑘 = 1,… , 𝑘𝑚𝑎𝑥. B datasets with a random uniform 

distribution are then generated and separated into 𝑘 = 1,… , 𝑘𝑚𝑎𝑥 clusters to 

determine their total intra-cluster variation 𝑊𝑘𝑏. The gap statistic measures how 

much the present clustering deviates from the random distribution. For a larger 

gap statistic, it can be inferred that clustering is supported by the data and is 

unlikely to arise from a random distribution. The algorithm then looks for the 

smallest value of k for which 𝐺𝑎𝑝(𝑘) is within one standard deviation of 

𝐺𝑎𝑝(𝑘 + 1). In the present case, calculated with kmax = 12 and B = 1000, the 

optimal number of clusters according to the gap statistic is 11 (Figure 5.8). The 

resulting classification is shown in Figure 5.7b. 

𝐺𝑎𝑝(𝑘) =
1

𝐵
 𝑙𝑜𝑔(𝑊𝑘𝑏 ) − 𝑙𝑜𝑔(𝑊𝑘)

𝐵

𝑏=1
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Figure 5.8. Gap statistic for each number of clusters (kmax = 12, B = 1000). 
Note: Error bars represent one standard deviation of Gap(k) (n = 1000).  

 

Arguably, the most important criterion is the ability to interpret why classes 

arise. It is counterproductive to divide a class without understanding the 

distinction between the two newly formed classes. Dividing the model into too 

many classes can also lead to “over-fitting”, which means it will perform poorly 

in the evaluation, when classifying test samples. It may therefore be relevant 

to use an empirical criterion, or prior knowledge about the derivatives included 

in the model, to evaluate the proposed classification. For instance, looking at 

Figure 5.7a (k = 7), clusters 5 and 7, which are the most heterogeneous 

according to their branch height, make little sense. Cluster 5 groups 

fluorophenethyl derivatives with non-fluorinated analogues, while cluster 7 

groups N-benzyl derivatives with fluoroaniline analogues, and each could 
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arguably be cut in half. In contrast, the partition obtained from the gap statistic, 

shown in Figure 5.7b (k = 11), contains too many groups. Clusters 1 and 2 

separate two methoxyaniline derivatives (para-methoxyacrylfentanyl (92) and 

para-methoxymethoxyacetylfentanyl (93)) from the others, which does not 

seem to be a useful distinction. Cluster 7 is composed only of methylaniline 

derivatives, but closely related compounds meta-methylacetylfentanyl (67) and 

meta-methyl-2-furanylfentanyl (75) fall in cluster 8.  

In fact, cluster 8 itself makes little sense. Considering the variety of analogues 

included, it is unlikely that the model would detect the minute mass spectral 

differences between all structural classes. Cluster 8 regroups analogues which 

remain close to the center of the PCA space, compounds which could 

potentially be resolved from the rest of the group by subtle differences in their 

mass spectra, which explain a low percentage of the variance in this dataset. 

This is a limitation of this model which will be remedied later. In the meantime, 

clusters 7 and 8 will be grouped together into one cluster of “inconclusive” 

compounds, resulting in a partition of 9 clusters. This partition is called 

“Classifier 1” and is shown in Figure 5.9. Figure 5.10 shows the same partition 

in the PCA space, on the PC1-PC2 plane, although PCs 3-5 are omitted and 

also contribute to the clustering. A detailed list of the compounds in each cluster 

is reported in Table 5.4.  
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Figure 5.9. Classifier 1 dendrogram created from the hierarchical clustering of 
fentanyl analogues. Note: The vertical axis represents the loss of inertia caused 
by each grouping.  
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Figure 5.10. Classifier 1 hierarchical clustering shown on the PC1-PC2 plane. 
Note: PCs 3-5 are not shown but also contribute to the clustering.  
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Table 5.4. Individuals in each cluster of Classifier 1. 

Cluster Fentanyl analogue Abbreviation No  Cluster Fentanyl analogue Abbreviation No 

1a N-Benzyl- 

Isobutyryl N-benzyl- iBuBn 58  

1c Amides 

Acryl- Acryl 2q 

N-Benzyl- FentBn 59  Butyryl- Bu 2c 

Cyclopropyl-N-benzyl- CyPrBn 60  Propionyl- Fentanyl 2b 

para-Fluoro-isobutyryl-N-
benzyl- 

pF-Bn-iBu 61  Cyclopropyl- CyPr 2f 

para-Fluoro-N-benzyl- pF-Bn-Fent 62  Isobutyryl- iBu 2j 

Phenyl-N-benzyl- PhBn 63  

1d 
Fluorophenethyl 

(Propionyl) 

3’-Fluoro- 3'-F 46b 

para-Fluoro-acetyl-N-benzyl- pF-Bn-Ac 64  4'-Fluoro- 4'-F 46c 

1b Inconclusive 

meta-Methyl- mMe 65  2'-Fluoro- 2'-F 46a 

ortho-Methyl-acetyl- oMe-Ac 66  

1e Fluoroanilines 

meta-Fluoro-acryl- mF-Acryl 82 

meta-Methyl-acetyl- mMe-Ac 67  
meta-Fluoro-

methoxyacetyl- 
mF-MeOAc 83 

4’-Methyl-acetyl- 4'-Me Ac 68  para-Fluoro-acryl- pF-Acryl 84 

β-Methyl-acetyl- b-Me Ac 69  para-Fluoro-acetyl- pF-Ac 85 

2’-Methyl- 2'-Me 70  
para-Fluoro-
cyclopropyl- 

pF-CyPr 86 

para-Methyl-tetrahydrofuranyl- pMe-THF 71  

1f 3-Fluoro- 

3-Fluoro-butyryl- 3F-Bu 87 

Tetrahydrofuranyl- (3-isomer) 3THF 72  
3-Fluoro-

tetrahydrofuranyl- 
3F-THF 88 

β-Methyl- b-Me 73  3-Fluoro- 3F 48 

Heptanoyl- Hept 74  

1g Chloroanilines 

para-Chloro-butyryl- pCl Bu 89 

meta-Methyl-furanyl- mMe-2fur 75  para-Chloro- pCl 90 

((E)-2-Methyl-2-butenoyl)- Tigloyl 76  
para-Chloro-
cyclopentyl- 

pCl CyPent 91 

4’-Fluoro-cyclopropyl- 4'-F-CyPr 77  

1h Methoxyanilines 

para-Methoxy-acryl- pMeO-Acryl 92 

Benzoyl- (phenyl) Bz 2r  
para-Methoxy- 
methoxyacetyl- 

pMeO-
MeOAc 

93 

2,2,3,3-
Tetramethylcyclopropyl- 

TMeCyPr 78  para-Methoxy- pMeO 94 

2,2-dimethylpropanoyl- Piv 79  para-Methoxy-valeryl- pMeO-Val 95 

4’-Fluoro-butyryl- 4'-F-Bu 80  ortho-Methoxy-butyryl- oMeO-Bu 96 

Furanyl- 2-fur 2o  

1i 
Fluoroanilines 

(Propionyl) 

meta-Fluoro- m-F 42b 

4’-Fluoro-methoxyacetyl- 4'-F-MeOAc 81  ortho-Fluoro- o-F 42a 

1c Amides Methoxyacetyl- MeOAc 2n  para-Fluoro- p-F 42c 
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Each cluster can be characterised by a number of metrics. First of all, 

FactoMineR applies a test to determine which variables most characterise each 

cluster (see Table 5.5). The test considers the mean and the standard deviation 

of a given variable in a cluster (e.g. the ion m/z = 82 in cluster 1a) and checks 

how likely it is that this average would arise if values were drawn at random 

from the whole population. The test centers and normalises the dataset so that 

it’s mean is 0 and it’s standard-deviation is 1 (standard normal distribution), 

then produces a test value. With such a standard normal distribution, the 

probability that the test value is comprised in the interval [- 1.96 : 1.96] is 95%. 

Thus, at a confidence interval of 95%, a variable with an absolute test value 

greater than 1.96 does not follow the normal distribution and significantly 

contributes to the cluster. The higher the absolute test value, the more strongly 

a variable characterises a given cluster. Negative test values arise if a certain 

ion has a consistently lower intensity in individuals of a given cluster than in the 

total population. Only ions with positive test values are reported in Table 5.5, 

in order to characterise clusters by their common fragments.  

Most characteristic ions tend not to include the amide chain, but rather portions 

of the molecule which are common to all derivatives in a class. For instance, 

cluster 1a includes N-benzyl derivatives (58-64) and is characterised mostly by 

m/z = 82, 91 and 173, ions which have previously been reported to arise 

strongly in this class of compounds, and not in traditional N-phenethyl 

analogues. Cluster 1b includes ions methylated on the aniline ring (m/z = 160, 

203) or the phenethyl chain (m/z = 119). As noted before, cluster 1b includes 

“inconclusive” compounds; it is situated close to the center of the PCA space 

and is the most heterogeneous cluster. Ions characteristic of cluster 1b also 

deviate less strongly from the normal distribution than other clusters: the p-
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value of the most characteristic cluster 1b ion (m/z = 160, p-value = 9.1 x 10-3) 

is many orders of magnitude lower than most other clusters.  

Cluster 1c includes fentanyl (2b) and similar amide-chain derivatives. None of 

the ions strongly characteristic of this cluster have previously been reported. 

The typical ions of m/z = 146 and 189, are common to analogues of clusters 

1b, 1c and 1d, and thus cluster 1c is differentiated by the more specific ions 

reported in Table 5.5. The most notable ion associated with cluster 1d is the 

fluorinated tropylium ion at m/z = 109. Some of the other ions, although they 

have not been characterised, must include the propionyl amide chain, to 

explain why non-propionyl 4’-fluorinated derivatives fall within cluster 1b, not 

1d.  

Two of the most important cluster 1e ions, m/z = 136 and 150, have not been 

characterised, but likely structures, which arise from fragmentation of the 

piperidine ring, are suggested in Table 5.5. Ions analogous to m/z = 150 were 

observed in other clusters, with a mass difference consistent with the 

substituent on the aromatic ring (m/z = 132 for cluster 1c; m/z = 166 for cluster 

1h, m/z = 162 for cluster 1h). The m/z = 275 ion and its 276 isotope are unique 

to para-fluoro cyclopropylfentanyl (86). This seems to be a rare occurrence 

where an ion from a single compound contributes to defining a cluster, and may 

be a limitation of cluster 1e.  

Cluster 1f, which includes 3-fluorinated derivatives (48, 87-88), is characterised 

mostly by unknown ions. Most common ions of 3-fluorinated compounds also 

arise in fluoroaniline derivatives (clusters 1e and 1i), because of the position of 

the fluorine atom, which is retained in major EI-MS fragments. Therefore, the 

distinction between these clusters is based on differences detected in minor 
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fragments. The ion at m/z = 207 is an exception: it characterises cluster 1f 

because its intensity in 3-fluorinated derivatives is stronger than other 

fluorinated compounds.  

Cluster 1g is most strongly characterised by the chlorinated m/z = 223 ion and 

its 224 and 225 isotopes. As previously discussed, the m/z = 166 ion is 

suggested to arise from a fragmentation of the piperidine ring. Cluster 1h 

includes methoxylated derivatives (92-96). It is strongly characterised by m/z = 

162, as well as m/z = 134 which is consistent with further fragmentation of the 

piperidine ring. m/z = 108 corresponds to a methoxyphenyl cation, while m/z = 

176 and its 177 isotope are the methoxyl equivalent of a known fentanyl ion. 

Finally, individuals in cluster 1i are differentiated from other fluorinated 

compounds in clusters 1e and 1f mostly by m/z = 263, which includes the 

propionyl amide chain. Cluster 1i is also characterised by common fluorinated 

fragment m/z = 164. 

The characterisation of unidentified ions could be the object of further research 

and would require more advanced, high-resolution mass spectrometry 

techniques. This would help better understand the present model. 
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Table 5.5. Description of clusters by the five most significant m/z values.  

Cluster m/z Test value a 
Mean in 
cluster 

Overall 
mean b 

p-value c Suspected 
fragment 

1a 

82 7.12 0.816 0.133 1.1E-12 
 

91 6.88 1.000 0.302 6.0E-12 
 

173 6.83 0.168 0.026 8.6E-12 

 

174 6.83 0.070 0.011 8.6E-12 
m/z = 173 

isotope 

92 5.38 0.089 0.039 7.5E-08 
m/z = 91 
isotope 

1b 

160 2.61 0.179 0.077 9.1E-03 

 

203 2.51 0.086 0.033 1.2E-02 

 

204 2.38 0.018 0.009 1.8E-02 
m/z = 203 

isotope 

119 2.14 0.035 0.025 3.3E-02 

 
117 2.07 0.037 0.030 3.8E-02 – 

1c 

104 4.59 0.177 0.081 4.5E-06 – 

159 4.59 0.027 0.009 4.5E-06 – 

132 4.47 0.167 0.076 7.7E-06 
 

147 4.45 0.087 0.031 8.6E-06 
m/z = 146 

isotope 

98 4.40 0.067 0.023 1.1E-05 – 

1d 

109 6.54 0.197 0.022 6.0E-11 

 
101 6.05 0.043 0.005 1.5E-09 – 

93 5.37 0.529 0.096 7.8E-08 – 

66 4.95 0.040 0.011 7.4E-07 – 

103 4.71 0.216 0.078 2.4E-06 – 
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Table 5.5. Description of clusters by the five most significant m/z values. (cont.) 

Cluster m/z Test value a 
Mean in 
cluster 

Overall 
mean b 

p-value c 
Suspected 
fragment 

1e 

150 3.78 0.069 0.018 1.5E-04 

 
206 3.47 0.070 0.009 5.2E-04 – 

136 3.18 0.048 0.015 1.5E-03 

 

275 3.12 0.200 0.019 1.8E-03 

 

276 3.11 0.036 0.004 1.8E-03 
m/z = 275 

isotope 

1f 

114 7.27 0.060 0.004 3.7E-13 – 

186 6.88 0.248 0.034 5.8E-12 – 

207 4.82 0.498 0.081 1.5E-06 

 
185 4.41 0.035 0.010 1.0E-05 – 

71 4.32 0.395 0.044 1.6E-05 – 

1g 

225 7.26 0.122 0.007 4.0E-13 
m/z = 223 

isotope 

223 7.25 0.381 0.022 4.1E-13 

 

224 7.21 0.056 0.003 5.4E-13 
m/z =  223 

isotope 

127 7.08 0.121 0.007 1.5E-12 – 

166 6.94 0.065 0.004 3.9E-12 
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Table 5.5. Description of clusters by the five most significant m/z values. (cont.) 

Cluster m/z Test value a 
Mean in 
cluster 

Overall 
mean b 

p-value c 
Suspected 
fragment 

1h 

162 6.66 0.078 0.010 2.8E-11 

 

134 6.52 0.094 0.020 7.2E-11 

 

108 6.43 0.100 0.011 1.3E-10 
 

isotope? 

176 6.29 0.676 0.073 3.2E-10 

 

177 6.13 0.106 0.014 8.6E-10 
m/z = 176 

isotope 

1i 

111 6.97 0.567 0.046 3.1E-12 – 

167 6.91 0.066 0.005 5.0E-12 – 

263 6.24 1.000 0.075 4.3E-10 

 

164 6.19 0.668 0.071 6.2E-10 

 
112 6.14 0.039 0.004 8.0E-10 – 

a Test value determining the likelihood that values of variable q can be drawn 

from the total population at random (if |test value| ≥ 1.96, the hypothesis that 

they were drawn at random is rejected at 95% confidence interval); b Average 

value for the total population; c Probability that a variable follows a standard 

normal distribution. 
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The quality of clusters can be evaluated based on their silhouette coefficient 

Si, which is defined in Equation 6: [179, 181] 

Eqn. 6 

 

For each individual i, the average dissimilarity ai between it and other members 

of its cluster is calculated. Then, the average dissimilarity between i and every 

other cluster is calculated; the smallest of these, i.e. the dissimilarity between i 

and its neighbour cluster, is noted bi. This coefficient can take values between 

-1 and 1 and measures the quality of clustering for each object. A coefficient 

near 1 means an object clusters almost perfectly, 0 means it lies between two 

clusters and a negative value indicates that an individual is likely in the wrong 

cluster. The silhouette plot is shown in Figure 5.11. All individuals have a 

coefficient above 0 and cluster relatively well. Unsurprisingly, the least 

cohesive cluster appears to be cluster 1b.  

𝑆𝑖 =
(𝑏𝑖 − 𝑎𝑖)

𝑚𝑎𝑥(𝑎𝑖 , 𝑏𝑖)
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Figure 5.11. Silhouette coefficients of individuals in classifier 1. Note: The 
dotted line represents the average silhouette coefficient. 

 

However, as discussed previously, there is a danger of overfitting the model by 

dividing it into too many clusters. By doing so, the model would be able to 

completely discriminate compounds from this dataset, but it will do poorly when 

classifying new, unknown data. Hence, overfitting can be detected indirectly 

when testing the model on new data. 

To get around this, and because cluster 1b is not currently very useful for 

prediction purposes, a second classifier was designed. This included only 

individuals from cluster 1b, in the hopes that the differences between these 

compounds could be extracted more efficiently in a restrained dataset. Thus, 

during the evaluation phase, test samples will first be compared with Classifier 

1 to see which cluster they belong to, then any sample falling within cluster 2 
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will be compared with Classifier 2. This iterative classification process can be 

automated, so that the use of two classifiers (or more) is not more complex for 

the end-user.  

The 17 compounds used to build Classifier 2 are detailed in Table 5.6. A PCA 

was performed and, with the same criteria previously described, PCs 1-4 were 

retained (51.2% of total variance). Four clusters clearly arose from hierarchical 

clustering, resulting in the dendrogram shown in Figure 5.12. As opposed to 

the first classifier, this one allows the proper grouping of fluorophenethyl- 

(cluster 2a) and methylaniline (cluster 2d) analogues. Cluster 2c groups 

compounds with aromatic amides which, because of the increased stability of 

their amide and acylium ions, produce significantly different mass spectra from 

other amides. Cluster 2b groups two types of compounds. Firstly, 

“unconventional” aliphatic amides which are uncaptured by classifier 1 [i.e. 3-

tetrahydrofuranyl- (72); heptanoyl- (74) and 2,2-dimethylpropanoylfentanyl 

(pivaloylfentanyl, 79)]. Cluster 2b also includes compounds bearing methyl 

substituents on their phenethyl- tails, either on the aromatic ring or on the ethyl 

linker, which are difficult to identify because the resulting fragment ions are not 

significantly different, in mass or intensity, from those of other analogues. [141] 

However, although these two groups cluster together on the PC1-PC2 plane 

(Figure 5.13), they could potentially be differentiated by PC4 (Figure 5.14).  
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Table 5.6. Individuals in each cluster of Classifier 2.  

Cluster Fentanyl analogue Abbreviation No 

2a Fluorophenethyl- 

4’-Fluoro-methoxyacetyl- 4'-F-MeOAc 81 

4’-Fluoro-cyclopropyl- 4'-F-CyPr 77 

4’-Fluoro-butyryl- 4'-F-Bu 80 

2b 
Methylphenethyl- 

& Amides 

4’-Methyl-acetyl- 4'-Me Ac 68 

Heptanoyl- Hept 74 

β-Methyl-acetyl- b-Me Ac 69 

Tetrahydrofuranyl- (3-isomer) 3THF 72 

2’-Methyl- 2'-Me 70 

2,2-dimethylpropanoyl- Piv 79 

β-Methyl- b-Me 73 

2c Aromatic amides 

Benzoyl- (Phenyl) Bz 2r 

Furanyl- 2-fur 2o 

meta-Methyl-furanyl- mMe-2fur 75 

2d Methylanilines 

meta-Methyl-acetyl- mMe-Ac 67 

para-Methyl-tetrahydrofuranyl- pMe-THF 71 

ortho-Methyl-acetyl- oMe-Ac 66 

meta-Methyl- mMe 65 
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Figure 5.12. Dendrogram created from the hierarchical clustering of fentanyl 
analogues (Classifier 2). Note: The vertical axis represents the loss of inertia 
caused by each grouping.  
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Figure 5.13. Classifier 2 hierarchical clustering shown on the PC1-PC2 plane. 
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Figure 5.14. Classifier 2 hierarchical clustering shown on the PC3-PC4 plane. 

 

The fragments most characteristic of each cluster are reported in Table 5.7. 

Cluster 2a is characterised by a fluorophenethyl cation (m/z = 123) and a 

fluorinated tropylium fragment (m/z = 109), both characteristic of fentanyl 

analogues bearing a fluorine on their phenethyl chain. Cluster 2b includes m/z 

= 146, a typical fentanyl fragment, as well as a methylphenethyl cation (m/z = 

119).  

The ions reported for cluster 2c in Table 5.7 do not readily appear to be 

common to all three compounds. In this case, it may be more relevant to 

examine ions with a negative test value. All compounds have an acylium ion 
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as their base peak due to the increased stability of their aromatic amide chain 

(m/z = 95 for 2-furanylfentanyl (2o) and meta-methylfuranylfentanyl (75); m/z = 

105 for benzoylfentanyl (2r)). This decreases the relative intensity of common 

fragment ions when compared to other analogues. As shown in Table 5.7, m/z 

= 146 and its 147 isotope, one of the major fragments of fentanyl (2b), is lower 

in cluster 2c than in the whole dataset. This is explains how aromatic 

compounds with different fragment ions can cluster together. Finally, cluster 2d 

is characterised by m/z = 160 and 203 fragments, expected for methylaniline 

compounds. 
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Table 5.7. Description of Classifier 2 clusters by the five most significant m/z 
values. 

Cluster m/z 
Test 
value 

Mean in 
cluster 

Overall 
mean 

p-value 
Suspected 
fragment 

2a 

123 3.98 0.174 0.031 6.8E-05  
122 3.93 0.073 0.013 8.7E-05 – 

121 3.89 0.032 0.007 1.0E-04 – 

109 3.87 0.079 0.015 1.1E-04 

 
101 3.81 0.026 0.006 1.4E-04 – 

2b 

131 2.98 0.049 0.040 2.9E-03 – 

146 2.63 0.481 0.298 8.5E-03 

 

119 2.17 0.059 0.037 3.0E-02  
188 2.08 0.124 0.061 3.8E-02 – 

147 2.06 0.054 0.038 3.9E-02 
m/z = 146 

isotope 

2c 

95 3.13 0.669 0.138 1.8E-03 
 

98 2.91 0.056 0.018 3.6E-03 – 

184 2.38 0.034 0.012 1.7E-02 – 

294 2.26 0.022 0.004 2.4E-02 
m/z = 293 

isotope 

293 2.25 0.103 0.019 2.4E-02 

 

146 
-2.14 0.028 0.298 3.2E-02  

131 -2.19 0.028 0.040 2.8E-02 – 

147 
-2.32 0.005 0.038 2.0E-02 

m/z = 146 
isotope 

132 
-3.34 0.039 0.087 8.3E-04  

2d 

160 3.85 0.791 0.197 1.2E-04 

 

161 3.75 0.103 0.027 1.8E-04 
m/z = 160 

isotope 

145 3.69 0.074 0.026 2.2E-04 – 

144 3.49 0.082 0.032 4.9E-04 – 

203 3.43 0.387 0.096 6.0E-04 
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5.4 Model evaluation 

Classifiers 1 and 2 proved that most fentanyl analogues could successfully be 

grouped, using mass spectral data, into clusters consistent with their structural 

classes. Sixty-seven new compounds were compared against these classifiers, 

to test whether the model was able to successfully attribute unknown 

compounds to the right class. 

Each given test analogue was projected as a point in the PCA space and 

assigned to the nearest cluster. Two distance measurement methods were 

evaluated: a sample could be matched to the cluster with the nearest centroid, 

or to the cluster of its nearest neighbour. Test analogues which were classed 

in cluster 1b were then fed into Classifier 2, where the process was repeated. 

Finally, analogues classed in cluster 2b, which includes methylphenethyl 

compounds and “unconventional” aliphatic amides, were attributed to one of 

these two groups based on their nearest neighbour in this cluster, regardless 

of the distance measurement used. The classification result is then compared 

to the analogue’s actual class to determine accuracy. 

A comparison of these two match criteria is reported in Table 5.8. The nearest 

neighbour method, which correctly classified 61 of the 67 test compounds, was 

more accurate overall (91.0% accuracy).  

Table 5.8. Comparison of the centroid and nearest neighbour classification 
criteria.  

 Centroid method Nearest neighbour method 

Classifier 1 matchesa 37 / 43 37 / 39 

Classifier 2 matches 19 / 24 24 / 28 

Total matches 56 / 67 61 / 67 

Overall accuracy 83.6% 91.0% 
a Compounds classed in cluster 2 excluded.  
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Table 5.9. Detailed model evaluation results obtained with the nearest 
neighbour method.  

