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Abstract (297 words) 1 

Background:  2 

Dietary assessment in research and clinical settings is largely reliant on self-reported 3 

questionnaires. It is acknowledged that these are subject to measurement error and biases 4 

and that objective approaches would be beneficial. Dietary biomarkers have been purported 5 

as a complimentary approach to improve accuracy of dietary assessment. Tentative 6 

biomarkers have been identified for many individual fruit and vegetables (FV) but an objective 7 

total FV intake assessment tool has not been established. 8 

Objective:  9 

We aimed to derive and validate a prediction model of total FV intake (TFVpred) to inform 10 

future biomarker studies.  11 

Methods:  12 

Data from the National Diet and Nutrition Survey (NDNS) were used for this analysis. A 13 

modelling group (MG) consisting of participants aged >11 years from the NDNS years 5-6 was 14 

created (n=1746). Intake data for 96 FVs were analysed by stepwise regression to derive a 15 

model that satisfied three selection criteria: standard error of the estimate (SEE) ≤80, R2>0.7, 16 

and ≤10 predictors. The TFVpred model was validated using comparative data from a 17 

validation group (VG) created from the NDNS years 7-8 (n=1865). Pearson’s correlation 18 

coefficients were assessed between observed and predicted values in the MG and VG. Bland-19 

Altman plots were used to assess agreement between TFVpred estimates and total FV intake. 20 

Results:  21 

A TFVpred model, comprised of tomatoes, apples, carrots, bananas, pears, strawberries and 22 

onions, satisfied selection criteria (R2=0.761, SEE=78.81). Observed and predicted total FV 23 
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intake values were positively correlated in the MG (r=0.872, P<0.001, R2=0.761) and the VG 24 

(r=0.838, P<0.001, R2=0.702). In the MG and VG, 95.0% and 94.9% of TFVpred model residuals 25 

were within the limits of agreement, respectively. 26 

Conclusions:  27 

Intakes of a concise FV list can be used to predict total FV intakes in a UK population. The 28 

individual FVs included in the TFVpred model present targets for biomarker discovery aimed 29 

at objectively assessing total FV intake.  30 

Keywords: fruit and vegetables, prediction model, dietary assessment, biomarkers, dietary 31 

questionnaires.  32 
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Background 33 

Non-communicable diseases (NCDs) accounted for 71.3% of worldwide mortality in 2016 (1). 34 

The objective measurement of modifiable risk factors is vital in informing strategies to reduce 35 

the public health burden incurred by NCDs.  Fruit and vegetable (FV) intake has been 36 

associated with a lower risk of cardiovascular disease (2–5), type 2 diabetes (6,7), and some 37 

forms of cancer (2,8). These NCDs accounted for approximately 28.6 million deaths in 2016, 38 

equating to half of global mortality (1), thus increasing FV consumption presents a potential  39 

opportunity to reduce the burden of disease.  40 

Recent meta-analyses assessing the relationship between the quantity of FV intake and 41 

relative risk of all-cause mortality have produced equivocal results. Findings consistently 42 

indicate that relative risk of all-cause mortality is proportionately lower with increased 43 

consumption of FVs, yet the reported plateau in risk reduction ranges from 5 servings (5), to 44 

10 servings of FV per day (2). This two-fold variation in the threshold of daily FV consumption 45 

at which there is the lowest relative risk of all-cause mortality is congruent with disparities in 46 

public health recommendations. The World Health Organization and Public Health England 47 

currently recommend the consumption of at least five servings (400 g) of FV per day (9,10), 48 

whereas the Danish Ministry of Food recommend the equivalent of 7.5 servings (600 g) per 49 

day (11). Findings from Aune et al. (2) infer that current recommendations, such as the UKs 50 

presented in the Eatwell Guide (9), may not sufficiently encourage higher levels of FV 51 

consumption that pertain to a lower risk of all-cause mortality. The evidence regarding 52 

optimal daily intake of FVs remains inconclusive, thus presenting a barrier toward informing 53 

