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Abstract: For urban planning and environmental monitoring, it is essential to understand the diversity
and complexity of cities to identify urban functional regions accurately and widely. However, the
existing methods developed in the literature for identifying urban functional regions have mainly been
focused on single remote sensing image data or social sensing data. The multi-dimensional information
which was attained from various data source and could reflect the attribute or function about the urban
functional regions that could be lost in some extent. To sense urban functional regions comprehensively
and accurately, we developed a multi-mode framework through the integration of spatial geographic
characteristics of remote sensing images and the functional distribution characteristics of social sensing
data of Point-of-Interest (POI). In this proposed framework, a deep multi-scale neural network was
developed first for the functional recognition of remote sensing images in urban areas, which explored
the geographic feature information implicated in remote sensing. Second, the POI function distribution
was analyzed in different functional areas of the city, then the potential relationship between POI
data categories and urban region functions was explored based on the distance metric. A new RPF
module is further deployed to fuse the two characteristics in different dimensions and improve the
identification performance of urban region functions. The experimental results demonstrated that the
proposed method can efficiently achieve the accuracy of 82.14% in the recognition of functional regions.
It showed the great usability of the proposed framework in the identification of urban functional
regions and the potential to be applied in a wide range of areas.

Keywords: remote sensing images; POI; functional regions; distance metric

1. Introduction

In recent years, urbanization has developed rapidly and globally [1]. As a vital part of urbanization,
land use and land cover (LULC) play a seriously important role in environmental protection, infrastructure
construction and urban planning [2–5]. Due to the urbanization development and anthropogenic activities,
different urban areas play diverse and sophisticated urban region functions, including business
districts, residential areas and industrial areas [6]. These functions and scopes of urban regions are
determined not only by governmental instrumentality, but also by people’s actual lifestyle, which
may frequently change in the process of urbanization [7]. On the other hand, the actual geographical
distribution of urban functional zones is significant to satisfy the lifestyles of citizens and the availability
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of urban space regions [8]. The fine-scale urban functional zones division not only helps distinguish
between working and living areas, but also copes with problems such as traffic congestion, air
pollution and waste of land resources [9,10]. Hence, perceiving urban spatial structures accurately and
identifying urban functional zones precisely are of great significance for the formulation of productive
urban planning policies and regulations.

With the rapid advance of technologies, the remote sensing images with high spatial resolution
possess a great potential to extract and analyze urban region functions. It has become a continuously
developing research and has been proved to be one of the most useful and effective method in many
aspects such as earth observation applications, analysis of urban structure and so on [11,12]. Bratasanu [13]
did case study in Romania and first introduced the concept of scene classification which extracting virtual
words from spectral features in high-resolution remote sensing images. Zhang [14] have mainly focused
on how to combine BoVW and probabilistic topic models to recognize urban region types in Beijing
and Zhuhai, China by low-resolution semantic information. Kaliraj [15] researched the Kanyakumari
coast in India and exploited Maximum Likelihood Classifier (MLC) algorithm from Landsat ETM+ and
TM images to analyze the land use and land cover characteristics. LI [16] investigated a neural network
based on deep learning to classify the high spatial resolution remote sensing (HSRRS) images. From the
above studies, remote sensing technology can effectively extract the spatial and geographic characteristics
of urban functional areas in remote sensing maps [17], which is considered to be the key technology
to study the functional alteration of urban land use [18–21]. In particular, high spatial resolution
remote sensing images have led to a satisfactory promotion in fine granularity identification of urban
region functions [22–25]. However, remote sensing techniques perform well in extracting physical
characteristics, which include land surface buildings and urban spatial structure but are incapable of
reflecting the information of human activities or understand dynamic environments [17,26]. In addition,
remote sensing methods can only extract semantic features in urban region information without
considering spatial relationships among ground objects and artificial actions. Therefore, it is difficult to
accurately sense the urban functional regions only through remote sensing images. The urban region
functions are also related to the functional facilities and human activities.

To some extent, social perception and human activities are considered to be better methods of
dynamic perception and identification in urban planning [26,27]. There are diverse types of social
sensing data, such as POI, mobile phone signals, human mobility, bus swipe data and social media
data etc. POI generally refers to all geographic objects that can be abstracted as points, such as schools,
restaurants, gas stations, hospitals, banks, supermarkets, etc. [28]. In addition, POI with geographic
coordinates generally represents the distribution of functional facilities in urban regions. It plays an
important role in social sensing data and has been widely used in amount of research [29]. In contrast to
remote sensing methods, social sensing data is widely used to understand urban functional information
in different levels with fine spatial-temporal resolution [30]. Hobel and Abdalla [31] researched
two European capital cities and demonstrated a semantic region growing method which used the
density of POI on OpenStreetMap to analyze the different human activities in different urban function
regions, e.g., shopping areas. Yao [6] established an innovative framework which incorporated POI
into World2Vec model in the scale of traffic analysis areas(TAZ) and verified in Guangdong, China.
The spatial distributions of POI and TAZs have been mentioned, and K-means clustering model was
used to research the correlation between POI and TAZs vectors in this research. Based on the correlation,
the urban land use types were classified by random forest algorithm (RFA) model. The enormous
social data containing spatial attributes can be collected from a various of channels, such as mobile
phones, social media, internet and GPS. Above rich social sensing techniques have advantages in urban
studies because of their promptness, quantity, and human-social attributes that helps to bridge the
semantic gap between region function classification and urban areas. Moreover, POI is the main static
data in social data which could provide comprehensive land use information based on anthropogenic
activity and geographic location [32], and it is easy to be acquired from various open source tools.
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However, the above method analyzed the urban functional regions through single type of data
source, ignoring the multi-dimensional information that was acquired from various data source and
could reflect the attribute or function about the urban functional regions. To our best knowledge, only a
few studies have analyzed urban functional regions mapping by incorporating remote sensing images
with social sensing data [33–37]. However, these methods still only use one of the remote sensing
images or social sensing data as the dominant data to analyze urban functional regions where the other
as the auxiliary one, and concentrated on specific cities or areas. In this study, a multi-mode framework
was developed to recognize the urban region functions based on high-resolution remote sensing images
and associated POI data. A statistical study of most major cities in China was conducted and a universal
method was proposed for identifying urban functional regions. To do so, a deep neural network
was first exploited to extract the spatial geographic features in urban regions from high-resolution
remote sensing image. Then the relationship between the functional distribution features of various
types of POI and the land use function in the region was explored by distance metric. Finally, the two
characteristics of different scales at the data-level were integrated to comprehensively identify the
functions of urban areas.

