
Please cite the Published Version

Dong, Jianping, Stachowicz, Michael, Zhang, Gexiang, Cavaliere, Matteo , Rong, Haina and
Paul, Prithwineel (2021) Automatic Design of Spiking Neural P Systems Based on Genetic Al-
gorithms. International Journal of Unconventional Computing, 16 (2-3). pp. 201-216. ISSN
1548-7199

Publisher: Old City Publishing

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/627220/

Usage rights: In Copyright

Additional Information: Author accepted manuscript published by and copyright 2021 Old City
Publishing, Inc. Published by license under the OCP Science imprint, a member of the Old City
Publishing Group. Email permission received on 11/2/2021.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-4071-6965
https://e-space.mmu.ac.uk/627220/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Automatic Design of Spiking Neural P Systems
Based on Genetic Algorithms

JIANPING DONG, MICHAEL STACHOWICZ, GEXIANG ZHANG,
MATTEO CAVALIERE, HAINA RONG AND PRITHWINEEL PAUL

Received: January 31, 2020. Accepted: June 10, 2020.

At present, all known spiking neural P systems (SN P systems) are
established by manual design rather than automatic design. The
method of manual design poses two problems: consuming a lot of
computing time and making unnecessary mistakes. In this paper, we
propose an automatic design approach for SN P systems by genetic
algorithms. More specifically, the regular expressions are changed to
achieve the automatic design of SN P systems. In this method, the
number of neu-rons in system, the synapse connections between
neurons, the num-ber of rules within each neuron and the number of
spikes within each neuron are known. A population of SN P systems is
created by gen-erating randomly accepted regular expressions. A
genetic algorithm is applied to evolve a population of SN P systems
toward a successful SN P systems with high accuracy and sensitivity
for carrying out specific task. An effective fitness function is designed
to evaluate each candi-date SN P system. In addition, the elitism,
crossover and mutation are also designed. Finally, experimental results
show that the approach can successfully accomplish the automatic
design of SN P systems for gen-erating natural numbers and even
natural numbers by using the .NET framework.

Keywords: Spiking neural P systems, genetic algorithm, fitness function, muta-
tion probability, membrane computing

1 INTRODUCTION

As a bridge between computer science and natural science, natural com-
puting is a wide research area with several branches [44], which include

JIANPING DONG et al.

cellular automations [15, 21], neural computations [34], elvoving algorithms
[14, 26, 36, 41, 42], swarm intelligence [1], artificial immune systems [10],
membrane computing [23, 24, 39], etc. Membrane computing has been a
new and hot research direction in recent years. Membrane computing mod-
els, the thoery of P systems [2, 4, 11, 13, 17–19, 31] or membrane systems,
are abstracted from the structure and functioning of the living cell, as well
as from the cooperation of cells in tissues, organs and other populations of
cells [25,37]. Currently, membrane systems can be divided, according to dif-
ferent membrane structure, into cell-like P systems, tissue-like P systems and
SN P systems [43]. Until now, many variants of membrane computing mod-
els have been investigated and also some models have been used in real life
application [3, 5, 7, 8, 12, 16, 22, 27, 28, 32, 33].

A good membrane computing model is the basis of its applied investi-
gations and software and hardware implementations. In recent years, with
the development of membrane computing models, experts and scholars have
started to research the automatic design method of membrane computing
models. Currently, the automatic design methods of membrane computing
can be classified into two groups [40, 48]: the heuristic algotithms and the
reasoning techniques. Genetic algorithms and quantum-inspired evolution-
ary algorithms are used to evolve a population of P systems [47]. A genetic
approach was used to design an artificial cell system, which can be regarded
as a cell-like P system with a single membrane [29]. An evolving design solu-
tion of membrane systems was proposed to implement the design of square
of 4 in the membrane system based on simulation software P-Lingua [9].
A fitness function with a penalty factor was presented to evaluate a P sys-
tem [30]. Cell-like P systems and tissue-like P systems have been automati-
cally designed to fullfill some specific tasks, like computing square of 4 and
of n (n ≥ 2 is a natural number) [6, 20]. A deterministic and non-halting
membrane system by tuning membrane structures, initial objects and evo-
lution rules was proposed in [46]. The reasoning techniques were used to
design P systems in [35]. However, this idea has never been extended to the
third generation neural networks, which closely model the activity of biolog-
ical neurons, and more specifically SN P systems [12].

