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Abstract

The mixture, or suspension balance, model is the most frequently used to describe shear-induced

particle migration in Newtonian fluids. The model suggests that neutrally buoyant particles migrate

only if the effective stress tensor of the solid phase is nonuniform. In moderately dense suspensions,

where direct particle contacts and interparticle forces are negligible, this tensor originates from the

velocity fluctuations of the particles. Using Buyevich’s [3] constitutive equation, we show that the

time required by these fluctuations to induce significant particle migration exceeds considerably the

time scale of the process, obtained experimentally. In particular, the ratio between these two time

scales is proportional to the reciprocal of the Reynolds number; hence, for vanishingly small values

of the Reynolds number (the case on which this work focuses), particle velocity fluctuations cannot

be responsible for particle migration. We conclude that, if direct particle contacts and interparticle

forces are absent, particle migration must have another driver. In the literature, it has been

suggested that this is the lubrication forces between the particles. On this assumption, Morris and

Boulay [15] advanced a closure for the solid effective stress tensor. This closure seems to predict

well the migration process, but as discussed by Nott et al. [28], it presents some conceptual issues.

We investigate this matter and show that lubrication forces can induce particle migration, and the

tensor quantifying their effect can be closed by Morris and Boulay’s equation; however, this tensor

is not part of the effective stress tensor of the solid phase.
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I. INTRODUCTION

Over nearly four decades, researchers have been investigating the migration of particles

in Newtonian liquids, experimentally, theoretically and computationally. This phenomenon

is important in many industrial applications and laboratory measurements. For instance, in

pharmaceutical and food manufacturing lines, where suspensions have to be kept as uniform

as possible, migration is detrimental; similarly, in mining and oil & gas industries, where

pipelines are long, it can cause severe problems, such as particle segregation and build-up.

Migration also affects laboratory measurements, since in them mixtures must be uniform [1].

One familiar example is the measurement of the effective viscosity of a suspension. Indeed,

it was during such a measurement that particle migration toward regions of low shear rate

was first detected [2], a phenomenon known as shear-induced particle migration.

Shear-induced particle migration is a collective effect of the fluid-mediated interactions of

several particles and occurs in (moderately) dense suspensions [3]. This process has nothing

in common with the ‘tubular pinch’ effect reported by Segré and Silberberg [4], which results

from the interaction between an individual particle and the ambient fluid and originates from

the inertia of the fluid in its motion relative to the particles. Shear-induced particle migration

is not driven by inertia and also happens in mixtures with vanishingly small particle Reynolds

number, even if the particles are not Brownian. In fact, these mixtures – where inertial and

Brownian effects are negligible – are the target of our paper.

To describe the behavior of suspensions, and specifically shear-induced particle migration,

most researchers have adopted the mixture model [e.g., 5–12]. This treats the suspension as

an effective fluid and holds when the velocity fields of the fluid and solid phases relax to local

equilibrium rapidly; more specifically, the time the fields require to equilibrate must be much

shorter than the characteristic time scale of the flow [13, 14]. This condition is usually met for

suspensions of micron-size particles in very viscous fluids, the focus of our work. The mixture

model consists of i) a continuity equation and a linear momentum balance equation for the

mixture, which yield its density and velocity fields, ii) a continuity equation for the solid

phase, which yields its volume fraction field, and iii) a dynamical equation, which yields the

migration velocity of the particles. This last equation features the effective stress tensor of

the solid phase [e.g., 14, 15] and predicts that neutrally buoyant particles (the focus of this

and most studies in this field) may migrate only if this tensor is nonuniform. So, to predict

the migration velocity, researchers need an accurate constitutive equation for this quantity.
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Deriving such an equation is extremely challenging. The kinetic theory approach could in

principle overcome the closure problem. Based on a generalization of the Boltzmann equation

[16], this regards the solid effective stress tensor as a function of a granular temperature, a

field related to the particle velocity fluctuations and governed by a pseudointernal energy

balance equation that would complement the four balance equations of the mixture model

previously discussed [13, 17, 18]. This method poses two significant challenges. The first

is capturing in the pseudointernal energy balance equation all the relevant mechanisms

generating and depleting particle velocity fluctuations, or equivalently granular internal

energy. The second is relating the granular temperature and solid effective stress tensor

fields. These challenges limit the viability of this approach [3, 13, 14, 19].

Confronted with the difficulties that a fundamental approach poses, some research groups

tackled the problem heuristically [20–22], developing the diffusive-flux model. This replaces

the dynamical equation of the mixture model yielding the migration velocity of the particles

with a closure for the migration velocity, derived via relatively simple arguments. This model

gives good predictions in flows where the velocity and shear rate change in the same direction,

its results matching closely various experimental data. Examples are pressure-driven laminar

pipe flows and Couette flows. But when velocity and shear rate change in different directions,

the model fails. For instance, in parallel-plate rheometers the model predicts an inward (from

high to low shear rates) particle migration, but experiments indicate that either no migration

[23, 24] or outward migration [7, 25, 26] occurs; conversely, in cone-and-plate rheometers,

where the shear rate field is uniform, the model predicts no migration, but experiments

indicate that outward migration occurs [27]. Therefore, even if the diffusive-flux model is

convenient, these drawbacks limit its applicability severely.

A third approach, which is neither entirely theoretical nor entirely heuristic, was proposed

by Morris and Boulay [15]. To obtain the migration velocity of the particles, they did employ

the dynamical equation of the mixture model featuring the solid effective stress tensor, but to

close this tensor, they relied on heuristic arguments based on experimental evidence. So, this

approach does not involve a granular temperature field and does not require a pseudointernal

energy balance equation. Morris and Boulay focused on curvilinear flows, showing that the

presence of anisotropic normal stresses induced by the presence of the particles is sufficient to

explain particle migration. If the parameters of their constitutive equation are properly

tuned, the closure predicts well steady-state solid concentration profiles in several viscometric
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flows and transient solid concentration profiles in wide-gap Couette flows. Its main limitation

is that it holds only for viscometric flows. Furthermore, while this closure undoubtedly yields

good results, its derivation poses a conceptual problem. Recently discussed by Nott et al.

[28], this arises because Morris and Boulay ascribe to the solid effective stress tensor a

contribution (the particle-presence stress tensor, which we will define and discuss in Section

II and Appendix A) that belongs to the effective stress tensor of the fluid phase. The same

problem, as Nott et al. [28] point out, is present in several works in this field – including the

pioneering article of Nott and Brady [17], to which Morris and Boulay refer when deriving

their constitutive equation. In light of this, one may rightly wonder how it is possible that

the equation of Morris and Boulay predicts so well particle migration. This is a question we

shall answer in this article.

Another heuristic closure of the solid effective stress tensor was suggested by Buyevich [3],

who argued that the shear-induced fluctuations of the particle velocities are responsible for

the migration of particles. The closure does not present the problem discussed above, has

general validity, leads to an anisotropic solid effective stress tensor, and predicts well the

solid volume fraction profile in a few fully-developed viscometric flows [3, 29]. However, in

contrast to the closure of Morris and Boulay [15], it has been tested far less and has never

been employed in transient conditions. Here, we will test it in these conditions.