2. Data Source

2.1. Functional Classification

According to the urban land use situation of China and the reference of urban land use and
planning standards of development land (GB50137-2011) [38], urban functional regions were divided
into the following six categories: (a) Green space and square, (b) Industrial area, (c) Administration and
public service, (d) Commercial and business facility, (e) Transportation zone, (f) Residence. The detailed
information of the functional zone classification is shown in Table 1.

Table 1. The categories of urban functional regions based on the urban land use and planning standards
of development land (GB50137-2011) [38].

First Level Second Level Third Level

Residence / Residential areas

Industrial area / Factory, Industrial zone

Transportation zone Traffic hinge land Airport, Railway station, Bus station

Administration and public service

Administrative land Party and government organizations,
Public institution

Cultural facilities land Science and technology museum,
Library, Art museum

Education and research land Colleges and universities, Middle schools,
Primary schools

Medical and sanitary land General hospital, Specialized hospital

Commercial and business facility
Commercial facility land Catering and other services land,

Commercial and hotel

Commercial neighborhood Business office building

Green space and square
Public park Park, Botanical garden

Scenic spots land Scenic area, National park

2.2. Remote Sensing Images

The high-resolution remote sensing images used in our research was obtained from Google earth
satellite imagery (without any watermarks). It had a 0.60-m spatial resolution and was captured
on 3 October 2019. These images were collected from different cities and regions in China, which
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covered more than 25 provinces, included nearly 300 independent and single functional regions. As is
shown in Table 1, the urban land use and planning standards of development land (GB50137-2011) [38]
mentioned in Section 2.1 clearly define the sub-functional regions of the six urban region functions.
Therefore, the remote sensing images that meet these standards were extracted according to the
corresponding categories. In addition, the height and the reflectivity of the objects in remote sensing
images are not concerned in this study, so the Digital Surface Model (DSM) was not used for
orthorectification. In addition, there were few images that got excessive changes in appearances
for the extreme slanting buildings or the effect of the atmosphere. In this case, these images have been
abandoned to ensure the rationality of the data. To facilitate the processing of deep neural network, all
the images were segmented into 200× 200 pixels, totaling approximately 16,000 images in all. Some
examples are shown in Figure 1 and the map and list of the major regions where remote sensing images
were extracted are shown in Figure 2.

(f)

(c)(b)

(e)(d)

(a)

0 30 60
m

Figure 1. The remote sensing images of different urban functional regions. (a) Commercial and
business facility, (b) Industrial area, (c) Green space and square, (d) Administration and public service,
(e) Residence, (f) Transportation zone.
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Figure 2. The major regions of the remote sensing images collected.
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2.3. Point-of-Interest

POI is a term in geographic information system, which generally refers to all geographic objects
that can be abstracted as points, such as gas stations, hospitals, supermarkets, schools, etc. POI with
geographic coordinates generally represents the distribution of functional facilities in urban regions.
Meanwhile, some POI can also reflect human activities information, which can be used in population
density estimation and other population related fields. In this study, the POI dataset was extracted
via application programming interfaces (APIs) provided by Gaode Map Services, which is one of
the most widely used search engine and map service provider in China. Developers could acquire
information about the POI in the urban regions, which includes name, latitude and longitude, address,
type and contact information. Specifically, for the purpose of recognizing the urban region function by
combining both remote sensing image features and POI functional features, the POI data associated
with above remote sensing regions was obtained. Nearly 220,000 points were extracted and had
19 types, as is shown in Table 2.

Table 2. POI category taxonomy.

Code POI Category Code POI Category

1 Car service 11 Famous scenery

2 Car sale 12 Business residence

3 Vehicle maintenance 13 Government agency and Social organization

4 Motorcycle service 14 Science and Education culture

5 Food and Beverage 15 Transport facility service

6 Shopping service 16 Financial and Insurance service

7 Life service 17 Company business

8 Sports leisure service 18 Place name address information

9 Healthcare service
19 Communal facility

10 Accommodation service

3. Methods

3.1. The Proposed Framework

In this study, a framework is developed that used two different data source and processed these
two data with different modes and methods, and then integrated the information in remote sensing
images and POI Fused (RPF) module. The proposed multi-mode framework for urban region function
recognition is specifically described in Figure 3. First, a deep neural network was designed to extract
spatial geographic characteristics from remote sensing images. Second, in order to sensing urban
functional regions based on POI data, the functional distribution characteristics were extracted based
on the distance metric of POI distribution. Finally, a novel structure named RPF module was proposed
to adequately fuse both characteristics which locate at different level in data dimension. The following
subsections will demonstrate the detail of above-mentioned modules.
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Remote sensing image

Point of interest

Data 

preprocess

Spatial geographic 

characteristics

Functional distribution 

characteristics

Distance metric 

Deep neural network
RPF

Figure 3. The framework for discovering urban functional regions.