Fentanyl analogue No 

Classifier 1 Classifier 2 

Match? Nearest 
neighbour 

Cluster 
Nearest 

neighbour 
Cluster 

meta-Fluoro-N-benzyl- 97 pF-Bn-Ac 1a ─ ─ Y 

para-Fluoro-N-benzylfuranyl- 98 pF-Bn-Ac 1a ─ ─ Y 

Acetyl-N-benzyl- 99 CyPrBn 1a ─ ─ Y 

Furanyl-N-benzyl- 100 PhBn 1a ─ ─ Y 

Methoxyacetl-N-benzyl- 101 FentBn 1a ─ ─ Y 

Butyryl-N-benzyl- 102 iBuBn 1a ─ ─ Y 

Acryl-N-benzyl- 103 FentBn 1a ─ ─ Y 

para-Fluoro-N-benzyl-cyclopropyl- 104 pF-Bn-Ac 1a ─ ─ Y 

Tetrahydrofuranyl-N-benzyl- 105 pF-Bn-Fent 1a ─ ─ Y 

4-ANPP 4 2'-Me 1b b-Me 2b N 

Crotonyl- ((E)-But-2-enoyl) 106 2'-Me 1b Hept 2b Y 

(2-Methyl)butyryl- 107 Piv 1b Piv 2b Y 

Ethoxyacetyl- 108 Piv 1b 3THF 2b Y 

Cyclopropylacetyl- 109 3THF 1b Piv 2b Y 

ortho-Methyl-acryl- 110 Hept 1b Hept 2b N 

para-Methyl-acetyl- 111 oMe-Ac 1b oMe-Ac 2d Y 

ortho-Methyl- 10 mMe 1b mMe-Ac 2d Y 

meta-Methyl-cyclopropyl- 112 b-Me Ac 1b mMe-Ac 2d Y 

ortho-Methyl-furanyl- 113 mMe-2fur 1b mMe-2fur 2c Y 

para-Methyl-furanyl- 114 mMe-2fur 1b mMe-2fur 2c Y 

meta-Methyl-methoxyacetyl- 115 mMe-Ac 1b mMe-Ac 2d Y 

ortho-Methyl-cyclopropyl- 116 mMe-Ac 1b mMe-Ac 2d Y 

4'-Fluoro-furanyl- 117 TMeCyPr 1b 2fur 2c Y 

meta-Methoxy-furanyl- 118 Bz 1b Bz 2c Y 

ortho-Methoxy-furanyl- 119 Piv 1b Bz 2c Y 

para-Methoxy-furanyl- 120 TMeCyPr 1b Bz 2c Y 

para-Chloro-furanyl- (3-isomer) 121 Bz 1b Bz 2c Y 

3'-Methyl-acetyl- 122 2'-Me 1b 2'-Me 2b Y 

4'-Methyl- 123 2'-Me 1b 2'-Me 2b Y 

α-Methyl-acetyl- 124 Tigloyl 1b b-Me Ac 2b Y 

α-Methyl-butyryl- 125 Tigloyl 1b 3THF 2b N 

α-Methyl- 126 4'-F-iBu 1b 3THF 2b N 

4'-Fluoro-acetyl- 127 4'-F-MeOAc 1b 4'-F-CyPr 2a Y 

2'-Methyl-acetyl- 128 2'-Me 1b 2'-Me 2b Y 
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Table 5.9. Detailed model evaluation results obtained with the nearest 
neighbour method. (cont.) 

Fentanyl analogue No 

Classifier 1 Classifier 2 

Match? Nearest 
neighbour 

Cluster 
Nearest 

neighbour 
Cluster 

Thiophenyl- (3-isomer) 129 Bz 1b Bz 2c Y 

3'-Methyl- 130 2'-Me 1b 2'-Me 2b Y 

ortho-Fluoro-furanyl- 131 Bz 1b Bz 2c Y 

Acetyl- 2a Acryl 1c ─ ─ Y 

iso-Valeryl- 2k Bu 1c ─ ─ Y 

Valeryl- 2d MeOAc 1c ─ ─ Y 

Hexanoyl- 2e CyPr 1c ─ ─ Y 

Cyclobutyryl- 2g MeOAc 1c ─ ─ Y 

2’-fluoro-ortho-fluoro- 47 pF-Ac 1e ─ ─ Y 

para-Fluoro-butyryl- 132 pF-CyPr 1e ─ ─ Y 

para-Fluoro-isobutyryl- 133 pF-CyPr 1e ─ ─ Y 

para-Fluoro-cyclopentyl- 134 mF-MeOAc 1e ─ ─ Y 

para-Fluoro-tetrahydrofuranyl- 135 pF-CyPr 1e ─ ─ Y 

para-Fluoro-crotonyl- 136 mF-Acryl 1e ─ ─ Y 

meta-Fluoro isobutyryl 137 pF-CyPr 1e ─ ─ Y 

ortho-Fluoro-butyryl- 138 pF-CyPr 1e ─ ─ Y 

ortho-Fluoro-isobutyryl- 139 pF-CyPr 1e ─ ─ Y 

para-Fluoro-valeryl- 140 pF-CyPr 1e ─ ─ Y 

para-Fluoro-furanyl- (3-isomer) 141 mF-Acryl 1e ─ ─ Y 

2,3-Benzodioxolyl- 142 pF-Acryl 1e ─ ─ N 

para-Chloro-furanyl- 143 mF-MeOAc 1e ─ ─ N 

meta-Fluoro-butyryl- 144 pF-CyPr 1e ─ ─ Y 

para-Fluoro-furanyl- 145 mF-Acryl 1e ─ ─ Y 

meta-Fluoro-furanyl- 146 mF-Acryl 1e ─ ─ Y 

meta-Fluoro-isobutyryl- 147 pF-CyPr 1e ─ ─ Y 

3-Fluoro-isoburytyl- 148 3F-THF 1f ─ ─ Y 

para-Chloro-cyclobutyryl- 149 pCl Bu 1g ─ ─ Y 

para-Chloro-isobutyryl- 150 pCl Bu 1g ─ ─ Y 

para-Chloro-methoxyacetyl- 151 pCl CyPent 1g ─ ─ Y 

para-Chloro-valeryl- 152 pCl CyPent 1g ─ ─ Y 

para-Chloro-acryl- 153 pCl CyPent 1g ─ ─ Y 

para-Methoxy-butyryl- 154 pMeO-Acryl 1h ─ ─ Y 

para-Methoxy-methoxyacetyl- 155 p-F 1i ─ ─ Y 
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The detailed results obtained using the nearest neighbour method are reported 

in Table 5.9. Overall, Classifier 1 reliably identified a variety of N-benzyl 

derivatives (cluster 1a), most aliphatic amides (cluster 1c), fluoroaniline 

derivatives (cluster 1e) and chloroaniline derivatives (cluster 1g). It also 

properly classified 3-fluoro-isobutyrylfentanyl (148) in cluster 1f and para-

methoxy-butyrylfentanyl (154) in cluster 1h, though only had a limited number 

of compounds were available to test these classes. Misclassifications made by 

Classifier 1 involved aromatic amides 2,3-benzodioxolefentanyl (142) and 

para-chloro-3-furanylfentanyl (143), wrongly classed in cluster 1e.  

Compounds in cluster 1b were screened against Classifier 2, which properly 

identified methylaniline (cluster 2d) and 4’-fluoro (cluster 2a) derivatives. As 

cluster 2b also includes methylphenethyl- and non-aromatic amide derivatives, 

test individuals in cluster 2b were tentatively classified into one of these two 

classes based on their nearest neighbour. Although Classifer 2 had limitations, 

this could be solved by including more derivatives from each class in the model, 

which was not possible with the current dataset.  

As noted previously, aromatic amides tend to cluster together in the Classifier 

2 model because the presence of an aromatic amide significantly modifies the 

observed m/z ions. Aromatic amides tested were thus classified in cluster 2c, 

regardless of other modifications to their structure (fluorinated (117, 131), 

chlorinated (121), methoxylated (118-120) and methylated (113-114) 

analogues). It is worth noting one exception, in that Classifier 1 correctly 

classed meta- and para-fluoro-furanylfentanyl (141, 145-146) into the 

fluorinated analogues cluster. Again, this could be remediated by adding 

aromatic compounds representative of each class of derivatives to the model. 

In fact, an initial exploration using all aromatic compounds available in the full 
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dataset shows that they can cluster based on their secondary modification (see 

Figure 5.15). The partition was not perfect, with furanylfentanyl (2o) clustering 

on its own, but could be improved by including more examples of this class of 

derivatives. 

 

Figure 5.15. Dendrogram created from the hierarchical clustering of aromatic 
amide analogues. Note: The vertical axis represents the loss of inertia caused 
by each grouping. 

 

Although this model allows the classification of fentanyl analogues, it does not 

allow the discrimination of closely related regioisomers which produce the 

same mass ions (e.g. ortho-, meta- and para-fluorofentanyl (42a-c)). However, 

separation of fluorofentanyl regioisomers has been achieved by Bonetti et al 

using PCA followed by linear discriminant analysis on multiple injections of the 
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same compounds. [115] The model presented in this chapter and Bonetti’s 

model could be used in conjunction to first identify the class of an unknown 

substituted fentalogue, then determine the position of its substituent. 

5.5 Conclusion 

In conclusion, a principal component analysis (PCA) and hierarchical clustering 

model was used to classify fentanyl analogues with high accuracy. The model 

is more precise than previously described spectral mapping models, because 

the PCA forms clusters based on the intensity of specific fragments rather than 

shifts in spectral peaks. [116] For instance, all ortho-, meta- and para-

fluorinated compounds project close to each other in the PCA space, because 

fluorination of the aniline ring of fentanyl leads to very specific fragments share 

by these analogues. Rather than only detect a modification of the aniline ring, 

the classifier was able to detect what modification was introduced. This model 

works reliably with compounds that are two modifications away from fentanyl, 

because it has been constructed using many examples of these types of 

compounds. The proposed model can be adapted to other classes of 

compounds with some optimisation. One drawback is that the model relies on 

the availability of enough spectra of representative analogues for classes to 

arise. 

  



222 

 

CHAPTER VI 

CONCLUSION AND FUTURE WORK 

In conclusion, each chapter of this thesis focused on a different aspect of 

fentanyl detection in a forensic context. In Chapter II, analytical methods were 

tested for the detection and quantification of 18 amide derivatives of fentanyl, 

using reference material synthesised in-house. A combination of the Marquis 

and Eosin Y colour tests allowed presumptive discrimination of fentalogues 

from common controlled drugs and adulterants. Thin-layer chromatography 

allowed partial separation of fentalogues from each other, and full separation 

from heroin. Formal separation and identification of fentanyls, however, 

requires more advanced techniques and was achieved using GC-EI-MS. 

Fragmentation patterns common to all fentalogues and fragments specific to 

certain compounds were described. A GC-MS separation method was 

optimised and fully validated for quantification at low concentrations (LOD: 

0.008 – 0.125 μg/mL and LOQ: 0.025 – 0.415 μg/mL). The analytical methods 

described were applied to seven seized heroin samples. The Eosin Y colour 

test and TLC analysis allowed the presumptive detection of fentanyl in one 

sample (SS-1). FTIR analysis only allowed the clear identification of heroin in 

samples containing no caffeine or paracetamol. It did not allow the detection of 

fentanyl in SS-1. An initial GC-MS screening confirmed the presence of 

fentanyl in only one sample (SS-1). The optimised SIM method showed greatly 

improved sensitivity and allowed the detection of fentanyl in a second, lower-

concentration sample (SS-2). Using the optimised quantification method, 
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fentanyl concentration was determined in both SS-1 and SS-2 at 6.29±0.01% 

w/w and 0.288±0.008% w/w, respectively. 

In Chapter III, it was shown that fluorinated regioisomers of fentanyl, which are 

increasingly common on drug markets, could not be fully discriminated using 

methods previously explored (i.e. colour tests, TLC, infrared spectroscopy or 

GC-MS). GC-MS afforded partial discrimination, but the co-elution of 

compounds with the same major m/z fragments prevented a conclusive 

identification. A GC-MS quantification method was developed, as it could still 

be useful for single-component samples or samples containing non co-eluting 

compounds. 19F benchtop NMR was proposed as an orthogonal method for the 

identification and quantification of fluorinated regioisomers of fentanyl. Most 

fentalogues investigated produced distinct signals in low-field 19F NMR and a 

quantification method was developed using this technique. Despite its lower 

sensitivity than GC-MS, benchtop 19F NMR showed sufficiently low LODs and 

LOQs, and it was shown that it could detect ortho-fluorofentanyl in a 2.4 %w/w 

heroin mixture. 

In Chapter IV, the reaction between the eosin Y dye and illicit drugs, including 

heroin and fentanyl, was investigated. It was determined that eosin Y caused 

the precipitation of fentanyl free-base through an acid-base reaction. It was 

suggested that the characteristic deep pink colour observed with fentanyl was 

due to the co-precipitation of eosin Y. The test could not successfully be applied 

to the quantification of fentanyl in mixtures, but it could still be used for 

qualitative detection. This was especially reliable when using UV-Vis 

spectrophotometry, because the fentanyl – eosin Y mixture absorbs at a 

specific wavelength. Solgel detection coupled with RGB measurement, on the 

other hand, lacked selectivity and proved susceptible to interference from other 
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components found in mixtures (e.g. heroin, caffeine, paracetamol). 

Nevertheless, the developed methodology proved useful for the 

standardisation of colorimetric tests.  

In Chapter V, a principal component analysis (PCA) and hierarchical clustering 

model was used to classify fentanyl analogues with high accuracy. The model 

formed clusters based on the intensity of specific EI-MS fragments 

representative of the structural classes of analogues. It was able to classify test 

analogues with 91% accuracy. The model can be used to help the structural 

elucidation of novel analogues seized in forensic casework, based solely on 

their mass spectrum. 

Future work will involve the development of a PCA classification model that will 

include different types of illicit drugs, for instance natural opiates, members of 

new synthetic opiate families (e.g. MT-45 or U-49900), or others. When 

confronted with an unidentified seized sample, this model would allow an initial 

triage by drug family. Different classification models, such as the one presented 

in Chapter V, can then be developed for each family, to determine structural 

modifications. Efforts should also go towards the identification, by high-

resolution mass spectrometry, of the unknown m/z fragments of fentanyl and 

its analogues shown in Table 5.5. This would give greater insight into the 

developed model and the fragmentation patterns of fentanyl analogues in 

general. Finally, a PCA classification model could be built using 1H NMR data. 

This would allow the discrimination of substituted regioisomers: as shown in 

Chapter III, for instance, fluorofentanyl isomers can be differentiated by the 

appearance of their aromatic region. An NMR model including fluoro-, chloro-, 

methoxy- and methyl-aniline compounds, could be used to automatically 
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determine the position of a substituent and be used in conjunction with the GC-

MS model from Chapter V.  
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CHAPTER VII 

EXPERIMENTAL SECTION 

7.1 Presumptive colour tests 

Presumptive tests were carried out according to the United Nations 

recommended guidelines. [77, 140] Each test sample (1 – 2 mg) was placed 

into a separate dimple well of a white spotting tile and 2 drops of the test 

reagent added. Additionally, for Scott’s test, 2 drops of methanol were added 

to solubilize analytes. Any colour change or other noticeable effect were noted 

on addition of the reagent and after 5 min. The preparation of the reagents and 

the test procedure is detailed below. 

Marquis Test: 1% Formaldehyde (37% aqueous solution) in concentrated 

sulfuric acid (10 mL, d = 1.86 g/mL). 

Scott Test: 1% Cobalt(II)thiocyanate in glycerol-deionized water (1:1, 10 mL).  

Nitric acid Test: Concentrated nitric acid (d = 1.51 g/mL).  

Eosin Y Test: 150 M Eosin Y (2’, 4′, 5′, 7′-tetrabromofluorescein) in aqueous 

potassium phosphate buffer (pH 7).  
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7.2 Thin-layer chromatography 

Thin layer chromatography (TLC) was carried out on aluminium-backed SiO2 

plates (Merck, Germany).  The mobile phase used was dichloromethane-

methanol (9:1 v/v) containing 1% triethylamine. The developed plate was 

viewed under UV light (254 nm) and any spots noted.  The plate was sprayed 

with modified Dragendorff-Ludy-Tenger reagent. [182] 

7.3 Infrared spectroscopy 

Infrared spectra were obtained in the range 4000 – 400 cm-1 using a Thermo 

Scientific Nicolet iS10ATR-FTIR instrument (Thermo Scientific, Rochester, 

USA). 

7.4 GC-MS analysis 

GC-MS analysis was performed using an Agilent 7890B GC and a MS5977B 

mass selective detector (Agilent Technologies, Wokingham, UK). The mass 

spectrometer was operated in the electron ionization mode at 70 eV. 

Separation was achieved with a capillary column (HP-5MS, 30 m length, 0.25 

mm i.d., 0.25 μm film thickness) with helium as the carrier gas at a constant 

flow rate of 1.2 mL/min. A 2 μL aliquot of the samples was injected with a split 

ratio of 50:1. The injector and the GC interface temperatures were both 

maintained at 280°C and 290 C respectively. The MS source and quadrupole 

temperatures were set at 230 C and 150 C. Scan spectra were obtained 

between 50-550 amu. Samples were dissolved in methanol, with no 

derivatization.  
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7.4.1 GC-MS calibration standards 

10.0 mg of each analyte was weighed accurately into a 10.0 mL clear glass 

class A volumetric flask and diluted to volume with methanol to give a solution 

containing components at 1 mg/mL. This solution was then further diluted with 

methanol and 100 μL of eicosane (50 μg/mL in methanol) added (in each case) 

to give calibration standards containing 2.5 μg/mL, 5.0 μg/mL, 10.0 μg/mL, 20.0 

μg/mL and 25.0 μg/mL of each analyte and the internal standard at 5.0 μg/mL. 

7.4.2 GC-MS method validation 

Mass spectra were obtained in selected ion monitoring (SIM) mode, using three 

specific fragment ions for each analyte (see Table 2.13 and Table 3.5 for a list 

of ions). The GC-MS method was validated in accordance with the ICH 

guidelines [143] using the following parameters: linearity, accuracy, precision 

(repeatability), limit of detection (LOD) and limit of quantification (LOQ). 

Linearity, precision: six replicate injections of the calibration standards were 

performed and the data analyzed under the same conditions. The %RSD was 

calculated for each replicate test sample. Accuracy (percentage recovery 

study): determined from spiked samples prepared in triplicate at three levels 

over a range of 80-120% of the target concentration (15 μg/mL). The 

percentage recovery and %RSD were calculated for each of the replicate 

samples. Repeatability (intraday precision) and intermediate precision 

(interday precision): determined from six replicate injections of a spiked sample 

(10 μg/mL), analysed on two consecutive days. The percentage purity and 

%RSD were calculated for each of the replicate samples. Limits of detection 

and quantification: six replicate injections of the calibration standards were 

performed and the data analyzed under the same conditions. The limits of 

detection and quantification were determined based on the signal-to-noise 



229 

 

(S/N) ratio, where a signal-to-noise ratio of 3:1 and 10:1 was used to calculate 

the LOD and LOQ respectively. [143] Signal-to-noise ratios were measured 

over six injections in the lower end of the concentration range (2.5 μg/mL for 

most analytes; 5.0 μg/mL for morphine) using the auto-root-mean-squared 

(Auto-RMS) algorithm from the Agilent MassHunter Qualitative Analysis 

software.  

7.4.3 GC-MS quantitative analysis of seized heroin samples 

The seven seized samples of heroin were provided by Greater Manchester 

Police, in accordance with Manchester Metropolitan University’s Home Office 

license (Ref. No. 423023) requirements and agreed procedures. 

Each test substance (SS-1 – SS-7) was weighed accurately (12.5 mg) into a 

5.0 mL clear glass class A volumetric flask, diluted to volume with methanol 

and then filtered.  This solution was then further diluted (8:2, 1.0 mL) with 100 

L methanol and 100 L eicosane (50 g/mL in methanol) added (in each case) 

to give the test solution containing ca. 15 g/mL of the sample and the internal 

standard at 5.0 g/mL The test solutions were injected in triplicate.  

Quantification of the primary components, caffeine (25), paracetamol (26) and 

heroin (1c), was determined in full scan mode (50-550 amu), whereas fentanyl 

(2b) or its analogues (2a, 2c – 2r) was determined using selected ion 

monitoring (SIM) mode, using three specific fragment ions for each analyte 

(see Table 2.13 for a list of ions). 
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7.5 Benchtop NMR analysis 

Low resolution NMR spectra were acquired on an Oxford Instruments Pulsar 

benchtop NMR Spectrometer (Oxford Instruments, Oxford, UK) operating at a 

proton resonance frequency of 60 MHz and referenced to the residual solvent 

peak (1H NMR) or TFA (19F NMR).  

7.5.1 Benchtop 19F NMR validation 

Each analyte was weighed accurately (75.0 mg) into a 5.0 mL class A 

volumetric flask. Concentrated TFA was added (0.5 μL) before diluting to 

volume with d6-DMSO to produce a 15 mg/mL solution containing TFA at 

0.01%. This solution was then further diluted with d6-DMSO (containing 0.01% 

TFA) to produce calibration standards containing 5.0 mg/mL, 8.0 mg/mL, 

10.0 mg/mL, 12.0 mg/mL and 15.0 mg/mL of the analyte and the internal 

standard at 0.01%.  

19F experiments were run using 16 scans, a relaxation delay of 15 s and a filter 

of 5000 Hz for a total runtime of 5.7 min. A 10000 Hz filter is required to analyze 

3-fluorofentanyl (48) for a 4.9 min runtime. Signal-to-noise ratios were 

measured using the MestReNova software algorithm. 

7.5.2 Heroin sample benchtop NMR analysis 

Heroin (1c) was weighed accurately (22.5 mg) and dissolved in 0.5 mL d6-

DMSO (containing 0.01% TFA) to produce a solution containing heroin at 

45 mg/mL. A 420 μL aliquot of this solution was mixed with 30 μL of a solution 

containing ortho-fluorofentanyl 42a at 15 mg/mL and TFA at 0.01%. The 

resulting 450 μL solution contained 42 mg mL-1 heroin 1c and 1 mg/mL 42a, 
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corresponding to a 42a/1c ratio of 2.4% w/w. The solution was analyzed by 1H 

and 19F NMR using the Pulsar benchtop NMR spectrometer.  

7.6 UV-Vis Eosin Y fentanyl quantification 

UV-Vis spectra were acquired on an Agilent 8453 spectrophotometer in the 

range 400-700 nm. For the fentanyl calibration graph, a 1 mg/mL stock solution 

of fentanyl in methanol was prepared. Volumes ranging between 0.1 – 1 mL 

(0.1 – 1 mg fentanyl) were transferred to vials and evaporated in vacuo. The 

dried solids were reconstituted in 5 mL eosin Y (750 μM) in aqueous pH = 7 

phosphate buffer. Absorbance was measured at λ = 590 nm. 

7.7 Solgel preparation and fentanyl detection 

A 2:1:2 mixture of tetraethoxysilane, aqueous HCl (0.04 M) and ethanol was 

prepared (solution A) and mixed with eosin Y (1000 μM) in aqueous pH = 7 

buffer (solution B). Solutions A and B were mixed in a 1:2 ratio and 75 μL of 

the resulting solgel was quickly transferred to a 200 μL Eppendorf tube before 

the polymerisation started. Solgel vials were kept in the freezer until use. For 

detection, 150 μL of a fentanyl solution was transferred to the solgel vial, and 

the resulting mixture was stirred with a pipette tip until homogeneous. Vials 

were then photographed (see Section 7.8). 

7.8 Solgel RGB detection 

Fentanyl solgel vials were photographed next to a blank solgel vial (to which 

150 μL methanol was added). Photographs were taken with a Huawei Mate 10 

Pro smartphone and RGB values were measured with the paint.net free 

software (version 4.2.12), using the average from a 51 x 51 pixels grid in the 
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center of the vial. RGB values for both the fentanyl and the blank vials were 

measured. To standardise the result, the G/R ratio of the fentanyl vial was 

divided by the G/R ratio of the blank.  
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7.9 Lighting conditions for RGB evaluation (reference for Table 4.7) 
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7.10 PCA and clustering analysis 

All mass spectra were extracted in .csv format. Only peaks between m/z = 41 

and 352 were retained, rounded to the nearest mass unit, and the dataset was 

zero-filled. Relative intensities were calculated, with the base peak normalized 

to an intensity of 1. The resulting dataset was imported into R statistical 

computing software (version 3.6.3).  