The idea that anisotropy in the solid phase normal stresses drives shear-induced particle

migration is popular, but it has not been proven. This idea rests on experimental evidence,

but rheological measurements inform on the effective stress tensor of the suspension – not of

the solid phase. This important point has also been discussed by Nott et al. [28], who pointed

out that the anisotropy in the normal stresses of the suspension has been wrongly interpreted

in the literature as that of the normal stresses of the solid phase. More generally, many works

incorrectly split, between the effective stress tensors of the fluid and solid phases, the several

contributions making up the suspension effective stress tensor [e.g., 8, 12, 17, 30–33]. This

aspect has been reviewed by Jamshidi et al. [14], who based their analysis on the papers

of Jackson [34] and Zhang and Prosperetti [35], landmark investigations that stand out

for their rigor, clarity and insight. In light of this, Nott et al. [28] disputed the notion that

only normal stress differences in the solid effective stress tensor can induce particle migration,

proving that (a part of) the mean force of interaction between the fluid and the particles can

equally induce migration. In (moderately) dense suspensions, this term is related to the mean
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fluid-particle interaction force associated with the lubrication films between neighboring

particles. Pursuing this idea, in this article we derive an expression for this force, showing

that it relates to the effective stress tensor of the fluid phase, more specifically to the particle-

presence stress associated with lubrication films. The resulting form of the particle migration

velocity is consistent with that obtained from the constitutive equation of Morris and Boulay

[15], an outcome that explains why their equation predicts well the migration process and

that allows us to reinterpret their closure.

The paper is organized as follows. In Section II, we present the two-fluid and mixture

models, focusing on the effective stress tensors of the fluid and solid phases and the terms

constituting them. In Section III, we examine the constitutive equations for the solid effective

stress tensor of Buyevich [3] and Morris and Boulay [15], highlighting their limitations and/or

inconsistencies. In Section IV, following the idea suggested by Nott et al. [28], we illustrate

that particle migration can be induced by the mean fluid-particle interaction force related

to lubrication films and discuss how this result bears on the constitutive equation of Morris

and Boulay [15]. The paper also includes three appendixes. In the first, we briefly outline

the derivation of the two-fluid equations of motion, offering more information about the

effective stress tensors of the two phases and in particular about the particle-presence stress

tensor. In the second, we connect our work to that of Batchelor [36], a landmark paper on

the effective stress of suspensions, discussing how his particle stress tensor is related to the

particle-presence stress tensor previously mentioned. In the last appendix, we discuss the

analysis of the steady wide-gap Couette flow presented in Morris and Boulay [15].

II. THEORY

This section presents the two-fluid and mixture models and discusses the expressions of

their unclosed terms. In Appendix A, we briefly derive the averaged equations of motion of

the two-fluid model, outlining the main passages and discussing some aspects that are closely

related to our work. For more details, we refer to the literature [34, 35, 37].

A. The two-fluid model

Consider a suspension of identical particles with radius a and density ρs dispersed in an

incompressible, isothermal, Newtonian liquid with density ρe and constant viscosity µe. For

the fluid, the mass and linear momentum balance equations read:
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∂tεe =− ∂x · (εe〈u〉e) (1)

ρe∂t(εe〈u〉e) =− ρe∂x · (εe〈u〉e〈u〉e)− ∂x · 〈S〉e − n〈f〉p + εeρeg (2)

where εe and 〈u〉e are the volume fraction and mean velocity of the fluid, respectively, 〈S〉e
is the fluid effective stress tensor, n〈f〉p is the mean fluid-particle interaction force, with n

denoting the particle number density, and g is the gravitational acceleration. The expression

for 〈S〉e comes directly from the averaging procedure:

〈S〉e(x, t) ≡ εe(x, t)〈σ〉e(x, t)

+ εe(x, t)ρe〈ûû〉e(x, t) + n(x, t)〈A〉p(x, t)− (1/2)∂x · [n(x, t)〈B〉p(x, t)] (3)

where:

n(x, t)〈A〉p(x, t) ≡ a
∑
r

[
ψ(|x− zr(t)|)

∫
∂Λr

kr(z, t)kr(z, t) · σe(z, t)dsz
]

(4)

n(x, t)〈B〉p(x, t) ≡ a2
∑
r

[
ψ(|x− zr(t)|)

∫
∂Λr

kr(z, t)kr(z, t)kr(z, t) · σe(z, t)dsz
]

(5)

Here, 〈σ〉e is the volume average of the point stress tensor σe of the fluid, 〈ûû〉e is the volume

average of the dyadic product of the fluid velocity fluctuations, ψ is the weighting function

used in the volume averaging procedure, zr is the (time-dependent) position of the center of

the generic particle r, and kr is the outward unit normal to the surface ∂Λr bounding particle

r. The summation is over all the particles in the suspension.

The first term on the right-hand side of Eq. 3 arises because, before the averaging is carried

out, the liquid phase is already a fluid – and so it is already endowed with a point stress tensor

(no analogous term features in the effective stress tensor of the solid phase). The second term

is a Reynolds stress type of contribution. The last two terms are related to the fluid dynamic

interaction between the fluid and the particles (through the traction force exerted by the fluid

on the particle surfaces). These terms are not solely related to the fluid phase, but involve the

particles; for this reason their combined contribution has been referred to as particle-presence

stress [30]. Note that we did not choose to ascribe this quantity to the effective stress tensor

of the fluid – this is a direct result of volume averaging, a formal mathematical procedure. So,

the particle-presence stress is not part of the effective stress tensor of the solid phase. Note as

well that this conclusion is unaffected by the averaging method adopted; as shown by Zhang
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and Prosperetti [35], ensemble averaging leads unambiguously to the same conclusion. Many

researchers [e.g., 8, 12, 15, 17, 30–33] have ascribed this contribution to the solid effective

stress tensor, an error that often occurs because one misinterprets some terms featuring in the

averaged equations of motion (in particular, the average fluid-particle interaction force). This

point, clearly raised by Jackson [34], has been recently discussed by Nott et al. [28] (refer also

to Appendix A). It is a detail, but it is a crucial one with important consequences.

Note that, as Eq. 3 reveals, the effective stress tensor of the fluid does not coincide with the

average of the point stress tensor of the fluid ; that is, 〈S〉e 6= εe〈σ〉e. The particle-presence

stress is caused by the presence of the particles, but this does not mean that it belongs to the

solid effective stress tensor. In Batchelor [36], the particle-presence stress tensor is part of

the tensor that Batchelor calls particle stress. But Batchelor never stated that the particle

stress tensor coincides with the effective stress tensor of the solid phase; he just grouped in the

particle stress tensor all the contributions to the stress tensor of the suspension caused by the

particles. In his paper, Batchelor addressed the problem of closure of the stress tensor of the

suspension. As discussed in Appendix B, his results are consistent with those reported in

Jackson’s work. But Batchelor did not address the problem of closure of the effective stress

tensors of the fluid and solid phases, and did not discuss to which phasic effective stress tensor

the terms included in the suspension stress tensor should belong.

For the solid phase, the mass and linear momentum balance equations read:

∂tεs =− ∂x · (εs〈u〉s) (6)

ρs∂t(εs〈u〉s) =− ρs∂x · (εs〈u〉s〈u〉s)− ∂x · 〈S〉s + n〈f〉p + εsρsg (7)

where εs and 〈u〉s are the volume fraction and mean velocity of the solid, respectively, and

〈S〉s is the solid effective stress tensor. This is given by:

〈S〉s(x, t) ≡ εs(x, t)ρs〈ûû〉s(x, t) + n(x, t)〈C〉p(x, t)− (1/2)∂x · [n(x, t)〈D〉p(x, t)] (8)

with:

n(x, t)〈C〉p(x, t) ≡ a
∑
r

[
ψ(|x− zr(t)|)

∑
s 6=r

krs(t)frs(t)

]
(9)

n(x, t)〈D〉p(x, t) ≡ a2
∑
r

[
ψ(|x− zr(t)|)

∑
s 6=r

krs(t)krs(t)frs(t)

]
(10)
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where frs is the contact force exerted by particle r on the generic particle s and krs is the unit

vector pointing from the center of particle r to that of particle s.