3.2. Urban Functional Regions Classification Based on Remote Sensing Images

In recent years, deep neural network has shown excellent performance in the task of remote sensing
image classification and segmentation [16,39–41]. Feature maps output from different layers in neural
network reflect different characteristics of remote sensing images. Specifically, the high-resolution
feature maps output from the shallow layers contain rich outlines and corner points information, and
the examples are shown in Figure 4b,e. These feature maps contain abundant detailed information,
but lack of the more abstract information [42]. The low-resolution feature maps output from the deep
layers contain semantic information, and the examples are shown in Figure 4c,f. These features are
abstract and contain a more essential description of images, but the useful detailed information would be
lost [43,44]. To make full use of the detailed information in high-resolution feature maps and the semantic
information in low-resolution feature maps, a multi-resolution feature fusion model is proposed which
is inspired by the research of Ke Sun in pose estimation [45]. The detailed architecture of the network
shows in Figure 5a.

In contrast to most existing works in remote sensing classification, our network connects high-to-
low subnetwork modules in parallel rather than in series. The network consists of three stages and
integrated unit which contain several subnetwork blocks. The first stage contains four residual blocks
same to the ResNet-50, which are formed by the bottleneck blocks. In this stage, high-resolution features
in remote sensing images are extracted which play a significant role in classification. The second stage
is connected by one convolution without reducing the resolution of feature maps output from first
stage. In addition, this stage also contains four residual blocks, but the actual architecture is formed by
the basic blocks. The bottleneck block and basic block structures are shown in Figure 5b,c. Because
the resolution of feature maps has not changed in second stage, the high-resolution information is
maintained in the network. The third stage is connected by one 3× 3 convolution to the first stage and
halve the resolution of the feature map. This stage also contains four basic blocks and feature maps
contained the low-resolution features. Therefore, the parallel connections between second and third
stage make full use of the information of feature maps in different resolution.
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(b) (c)(a)

(d) (e) (f)

30 60
m

0

Figure 4. Feature maps in different resolution. (a,d) The original remote sensing images. (b,e) The
high-resolution feature maps that contain the outlines and corner points information of images. (c,f) The
low-resolution feature maps that contain the semantic information of images.
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Figure 5. The architecture of our proposed neural network and the module of the bottleneck block and
basic block. (a) The architecture of our network. (b) The architecture of the bottleneck block. (c) The
architecture of the basic block.
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Specifically, in order to maintain the high-resolution information which contained rich outlines
and corner points information but would be lost in low-resolution features adequately and make the
third stage acquire the information of the high-resolution feature maps in second stage for improving
the information richness in third stage, we concatenated the feature maps output from each blocks in
second and third stages as the input features of the next block in third stages. It allows the features in
different levels completely flowing in our network and feature maps output from third stage involves
both semantic information and detailed information of images. To fuse the multi-level resolution
information, we designed the integrated unit across parallel stage where each resolution information
repeatedly fused from other parallel stage. To describe the structure of the integrated unit more
clearly, we split this module into three parts in Figure 6. The first part in Figure 6a indicates that the
high-resolution feature maps output from second stage is maintained and fused with the low-resolution
feature maps output from third stage. The second part in Figure 6b indicates that the low-resolution
feature maps output from second stage is maintained and fused with the high-resolution feature maps
output from third stage. In addition, the third part in Figure 6c indicates that both feature maps in
second and third stage are downsampled by convolution layers and integrated as the new feature
maps with lower resolution. The integrated unit fuse the feature maps in second and third stage into
different resolution, and the information of each stage is sufficiently used in our model.

feature 

maps

conv 
3×3

strided 2

deconv 
1×1(a) (b) (c)

Figure 6. Three parts of the integrated unit. Different resolution feature maps are fused by the output
feature maps of second and third stage. The blue blocks are the high-resolution feature maps. The green
blocks are the low-resolution feature maps. The orange block is the lower resolution feature maps. (a)
The high-resolution features are maintained. (b) The low-resolution features are maintained. (c) The
lower resolution features are extracted.

The formulation of the integrated unit is shown as follows:

Yi =
S

∑
j=1

c
(
Xj→i

)
(1)

where the X and Y represent the output, feature maps in different stages and integrated unit. S represented
the number of stages connected with integrated unit. The function c

(
Xj→i

)
consists of upsampling

or downsampling X from resolution j to resolution i. We adopt 3× 3 convolutions with stride 2 for
downsampling, and adopt the 1× 1 deconvolutions with stride 2 for upsampling to aligning the
number of channels. Through the integrated unit, the high-resolution features and low-resolution
features are sufficiently fused. Eventually the spatial geographic characteristics of the urban region are
obtained via average pooling layer and fully connected layer behind.

As is mentioned in Section 2.2, the remote sensing images that meet classification standards were
extracted according to the corresponding categories. In addition, every image was labeled according
to their actual categories. The training data were put into our deep neural network batch by batch
with labels, and the output from the average pooling layer was the tensor which shaped (batch size,
16,384). Then the tensor was input to the fully connected layer and SoftMax layer at the end of our
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neural network and acquired the tensor G shaped (batch size, 6). The values Si of the tensor G are
calculated by the SoftMax layer as follows:

Si = So f tmax(Goutput) =
eSoutput

i

∑Q
a=1 eSoutput

a
, i = 1, . . . , Q (2)

where Goutput is the tensor output from the fully connected layer, Q is the number of categories and is
equal to six in our study. Soutput

i is the value in tensor Goutput.
The values Si of the tensor G reflected the probability of different classes for the corresponding

images. Therefore, by selecting the category with the largest probability value, we get the prediction
classes of the current images. Finally, the network parameters are adjusted through the back propagation
of the cross-entropy loss between the predicted classes and the actual labels.