Compounds were separated into generic classes based on their structural 

modifications. Approximately half the compounds in each class (at least three) 
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were selected to build the model (54 analogues total). Variables (m/z ions) with 

a variance below 0.0001 were excluded as an initial clean-up, which reduced 

the dataset to 176 variables. Principal component analysis was performed with 

mean centering and data scaling, using the PCA function from the FactoMineR 

package (version 2.2). [172] Data visualisation was performed using the 

factoextra package (version 1.0.7). [173] Hierarchical clustering was performed 

using the HCPC function from the FactoMineR package. The following 

procedure details how to retrieve the R code, which is freely available on 

Github, build the models and classify test samples. 
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Model building and evaluation procedure:  

Download the mass spectral data .csv files and the “Model Building and 

Evaluation” R script from Github (https://github.com/Nicolas-Gilbert/Fentanyl-

PCA-HC) 

Copy the .csv files to your R Studio working directory. 

Open the “Model Building and Evaluation” script in R Studio. 

Install and load the factoextra, FactoMineR and fields packages. 

Execute the “MODEL 1 CREATION” and “MODEL 2 CREATION” sections of 

the script to generate the PCA models. 

Note: These use the “Classifer_1.csv” and “Classifier_2.csv” files, which 

contain the MS data of analogues included in each classifier. The .csv files can 

be modified to add analogues to the model, if needed. 

Export the MS data of suspected analogue(s) as a .csv file and copy it to your 

working directory.  

Note: This file must be called “Test_data.csv”. Each analogue must be included 

on a separate row, each column must show the relative intensity of m/z ions 

from 41 to 352. See the “Test_data.csv” included in the Github repository as 

an example of the required format. 

Execute the “EVALUATION”, “CLASSIFICATION 1” and “CLASSIFICATION 2” 

sections of the script. This will output the nearest neighbour results for each 

classifier, as separate tables.  
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7.11 Structures of compounds included in the PCA study 

Table 7.1. Chemical structure of fentanyl analogues included in the PCA study (Chapter V). 

 

Fentanyl analogue No n R1 R2 R3 R4 R5 R6 R7 R8 R9 

Isobutyryl N-benzyl- 1 0 H H H H H H H H iPr 

N-Benzyl- 2 0 H H H H H H H H Et 

Cyclopropyl-N-benzyl- 3 0 H H H H H H H H CyPr 

para-Fluoro-isobutyryl-N-benzyl- 4 0 H H H H H H H F iPr 

para-Fluoro-N-benzyl- 5 0 H H H H H H H F Et 

Phenyl-N-benzyl- 6 0 H H H H H H H H Ph 

para-Fluoro-acetyl-N-benzyl- 7 0 H H H H H H H F Me 

meta-Methyl- 8 1 H H H H H H Me H Et 

ortho-Methyl-acetyl- 9 1 H H H H H Me H H Me 

meta-Methyl-acetyl- 10 1 H H H H H H Me H Me 

4’-Methyl-acetyl- 11 1 Me H H H H H H H Me 

β-Methyl-acetyl- 12 1 H H H Me H H H H Me 

2’-Methyl- 13 1 H H Me H H H H H Et 

para-Methyl-tetrahydrofuranyl- 14 1 H H H H H H H Me THF 
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Tetrahydrofuranyl- (3-isomer) 15 1 H H H H H H H H 3-THF 

Table 7.1. Chemical structure of fentanyl analogues included in the PCA study (Chapter V). (cont.) 

Fentanyl analogue No n R1 R2 R3 R4 R5 R6 R7 R8 R9 

β-Methyl- 16 1 H H H Me H H H H Et 

Heptanoyl- 17 1 H H H H H H H H Hex 

meta-Methyl-furanyl- 18 1 H H H H H H Me H 2-Fur 

(E)-2-Methyl-2-butenoyl- 19 1 H H H H H H H H (E)-2-Methyl-2-butenoyl 

4’-Fluoro-cyclopropyl- 20 1 F H H H H H H H CyPr 

Benzoyl- (phenyl) 21 1 H H H H H H H H Ph 

2,2,3,3-Tetramethylcyclopropyl- 22 1 H H H H H H H H 2,2,3,3-Tetramethylcyclopropyl 

2,2-Dimethylpropanoyl- 23 1 H H H H H H H H tBu 

4’-Fluoro-isobutyryl- 24 1 F H H H H H H H iPr 

Furanyl- 25 1 H H H H H H H H 2-Fur 

4’-Fluoro-methoxyacetyl- 26 1 F H H H H H H H -MeOMe 

Methoxyacetyl- 27 1 H H H H H H H H -MeOMe 

Acryl- 28 1 H H H H H H H H -CH=CH2 

Butyryl- 29 1 H H H H H H H H Pr 

Propionyl- [aka. Fentanyl] 30 1 H H H H H H H H Et 

Cyclopropyl- 31 1 H H H H H H H H CyPr 

Isobutyryl- 32 1 H H H H H H H H iPr 

3’-Fluoro- 33 1 H F H H H H H H Et 

4'-Fluoro- 34 1 F H H H H H H H Et 

2'-Fluoro- 35 1 H H F H H H H H Et 

meta-Fluoro-acryl- 36 1 H H H H H H F H -CH=CH2 

meta-Fluoro-methoxyacetyl- 37 1 H H H H H H F H -MeOMe 
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para-Fluoro-acryl- 38 1 H H H H H H H F -CH=CH2 

Table 7.1. Chemical structure of fentanyl analogues included in the PCA study (Chapter V). (cont.) 

Fentanyl analogue No n R1 R2 R3 R4 R5 R6 R7 R8 R9 

para-Fluoro-acetyl- 39 1 H H H H H H H F Me 

para-Fluoro-cyclopropyl- 40 1 H H H H H H H F CyPr 

3-Fluoro-butyryl- 41 1 H H H H F H H H Pr 

3-Fluoro-tetrahydrofuranyl- 42 1 H H H H F H H H THF 

3-Fluoro- 43 1 H H H H F H H H Et 

para-Chloro-butyryl- 44 1 H H H H H H H Cl Pr 

para-Chloro- 45 1 H H H H H H H Cl Et 

para-Chloro-cyclopentyl- 46 1 H H H H H H H Cl CyPent 

para-Methoxy-acryl- 47 1 H H H H H H H MeO -CH=CH2 

para-Methoxy-methoxyacetyl- 48 1 H H H H H H H MeO -MeOMe 

para-Methoxy- 49 1 H H H H H H H MeO Et 

para-Methoxy-valeryl- 50 1 H H H H H H H MeO Bu 

ortho-Methoxy-butyryl- 51 1 H H H H H MeO H H Pr 

meta-Fluoro- 52 1 H H H H H H F H Et 

ortho-Fluoro- 53 1 H H H H H F H H Et 

para-Fluoro- 54 1 H H H H H H H F Et 

meta-Fluoro-N-benzyl- 55 0 H H H H H H F H Et 

para-Fluoro-N-benzyl-furanyl- 56 0 H H H H H H H F 2-Fur 

Acetyl-N-benzyl- 57 0 H H H H H H H H Me 

Furanyl-N-benzyl- 58 0 H H H H H H H H 2-Fur 

Methoxyacetyl-N-benzyl- 59 0 H H H H H H H H -MeOMe 

Butyryl-N-benzyl- 60 0 H H H H H H H H Pr 
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Table 7.1. Chemical structure of fentanyl analogues included in the PCA study (Chapter V). (cont.) 

Fentanyl analogue No n R1 R2 R3 R4 R5 R6 R7 R8 R9 

Acryl-N-benzyl- 61 0 H H H H H H H H -CH=CH2 

para-Fluoro-N-benzyl- cyclopropyl- 62 0 H H H H H H H F CyPr 

Tetrahydrofuranyl-N-benzyl- 63 0 H H H H H H H H THF 

4-ANPP 64 1 H H H H H H H H − 

((E)-But-2-enoyl)- 65 1 H H H H H H H H (E)-But-2-enoyl 

(2-Methyl)butyryl- 66 1 H H H H H H H H sec-Bu 

Ethoxyacetyl- 67 1 H H H H H H H H -MeOEt 

Cyclopropylacetyl- 68 1 H H H H H H H H -MeCyPr 

ortho-Methyl-acryl- 69 1 H H H H H Me H H -CH=CH2 

para-Methyl-acetyl- 70 1 H H H H H H H Me Me 

ortho-Methyl- 71 1 H H H H H Me H H H 

meta-Methyl-cyclopropyl- 72 1 H H H H H H Me H CyPr 

ortho-Methyl-furanyl- 73 1 H H H H H Me H H 2-Fur 

para-Methyl-furanyl- 74 1 H H H H H H H Me 2-Fur 

meta-Methyl-methoxyacetyl- 75 1 H H H H H H Me H -MeOMe 

ortho-Methyl-cyclopropyl- 76 1 H H H H H Me H H CyPr 

4'-Fluoro-furanyl- 77 1 F H H H H H H H 2-Fur 

meta-Methoxy-furanyl- 78 1 H H H H H H MeO H 2-Fur 

ortho-Methoxy-furanyl- 79 1 H H H H H MeO H H 2-Fur 

para-Methoxy-furanyl- 80 1 H H H H H H H MeO 2-Fur 

para-Chloro-furanyl- (3-isomer) 81 1 H H H H H H H Cl 3-Fur 
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3'-Methyl-acetyl- 82 1 H Me H H H H H H Me 

4'-Methyl- 83 1 Me H H H H H H H Et 

Table 7.1. Chemical structure of fentanyl analogues included in the PCA study (Chapter V). (cont.) 

Fentanyl analogue No n R1 R2 R3 R4 R5 R6 R7 R8 R9 

α-Methyl-acetyl- 84 1 H H H H H H H H Me 

α-Methyl-butyryl- 85 1 H H H H H H H H Pr 

α-Methyl- 86 1 H H H H H H H H Et 

4'-Fluoro-acetyl- 87 1 F H H H H H H H Me 

2'-Methyl-acetyl- 88 1 H H Me H H H H H Me 

Thiophenyl- (3-isomer) 89 1 H H H H H H H H 3-Thio 

3'-Methyl- 90 1 H Me H H H H H H Et 

ortho-Fluoro-furanyl- 91 1 H H H H H F H H 2-Fur 

Acetyl- 92 1 H H H H H H H H Me 

iso-Valeryl- 93 1 H H H H H H H H iBu 

Valeryl- 94 1 H H H H H H H H Bu 

Hexanoyl- 95 1 H H H H H H H H Pent 

Cyclobutyryl- 96 1 H H H H H H H H CyBu 

2’-fluoro-ortho-fluoro- 97 1 H H F H H F H H Et 

para-Fluoro-butyryl- 98 1 H H H H H H H F Pr 

para-Fluoro-isobutyryl- 99 1 H H H H H H H F iPr 

para-Fluoro-cyclopentyl- 100 1 H H H H H H H F CyPent 

para-Fluoro-tetrahydrofuranyl- 101 1 H H H H H H H F THF 

para-Fluoro-crotonyl- 102 1 H H H H H H H F (E)-But-2-enoyl 

meta-Fluoro-isobutyryl- 103 1 H H H H H H F H iPr 

ortho-Fluoro-butyryl- 104 1 H H H H H F H H Pr 
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ortho-Fluoro-isobutyryl- 105 1 H H H H H F H H iPr 

para-Fluoro-valeryl- 106 1 H H H H H H H F Bu 

Table 7.1. Chemical structure of fentanyl analogues included in the PCA study (Chapter V). (cont.) 

Fentanyl analogue No n R1 R2 R3 R4 R5 R5 R6 R7 R8 R9 

para-Fluoro-furanyl- (3-isomer) 107 1 H H H H H H H H F 3-Fur 

2,3-Benzodioxoyl- 108 1 H H H H H H H H H 2,3-Benzodioxole 

para-Chloro-furanyl- 109 1 H H H H H H H H Cl 2-Fur 

meta-Fluoro-butyryl- 110 1 H H H H H H H F H Pr 

para-Fluoro-furanyl- 111 1 H H H H H H H H F 2-Fur 

meta-Fluoro-furanyl- 112 1 H H H H H H H F H 2-Fur 

meta-Fluoro-isobutyryl- 113 1 H H H H H H H F H iPr 

3-Fluoro-isoburytyl- 114 1 H H H H H F H H H iPr 

para-Chloro-cyclobutyryl- 115 1 H H H H H H H H Cl CyBu 

para-Chloro-isobutyryl- 116 1 H H H H H H H H Cl iPr 

para-Chloro-methoxyacetyl- 117 1 H H H H H H H H Cl -MeOMe 

para-Chloro-valeryl- 118 1 H H H H H H H H Cl Bu 

para-Chloro-acryl- 119 1 H H H H H H H H Cl -CH=CH2 

para-Methoxy-butyryl- 120 1 H H H H H H H H MeO Pr 

para-Methoxy-methoxyacetyl- 121 1 H H H H H H H H MeO -MeOMe 
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7.12 Synthesis and characterisation data 

Reagents were of commercial quality (Sigma-Aldrich, Gillingham, UK or 

Fluorochem Limited, Hadfield, UK) and used without further purification unless 

specified. Aniline was distilled under reduced pressure prior to use. Solvents 

(Fisher Scientific, Loughborough, UK) were dried, where necessary, using 

standard procedures. [183] 1H NMR and 13C NMR spectra were acquired on a 

JEOL JMN-ECS-400 (JEOL, Tokyo, Japan) NMR spectrometer operating at a 

proton resonance frequency of 400 MHz and referenced to the residual solvent 

peak. 19F-NMR spectra were acquired on the same instrument and referenced 

to trifluoroacetic acid (TFA). Infrared spectra were obtained in the range 4000 

– 400 cm-1 using a Thermo Scientific Nicolet iS10ATR-FTIR instrument 

(Thermo Scientific, Rochester, USA). High-resolution mass spectrometry 

(HRMS) data were obtained on an Agilent 6540 LC-QToF spectrometer in 

positive electrospray ionization mode. ATR-FTIR and NMR (1H, 13C, 19F) 

spectra are reported in the Appendix. 

7.12.1 Synthesis of fentanyl analogues 2a-r 

Fentanyl analogues 2a-r were prepared as reported by Valdez et al. [4] with 

the following modifications: N-[1-(2-phenylethyl)-4-piperidinyl]aniline (4-ANPP, 

4, 1.35 g, 4.8 mmol) was added to dichloromethane (40 mL) and was treated 

with diisopropylamine (1.68 mL, 9.6 mmol, 2 eq). The system was flushed with 

argon, the mixture cooled in an ice bath and the appropriate acyl chloride (9.6 

mmol, 2 eq) added dropwise. The resulting solution was stirred at ambient 

temperature for 2h. The mixture was diluted with water (50 mL) and the organic 

phase washed sequentially with brine (1 x 50 mL) and saturated aqueous 

sodium bicarbonate solution (1 x 50 mL), dried with magnesium sulfate and 

concentrated in vacuo. The crude oils were purified by flash column 
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chromatography (SiO2, 3:7 – 7:3 v/v EtOAc-hexane). The resulting free-base 

was dissolved in either diethyl ether or acetone, and an equimolar amount of 

hydrogen chloride (3 M in cyclopentyl methyl ether) added. The mixture was 

left to stand for 5-10 minutes and the salt isolated by filtration. The product(s) 

were dried in an oven (60 °C, 12h) to give white – off-white powders. 

N-(1-Phenethylpiperidin-4-yl)-N-phenylacetamide hydrochloride 

(Acetylfentanyl, 2a)  

Acetyl fentanyl 2a was obtained in 33% yield 

over two steps. 1H NMR (400 MHz, DMSO-D6) 

δ 10.56 (bs, 1H, H9), 7.58-7.40 (m, 3H, H17-

19), 7.34-7.17 (m, 7H, H1-3/H5-6/H16/H20), 

4.69 (tt, J = 3.2 Hz, 12.1 Hz, 1H, H12), 3.52 (d, 

J = 10.8 Hz, 2H, H10a/H14a), 3.37 (H2O), 3.20-3.04 (m, 4H, H8/H10b/H14b), 

3.02-2.93 (m, 2H, H7), 1.92 (d, J = 12.8 Hz, 2H, H11a/H13a), 1.70-1.55 (m, 5H, 

H11b/H13b/H22); 13C NMR (100 MHz, DMSO-D6) δ 169.03 (C21), 138.65 

(C15), 137.16 (C4), 130.21 (C17/C19), 129.53 (C18), 128.67 (C2-3/C5-6), 

128.57 (C16/C20), 126.79 (C1), 56.41 (C8), 50.83 (C10/C14), 49.01 (C12), 

29.39 (C7), 27.27 (C11/C13), 23.17 (C22); ATR-FTIR  vmax/cm-1: 3038, 2995 

and 2938, 2458 and 2405, 1647, 1595; HRMS (C21H26N2O) : predicted mass = 

323.2118 [M+H]+; experimental mass = 323.2125 [M+H]+. 
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N-(1-Phenethylpiperidin-4-yl)-N-phenylpropionamide hydrochloride (Fentanyl, 

2b) 

Fentanyl 2b was obtained in 41% yield over two 

steps. 1H NMR (400 MHz, DMSO-D6) δ 10.43 

(bs, 1H, H9), 7.50-7.42 (m, 3H, H17-19), 7.33-

7.21 (m, 7H, H1-3/H5-6/H16/H20), 4.71 (t, J = 

11.9 Hz, 1H, H12), 3.51 (d, J = 11.4 Hz, 2H, 

H10a/H14a), 3.36 (s,H2O), 3.26-3.02 (m, 4H, H8/H10b/H14b), 2.99-2.95 (m, 

2H, H7), 1.92 (d, J = 12.8 Hz, 2H, H11a/H13a), 1.82 (q, J = 7.3 Hz, 2H, H22), 

1.62 (q, J = 11.9 Hz, 2H, H11b/H13b), 0.87 (t, J = 7.3 Hz, 3H, H23); 13C NMR 

(100 MHz, DMSO-D6) δ 172.15 (C21), 138.11 (C15), 137.11 (C4), 130.36 

(C17/19), 129.49 (C18), 128.64 (C2-3/C5-6), 128.52 (C16/C20), 126.76 (C1), 

56.40 (C8), 50.88 (C10/C14), 49.01 (C12), 29.41 (C7), 27.73 (C22), 27.28 

(C11/C13), 9.39 (C23); ATR-FTIR  vmax/cm-1: 3042, 2993, 2962 and 2936, 2450 

and 2403, 1644, 1596; HRMS (C22H28N2O) : predicted mass = 337.2274 

[M+H]+; experimental mass = 337.2274 [M+H]+. 

N-(1-Phenethylpiperidin-4-yl)-N-butyramide hydrochloride (Butyrfentanyl, 2c) 

Butyrfentanyl 2c was obtained in 39% yield 

over two steps. 1H NMR (400 MHz, DMSO-D6) 

δ 10.42 (bs, 1H, H9), 7.51-7.44 (m, 3H, H17-

19), 7.33-7.22 (m, 7H, H1-3/H5-6/H16/H20), 

4.71 (t, J = 11.9 Hz, 1H, H12), 3.51 (d, J = 11.4 

Hz, 2H, H10a/H14a), 3.36 (H2O), 3.20-3.06 (m, 

4H, H8/H10b/H14b), 2.99-2.95 (m, 2H, H7), 1.92 (d, J = 12.8 Hz, 2H, 

H11a/H13a), 1.79 (t, J = 7.1 Hz, 2H, H22), 1.62 (q, J = 11.9 Hz, 2H, 
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H11b/H13b), 1.42 (sext, J = 12.0 Hz, 2H, H23), 0.71 (t, J = 7.3 Hz, 3H, H24); 

13C NMR (100 MHz, DMSO-D6) δ 171.28 (C21), 138.13 (C15), 137.11 (C4), 

130.37 (C17/C19), 129.49 (C18), 128.64 (C2-3/C5-6), 128.53 (C16/C20), 

126.76 (C1), 56.39 (C8), 50.87 (C10/C14), 49.01 (C12), 36.17 (C22), 29.39 

(C7), 27.28 (C11/C13), 18.14 (C23), 13.62 (C24); ATR-FTIR  vmax/cm-1: 3045, 

2963, 2933 and 2873, 2452 and 2402, 1641, 1596; HRMS (C23H30N2O) : 

predicted mass = 351.2431 [M+H]+; experimental mass = 351.2434 [M+H]+. 

N-(1-Phenethylpiperidin-4-yl)-N-phenylpentanamide hydrochloride 

(Valerylfentanyl, 2d) 

 Valerylfentanyl 2d was obtained in 30% yield 

over two steps. 1H NMR (400 MHz, DMSO-D6) 

δ 10.52 (bs, 1H, H9), 7.53-7.40 (m, 3H, H17-

19), 7.35-7.17 (m, 7H, H1-3/H5-6/H16/H20), 

4.71 (t, J = 11.7 Hz, 1H, H12), 3.51 (d, J = 11.9 

Hz, 2H, H10a/H14a), 3.37 (H2O), 3.20-3.04 (m, 

4H, H8/H10b/H14b), 3.03-2.94 (m, 2H, H7), 1.91 (d, J = 12.8 Hz, 2H, 

H11a/H13a), 1.81 (t, J = 7.1 Hz, 2H, H22), 1.63 (q, J = 12.1 Hz, 2H, 

H11b/H13b), 1.39 (quint, J = 7.1 Hz, 2H, H23),  1.10 (sext, J = 7.1 Hz, 2H, 

H24), 0.71 (td, J = 7.6, 1.4 Hz, 3H, H25); 13C NMR (100 MHz, DMSO-D6) δ 

171.24 (C21), 137.95 (C15), 136.94 (C4), 130.16 (C17/C19), 129.30 (C18), 

128.45 (C2-3/C5-6), 128.36 (C16/C20), 126.58 (C1), 56.20 (C8), 50.65 

(C10/C14), 48.84 (C12), 33.69 (C22), 29.20 (C7), 27.09 (C11/C13), 26.74 

(C23), 21.48 (C24), 13.50 (C25); ATR-FTIR  vmax/cm-1: 3032, 2955, 2931 and 

2871, 2459 and 2407, 1644, 1595; HRMS (C24H32N2O) : predicted mass = 

365.2587 [M+H]+; experimental mass = 365.2592 [M+H]+. 
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N-(1-Phenethylpiperidin-4-yl)-N-phenylhexanamide hydrochloride 

(Hexanoylfentanyl, 2e) 

Hexanoylfentanyl 2e was obtained in 43% 

yield over two steps. 1H NMR (400 MHz, 

DMSO-D6) δ 10.29 (bs, 1H, H9), 7.51-7.43 (m, 

3H, H17-19), 7.33-7.22 (m, 7H, H1-3/H5-

6/H16/H20), 4.71 (t, J = 11.7 Hz, 1H, H12), 

3.52 (d, J = 11.4 Hz, 2H, H10a/H14a), 3.35 

(H2O), 3.21-3.02 (m, 4H, H8/H10b/H14b), 

3.02-2.87 (m, 2H, H7), 1.92 (d, J = 12.8 Hz, 2H, H11a/H13a), 1.81 (t, J = 7.3 

Hz, 2H, H22), 1.61 (q, J = 11.9 Hz, 2H, H11b/H13b), 1.41 (quint, J = 7.3 Hz, 

2H, H23), 1.14-1.02 (m, 4H, H24-25), 0.77 (t, J = 7.1 Hz, 3H, H26); 13C NMR 

(100 MHz, DMSO-D6) δ 171.47 (C21), 138.16 (C15), 137.10 (C4), 130.38 

(C17/C19), 129.52 (C18), 128.67 (C2-3/C5-6), 128.58 (C16/C20), 126.81 (C1), 

56.42 (C8), 50.93 (C10/C14), 49.00 (C12), 34.18 (C22), 30.77 (C23), 29.45 

(C7), 27.31 (C11/C13), 24.45 (C24), 21.81 (C25), 13.79 (C26); ATR-FTIR  

vmax/cm-1: 3039, 2954, 2931 and 2860, 2501, 2461 and 2403, 1651, 1593; 

HRMS (C25H34N2O) : predicted mass = 379.2744 [M+H]+; experimental mass 

= 379.2744 [M+H]+. 
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N-(1-Phenethylpiperidin-4-yl)-N-phenylcyclopropanecarboxamide 

hydrochloride (Cyclopropylfentanyl, 2f) 

Cyclopropylfentanyl 2f was obtained in 64% 

yield over two steps. 1H NMR (400 MHz, 

DMSO-D6) δ 10.51 (bs, 1H, H9), 7.53-7.43 (m, 

3H, H17-19), 7.33-7.21 (m, 7H, H1-3/H5-

6/H16/H20), 4.69 (tt, J = 12.1 Hz, 3.2 Hz, 1H, 

H12), 3.51 (d, J = 11.4 Hz, 2H, H10a/H14a), 3.36 (H2O), 3.25-3.05 (m, 4H, 

H8/H10b/H14b), 3.00-2.96 (m, 2H, H7), 1.93 (d, J = 12.4 Hz, 2H, H11a/H13a), 

1.67 (q, J = 12.6 Hz, 2H, H11b/H13b), 1.00 (bs, 1H, H22), 0.75 (t, J = 3.2 Hz, 

2H, H23a/H24a), 0.56-0.54 (m, 2H, H23b/H24b); 13C NMR (100 MHz, DMSO-

D6) δ 172.00 (C21), 138.13 (C15), 137.13 (C4), 130.52 (C17/C19), 129.55 

(C18), 128.64 (C2-3/C5-6), 128.52 (C16/C20), 126.76 (C1), 56.39 (C8), 50.86 

(C10/C14), 49.44 (C12), 29.39 (C7), 27.27 (C11/C13), 12.81 (C22), 7.99 (C23-

24); ATR-FTIR  vmax/cm-1: 3012, 2932, 2470 and 2394, 1646, 1597; HRMS 

(C23H28N2O) : predicted mass = 349.2234 [M+H]+; experimental mass = 

349.2275 [M+H]+. 