This paper makes the attempt to propose an automatic design approach of
SN P systems by genetic algorithms. First of all, we establish a population
of SN P systems with changing regular expression on the predefined number
of neurons in each SN P system, the synapse connections between neurons,
the number of rules within each neuron and the number of spikes within each
neuron. Secondly, a genetic algorithm is applied to evolve a population of SN
P systems to a successful SN P system with high accuracy and sensitivity for
carrying out specific task. An effective fitness function is designed to evalu-
ate each candidate SN P system. Finally, experimental results show that the

AUTOMATIC DESIGN OF SPIKING NEURAL P SYSTEMS

approach can successfully accomplish the automatic design of SN P systems
for generating natural numbers and even natural numbers by using the .NET
framework. The ideas of automated design of membrane computing models
(ADMCMs) from this study were given in [38].

The paper is structured as follows. Section 2 describes the problem to
solute the automatic design of SN P systems. Section 3 presents the auto-
matic design approach for SN P systems based on genetic algorithms in
detail. Experimental results are shown and analyzed in Section 4. Finally,
some conclusions are drawn in Section 5.

2 PROBLEM DESCRIPTION

In this section, we briefly review SN P systems, and then the problems of the
automatic design of SN P systems are described.

2.1 Spiking Neural P System
A SN P system consists of five main elements: the number of neurons in
each SN P system, the synapse connections between neurons, the number of
rules in each neurons, the regular expressions which define each rule and the
number of spikes within each neuron.

A SN P system [12, 45] of degree m ≥ 1 is a tuple � =
(O, σ1, · · · , σm, syn, io), where:

1. O = {a} is the singleton alphabet (a is called spike);

2. σ1, · · · , σm are neurons, identified by pairs

σi = (ni , Ri) , 1 ≤ i ≤ m (1)

where:

(a) ni ≥ 0 is the initial number of spikes contained in σi .

(b) Ri is a finite set of rules of the following two forms:
(i) E

/
ac → a; d where E is a regular expression over O , and

c ≥ 1, d ≥ 0;

(ii) as → λ, for some s ≥ 1, with the restriction that for each
rule E

/
ac → a; d of type (i) from Ri , we have as /∈ L (E);

3. syn ⊆ {1, . . . m} × {1, . . . m} with (i, i) /∈ syn for i ∈ {1, . . . m}
(synapses between neurons);

4. i ∈ {1, . . . m} indicates the output neuron (i.e. σio is the output neu-
ron).

2.2 Problem Statement
As briefly introduced above, there are many variants of SN P systems, which
are designed by manual design rather than automatic design. In order to auto-
matically generate a SN P system, we should consider each aspect in a SN
P system. In this paper, the number of neurons in system, the synapse con-
nections between neurons, the number of rules within each neurons and the
number of spikes within each neuron, according to specific task, are previ-
ously determined, but the regular expressions which define each rule and the
delays on each rule are randomly generated in a SN P system. Then we can
generate a population of SN P systems by same method. In our study, the aim
is to use genetic algorithms to get an optimal SN P system by approriately
evolving a SN P system. The problem is summarized as follows:

Step 1: First of all, we define a population of SN P systems � =
{�i }i∈H , where H is a subset of natural numbers and each SN P sys-
tem �i of degree m ≥ 1 is described as follows:

�i = (O, σ1, · · · , σm, syn, io) (2)

where

(a) O = {a} is a predefined singleton alphabet;

(b) σ1, · · · , σm is the neurons from 1 to m.

σi = (ni , Ri) , 1 ≤ i ≤ m (3)

where:
(a) ni ≥ 0 is the initial number of spikes contained in σi .