3.3. Urban Functional Regions Classification Based on POI

The above method had indicated the process of urban region function classification based on the
remote sensing images. However, there are also various limitations based on single data source of
images. To the different functional regions, some images are similar in shape, color and texture but
totally different in POI distribution, as is shown in Figure 7. Thus, we used the social sensing data in
urban region function classification simultaneously. In this study, we used POI as social data to sense
urban functional regions.

GIS map (e.g., Openstreetmap, Baidu map, Gaode map) contains abundant POI information,
which are spatial feature points with attribute message such as name, category, longitude and latitude.
In addition, these are basically urban spatial information for public needs, which can describe all kinds
of engineering and social service facilities in urban space, and contain rich human economy and natural
characteristics. Therefore, it is a significant basic geographic data for urban spatial data analysis.

40
m

0 20

(a) Example of remote sensing image and POI distribution in Commercial and business facility

400 20

(b) Example of remote sensing image and POI distribution in Industrial area

Figure 7. Different urban functional regions would be similar in shape, color or texture of remote
sensing images, but totally different in POI distribution. These urban regions would be confused by
remote sensing images, but clearly differentiated by POI data.
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With respect to the POI data in urban regions, the proportion of category and quantity is the
main aspect we concern. In this case, we referred the statistical methods in study [7] of POI vectors,
and calculated the frequency density fi and functional density di of the i-th POI category in area r, the
formulation show as follow:

fi =
Ni
Sr

(3)

di =
Ni
Kr

(4)

where Ni is the number of POIs of the i-th POI category, Sr is the area of region r and Kr is the total
number of POIs in region r. The frequency density vector of region r is denoted by pr = ( f1, f2, . . . , fM),
the functional density vector of region r is denoted by tr = (d1, d2, . . . , dM), where the M is the number
of POI categories. Both of the vectors are defined as spatial distribution vectors and can reflect the
spatial distribution characteristics of the urban regions.

To explore the influence of the frequency density fi and functional density di of POI categories on
sensing urban functional regions, the spatial distribution of POI is counted in all of the cities and areas
we have acquired in Gaode map. Based on the method of clustering, we divide the spatial distributions
of the same urban functional regions into the same category and calculate the mean frequency density
pQ

mean and mean functional density tQ
mean as cluster centroids by Equations (5) and (6):

pQ
mean =

∑
RQ
c=1 pc

RQ
(5)

tQ
mean =

∑
RQ
c=1 tc

RQ
(6)

where Q is the categories of urban functional regions, RQ is the number of regions we calculated in
type Q and c is the c-th region in this urban functional regions. The cluster centroid can reflect the
universal statistical characteristics of POI distribution in urban functional regions.

The urban regions in the same category are likely to have the similar POI spatial distributions
and the divergences of POI distribution exists in different categories. Therefore, in order to explore the
potential relationship between the POI distribution and urban region functions, we propose a method
based on distance metric to recognize urban region functions from POI data.

Distance metric is a method to judge the similarity between samples. There are a great many
of ways to measure the distance between samples, such as Euclidean distance, cosine distance and
Chebyshev distance. Compared with the other methods, cosine similarity metric pays more attention
to the difference of direction between the two vectors, rather than the absolute distance or length.
In addition, it is widely used in text data process for the sensitiveness in directionality [46,47].

For the above reasons, the spatial distribution characteristic vectors of similar POI categories
have roughly the same orientations and angles in high dimension space [6]. Thus, we used the cosine
distance to measure the similarity and judge the actual region functions eventually. To estimate the
urban region functions by the spatial distribution of POI categories, the cosine distance between
the spatial distribution vector of the j-th predicted region and the cluster centroid of the k-th urban
functional region is formulated mathematically as follows:

Lk
j cosine = 1−

tj • tk∥∥tj
∥∥ ‖tk‖

= 1−
∑M

n=1 tm
j × tm

k√
∑M

n=1

(
tm
j

)2
×
√

∑M
m=1

(
tm
k
)2

(7)
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In Equation (7),
tj•tk

‖tj‖‖tk‖
is the cosine distance from the spatial distribution vector of the j-th

predicted region to the cluster centroid of the k-th urban functional region in the range of [−1, 1], tm
j

and tm
k are the spatial distribution vectors with dimensions M, and M is the number of POI categories.
According to the distance measurement between the predicted zone and six urban region

functions, we acquired the vector Vj =
(

L1
j , L2

j , . . . , LM
j

)
of the functional distribution characteristic

in the predicted area. It contains the distance information which indicates the similarity of
high-dimensional POI categories characteristic to the different urban function. Therefore, the predict
result based on the POI function distribution is determined by equation:

s = arg min
(
Vj
)

(8)

which select the most similar urban region function. Consequently, according to the high-dimensional
spatial distribution characteristics of POI categories, we can determine to which urban functional
region this area is most likely to belong.

3.4. Urban Functional Regions Classification by Integrating Remote Sensing Images and POI

As is discussed before, the remote sensing images reflect the spatial geographical characteristics
and the POI data reflects the functional distribution characteristics in the urban regions. Therefore, to
sense urban functional regions more comprehensively, the RPF module is proposed to integrate the
two kinds of information in different dimensions, as is shown in Figure 8.