N-(1-Phenethylpiperidin-4-yl)-N-phenylcyclobutanecarboxamide hydrochloride 

(Cyclobutylfentanyl, 2g) 

Cyclobutylfentanyl 2g was obtained in 64% 

yield over two steps. 1H NMR (400 MHz, 

DMSO-D6) δ 10.41 (bs, 1H, H9), 7.49-7.41 (m, 

3H, H17-19), 7.32-7.29 (m, 2H, H2/H6), 7.24-

7.16 (m, 5H, H1/H3/H5/H16/H20), 4.67 (tt, J = 

12.1 Hz, 3.7 Hz, 1H, H12), 3.51 (d, J = 11.4 Hz, 2H, H10a/H14a), 3.35 (H2O), 
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3.19-3.05 (m, 4H, H8/H10b/H14b), 2.99-2.95 (m, 2H, H7), 2.73 (quint, 1H, 

H22), 2.15-2.06 (m, 2H, H23a/H25a), 1.91 (d, J = 12.8 Hz, 2H, H11a/H13a), 

1.66-1.51 (m, 6H, H11b/H13b/H23b/H25b/H24); 13C NMR (100 MHz, DMSO-

D6) δ 172.96 (C21), 137.52 (C15), 137.14 (C4), 130.53 (C17/C19), 129.25 

(C18), 128.65 (C2-3/C5-6), 128.53 (C16/C20), 126.78 (C1), 56.40 (C8), 50.86 

(C10/C14), 49.22 (C12), 38.08 (C22), 29.41 (C7), 27.22 (C11/C13), 25.05 

(C23/C25), 17.15 (C24); ATR-FTIR  vmax/cm-1: 3060 and 3037, 2940 and 2866, 

2460, 1654, 1596; HRMS (C24H30N2O) : predicted mass = 363.2431 [M+H]+; 

experimental mass = 363.2431 [M+H]+. 

N-(1-Phenethylpiperidin-4-yl)-N-phenylcyclopentanecarboxamide 

hydrochloride (Cyclopentylfentanyl, 2h) 

Cyclopentylfentanyl 2h was obtained in 37% 

yield over two steps. 1H NMR (400 MHz, 

DMSO-D6) δ 10.62 (bs, 1H, H9), 7.48-7.44 (m, 

3H, H17-19), 7.32-7.21 (m, 7H, H1-3/H5-

6/H16/H20), 4.69 (t, J = 11.9 Hz, 1H, H12), 3.51 

(d, J = 11.4 Hz, 2H, H10a/H14a), 3.37 (H2O), 

3.20-3.03 (m, 4H, H8/H10b/H14b), 3.02-2.94 (m, 2H, H7), 2.23 (quint, J = 8.0 

Hz, 1H, H22), 1.91 (d, J = 12.4 Hz, 2H, H11a/H13a), 1.70-1.39 (m, 8H, 

H11b/H13b/H23/H24a/H25a/H26), 1.29 (bs, 2H, H24b/H25b); 13C NMR (100 

MHz, DMSO-D6) δ 174.96 (C21), 138.04 (C15), 137.12 (C4), 130.55 

(C17/C19), 129.40 (C18), 128.66 (C2-3/C5-6/C16/C20), 126.78 (C1), 56.39 

(C8), 50.89 (C10/C14), 49.17 (C12), 42.05 (C22), 30.51 (C23/C26), 29.42 (C7), 

27.29 (C11/C13), 25.77 (C24/C25); ATR-FTIR  vmax/cm-1: 3056 and 3035, 2961 

and 2868, 2397, 1651, 1597; HRMS (C25H32N2O) : predicted mass = 377.2587 

[M+H]+; experimental mass = 377.2585 [M+H]+. 
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N-(1-Phenethylpiperidin-4-yl)-N-phenylcyclohexanecarboxamide 

hydrochloride (Cyclohexylfentanyl, 2i) 

Cyclohexylfentanyl 2i was obtained in 36% 

yield over two steps. 1H NMR (400 MHz, 

DMSO-D6) δ 10.47 (bs, 1H, H9), 7.52-7.44 (m, 

3H, H17-19), 7.33-7.21 (m, 7H, H1-3/H5-

6/H16/H20), 4.67 (t, J = 11.9 Hz, 1H, H12), 3.51 

(d, J = 11.4 Hz, 2H, H10a/H14a), 3.36 (H2O), 

3.20-3.02 (m, 4H, H8/H10b/H14b), 3.01-2.93 (m, 2H, H7), 1.94-1.76 (m, 3H, 

H11a/H13a/H22), 1.67-1.51 (m, 6H, H11b/H13b/H23/H27), 1.46 (d, J = 12.4 

Hz, 1H, H25a), 1.32 (q, J = 11.9 Hz, 2H, H24a/H26a), 1.06 (q, J = 12.8 Hz, 1H, 

H25b), 0.78 (q, J = 12.8 Hz, 2H, H24b/H26b); 13C NMR (100 MHz, DMSO-D6) 

δ 174.44 (C21), 138.00 (C15), 137.14 (C4), 130.18 (C17/C19), 129.50 (C18), 

128.66 (C2-3/C5-6/C16/C20), 126.79 (C1), 56.40 (C8), 50.88 (C10/C14), 48.90 

(C12), 41.55 (C22), 29.42 (C7), 28.95 (C23/C27), 27.31 (C11/C13), 25.25 

(C25), 25.07 (C24/C26); ATR-FTIR  vmax/cm-1: 3060, 2933 and 2854, 2647 and 

2563, 1642, 1594; HRMS (C26H34N2O) : predicted mass = 391.2744 [M+H]+; 

experimental mass = 391.2740 [M+H]+. 

N-(1-Phenethylpiperidin-4-yl)-N-phenylisobutyramide hydrochloride 

(Isobutyrfentanyl, 2j) 

Isobutyrfentanyl 2j was obtained in 60% yield 

over two steps. 1H NMR (400 MHz, DMSO-D6) 

δ 10.51 (bs, 1H, H9), 7.52-7.43 (m, 3H, H17-

19), 7.33-7.21 (m, 7H, H1-3/H5-6/H16/H20), 

4.68 (t, J = 12.1 Hz, 1H, H12), 3.51 (d, J = 11.0 



251 

 

Hz, 2H, H10a/H14a), 3.36 (H2O), 3.20-3.03 (m, 4H, H8/H10b/H14b), 3.02-2.94 

(m, 2H, H7), 2.11 (sep, J = 6.8 Hz, 1H, H22), 1.91 (d, J = 12.4 Hz, 2H, 

H11a/H13a), 1.62 (q, J = 11.8 Hz, 2H, H11b/H13b), 0.88 (d, J = 6.4 Hz, 6H, 

H23-24); 13C NMR (100 MHz, DMSO-D6) δ 175.54 (C21), 138.06 (C15), 137.14 

(C4), 130.16 (C17/C19), 129.50 (C18), 128.64 (C2-3/C5-6), 128.62 (C16/C20), 

126.74 (C1), 56.40 (C8), 50.86 (C10/C14), 49.04 (C12), 31.16 (C22), 29.40 

(C7), 27.27 (C11/C13), 19.42 (C23-24); ATR-FTIR  vmax/cm-1: 3066 and 3037, 

2962, 2931 and 2870, 2453 and 2400, 1654, 1596; HRMS (C23H30N2O) : 

predicted mass = 351.2431 [M+H]+; experimental mass = 351.2432 [M+H]+. 

3-Methyl-N-(1-phenethylpiperidin-4-yl)-N-phenylbutanamide hydrochloride 

(Isovalerylfentanyl, 2k) 

Isovalerylfentanyl 2k was obtained in 33% yield 

over two steps. 1H NMR (400 MHz, DMSO-D6) 

δ 10.46 (bs, 1H, H9), 7.52-7.41 (m, 3H, H17-

19), 7.31 (t, J = 7.6 Hz, 2H, H2/H6), 7.26-7.17 

(m, 5H, H1/H3/H5/H16/H20), 4.72 (tt, J = 3.2 

Hz, 12.1 Hz, 1H, H12), 3.51 (d, J = 11.9 Hz, 2H, 

H10a/H14a), 3.37 (H2O), 3.20-3.03 (m, 4H, H8/H10b/H14b), 3.01-2.93 (m, 2H, 

H7), 2.01-1.87 (m, 3H, H11a/H13a/H23), 1.71 (d, J = 7.3 Hz, 2H, H22), 1.63 

(q, J = 12.8 Hz, 2H, H11b/H13b), 0.73 (d, J = 6.4 Hz, 6H, H24-25); 13C NMR 

(100 MHz, DMSO-D6) δ 170.81 (C21), 138.16 (C15), 137.15 (C4), 130.44 

(C17/C19), 129.54 (C18), 128.69 (C2-3/C5-6), 128.58 (C16/C20), 126.80 (C1), 

56.41 (C8), 50.89 (C10/C14), 49.11 (C12), 43.07 (C22), 29.43 (C7), 27.32 

(C11/C13), 25.10 (C23), 22.37 C24-25); ATR-FTIR  vmax/cm-1: 3061 and 3037, 

2954 and 2870, 2443 and 2387, 1648, 1596; HRMS (C24H32N2O) : predicted 

mass = 365.2587 [M+H]+; experimental mass = 365.2592 [M+H]+. 
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2,2,2-Trifluoro-N-(1-phenethylpiperidin-4-yl)-N-phenylacetamide hydrochloride 

(Trifluoroacetylfentanyl, 2l) 

Trifluoroacetylfentanyl 2l was obtained in 38% 

yield over two steps. 1H NMR (400 MHz, 

DMSO-D6) δ 10.61 (bs, 1H, H9), 7.53-7.47 (m, 

3H, H17-19), 7.37 (t, J = 3.9 Hz, 2H, H2/H6), 

7.31 (t, J = 7.8 Hz, 2H, H3/H5), 7.26-7.18 (m, 

3H, H1/H16/H20), 4.67 (tt, J = 3.2 Hz, 12.1 Hz, 1H, H12), 3.55 (d, J = 11.9 Hz, 

2H, H10a/H14a), 3.41 (H2O), 3.20-3.09 (m, 4H, H8/H10b/H14b), 3.01-2.94 (m, 

2H, H7), 2.05 (d, J = 13.3 Hz, 2H, H11a/H13a), 1.69 (q, J = 11.8 Hz, 2H, 

H11b/H13b); 13C NMR (100 MHz, DMSO-D6) δ 155.36 (d, J = 34.5 Hz, C21), 

137.11 (C15), 134.01 (C4), 130.48 (C17/C19), 129.76 (C18), 129.02 

(C16/C20), 128.68 (C2-3/C5-6), 126.81 (C1), 116.10 (d, J = 289.5 Hz, C22), 

56.37 (C8), 52.09 (C10/C14), 50.42 (C12), 29.37 (C7), 26.34 (C11/C13); 19F 

NMR (376 MHz, CDCl3) δ -68.30 (s); ATR-FTIR  vmax/cm-1: 3035 and 3010, 

2941, 2447 and 2393, 1681, 1597, 1204-1156 (C-F); HRMS (C21H23N2OF3) : 

predicted mass = 377.1835 [M+H]+; experimental mass = 377.1840 [M+H]+. 

2,2,3,3,3-Pentafluoro-N-(1-phenethylpiperidin-4-yl)-N-phenylpropanamide 

hydrochloride (Pentafluoropropionylfentanyl, 2m) 

Pentafluoropropionylfentanyl 2m was obtained 

in 52% yield over two steps. 1H NMR (400 MHz, 

DMSO-D6) δ 10.61 (s, 1H, H9), 7.61-7.46 (m, 

3H, H17-19), 7.43-7.36 (m, 2H, H2/H6), 7.35-

7.28 (m, 2H, H3/H5), 7.26-7.20 (m, 3H, 

H1/H16/H20), 4.68 (tt, J = 12.1 Hz, 3.7 Hz, 1H, H12), 3.55 (d, J = 11.9 Hz, 2H, 
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H10a/H14a), 3.37 (H2O), 3.24-3.07 (m, 4H, H8/H10b/H14b), 3.03-2.93 (m, 2H, 

H7), 2.10-2.00 (m, 2H, H11a/H13a and acetone), 1.89-1.54 (q, J = 11.8 Hz, 2H, 

H11b/H13b); 13C NMR (100 MHz, DMSO-D6) δ 156.11 (t, J = 24.0 Hz, C21), 

137.10 (C15), 133.67 (C4), 130.34 (C17/C19), 129.75 (C18), 128.99 

(C16/C20), 128.67 (C2-3/C5-6), 126.81 (C1), 56.35 (C8), 52.14(C10/C14), 

50.42 (C12), 29.39 (C7), 26.26 (C11/C13); 19F NMR (376 MHz, CDCl3) δ -83.36 

(s), -114.29 (s); ATR-FTIR  vmax/cm-1: 2941, 2438 and 2371, 1685, 1597; HRMS 

(C22H23N2OF5) : predicted mass = 427.1803 [M+H]+; experimental mass = 

427.1806 [M+H]+. 

2-Methoxy-N-(1-phenethylpiperidin-4-yl)-N-phenylacetamide hydrochloride 

(Methoxyacetylfentanyl, 2n)  

Methoxyacetylfentanyl 2n was obtained in 29% 

yield over two steps. 1H NMR (400 MHz, 

DMSO-D6) δ 10.53 (bs, 1H, H9), 7.52-7.43 (m, 

3H, H17-19), 7.35-7.19 (m, 7H, H1-3/H5-

6/H16/H20), 4.69 (t, J = 11.9 Hz, 1H, H12), 

3.56-3.49 (m, 4H, H10a/H14a/H22), 3.36 (H2O), 3.20-3.04 (m, 7H, 

H8/H10b/H14b/H23), 3.01-2.94 (m, 2H, H7), 1.93 (d, J = 12.8 Hz, 2H, 

H11a/H13a), 1.64 (q, J = 11.9 Hz, 2H, H11b/H13b); 13C NMR (100 MHz, 

DMSO-D6) δ 167.97 (C21), 137.14 (C15), 136.34 (C4), 130.33 (C17/C19), 

129.55 (C18), 128.94 (C16/C20), 128.66 (C2-3/C5-6), 126.79 (C1), 70.15 

(C22), 58.28 (C23), 56.41 (C8), 50.77 (C10/C14), 49.17 (C12), 29.39 (C7), 

27.03 (C11/C13); ATR-FTIR  vmax/cm-1: 3042, 2928 and 2820, 2464 and 2410, 

1674, 1597, 1134 (C-O ether); HRMS (C22H28N2O2) : predicted mass = 

353.2224 [M+H]+; experimental mass = 353.2220 [M+H]+. 
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N-(1-Phenethylpiperidin-4-yl)-N-phenylfuran-2-carboxamide hydrochloride (2-

Furanylfentanyl, 2o) 

2-Furanylfentanyl 2o was obtained in 26% yield 

over two steps. 1H NMR (400 MHz, DMSO-D6) 

δ 10.56 (s, 1H, H9), 7.66 (s, 1H, H25), 7.53-

7.46 (m, 3H, H17-19), 7.35-7.19 (m, 7H, H1-

3/H5-6/H16/H20), 6.32 (dd, J = 3.2 Hz, 1.4 Hz, 

1H, H24), 5.38 (s, 1H, H23), 4.83 (tt, J = 3.7 Hz, 

12.1 Hz, 1H, H12), 3.56 (d, J = 11.4 Hz, 2H, H10a/H14a), 3.37 (H2O), 3.24-

3.09 (m, 4H, H8/H10b/H14b), 3.05-2.95 (m, 2H, H7), 2.04 (d, J = 12.4 Hz, 2H, 

H11a/H13a), 1.76 (q, J = 12.4 Hz, 2H, H11b/H13b); 13C NMR  (400 MHz, 

DMSO-D6) δ 157.98 (C21), 146.50 (C22), 145.23 (C25), 137.80 (C15), 137.15 

(C4), 130.78 (C17/C19), 129.49 (C18), 129.13 (C16/C20), 128.69 (C2-3/C5-6), 

126.81 (C1), 115.87 (C23), 111.28 (C24), 56.43 (C8), 50.82 (C10/C14), 50.22 

(C12), 29.42 (C7), 27.01 (C11/C13); ATR-FTIR  vmax/cm-1: 3143, 3121, 3047 

and 3001, 2934, 2455 and 2406, 1636, 1594 and 1558; HRMS (C24H26N2O2) : 

predicted mass = 375.2067 [M+H]+, 397.1892 [M+Na]+; experimental mass = 

375.2070 [M+H]+ and 397.1890 [M+Na]+. 

N-(1-Phenethylpiperidin-4-yl)-N-phenylfuran-3-carboxamide hydrochloride (3-

furanylfentanyl, 2p) 

3-Furanylfentanyl 2p was obtained in 42% yield 

over two steps. 1H NMR (400 MHz, DMSO-D6) 

δ 10.64 (bs, 1H, H9), 7.55-7.46 (m, 4H, H17-

19/H25), 7.43-7.14 (m, 7H, H1-3/H5-

6/H16/H20), 6.75 (s, 1H, H24), 5.98 (s, 1H, 
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H23), 4.83 (t, J = 11.9 Hz, 1H, H12), 3.55 (d, J = 11.4 Hz, 2H, H10a/H14a), 

3.37 (H2O), 3.25-3.09 (m, 4H, H8/H10b/H14b), 3.05-2.96 (m, 2H, H7), 2.07 

(acetone), 2.02 (d, J = 12.4 Hz, 2H, H11a/H13a), 1.76 (q, J = 11.8 Hz, 2H, 

H11b/H13b); 13C NMR (100 MHz, DMSO-D6) δ 161.94 (C21), 145.04 (C25), 

142.87 (C24), 137.92 (C15), 137.19 (C4), 131.01 (C17/C19), 129.55 (C18), 

129.19 (C16/C20), 128.69 (C2-3/C5-6), 126.79 (C1), 122.15 (C22), 110.82 

(C23), 56.43 (C8), 50.83 (C10/C14), 50.10 (C12), 29.43 (C7), 27.09 (C11/C13); 

ATR-FTIR  vmax/cm-1: 3044 and 3003, 2933, 2452 and 2404, 1620, 1595 and 

1557; HRMS (C24H26N2O2) : predicted mass = 375.2067 [M+H]+; experimental 

mass = 375.2071 [M+H]+. 

N-(1-Phenethylpiperidin-4-yl)-N-phenylacrylamide hydrochloride 

(Acrylfentanyl, 2q) 

Acrylfentanyl 2q was obtained in 32% yield 

over two steps. 1H NMR (400 MHz, DMSO-D6) 

δ 10.52 (bs, 1H, H9), 7.53-7.44 (m, 3H, H17-

19), 7.34-7.19 (m, 7H, H1-3/H5-6/H16/H20), 

6.15 (dd, J = 16.9, 2.3 Hz, 1H, H23b), 5.71 (dd, 

J = 16.5, 10.5 Hz, 1H, H22), 5.53 (dd, J = 10.5, 

2.3 Hz, 1H, H23a), 4.75 (t, J = 12.1 Hz, 1H, H12), 3.53 (d, J = 11.4 Hz, 2H, 

H10a/H14a), 3.36 (H2O), 3.21-3.06 (m, 4H, H8/H10b/H14b), 3.02-2.93 (m, 2H, 

H7), 1.97 (d, J = 12.8 Hz, 2H, H11a/H13a), 1.69 (dd, J = 22.9, 12.4 Hz, 2H, 

H11b/H13b); 13C NMR (100 MHz, DMSO-D6) δ 164.17 (C21), 137.41 (C15), 

137.14 (C4), 130.47 (C17/C19), 129.59 (C18), 128.98 (C22), 128.78 

(C16/C20), 128.67 (C2-3/C5-6), 127.70 (C23), 126.79 (C1), 56.41 (C8), 50.81 

(C10/C14), 49.51 (C12), 29.41 (C7), 27.17 (C11/C13); ATR-FTIR  vmax/cm-1: 
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3044, 2936, 2453 and 2404, 1649, 1614 and 1593; HRMS (C22H26N2O) : 

predicted mass = 335.2118 [M+H]+; experimental mass = 335.2124 [M+H]+. 

N-(1-Phenethylpiperidin-4-yl)-N-phenylbenzamide hydrochloride 

(Benzoylfentanyl, 2r) 

Benzoylfentanyl 2r was obtained in 15% yield 

over two steps. 1H NMR (400 MHz, DMSO-D6) 

δ 10.01 (bs, 1H, H9), 7.35-7.11 (m, 15H, H1-

3/H5-6/H16-20/H23-27), 4.82 (bs, 1H, H12), 

3.58 (d, J = 11.9 Hz, 2H, H10a/H14a), 3.36 

(H2O), 3.24-3.11 (m, 4H, H8/H10b/H14b), 3.04-

2.97 (m, 2H, H7), 2.11 (d, J = 13.3 Hz, 2H, H11a/H13a), 1.80 (dq, J = 2.7 Hz, 

12.8 Hz, 2H, H11b/H13b); 13C NMR (100 MHz, DMSO-D6) δ 169.04 (C21), 

138.66 (C15), 137.14 (C4), 136.89 (C22), 130.89 (C17/C19), 129.00 (C18), 

128.84 (C16/C20), 128.69 (C2-3/C5-6), 127.86 (C25), 127.73 (C24/C26), 

127.61 (C23/C27), 126.82 (C1), 56.44 (C8), 50.93 (C10/C14), 50.52 (C12), 

29.45 (C7), 27.24 (C11/C13); ATR-FTIR  vmax/cm-1: 3059 and 3026, 2999 and 

2938, 2434 and 2389, 1630, 1594; HRMS (C26H28N2O) : predicted mass = 

385.2274 [M+H]+; experimental mass = 385.2276 [M+H]+. 

7.12.2 Synthesis of fluorinated fentalogues 

General procedure for the synthesis of 49a-c [1] 

1-Phenethyl-4-piperidone (5, 4.9 mmol) and fluoroaniline (5.4 mmol) were 

added to dichloromethane (16 mL) and treated with acetic acid (4.9 mmol). 

Sodium triacetoxyborohydride was added slowly to the mixture (4.9 mmol). The 

system was flushed with argon and the resulting solution was stirred at room 
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temperature for 24 h. At this point a second portion of sodium 

triacetoxyborohydride was added to the mixture (4.9 mmol), which was then 

stirred for another 24 h. The reaction mixture was transferred to a separation 

funnel with saturated aqueous sodium bicarbonate (50 mL) and extracted twice 

with ethyl acetate (2 x 50 mL). The combined organic layers were dried over 

magnesium sulfate and concentrated in vacuo. The crude oil was purified using 

a Biotage Isolera One Flash Purification System (eluent: 0-10% MeOH in 

DCM).  

