
Please cite the Published Version

Khan, W, Ali, S, Muhammad, USK, Jawad, M, Ali, M and Nawaz, R (2020) AdaDiffGrad: An
Adaptive Batch Size Implementation Technique for DiffGrad Optimization Method. In: 14th In-
ternational Conference on Innovations in Information Technology (IIT), 17 November 2020 - 18
November 2020, Al Ain, United Arab Emirates.

DOI: https://doi.org/10.1109/IIT50501.2020.9299013

Publisher: IEEE

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/627193/

Usage rights: In Copyright

Additional Information: "(c) 2020 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, including reprinting/ republishing this material for
advertising or promotional purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in other works."

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-9588-0052
https://doi.org/10.1109/IIT50501.2020.9299013
https://e-space.mmu.ac.uk/627193/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

AdaDiffGrad: An Adaptive Batch Size Implementation Technique for DiffGrad
Optimization Method.

Wajid Khan
Department of Computer Science

COMSATS University, Abbottabad.
Email: fa17-r17-009@cuiatd.edu.pk

Muhammad Jawad
Department of Electrical Engineering

COMSATS University, Lahore
Campus.

Email: mjawad@cuilahore.edu.pk

Sara Ali
Department of Robotics

 National University of Sciences and
Technology, Islamabad, Pakistan.

Email: sarababer@smme.nust.edu.pk

Mazhar Ali

Department of Computer Science
COMSATS University, Islamabad

Campus.
Email: mazhar@ciit.net.pk

Muhammad U.S. Khan
Department of Computer Science
COMSATS University, Islamabad

Campus.
Email: ushahid@cuiatd.edu.pk

Raheel Nawaz

School of Computing, Mathematics
and Digital Technology, Manchester

Metropolitan University, UK
Email: r.nawaz@mmu.ac.uk

Abstract-Stochastic Gradient Descent is a major

contributor to the success of the deep neural networks.

The gradient provides basic knowledge about the function

direction and its rate of change. However, SGD changes

the step size equally for all parameters irrespective of

their gradient behavior. Recently, several efforts have

been made to improve the SGD method, such as

AdaGrad, RMSprop, Adam, and diffGrad. The diffGrad is

an appropriate and enhanced technique that uses fraction

constant based on previous gradient information for

gradient calculation. This fraction constant decreases the

momentum resulting in slow convergence towards an

optimal solution. This paper addresses the slow

convergence problem of the diffGrad algorithm and

proposed a new adaDiffGrad algorithm. In adaDiffGrad

an adoptive batch size is implemented for the diffGrad to

overcome the problem of slow convergence. The

proposed model is experimented for image categorization

and classification over CIFAR10, CIFAR100, and

FakeImage dataset. The results are compared with the

state of art models, such as Adam, AdaGrad, DiffGrad,

RMSprop, and, SGD. The results show that adaDiffGrad

outperforms other optimizers and improves the accuracy

of the diffGrad.

Keywords: Optimization, Gradient Descent, Adam,
DiffGrad, Image Classification, Ada-Batch size, and
ResNet

I. INTRODUCTION

Deep neural networks are widely used in solving

various problems including pattern recognition,

classification, clustering, dimensionality reduction,

computer vision, Natural Language Processing (NLP),

regression, and predictive analysis. The neural network

algorithms become famous due to the availability of

resources such as GPU, memory, and storage, etc.

To find an optimal solution, most of the neural

network models use gradient descent as an optimizer

[1].The Gradient Descent and its variants batch [2], mini

batch [3], and stochastic [4] are the commonly used

optimizers, however, these optimizers require complete

dataset for gradient calculation. If the dataset is large these

optimizers suffer from slow convergence towards global

minimal. Recently, many attempts have been made to

overcome the slow convergence problem of gradient

descent. Adam performs reasonably well compared to

previous adaptive techniques [5]. However, it does not

utilize past gradient information. To overcome the

limitation of Adam, a novel optimizer diffGrad is proposed

that used the difference between the present and past

gradients. It uses gradient behavior to control the learning

rate at the optimization stage resulting in an optimal

solution. If the gradient difference is large this means that

optimization is not stable and therefore the diffGrad allows

a high learning rate. Conversely, if gradient difference is

small it means that model is closed to an optimal solution.

Then the diffGrad lowers the learning rate automatically.

Although diffGrad outperforms all the previous optimizers

in terms of accuracy, however, its performance is very

slow for an optimal solution.