The first contributor to the solid effective stress tensor is referred to as kinetic stress. It is

related to the solid velocity fluctuations ûs and arises from the Reynolds decomposition of the

advection term in the solid-phase averaged dynamical equation. The other two contributors

constitute the particle-contact stress, which stems from direct particle contacts. These can be

of two kinds: nearly instantaneous contacts that form during particle collisions and enduring

contacts that establish when suspensions become very dense. The first kind gives rise to the

collisional stress and captures the transfer of linear momentum over the distance 2a between

the centers of two colliding particles, while the second kind brings about the frictional stress,

which, as said, becomes important solely when particles are close to their maximum packing.

Note that Eq. 8 does not account for stress induced by interparticle forces (that is, action at

a distance forces, such as electrostatic forces). Should these forces be significant, Eq. 8 would

have to include a new term, whose expression would be similar to that of the particle-contact

stress, provided the interparticle force range is far shorter than the weighting function radius.

In this article, we assume that these forces are negligible. Moreover, we focus on (moderately)

dense mixtures where the effect of direct particle contacts is insignificant compared to that of

fluid-mediated (via lubrication films) particle interactions, our emphasis being on the regions

B and F of the rheophysical regime classification of Coussot and Ancey [1].

The two-fluid modeling approach has been used to model liquid-particle suspensions. We

mention, for instance, the work of Municchi et al. [32], where the fluid effective stress tensor

is closed with the Newtonian closure and a constant viscosity, while the solid effective stress

tensor comprises two parts, one accounting for the kinetic and collisional stresses, closed via

the kinetic theory model of Gidaspow [18], and one accounting for the stress anisotropy (i.e.,

the normal stress differences), expressed via the closure of Morris and Boulay. Hence, in this

paper the particle-presence stress is ascribed to the solid effective stress tensor, a choice that,

as we discussed, we believe is incorrect. Also, the part of the particle-presence stress tensor

resulting in the viscosity correction of Einstein [38] seems to be missing, since it can neither

arise from the kinetic and collisional stresses nor from the anisotropic stress.

Another interesting work based on the two-fluid modeling approach is that of Drijer et al.

[39]. Here, particle migration is modeled through a force fulfilling the action and reaction

principle (a force present in the dynamical equations of both phases with opposite signs).
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This is close to what we will suggest at the end of this article. The difference is in how the

force is modelled: Drijer et al. use the diffusion-flux model, while we relate it to the particle-

presence stress tensor.

B. The mixture model

The mixture model treats the suspension as an effective fluid. For its derivation, we refer

to the literature [for instance, see 14]. The mass and linear momentum balance equations for

the mixture read:

∂tρm =− ∂x · (ρm〈u〉m) (11)

∂t(ρm〈u〉m) =− ∂x · (ρm〈u〉m〈u〉m)− ∂x · 〈S〉m + ρmg (12)

where:

ρm ≡ εeρe + εsρs ; ρm〈u〉m ≡ εeρe〈u〉e + εsρs〈u〉s (13)

The effective stress tensor of the mixture, denoted by 〈S〉m, comprises three contributions:

〈S〉m ≡ 〈S〉e + 〈S〉s + 〈S〉d (14)

〈S〉d is called diffusion stress tensor [40] and arises because each phase moves at a velocity

that differs from that of the mixture. It is defined as follows:

〈S〉d ≡ ρmωeωs(〈u〉s − 〈u〉e)(〈u〉s − 〈u〉e) (15)

where ωe and ωs are the mass fractions of the fluid and solid phases, respectively. Its effect is

usually negligible compared to that of the phasic effective stress tensors.

In addition to the continuity equation for the suspension, another mass balance equation is

necessary to track the volume fractions of the phases. Usually, this equation is written for the

solid phase and reads:

∂tεs =− ∂x · (εs〈u〉m)− ∂x · [εsωe(〈u〉s − 〈u〉e)] (16)

The term in square brackets on the right-hand side of this equation arises because the solid

does not move at the same velocity as the mixture. This term can be interpreted as a diffusive

flux, but it does not usually obey Fick’s law.
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As shown, diffusive fluxes (of mass and linear momentum) arise in Eqs. 12 and 16. These

terms are unclosed, because instead of the suspension velocity, they involve the fluid-particle

slip velocity. This velocity calls for an additional (dynamical) equation. If the fluid and solid

velocity fields relax to local equilibrium rapidly, it is:

〈u〉s − 〈u〉e =− (1/β)[εe∂x · 〈S〉s − εs(ρs − ρm)(g −Dt〈u〉m)] (17)

This equation is approximate and is based on an asymptotic expansion on the particle Stokes

number, which, for the systems of interest here, is assumed to be much smaller than unity; for

details, we refer to the literature (for instance, see 13, 14 and 40).

In Eq. 17, Dt〈u〉m represents the substantial derivative of the mixture velocity field and β

is the drag force coefficient, for which many closures are available in the literature [13, 41, 42].

Here, we report that of Wen and Yu [43]:

β =
3

4
CD(Re)

ρeεs |〈u〉s − 〈u〉e|
2a

ε−1.65

e (18)

where:

Re ≡ ρeεe |〈u〉s − 〈u〉e|(2a)

µe
(19)

and:

CD(Re) =


(
24/Re

)(
1 + 0.15Re0.687

)
for Re < 1000

0.44 for Re ≥ 1000
(20)

Here, Re is the particle Reynolds number. Under the conditions in which the mixture model

holds, the fluid and solid mean velocities are equal at leading order in the Stokes number, and

the slip velocity vanishes; thus, Re Î 1, CD(Re)→ 24/Re and for neutrally buoyant particles

of constant density dispersed in a fluid of constant viscosity, Eq. 16 reduces to:

∂tεs =− ∂x · (εs〈u〉m)− 2a2/(9µe)∂x ·
(
ε4.65e ∂x · 〈S〉s

)
(21)

This is the equation usually used to describe shear-induced particle migration. As discussed

in Section I, this equation suggests that neutrally buoyant particles migrate toward regions of

low shear rate only if 〈S〉s is nonuniform.

11



III. CLOSURES FOR THE SOLID EFFECTIVE STRESS TENSOR

Eq. 17 indicates that particle migration can be induced by gravity, inertia and gradients in

the solid effective stress tensor. For neutrally buoyant particles, the first two have no effect; if

we trust Eq. 17, we then conclude that particle migration is driven solely by gradients in 〈S〉s.

Hence, the key to describing particle migration correctly is having an accurate closure for this

tensor, a closure that accounts accurately for all the phenomena generating stress in the solid

phase. As Eq. 8 reveals, several phenomena contribute: particle velocity fluctuations (which

generate kinetic stress), particle collisions and/or enduring particle contacts (which together

generate particle-contact stress) and, if present, interparticle forces. We have assumed that

the effects of the last three are negligible. This is not always true, but experimental evidence

indicates that migration starts to be appreciable in moderately dense mixtures falling in the

region B of the rheophysical regime classification of Coussot and Ancey [1], where these three

contributions are negligible. We investigate the cause of migration in these conditions, where

particle-contact and interparticle-force stresses can be ruled out, because we want to focus on

the role played by the kinetic stress. Our analysis will show that this part of the solid effective

stress tensor cannot be the main driver of particle migration, a result revealing that migration

must have fluid dynamic origin. Assuming that migration is induced by the lubrication forces

between particles, we will then prove that the migration velocity is related to the gradients in

the particle-presence stress tensor associated with such forces. Since lubrication forces, direct

particle contact forces and interparticle forces are all point-wise and pair-wise, extending our

results to cases where the last two forces are present would be straightforward.