With respect to a special urban region, the remote sensing images and POI can reflect the spatial
geographic characteristic and functional distribution characteristic separately. As is shown in Figure 8,
the spatial geographic characteristics are extracted through the fully connected layer of the neural
network from the remote sensing data. The form of this characteristic is: Gj =

{
S1

j , S2
j , S3

j , S4
j , S5

j , S6
j

}
, of

which each dimension represents the probability distribution of the region belongs to the corresponding
land function. Then the functional distribution characteristics are acquired based on distance
metric of this urban region Vj =

{
L1

j , L2
j , L3

j , L4
j , L5

j , L6
j

}
,which reflects the cosine similarity between

the distribution vector of POI categories in the study region and the cluster centroids of various
urban functions.
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Figure 8. The architecture of the RPF module.

Both features reflect disparate attributes and obtain diverse dimensions. Otherwise, the functional
distribution vector V consists of distribution distance of which the minimum dimension reflects the
actual urban function but it is opposed that the maximum dimension in the spatial geographic vector
G reflects the actual one. Hence, to fuse both different level features at the data stage, both feature
vectors should be normalized through our RPF module. The normalized method shows as follows:
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(G∗, V∗) = MINMAX(G, 1/V) (9)

the G∗ and V∗ are the normalized distribution vectors and the formulation of MINMAX(X) is described
as follows:

X∗i =
Xi −MIN

MAX−MIN
(10)

where Xi is the i-th dimension of the vector, MIN and MAX separately represent the minimum and
maximum value in the vector.

The spatial geographic features and functional distribution features are normalized to the same
data dimension and attain the same degree and level which can be effectively integrated. To further
enhance the effect of the fusion of both characteristics and improve the performance of our proposed
model, we consider in assigning different weights WG and WV to diverse dimensions of the distribution
vectors. For instance, the remote sensing images of commercial areas represent substantial divergence
which influence the recognition based on images. In this case, the commercial dimensionality of the
spatial geographic characteristics acquired relatively low confidence and would be performed smaller
weights. The characteristics of remote sensing images in green space and square are extremely obvious
and it improves the performance in images and the corresponding weight would be given more. In this
way, the accuracy of the recognition based on remote sensing images in each urban region functions is
used as the weight WG of the spatial geographic characteristics and is shown as follows:

WG
j =

Aj

∑N
j=1 Aj

× N (11)

where WG
j describes the j-th dimension of assigned weights, Aj is the accuracy of the j-th urban

functional region and N is the number of types of urban functional regions.
In addition, the functional distribution characteristics reflect the similarity between the real POI

distribution of the region and cluster centroids of each categories, so each dimension has the same
degree of confidence. Therefore, we set WV

j = 1. Finally, the multi-dimensional characteristics of urban
functional regions are shown as follows:

Fj = SUM
(

G∗j ×WG, V∗j ×WV
)

(12)

the actual function prediction result of urban area is as follows:

s = arg max
(

Fj
)

(13)

By assigning different weights to spatial geographic features and functional distribution features
before integrating process, urban function identification can be more accurate.

4. Results

4.1. Experiments and Settings

4.1.1. Experimental Data Description

(a) remote sensing images: All the images were labeled based on the actual categories of urban
functional regions. The acquisition of remote sensing images and ground truth labels had been
described in Section 2.2 in detail. The urban regions were divided into training set, validation set and
test set according to the proportion of 7:1:2, and labeled from 0–5, which indicated the real category of
six urban region functions. At the same time, all the images were segmented into 200× 200 pixels to
suit the input of our deep neural network.
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(b) POI Data: For the purpose of recognizing urban region functions by fusing features of remote
sensing images and POI data, we obtained the POI data corresponding to the urban regions of remote
sensing images mentioned above. Some incorrect POI data were manually deleted, such as those
duplicate or missing content in collection. There are almost 221,803 POI at all with 19 categories in
our theoretical research. The frequency density and functional density of POI distribution for each
urban area we collected were counted. At the same time, the cluster centroids of POI distribution in
training set were calculated by Equations (5) and (6). The cosine distance metric was used to measure
the distance between the POI distribution of urban regions in test set and the cluster centroids of six
urban regions functions.

4.1.2. Settings

In this work, our deep neural network was deployed based on the TensorFlow framework. The batch
size was set as 64 to cater to the computer memory. The learning rate was set as 0.001, and the cross-entropy
loss was used as our loss function. The model was trained until the training loss converged (nearly 100
epochs). In addition, we used the Adam optimizer which was the most popular adaptive learning
algorithm. Certainly, the network could be optimized with other methods, such as Momentum,
Adagrad, Adadelta and so on. However, it was not the main concern of this paper, we did not do
the relevant discussions and experiments here. We trained our model on the Ubuntu 16.04 operating
system with 2.5GHZ 48-core E5-2678 v3CPU and 64GB memory. In addition, one NVIDIA GTX 2080ti
graphics processing unit (GPU) was used to accelerate. The input of this network is image shaped
200 × 200 × 3 and the output is the category of urban functional regions. The details have been
described clearly in Section 3.2.

4.1.3. Experiments

Experiments are designed in the following aspects to verify the superiority and accuracy of
the model: (1) The results for sensing urban regions only based on remote sensing images. In this
part, we compare the accuracy of our neural network with other commonly used neural network.
In addition, the training curve and the confusion matrix was shown to visualize our training process
and classification results based on remote sensing images. (2) The results of sensing urban regions only
based on POI data. In this part, we make a statistical analysis on the POI distribution of each urban
functional area to verify the rationality of the classification method based on POI data. The accuracy of
different distance metric was compared, and the confusion matrix was shown to reflect the reasonable
of method based on POI data. (3) The results of sensing urban regions based on the fusion of both
data. The final accuracy and the confusion matrix of fused model was established to illustrate the
effectiveness of our model. (4) The examples of the classification results. It presents the strength and
weakness of our model.