In this paper, Ada-diffGrad is proposed to overcome

the slow convergence problem of diffGrad optimizer by

adaptively increasing the batch-size during training. The

major contributions of this paper are summarized as

follow:

1. This paper proposes a new adaDiffGrad

optimization method for CNN by using adaptive

����������	
���
���
����
����
����
�	

�����
���
�	
�������
�����
�������		��

����������������� �� !"�#���$�����	%%% 209

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on January 30,2021 at 17:11:25 UTC from IEEE Xplore. Restrictions apply.

batch-size with diffGrad to overcome the slow

convergence problem of an optimizer.

2. The proposed scheme utilizes the accumulation of

the scheduler to adopt the batch size at specific

intervals.

3. Keeping the ratio /r constant, the proposed model

adopts the learning rate simultaneously to avoid

the overshooting problem.

The rest of the paper is structured in the following

manner: Section II presents related work, section III

proposes AdaDiffGrad scheme, Section IV describes the

experimental setup, section V indicates the experimental

results and findings, and section VI concludes the paper.

II. RELATED WORK

This section provides an overview of related work

regarding previous schemes that are used as optimizers.

Furthermore, different optimizers and their variants are

also discussed. It is also highlighted the major deficit of

optimizers and their enhancement proposed by a new

scheme.

Gradient Descent [6], uses the weights of all samples

for parameter update. The large sample requires more time

for updating parameters. Weights are calculated for GD as:

Where learning rate, for a parameter value

for sample with =1,2,3……N. N is the sample size.

While is target value and is output value.

In SGD [7] weights can be updated after one sample or

subset of samples.

SGD updates the parameters as

Here is gradient for

Here,

For which is the number of training images in

batch, is cross-entropy, and is regularization loss.

SGDM [8] brings a new idea to use a gradient for

calculating the moment for parameters as shown below

The parameters are updated using the following formula:

Where is the moment gained and is hyperparameter

to control moment.

AdaGrad [9] modified the SGD approach to calculate

the parameter by normalizing the learning rate given as

Where is the sum of squares of gradients for t steps

and is a small value added to avoid divide by zero error.

RMSProp [10] and AdaDalta [11] calculate the with

decay rate as to avoid a sudden decrease in the learning

rate.

Adam [12] is also another popular optimizer which

computes based upon two factors 1stand 2nd order

moments (mean and variance) as

Where and are decay rates and and are mean

and variance of gradients.It was observed that the initial

value of was very small as compared to This

problem was addressed as:

and

Where and is biased corrected 1st and 2nd order

moments.

Now parameters are calculated using following

formula:

Another problem with Adam is when the second

moment decreases significantly, the friction in the

optimization landscape decreases, for this decrease the

learning rate and divergence increase and process

overshoot to an optimal solution. AMSGrad [13] addresses

����������	
���
���
����
����
����
�	

�����
���
�	
�������
�����
�������		��

210

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on January 30,2021 at 17:11:25 UTC from IEEE Xplore. Restrictions apply.

this problem by considering the maximum of second

moments as:

Thus, parameters updating for AMSGrad method areas

For Adam optimizer the default values for

and and

Another problem is the automatic adjustment of the

learning rate of fractions for the first moment to avoid

overshooting. DiffGrad [14] introduces DiffGrad fraction

coefficient (DFC) to control the learning rate using the

information of previous gradients. So, the equation of

parameter update for DiffGrad is defined as:

Where is DFC for DiffGrad calculated as:

AbsSig is a non-linear sigmoid function for that

bound the values between 0.5 and 1and calculated as

And is gradient difference and calculated as

In diffGrad, the DFC is used to control the gradient

fluctuation near the optimum solution. The diffGrad also

claims that the inclusion of DFC provides a high learning

rate for large gradient change and low learning rate for low

gradient change areas.

A. Effects of Adaptive Batch

Adabatch [15] explains the effects of adaptive batch

size during training of optimizers. It explains the impacts

of a batch size overtraining, learning rate, and works per

epoch for fixed and adoptive batch size. The scheme also

describes the relationship among batch size, learning rate,

and performance. The batch size plays a vital role in model

performance. If the batch size is small the training process

takes time and convergence will be slow, while large batch

size overshoots the training process and ignores the local

minimal. The adaptive batch size is the solution to this

problem. The Adabatch provides the adoptive batch size to

ignore these problems to gain accurate and timely results.