A. The closure of Buyevich

For the systems of interest in our study, it seems that particle migration must be driven by

the kinetic stress induced by particle velocity fluctuations. Buyevich [3] agreed with this idea.

When studying particle migration, he thus focused on developing a constitutive equation for

〈S〉s accounting solely for the kinetic stress. He argued that in shear flows this originates from

the fluid-mediated interactions between particles when adjacent mixture layers move past one

another. These interactions yield random particle displacements of the order of the particle

size, leading to ‘shear-induced’ particle velocity fluctuations. With heuristic arguments based

on this idea, he proposed the following closure:
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〈S〉s = Cρsa
2ϕ(εs)

[
(π2/4− 1)〈γ̇〉s · 〈γ̇〉s + |〈γ̇〉s|2I

]
(22)

Here C is an unknown coefficient. Because the closure was developed with scaling arguments,

this coefficient was expected to be of unit order of magnitude. But later, by fitting the model

results to experimental data for a 2D channel flow, Buyevich and Kapbsov [29] suggested the

value of 0.016. In Eq. 22, 〈γ̇〉s is twice the deformation rate tensor of the solid mean velocity

field, and |〈γ̇〉s| is its magnitude; these quantities can be replaced with the equivalent ones for

the mixture velocity field (i.e., 〈γ̇〉m and |〈γ̇〉m|) inasmuch as at leading order the two velocity

fields are equal. Finally, it is:

ϕ(εs) = ε3s

[
1 + εs + ε2s − ε3s

(1− εs)3
+ 2.9

(εs/ε
?
s)

3

1− (εs/ε
?
s)

][
1− 0.5εs
(1− εs)3

+ 1.08
(εs/ε

?
s)

3

1− (εs/ε
?
s)

]2

(23)

where ε?s is the maximum value that the solid volume fraction can attain when the suspension

reaches packing conditions. This value is often taken to be (around) 0.65.

Eq. 22 predicts the fully-developed solid volume fraction profiles in wide-gap Couette flows

and pressure-driven laminar pipe flows fairly well [3, 29]; notwithstanding, it does present two

problems, which have not been reported in the literature.

The first is related to the time scale of the migration process predicted by this equation.

To investigate this problem, we considered a wide-gap Couette flow of a dense suspension of

neutrally buoyant particles between two vertical concentric cylinders, the inner (radius κR)

rotating with angular velocity Ω around its axis and the outer (radius R) being motionless.

The flow is laminar, and we may take the mixture velocity field to be tangent to the angular

coordinate lines. If we also assume cylindrical symmetry and neglect end effects, we can take

the velocity and the solid volume fraction fields to depend only on the radial coordinate (and,

for transient flows, on the time). With these assumptions, adopted by most of the researchers

modeling this flow, the first term on the right-hand side of Eq. 21 vanishes (that is, convection

plays no role) and the equation reduces to:

∂tεs =− 2a2/(9µe)∂r{rε4.65e [∂r〈S〉s,rr + (1/r)(〈S〉
s,rr
− 〈S〉

s,θθ
)]} (24)

where 〈S〉
s,rr

and 〈S〉
s,θθ

denote the rr and θθ components of the tensor 〈S〉s. We solved this

equation numerically, using Eqs. 22 and 23 to close 〈S〉s.

The evolution of the solid volume fraction profile in this flow was obtained experimentally

by Phillips et al. [22]. In their setup R = 2.38 cm and κ = 0.27, and the suspension consisted
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FIG. 1: Solid volume fraction profiles in a wide-gap Couette flow. The outer cylinder is

stationary, while the inner one rotates at angular velocity Ω. The suspensions, of neutrally

buoyant particles with mean radius a, are initially uniform with solid volume fraction ε̄s.

Model curves from Eqs. 22 and 24. Experimental data from Phillips et al. [22].

of poly methyl methacrylate (PMMA) particles with density ρs = 1182 kg/m3 dispersed in a

liquid with the same density and viscosity µe = 4.95 Pa s. The mean diameter of the particles

was either 100 µm or 675 µm. The suspension was initially homogeneous with a solid volume

fraction ε̄s of either 0.50 or 0.55.

Fig. 1A reports the solid volume fraction profile, obtained from the solution of Eq. 24 for a

mixture with 2a = 675 µm and ε̄s = 0.5 and the inner cylinder rotating at Ω = 17 rmp, after

470 min from the start of rotation, a time equivalent to 8000 revolutions of the inner cylinder.

As we can see, if in Eq. 22 we set C = 1 – the order of magnitude that Buyevich [3] initially

expected for C – the model predicts very weak migration, the solid volume fraction remaining

uniform over most of the flow domain (except close to the inner wall). Setting C = 0.016, as

suggested by Buyevich and Kapbsov [29], predicts even weaker migration, because smaller

values of C result in smaller migration fluxes. Eq. 22 fails to capture correctly the time scale

of migration, unless the value of C is increased significantly. As Fig. 1A shows, for C = 103

the numerical results do match the experimental data sufficiently well – but such a high value

for C is physically unjustified.

Fig. 1B reports the solid volume fraction profiles for the same system, but with ε̄s = 0.55,

after 200, 800 and 12000 revolutions of the inner cylinder. The numerical results, obtained for

C = 103, again match the experimental data quite well, an outcome that appears to confirm
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FIG. 2: Solid volume fraction profiles in a wide-gap Couette flow. The outer cylinder is

stationary, while the inner one rotates at angular velocity Ω. The suspensions, of neutrally

buoyant particles with mean radius a, are initially uniform with solid volume fraction ε̄s.

Model curves from Eqs. 22 and 24. Experimental data from Phillips et al. [22].

the higher order of magnitude found for the coefficient C.

But when this larger value of C is used to predict the migration of particles with a mean

diameter of 100 µm, the model fails to reproduce the experimental data, again predicting very

weak migration and a solid volume fraction profile uniform over most of the flow domain. In

this case, as Fig. 2 shows, the value required for a good match is C = 4.5·104. As 4.5·104/103

is nearly equal to (675/100)2, this suggest that C ∝ 1/a2, a dependence that is inconsistent

with the derivation of Eq. 22, where C must be a constant (that is, its value cannot depend on

the properties of the suspension). Note that in Couette flows the steady-state particle volume

fraction profile does not depend on the coefficient C [3], and so the issue just discussed did not

arise when Buyevich tested his closure on these stationary flows.

The second problem posed by Eq. 22 is about the incorrect direction of the migration flux

in parallel-plate rheometers. Consider a dense suspension in one of such rheometers (plates in

the r, θ plane) with a gap size H (in the z direction). The bottom plate is stationary, and the

top one rotates with angular velocity Ω around the z-axis. Because at leading order the mean

velocities of the solid and the mixture are equal, we can assume 〈γ̇〉s = 〈γ̇〉m. Also, neglecting

the secondary flow in the rheometer, we may take 〈u〉m,r = 〈u〉m,z = 0 and 〈u〉m,θ = Ωrz/H

(in Section III C, using scaling analysis, we prove the effects of secondary flow are negligible).