(b) Ri is a finite set of rules of the following two forms:

(i) Spike transfer rules: E
/

ac → a; d. When fullfilling
spike transfer rules and d = 0, a spike in the neuron
should leave along the synapses and travel to the neu-
rons connected to the neuron where the rule is applied.

(ii) Spike forgetting rules: as → λ. When performing
spike forgetting rules, s spikes are consumed.

Step 2: Determine fitness of each individual in the population.

Step 3: Reserve the individual of the higher fitness parents from the pop-
ulation.

Step 4: Select parents from the population and produce offsprings.

Step 5: Randomly undergo mutation.

AUTOMATIC DESIGN OF SPIKING NEURAL P SYSTEMS

Step 6: Check whether any individual meets the requirements, if so, ter-
minate, otherwise continue.
In this study, we want to answer the question: How do we design a SN
P systems to perform special task by evolving a initial population of the
SN P systems to perform special task.

3 AUTOMATIC DESIGN METHOD

In this section, the detailed procedure of automatically designing a SN P sys-
tem is described. An overview of automatic design method is outlined and
each step is explained one by one.

3.1 Overview of automatical design method
An overview of automatic design method is decribed using two aspects: gen-
erating a population of SN P systems and evolving a population of SN P
systems. Initial configuration environment is predefined, which includes the
number of neurons in each P system, the synapse connections between each
neuron, the number of rules and the number of spikes in each neuron. A pop-
ulation of SN P systems is created by randomly generating rules at the start.
We evolve the population based on genetic algorithms after generating a pop-
ulation. The pseudocode of automatic design method is shown in Figure 1.

The genenral steps of the design method can be summarized as follows:

Step 1: Input some basic parameters, which include m, ni , syn,
io, H , Max Steps, StepRepeti tion, MutationRate, MinFitness,
MaxGeneration, Best Fitness and ExpectedSet ,
where:

(a) m, ni , syn and io represent the number of neurons in each P sys-
tem, the number of spikes in each neuron, the synapse connections
between each neuron and the output neurons, respectively.

(b) H is population size.

(c) Max Steps represents the maximum steps that each network will
take.

(d) StepRepeti tion is the amount of repetitions each network will
undergo to generate an output list.

(e) MutationRate is the percentage chance for mutation.

(f) MinFitness represents minimal fitness.

(g) MaxGeneration is the max amount of generations.

Input: Initial membrane construction and objects and genetic algorithm
1: i=1
2: while (i ≤ H) do
3: Generating random SN PSi

4: Caculating fitness value F(SN PSi)
5: if (F(SN PSi) ≤ MinFitness||F(SN PSi) == null) then
6: Generating new SN PSi and replacing old SN PSi

7: end if
8: i = i + 1

9: end while
10: while (generation ≤ MaxGeneration) do

11: Caculating fitness value each SNPS
12: Sorting population accordding to set F(SN PS)
13: i=1
14: while (i ≤ H) do
15: if (i ≤ Eli tism && i ≤ H) then
16: Newpopulation[i] = Population[i]
17: if (F(SN PSi > Best Fitness)) then
18: Best Fitness = SN PSi

19: end if
20: else
21: Parent1=ChooseParent()
22: Parent2=ChooseParent()
23: Child=Crossover(Parent1,Parent2)
24: Child=Mutate(Child)
25: Newpopulation[i] = Child
26: end if
27: if (F(SN PSi) == 0||F(SN PSi) == null) then
28: F(SN PSi) = 0
29: else
30: F(SN PSi) = F(SN PSi)
31: end if
32: end while
33: genration = gneration + 1

34: end while
Output: Spiking neural P system

FIGURE 1
The algorithm of automatic design of SN P systems

(h) Best Fitness represents the best fitness through generations.

(i) ExpectedSet is the expected set.

Step 2: The population of SN P systems and the fitness value are gen-
erated and caculated by the initial parameters and rules that randomly
create. F(SN PSi) and F(SN PS) represent the fitness value of the i th
SN P system and the fitness set of all SN P systems in the population,
respectively. Investigate whether SN P systems are correct according to
the fitness function value of each SN P system in the population.