N-(2-Fluorophenyl)-1-phenethylpiperidin-4-amine (49a) 

Compound 49a was obtained as a yellow oil in 68% 

yield. 1H NMR (400 MHz, CDCl3) δ 7.38 – 7.20 (m, 

5H), 7.05 – 6.95 (m, 2H), 6.76 – 6.60 (m, 2H), 5.78 

(s(br), 1H), 3.50 – 3.36 (m, 1H), 3.34 – 3.13 (m, 

2H), 3.01 – 2.82 (m, 4H), 2.54 (t, J = 10.6 Hz, 2H), 2.27 – 2.09 (m, 2H), 1.87 – 

1.68 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 152.91, 150.55, 139.23, 135.41, 

135.29, 128.85, 128.84, 128.83, 128.71, 128.70, 128.68, 128.67, 128.66, 

126.51, 124.68, 124.64, 116.92, 116.85, 114.94, 114.76, 112.70, 112.67, 

59.66, 51.62, 48.97, 32.62, 31.17; 19F NMR (376 MHz, CDCl3) δ -131.95; ATR-

FTIR  vmax/cm-1: 3357, 2939, 2516, 1707, 1628, 1514; HRMS (C19H23N2F) : 

predicted mass =  299.1924 [M+H]+; experimental mass = 299.1921 [M+H]+. 
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N-(3-Fluorophenyl)-1-phenethylpiperidin-4-amine (49b)  

Compound 49b was obtained as a yellow solid in 

65% yield. 1H NMR (400 MHz, CDCl3) δ 7.40 – 

7.18 (m, 5H), 7.16 – 7.05 (m, J = 8.1, 6.9 Hz, 1H), 

6.43 – 6.26 (m, 3H), 3.71 (d, 1H), 3.45 – 3.16 (m, 

1H), 3.00 (d, J = 11.9 Hz, 2H), 2.91 – 2.80 (m, 3H), 

2.70 – 2.61 (m, 2H), 2.33 – 2.18 (m, 2H), 2.18 – 2.03 (m, 2H), 1.90 (s(br), 1H), 

1.55 (qd, J = 11.0, 3.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 164.22 (d, J = 

242.6 Hz), 148.88 (d, J = 10.7 Hz), 140.28, 130.35 (d, J = 10.3 Hz), 128.71, 

128.48, 128.44, 126.11, 109.08 (d, J = 2.4 Hz), 103.54 (d, J = 21.5 Hz), 99.64 

(d, J = 25.4 Hz), 60.58, 53.11, 52.39, 49.94, 41.26, 33.84, 32.36; 19F NMR (376 

MHz, CDCl3) δ -113.49; ATR-FTIR  vmax/cm-1: 3268, 3029, 2933, 2807, 2768, 

1716, 1620, 1588, 1533; HRMS (C19H23N2F) : predicted mass =  299.1924 

[M+H]+; experimental mass = 299.1919 [M+H]+. 

N-(4-Fluorophenyl)-1-phenethylpiperidin-4-amine (49c)  

Compound 49c was obtained as an off-white solid 

in 65% yield. 1H NMR (400 MHz, CDCl3) δ 7.26 – 

7.08 (m, 5H), 6.85 – 6.76 (m, 2H), 6.51 – 6.42 (m, 

2H), 3.23 – 3.13 (m, 1H), 2.92 (d, J = 11.9 Hz, 2H), 

2.82 – 2.71 (m, 2H), 2.61 – 2.51 (m, 2H), 2.14 (t, 

J = 11.2 Hz, 2H), 2.06 – 1.90 (m, 2H), 1.54 – 1.34 (m, 2H); 13C NMR (100 MHz, 

CDCl3) δ 155.74 (d, J = 235.0 Hz), 154.57, 143.36 (d, J = 1.9 Hz), 140.21, 

128.57 (d, J = 25.9 Hz), 126.13, 121.77, 115.74 (d, J = 22.2 Hz), 114.28 (d, J 

= 7.3 Hz), 60.55, 52.44, 50.63, 33.77, 32.44; 19F NMR (376 MHz, CDCl3) δ -

128.14; ATR-FTIR  vmax/cm-1: 3405, 3273, 3026, 2927, 2843, 2810, 2773, 1665, 
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1617, 1559, 1506; HRMS (C19H23N2F) : predicted mass =  299.1924 [M+H]+; 

experimental mass = 299.1922 [M+H]+. 

General procedure for the synthesis of 42a-c [4] 

The starting amine (49a-c, 1.0 mmol) was added to dichloromethane (10 mL) 

and was treated with diisopropylethylamine (2.0 mmol). The system was 

flushed with argon, the mixture cooled in an ice bath and propionyl chloride (2.0 

mmol) added dropwise. The resulting solution was stirred at room temperature 

for 2 h. The mixture was diluted with water (30 mL) and the organic layer 

washed sequentially with brine (30 mL) and saturated aqueous sodium 

bicarbonate (30 mL). The organic layer was dried with magnesium sulfate and 

concentrated in vacuo. The crude oil was purified using a Biotage Isolera One 

Flash Purification System (eluent: 0-10% MeOH in DCM). The free-base was 

dissolved in acetone, and an equimolar amount of hydrogen chloride (3 M in 

cyclopentyl methyl ether (CPME)) added. The mixture was left to stand for 5-

10 minutes and the salt isolated by filtration. The products were dried in an 

oven (60 °C, 12h). 

N-(2-Fluorophenyl)-N-(1-phenethylpiperidin-4-yl)propionamide (ortho-Fluoro 

fentanyl, 42a)  

ortho-Fluoro fentanyl 42a was obtained as a 

white solid in 25% yield. 1H NMR (400 MHz, 

DMSO-D6): 10.35 (s(br), 1H, H9), 7.57-7.48 (m, 

1H, H18), 7.48-7.27 (m, 5H, H2/H6/H16-

17/H19), 7.26-7.18 (m, 3H, H1/H3/H5), 4.75 (tt, 

J = 12.1 Hz, 3.4 Hz, 1H, H12), 3.52 (t, J = 10.8 Hz, 2H, H10a/H14a), 3.34 (s, 

H2O), 3.21-3.04 (m, 4H, H8/H10b/H14b), 3.01-2.92 (m, 2H, H7), 1.98 (d, J = 
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13.3 Hz, 1H, H13a), 1.93-1.49 (m, 5H, H13b/H11/H22), 0.89 (t, J = 7.3 Hz, 3H, 

H23); 13C NMR (100 MHz, DMSO-D6) δ 172.38 (C21), 158.64 (d, J = 246.3 Hz, 

C20), 137.10 (C4), 132.78 (C16), 131.19 (d, J = 7.7 Hz, C18), 128.66 (C2-3/C5-

6), 126.80 (C1), 125.60 and 125.47 (overlap of C15 (d) and C17(s)), 116.74 (d, 

J = 21.1 Hz, C19), 56.36 (C8), 50.80 (C10/C14), 49.55 (C12), 29.41 (C7), 27.30 

and 27.20 (C13/C22), 26.41 (C11), 9.21 (C23); 19F NMR (376 MHz, DMSO-D6) 

δ -122.048 (s); ATR-FTIR vmax/cm-1: 3062 and 3029, 2978 and 2930, 2628, 

2588, 2526 and 2471, 1661 (C=O amide), 1607 and 1588; HRMS 

(C22H27N2OF): predicted mass = 355.218 [M+H]+, experimental mass = 

355.2187 [M+H]+. 

N-(3-Fluorophenyl)-N-(1-phenethylpiperidin-4-yl)propionamide (meta-Fluoro 

fentanyl, 42b) 

meta-Fluoro fentanyl 42b was obtained as a 

white solid in 36% yield. 1H NMR (400 MHz, 

DMSO-D6): 10.34 (s(br), 1H, H9), 7.53 (q, J = 

7.6 Hz, 1H, H17), 7.45-7.18 (m, 8H, H1-3/H5-

6/H18/H20), 7.12 (d, J = 7.8 Hz, 1H, H16), 4.70 

(t, J = 11.4 Hz, 1H, H12), 3.52 (d, J = 11.4 Hz, 2H, H10a/H14a), 3.35 (s, H2O), 

3.22-3.04 (m, 4H, H8/H10b/H14b), 3.04-2.92 (m, 2H, H7), 2.04-1.80 (m, 4H, 

H11a/H13a/H22), 1.63 (qd, J = 11.2 Hz, 3.2 Hz, 2H, H11b/H13b), 0.89 (t, J = 

7.3 Hz, 3H, H23); 13C NMR (100 MHz, DMSO-D6) δ 171.97 (C21), 162.15 (d, 

J = 245.4 Hz, C19), 139.82 (d, J = 9.6 Hz, C15), 137.11 (C4), 130.96 (d, J = 

8.6 Hz, C17), 128.68 (C2-3/C5-6), 126.86 and 126.80 (overlap of C1(s) and 

C16(d)), 117.79 (d, J = 21.1 Hz, C20), 115.71 (d, J = 20.1 Hz, C18), 56.39 (C8), 

50.87 (C10/C14), 49.09 (C12), 29.43 (C7), 27.73 (C22), 27.17 (C11/C13), 9.32 

(C23); 19F NMR (376 MHz, DMSO-D6) δ -114.064 (s); ATR-FTIR  vmax/cm-1: 
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3042 and 3013, 2994, 2964 and 2937, 2457 and 2410, 1647 (C=O amide), 

1606 and 1590; HRMS (C22H27N2OF): predicted mass = 355.218 [M+H]+, 

experimental mass = 355.2179 [M+H]+. 

N-(4-Fluorophenyl)-N-(1-phenethylpiperidin-4-yl)propionamide (para-Fluoro 

fentanyl, 42c) 

para-Fluoro fentanyl 42c was obtained as a 

white solid in 43% yield. 1H NMR (400 MHz, 

DMSO-D6): 10.36 (s(br), 1H, H9), 7.38-7.28 (m, 

6H, H2/H6/H16-17/H19-20), 7.27-7.18 (m, 3H, 

H1/H3/H5), 4.71 (t, J = 12.1 Hz, 1H, H12), 3.52 

(d, J = 11.4 Hz, 2H, H10a/H14a), 3.34 (s, H2O), 3.24-3.03 (m, 4H, 

H8/H10b/H14b), 3.03-2.91 (m, 2H, H7), 1.92 (d, J = 12.8 Hz, 2H, H11a/H13a), 

1.83 (q, J = 7.3 Hz, 2H, H22), 1.60 (q, J = 11.9 Hz, 2H, H11b/H13b), 0.88 (t, J 

= 7.6 Hz, 3H, H23); 13C NMR (100 MHz, DMSO-D6) δ 172.25 (C21), 161.69 (d, 

J = 246.3 Hz, C18), 137.12 (C4), 134.38 (d, J = 2.9 Hz, C15), 132.55 (d, J = 

9.6 Hz, C16/C20), 128.66 (C2-3/C5-6), 126.80 (C1), 116.28 (d, J = 22.0 Hz, 

C17/C19), 56.38 (C8), 50.85 (C10/C14), 48.90 (C12), 29.41 (C7), 27.74 (C22), 

27.13 (C11/C13), 9.35 (C23); 19F NMR (376 MHz, DMSO-D6) δ -115.977 (s); 

ATR-FTIR  vmax/cm-1: 3062, 3029 and 3006, 2975 and 2936, 2627, 2587, 2526 

and 2471, 1651 (C=O amide), 1602 and 1507; HRMS (C22H27N2OF): predicted 

mass = 355.218 [M+H]+, experimental mass = 355.2181 
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Synthesis of tert-Butyl-4-(N-phenylpropionamido)piperidine-1-carboxylate (51) 

[4, 184] 

tert-Butyl 4-anilinopiperidine-1-carboxylate (50, 1.7 

mmol) was added to dichloromethane (17 mL) and 

was treated with diisopropylethylamine (3.4 mmol). 

The system was flushed with argon, the mixture 

cooled in an ice bath and propionyl chloride (3.4 mmol) added dropwise. The 

resulting solution was stirred at room temperature for 2 h. The mixture was 

diluted with water (50 mL) and the organic layer washed sequentially with brine 

(50 mL) and saturated aqueous sodium bicarbonate (50 mL). The organic layer 

was dried with magnesium sulfate and concentrated in vacuo. The crude oil 

was purified using a Biotage Isolera One Flash Purification System (eluent: 10-

40% ethyl acetate in hexanes). tert-Butyl 4-(N-phenylpropionamido)piperidine-

1-carboxylate (51) was obtained as an off-white solid (95%). 1H NMR (400 

MHz, CDCl3):  7.44-7.28 (m, 3H), 7.09-6.98 (m, 2H), 4.77 (tt, J = 12.1, 3.7 Hz, 

1H), 4.10 (s(br), 2H), 2.87-2.65 (m, 2H), 1.90 (q, J = 7.5 Hz, 2H), 1.80 -1.68 (m, 

2H), 1.41-1.11 (m, 11H), 1.00 (t, J = 7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3): 

173.48, 154.50, 138.63, 130.20, 129.34, 128.39, 79.46, 52.09, 43.35, 30.42, 

28.42, 28.29, 9.52; ATR-FTIR vmax/cm-1: 2982, 2940, 2864, 1681, 1656, 1597; 

HRMS (C19H28N2O3) : predicted mass = 333.2178 [M+H]+ and 277.1552 [M - 

tBu]+; experimental mass = 333.2177 [M+H]+ (low abundance), 277.1551 [M - 

tBu]+ 

General procedure for the synthesis of 46a-c [4, 185] 

tert-Butyl 4-(N-phenylpropionamido)piperidine-1-carboxylate (51, 2.95 mmol) 

was dissolved in a 1:2 mixture of trifluoroacetic acid and dichloromethane 
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(9 mL). The resulting solution was stirred for an hour at room temperature. The 

reaction mixture was then cooled to 0°C, quenched with 1 M aqueous NaOH 

(10 mL) and transferred to a separatory funnel. The aqueous layer was 

removed, and the organic layer was washed successively with 1 M aqueous 

NaOH (20 mL), saturated aqueous sodium bicarbonate (20 mL) and brine 

(20 mL). The organic layer was dried over magnesium sulfate, filtered and 

concentrated in vacuo. The resulting oil was dissolved in acetonitrile (12 mL) 

and fluorophenethyl bromide (3.63 mmol) and cesium carbonate (6.67 mmol) 

were added. The reaction mixture was heated to reflux for 5 h. The mixture was 

then cooled to room temperature and transferred to a separation funnel with 

50 mL water. The aqueous layer was extracted three times with 

dichloromethane (2 x 50 mL). The combined organic layers were washed 

sequentially with brine (3 x 50 mL) and saturated aqueous sodium bicarbonate 

(2 x 50 mL). The combined organic layers were dried with magnesium sulfate 

and concentrated in vacuo. The resulting oil was dissolved in acetone, and an 

equimolar amount of hydrogen chloride (3 M in cyclopentyl methyl ether) 

added. The mixture was left to stand for 5-10 minutes and the salt isolated by 

filtration. The products were dried in an oven (60 °C, 12h). 

N-(1-(2-Fluorophenethyl)piperidin-4-yl)-N-phenylpropionamide (2’-Fluoro 

fentanyl, 46a) 

Compound  46a was obtained as a white solid 

in 60% yield. 1H NMR (400 MHz, DMSO-D6): 

10.30 (s (br), 1H, H9), 7.52-7.40 (m, 3H, H17-

19), 7.36-7.27 (m, 2H, H1/H3), 7.24 (d, J = 6.9 

Hz, 2H, H16/H20), 7.21-7.12 (m, 2H, H2/H6), 

4.72(tt, J = 12.1 Hz, 3.7 Hz, 1H, H12), 3.53 (d, J = 11.4 Hz, 2H, H10a/H14a), 
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3.19-3.06 (m, 4H, H8/H10b/H14b), 3.05-2.97 (m, 2H, H7), 1.93 (d, J = 12.8 Hz, 

2H, H11a/H13a), 1.81 (q, J = 7.5 Hz, 2H, H22), 1.60 (qd, J = 12.8 Hz, 2.3 Hz, 

2H, H11b/H13b), 0.87 (t, J = 7.6 Hz, 3H, H23); 13C NMR (100 MHz, DMSO-D6) 

δ 172.16 (C21), 160.42 (d, J = 244.4 Hz, C5), 138.12 (C15), 131.07 (d, J = 4.8 

Hz, C3), 130.39 (C17/C19), 129.52 (C18), 129.16 (d, J = 8.6 Hz, C1), 128.55 

(C16/C20), 124.75 (d, J = 3.8 Hz, C2), 123.71 (d, J = 16.3 Hz, C4), 115.42 (d, 

J = 22.0 Hz, C6), 54.88 (C8), 50.87 (C10/C14), 48.93 (C12), 27.74 (C22), 27.27 

(C11/C13), 23.00 (C7), 9.42 (C23); 19F NMR (376 MHz, DMSO-D6) δ -120.762 

(s); ATR-FTIR  vmax/cm-1: 3058, 3029 and 3011, 2971 and 2932, 2629, 2587, 

2522 and 2471, 1660 (C=O amide), 1594; HRMS (C22H27N2OF): predicted 

mass = 355.218 [M+H]+, experimental mass = 355.2187 

N-(1-(3-Fluorophenethyl)piperidin-4-yl)-N-phenylpropionamide (3’-Fluoro 

fentanyl, 46b) 

Compound  46b was obtained as a white solid 

in 62% yield. 1H NMR (400 MHz, DMSO-D6): 

10.29 (s(br), 1H, H9), 7.50-7.37 (m, 3H, H17-

19), 7.37-7.28 (m, 1H, H2), 7.21 (d, J = 7.6 Hz, 

2H, H16/H20), 7.12-6.99 (m, 3H, H1/H3/H5), 

4.69 (tt, J = 12.1 Hz, 3.66 Hz, 1H, H12), 3.48 (d, J = 11.4 Hz, 2H, H10a/H14a), 

3.21-3.01 (m, 4H, H8/H10b/H14b), 3.01-2.92 (m, 2H, H7), 1.90 (d, J = 12.8 Hz, 

2H, H11a/H13a), 1.79 (q, J = 7.3 Hz, 2H, H22), 1.58 (qd, J = 13.1 Hz, 2.7 Hz, 

2H, H11b/H13b), 0.84 (t, J = 7.3 Hz, 3H, H23); 13C NMR (100 MHz, DMSO-D6) 

δ 172.17 (C21), 162.22 (d, J = 243.5 Hz, C6), 140.01 (d, J = 7.7 Hz, C4), 138.12 

(C15), 130.58 (d, J = 8.6 Hz, C2), 130.39 (C17/C19), 129.52 (C18), 128.55 

(C16/C20), 124.90 (C3), 115.48 (d, J = 21.1 Hz, C5), 113.64 (d, J = 21.1 Hz, 

C1), 55.98 (C8), 50.94 (C10/C14), 48.96 (C12), 29.04 (C7), 27.74 (C22), 27.28 
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(C11/C13), 9.42 (C23); 19F NMR (376 MHz, DMSO-D6) δ -115.698 (s); ATR-

FTIR  vmax/cm-1: 3014, 2991, 2966 and 2937, 2453 and 2404, 1640 (C=O 

amide), 1615, 1598 and 1588; HRMS (C22H27N2OF): predicted mass = 355.218 

[M+H]+, experimental mass = 355.2186 

N-(1-(4-Fluorophenethyl)piperidin-4-yl)-N-phenylpropionamide (4’-Fluoro 

fentanyl, 46c) 

Compound  46c was obtained as a white 

solid in 70% yield.1H NMR (400 MHz, DMSO-

D6): 10.04 (s(br), 1H, H9), 7.53-7.41 (m, 3H, 

H17-19), 7.31-7.22 (m, 4H 

(H3/H5/H16/H20)), 7.19-7.10 (m, 2H, 

H2/H6), 4.72 (tt, J = 12.1 Hz, 3.7 Hz, 1H, H12), 3.51 (d, J = 11.4 Hz, 2H, 

H10a/H14a), 3.34 (s, H2O), 3.21-3.03 (m, 4H, H8/H10b/H14b), 2.99-2.90 (m, 

2H, H7), 1.93 (d, J = 12.8 Hz, 2H, H11a/H13a), 1.82 (q, J = 7.3 Hz, 2H, H22), 

1.58 (qd, J = 12.8 Hz, 2.7 Hz, 2H, H11b/H13b), 0.87 (t, J = 7.3 Hz, 3H, H23); 

13C NMR (100 MHz, DMSO-D6) δ 172.17 (C21), 161.15 (d, J = 242.5 Hz, C1), 

138.13 (C15), 133.21 (C4), 130.60 (d, J = 7.7 Hz, C3/C5), 130.43 (C17/C19), 

129.54 (C18), 128.57 (C16/C20), 115.41 (d, J = 21.1 Hz, C2/C6), 56.40 (C8), 

50.97 (C10/14), 48.90 (C12), 28.60 (C7), 27.75 (C22), 27.29 (C11/13), 9.42 

(C23); 19F NMR (376 MHz, DMSO-D6) δ -118.556 (s); ATR-FTIR  vmax/cm-1: 

3006, 2984 and 2931, 2627, 2589, 2533, 2492 and 2475, 1657 (C=O amide), 

1594 and 1514; HRMS (C22H27N2OF): predicted mass = 355.218 [M+H]+, 

experimental mass = 355.2190 
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Synthesis of tert-butyl-4-((2-fluorophenyl)amino)piperidine-1-carboxylate (53) 

[1, 4] 

tert-Butyl 4-oxopiperidine-1-carboxylate (52, 2.52 

mmol) and 2-fluoroaniline (2.8 mmol) were added to 

dichloromethane (8 mL) and treated with acetic acid 

(2.5 mmol). Sodium triacetoxyborohydride was 

added slowly to the mixture (2.5 mmol). The system was flushed with argon 

and the resulting solution was stirred at room temperature for 24 h. At this point 

a second portion of sodium triacetoxyborohydride was added to the mixture 

(2.5 mmol), which was then stirred for another 24 h. The reaction mixture was 

transferred to a separation funnel with saturated aqueous sodium bicarbonate 

(50 mL) and extracted twice with ethyl acetate (2 x 50 mL). The combined 

organic layers were dried over magnesium sulfate and concentrated in vacuo. 

The crude oil was purified using a Biotage Isolera One Flash Purification 

System (eluent: 0-10% MeOH in DCM). Compound 53 was obtained as an off-

white solid (73%). 1H NMR (400 MHz, CDCl3) δ 7.19 (s, 1H), 6.96 – 6.85 (m, 

2H), 6.65 (t, J = 8.0 Hz, 1H), 6.61 – 6.50 (m, 1H), 4.27 – 3.65 (m, 2H), 3.44 – 

3.29 (m, 1H), 2.87 (t, J = 11.8 Hz, 2H), 2.07 – 1.91 (m, 2H), 1.55 (s (br), 1H), 

1.40 (s, 9H), 1.37 – 1.20 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 154.82, 151.67 

(d, J = 237.9 Hz), 135.31 (d, J = 11.5 Hz), 124.64 (d, J = 2.9 Hz), 116.77 (d, J 

= 6.9 Hz), 114.78 (d, J = 18.8 Hz), 112.68 (d, J = 2.6 Hz), 79.70, 49.96, 42.85, 

32.35, 28.52; 19F NMR (376 MHz, CDCl3) δ -126.69; ATR-FTIR  vmax/cm-1: 

3351, 2968, 2933, 2846, 1674, 1617, 1528; HRMS (C16H23N2O2F) : predicted 

mass = 295.1822 [M+H]+ and 239.1196 [M - tBu]+; experimental mass = 

295.1810 [M+H]+ (low abundance), 239.1195 [M - tBu]+. 



267 

 

Synthesis of tert-butyl 4-(N-(2-fluorophenyl)propionamido)piperidine-1-

carboxylate (54) [4] 

tert-Butyl 4-((2-fluorophenyl)amino)piperidine-1-

carboxylate (53, 1.83 mmol) was added to 

dichloromethane (15 mL) and was treated with 

diisopropylethylamine (3.7 mmol). The system was 

flushed with argon, the mixture cooled in an ice bath and propionyl chloride (3.7 

mmol) added dropwise. The resulting solution was stirred at room temperature 

for 2 h. The mixture was diluted with water (50 mL) and the organic layer 

washed sequentially with brine (50 mL) and saturated aqueous sodium 

bicarbonate (50 mL). The organic layer was dried with magnesium sulfate and 

concentrated in vacuo. The crude oil was purified using a Biotage Isolera One 

Flash Purification System (eluent: 0-10% MeOH in DCM). Compound 54 was 

obtained as a yellow solid (48%). 1H NMR (400 MHz, CDCl3) δ 7.45 – 7.35 (m, 

1H), 7.25 – 7.06 (m, 3H), 4.79 (tt, J = 12.2, 3.7 Hz, 1H), 4.46 – 3.79 (m, 2H), 

3.01 – 2.57 (m, 2H), 1.98 (m, 2H), 1.89 – 1.72 (m, 2H), 1.39 (s, 9H), 1.35 – 

1.22 (m, 1H), 1.21 – 1.07 (m, 1H), 1.03 (t, J = 7.4 Hz, 3H); 13C NMR (100 MHz, 

CDCl3) δ 173.61, 159.26 (d, J = 249.0 Hz), 154.58, 132.19, 130.49 (d, J = 7.9 

Hz), 126.60 (d, J = 13.6 Hz), 124.80 (d, J = 3.9 Hz), 116.84 (d, J = 21.0 Hz), 

79.54, 52.85, 43.24, 30.90, 30.71, 29.35, 28.34, 27.85, 9.25; 19F NMR (376 

MHz, CDCl3) δ -118.63; ATR-FTIR  vmax/cm-1: 2976, 2938, 2859, 1688, 1663, 

1498; HRMS (C19H27N2O3F) : predicted mass =  373.1903 [M+Na]+; 295.1458 

[M - tBu]+; experimental mass = 373.1897 [M+Na]+ 295.1456 [M - tBu]+. 
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Synthesis of N-(1-(2-fluorophenethyl)piperidin-4-yl)-N-(2-

fluorophenyl)propionamide (2’-fluoro-ortho-fluorofentanyl, 47) 

tert-Butyl 4-(N-(2-Fluorophenyl)propionamido) 

piperidine-1-carboxylate (54, 0.60 mmol) was 

dissolved in a 1:2 mixture of trifluoroacetic acid 

and dichloromethane (2 mL). The resulting 

solution was stirred for an hour at room 

temperature. The reaction mixture was then concentrated in vacuo, and the oil 

transferred to a separation funnel with methanol (20 mL). Water (20 mL), 5 M 

aqueous NaOH (4 mL) and brine (15 mL) were added and the resulting mixture 

was extracted twice with ethyl acetate (2 x 25 mL). The combined organic 

layers were dried over magnesium sulfate, filtered and concentrated in vacuo. 