Using these assumptions, we can obtain the stress tensor of the solid phase from Eq. 22 and
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FIG. 3: Steady-state solid volume fraction profile in a plate-plate rheometer for a dense

suspension with initial homogenous concentration ε̄s = 0.4 obtained using Eq. 25 and by

assuming ε?s = 0.68. This equation predicts an inward flux of particles that contradicts

experimental observations. The horizontal line at εs = 0.4 is plotted to guide the eye.

use it to solve Eq. 24 in steady-state conditions. This leads to the following equation, which

yields the radial profile of the solid volume fraction:

dεs
dr

=
π2 − 12

4r

ϕ(εs)

dϕ(εs)/dεs
with

2

R

∫ R

0

εs(r)rdr = ε̄s (25)

The condition on the right ensures the total mass of solid is conserved. Here, R is the radius

of the plates in the rheometer, and ε̄s is the initial bulk solid concentration.

Since ϕ(εs) is always positive and increases monotonically with εs, diverging for εs → ε?s,

we conclude that dεs/dr < 0. This implies that the particles migrate toward the rotation axis

(inward migration). As an example, Fig. 3 reports the solid volume fraction profile obtained

from Eq. 25 for a suspension that is initially uniform, with ε̄s = 0.4 (and ε?s = 0.68). As

we see, for r → 0, εs → ε?s, since dεs/dr →∞. This steady-state result is independent of the

value of the coefficient C, the closure adopted for the drag coefficient, and the fluid and solid

physical properties. The inward flux predicted by Eq. 25, similarly to that obtained from the

diffusive-flux model, is incorrect, because experiments show that in this setup particles either

do not migrate [23, 24] or migrate away from the rotation axis [7, 25, 26].

In light of these results, we conclude that either Eq. 22 is incorrect or the kinetic stress is

not the main driver of particle migration. As the arguments of Buyevich [3] in his derivation

appear to be sound and compelling, we favor the second explanation. This is in line with the
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idea proposed by Lhuillier [44] and followed by Nott et al. [28].

We conclude with the following consideration. The study just conducted reveals that the

kinetic stress cannot be the main driver of migration. This suggests that migration must have

fluid dynamic origin. If we require that the order of magnitude of 〈S〉s in Eq. 22 be equal to

ϕ(εs)µe|〈γ̇〉s|, which is expected to estimate well the order of magnitude of the viscous stress

in the suspension, we obtain:

Cρsa
2ϕ(εs)|〈γ̇〉s|2 ∼ ϕ(εs)µe |〈γ̇〉s| (26)

whence:

C ∼ µe
ρsa

2|〈γ̇〉s|
∼ µe
ρea

2|〈γ̇〉s|
∼
(
L

a

)2(
µe

ρeUL

)
≡
(
L

a

)2
1

ReL
(27)

where U and L are the velocity and length scales of the flow of the suspension. This result

confirms our previous finding: C ∝ 1/a2. It also indicates that the time required by the

particle kinetic stress to induce significant particle migration exceeds considerably the time

scale of the migration process, the ratio between these two time scales being proportional to

the reciprocal of the Reynolds number. For vanishingly small values of the Reynolds number,

particle velocity fluctuations clearly cannot be responsible for particle migration.

B. The closure of Morris and Boulay

The problem of closure for the solid effective stress tensor was addressed heuristically by

Morris and Boulay [15], who aimed to investigate the effect of normal stresses in concentrated

mixtures on shear-induced particle migration. Assuming that the dominant stresses originate

from fluid dynamic lubrication forces between particle pairs (and contact forces, which for

the systems of interest in our work are negligible), Morris and Boulay suggested the following

constitutive equation:

〈S〉s =− ηp(εs)〈γ̇〉m + ηn(εs)|〈γ̇〉m|Q (28)

The first term on the right is the Newtonian part of the solid stress tensor; ηp(εs) represents

the particle contribution to the suspension shear viscosity (in the dilute limit, this coincides

with the Einstein correction to the mixture viscosity [38]). The second term accounts for the

presence of viscous normal stresses; ηn(εs) is the normal stress viscosity, andQ is a diagonal,
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anisotropic material property tensor featuring two fitting parameters.

Morris and Boulay showed that, if these parameters are properly tuned, Eq. 28 predicts

well steady-state solid volume fraction profiles in a number of viscometric flows and transient

solid volume fraction profiles in wide-gap Couette flows. Nevertheless, their closure presents

a conceptual problem: it ascribes the particle-presence stress to the solid phase.

As discussed in Section II, the particle-presence stress tensor (the sum of the terms in Eqs.

4 and 5) is part of the fluid effective stress tensor – this being a direct result of the averaging

procedure used to derive the multifluid equations of change [for instance, see 14, 28, 34, 45].

The particle-presence stress tensor captures the contribution of the lubrication films between

particle pairs; this contribution, therefore, belongs to the fluid effective stress tensor, 〈S〉e (an

aspect discussed at length in Nott et al. [28] and Jamshidi et al. [14]). Hence, it seems Eq. 28

does pose a problem. But the numerical results of Morris and Boulay agree with experimental

data. How can this be explained?

In their calculations, it appears that the authors did not use the correct expression for ηp.

In Eq. 28, instead of using ηp (the particle contribution to the mixture shear viscosity), they

used the mixture shear viscosity (equal to ηp plus the shear viscosity of the ambient fluid, µe).

Hence, they did not employ the closure they had proposed. Moreover, they solved the linear

momentum balance equation for the solid phase only, without considering the corresponding

equation for the fluid phase. For instance, consider the steady wide-gap Couette flow, studied

in Section III.B of [15]. Because the flow is steady and laminar, and the particles are neutrally

buoyant, the following dynamical equations hold:

∂x · 〈S〉e = ρmg ; ∂x · 〈S〉s = 0 (29 a,b)

The divergence of the solid effective stress tensor vanishes insofar as in Eq. 17 the slip velocity

(on the left) and the inertial and gravitational terms (on the right) are zero. In the ‘angular

direction’, Eq. 29a yields:

(∂x · 〈S〉e)θ = (1/r2)∂r(r
2〈S〉

e,rθ
) + (1/r)∂θ〈S〉e,θθ + ∂z〈S〉e,zθ = 0 (30)

An identical relation holds for the effective stress tensor of the solid phase. Then, eliminating

the terms that vanish, we obtain:
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d(r2〈S〉
e,rθ

)

dr
= 0 ;

d(r2〈S〉
s,rθ

)

dr
= 0 (31 a,b)

Morris and Boulay solved only the equation for the solid (that is, the second equation above).

Here, we shall consider also the equation for the fluid, since both equations must be satisfied.

We now use Eq. 28 to express the solid effective stress tensor (considering, as we should, the

shear viscosity owing to the particles presence only). With Morris and Boulay, we assume the

effective shear viscosity of the fluid coincides with the shear viscosity of the ambient fluid (an

expression which is at variance with the analyses of Jackson [34] and Zhang and Prosperetti

[35], because in these works the shear viscosity due to the particles presence contributes to the

effective viscosity of the fluid; this is again related to the particle-presence stress tensor and

its being part of 〈S〉e). Therefore, we write:

〈S〉
e,rθ

=− µe〈γ̇〉m ; 〈S〉
s,rθ

=− ηp(εs)〈γ̇〉m (32 a,b)

where 〈γ̇〉m is the shear rate. Being µe a constant, Eq. 31a yields d(r2〈γ̇〉m)/dr = 0. Eq. 31b

consequently yields:

ηp(εs)
d(r2〈γ̇〉m)

dr
+ r2〈γ̇〉m

dηp(εs)

dr
= r2〈γ̇〉m

dηp(εs)

dr
= 0 (33)

whence:

ηp(εs) = constant (34)

This means that at steady-state the solid volume fraction is uniform, so that no migration has

occurred, a result that is incorrect.