Step 3: The genetic algorithm is used to automatically design each SN
P system in the population. Eli tism represents the number of reserv-
ing optimum number of SN P systems in the population. Parent1 and
Parent2 are two randomly selected SN P system with high fitness
value. Crossover () and Mutate() represent the crossover and mutate
function, respectively.

AUTOMATIC DESIGN OF SPIKING NEURAL P SYSTEMS

Step 4: Output a new SN P system with high sensitivity and precision
after completion of automatic design.

We can infer that from Figure 1, the most important three steps include
building a population of SN P systems, designing a fitness function and set-
ting elitism, crossover and mutation. We will introduce them one by one in
the following subsections.

3.2 Building a population of SN P systems
A SN P system includes the number of neurons, the synapse connections
between neurons, the number of rules within each neuron, the regular expres-
sions which define each rule and the number of spikes in each neuron. A SN
P system represents an individual (DNA, SN PSi) in the popualtion. Here, an
individual is also thought of as a set, which contains above five aspects. As a
result, the building of a population of SN P systems can be divided into the
following steps.

Step 1: Generate a random individual, where rules are randomly gener-
ated and other elements are predefined.

Step 2: Repeat the first step until all the individuals(SN PSi) in the pop-
ulation are produced.

Step 3: Check whether each individual is correct.

Step 4: Delete and replace individuals with incorrect and low fitness
values.

Step 5: Save the initial population.

With the initial population, it is necessary to have an appropriate eval-
uation function to guide the population to evolve to the optimal solution.
Therefore, it is worth to notice that the fitness function plays an important
role throughout the automatical design process. We describe the details of
the fitness function as follows.

3.3 Design of fitness function
In this subsection, we discuss how to design the fitness function, which is
used to calculate the sensitivity and the precision of SN P systems. There are
two data sets after the establishment of the SN P systems. One is a real output
set Output Set . Another is given expected set ExpectedSet . Output Set
represents generating number set of repeating execution SN P systems for a
specifical task. ExpectedSet is expected number set for a special task. So
a fitness function is established by comparing elements in the real output

JIANPING DONG et al.

Input: Output Set , ExpectedSet , tp = 0, f p = 0, f n = 0
1: Initialization settings
2: Merging elements from Output Set and ExpectedSet into Out Ex Set . The length of

Out Ex Set is n
3: i = 1
4: while (i ≤ H) do
5: i = i + 1
6: if Out Ex Set(i) ∈ Output Set then
7: if Out Ex Set(i) ∈ ExpectedSet then
8: tp = tp + 1
9: Turn to Step 21

10: else
11: f p = f p + 1
12: Turn to Step 21
13: end if
14: else
15: if Out Ex Set(i) ∈ ExpectedSet then
16: f n = f n + 1
17: Turn to Step 21
18: else
19: Turn to Step 21
20: end if
21: end if
22: if i � n then
23: Turn to Step 26
24: else
25: Turn to Step 4
26: end if
27: Fitness = (2×tp

2×tp+ f p+ f n) × s f
28: end while
Output: Return Fitness

FIGURE 2
The design of the fitness function

set and the expected set. The pseudocode of the fitness funtion is shown in
Figure 2.

The category of an element in the above two sets is as follows:

(1) The output set is compared with the expected set and for every number
that is in both of the sets, the true positive count tp increases.

(2) The output set is compared with the expected set and for every number
that is in the output set but not in the target set, the false positive count
f p increases.

(3) The output set is compared with the expected set and for every number
that is not in the output set but is in the target set, the false negative
count f n increases.

(4) The true negative values, those that are not in the output set and not in
the target set, are not counted, as they are not needed for this design.

3.4 Elitism, crossover and mutations
DNA consists of genes, which in the case of this paper are represented by
a SNP system. Each instance of DNA also contains the fitness for the genes

AUTOMATIC DESIGN OF SPIKING NEURAL P SYSTEMS

contained within it. The crossover function allows the exchange of genes
between two parents, creating a new child DNA with the characteristics of
the parents that were used. After the crossover, there is also a chance for the
new child DNA to mutate, changing one of the rules in the generated network
at random. To ensure variety in each population, population total new random
members are added to the population pool with each generation.