4.2. Classification Results Based on Single Remote Sensing Images

To evaluate the performance of our method, we compared our network with the commonly used
neural network structures in remote sensing image classification, such as Alexnet [48], Resnet50 [49],
Resnet101 [49] and Inceptionv3 [50]. The result shows in Table 3.

Table 3 shows that our deep neural network is actually available in urban region function classification.
Meanwhile, the architecture we proposed in this study achieve an accuracy of 71.8%, which is higher
than the traditional common neural networks.

To illustrate the effectiveness and rationality of this method, the training curve is shown in Figure 9.
With the increase of the number of epochs, the errors in loss function shows an overall downward
trend, and tends to be flat and close to zero when approaching 100 epochs. It indicates that the model
has converged and learnt most of the image information in the training set.

Figure 10 is the normalized confusion matrix of identifying results based on single remote sensing
images. It indicates that the method in our study can achieve high accuracy on image recognition
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for most of the urban functional regions. However, for some categories, such as commercial and
business facility, the accuracy of this urban functional region is 62%, because some of the images in
this category are too similar to those in other categories, which causes confusion and disturbance on
the recognition process.

Table 3. The accuracy of single stage in remote sensing images.

Model Accuracy

Alexnet [48] 56.7%

Resnet50 [49] 64.0%

Resnet101 [49] 65.7%

Inceptionv3 [50] 67.7%

Ours 71.8%

epochs

L
o
ss

Loss-epochs

Figure 9. The training curve of the model. The training curve of the model. With the increase of epochs,
the loss decreases gradually, and the accuracy of the model is improved.

Figure 10. The confusion matrix of the identifying results based on remote sensing images.
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4.3. Classification Results Based on Single POI Data

4.3.1. Statistical Analysis of POI Data for Different Urban Functional Regions

To verify the correctness and rationality of the classification method based on POI data, the mean
frequency density and mean functional density of each urban functional regions are visualized in
Figure 11 and the comparison in Figure 12. From Figures 11 and 12, we find that the mean spatial
distribution of various urban function regions is discrepant, which reflects the main functional attributes
of the specific urban area to some extent. In addition, we can obtain the following phenomenon:

Industrial area: As is shown in Figure 11, the most POI category in this functional region is the
company business, with an extremely higher distribution density than other POI categories in this
region. Actually, the industrial areas consist mainly of companies and factories which are all labeled as
company business in POI map. In general, the functional attributes in this area are relatively simplex.
Compared in Figure 12, we found that otherwise the functional density of company business is higher
than other areas, but the frequency density is lowest in every POI category. It means that industrial
areas acquired minimum total number of POI in per unit area. Because the geographical location of
such functional area is always remote from city center, without a variety of functional facilities in usual.

Residence: This function area is used as residence of citizens since it has a comparatively balanced
POI distribution which is shown in Figure 11. Food and beverage, shopping service and life service
are the highest three categories which commonly exist in resident areas. It reveals the normal needs of
urban residents in their daily life. The other POI categories distribution is relatively flat, and the total
POI quantity is moderate.

(a) Industrial area (b) Residence

(c) Administration and public service (d) Green space and square

(e) Transportation zone (f) Commercial and business facility

Figure 11. The POI categories distribution in terms of Frequency density (bold line) and Functional
density (dash line) for various urban functional regions.
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Figure 12. Comparison of POI distribution in these urban functional regions.

Administration and public service: The proportion of Healthcare service, Government agency
and social organizations, Science and education culture in this urban function area are much higher
than that of other functional areas. However, Figure 12 shows that the distribution of above POI
categories is not all the most in this region function, since such POI categories like Healthcare and
government agencies and social organizations are not always appearing frequently. In addition, in
actual urban planning, government institution, schools and hospitals are regularly located in this area.
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Green space and square: As is shown in Figure 12, these areas have the second fewest POI in
most of the POI categories, which have little functional infrastructure due to the relatively remote
geographical location. In addition, in the POI categories distribution of this area, the famous scenery
is less than POI types such as food and beverage, shopping service, because this kind of POI is
comparatively special and only appears in a specific area, whose total number is generally at miniature
level. Nevertheless, the famous scenery plays the significant roles of POI configuration in this function
region, which almost hardly occurs in other function areas. In real urban stage, the famous scenery
of each city is mainly distributed in this functional area, which is mainly for tourism and leisure.
Therefore, shopping and food service POI are relatively abundant, which is conducive to people’s
daily life and entertainment needs.

Transportation zone: Compared with other urban function regions, the transport facility service
makes greatly efforts to the main distribution of POI configuration in Figure 11. In a word, the function
attribute is specialized and unitary in this area. People usually reach these regions only when they
need to make transportation and travel in daily life. Accordingly, it consists mainly of stations and a
large number of roads with some affiliated shopping and catering services.

Commercial and business facility: Regarding the other urban region functions, the frequency
density of nearly all the POI categories are higher than the above areas in Figure 12. That indicates the
absolute quantity of POI in this region far exceeds that of other regions, since these areas are always
located in the urban center, which is a large collection of POI in this city. Moreover, the shopping
service and company business are the two most abundant POI categories in this functional region
which are extremely higher than other POI distribution. There are a great many shopping malls,
convenience stores and commercial office buildings with various company business settled in the
urban status.