public health recommendations, emphasising the necessity for further elucidation of the 54 

relationship between FV intake and NCDs. 55 
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Epidemiological studies aiming to determine diet-disease relationships assess dietary intake 56 

using self-report methods such as food diaries, 24-hour recalls and food frequency 57 

questionnaires (12–14). While necessary for obtaining data representative of habitual dietary 58 

intake, such methods are inherently subject to measurement error and biases and can be 59 

burdensome on participants (12,15–17). A more succinct method of intake data collection, 60 

i.e. reporting a single food group of interest could alleviate the burden on participants, while 61 

conversely reducing the utility of the data when the exploration of whole diet-disease 62 

associations is required. Appropriate study designs and methodologies can mitigate the 63 

measurement error and biases inherent to self-report methods (18). A combined approach, 64 

comprised of the simultaneous measurement of dietary biomarkers and self-report methods 65 

has been purported to improve the accuracy of dietary exposure measurements, thus 66 

facilitating the elucidation of diet-disease relations (18,19).  67 

Candidate dietary exposure biomarkers for the objective measurement of total FV intake, 68 

including carotenoids and polyphenols (20,21), have been explored and shown to have limited 69 

utility. The establishment of an objective tool to assess total FV intake, rather than individual 70 

FV intake, has not yet proved efficacious or been validated (22). Untargeted metabolomic 71 

techniques are increasingly prevalent within the literature, making significant progress in the 72 

identification and quantification of specific dietary exposure biomarkers (23,24). The 73 

predominant focus of this research has been identifying single biomarkers for specific 74 

foods/food groups. Further to the identification of novel biomarkers, the use of a panel of 75 

biomarkers, by measuring a number of metabolites pertaining to a food/food group for a 76 

more accurate representation of dietary exposure, has been proposed (25). Multi-metabolite 77 

biomarker panels (MBPs) have been identified for the quantification of walnuts (26), bread 78 
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(27), cocoa (28), orange juice (29), wine (30) and whole dietary patterns (31,32), however a 79 

panel for total FV intake is yet to be established.  80 

The National Diet and Nutrition Survey (NDNS) is a continuous, cross-sectional survey, 81 

designed to collect detailed quantitative information on the food consumption, nutrient 82 

intake and nutritional status of the UKs general population (33). Analysis of these data can 83 

provide novel insight into total FV eating habits. The aim of this research was to identify a 84 

concise number of FVs that are predictive of total FV intake. Identifying such FVs stands to 85 

direct future metabolomic biomarker studies that pursue the objective measurement of FV 86 

intake.   87 

Methods 88 

Study Design 89 

This study analysed cross-sectional intake data of individuals from years 5-6 (2012/13 – 90 

2013/14) and years 7-8 (2014-15 – 2015/16) of the NDNS rolling programme (33,34). The 91 

modelling dataset (years 5-6) and validation dataset (years 7-8) were retrieved from the UK 92 

data archive in September 2017 and January 2019, respectively.  93 

Data Source 94 

Full methodological details of the NDNS have been described elsewhere (35). In short, the full 95 

NDNS years 5 - 6 dataset was comprised of 2,546 participants (age 30 ± 24 years, mean ± SD) 96 

recruited from 323 postal sector random sampling units across the UK. Data were collected 97 

over 12 months to account for seasonal variation. Samples were stratified by country, 98 

ensuring proportional representation from England, Scotland, Wales and Northern Ireland. 99 