The AdaBatch also explains that adapting the learning rate

allow the training process to enable a large batch size

without losing accuracy. Here it explains the relationship

between batch size and learning rate, and this analysis

provides the basis for using adaptive batch size technique

for DiffGrad optimizer.

B. Learning Rate

For supervised learning, the data set is divided into

three portions training, validation, and testing. The training

part consists of consecutive forward and backward

propagation. Let a training data consist of sample data

 , which are as inputs and as

output. During training weights is used to solve the

optimization problem.

Weights updated for th iteration are calculated as

Where large batch size is inserted and updated matrix

 are calculated with batch size and learning rate . We

assume that are equal for both equations and

that is learning rate decay. Equation (3) shows the

relationship between learning rate and batch size that

increasing batch size can mimic the learning rate decay and

this experiment shows that effective learning rate for

adaptive batch size will increase the performance.

C. Work per Epoch

A fixed batch size requires a fixed number of flops per

iteration throughout the training process. As this technique

involves adaptive batch size flops per iteration also

increases. But the flops per epoch remains fixed for all

processes if the computation is a linear function of batch

size . This point is briefly explained as a fully connected

layer with weight with input

 and gradient vector

. Most of computation expensive

operations during training are matrix multiplication.

 (23)

and,

(24)

����������	
���
���
����
����
����
�	

�����
���
�	
�������
�����
�������		��

211

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on January 30,2021 at 17:11:25 UTC from IEEE Xplore. Restrictions apply.

Operations require flops per iteration and

 flops for epoch. As batch size increase to ,

then flops per iterations approach to .However,

increasing batch size by also decreases the number of

iterations by a factor of .Therefore the flops per epoch

remain fixed . The larger batch size does not affect

the flops per epoch, but it will perform better in terms of

time and hardware usage.

III. PROPOSED METHODOLOGY

The DiffGrad performs well to find the optimal

solution by using past gradient information for two

consecutive iterations. It overcomes the problem of Adam

and previous optimizers by using gradient descent. It uses a

gradient to control the learning rate to avoid the

overshooting problem. However, DiffGrad models use

static batch-size towards convergence that forces the user

to choose between accuracy and efficiency. The adaptive

batch size tends for convergence as well as improves

efficiency and performance. Our approach is to resolve the

trade-off between small and large batch size to adaptively

increase the batch size during training. The proposed

technique resolves the problem of slow convergence by

integrating AdaBatch [15] batch size with DiffGrad. The

proposed method increases the batch size after specific

epochs and controls the learning rate to keep the ratio ()

constant. This ratio enforces the model from overshooting.

IV. EXPERIMENTAL SETUP

This section presents the overall process during the

experimental setup i.e. the datasets details, parameter

settings, and system specification uses during the

experiment.

A. Dataset

The dataset used for this experiment is CIFAR10,

CIFAR100, and FakeImages dataset. All these three

datasets are available online for experiments and

educational purposes use. Both CIFAR10 and CIFAR100

datasets contains 60k images for training and 10k images

for testing. On the other hand, FakeImages dataset is used

for fake image detection purposes. This dataset contains

3000 images of random people’s faces. Among these 2500

images are used for training and 500 for testing purposes.

All images are divided into two classes real and fake

equally for both the training and testing phase.

B. System Specification

The experiment was performed on Google

Colaboratory that provides free Jupyter notebook

environment and resources for computation and

experiments. The instance that was used for experimental

possesses Tesla k80 GPU processing, 12GB memory, and

100GB storage. The experiment was performed using

python language with TensorFlow, Torch, and Cuda

libraries that are already available in the notebook

environment.

C. Parameters setting
 This section provides information about the parameter

setting used during the experiment. The optimization

techniques Adam, AdaGrad, DiffGrad, RMSprop, SGD,

and AdaDiffGrad were used with ResNet neural network.

The number of epochs for all optimizer is 300 with 128,

256 and 512 batch size for each dataset. The batch size for

all 300 epochs was static for all other optimizers except

AdaDiffGrad. The batch size and learning rate for the first

100 epochs were fixed for AdaDiffGrad. After 100 epochs

batch size is doubled and the learning rate is half for the

next 50 epochs. And this process is repeated for 300

epochs for AdaDiffGrad. So, after every 50 epochs batch

size is adopted to double and learning is cut to half for the

whole experiment. The source code of the whole

experiment is available online for demonstration and

verification.