As is discussed above, the mean spatial distribution of each urban region functions is quite
different from each other, so the method we proposed to calculate the distance between POI distribution
of study area and the cluster centroids of each urban region functions is reasonable and can achieve
superior results.

4.3.2. Sensing Results Based on POI Data

For activity-based urban function analysis, the POI distribution is the most important data in
urban regions. For the sake of exploring the influence of frequency density and function density in
distance metric as well as the effect of different distance measures, the contrast experiments were taken
and shown in Table 4.

Table 4. The accuracy of single stage in different metric method based on POI attribute.

POI Attribute Metric Method Accuracy

Frequency density

Euclidean distance 51.5%

Chebyshev distance 54.6%

Pearson coefficient 63.6%

Cosine distance 60.6%

Functional density

Euclidean distance 63.6%

Chebyshev distance 57.6%

Pearson coefficient 66.7%

Cosine distance 69.7%

From Table 4, we figure that the frequency density and functional density embody different urban
function attribute. To some extent, the result indicates that the functional density is more effective than
frequency density based on the distance metric method proposed in our study. Compared with various
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metric method, the cosine distance makes best performance with accuracy of 69.7%. It proves that the
cosine distance is more valid than other traditional distance metric in text data process, which concerns
directionality except the numerical value. In addition, the Pearson coefficient is the decentration of
cosine distance, so the results are close with each other.

Figure 13 is the normalized confusion matrix of sensing results based on single POI data.
It represents that the recognition method based on POI data in our research can achieve quite fine
results in most urban functional regions. However, the accuracy of green space and square is just 33%.
It shows that there is still weakness in some urban functional regions based on the single data source.

Figure 13. The confusion matrix of the identifying results based on POI data.

4.4. Classification Results Based on Data Fused

In the cause of effectively distinguishing the urban region function of a specific urban area,
the RPF module plays a significant role in the multi-mode fusion framework we proposed since
the spatial geographic characteristics and functional distribution characteristics locate in different
dimensions. Accordingly, the selection of appropriate normalization mode in RPF module would
strongly affect the result of data fusion. Meanwhile, the dissimilar urban region function made diverse
influence of characteristic vectors in the study area. We assign different weights to each dimension
of the characteristic vectors, and the WG is normalized by the accuracy of identification based on
remote sensing images. To assess the capability of our RPF module for data fusion, we compared the
image-based, POI-base and fusion method in all. All the results are shown in Tables 5 and 6.

We report the results of diverse normalization methods used in the RPF module. Among them,
SoftMax and minmax normalization methods were widely used in the field of data processing.
However, SoftMax normalization would cause some data externalization, which would influence the
integration of characteristics. Table 6 manifests that compared with functional identification of urban
regions based on single data source, our multi-mode fusion framework improves the performance
obviously. In addition, assigning different weights to different dimensions make further efforts to
enhance the model performance.
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Table 5. The accuracy of different normalization method.

POI Attribute Normalization Method Accuracy

Frequency density
SoftMax 72.1%

Minmax-pro 59.3%

Minmax 72.2%

Functional density
SoftMax 76.7%

Minmax-pro 58.9%

Minmax 77.8%

Table 6. The accuracy of single stage in remote sensing images.

Method Accuracy

Remote sensing image-only 71.8%

POI-only 69.7%

Data fuse 77.8%

Data fuse(assign weights) 82.1%

To further analyze the algorithm in this study, a confusion matrix is shown in Table 7. It showed
that the framework we proposed of sensing urban functional regions had achieved overall accuracy of
82.14% and kappa coefficient of 75.2%. The area of transportation reached the highest user accuracy of
90%, the lowest for industrial area was 72%. In addition, the producer accuracy of residence attained
99% which was the highest in regions. However, the lowest producer accuracy of 38% was for the
commercial and business facility. Because not only the spatial geographic characteristic of this area in
remote sensing images were similar to that of the industrial area, but also the functional distribution
characteristic in POI data were semblable in these two areas in some extent. In addition, the total
number of commercial and business facility was less than industrial area, so the identification results
may be dominant by the features of industrial area. Except for commercial and business facility, the
accuracy of other regions is higher or flat compared to the results based on the single data source, and
more than 75%.

Table 7. The confusion matrix of the urban functional region extraction.

Urban Functional
Regions

Commercial and
Business Facility

Industrial
Area

Green Space
and Square

Administration and
Public Service Residence Transportation Producer

Accuracy

Commercial and
business facility 86 125 2 14 0 1 38%

Industrial area 1 326 0 78 0 0 80%

Green space
and square 21 0 285 27 32 12 76%

Administration and
public service 0 0 35 332 1 0 90%

Residence 1 0 0 2 373 2 99%

Transportation 0 0 11 2 20 131 80%

User Accuracy 79% 72% 86% 73% 88% 90%

Overall accuracy = 82.14%, kappa coefficient = 75.24%.

4.5. Examples of Sensing Urban Functional Regions

To illustrate that urban region functions can be recognized from integrating remote sensing images
and POI data in urban areas, we demonstrated some dynamic results in different situation in Figure 14.
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Figure 14. Some right examples of our proposed method in different situation. The ground truth
represents the urban region function of example area. The remote sensing image represents the spatial
geographic scenery of this area. The Actual POI distribution represents the actual POI distribution in this
area. The POI distribution of ground truth represents the POI distribution in this urban functional region.
The Normalized distribution vector V∗ = {LC, LI , LG, LA, LR, LT} represents the similarity calculated by
our distance metric method. In addition, the “C-Commercial and business facility”, “I-Industrial area”,
“G-Green space and square”, “A-Administration and public service”, “R-Residence”, “T-Transportation
zone”. The Result represents the identification of urban functional regions base on different data source.