Following initial interviews to obtain background information and familiarise participants with 100 

the intake data collection method, 4-day food diaries were completed and participants over 101 
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the age of 4 years who consented to a nurse visit had anthropometric measurements (height, 102 

weight, waist and hip circumference, demi-span, blood pressure), and blood and urine 103 

samples taken. The modelling group (MG) dataset was obtained from this sample and 104 

included all participants > 11 years old (n = 1746). 105 

Data Processing 106 

The faction of NDNS data used in the current analysis consisted of food and drink 107 

consumption data collected using 4-day un-weighed food diaries (portions were quantified 108 

by household measures). Participants recorded the contents of all eating and drinking 109 

occasions over four consecutive days, including one weekend day. Food diaries were 110 

processed and coded using an adapted version of Health Nutrition Research’s dietary 111 

assessment system DINO (Diet In Nutrients Out) (36). DINO disaggregates composite items 112 

and items that differ by preparation into individual foods with a unique code. The current 113 

analysis aggregated data of the same fruit/vegetable with differing codes, to form a daily 114 

intake value for individual FVs (g/day). Fruit juices, potatoes, and pulses (except for green 115 

beans, runner beans, and broad beans) were excluded from the analysis due to differences in 116 

nutrient composition from FV as included in the UK Eatwell Guide (9).  We multiplied dried 117 

fruit intake by three, based on the respective water and micronutrient content, to standardize 118 

dried and non-dried FV intake (34). Supplementary Table 1 outlines the details of individual 119 

FV intake data aggregation, FV consumption prevalence and mean daily intake in consumers 120 

only. Daily intake of 96 FVs were calculated and used as potential predictor variables. 121 

Individual FV intakes were summed to calculate total FV intake (g/day).  122 
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Statistical Analysis 123 

All data were obtained and processed using IBM SPSS Statistics 24 (SPSS, Inc., Chicago, IL, 124 

USA) and analysed using Stata version 15 (College Station, TX: StataCorp LLC). The 125 

assumptions of multiple linear regression analysis were satisfied prior to analysis. Normality 126 

of residuals and homoscedasticity of the data were confirmed, and no transformations were 127 

applied to any variables.  All potential predictors had a linear relationship with total FV intake.  128 

We conducted automated forward stepwise regression analyses. Models began with an 129 

intercept and were iteratively constructed by selecting the predictor variable (individual FV 130 

intake) that accounts for the most unique variance in total FV intake. Subsequent models 131 

incorporated the individual fruit or vegetable that accounted for the most unique variance in 132 

total FV intake among the remaining predictor variables. Predictor variables were added with 133 

each model iteration until there was no longer an improvement in total FV intake variance 134 

accounted for by the model. Regression significance (P < 0.05) was taken to indicate that the 135 

independent variable predicts total FV intake. The variance inflation factor (VIF) was used to 136 

quantify correlation of predictors in a model, to detect any collinearity.  Regression 137 

coefficients represent the mean change in outcome for one unit of change in the predictor 138 

variable and were used to compile regression the equation. The standard error of the 139 

estimates (SEE) was calculated and R2 used to denote the proportion of variance in total FV 140 

intake explained by each model. 141 

Model Selection Criteria 142 

The rationale underpinning model selection criteria was to produce a regression equation 143 

that could be used to facilitate the discovery of FV biomarkers. The future utility of the model 144 

is dependent upon having few predictors to moderate the extent of biomarker measurement 145 
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required, while explaining a large proportion of the variance in predicted total FV intake. We 146 

established iterative models that satisfied three pragmatically determined selection criteria; 147 

a SEE ≤ an 80 g FV serving, variance in total FV intake (R2) > 0.7, and the number of predictors 148 

in the model was capped at 10 to produce a concise assessment tool. Comparative 149 

assessment of regression models was facilitated by calculating adjusted R2, Akaike 150 

information criterion (AIC), Bayesian information criterion (BIC) and penalised likelihood ratio 151 

(LR) testing. The aim of all comparative assessments was to ensure that all subsequent models 152 

were an improvement on the previous model.  153 

Model Validation 154 

Validation of the final total FV prediction model iteration (TFVpred) was conducted using a 155 

novel dataset from the NDNS years 7-8, with participants aged > 11 years. NDNS data 156 

collection methodologies were consistent with the years 5-6 used as the MG. The current 157 

analysis applied the same data processing procedure described above to the validation group 158 

(VG) dataset to obtain comparable FV intake data. The TFVpred equation was applied to the 159 