Like crossover and chance for mutation, this algorithm also allows the
use of elitism. This feature allows a selected number of best networks to be
introduced with a new generation. This allows the algorithm to ensure that
fitness will continue to increase even if poor mutations occur too frequently.

The detailed procedure of elitism, crossover and mutation are described as
follows:

Elitism: Elitism, the best optimal individual in the current population, is
set to 1 in the method of the automatic design, i.e., a SNP system with
the high sensitivity and precision can be saved to new popualtion each
generation.

Crossover: The crossover is mainly composed of two steps, one is to
choose the parent individuals (Parents with a higher fitness will have a
higher chance of reproducing, however all parents should have a chance),
and the other is to exchange the corresponding rules in the two parent
individuals.

Mutations: After getting new sub-individuals from the crossover of
two parent individuals, new sub-individuals are mutated and added to
new population, where MutationRate is adjusted according to the
detailed problem dynamically. The pseudocode of dynamic adjustment
is described in Figure 3.

Input: GlobleBest Fitness = 0, Current Best Fitness, RateChange = 0,
MutationRate = 0

1: i = 1
2: while (i ≤ H) do
3: i = i + 1
4: if GlobleBest Fitness ≤ Current Best Fitness then
5: GlobleBest Fitness = Current Best Fitness
6: RateChange + +
7: else
8: RateChange = 0
9: end if

10: if RateChange ≥ 10 then
11: MutationRate = random(0, 10)
12: else
13: MutationRate = random(10, 20)
14: end if
15: end while
Output: Return MutationRate

FIGURE 3
The dynamic adjustment of mutation probability

4 EXPERIMENTATIONS AND ANALYSIS OF RESULTS

In this section, the method of the automatic design is first thoroughly tested
to ensure the systems are generated as expected. First of all, a SN P system
generating all even natural numbers and a SN P system generating all natural
numbers are used to simulate the evolution of SN P systems towards a target
configuration to ensure the sentivity and precision of the data being outputed.
Secondly, we analyze the experimental results of two known SN P systems
and obtain experimental conclusions.

4.1 A SN P system generating all natural numbers
A SN P system generating all natural numbers mainly contains four elements:
four neurons, ten synapse connections between neurons, eight rules and two
starting spikes each neuron. Out of four neurons, three neurons are general
neurons and remaining one is an output neuron.

The specific sketch of a SN P system generating all natural numbers is
shown in Figure 4.

In order to illustrate the performance of the method of the automatic
design when simulating a SN P system generating all natural numbers, we
do a dynamic behavior analysis from the fitness function value of the experi-
mental testing process.

Fav: the average fitness value across ten runs. A larger value of Fav repre-
sents a smaller difference between the expected set and the output set.

Fav =
10∑

j=1

n∑

i=1

F(SN PSi) (4)

where, F(SN PSi) represents the fitness value of i th SN P systems, n is the
number of the SN P systems in the population, j represents the jth run.

FIGURE 4
A SN P system generating all natural numbers

AUTOMATIC DESIGN OF SPIKING NEURAL P SYSTEMS

FIGURE 5
The change curves of the average fitness values and the maximum fitness values

In the process of simulated evolution, the basic design parameters are set
as follows. Expected output set for the natural numbers system: 1, 2, 3, 4, 5, 6,
7, 8, 9; Population count: 4 members; Maximum number of steps per system:
50; Maximum number of repetitions per system: 50; Maximum number of
generations: 200.

We obtain the change curves of the average fitness value of static and
dynamic mutation probabilities in Figure 5, respectively.

As seen in Figure 5, as the number of iterations increases, the average
fitness value increases and the dynamic adjustment of mutation probability is
better than the static mutation probability. But when they increase to a certain
value, the average fitness increases slowly.

As can be seen from Figure 6, the results of the correct natural data output
are produced by a real natural SNP system and is the same as the expected
set.