As we can find that in some case such as the example of transportation zone, the classification
based on remote sensing images or POI both acquired the correct results, so the final fused model
also got the right result. However, in some instance, such as the examples of industrial area and
Administration and public service, the result based on single remote sensing image was correct
because of the obviously spatial geographic characteristic, and the result based on POI got the fallacious
classification because the actual POI distribution is similar to that of other categories. In addition, our
multi-mode framework integrated the different data source adequately and acquired the correct results.
Otherwise, such as the examples of residence, green space and square and commercial and business
facility had the highly similarity in POI distribution between the actual situation with the ground
truth and got the surefire result based on POI data. Despite the remote sensing images reflecting
the incorrect spatial geographic characteristic and led the error result, the final fused method also
identified the urban functional regions accurately.
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Despite the high accuracy of our model, there are still few urban functional regions that are
difficult to be identified accurately. Some examples of the false results in our model are shown in
Figure 15. The false are mainly focused on the commercial and business facility for the low accuracy
which have been shown in Table 7, and we will discuss the accuracy assessment in the next section.
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Figure 15. Some false examples of our proposed method in different situation. The special results of
our proposed method in different situation. The ground truth represents the urban region function of
example area. The remote sensing image represents the spatial geographic scenery of this area. The Actual
POI distribution represents the actual POI distribution in this area. The POI distribution of ground truth
represents the POI distribution in this urban functional region. The Normalized distribution vector
V∗ = {LC, LI , LG, LA, LR, LT} represents the similarity calculated by our distance metric method.
In addition, the “C-Commercial and business facility”, “I-Industrial area”, “G-Green space and square”,
“A-Administration and public service”, “R-Residence”, “T-Transportation zone”. The Result represents
the identification of urban functional regions base on different data source.

5. Discussion

Our experiments and results showed that the final accuracy was 82.14%, and it was higher than
the results of sensing urban functional regions based on single data source. Spatial geographical
characteristics in remote sensing images and functional distribution characteristics in POI data were
fused in our model to accurately identify urban functional regions. The proportion of these two
characteristics would affect the final recognition results of the model.

Specifically, the fused recognition results will be correct if both the sensing results based on remote
sensing images and POI data are accurate in urban regions. In addition, there are some urban regions,
whose POI distribution are very close to the cluster centroid of the actual category, and are correctly
labeled by the method based on single POI data. However, the sensing results of these regions based
on remote sensing images are wrong because of some fuzzy appearance features. Through the fusion of
characteristics in remote sensing images and POI data, these urban regions can be correctly identified.
Similarly, some urban functional regions are correctly labeled based on remote sensing images, and
their POI distribution are recognized as other categories. However, if their inter-class discrepancy in
the POI distribution is not large enough to outweigh the characteristics from remote sensing images,
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these urban regions can also be correctly identified by the fusion of spatial geographical characteristics
in remote sensing images and functional distribution characteristics in POI data.

In addition, some urban regions are difficult to be correctly labeled by our model. For example,
the sensing results based on remote sensing images and POI data are both incorrect, or the discrepancy
of spatial geographical characteristics or functional distribution characteristics is so large that these
regions cannot be identified accurately. To further solve these deficiencies, we discuss the improvement
and solution from remote sensing images and social sensing data, respectively.

On the one hand, for part of remote sensing images in different urban functional regions, their
appearance features could be very similar in vertical angle, which would increase classification errors.
For this kind of situation, we take more three-dimensional information into account, such as the
height of the buildings, etc. which could be acquired from LIDAR or other sources. In addition, the
atmosphere factor will also affect the appearances of images, the suitable atmospheric correction will
be used in future research. The spatial geographical characteristics of urban functional regions will be
reflected more comprehensively by these ways, and different categories will be better differentiated.

On the other hand, apart from POI data, many social sensing data can also be obtained, such
as mobile phone data, public transport data and social media data. In the future research, more
social sensing data will be further integrated into our model, and the impact of human activities
will be considered for refined sensing urban functional regions. Meanwhile, there are many mixed
urban region function types in the city, which cannot be accurately identified by the existing methods.
Therefore, how to build a more professional and reasonable model to sensing these special mixed
functional regions is also one of our research directions.

Despite the above shortcomings, the model proposed in this study can accurately sense the main
urban functional regions. In addition, this research can not only help urban planners to make more
reasonable urban planning schemes and accurately sense the changes of urban region functions, but
also would play an important role in other fields such as environment protection and infrastructure
construction.

6. Conclusions

In this paper, a new multi-mode framework is developed for the recognition of urban region
functions by integrating spatial geographic characteristics of remote sensing images and functional
distribution characteristics of social sensing data of POI. The two characteristics in different
dimensions are fused to further improve the identification performance of urban land use functions.
The experimental results showed that the integration of remote sensing images and POI could refine the
classification and improve accuracy in urban region function recognition based on single data resource
previously. The final accuracy of our model is 82.14%. It represents that the spatial geographical
characteristics in remote sensing images and the functional distribution characteristics in POI data
play positive roles in the recognition of urban functional regions. In addition, an effective new method
is proposed for integrating these two data in sensing urban functional regions. A big city will be better
understood through the accurate sensing of urban functional regions and it will benefit a variety of
aspects, such as urban planning and infrastructure construction.

In future research, we will further consider 3D information in remote sensing images and
integrating additional social sensing data into our framework, such as human mobility and public
transport data. Otherwise, the recognition of mixed urban functional regions is also one of our future
research directions.
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