VG dataset to predict total FV intake (g/day). Pearson’s r correlation coefficient was measured 160 

to determine linearity between observed and predicted total FV values. Correlational 161 

coefficient of determination (R2) was calculated to measure the amount of variance in 162 

TFVpred estimated total FV intake explained by the observed total FV intake. Correlational 163 

analysis was conducted with observed and predicted FV intake in vegetarian and vegan 164 

subsets of the MG and VG to assess the validity of the prediction model in a subset of the 165 

population with known differences in FV consumption patterns. Bland-Altman plots were 166 

generated to assess the agreement between TFVpred estimates and observed total FV intake 167 

in modelling and validation groups. Limits of agreement were plotted at ± 1.96 SDs of the 168 

mean difference between the observed and predicted values of total FV intake. 169 
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Results 170 

Multiple Linear Regression Models for prediction of total FV intake  171 

In total, 4-day food diaries were analysed from 1746 participants in the MG, and 1865 172 

participants in the VG. Forward stepwise regression model summaries are displayed in Table 173 

1. Total FV prediction model 7 (TFVpred) was the first model iterated that met all model 174 

selection criteria, with an R2 > 0.7, a SEE < 80 and contained ≤ 10 predictor variables. All seven 175 

models predicted total FV intake (P < 0.05). The proportion of variance explained by 176 

regression models (R2) increased from 0.277 to 0.761 between models 1 and 7. Incremental 177 

reductions in SEE were observed with each regression model including a novel predictor. 178 

TFVpred, comprised of seven predictor FV coefficients and constant, is displayed in Eq. 1: 179 

𝐓𝐅𝐕𝐩𝐫𝐞𝐝 = 𝟏. 𝟕𝟕𝟑(𝐭𝐨𝐦𝐚𝐭𝐨𝐞𝐬) +  𝟏. 𝟒𝟐𝟖(𝐚𝐩𝐩𝐥𝐞𝐬) +  𝟐. 𝟒𝟑𝟗(𝐜𝐚𝐫𝐫𝐨𝐭𝐬) +  𝟏. 𝟐𝟏𝟏(𝐛𝐚𝐧𝐚𝐧𝐚𝐬) +180 

 𝟏. 𝟒𝟐𝟐(𝐩𝐞𝐚𝐫𝐬) + 𝟏. 𝟕𝟏𝟒(𝐬𝐭𝐫𝐚𝐰𝐛𝐞𝐫𝐫𝐢𝐞𝐬) +  𝟏. 𝟓𝟏𝟗(𝐨𝐧𝐢𝐨𝐧𝐬) + 𝟐𝟗. 𝟖𝟖(𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭).  181 

The TFVpred equation highlights the seven predictor FVs accounting for the most variance in 182 

total FV intake, namely tomatoes, apples, carrots, bananas, pears, strawberries and onions, 183 

thus presenting targets for intake biomarker discovery. Five FVs included in the TFVpred 184 

model (tomatoes, onions, carrots, bananas and apples) were within the top six most 185 

commonly consumed FVs (as per number of consumers), while strawberries and pears were 186 

within the top 15 and 24, respectively (Supplementary Table 1). All predictor variable FVs 187 

were within the top 40 FVs for mean daily intakes in consumers only.  188 

Model Comparison 189 

Comparison of regression models is shown in Table 2. The variance in total FV intake 190 

explained by models, when corrected for the number of predictors, incrementally increased 191 

with additional model iteration. The size of incremental augmentation in adjusted R2 192 
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diminished as regression models progressed, with the maximum change being an increase of 193 

0.174 from model 1 to model 2, and the smallest change was 0.028, observed between 194 

models 6 and 7. Penalised-LR criteria, AIC and BIC, are presented for each model in Table 2. 195 

AIC and BIC values were incrementally smaller as more predictors were added to the 196 

regression models. LR tests for nested models were significant with all subsequent iterations, 197 

indicating successive improvements in goodness of fit. 198 

Model Validation 199 

In the MG, observed and predicted values of total FV intake were positively correlated (r = 200 