The resulting oil was dissolved in acetonitrile (2.5 mL) and 2-fluorophenethyl 

bromide (0.72 mmol) and cesium carbonate (1.32 mmol) were added. The 

reaction mixture was heated to reflux for 5 h. The mixture was then cooled to 

room temperature and transferred to a separation funnel with 30 mL water. The 

aqueous layer was extracted three times with dichloromethane (2 x 30 mL). 

The combined organic layers were washed sequentially with brine (3 x 30 mL) 

and saturated aqueous sodium bicarbonate (2 x 30 mL). The combined organic 

layers were dried with magnesium sulfate and concentrated in vacuo. The 

resulting oil was dissolved in acetone, and an equimolar amount of hydrogen 

chloride (3 M in CPME) added. The mixture was left to stand for 5-10 minutes 

and the salt isolated by filtration. The product was dried in an oven (60 °C, 12h) 

to give 2’-fluoro ortho-fluorofentanyl (47) as a white powder (53% yield). 1H 

NMR (400 MHz, DMSO-D6) δ 10.56-10.37 (s(br), 1H, H9), 7.58-7.48 (m, 1H, 

H18), 7.47-7.26 (m, 5H, H1/H3/16/H17/H19), 7.23-7.11 (m, 2H, H2/H6), 4.74 

(tt, J = 12.1 Hz, 3.7 Hz, 1H, H12), 3.54 (t, J = 10.3 Hz, 2H, H10a/H14a), 3.35 
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(s, H2O), 3.23-3.08 (m, 4H, H8/H10b/H14b), 3.08-2.95 (m, 2H, H7), 2.00 (d, J 

= 13.2 Hz, 1H, H13a), 1.95-1.49 (m, 4H, H13b/H11/H22), 0.89 (t, J = 7.3 Hz, 

3H, H23); 13C NMR (100 MHz, DMSO-D6) δ 172.39 (C21), 160.42 (d, J = 

244.4 Hz, C5), 158.64 (d, J = 246.3 Hz, C20), 132.79 (C16), 131.20 (d, J = 

8.6 Hz, C18), 131.07 (d, J = 3.8 Hz, C3), 129.16 (d, J = 7.7 Hz, C1), 125.60 

and 125.47 (overlap of C15(d) and C17(s)), 124.75 (d, J = 3.8 Hz, C2), 123.68 

(d, J = 15.3 Hz, C4), 116.74 (d, J = 21.1 Hz, C19), 115.41 (d, J = 21.1 Hz, C6), 

54.85 (C8), 50.81 (C10/C14), 49.49 (C12), 27.29 and 27.20 (C13/C22), 26.40 

(C11), 22.98 (C7), 9.20 (C23); 19F NMR (376 MHz, DMSO-D6) δ -120.657 (s, 

2’), -122.047 (s, ortho); ATR-FTIR  vmax/cm-1: 3014, 2976 and 2939, 2630, 

2587, 2520, 2471 and 2415, 1662 (C=O amide), 1607 and 1588; HRMS 

(C22H26N2OF2): predicted mass = 373.2086 [M+H]+, experimental mass = 

373.2085 

Synthesis of tert-butyl 3-fluoro-4-(phenylamino)piperidine-1-carboxylate (56)  

[1, 4, 184] 

tert-Butyl 3-fluoro-4-oxopiperidine-1-carboxylate (55, 

23.1 mmol) and aniline (25.4 mmol) were added to 

dichloromethane (70 mL) and treated with acetic acid 

(23.1 mmol). Sodium triacetoxyborohydride 

(23.1 mmol) was added slowly to the mixture. The system was flushed with 

argon and the resulting solution was stirred at room temperature for 24 h. At 

this point a second portion of sodium triacetoxyborohydride (23.1 mmol) was 

added to the mixture, which was then stirred for another 24 h. The reaction 

mixture was transferred to a separation funnel with saturated aqueous sodium 

bicarbonate (250 mL). The aqueous layer was extracted twice with ethyl 

acetate (2 x 250 mL). The combined organic layers were dried with magnesium 
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sulfate and concentrated in vacuo. The resulting oil was filtered on silica using 

an eluent of 50% ethyl acetate in hexanes. The resulting crude solid was 

recrystallized from an ethyl acetate / hexanes mixture to obtain compound 56 

as an orange solid (39%). 1H NMR (400 MHz, CDCl3) δ 7.25 – 7.14 (m, 2H), 

6.78 (t, J = 7.3 Hz, 1H), 6.67 (d, 2H), 4.79 (d, J = 48.5 Hz, 1H), 4.64 – 4.06 (m, 

2H), 3.65 – 3.43 (m, 1H), 3.20 – 2.65 (m, 2H), 1.93 (dd, J = 13.1, 2.8 Hz, 1H), 

1.84 – 1.58 (m, 2H), 1.54-1.24 (m, 10H); 13C NMR (100 MHz, CDCl3) δ 155.20, 

146.12, 129.57, 118.35, 113.91, 87.12 (d, J = 177.2 Hz), 80.18, 77.48, 77.17, 

76.85, 52.55 (d, J = 19.5 Hz), 47.72, 46.54, 43.15, 42.33, 28.45, 26.43; 19F 

NMR (376 MHz, CDCl3) δ -205.71; ATR-FTIR  vmax/cm-1: 3361, 2979, 2931, 

1677, 1600, 1593; HRMS (C16H23N2O2F) : predicted mass = 295.1822 [M+H]+ 

and 239.1196 [M - tBu]+; experimental mass = 295.1819 [M+H]+ (low 

abundance), 239.1198 [M - tBu]+. 

Synthesis of 3-fluoro-1-phenethyl-N-phenylpiperidin-4-amine (57) 

Compound 56 (9.09 mmol )was dissolved in a 1:2 

mixture of trifluoroacetic acid and 

dichloromethane (30 mL). The resulting solution 

was stirred for an hour at room temperature. The 

reaction mixture was then concentrated in vacuo, and the oil transferred to a 

separation funnel with methanol (80 mL). Water (80 mL), 5 M aqueous NaOH 

(16 mL) and brine (60 mL) were added and the resulting mixture was extracted 

twice with ethyl acetate (2 x 200 mL). The combined organic layers were dried 

over magnesium sulfate, filtered and concentrated in vacuo. The resulting oil 

was dissolved in THF (90 mL) and 2-fluorophenethyl bromide (27.1 mmol) and 

triethylamine (18.0 mmol) were added. The reaction mixture was heated to 

reflux for 5 h. The mixture was then cooled to room temperature and transferred 
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to a separation funnel with 200 mL ethyl acetate. The organic layer was 

washed with saturated aqueous sodium bicarbonate (2 x 100 mL). The organic 

layer was dried with magnesium sulfate and concentrated in vacuo. The crude 

product was purified using a Biotage Isolera One Flash Purification System. 

Compound 57 was obtained as an orange solid in 31% yield. 1H NMR (400 

MHz, CDCl3) δ 7.37 – 7.06 (m, 7H), 6.78 – 6.56 (m, 3H), 4.81 (d, J = 49.0 Hz, 

1H), 3.92 (d, J = 7.7 Hz, 1H), 3.38 (m, 2H), 3.05 (d, J = 11.5 Hz, 1H), 2.89 – 

2.74 (m, 2H), 2.71 – 2.49 (m, 2H), 2.43-2.15 (m, 2H), 2.05 – 1.91 (m, 1H), 1.84 

(qd, J = 12.3, 2.8 Hz, 1H), 1.72 (s (br), 1H); 13C NMR (100 MHz, CDCl3) δ 

146.42, 140.16, 129.45, 129.32, 128.73, 128.47, 126.16, 118.06, 113.82, 

113.52, 88.09 (d, J = 176.2 Hz), 60.09, 56.22 (d, J = 19.0 Hz), 52.26 (d, J = 

18.9 Hz), 51.98, 33.54, 27.03 (d, J = 2.1 Hz); 19F NMR (376 MHz, CDCl3) δ -

203.52; ATR-FTIR  vmax/cm-1: 3413, 3050, 2949, 2784, 1670, 1601, 1509; 

HRMS (C19H23N2F) : predicted mass =  299.1924 [M+H]+; experimental mass 

= 299.1918 [M+H]+. 

Synthesis of N-(3-fluoro-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (3-

Fluorofentanyl, 48) 

Compound 57 was dissolved in 

dichloromethane (0.1 M) and treated with 

diisopropylamine (2 eq). The system was 

flushed with argon, the mixture cooled in an ice 

bath and propionyl chloride (2 eq) was added 

dropwise. The resulting solution was stirred at ambient temperature for 2h. The 

mixture was diluted with water (50 mL) and the organic phase washed 

sequentially with brine (1 x 50 mL) and saturated aqueous sodium bicarbonate 

solution (1 x 50 mL), dried with magnesium sulfate and concentrated in vacuo. 
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The crude oils were purified by flash column chromatography (SiO2, 3:7 – 7:3 

v/v EtOAc-hexane) to obtain 3-fluorofentanyl free-base as an off-white solid 

(55%). 3-Fluorofentanyl free-base (0.36 mmol) was dissolved in acetone and 

an equimolar amount of hydrogen chloride (3 M in CPME) was added. The 

mixture was left to stand for 5-10 minutes and the salt isolated by filtration. The 

product was dried in an oven (60 °C, 12h) to give 3-fluorofentanyl (48) as a 

white powder (82% yield). 1H NMR (400 MHz, DMSO-D6) δ 10.05 (s(br), 1H, 

H9), 7.52-7.38 (m, 3H, H17-19), 7.38-7.15 (m, 7H, H1-3/H5-6/H16/H20), 5.35 

(d, J = 47.6 Hz, 1H, H11), 4.81 (dd, J = 33.43 Hz, 10.1 Hz, 1H, H12), 3.83 (t, J 

= 11.4 Hz, 1H, H10a), 3.72-3.43 (m, 2H, H10b/H14a), 3.40 (s, H2O), 3.35-3.13 

(m, 3H, H8/H14b), 3.08-2.87 (m, 2H, H7), 1.94-1.75 (m, 3H, H22/H13a), 1.59 

(qd, J = 12.8 Hz, 2.7 Hz, 1H, H13b), 0.90 (t, J = 7.3 Hz, 3H, H23); 13C NMR 

(100 MHz, DMSO-D6) δ 173.00 (C21), 138.76 (C15), 136.97 (C4), 130.80, 

130.75, 130.58, 129.32, 129.02, 128.72, 128.67 and 128.50 (C2-3/C5-6/C16-

20), 126.83 (C1), 86.93 (d, J = 176.36 Hz, C11), 56.70 (C8), 53.18 (d, J = 20.1 

Hz, C10), 51.55 (d, J = 17.3 Hz, C12), 50.53 (C14), 48.58, 29.22 (C7), 27.73 

(C22), 22.31 (C13), 9.34 (C23); 19F NMR (376 MHz, DMSO-D6) δ -199.434 (s); 

ATR-FTIR  vmax/cm-1: 3059 and 3044, 2989 and 2945, 2441, 1653 (C=O 

amide), 1569; HRMS (C22H27N2OF): predicted mass = 355.218 [M+H]+, 

experimental mass = 355.2187. 
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7.12.3  Synthesis of additional compounds for the PCA model 

General procedures for the synthesis of PCA model compounds 

Method A – Reductive Amination [1] 

The starting piperidone (4.9 mmol, 1.0 eq.) and aniline (5.4 mmol, 1.1 eq.) were 

added to dichloromethane (16 mL) and treated with acetic acid (4.9 mmol, 1.0 

eq.). Sodium triacetoxyborohydride was added slowly to the mixture (4.9 mmol, 

1.0 eq.). The system was flushed with argon and the resulting solution was 

stirred at room temperature for 24 h. At this point a second portion of sodium 

triacetoxyborohydride was added to the mixture (4.9 mmol, 1.0 eq.), which was 

then stirred for another 24 h. The reaction mixture was transferred to a 

separation funnel with saturated aqueous sodium bicarbonate (50 mL) and 

extracted twice with ethyl acetate (2 x 50 mL). The combined organic layers 

were dried over magnesium sulfate and concentrated in vacuo. The crude oil 

was purified using a Biotage Isolera One Flash Purification System 

Method B – Boc-Deprotection and Alkylation [4, 185] 

The starting Boc-protected piperidine (0.96 mmol, 1.0 eq.) was dissolved in a 

1:2 mixture of trifluoroacetic acid and dichloromethane (3.2 mL). The resulting 

solution was stirred for an hour at room temperature. The reaction mixture was 

then cooled to 0 °C, quenched with 1M aqueous NaOH (5 mL) and transferred 

to a separatory funnel. The aqueous layer was removed, and the organic layer 

was washed successively with 1M aqueous NaOH (10 mL), saturated aqueous 

sodium bicarbonate (10 mL) and brine (10 mL). The organic layer was dried 

over magnesium sulfate, filtered and concentrated in vacuo. The resulting oil 

was dissolved in acetonitrile (4 mL) and phenethyl bromide (0.96 mmol, 

1.0 eq.) and cesium carbonate (2.11 mmol, 2.2 eq.) were added. The reaction 
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mixture was heated to reflux for 5 h. The mixture was then cooled to room 

temperature and transferred to a separation funnel with 30 mL water. The 

aqueous layer was extracted three times with dichloromethane (2 x 30 mL). 

The combined organic layers were washed sequentially with brine (3 x 30 mL) 

and saturated aqueous sodium bicarbonate (2 x 30 mL). The combined organic 

layers were dried with magnesium sulfate and concentrated in vacuo. The 

crude product was purified using a Biotage Isolera One Flash Purification 

System 

Method C – Acylation and HCl Salt Formation [4] 

The starting amine (1.0 mmol, 1.0 eq.) was added to dichloromethane (10 mL) 

and was treated with diisopropylethylamine (2.0 mmol, 2.0 eq.). The system 

was flushed with argon, the mixture cooled in an ice bath and propionyl chloride 

(2.0 mmol, 2.0 eq.) added dropwise. The resulting solution was stirred at room 

temperature for 2 h. The mixture was diluted with water (30 mL) and the organic 

layer washed sequentially with brine (30 mL) and saturated aqueous sodium 

bicarbonate (30 mL). The organic layer was dried with magnesium sulfate and 

concentrated in vacuo. The free base was dissolved in acetone, and an 

equimolar amount of hydrogen chloride (3 M in cyclopentyl methyl ether 

(CPME)) added. The mixture was left to stand for 5-10 minutes and the salt 

isolated by filtration. The product was dried in an oven (60°C, 12 h) to give 

white – off-white powders. 
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Synthesis of N-benzyl fentanyl analogues 58-60, 63, 99, 100-102, 105 

 

 

N-(1-Benzylpiperidin-4-yl)-N-phenylisobutyramide (Isobutyryl-N-

benzylfentanyl, 58) 

Compound 58 was synthesised from S1 using 

Method C (white solid, 83% yield). 1H NMR (400 

MHz, DMSO) δ 10.33 (s, 1H, H8), 7.61 – 7.33 (m, 

8H, H1-2/6/15-19), 7.22 (d, J = 6.9 Hz, 2H, H3/5), 

4.66 (tt, J = 16.5, 7.7 Hz, 1H, H11), 4.21 (d, J = 5.2 

Hz, 2H, H7), 3.35 (s, H2O), 3.27 (d, J = 11.6 Hz, 2H, H9a/H13a), 3.09 (q, J = 

10.8 Hz, 2H, H9b/H13b), 2.21 – 2.03 (m, 1H, H21), 1.88 (d, J = 12.8 Hz, 2H, 

H10a/H12a), 1.61 (q, J = 12.0 Hz, 2H, H10b/H12b), 0.88 (d, J = 6.7 Hz, 6H, 

H22); 13C NMR (100 MHz, DMSO) δ 176.00 (C20), 138.49 (C14), 131.74, 

130.63, 130.35, 129.95, 129.86, 129.17 and 129.02 (C1-6/15-19), 59.29 (C7), 

51.12 and 49.46 (C9/11/13), 31.61 (C21), 27.47 (C10/12), 19.88 (C22); ATR-

FTIR  vmax/cm-1: 3066, 2972, 2946, 2474, 2401, 1650, 1597, 1496; HRMS 

(C22H28N2O) : predicted mass = 337.2280 [M+H]+; experimental mass = 

337.2279 [M+H]+.  
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N-(1-Benzylpiperidin-4-yl)-N-phenylpropionamide (N-Benzylfentanyl, 59) 

Compound 59 was synthesised from S1 using 

Method C (white solid, 55% yield). 1H NMR (400 

MHz, DMSO) δ 10.31 (s, 1H, H8), 7.60 – 7.32 (m, 

8H, H1-2/6/15-19), 7.21 (d, J = 6.9 Hz, 2H, H3/5), 

4.69 (t, J = 12.0 Hz, 1H, H11), 4.20 (d, J = 5.2 Hz, 

1H, H7), 3.27 (d, J = 11.6 Hz, 2H, H9a/H13a), 

3.10 (q, J = 10.6 Hz, 2H, H9b/H13b), 1.90 (d, J = 12.7 Hz, H10a/H12a), 1.82 

(q, J = 7.3 Hz, 2H, H21), 1.62 (qd, J = 12.7, 2.7 Hz, 2H, H10b/H12b), 0.87 (t, J 

= 7.4 Hz, 2H, H22); 13C NMR (100 MHz, DMSO) δ 172.61 (C20), 138.57 (C14), 

131.76, 130.80, 130.33, 129.93, 129.87, 129.17 and 128.95 (C1-6/15-19), 

59.29 (C7), 51.11 and 49.50 (C9/11/13), 28.16, (C21), 27.49 (C10/12), 9.85 

(C22); ATR-FTIR  vmax/cm-1: 3066, 2972, 2942, 2475, 2398, 1658, 1597. 

Spectral data are consistent with the literature. [185] 

 

N-(1-Benzylpiperidin-4-yl)-N-phenylcyclopropanecarboxamide (Cyclopropyl-

N-benzylfentanyl, 60) 

Compound 60 was synthesised from S1 using 

Method C (white solid, 76% yield). 1H NMR (400 

MHz, DMSO) δ 10.47 (s, 1H, H8), 7.63 – 7.36 (m, 

8H, H1-2/6/15-19), 7.25 (d, J = 7.2 Hz, 2H, H3/5), 

4.67 (tt, J = 12.2, 8.7, 3.6 Hz, 1H, H11), 4.21 (d, J = 

4.9 Hz, 2H, H7), 3.35 (s, H2O), 3.26 (d, J = 11.7 Hz, 2H, H9a/H13a), 3.09 (q, J 

= 22.4, 10.8 Hz, 2H, H9b/H13b), 1.90 (d, J = 12.5 Hz, 2H, H10a/12a), 1.68 (qd, 

J = 12.6, 2.4 Hz, 2H, H10b/12b), 1.00 (s (br), 1H, H21), 0.82 – 0.69 (m, 2H, 

H22a), 0.66 – 0.46 (m, 2H, H22b); 13C NMR (100 MHz, DMSO) δ 172.47 (C20), 
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138.60 (C14), 131.77, 130.94, 130.36, 129.99, 129.84, 129.15 and 128.94 (C1-

6/15-19), 59.24 (C7), 51.09 and 49.95 (C9/11/13), 27.49 (C10/12), 13.26 (C21), 

8.44 (C22); ATR-FTIR  vmax/cm-1: 3067, 3012, 2972, 2948, 2478, 1648, 1596, 

1497; HRMS (C22H26N2O) : predicted mass = 335.2123 [M+H]+; experimental 

mass = 335.2123 [M+H]+ 

 

N-(1-Benzylpiperidin-4-yl)-N-phenylbenzamide (Phenyl-N-benzylfentanyl, 63) 

Compound 63 was synthesised from S1 using 

Method C (white solid, 94% yield). 1H NMR (400 

MHz, DMSO) δ 10.37 (s, 1H, H8), 7.63 – 7.49 (m, 

2H, H15/19), 7.49 – 7.36 (m, 3H, H16-18), 7.32 – 

7.09 (m, 10H, H1-3/5-6/22-26), 4.78 (t, J = 11.5 Hz, 

1H, H11), 4.24 (d, J = 5.2 Hz, 2H, H7), 3.38 – 3.21 

(m, H2O and H9a/13a), 3.16 (q, J = 11.4 Hz, 2H, H9b/13b), 2.08 (d, J = 12.7 

Hz, 2H, H10a/12a), 1.81 (qd, J = 12.8, 9.7 Hz, 2H, H10b/12b); 13C NMR (100 

MHz, DMSO) δ 170.32 (C20), 139.13 (C14), 137.29 (C21), 131.78, 131.27, 

130.33, 129.90, 129.45, 129.26, 129.20, 128.25, 128.17 and 128.05 (C1-6/15-

19/22-26), 59.35 (C7), 51.17 and 51.02 (C9/11/13), 27.44 (C10/12); ATR-FTIR  

vmax/cm-1: 3037, 2927, 2451, 2393, 1646, 1594. Spectral data are consistent 

with the literature. [186] 
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N-(1-Benzylpiperidin-4-yl)-N-phenylacetamide (Acetyl-N-benzylfentanyl, 99) 

Compound 99 was synthesised from S1 using 

Method C (white solid, 66% yield). 1H NMR (400 

MHz, DMSO) δ 10.36 (s, 1H, H8), 7.60 – 7.33 (m, 

8H, H1-2/6/15-19), 7.22 (d, J = 6.9 Hz, 2H, H3/5), 

4.66 (tt, J = 12.1, 3.5 Hz, 1H, H11), 4.20 (d, J = 5.1 

Hz, 2H, H7), 3.35 (H2O), 3.27 (d, J = 11.7 Hz, 2H, H9a/13a), 3.09 (q, J = 10.6 

Hz, 2H, H9b/13b), 1.90 (d, J = 12.7 Hz, 2H, H10a/12a), 1.78 – 1.45 (m, 5H, 

H10b/12b/21); 13C NMR (100 MHz, DMSO) δ 169.45 (C20), 139.10 (C14), 

131.77, 130.63, 130.31, 129.94, 129.86, 129.16 and 128.97 (C1-6/15-19), 

59.30 (C7), 51.08 and 49.49 (C9/11/13), 27.47 (C10/12), 23.56 (C22); ATR-

FTIR  vmax/cm-1: 2989, 2969, 2945, 2627, 2476, 1657, 1509; HRMS 

(C20H24N2O) : predicted mass = 309.1967 [M+H]+; experimental mass = 

309.1964 [M+H]+. 