Morris and Boulay [15] did find a good match between numerical results and experimental

data, but this is because in Eq. 32b they inadvertently replaced ηp with ηs ≡ µe + ηp (in [15],

see the untagged equation after Eq. 28; notice that there ηs denotes the shear viscosity of the

mixture) and the only equation they solved is:

∂x ·
[
ηs(εs)〈γ̇〉m − ηn(εs)|〈γ̇〉m|Q

]
= 0 (35)

In the work of Morris and Boulay, the results of this equation matched well the experimental

data. In Section IV, we shall show why this equation is sound. More details about the above
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considerations are given in Appendix C, where to avoid any misunderstandings, we employed

the notation of Morris and Boulay [15].

C. Secondary flow effects

To conclude this analysis, we investigate the competition between the particle segregation

induced by shear-induced particle migration and the particle mixing induced by convection.

We focus on parallel-plate rheometers. In them, mixing is caused by the secondary flow due

to inertia, for the primary flow does not move particles radially via convection.

In this type of rheometer, experiments reveal that either no migration [23, 24] or outward

migration [7, 25, 26] occurs. To match the experimental data, Morris and Boulay [15] tuned

the fitting parameters in Eq. 28, neglecting the contribution of the secondary flow. Doing this

is impossible with the closure of Buyevich [3], for it always predicts inward particle migration.

Buyevich maintained that the wrong direction of the migration flux did not imply his closure

was incorrect. He argued that the secondary flow mixes the particles, counteracting the effect

of shear-induced particle migration. The net result is no particle migration. In other words,

Buyevich claimed that the convective mixing induced by the secondary flow erases the effect

of shear-induced particle migration keeping the solid concentration uniform.

To test Buyevich’s argument, we use scaling analysis, comparing the time scales of the two

processes. To estimate the time scale of shear-induced particle migration, we avoid Eq. 22,

because, with the original value of the coefficient C, it predicts the migration time incorrectly.

Instead, we employ the constitutive equation in Eq. 35. At leading order, the radial and axial

velocity components are zero and 〈u〉m,θ = Ωrz/H, so that |〈γ̇m〉| = Ωr/H. Then, from Eqs.

16 and 17, the migration time scale results to be:

τM ∼
R

ωe(〈u〉s,r − 〈u〉e,r)
∼
(

9µeεs
2a2ε4.65

e

)
HR

ηnΩ
(36)

To estimate the time scale of the mixing process caused by the secondary flow, we employ the

expression for the secondary-flow radial velocity derived by Savins and Metzner [46] (see also

[25]), which holds for parallel-plate rheometers with H/R Î 1. This yields:

τC ∼
R

〈u〉
m,r

∼ 100ηm
ρm(ΩH)2

(37)

For a mixture of neutrally buoyant particles with a = 100 µm, ρm = 1000 kg/m3, µe = 1 Pa s,
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εs = 0.40 and ε?s = 0.65 in a rheometer with R = 1 cm and H = 1 mm, with a plate rotating

at the typical angular velocity Ω = 0.1 rad /s, if to obtain the normal shear viscosity and the

mixture shear viscosity we employ the expressions suggested by Morris and Boulay [15] (not

shown for brevity), we obtain τM ∼ 105 s and τC ∼ 108 s. Consequently, the mixing caused by

the secondary flow cannot counterbalance the segregation induced by shear-induced particle

migration. Buyevich’s argument seems not to stand.

D. Summary

We have investigated two well-known closures for the solid effective stress tensor. That of

Buyevich [3] is based on the assumption that the solid stress stems from the particle velocity

fluctuations generated by particle interactions occurring in shear flow when adjacent mixture

layers move past one another. The closure was derived heuristically, but on solid arguments,

and predicted well the fully developed solid volume fraction profile in a number of viscometric

flows. But it had not been used to predict the time evolution of solid volume fraction profiles.

Our analysis revealed two shortcomings of the Buyevich closure: it predicts the time scale of

shear-induced particle migration incorrectly, and in parallel-plate rheometers, it predicts the

migration direction incorrectly. The argument put forward by Buyevich to justify the second

shortcoming, related to secondary-flow convective mixing, seems inadequate. These findings,

in our opinion, do not mean that Buyevich’s closure is incorrect: they mean that kinetic stress

is not the main driver of shear-induced particle migration.

Morris and Boulay [15] agreed with this viewpoint. They believed the driver of the process

was the particle-presence stress – in particular the part stemming from the lubrication forces

between particle pairs (we are referring to systems where particle collisions, enduring particle

contacts and interparticle forces are absent or negligible). Accordingly, the driver has viscous

nature. As pointed out by Nott et al. [28] (and more recently in [14]), this closure presents a

problem on theoretical grounds, since the particle-presence stress contributes to the effective

stress tensor of the fluid phase, while the shear-induced particle migration is related to the

non-uniformity of the effective stress tensor of the solid phase (see Eq. 17). Notwithstanding,

in the form given in Eq. 35, the closure does yield good results. This outcome has to be

investigated further.
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IV. THE ROLE OF THE FLUID-PARTICLE INTERACTION FORCE IN SHEAR-

INDUCED PARTICLE MIGRATION

As said before, our analysis is restricted to suspensions where the effect of direct particle

contacts is insignificant compared with that of fluid-mediated (via lubrication films) particle

interactions. In other words, the particle-contact stress (a contributor to the effective stress

of the solid) is negligible. In the discussion above, we concluded that the kinetic stress in the

solid phase (the only other contributor to the effective stress of the solid) is also negligible in

promoting shear-induced particle migration. So, in Eq. 17, the term related to 〈S〉s appears

to be insignificant. But for suspensions of neutrally buoyant particles this is the only term on

the right of the equation that is nonzero. If we neglect it, the migration velocity vanishes. It

seems, therefore, that in Eq. 17 the term representing the main driver of particle migration is

missing. This is the conclusion reached by Nott et al. [28], who after proposed a convincing

solution to this hurdle. Their idea is that migration is driven by the part of the fluid-particle

interaction force arising from the lubrication films between the particles (we refer to [28] for

further details). Building on this notion, we now show that this force is closely related to the

particle-presence stress – the very term that Morris and Boulay [15] had identified as the main

driver of migration. In the end, our analysis will explain why Eq. 35 did predict steady solid

volume fraction profiles correctly.

The starting point in our analysis is the expression that volume averaging provides for the

fluid-particle interaction force [34]. This reads:

n(x, t)〈f〉p(x, t) ≡−
∑
r

[
ψ(|x− zr(t)|)

∫
∂Λr

kr(z, t) · σe(z, t)dsz
]

(38)

in which σe is the point stress tensor of the fluid, ψ is the weighting function employed in the

volume-averaging procedure, zr is the position of the center of the generic particle r, while kr

is the unit vector, pointing into the fluid, normal to the surface ∂Λr bounding particle r. The

surface integral is calculated over the dummy variable z.

The force n〈f〉p arises from the gradients of the point velocity of the ambient fluid present

over the surface of the particles. Following Nott et al. [28], we divide this force in two parts:

one related to the distortion of the fluid streamlines caused by the particles and one related to
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the lubrication films between particle pairs. Accordingly, we write:

n〈f〉p = n〈f〉?p + n〈f〉•p (39)

The second term on the right is the contribution of the lubrication films, which vanishes in

dilute suspensions.