0.872, P < 0.001) with an R2 = 0.761 (Figure 1A). Observed and predicted total FV intake values 201 

in the VG were also positively correlated (r = 0.838, P < 0.001) with an R2 = 0.702 (Figure 1B). 202 

Bland-Altman plots determined there was good agreement between observed and predicted 203 

total FV intake values, with the MG (Figure 2A) and VG (Figure 2B) demonstrating 95.0% and 204 

94.9% of residuals were within the limits of agreement, respectively. Observed and predicted 205 

total FV intake values within vegetarian and vegan subsets were positively correlated in the 206 

MG (r = 0.882, P < 0.001, R2 = 0.777, Supplementary Figure 1A) and VG (r = 0.839, P < 0.001, 207 

R2 = 0.704, Supplementary Figure 1B). 208 

Discussion  209 

To our knowledge, this is the first study to elucidate a concise group of individual FVs that are 210 

predictive of total FV intake, accounting for 76.1% of total variance. The 7th model iteration, 211 

TFVpred, was the first to satisfy predetermined selection criteria and was subsequently used 212 

to predict total FV intake in the VG, using individual intake values of tomatoes, apples, carrots, 213 

bananas, pears, strawberries and onions. Correlational analysis and Bland-Altman plots were 214 

used to assess the efficacy of the TFVpred model when applied to the VG and demonstrated 215 
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strong agreement between observed and predicted values. TFVpred thus provides a potential 216 

assessment tool in estimating total FV intake, where valid measurements of seven individual 217 

FV intakes (tomatoes, apples, carrots, bananas, pears, strawberries and onions) are available. 218 

A multitude of comparisons between models were conducted to determine that TFVpred 219 

outperforms other models by AIC, BIC and LR test statistics, thereby the most appropriate 220 

model for estimating total FV intake (37). This research has the potential to consolidate the 221 

applicability of existing individual FV measurements obtained using dietary questionnaires. 222 

Furthermore, the identified FVs signify clear targets for novel biomarker discovery. 223 

Subsequent integration of validated biomarkers within the TFVpred equation provide 224 

additional utility as a potential tool for total FV intake estimation.  225 

Dietary Questionnaires 226 

Self-report methods of dietary intake assessment, such as food diaries, 24-hour recalls and 227 

food frequency questionnaires, have been a longstanding topic of debate in nutritional 228 

research (17,38), while remaining the most prevalent techniques to assess diet-disease 229 

relationships (4,39). Critics state that the reliance on memory and the influence of 230 

researcher/social-approval biases can incur random and systematic measurement errors, 231 

such as the over-reporting of FV intake (12–14,17). Furthermore, the accuracy of self-232 

reported data may be influenced by the ability of individuals, or the sensitivity of the 233 

assessment method, to quantify the size and contents of a FV serving (40,41). Proponents of 234 

self-report methods acknowledge that while limitations exist, study design considerations 235 

and corrections for measurement error can be applied to gather insightful intake data, 236 

currently unobtainable using other means (42,43). The NDNS dataset used in the current 237 

study aimed to collect data accurately pertaining to the UK population by mitigating the effect 238 

of some of these limitations through appropriate study design. Daily food diaries were 239 
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completed over four consecutive days to minimise reliance on memory (42). Upon completion 240 

of food diaries, trained interviewers met with participants to aid the quantification of the food 241 

diary constituents, where original visual aids were insufficient (35). The NDNS dataset 242 

presents a useful source when compiling inferential statistical models, as in the present 243 

analysis. Given the robustness of the NDNS methodology, validation with an updated NDNS 244 

dataset was necessary and demonstrated the efficacy of the TFVpred model as a practical tool 245 

for total FV intake estimation.  246 

Novel assessment of total FV intake using the TFVpred model could utilise existing methods 247 

of individual FV intake from dietary questionnaires. Measurements could be obtained via 248 

amended food frequency questionnaires, i.e. condensed to include only FV assessment, 249 

providing sufficient validation is conducted (39,44,45). Kristjansdottir et al. (44) reported that 250 