 

N-(1-Benzylpiperidin-4-yl)-N-phenylfuran-2-carboxamide (Furanyl-N-

benzylfentanyl, 100) 

Compound 100 was synthesised from S1 using 

Method C (white solid, 80% yield). 1H NMR (400 

MHz, DMSO) δ 10.56 (s, 1H, H8), 7.65 (d, J = 1.0 

Hz, 1H, H24), 7.63 – 7.35 (m, 8H, H1-2/6/15-19), 

7.26 (m, 2H, H3/5), 6.32 (dd, J = 3.5, 1.7 Hz, 1H, 

H23), 5.41 (d, J = 2.8 Hz, 1H, H22), 4.79 (tt, J = 

12.1, 3.6 Hz, 1H, H11), 4.23 (d, J = 5.1 Hz, 2H, H7), 3.38 – 3.21 (m, H2O and 

H9a/13a), 3.15 (q, J = 10.6 Hz, 2H, H9b/13b), 2.01 (d, J = 12.7 Hz, 2H, 

H10a/12a), 1.78 (q, J = 12.6 Hz, 2H, H10b/12b); 13C NMR (100 MHz, DMSO) 
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δ 158.44 (C20), 146.96 (C21), 145.64 (C24), 138.27 (C14), 131.80, 131.16, 

130.33, 129.88, 129.49 and 129.17 (C1-6/15-19), 116.29 (C22), 111.69 (C23), 

59.28 (C7), 51.01 and 50.75 (C9/11/13), 27.20 (C10/12); ATR-FTIR  vmax/cm-1: 

3138, 3119, 3042, 2974, 2949, 2468, 2397, 1634, 1595, 1558, 1497; HRMS 

(C23H24N2O2) : predicted mass = 361.1916 [M+H]+; experimental mass = 

361.1913 [M+H]+. 

 

N-(1-Benzylpiperidin-4-yl)-2-methoxy-N-phenylacetamide (Methoxyacetyl-N-

benzylfentanyl, 101) 

Compound 101 was synthesised from S1 using 

Method C (white solid, 55% yield). 1H NMR (400 

MHz, DMSO) δ 10.27 (s, 1H, H8), 7.55 – 7.27 (m, 

8H. H1-2/6/15-19), 7.21 (d, J = 7.1 Hz, 2H, H3/5), 

4.63 (t, J = 11.9 Hz, 1H, H11), 4.16 (d, J = 5.1 

Hz, 2H, H7), 3.51 (d, J = 15.0 Hz, 2H, H21), 3.33 

(H2O), 3.23 (d, J = 11.6 Hz, 2H, H9a/13a), 3.15 – 2.91 (m, 5H, H9b/13b,22), 

1.87 (d, J = 12.9 Hz, 2H, H10a/12a), 1.58 (q, J = 12.5 Hz, 2H, H10b/12b); 13C 

NMR (100 MHz, DMSO) δ 168.47 (C20), 136.83 (C14), 131.82, 130.82, 

130.36, 130.04, 129.93, 129.42 and 129.23 (C1-6/15-19), 70.65 (C21), 59.34 

(C7), 58.79 (C22), 51.06 and 49.65 (C9/11/13), 27.29 (C10/12); ATR-FTIR  

vmax/cm-1: 3064, 2949, 2821, 2475, 1668, 1595; HRMS (C21H25N2O2) : 

predicted mass = 339.2073 [M+H]+; experimental mass = 339.2068 [M+H]+. 
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N-(1-Benzylpiperidin-4-yl)-N-phenylbutyramide (Butyryl-N-benzylfentanyl, 

102) 

Compound 102 was synthesised from S1 using 

Method C (white solid, 71% yield). 1H NMR (400 

MHz, DMSO) δ 10.40 (s, 1H, H8), 7.61 – 7.33 (m, 

8H, H1-2/6/15-19), 7.19 (d, J = 6.9 Hz, 2H, H3/5), 

4.68 (t, J = 12.1 Hz, 1H), 4.20 (d, J = 5.2 Hz, 2H, 

H7), 3.35 (H2O), 3.26 (d, J = 11.6 Hz, H9a/13a), 

3.09 (q, J = 10.6 Hz, 2H, H9b/13b), 1.89 (d, J = 12.8 Hz, 2H, H10a/12a), 1.79 

(t, J = 7.3 Hz, 2H, H21), 1.63 (qd, J = 12.6, 2.7 Hz, 2H, H10b/12b), 1.42 (sext, 

J = 7.2 Hz, 2H, H22), 0.72 (t, J = 7.4 Hz, 3H, H23); 13C NMR (100 MHz, DMSO) 

δ 171.74 (C20), 138.59 (C14), 131.76, 130.81, 130.35, 129.93, 129.85, 129.16 

and 128.96 (C1-6/15-19), 59.27 (C7), 51.10 and 49.52 (C9/11/13), 36.62 (C21), 

27.49 (C10/12), 18.60 (C22), 14.08 (C23); ATR-FTIR  vmax/cm-1: 3065, 2969, 

2935, 2474, 1651, 1597; HRMS (C22H28N2O) : predicted mass = 337.2280 

[M+H]+; experimental mass = 337.2279 [M+H]+ 

 

N-(1-Benzylpiperidin-4-yl)-N-phenyltetrahydrofuran-2-carboxamide 

(Tetrahydrofuranyl-N-benzylfentanyl, 105) 

Compound 105 was synthesised from S1 using 

Method C (white solid, 69% yield). 1H NMR (400 

MHz, DMSO) δ 10.30 (s, 1H, H8), 7.61 – 7.33 (m, 

8H, H1-2/6/15-19), 7.23 (d, J = 6.4 Hz, 2H, H3/5), 

4.64 (t, 1H, J = 12.2, 3.6 Hz, H11), 4.21 (d, J = 4.9 

Hz, 2H, H7), 3.89 (m, 1H, H21), 3.78 (q, J = 7.6 Hz, 

1H, H24a), 3.68 – 3.54 (m, 1H, H24b), 3.36 (H2O), 3.27 (d, J = 10.9 Hz, 2H, 
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H9a/13a), 3.10 (q, J = 22.2, 11.7 Hz, 2H, H9b/13b), 2.04 – 1.70 (m, 4H, 

H10a/12a/22a/23b), 1.70 – 1.49 (m, J = 11.7, 7.6 Hz, 4H, H10b/12b/22b/23b); 

13C NMR (100 MHz, DMSO) δ 171.91 (C20), 137.41 (C14)), 131.75, 131.03, 

130.31, 129.88 and 129.18 (C1-6/15-19), 75.16 (C21), 69.08 (C24), 59.30 (C7), 

51.08 and 49.85 (C9/11/13), 30.14 (C22), 27.33 (C10/12), 27.16 (C23), 25.87 

(C23); ATR-FTIR vmax/cm-1: 3063, 2946, 2878, 2478, 2399, 1661, 1596, 1497; 

HRMS (C23H28N2O2) : predicted mass = 365.2229 [M+H]+; experimental mass 

= 365.2225 [M+H]+ 

 

Synthesis of para-Fluoro-N-benzyl fentanyl analogues 61-62, 64, 98, 104 

 

 

tert-Butyl 4-((4-fluorophenyl)amino)piperidine-1-carboxylate (S2) 

Compound S2 was synthesised from 52 using Method 

A (off-white solid, 50% yield). 1H NMR (400 MHz, CDCl3) 

δ 7.01 – 6.81 (m, 2H), 6.66 – 6.46 (m, 2H), 4.04 (d, J = 

7.9 Hz, 2H), 3.79 – 3.14 (m, 2H), 2.91 (t, J = 11.9 Hz, 

2H), 2.13 – 1.90 (m, 2H), 1.67 (s (br), 1H), 1.46 (s, 9H), 1.44 – 1.17 (m, 2H); 

13C NMR (100 MHz, CDCl3) δ 155.84 (d, J = 235.3 Hz), 154.80, 143.07 (d, J = 

1.9 Hz), 115.79 (d, J = 22.3 Hz), 114.37 (d, J = 7.4 Hz), 79.65, 50.92, 42.59, 
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32.40, 28.44; 19F NMR (376 MHz, CDCl3) δ -114.43; ATR-FTIR  vmax/cm-1: 

3358, 3043, 2981, 2944, 2922, 2885, 2847, 1672, 1611, 1529, 1505; HRMS 

(C16H23N2O2F) : predicted mass = 295.1822 [M+H]+ and 239.1196 [M - tBu]+; 

experimental mass = 295.1816 [M+H]+ (low abundance), 239.1192 [M - tBu]+. 

 

1-Benzyl-N-(4-fluorophenyl)piperidin-4-amine (S3) 

Compound S3 was synthesised from S2 using 

Method B (off-white solid, 42% yield). 1H NMR (400 

MHz, CDCl3) δ 7.39 – 7.18 (m, 5H), 6.94 – 6.84 (m, 

2H), 6.59 – 6.50 (m, 2H), 3.58 (s, 2H), 3.30 – 3.20 (m, 

1H), 3.17-2.55 (s(br) and d, J = 11.9 Hz, 3H), 2.29 – 2.09 (m, 2H), 2.05 (d, J = 

12.4 Hz, 2H), 1.51 (qd, J = 13.7, 3.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 

155.70 (d, J = 234.8 Hz), 143.40 (d, J = 1.8 Hz), 137.81, 129.28, 128.29, 

127.23, 121.75 (d, J = 7.9 Hz), 115.72 (d, J = 22.4 Hz), 114.26 (d, J = 7.3 Hz), 

77.36, 77.04, 76.73, 63.02, 52.27, 50.62, 32.37, 24.45; 19F NMR (376 MHz, 

CDCl3) δ -128.3; ATR-FTIR  vmax/cm-1: 3373, 3291, 3028, 2938, 2815, 2773, 

1662, 1612, 1557, 1506; HRMS (C18H21N2F) : predicted mass = 285.1767 

[M+H]+; experimental mass = 285.1764 [M+H]+. 
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N-(1-Benzylpiperidin-4-yl)-N-(4-fluorophenyl)isobutyramide (para-Fluoro-

isobutyryl-N-benzylfentanyl, 61) 

Compound 61 was synthesised from S3 using 

Method C (white solid, 12% yield). 1H NMR (400 

MHz, DMSO) δ 9.90 (s, 1H, H8), 7.59 – 7.37 (m, 

5H, H1-3/5-6), 7.38 – 7.20 (m, 4H, H15-16/18-19), 

4.67 (t, J = 12.1 Hz, 1H, H11), 4.21 (d, J = 5.3 Hz, 

2H, H7), 3.37 – 3.17 (m, H2O and H9a/13a), 3.10 

(q, J = 10.9 Hz, 2H, H9b/13b), 2.12 (sept, J = 6.2 Hz, 1H, H21), 1.89 (d, J = 

13.3 Hz, 2H, H10a/12a), 1.71 – 1.39 (m, 2H, H10b/12b), 0.89 (d, J = 6.7 Hz, 

6H, H22); 13C NMR (100 MHz, DMSO) δ 176.10 (C20), 162.18 (d, J = 245.8 

Hz, C17), 134.77 (C14), 132.80 (d, J = 8.8 Hz, C15/19), 131.83, 130.48, 129.84 

and 129.19 (C1-6), 116.77 (d, J = 22.6 Hz, C16/18), 59.17 (C7), 51.01 and 

49.51 (C9/11/13), 31.64 (C21), 27.33 (C10/12), 19.89 (C22); 19F NMR (376 

MHz, DMSO) δ -114.76; ATR-FTIR  vmax/cm-1: 2972, 2936, 2874, 2460, 1650, 

1508; HRMS (C22H27N2OF) : predicted mass = 355.2186 [M+H]+; experimental 

mass = 355.2186 [M+H]+. 

 

 

 

 

 

 

 



284 

 

N-(1-Benzylpiperidin-4-yl)-N-(4-fluorophenyl)propionamide (para-Fluoro-N-

benzylfentanyl, 62) 

Compound 62 was synthesised from S3 using 

Method C (white solid, 9% yield). 1H NMR (400 

MHz, DMSO) δ 9.75 (s, 1H, H8), 7.57 – 7.39 (m, 5H, 

H1-3/5-6), 7.39 – 7.17 (m, J = 9.0 Hz, 4H, H15-

16/18-19), 4.69 (t, J = 12.2 Hz, 1H, H11), 4.21 (d, J 

= 5.3 Hz, 2H, H7), 3.35 – 3.24 (m, H2O and 

H9a/13a), 3.11 (q, J = 10.5 Hz, 2H, H9b/13b), 1.90 (d, J = 12.6 Hz, 2H, 

H10a/12a), 1.83 (q, J = 7.4 Hz, 2H, H21), 1.54 (qd, J = 12.4, 2.8 Hz, 2H, 

H10b/12b), 0.88 (t, J = 7.4 Hz, 3H, H22); 13C NMR (100 MHz, DMSO) δ 172.21 

(C20), 161.65 (d, J = 245.4 Hz, C17), 134.35 (d, J = 2.9 Hz, C14), 132.49 (d, J 

= 8.6 Hz, C15/19), 131.30, 129.89, 129.38 and 128.70 (C1-6), 116.22 (d, J = 

23.0 Hz, C16/18), 58.75 (C7), 50.56 and 48.93 (C9/11/13), 27.71 (C10/12), 

26.85 (C21), 9.32 (C22); 19F NMR (376 MHz, DMSO) δ -115.13; ATR-FTIR  

vmax/cm-1: 3072, 2992, 2946, 2476, 2399, 1661, 1509; HRMS (C21H25N2OF) : 

predicted mass = 341.2029 [M+H]+; experimental mass = 341.2024 [M+H]+. 

 

N-(1-Benzylpiperidin-4-yl)-N-(4-fluorophenyl)acetamide (para-Fluoro-acetyl-N-

benzylfentanyl, 64) 

Compound 64 was synthesised from S3 using 

Method C (white solid, 5% yield).1H NMR (400 

MHz, DMSO) δ 10.46 (s, 1H, H8), 7.61 – 7.49 (m, 

2H, H2/6), 7.49 – 7.41 (m, J = 3.8 Hz, 3H, H1/3/5), 

7.41 – 7.19 (m, 4H, H15-16/18-19), 4.66 (tt, J = 

12.2, 3.6 Hz, 1H, H11), 4.20 (d, J = 5.3 Hz, 2H, 
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H7), 3.36 (H2O), 3.27 (d, J = 11.5 Hz, 2H, H9a/13a), 3.10 (q, 2H, J = 11.8 Hz, 

H9b/13b), 1.90 (d, 2H, H10a/12a), 1.78 – 1.49 (m, 5H, H10b/12b/21); 13C NMR 

(100 MHz, DMSO) δ 169.64 (C20), 162.17 (d, J = 245.3 Hz, C17), 135.39 (d, J 

= 2.9 Hz, C14), 132.9 (d, J = 8.8 Hz, C15/19), 131.80, 130.34, 129.95 and 

129.25 (C1-6), 116.77 (d, J = 22.9 Hz, C16/18), 59.35 (C7), 51.11 and 49.36 

(C9/11/13), 27.37 (C10/12), 23.66 (C21); 19F NMR (376 MHz, DMSO) δ -

115.01; ATR-FTIR  vmax/cm-1: 3437, 2967, 2945, 2628, 2484, 1626, 1596; 

HRMS (C20H23N2OF) : predicted mass =   327.1873 [M+H]+; experimental mass 

= 327.1869 [M+H]+. 

 

N-(1-Benzylpiperidin-4-yl)-N-(4-fluorophenyl)furan-2-carboxamide (para-

Fluoro-N-benzylfuranylfentanyl, 98) 

Compound 98 was synthesised from S3 using 

Method C (white solid, 22% yield). 1H NMR (400 

MHz, DMSO) δ 10.16 (s, 1H, H8), 7.65 (d, J = 1.1 

Hz, 1H, H24), 7.56-7.36 (m, 5H, H1-3/5-6), 7.37 – 

7.25 (m, 4H, H15-16/18-19), 6.37 (dd, J = 3.5, 1.7 

Hz, 1H, H23), 5.65 (s, 1H, H22), 4.78 (tt, J = 12.1, 

3.5 Hz, 1H, H11), 4.22 (d, J = 5.0 Hz, 2H, H7), 3.33 (H2O), 3.15 (q, J = 11.7 

Hz, 2H, H9b/H13b), 2.01 (d, J = 12.9 Hz, 2H, H10a/12a), 1.73 (q, J = 12.6 Hz, 

2H, H10b/12b); 13C NMR (100 MHz, DMSO) δ 162.46 (d, J = 246.0 Hz, C17), 

158.51 (C20), 147.00 (C21), 145.81 (C24), 134.58 (d, J = 2.3 Hz, C14), 133.33 

(d, J = 8.8 Hz, C15/19), 131.89, 130.44, 129.86 and 129.19 (C1-6), 116.75 (d, 

J = 21.5 Hz, C16/18), 116.64 (C22), 111.86 (C23), 59.18 (C7), 53.66, 50.92 

and 50.77 (C9/11/13), 41.96, 27.08 (C10/12), 18.43, 17.20, 12.60; 19F NMR 

(376 MHz, DMSO) δ -113.99; ATR-FTIR  vmax/cm-1: 3127, 2972, 2949, 2475, 
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2398, 1634, 1559, 1508; HRMS (C23H23N2O2F) : predicted mass = 379.1822 

[M+H]+; experimental mass = 379.1819 [M+H]+. 

 

N-(1-Benzylpiperidin-4-yl)-N-(4-fluorophenyl)cyclopropanecarboxamide (para-

Fluoro-N-benzylcyclopropylfentanyl, 104) 

Compound 104 was synthesised from S3 using 

Method C (white solid, 33% yield).1H NMR (400 

MHz, DMSO) δ 10.24 (s, 1H, H8), 7.60 – 7.39 (m, J 

= 5H, H1-3/5-6), 7.39 – 7.24 (m, 4H, H15-16/18-19), 

4.66 (tt, J = 12.2, 3.5 Hz, 1H, H11), 4.20 (d, J = 5.1 

Hz, 2H, H7), 3.34 (H2O), 3.27 (d, J = 11.6 Hz, 2H, 

H9a/13a), 3.08 (q, J = 10.8 Hz, 2H, H9b/13b), 1.90 (d, J = 12.5 Hz, 2H, 

H10a/12a), 1.64 (q, J = 12.4 Hz, 2H, H10b/12b), 1.19 – 0.83 (m, J = 3.9 Hz, 

1H, H21), 0.83 – 0.69 (m, 2H, H22a), 0.57 (m, 2H, H22b); 13C NMR (100 MHz, 

DMSO) δ 172.58 (C20), 162.15 (d, J = 245.3 Hz, C17), 134.90 (C14), 133.11 

(d, J = 8.8 Hz, C15/19), 131.86, 130.47, 129.85 and 129.18 (C1-6), 116.83 (d, 

J = 22.6 Hz, C16/18), 59.14 (C7), 53.66, 50.99 and 49.92 (C9/11/13)), 41.96, 

27.33 (C10/12), 18.43, 17.20, 13.32 (C21), 12.61, 8.55 (C22); 19F NMR (376 

MHz, DMSO) δ -115.13; ATR-FTIR  vmax/cm-1: 3070, 2947, 2624, 2478, 1652, 

1508; HRMS (C22H25N2OF) : predicted mass = 353.2029 [M+H]+; experimental 

mass = 353.2026 [M+H]+. 

 

Synthesis of 4’-fluoro fentanyl analogues 77, 80-81, 117, 127 
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1-(4-Fluorophenethyl)-N-phenylpiperidin-4-amine (S4) 

Compound S4 was synthesised from 50 using 

Method B (grey solid, 74% yield). 1H NMR (400 

MHz, CDCl3) δ 7.26 – 7.11 (m, 4H), 7.11 – 6.93 

(m, 2H), 6.71 (t, J = 7.3 Hz, 1H), 6.63 (m, 2H), 

3.55 (s(br), 1H), 3.35 (m, 1H), 2.98 (m, 2H), 2.90 – 2.71 (m, 2H), 2.67 – 2.57 

(m, 2H), 2.34 – 2.19 (t, J = 11.3 Hz, 2H), 2.19 – 2.01 (m, 2H), 1.55 (qd, J = 

12.5, 2.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 161.43 (d, J = 243.7 Hz), 

147.05, 130.04 (d, J = 7.8 Hz), 129.35, 117.30, 115.17 (d, J = 21.1 Hz), 113.28, 

60.58, 52.47, 49.85, 33.00, 32.48; 19F NMR (376 MHz, CDCl3) δ -116.03; ATR-

FTIR  vmax/cm-1: 3399, 3048, 2944, 2922, 2856, 2802, 2767, 1687, 1600, 1507; 

HRMS (C19H23N2F) : predicted mass =  299.1924 [M+H]+; experimental mass 

= 299.1920 [M+H]+ 

 

N-(1-(4-Fluorophenethyl)piperidin-4-yl)-N-phenylcyclopropanecarboxamide 

(4’-Fluorocyclopropylfentanyl, 77) 

Compound 77 was synthesised from S4 

using Method C (white solid, 28% yield). 1H 

NMR (400 MHz, DMSO) δ 10.18 (s, 1H, H9), 

7.59 – 7.42 (m, 3H, H17-19), 7.36 – 7.23 (m, 

4H, H3/5/16/20), 7.22 – 7.06 (m, 2H, H2/6), 

4.71 (tt, J = 12.2, 3.6 Hz, 1H, H12), 3.52 (d, J = 11.6 Hz, 2H, H10a/14a), 3.33 

(H2O), 3.28 – 3.03 (m, H8/10b/14b), 3.03 – 2.88 (m, 2H, H7) 1.95 (d, J = 13.0 

Hz, 2H, H11a/13a), 1.66 (qd, J = 12.8, 2.9 Hz, 2H, H11b/13b), 1.02 (s, 1H, 

H22), 0.82 – 0.70 (m, 2H, H23a), 0.64 – 0.47 (m, 2H, H23b); 13C NMR (100 

MHz, DMSO) δ 172.56 (C21), 161.65 (d, J = 242.6 Hz, C1), 138.66 (C15), 
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133.76 (C4), 131.11 (d, J = 6.5 Hz, C3/5), 131.08, 130.11 and 129.07 (C16-

20), 115.91 (d, J = 21.1 Hz, C2/6), 56.89 (C8), 51.47 (C10/14), 49.85 (C12), 

29.09 (C7), 27.79 (C11/13), 13.35 (C22), 8.54 (C23); 19F NMR (376 MHz, 

DMSO) δ -117.50; ATR-FTIR  vmax/cm-1: 3016, 2930, 2627, 2589, 2532, 2474, 

1651, 1594, 1514, 1494; HRMS (C23H27N2OF) : predicted mass = 367.2186 

[M+H]+; experimental mass = 367.2184 [M+H]+. 

 

N-(1-(4-Fluorophenethyl)piperidin-4-yl)-N-phenylbutyramide (4’-

Fluorobutyrylfentanyl, 80) 

Compound 80 was synthesised from S4 

using Method C (white solid, 24% yield).1H 

NMR (400 MHz, DMSO) δ 10.23 (s, 1H, H9), 

7.57 – 7.38 (m, 3H, H17-19), 7.33 – 7.19 (m, 

4H, H3/5/16/20), 7.19 – 7.05 (m, 2H, H2/6), 

4.73 (tt, 1H, H12), 3.52 (d, J = 11.6 Hz, 2H, H10a/14a), 3.34 (H2O), 3.28 – 3.04 

(m, 4H, H8/10b/14b), 3.04 – 2.90 (m, 2H, H7), 1.94 (d, J = 13.0 Hz, 2H, 

H11a/13a), 1.81 (t, J = 7.3 Hz, 2H, H22), 1.62 (qd, J = 12.7, 10.1 Hz, 2H, 

H11b/13b), 1.44 (sext, 2H, H23), 0.73 (t, J = 7.4 Hz, 3H, H24); 13C NMR (100 

MHz, DMSO) δ 171.82 (C21), 161.65 (d, J = 242.7 Hz, C1), 138.65 (C15), 

133.74 (C4), 131.10 (d, J = 8.1 Hz, C3-5), 130.93, 130.04 and 129.08 (C16-

20), 115.91 (d, J = 21.2 Hz, C2-6), 56.90 (C8), 51.47 (C10/14), 49.44 (C12), 

36.71 (C22), 29.10 (C7), 27.80 (C11/13), 18.67 (C23), 14.15 (C24); 19F NMR 

(376 MHz, DMSO) δ -117.49; ATR-FTIR  vmax/cm-1: 2965, 2933, 2877, 2627, 

2590, 2534, 2474, 1657, 1594, 1514; HRMS (C23H29N2OF) : predicted mass = 

369.2342 [M+H]+; experimental mass = 369.2341 [M+H]+. 
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N-(1-(4-Fluorophenethyl)piperidin-4-yl)-2-methoxy-N-phenylacetamide (4’-

Fluoromethoxyacetylfentanyl, 81) 

Compound 81 was synthesised from S4 

using Method C (white solid, 28% yield). 1H 

NMR (400 MHz, DMSO) δ 10.02 (s, 1H, H9), 

7.58 – 7.37 (m, 3H, H17-19), 7.28 (m, 4H, 

H3/H5/H16/H20), 7.15 (t, J = 8.8 Hz, 2H, 

H2/6), 4.70 (t, J = 11.2 Hz, 1H, H12), 3.62 – 3.45 (m, J = 15.9 Hz, 4H 

H10a/14a/22), 3.31 (H2O), 3.23 – 3.03 (m, 7H, H8/10b/14b/23), 3.03 – 2.81 (m, 

J = 8.1 Hz, 2H, H7), 1.96 (d, J = 12.1 Hz, 2H, H11a/13a), 1.61 (q, J = 11.9 Hz, 

2H, H11b/13b); 13C NMR (100 MHz, DMSO) δ 168.49 (C21), 161.66 (d, J = 

242.7 Hz, C1), 136.87 (C15), 133.70 (C4), 131.11 (d, J = 8.0 Hz, C3/5), 130.89, 

130.09 and 129.48 (C16-20), 115.92 (d, J = 21.1 Hz, C2-6), 70.67 (C22), 58.80 

(C23), 56.91 (C8), 51.42 (C10/14), 49.54 (C12), 29.11 (C7), 27.55 (C11/13); 

ATR-FTIR  vmax/cm-1: 2930, 2823, 2466, 1669, 1598, 1508, 1494; HRMS 

(C22H27N2O2F) : predicted mass = 371.2135 [M+H]+; experimental mass = 

371.2133 [M+H]+. 