V. EXPERIMENTAL RESULTS

The accuracy validation of AdaDiffGrad optimizer is

compared with state of art optimizers such as Adam,

AdaGrad, DiffGrad, RMSprop, and SGD. In figure 1 (a)

shows that the accuracy comparison of these methods for

CIFAR10 dataset. The graph indicates that AdaDiffGrad

outperforms some state of art algorithms in terms of

accuracy. The proposed method achieves the highest

accuracy of 91.98% while Adam, AdaGrad, DiffGrad,

RMSprop, and SGD models achieve 90.46%, 85.62%,

89.71%, 90.8%, and 85.5% respectively. Similarly,

AdaDiffGrad convergence to training loss to 0.000065

which is minimum among all the above describes models

as indicates in figure 1(b). For CIFAR100 dataset

AdaDiffGrad gain the highest accuracy of 67.03% while

approaching the lowest training loss of 0.06 among

compared optimizers. For the FakeImage dataset

AdaDiffGrad also achieved the highest accuracy of

93.17% while Adam, AdaGrad, DiffGrad, RMSprop and

SGD optimizers approach to 91.70%, 90.24%, 89.26% and

85% respectively. This comparison is also shown in Table

1 where the highest accuracy achieved by optimizers is

highlighted in bold format. To achieve the best results, the

experiment is conducted using the default parameters for

every optimizer. The CIFAR10 dataset is experimented

with three different batch sizes(128, 256, 215) to find the

suitable batch size for the experiment. The result indicates

that a suitable batch size for all optimizers is 128 because

most of the optimizer achieves the highest accuracy with

this batch size.

����������	
���
���
����
����
����
�	

�����
���
�	
�������
�����
�������		��

212

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on January 30,2021 at 17:11:25 UTC from IEEE Xplore. Restrictions apply.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Accuracy Comparsion for cifar10 dataset

AdaDiffGrad AdaGrad Adam

DiffGrad RMSprop SGD

Highest accuracy
AdaDiffGrad=91.98
Adam=90.46
AdaGrad=85.62

0

7

14

21

28

35

42

49

56

63

70

0 50 100 150 200 250 300

Accuracy Comparsion for CIFAR100 dataset

AdaDiffGrad AdaGrad Adam

DiffGrad RMSprop SGD

Highest Accuracy
AdaDiffGrad=67.03
AdaGrad=56.85
Adam=62.75

DiffGrad=60.62

0

20

40

60

80

100

0 50 100 150 200 250 300

Accuracy Comparsion for fake Image dataset

AdaGrad Adam AdaDiffGrad
DiffGrad RMSprop SGD

Highest Accuracy
AdaGrad=90.243

Adam=91.707
AdaDiffGrad=93.17
DiffGrad=92.68

RMSprop=89.26
SGD=85.36

0

0.5

1

1.5

2

0 50 100 150 200 250 300

Loss Comparsion for cifar10 dataset

AdaDiffGrad AdaGrad Adam

DiffGrad RMSprop SGD

Minimum Loss
AdaDiffGrad=0.000065
AdaGrad=0.024283
Adam=0.001128

DiffGrad=0.003726

0

1

2

3

4

0 50 100 150 200 250 300

Loss Comparsion for CIFAR100 dataset

AdaDiffGrad AdaGRad Adam

DiffGrad RMSprop SGD

Minimum Loss
AdaDiffGrad=0.0659
AdaGrad=0.700337
Adam=0.097275

DiffGrad=0.1313

-0.1

0.1

0.3

0.5

0.7

0.9

0 50 100 150 200 250 300

Loss Comparsion for fakeImages Dataset

AdaGrad Adam AdaDiffGrad

DiffGrad RMSprop SGD

Minimum Loss

AdaGrad=0.008

Adam=0.003
AdaDiffGrad=0.01

DiffGrad=0.02

RMSprop=0.04
SGD=0.16

(a) (b)

 (c) (d)

(e) (f)

Fig. 1: The results comparison among Adam[12], AdaGrad[9], DiffGrad [14], SGD[7], RMSprop [10] and proposed

AdaDiffGrad. (a, c, e) shows the accuracies comparison of optimizer for Cifar10, Cifar100, and FakeImage Dataset,

respectively. Whereas, (b, d, f) represents the training Loss for respective optimizers during the training phase.

����������	
���
���
����
����
����
�	

�����
���
�	
�������
�����
�������		��

213

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on January 30,2021 at 17:11:25 UTC from IEEE Xplore. Restrictions apply.