FV intake estimated using a combined 24-hour recall and food frequency questionnaire was 251 

associated with 7-day food diary reported intake, with a spearman’s coefficient of 0.73 (P < 252 

0.001). Furthermore, Block et al.(46) correlated FV intake obtained using 100-item food 253 

frequency questionnaires (47), and a single page screener questionnaire, reporting a 254 

spearman’s coefficient of 0.71 (P < 0.001). Using a screener to assess FV intake could provide 255 

a time-effective alternative to a lengthy questionnaire and provide specific FV intake data. A 256 

practical application of the predictive FVs identified in the present analysis would be to 257 

incorporate these FVs in screener questionnaires or as prompts in multiple pass dietary 258 

assessment methods. Adopting such changes may increase the accuracy of dietary intake 259 

data, though amendments to validated dietary assessment tools would require subsequent 260 

validation. Incorporating measurements of the FVs identified in the TFVpred model within 261 
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existing dietary questionnaires presents an inexpensive tool for internal validation to improve 262 

the precision of dietary intake assessment.   263 

Combining Dietary Questionnaires and Biomarkers 264 

The prevailing recommendations from prominent research groups within the field of nutrition 265 

and dietary assessment include the combined assessment of diet using dietary questionnaires 266 

and biomarker quantification (18,19,25). A prospective application of the TFVpred model 267 

validated in the present analysis would be to integrate biomarker assessments for the seven 268 

FVs, providing an objective assessment tool that can be obtained from biological samples and 269 

be used to assess FV exposure alongside appropriately conducted questionnaires. The NDNS 270 

represents an example of how this may be achieved, due to the concurrent collection of self-271 

report data and urine samples, however the assessment of a validated FV biomarker 272 

assessment panel is yet to be established (35). Systematic reviews exploring the efficacy of 273 

objective assessments of FV intake by dose-dependent concentration biomarkers have 274 

ascertained that no single candidate biomarker can accurately measure total FV intake 275 

(20,48). However, putative dose-dependent urinary biomarkers have been identified for 276 

some FVs including grapes (49), peas, apples, onions (50), red cabbage, strawberries and 277 

beetroot (31). Prevalent techniques aiming to identify a panel of biomarkers pertaining to 278 

individual foods/food groups include targeted and untargeted tandem high-performance 279 

liquid-chromatography mass-spectrometry, as well as proton nuclear magnetic resonance 280 

spectroscopy, with subsequent multivariate modelling (Principal Component-Discriminant 281 

Analysis, Partial Least Squares, and Random Forest Classification) (27,32,51). This has led to 282 

the identification of numerous metabolites purported as biomarkers of dietary exposure, 283 

although validation as dose-dependent biomarkers of intake, necessary prior to TFVpred 284 
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model integration,  is less pervasive (49,52,53). The specificity of putative biomarkers ranges 285 

from individual foods (including FVs) to broad dietary pattern identification (32,54,55). 286 

Potential confounding factors for biomarker identification include inherent genetic variance 287 

between individuals, physiological and lifestyle factors that may influence metabolism, 288 

biological sample handling and the analytical methodology (22). Future research should aim 289 

to negate some of these factors. For example, Garcia-Aloy et al. (25) propose the use of MBPs 290 

to provide an insight into dietary exposure. MBPs enable the simultaneous measurement of 291 

numerous metabolites that pertain to a specific food/food group, capturing a broader faction 292 

of dietary exposure. Once validated, prospective MBPs of individual FV intake could be 293 

integrated with the regression equation modelled in the present study as a method of 294 

estimating total FV intake. Dragsted et al. (56) identified a stringent set of post-discovery 295 

validity criteria for biomarkers, including assessments of: 1) biochemical plausibility and 296 

stability, 2) dose-dependency with low abundancy when intake is zero and saturation kinetics, 297 