 

N-(1-(4-Fluorophenethyl)piperidin-4-yl)-N-phenylfuran-2-carboxamide (4'-

Fluorofuranylfentanyl, 117) 

Compound 117 was synthesised from S4 

using Method C (white solid, 6% yield). 1H 

NMR (400 MHz, DMSO) δ 10.09 (s, 1H, H9), 

7.66 (d, J = 1.1 Hz, 1H, H25), 7.56 – 7.43 (m, 

3H, H17-19), 7.39 – 7.23 (m, 4H, 

H3/H5/H16/H20), 7.16 (t, J = 8.8 Hz, 2H, 
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H2/6), 6.33 (dd, J = 3.5, 1.7 Hz, 1H, H24), 5.44 (d, J = 3.0 Hz, 1H, H23), 4.83 

(t, J = 11.4 Hz, 1H, H12), 3.56 (d, J = 10.0 Hz, 2H, H10a/14a), 3.34 (H2O), 3.26 

– 3.07 (m, 4H, H8/H10b/H14b), 3.07 – 2.81 (m, 2H, H7), 2.07 (d, 2H, J = 

13.0 Hz, H11a/H13a), 1.74 (q, J = 12.2 Hz, 2H, H11b/13b); 13C NMR (100 MHz, 

DMSO) δ 161.67 (d, J = 242.6 Hz, C1), 158.48 (C21), 146.99 (C22), 145.76 

(C25), 138.35 (C15), 133.67 (C4), 131.35 (C16-20), 131.13 (d, J = 8.2 Hz, C3-

5), 130.01 and 129.63 (C16-20), 116.41 (C23), 115.93 (d, J = 21.2 Hz, C2/6), 

111.79 (C23), 56.94 (C8), 51.49 (C10/14), 50.57 (C12), 29.14 (C7), 27.50 

(C11/13); 19F NMR (376 MHz, DMSO) δ -117.47; ATR-FTIR  vmax/cm-1: 3064, 

2932, 2628, 2590, 2535, 2472, 1646, 1595, 1559, 1512, 1496; HRMS 

(C24H25N2O2F) : predicted mass = 393.1978 [M+H]+; experimental mass = 

393.1976 [M+H]+. 

 

N-(1-(4-Fluorophenethyl)piperidin-4-yl)-N-phenylacetamide (4'-

Fluoroacetylfentanyl, 127) 

Compound 127 was synthesised from S4 

using Method C (white solid, 49% yield). 1H 

NMR (400 MHz, DMSO) δ 10.14 (s, 1H, H9), 

7.57 – 7.37 (m, 3H, H17-19), 7.34 – 7.20 (m, 

4H, H3/5/16/20), 7.20 – 7.10 (m, 2H, H2/6), 

4.71 (t, J = 12.1 Hz, 1H, H12), 3.52 (d, J = 11.7 Hz, 2H, H10a/14a), 3.33 (H2O), 

3.24 – 3.02 (m, 4H, H8/10b/14b), 3.03 – 2.87 (m, 2H, H7), 1.95 (d, J = 12.8 Hz, 

2H, H11a/13a), 1.73 – 1.44 (m, 5H, H11b/13b/22); 13C NMR (100 MHz, DMSO) 

δ 169.55 (C21), 161.65 (d, J = 242.3 Hz, C1), 139.17 (C15), 133.72 (C4), 

131.11 (d, J = 7.9 Hz, C3/5), 130.76, 130.05 and 129.09 (C16-20), 115.91 (d, 

J = 21.1 Hz, C2-6), 56.92 (C8), 51.47 (C10/14), 49.39 (C12), 29.10 (C7), 27.78 

(C11/13), 23.66 (C22); 19F NMR (376 MHz, DMSO) δ -117.58; ATR-FTIR  
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vmax/cm-1: 3005, 2984, 2931, 2628, 2591, 2534, 2477, 1654, 1592, 1514, 1493; 

HRMS (C21H25N2OF) : predicted mass = 341.2029 [M+H]+; experimental mass 

= 341.2026 [M+H]+. 

 

Synthesis of para-fluoro fentanyl analogues 85-86, 132-133, 145 

 

N-(4-Fluorophenyl)-N-(1-phenethylpiperidin-4-yl)acetamide (para-

Fluoroacetylfentanyl, 85) 

Compound 85 was synthesised from 49c using 

Method C (white solid, 44% yield). 1H NMR 

(400 MHz, DMSO) δ 10.34 (s, 1H, H9), 7.46 – 

7.28 (m, 6H, H2/6/16-17/18-19), 7.28 – 7.18 (m, 

3H, H1/3/5), 4.69 (tt, J = 12.1, 3.5 Hz, 1H, H12), 

3.53 (d, J = 11.6 Hz, 2H, H10a/14a), 3.34 (H2O), 3.33 – 3.05 (m, 4H, 

H8/10b/14b), 3.05 – 2.89 (m, 2H, H7), 1.93 (d, J = 12.8 Hz, 2H, H11a/13a), 

1.69 – 1.47 (m, 5H, H11b/13b/22); 13C NMR (100 MHz, DMSO) δ 169.65 (C21), 

162.19 (d, J = 247.0 Hz, C18), 137.66 (C4), 135.45 (C15), 132.89 (d, J = 8.5 

Hz, C16/20), 129.17 and 127.29 (C1-3/5-6), 116.79 (d, J = 22.5 Hz, C17/19), 

56.90 (C8), 51.32 (C10/14), 49.43 (C12), 29.90 (C7), 27.63 (C11/13), 23.68 

(C22); 19F NMR (376 MHz, DMSO) δ -114.92; ATR-FTIR  vmax/cm-1: 3062, 

3030, 3004, 2930, 2628, 2589, 2538, 2475, 1653, 1598, 1506; HRMS 

(C21H25N2OF): predicted mass = 341.2029 [M+H]+; experimental mass = 

341.2026 [M+H]+. 
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N-(4-Fluorophenyl)-N-(1-phenethylpiperidin-4-yl)cyclopropanecarboxamide 

(para-Fluorocyclopropylfentanyl, 86) 

Compound 86 was synthesised from 49c using 

Method C (white solid, 19% yield). 1H NMR (400 

MHz, DMSO) δ 10.27 (s, 1H, H9), 7.42 – 7.28 

(m, 6H, H2/6/16-17/18-19), 7.28 – 7.18 (m, 3H, 

H1/3/5), 4.70 (tt, J = 12.2, 3.6 Hz, 1H, H12), 3.54 

(d, J = 11.7 Hz, 2H, H10a/14a), 3.34 (H2O), 3.27 

– 3.04 (m, 4H, H8/10b/14b), 3.03-2.94 (m, 2H, H7), 1.95 (d, J = 12.6 Hz, 2H, 

H11a/13a), 1.66 (q, J = 12.6 Hz, 2H, H11b/13b), 1.21 – 0.85 (m, 1H, H22), 0.84 

– 0.70 (m, 2H, H23a), 0.67 – 0.46 (m, J = 7.4, 3.3 Hz, 2H, H23b); 13C NMR 

(100 MHz, DMSO) δ 172.63 (C21), 162.21 (d, J = 245.7 Hz, C18), 137.60 (C4), 

134.94 (C15), 133.20 (d, J = 9.0 Hz, C3/5), 129.17 (C2-3/C5-6), 127.31 (C1), 

116.89 (d, J = 22.3 Hz, C17/19), 56.88 (C8), 51.40 (C10/14), 49.79 (C12), 

29.94 (C7), 27.64 (C11/13), 13.37 (C22), 8.57 (C23); 19F NMR (376 MHz, 

DMSO) δ -115.01; ATR-FTIR  vmax/cm-1: 3063, 3029, 2929, 2627, 2587, 2527, 

2488, 2470, 1649, 1601, 1507; HRMS (C23H27N2OF) : predicted mass =  

367.2186 [M+H]+; experimental mass = 367.2185 [M+H]+. 

 

N-(4-Fluorophenyl)-N-(1-phenethylpiperidin-4-yl)butyramide (para-

Fluorobutyrylfentanyl, 132) 

Compound 132 was synthesised from 49c 

using Method C (white solid, 25% yield). 1H 

NMR (400 MHz, DMSO) δ 10.21 (s, 1H, H9), 

7.43 – 7.28 (m, 6H, H2/6/16-17/18-19), 7.28 – 

7.18 (m, 3H, H1/3/5), 4.71 (tt, J = 12.0, 3.5 Hz, 
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1H, H12), 3.53 (d, J = 11.6 Hz, 2H, H10a/14a), 3.33 (H2O), 3.26 – 3.03 (m, 4H, 

H8/10b/14b), 3.03 – 2.80 (m, J = 10.6, 6.1 Hz, 2H, H7), 1.93 (d, J = 12.8 Hz, 

2H, H11a/13a), 1.81 (t, J = 7.4 Hz, 2H, H22), 1.61 (q, J = 12.0 Hz, 2H, 

H11b/13b), 1.40 (sext, J = 7.3 Hz, 2H, H23), 0.75 (t, J = 7.4 Hz, 3H, H24); 13C 

NMR (100 MHz, DMSO) δ 171.91 (C21), 162.19 (d, J = 246.7 Hz, C18), 137.57 

(C4), 134.93 (C15), 133.08 (d, J = 8.0 Hz, C16-20), 129.18 (C2-3/C5-6), 127.32 

(C1), 116.81 (d, J = 22.4 Hz, C17-19), 56.90 (C8), 51.42 (C10/14), 49.36 (C12), 

36.71 (C22), 29.95 (C7), 27.67 (C22), 18.61 (C23), 14.15 (C24); 19F NMR (376 

MHz, DMSO) δ -115.04; ATR-FTIR  vmax/cm-1: 3057, 2974, 2931, 2886, 2626, 

2587, 2524, 2487, 2468, 1653, 1601, 1509; HRMS (C23H29N2OF) : predicted 

mass = 369.2342 [M+H]+; experimental mass = 369.2338 [M+H]+. 

 

N-(4-Fluorophenyl)-N-(1-phenethylpiperidin-4-yl)isobutyramide (para-

Fluoroisobutyrylfentanyl, 133) 

Compound 133 was synthesised from 49c using 

Method C (white solid, 56% yield). 1H NMR (400 

MHz, DMSO) δ 10.20 (s, 1H, H9), 7.39 – 7.28 

(m, 6H, H2/6/16-17/18-19), 7.28 – 7.18 (m, 3H, 

H1/3/5), 4.69 (t, J = 12.1 Hz, 1H, H12), 3.53 (d, 

J = 11.6 Hz, 2H, H10a/14a), 3.34 (H2O), 3.26 – 3.03 (m, 4H, H8/10b/14b), 3.03 

– 2.79 (m, J = 10.6, 6.1 Hz, 2H, H7), 2.13 (sept, J = 13.4, 6.7 Hz, 1H, H22), 

1.93 (d, J = 13.1 Hz, 2H, H11a/13a), 1.60 (q, J = 12.2 Hz, 2H, H11b/13b), 0.90 

(d, J = 6.7 Hz, 6H, H23); 13C NMR (100 MHz, DMSO) δ 176.15 (C21), 162.22 

(d, J = 246.2 Hz, C18), 137.64 (C4), 134.84 (C15), 132.86 (d, J = 8.7 Hz, 

C16/20), 129.17 (C2-3/C5-6), 127.30 (C1), 116.82 (d, J = 22.4 Hz, C17/19), 

56.88 (C8), 51.35 (C10/14), 49.45 (C12), 31.67 (C22), 29.92 (C7), 27.63 

(C11/13), 19.91 (C23); 19F NMR (376 MHz, DMSO) δ -114.81; ATR-FTIR  
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vmax/cm-1: 2963, 2933, 2877, 2386, 1654, 1602, 1507; HRMS (C23H29N2OF) : 

predicted mass = 369.2342 [M+H]+; experimental mass = 369.2339 [M+H]+. 

 

N-(4-Fluorophenyl)-N-(1-phenethylpiperidin-4-yl)furan-2-carboxamide (para-

Fluorofuranylfentanyl, 145) 

Compound 145 was synthesised from 49c using 

Method C (white solid, 34% yield). 1H NMR (400 

MHz, DMSO) δ 10.34 (s, 1H, H9), 7.67 (d, J = 

1.1 Hz, 1H, H24), 7.47 – 7.29 (m, 7H, H2/6/16-

17/19-20), 7.29 – 7.20 (m, 3H, H1/3/5), 6.38 (dd, 

J = 3.5, 1.7 Hz, 1H, H23), 5.65 (s, 1H, H22), 4.82 

(tt, J = 12.1, 3.6 Hz, 1H, H12), 3.58 (d, J = 11.8 Hz, 2H, H10a/14a), 3.35 (D2O), 

3.29 – 3.07 (m, 4H, H8/10b/14b), 3.06 – 2.91 (m, 2H, H7), 2.15 – 1.96 (m, 2H, 

H11a/13a), 1.75 (q, J = 12.5 Hz, 2H, H11b/13b); 13C NMR (100 MHz, DMSO) 

δ 162.51 (d, J = 246.5 Hz, C18), 158.52 (C21), 147.01 (C22), 145.84 (C25), 

137.62 (C4), 134.64 (C15), 133.43 (d, J = 8.7 Hz, C16/20), 129.19 (C2-3/C5-

6), 127.32 (C1), 116.80 (d, J = 22.0 Hz, C17/19), 116.69 (C23), 111.89 (C24), 

56.93 (C8), 51.34 (C10/14), 50.64 (C12), 29.95 (C7), 27.38 (C22); 19F NMR 

(376 MHz, DMSO) δ -114.14; ATR-FTIR  vmax/cm-1: 3056, 3028, 2930, 2628, 

2584, 2540, 2468, 1644, 1600, 1561, 1574, 1508; HRMS (C24H25N2O2F) : 

predicted mass = 393.1978 [M+H]+; experimental mass = 393.1973 [M+H]+. 
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Synthesis of 3-fluoro fentanyl analogues 87-88, 148 

 

N-(3-Fluoro-1-phenethylpiperidin-4-yl)-N-phenylbutyramide (3-

Fluorobutyrylfentanyl, 87) 

Compound 87 was synthesised from 57 using 

Method C (white solid, 51% yield). 1H NMR (400 

MHz, DMSO) δ 10.18 (s, 1H, H9), 7.56 – 7.36 

(m, 3H, H17-19), 7.36 – 7.17 (m, 7H, H1-3/H5-

6/H16/H20), 5.35 (d, J = 47.8 Hz, 1H, H11), 4.81 

(dd, J = 33.3, 10.4 Hz, 1H, H12), 3.84 (t, J = 11.3 

Hz, 1H, H10a), 3.74 – 3.45 (m, 2H, H10b/14a), 3.35 (H2O), 3.32 – 3.12 (m, 3H, 

H8/14a), 3.10 – 2.91 (m, 2H, H7), 1.86 (t, J = 7.3 Hz, 2H, H22), 1.80 (d, J = 

12.1 Hz, 1H, H13a), 1.61 (qd, J = 12.1, 3.0 Hz, 1H, H13b), 1.45 (sext, J = 

7.4 Hz, 2H, H23), 0.75 (t, J = 7.4 Hz, 3H, H24); 13C NMR (100 MHz, DMSO) δ 

172.14 (C21), 138.76 (C15), 137.05 (C4), 130.70, 130.61, 129.325, 129.02, 

128.71, 128.63 and 126.78 (C2-3/C5-6/C16-20), 86.72 (d, J = 178.28 Hz, C11), 

56.71 (C8), 52.92 (d, J = 20.13 Hz, C10), 51.65 (d, J = 18.21 Hz, C12), 50.49 

(C14), 36.10 (C22), 29.20 (C7), 22.25 (C13), 18.11 (C23), 13.57 (C24); 19F 

NMR (376 MHz, DMSO) δ -198.92; ATR-FTIR  vmax/cm-1: 3548, 3379, 2934, 

2872, 2541, 1642, 1594, 1492; HRMS (C23H29N2OF) : predicted mass = 

369.2342 [M+H]+; experimental mass = 369.2337 [M+H]+. 
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N-(3-Fluoro-1-phenethylpiperidin-4-yl)-N-phenyltetrahydrofuran-2-

carboxamide (3-Fluorotetrahydrofuranylfentanyl, 88) 

Compound 88 was synthesised from 57 using 

Method C (white solid, 33% yield). 1H NMR 

(400 MHz, DMSO) δ 10.16 (s, 1H, H9), 7.57 – 

7.41 (m, 3H, H17-19), 7.41 – 7.14 (m, 7H, H1-

3/H5-6/H16/H22), 5.37 (d, J = 47.8 Hz, 1H, 

H11), 4.90 – 4.65 (m, 1H, H12), 4.05 – 3.90 (m, 

1H, H22), 3.90 – 3.74 (m, 2H, H10a/H25a), 3.74 – 3.37 (m, H2O and 

H10b/14a/25b), 3.36 – 3.12 (m, 3H, H8/14b), 3.12 – 2.88 (m, 2H, H7), 2.04 – 

1.76 (m, 3H, H13a/23a/24a), 1.76 – 1.43 (m, 3H, H13b/H23b/24b); Two 

rotamers are observed in carbon NMR, in an A/B ratio of ~3:1, certain signals 

are duplicated – 13C NMR (100 MHz, DMSO-D6) δ 172.84 (C21 A), 172.77 (C21 

B), 138.09 (C15 B), 137.48 (C15 A), 131.54, 131.44, 131.38, 131.33, 129.87, 

129.67, 129.6, 129.34, 129.23 and 129.18 (C16-20 A/B, C2-6), 127.34 (C1), 

87.31 (d, J = 177.3 Hz, C11 A), 87.00 (d, J = 176.5 Hz, C11 B), 75.18 (C22 A), 

75.05 (C22 B), 69.23 (C25), 57.20 (C8) 53.60 (d, J = 20.1 Hz, C10), 52.42 (d, 

J = 17.1 Hz, C12 A), 52.32 (d, J = 17.7 Hz, C12 B), 50.95 (C14), 30.41 (C23 

B), 30.15 (C23 A), 29.72 (C7), 25.91 (C24), 22.68 (C13 A), 22.49 (C13 B); 19F 

NMR (376 MHz, DMSO) δ -198.59; ATR-FTIR vmax/cm-1: 2946, 2878, 2606, 

1655, 1594, 1494; HRMS (C24H29N2O2F) : predicted mass =  397.2291 [M+H]+; 

experimental mass = 397.2288 [M+H]+. 
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N-(3-Fluoro-1-phenethylpiperidin-4-yl)-N-phenylisobutyramide (3-

Fluoroisobutyrylfentanyl, 148) 

Compound 148 was synthesised from 57 

using Method C (white solid, 37% yield 1H 

NMR (400 MHz, DMSO) δ 10.15 (s, 1H. H9), 

7.57 – 7.41 (m, 3H, H17-19), 7.41 – 7.18 (m, 

7H, H1-3/H5-6/H16/H20), 5.39 (d, J = 47.8 Hz, 

1H, H11), 4.79 (dd, J = 33.2, 10.0 Hz, 1H, H12), 3.84 (t, J = 11.2 Hz, 1H, H10a), 

3.74 – 3.43 (m, 2H, H10b/14a), 3.36 (H2O), 3.32 – 3.11 (m, 3H, H8/14b), 2.93 

(s, 2H, H7), 2.20 (sept, J = 13.4, 6.7 Hz, 1H, H22), 1.82 (d, 1H, H13a), 1.73 – 

1.36 (m, J = 13.3, 9.9 Hz, 1H, H13b), 0.92 (dd, J = 6.6, 4.6 Hz, 6H, H23); 13C 

NMR (100 MHz, DMSO) δ 176.89 (C21), 139.18 (C15), 137.50 (C4), 131.05, 

130.96, 129.86, 129.57, 129.23, 129.17, 129.09 and 127.33 (C1-3/5-6/16-20), 

87.30 (d, J = 177.2 Hz, C11), 57.20 (C8), 53.62 (d, J = 19.7 Hz, C10), 52.10 (d, 

J = 17.5 Hz, C12), 51.03 (C14), 31.60 (C22), 29.73 (C7), 22.85 (C13), 20.09 

and 19.70 (C23); 19F NMR (376 MHz, DMSO) δ -198.83; ATR-FTIR  vmax/cm-1: 

2979, 2963, 2399, 1660, 1594, 1494; HRMS (C23H29N2OF) : predicted mass = 

369.2342 [M+H]+; experimental mass = 369. 2338 [M+H]+. 
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Synthesis of N-(3-fluorophenyl)-N-(1-phenethylpiperidin-4-yl)isobutyramide 

(meta-Fluoroisobutyrylfentanyl, 137) 

 

Compound 137 was synthesised from 49b using 

Method C (white solid, 37% yield 1H NMR (400 

MHz, DMSO) 1H NMR (400 MHz, DMSO) δ 

10.32 (s, 1H, H9), 7.56 (m, J = 7.0 Hz, 1H, H17), 

7.42 – 7.21 (m, 8H, H1-3/H5-6/H18/H20), 7.15 

(d, J = 7.8 Hz, 1H, H16), 4.69 (t, J = 12.0 Hz, 1H, 

H12), 3.54 (d, J = 11.6 Hz, 2H, H10a/14a), 3.34 (H2O), 3.29 – 3.04 (m, 4H, 

H8/10b/14b), 3.04 – 2.92 (m, 2H, H7), 2.16 (sept, J = 6.6 Hz, 1H, H22), 1.94 

(m, 2H, H11a/13a), 1.64 (q, J = 12.6 Hz, 2H, H11b/13b), 0.92 (d, J = 6.5 Hz, 

6H, H23); 13C NMR (100 MHz, DMSO) δ 175.87 (C21), 162.66 (d, J = 245.8 

Hz, C19), 140.29 (d, J = 9.4 Hz, C15), 137.59 (C4), 131.53 (d, J = 9.1 Hz, C17), 

129.18 (C2-3/5-6), 127.32 and 123.23 (C1/16), 118.09 (d, J = 21.7 Hz, C20), 

116.30 (d, J = 20.9 Hz, C18), 56.89 (C8), 51.41 (C10/14), 49.56 (C12), 31.85 

(C22), 29.95 (C7), 27.66 (C11/13), 19.94 (C23); 19F NMR (376 MHz, DMSO) -

112.90; ATR-FTIR  vmax/cm-1: 2963, 2933, 2871, 2459, 2400, 1858, 1607, 1593; 

HRMS (C23H29N2OF) : predicted mass = 369.2342 [M+H]+; experimental mass 

= 369.2338 [M+H]+. 

7.12.4 Purification of heroin from seized samples 

Heroin (1c) was purified from seized samples using the method previously 

described by Guo et al. [187] 
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Figure 7.1. a) 1H NMR spectrum of heroin (1c) free-base in DMSO-D6; b) 

Detail of 7.1a, showing hidden proton signals.  
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Figure 7.2. 1H-1H COSY NMR spectrum of heroin (1c) free base in DMSO-D6 (0.8-4.0 ppm)  
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Figure 7.3. 1H-1H COSY NMR spectrum of heroin (1c) free base in DMSO-D6 (2.5-7.0 ppm)  
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Figure 7.4. 1H-13C HMQC NMR spectrum of heroin (1c) free base in DMSO-D6 (0-100 ppm) 
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Figure 7.5. 1H-13C HMQC NMR spectrum of heroin (1c) free base in DMSO-D6 (105-150 ppm) 
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Figure 7.6. 13C NMR spectrum of heroin (1c) free base in DMSO-D6 (with partial attribution based on HMQC)  
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