4.2 A SN P system generating all even natural numbers
A SN P system generating all even natural numbers mainly contains four ele-
ments: seven neurons, twelve synapse connections between neurons, twelve
rules, two starting spikes in six neurons and no starting spikes in other neu-
rons. Seven neurons divide six general neurons and one output neuron. The
specific sketch of a SN P system generating all even natural numbers is shown
in Figure 7.

The basic parameters are set as follows.The constraints for this set of
tests, unless otherwise stated, are as follows: Expected output set for the even
numbers system: 2, 4, 6, 8, 10, 12, 14, 16; Population count: 4 members,
increasing by 1 every generation; Maximum number of steps per system: 50;

FIGURE 6
The output set of SN P systems generating all natural numbers

FIGURE 7
A SN P system generating all even natural numbers

Maximum number of repetitions per system: 50; Maximum number of gen-
erations: 200.

The results in Figure 8 and Figure 9 are the same as those in Figure 5
and Figure 6. The greater the number of iterations, the greater the fitness
value. The output results are very close to the expected results. As a result,
the expecrimental results of SN P systems generating all natural numbers and
SN P systems generating all even natural numbers show that our method is
feasible and effective.

AUTOMATIC DESIGN OF SPIKING NEURAL P SYSTEMS

FIGURE 8
The change curves of the average fitness values and the maximum fitness values

FIGURE 9
The output set of SN P systems generating all even natural numbers

5 CONCLUSIONS

This paper proposes a clear possibility on how to use genetic algorithms to
design an expected SN P system, including the overview approach design, the
fitness function and the design of elitism, crossover and mutation. After ran-
domly generating a population of SN P systems, the genetic algorithm is used
to evolve the initial population to obtain the optimal SN P system. The intro-
duction of genetic algorithm makes it easier to generate new SN P systems
than manual design. Moreover, a fitness function, the comparison between
the output set and the expected set, is established to reflect the precision and
sensitivity of SN P systems. The experimental results show that the fitness

function designed by this study can effectively guide the search for the opti-
mal SN P system. Finally, the experimental results from two examples show
that the approach is effective to automatically design a SN P system based
on genetic algorithms. In further works, we will generalize this method to
generate much more SN P systems, such as generating asynchronous and
time-free systems (which are usually quite hard to design manually, but rel-
evant from an application point of view). Moreover, we have only changed
the most important of these rules in presented approach, while other elements
such as the number of neurons and the synapse connections between neurons
do not changed in the process of evolution. Therefore, much attention will be
devoted to them in furture.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of
China (61972324, 61672437, 61702428), the Sichuan Science and Tech-
nology Program (2018GZ0185, 2018GZ0086), New Generation Artificial
Intelligence Science and Technology Major Project of Sichuan Province
(2018GZDZX0044) and Artificial Intelligence Key Laboratory of Sichuan
Province (2019RYJ06).

REFERENCES

[1] M. al Rifaie, M. John, and C. Suzanne. (2012). Creativity and autonomy in swarm intelli-
gence systems. Cognitive Computation, 4(3):320–331.

[2] B. Aman and G. Ciobanu. (2019). Synchronization of rules in membrane computing. Jour-
nal of Membrane Computing, 1(4):233–240.

[3] F. Bernardini and M. Gheorghe. (2004). Population P systems. Journal of Universal Com-
puter Science, 10(5):509–539.

[4] C. Buiu and A. George. (2019). Membrane computing models and robot controller design,
current results and challenges. Journal of Membrane Computing, 1(4):262–269.

[5] M. Cavaliere and D. Genova. (2004). P systems with symport/antiport of rules. Journal of
Universal Computer Science, 10(5):540–558.

[6] Y. Chen, G. Zhang, T. Wang, and X. Huang. (2014). Automatic design of P systems for
five basic arithmetic operations within one framework. Chinese Journal of Electronics,
23(2):302–304.

[7] J. Cooper and R. Nicolescu. (2019). Alternative representations of P systems solutions to
the graph colouring problem. Journal of Membrane Computing, 1(2):112–126.