3) time-responsiveness to inform when biological samples can be collected, 4) robustness 298 

after co-ingestion with other foods, 5) reliability to ensure biomarkers are comparable to 299 

assessments from other questionnaire or biomarker measurements, 6) a reproducible 300 

analytical methodology. Meeting these standards is imperative if biomarkers are to improve 301 

the precision and accuracy of dietary assessment. Considerable work is necessary to elucidate 302 

in particular time-responsiveness and dose-dependency of putative FV biomarkers (25). At 303 

present, the limitations associated with both facets of dietary assessment cannot be fully 304 

alleviated by adopting sole usage of the alternate technique, thus combinations of dietary 305 

questionnaires and biomarker assessments should be explored (16,25).  306 
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Strengths & Limitations 307 

FV servings of 80 g were used in the present analysis to compute regression models, thus FVs 308 

that deviated from the standard 80 g serving sizes, such as dried fruits, required numerical 309 

transformation prior to be considered a FV portion. This was conducted to prevent the 310 

potential exclusion of a subset of FVs that contribute to total FV intake, but do not constitute 311 

a regular FV serving. Some semi-dried fruits were not included in the current analysis due to 312 

the unknown composition of portion sizes. Consistent with other nutritional epidemiology 313 

research (57,58), children aged < 12 years (MG, n = 763; VG, n = 822) were excluded from the 314 

current analysis to mitigate the systematic error incurred by having dissimilar eating trends 315 

and serving sizes to adolescents and adults. As the current analysis was conducted using 316 

intake data from UK based participants ≥ 12 years, prospectively the TFVpred model should 317 

not be used to estimate total FV intake in children < 12 years. Deriving the TFVpred model 318 

using stepwise linear regression modelling and pragmatic predetermined selection criteria 319 

facilitated the formation of a model that included a combination of influential FVs that were 320 

predictive of total FV intake and frequently consumed in the population. TFVpred predictor 321 

FVs were among the most pervasively consumed in the MG and VG, indicating good suitability 322 

within a UK population. Future research should investigate the efficacy of the TFVpred model 323 

in other developed countries and further validation is required prior to use in non-UK based 324 

populations, as FV intake is variable between countries (59,60).  A prominent challenge within 325 

the present study was producing a model with a small number of predictors that captured a 326 

substantial proportion of the variance in total FV intake, without including relevant cofactors 327 

such as socioeconomic status(61,62), food availability(63) and vegetarianism(64). The 328 

TFVpred model predictions were accurate for subsets of the population known to have 329 

different FV consumption patterns, as demonstrated by the correlation between observed 330 
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and predicted total FV intake in vegetarians and vegans. The TFVpred model also performed 331 

well across a broad variety of FV intakes, the small proportion of individuals that fall outside 332 

the upper LOA. Bland-Altman plots (Fig. 2) indicate that 4.70 % and 4.86 % of individuals in 333 

the MG and VG, respectively, fall outside the upper LOA, thus consuming a variety of FVs that 334 

are not accounted for by the model. The simultaneous assessment of cofactors of total FV 335 

intake and additional FVs would increase the accuracy of prediction models, however the aim 336 

of the present study was to identify a concise number of predictor FVs that can be integrated 337 

into dietary questionnaires to reliably estimate total FV intake in a UK population and identify 338 

targets for biomarker discovery, rather than establish a multifaceted prediction model of total 339 

FV intake.  340 

Conclusions 341 

The TFVpred model (Eq. 1) established in the current study provides a valuable tool for 342 

estimating total FV intake. Future utility of the TFVpred model would be improved with the 343 

integration of dose-dependent biomarkers/MBPs for the FVs that predict total FV intake 344 

(tomatoes, apples, carrots, bananas, pears, strawberries and onions). The identification of 345 

these FVs, through the establishment and validation of the TFVpred model provides a clear 346 

pathway for future research by identifying dose-dependent biomarker targets. Advances in 347 

biomarker identification and validation provide a valuable opportunity to obtain objective 348 

assessments of total FV intake that, in parallel with appropriate self-report techniques, could 349 

denote notable improvements in the accuracy of dietary assessment. 350 
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Tables 

Table 1 – Multiple linear regression models using individual fruit and vegetable (FV) intake 

data from the National Diet and Nutrition Survey Rolling Programme years 5-6 to predict total 

FV intake (n = 1746). 