Table: 1 shows the comparison results in terms of accuracy over CIFAR10, CIFAR100 and FakeImages dataset among

Adam, AdaGrad, DiffGrad, SGD, RMSprop and proposed AdaDiffGrad optimizers. The comparison is based upon three

different batch sizes i.e. (). The best accuracy among all describes models are highlighted in bold.

For further results 128 batch size is adopted for

CIFAR100 and FakeImages datasets. From Figure 1and

Table 1, it is indicated that AdaDiffGrad outperforms

most state of art optimizers.

VI. CONCLUSION

In this paper, a new optimization method AdaDiffGrad

is proposed, which is an enhancement to DiffGrad. The

AdaDiffGrad scheme overcomes the slow convergence

issues of diffGrad. The proposed scheme added adaptive

batch size to DiffGrad to improve its accuracy and

performance. The adaptive batch size enhances the

convergence rate as well as improves the efficiency of

the model. The proposed scheme is tested with ResNet50

model for image classification over CIFAR10,

CIFAR100, and FakeImages dataset. The results of

AdaDiffGrad are compared with state-of-the-art

optimizers such as Adam, AdaGrad, DiffGrad,

RMSprop, and SGD. The results indicate that the

adaDiffGrad achieves the best accuracy among the

described models and outperforms them.

References:

[1]. Bottou, L. (2010). Large-scale machine learning

with stochastic gradient descent. In Proceedings of
COMPSTAT'2010 (pp. 177-186).Physica-Verlag HD.

[2]. Ruder, S. (2016). An overview of gradient

descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

[3]. Hinton, G,Srivastava., &Swersky. (2012). Neural

networks for machine learning lecture 6a overview of

mini-batch gradient descent. Cited on, 14(8).

[4]. Bottou, L. (2010). Large-scale machine learning

with stochastic gradient descent. In Proceedings of

COMPSTAT'2010(pp.177-186). Physica-Verlag HD.

[5]. Shrestha, A., & Mahmood, A. (2019). Review of

deep learning algorithms and architectures. IEEE
Access, 7, 53040-53065.

[6]. Ruder, S. (2016). An overview of gradient

descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

[7]. Shamir, O., & Zhang, T. (2013, February).

Stochastic gradient descent for non-smooth

optimization: Convergence results and optimal

averaging schemes. In International conference on
machine learning (pp. 71-79).

[8]. Sutskever, I., Martens, J., Dahl, G., & Hinton, G.

(2013, February). On the importance of initialization

and momentum in deep learning. In International
conference on machine learning (pp. 1139-1147).

[9]. Duchi, J., Hazan, E., & Singer, Y. (2011).

Adaptive subgradient methods for online learning

and stochastic optimization. Journal of machine
learning research, 12(Jul), 2121-2159.

[10]. Hinton, Srivastava, &Swersky,. (2012). Neural

networks for machine learning lecture 6a overview of

mini-batch gradient descent. Cited on, 14(8).

[11]. Zeiler, M. D. (2012). Adadelta: an adaptive

learning rate method. arXiv preprint
arXiv:1212.5701.

[12]. Kingma, D. P., & Ba, J. (2014). Adam: A

method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[13]. Reddi, S. J., Kale, S., & Kumar, S. (2019). On

the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237.

[14]. Dubey, S. R., Chakraborty, S., Roy, S. K.,

Mukherjee, S., Singh, S. K., & Chaudhuri, B. B.

(2019). diffGrad: An Optimization Method for

Convolutional Neural Networks. IEEE Transactions
on Neural Networks and Learning Systems.

[15]. Devarakonda, A., Naumov, M., & Garland, M.

(2017). Adabatch: Adaptive batch sizes for training

deep neural networks. arXiv preprint
arXiv:1712.02029.

Optimizer CIFAR10 dataset CIFAR100 dataset FakeImages dataset

Adam 90.46 90.17 88.84 62.75 91.70

AdaGrad 85.62 84.39 84.74 56.85 90.24

DiffGrad 89.71 88.51 87.56 60.62 92.68

SGD 85.5 87.69 88.95 55.97 85.36

RMSprop 90.8 90.54 90.27 62.03 89.26

AdaDiffGrad 91.98 91.73 91.12 67.03 93.17

����������	
���
���
����
����
����
�	

�����
���
�	
�������
�����
�������		��

214

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on January 30,2021 at 17:11:25 UTC from IEEE Xplore. Restrictions apply.