[8] D. Dı́az-Pernil, M. Gutiérrez-Naranjo, and H. Peng. (2019). Membrane computing and
image processing: a short survey. Journal of Membrane Computing, 1(1):58–73.

[9] G. Escuela and M. Gutiérrez-Naranjo. (2010). An application of genetic algorithms to
membrane computing. Proceedings of the 10th Brainstorming Week on Membrane Com-
puting, 101–108.

AUTOMATIC DESIGN OF SPIKING NEURAL P SYSTEMS 5

[10] J. Farmer, H. Norman, and S. Alan. (1986). The immune system, adaptation, and machine
learning. Physica D, 22(1-3):187–204.

[11] Z. Gazdag and G. Kolonits. (2019). A new method to simulate restricted variants of
polarizationless P systems with active membranes. Journal of Membrane Computing,
1(4):251–261.

[12] M. Ionescu and Gh. Păun. (2006). Spiking neural P systems. Fundamenta Informaticae,
71(2):279–308.

[13] Y. Jiang, Y. Su, and F. Luo. (2019). An improved universal spiking neural P system with
generalized use of rules. Journal of Membrane Computing, 1(4):270–278.

[14] S. Kazarlis, A. Bakirtzis, and V. Petridis. (1996). A genetic algorithm solution to the unit
commitment problem. IEEE Transactions on Power Systems, 11(1):83–92.

[15] K. Lila and G. Rozenberg. (2008). The many facets of natural computing. Communica-
tions of the ACM, 51(10):72–83.

[16] C. Martı́n-Vide, Gh. Păun, and T. Pazos. (2003). Tissue P systems. Theoretical Computer
Science, 296(2):295–326.

[17] R. Mayne, N. Phillips, and A. Adamatzky. (2019). Towards experimental P systems using
multivesicular liposomes. Journal of Membrane Computing, 1(1):20–28.

[18] A. Nash and S. Kalvala. (2019). A P system model of swarming and aggregation in a
myxobacterial colony. Journal of Membrane Computing, 1(2):103–111.

[19] D. Orellana-Martı́n, L. Valencia-Cabrera, A. Riscos-Núñez, and M. Pérez-Jiménez.
(2019). P systems with proteins: a new frontier when membrane division disappears. Jour-
nal of Membrane Computing, 1(1):29–39.

[20] Z. Ou, G. Zhang, T. Wang, and X. Huang. (2013). Automatic design of cell-like P sys-
tems through tuning membrane structures, initial objects and evolution rules. Interna-
tional Journal of Unconventional Computing, 9(5):425–443.

[21] L. Pan, Gh. Păun, and G. Zhang. (2019). Foreword: Starting JMC. Journal of Membrane
Computing, 1(1):1–2.

[22] A. Păun and B. Popa. (2006). P systems with proteins on membranes and membrane divi-
sion. Developments in Language Theory, Lecture Notes in Computer Science, Springer,
4036:292–303.

[23] Gh. Păun. (2003). Membrane computing. International Symposium on Fundamentals of
Computation Theory, 2751(1-3):284–295.

[24] Gh. Păun. (2006). Introduction to membrane computing. Applications of Membrane Com-
puting, 2751(1-3):1–42.

[25] Gh. Păun and G. Rozenberg. (2002). A guide to membrane computing. Theoretical Com-
puter Science, 287:73–100.

[26] R. Poli, J. Kennedy, and T. Blackwell. (2007). Particle swarm optimization. IEEE Swarm
Intelligence Symposium, 1(1):33–57.

[27] H. Rong, K. Yi, G. Zhang, J. Dong, P. Paul, and Z. Huang. (2019). Automatic implemen-
tation of fuzzy reasoning spiking neural P systems for diagnosing faults in complex power
systems. Complexity, 2019:0–16.

[28] P. Sosı́k. (2019). A new method to simulate restricted variants of polarizationless P sys-
tems with active membranes. Journal of Membrane Computing, 1(3):198–208.