Model 

Predictor  

Variables 

Regression 

P value Constant 

Regression  

Coefficient 

(β) R
2
 

Standard Error 

of the Estimate 

Variance 

Inflation 

Factor 

1 Tomatoes < 0.001 134.089 2.672 0.277 136.81 1.00 

2  Tomatoes < 0.001 104.069 2.352 0.451 119.24 1.02 

Apples < 0.001   2.030     1.02 

3  Tomatoes < 0.001 69.595 2.277 0.567 105.92 1.02 

Apples < 0.001   1.823     1.04 

Carrots < 0.001   2.982     1.02 

4  Tomatoes < 0.001 46.973 2.091 0.664 93.26 1.04 

Apples < 0.001   1.546     1.07 

Carrots < 0.001   2.849     1.02 

Bananas < 0.001   1.406     1.06 

5  Tomatoes < 0.001 45.125 2.060 0.702 87.91 1.04 

Apples < 0.001   1.452     1.08 

Carrots < 0.001   2.720     1.03 

Bananas < 0.001   1.292     1.08 

Pears < 0.001   1.362     1.05 

6 Tomatoes < 0.001 39.892 1.995 0.732 83.33 1.04  
Apples < 0.001   1.453     1.08  
Carrots < 0.001   2.673     1.03  

Bananas < 0.001   1.250     1.08  
Pears < 0.001   1.391     1.05  

Strawberries < 0.001   1.762     1.01 

7 Tomatoes < 0.001 29.877 1.773 0.761 78.81 1.11  
Apples < 0.001   1.428     1.08  
Carrots < 0.001   2.439     1.05  

Bananas < 0.001   1.211     1.08  
Pears < 0.001   1.422     1.05  

Strawberries < 0.001   1.714     1.01  
Onions < 0.001   1.519     1.11 

 

Table 2 – Comparison of multiple linear regression models using individual fruit and vegetable 

(FV) intake data from the National Diet and Nutrition Survey Rolling Programme years 5-6 to 

predict total FV intake (n = 1746). 
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Model 

Cumulative 

Predictor 

Variables 

Adjusted 

R
2
 

Change in 

adjusted R
2
 

Akaike       

information 

criterion 

Bayesian   

information 

criterion 

Likelihood 

Ratio 

Models 

Tested 

Likelihood 

Ratio Test  

statistic 

Likelihood 

Ratio Test  

P 

1 Tomatoes 0.276 - 22133 22144 - -   

2 Apples 0.450 0.174 21654 21670 1 and 2 481.13 < 0.001 

3 Carrots 0.566 0.116 21241 21263 2 and 3 414.65 < 0.001 

4 Bananas 0.664 0.098 20798 20825 3 and 4 445.38 < 0.001 

5 Pears 0.701 0.037 20592 20625 4 and 5 207.35 < 0.001 

6 Strawberries  0.732 0.031 20406 20445 5 and 6 187.86 < 0.001 

7 Onions  0.760 0.028 20213 20256 6 and 7 195.84 < 0.001 

 

Figures 

 

 

Figure 1 - Correlation between observed and predicted total FV intake using the TFVpred 

equation for the (A) modelling group (NDNS years 5-6, n = 1746) and (B) validation group 

(NDNS years 7-8, n = 1865). FV, fruit and vegetable. 
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Figure 2 - Bland-Altman plots of total FV intake predictions in the modelling group (A, n = 

1746) and validation group (B, n = 1865). Plots display the difference between total FV intake 

measured by the NDNS and total FV intake predicted by TFVpred model vs. the observed and 

predicted mean. Limits of agreement (dotted lines) are displayed at ± 1.96 SDs of the mean 

difference between the observed and predicted values of total FV intake. FV, fruit and 

vegetable. 
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