Now, in a dense suspension, let us consider particle r. We may assume this is located very

close to a number of other particles with which it forms lubrication films. Each film spans a

tiny portion of the particle surface, so for convenience we regard these portions as points.

Since the fluid dynamic force acting on these small regions is finite, we must assume that in

these points the stress diverges. In the rest of the particle surface, where lubrication films are

absent, the stress is finite. But if lubrication regions are points, the rest of the particle surface

coincides with the entire particle surface (for a finite collection of points occupies no surface).

Therefore, we can write:

n(x, t)〈f〉?p(x, t) ≡−
∑
r

[
ψ(|x− zr(t)|)

∫
∂Λr

kr(z, t) · σ?e(z, t)dsz
]

(40)

n(x, t)〈f〉•p(x, t) ≡−
∑
r

[
ψ(|x− zr(t)|)

∫
∂Λr

kr(z, t) · σ•
e(z, t)dsz

]
(41)

Over the particle surface, except for the points where lubrication films are located, σ?e = σe;

the value of σ?e in the points just mentioned is immaterial, since σ?e is not a delta function.

On the other hand, over the particle surface σ•
e is nonzero solely where lubrication films are

located (and, in these point-regions, it diverges).

Many constitutive equations are available for the part of n〈f〉p related to the distortion of

the streamlines. Here, we report the equation below, accounting for the buoyancy, drag, lift

and virtual mass forces:

n〈f〉?p =− εs∂x · 〈S〉e + β(〈u〉e − 〈u〉s)

+ εsρeζ[(Dt〈u〉e −Dt〈u〉s)− (∂x× 〈u〉e)× (〈u〉e − 〈u〉s)] (42)

The drag coefficient β can be closed with Eq. 18, a relation suggested by Wen and Yu [43], but

many others options are available in the literature. ζ is the coefficient for the virtual mass and

lift forces, often assumed to be equal to 1/2.

Eq. 41, which defines the part of the fluid-particle interaction force related to lubrication
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films, can be written as:

n(x, t)〈f〉•p(x, t) =−
∑
r

[
ψ(|x− zr(t)|)

∑
s 6=r

f •
rs(t)

]
(43)

where f •
rs is the force exerted by particle r on particle s through the lubrication film between

them; this force is equal and opposite to that exerted by particle s on particle r through the

same lubrication film. The second summation is over all the particles s with which particle r

forms lubrication films. Now, with 2zrs ≡ zs − zr, the following relation holds:∑
r

[
ψ(|x− zrs(t)|)

∑
s 6=r

f •
rs(t)

]
= 0 (44)

We now expand the weighting function in a Taylor series around the center zr of the generic

particle r. Since lubrication films are thin, zrs − zr ≈ akrs. Thus, it is:

ψ(|x− zrs(t)|) = ψ(|x− zr(t)|)

− akrs(t) · ∂xψ(|x− zr(t)|) + (1/2)a2krs(t)krs(t) : ∂x∂xψ(|x− zr(t)|)− · · · (45)

The particle radius a is far smaller than the radius of the weighting function (which in turn is

far smaller than the shortest significant macroscopic length scale L associated with the flow);

so, with small error, we can truncate the Taylor series at the second-order term. Then, if we

introduce Eq. 45 in Eq. 44 and use Eq. 43, we obtain:

n〈f〉•p =− ∂x · 〈M〉e (46)

with:

〈M〉e(x, t) ≡ n(x, t)〈E〉p(x, t)− (1/2)∂x · [n(x, t)〈F 〉p(x, t)] (47)

and where:

n(x, t)〈E〉p(x, t) ≡ a
∑
r

[
ψ(|x− zr(t)|)

∑
s 6=r

krs(t)f
•
rs(t)

]
(48)

n(x, t)〈F 〉p(x, t) ≡ a2
∑
r

[
ψ(|x− zr(t)|)

∑
s 6=r

krs(t)krs(t)f
•
rs(t)

]
(49)
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Eq. 39 thus becomes:

n〈f〉p = n〈f〉?p − ∂x · 〈M〉e (50)

The derivation of Eq. 17 neglects the second term on the right of Eq. 50. Details are found in

Jamshidi et al. [14]. If this term is included, one obtains:

〈u〉s − 〈u〉e =− (1/β){εe∂x · [〈S〉s + 〈M〉e]− εs(ρs − ρm)(g −Dt〈u〉m)} (51)

Based on what we discussed before, we see that in suspensions of neutrally buoyant particles

changes in space of the tensor 〈M〉e are the main cause for particle migration.

Following similar passages to those shown for the force n〈f〉p, we split the particle-

presence stress tensor in two parts, writing:

n(x, t)〈A〉p(x, t) = n(x, t)〈A〉?p(x, t) + n(x, t)〈A〉•p(x, t) (52)

n(x, t)〈B〉p(x, t) = n(x, t)〈B〉?p(x, t) + n(x, t)〈B〉•p(x, t) (53)

The two starred terms involve σ?e and are related to the viscous dissipation generated by the

distortion of the fluid streamlines around the particles; these terms are always present, also in

very dilute suspensions, where they give the Einstein correction for the mixture viscosity [34].

The other two terms account for the viscous dissipation associated with the lubrication films

and are dominant in dense suspensions. From Eqs. 4 and 5, it is:

n(x, t)〈A〉•p(x, t) ≡ a
∑
r

[
ψ(|x− zr(t)|)

∫
∂Λr

kr(z, t)kr(z, t) · σ•
e(z, t)dsz

]
(54)

n(x, t)〈B〉•p(x, t) ≡ a2
∑
r

[
ψ(|x− zr(t)|)

∫
∂Λr

kr(z, t)kr(z, t)kr(z, t) · σ•
e(z, t)dsz

]
(55)

But being σ•
e a delta function in a numerable set of points over the surfaces of the particles,

these expressions reduce to those in Eqs. 48 and 49. So, it is:

〈M〉e(x, t) = n(x, t)〈A〉•p(x, t)− (1/2)∂x · [n(x, t)〈B〉•p(x, t)] (56)

As anticipated, we see that 〈M〉e coincides with the part of the particle-presence stress tensor

related to the lubrication films. In suspensions of neutrally buoyant particles – in conditions

where direct particle contacts and interparticle forces are negligible – the divergence of 〈M〉e
is the main driver of migration.
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A. More on the closure of Morris and Boulay

Morris and Boulay [15] suggested their closure for the effective stress tensor of the solid on

the assumptions that a) shear-induced particle migration is caused by non-uniformity in this

tensor and b) the dominant stresses in the solid phase originate from the lubrication forces

between the particles. Our analysis suggests that their constitutive equation should be used to

close the tensor 〈M〉e, which is part of the fluid effective stress tensor 〈S〉e.

Let us consider again the steady wide-gap Couette flow. Eq. 31 still holds. If for the solid

phase we neglect the kinetic stress induced by particle velocity fluctuations, the solid effective

stress tensor vanishes and Eq. 31b is automatically satisfied. Thus, we need a closure only for

〈S〉e. This tensor is defined by Eq. 3, shown here for convenience:

〈S〉e ≡ εe〈σ〉e + εeρe〈ûû〉e + n〈A〉p − (1/2)∂x · (n〈B〉p)

For the flow investigated, the Reynolds stress is negligible. Also, as discussed in Jackson [34],

the first term on the right is closed and equal to:

εe〈σ〉e = εe〈p〉eI − µe〈γ̇〉v (57)

in which 〈p〉e is the fluid mean pressure, I is the unit tensor and 〈γ̇〉v is twice the deformation

rate tensor of the following velocity field:

〈u〉v ≡ εe〈u〉e + εs〈u〉s (58)

For mixtures of neutrally buoyant particles (where the velocity fields relax rapidly), the mean

velocities of the phases are equal at leading order in the Stokes number and so 〈u〉v and 〈u〉m
coincide. The last two terms on the right of Eq. 3 embody the particle-presence stress tensor.