[29] Y. Suzuki and H. Tanaka. (2000). chemicial evolution among arificial proto-cells. Inter-
national Conference on Artificial Life 2000, USA, 54–63.

[30] C. Tudose, R. Lefticaru, and F. Ipate. (2012). Using genetic algorithms and model check-
ing for P systems automatic design. Studies in Computational Intelligence, 344:285–302.

[31] A. Turlea, M. Gheorghe, F. Ipate, and S. Konur. (2019). Search-based testing in membrane
computing. Journal of Membrane Computing, 1(4):241–250.

[32] T. Wang, G. Zhang, J. Zhao, Z. He, J. Wang, and M. Pérez-Jiménez. Fault diagnosis of
electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Trans-
actions on Power Systems, 30(3):1182–1194.

[33] X. Wang, G. Zhang, F. Neri, T. Jiang, J. Zhao, and M. Gheorghe. (2016). Design and
implementation of membrane controllers for trajectory tracking of nonholonomic wheeled
mobile robots. Integrated Computer-Aided Engineering, 23(1):15–30.

[34] S. Wolfram. (1983). Statistical mechanics of cellular automata. Review of Modern Physics,
55(3):601–644.

[35] W. Yuan, G. Zhang, M. Pérez-Jiménez, T. Wang, and X. Huang. (2016). P systems based
computing polynomials: Design and formal verification. Natural Computing, 15(4):591–
596.

[36] G. Zhang. (2011). Quantum-inspired evolutionary algorithms: a survey and empirical
study. Journal of Heuristics, 17(3):303–351.

[37] G. Zhang. (2012). A membrane algorithm with quantum-inspired subalgorithms and its
application to image processing. Natural Computing, 11(4):701–717.

[38] M. Gheorghe, Gh. Păun, M. Pérez-Jiménez, and G. Rozenberg. (2013). Research frontiers
of membrane computing: Open problems and research topics. International Journal of
Foundations of Computer Science, 24(5):547–623.

[39] G. Zhang, J. Cheng, M. Gheorghe, and Q. Meng. (2013). A hybrid approach based on
differential evolution and tissue membrane systems for solving constrained manufacturing
parameter optimization problems. Applied Soft Computing, 13(3):1528–1542.

[40] G. Zhang, J. Cheng, T. Wang, and J. Zhu. (2015). Membrane computing: Theory and
applications. Beijing, China: Science Press.

[41] G. Zhang, M. Gheorghe, L. Pan, and M. Pérez-Jiménez. (2014). Evolutionary membrane
computing: a comprehensive survey and new results. Information Sciences, 279:528–551.

[42] G. Zhang, N. Li, and W. Jin. (2006). Novel quantum genetic algorithm and its applications.
Frontiers of Electrical and Electronic Engineering in China, 1(1):31–36.

[43] G. Zhang and L. Pan. (2010). A survey of membrane computing as a new branch of natural
computing. Chinese Journal of Computers, 2(30):208–214.

[44] G. Zhang, M. Pérez-Jiménez, and M. Gheorghe. (2017). Real-life applications with mem-
brane computing. Springer.

[45] G. Zhang, H. Rong, F. Neri, and M. Pérez-Jiménez. (2014). An optimization spiking neu-
ral P system for approximately solving combinatorial optimization problems. Interna-
tional Journal of Neural Systems, 24(5):1–16.

[46] G. Zhang, H. Rong, Z. Ou, M. Pérez-Jiménez, and M. Gheorghe. (2014). Automatic
design of deterministic and non-halting membrane systems by tuning syntactical ingre-
dients. IEEE Transactions on Nanobioscience, 13(3):363–371.

[47] G. Zhang, M. Zhang, L. Pan, and M. Pérez-Jiménez. (2018). Evolutionary membrane
computing: A comprehensive survey and new results. Information Sciences, 279:528–
551.

[48] M. Zhu, G. Zhang, Q. Yang, H. Rong, W. Yuan, and M. Pérez-Jiménez. (2018). P systems-
based computing polynomials with integer coefficients: design and formal verification.
IEEE Transactions on nanobioscience, 17(3):272–280.