If we neglect the viscous part related to the distortion of the fluid streamlines, an assumption

that can be accepted in dense mixtures, we obtain:

n〈A〉p − (1/2)∂x · (n〈B〉p) ≈ εs〈p〉eI + 〈M〉e (59)

Employing the constitutive equation of Morris and Boulay [15] to express the tensor 〈M〉e,

we then obtain:

〈S〉e = 〈p〉eI − ηs(εs)〈γ̇〉m + ηn(εs)|〈γ̇〉m|Q (60)
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where, as mentioned before, ηs(εs) ≡ µe + ηp(εs) denotes the shear viscosity of the mixture.

Reminding that the dynamical equation for the solid phase is automatically satisfied, the only

equation which has to be solved to determine the steady-state solid volume fraction profile in

the wide-gap Couette flow is:

∂x ·
[
ηs(εs)〈γ̇〉m − ηn(εs)|〈γ̇〉m|Q

]
= ∂x〈p〉e − ρmg (61)

This equation differs from Eq. 35, but only because of the gravitational and pressure terms on

the right of the equation above. These affect the vertical pressure distribution, but vanish in

the θ direction. Hence, they do not alter the solid volume fraction profile, given by Eq. 31a.

We thus recover the results obtained by Morris and Boulay [15].

B. The closure of Gillissen and Wilson

Another constitutive equation that can be employed for the tensor 〈M〉e has been recently

derived by Gillissen and Wilson [47], who developed a model for the microstructure and stress

in dense suspensions of non-Brownian, smooth spheres at vanishing small particle Reynolds

number. Their closure reads:

〈M〉e =− α(εs)µe〈γ̇〉m : 〈pppp〉 (62)

where α(εs), referred to as stress magnitude, is a function that diverges as the mixture nears

maximum packing, p is the orientation unit vector, which joins the centers of particle pairs

separated by lubrication films, while 〈· · ·〉 is the average operator involving the probability

density function of the vector p between interacting particles. To calculate the fourth-order

moment 〈pppp〉, one must first evaluate the second-order moment 〈pp〉, which is referred to

as microstructure tensor. An evolution equation for the latter is reported in [47], to which we

refer for further details. Eq. 62 successfully captures the typical non-Newtonian behavior of

dense mixtures, including normal stress differences in steady shear flows and time-dependent

stress in abruptly reversed shear flows and oscillating shear flows.
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V. CONCLUSIONS

In its original form, the mixture model suggests that shear-induced migration of neutrally

buoyant particles is induced solely by gradients in the solid effective stress tensor. In dense

mixtures where direct particle contacts and interparticle forces are negligible, the solid stress

arises from the particle velocity fluctuations generated when adjacent suspension layers move

past one another, and thus coincides with the solid kinetic stress. Using Buyevich’s [3] closure

for the solid kinetic stress tensor, we found that the time needed by the kinetic stress to cause

appreciable particle migration exceeds significantly the time scale of the migration process, a

result showing that, if direct particle contacts and interparticle forces are negligible, particle

migration must have another driver. Many believe that this is the lubrication forces between

the particles. On this assumption, Morris and Boulay [15] proposed a constitutive equation

for the solid effective stress tensor, a closure that seems to predict well the migration process.

However, their equation poses a conceptual problem, because the effect of lubrication forces

is captured by the effective stress tensor of the fluid, not of the solid, a matter thoroughly

discussed by Nott et al. [28]. Building on their ideas, we investigated this aspect further,

showing that lubrication forces may induce particle migration, and the tensor quantifying

their effect (the part of the particle-presence stress tensor related to lubrication films) can

be closed by Morris and Boulay’s constitutive equation.
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APPENDIX

A. DERIVATION OF THE TWO-FLUID EQUATIONS OF MOTION

In this appendix, we derive the two-fluid equations of motion using volume averages; the

treatment is similar to that of Jackson [34], but for the solid phase, instead of using particle-

phase averages, we adopt solid-phase averages, so that the fluid and solid phases are treated

equally. This choice allows connecting the results of this analysis to those of Batchelor [36]

for particle suspensions. The results are equivalent to those derived by Zhang and Prosperetti
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[35] via ensemble averaging.

A. Fluid phase

The fluid volume fraction and the fluid-phase volume average of a generic point variable

ζ(x, t) are defined as follows:

εe(x, t) ≡
∫

Λe

ψ(|x− z|)dz ; 〈ζ〉e(x, t) ≡
1

εe(x, t)

∫
Λe

ζ(z, t)ψ(|x− z|)dz (A.1)

where Λe is the domain occupied by the fluid phase at time t and ψ(|x− z|) is the weighting

function. Now, consider the equation of motion for the fluid:

ρe∂tue =− ρe∂x · (ueue)− ∂x · σe + ρeg (A.2)

where we have assumed the fluid is incompressible. Here, ue and σe are the point (that is,

non-averaged) velocity and stress tensor of the fluid. Let us multiply both sides by ψ(|x− z|)

and integrate over Λe with respect to z; this gives:

εeρe〈∂tu〉e =− εeρe〈∂x · (uu)〉e − εe〈∂x · σ〉e + εeρeg (A.3)

To manipulate it, we use the following transport theorems, whose proofs are in the literature

(for instance, see 48 or 49):

εe〈∂tu〉e + εe〈∂x · (uu)〉e = ∂t(εe〈u〉e) + ∂x · (εe〈uu〉e) (A.4)

εe〈∂x · σ〉e = ∂x · (εe〈σ〉e)−
∑
r

∫
∂Λr

kr(z, t) · σe(z, t)ψ(|x− z|)dsz (A.5)

With these results, we can write Eq. A.3 as follows:

ρe∂t(εe〈u〉e) =− ρe∂x · (εe〈uu〉e)

− ∂x · (εe〈σ〉e) +
∑
r

∫
∂Λr

kr · σeψ(|x− z|)dsz + εeρeg (A.6)

We now arrive at a key point of the analysis: the third term on the right-hand side does not

represent the mean fluid-particle interaction force. The definition that reflects the physical

meaning we ascribe to the mean force exerted by the fluid on the particles and that is used
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in numerical simulations to calculate this force (for instance, see 50 and 51) is:

n(x, t)〈f〉p(x, t) ≡−
∑
r

[∫
∂Λr

kr(z, t) · σe(z, t)dsz
]
ψ(|x− zr(t)|) (A.7)

where zr is the location of the center of particle r at time t. In Eq. A.7, one first calculates

the force exerted by the fluid on particle r, after weights it using the value of the weighting

function in zr, and finally sums over all the particles in the suspension. By contrast, in the

corresponding term in Eq. A.6, the fluid-particle interaction force on each differential surface

element of each particle is weighted using the value of the weighting function at the location

where the infinitesimal force acts. To make n〈f〉p appear in Eq. A.6, we expand ψ in a Taylor

series about zr, obtaining:∑
r

∫
∂Λr

kr · σeψ(|x− z|)dsz =− n〈f〉p − ∂x ·
[
n〈A〉p − (1/2)∂x · (n〈B〉p)

]
(A.8)

where n〈A〉p and n〈B〉p are defined by Eqs. 4 and 5. The tensor appearing in square brackets

in Eq. A.8 is referred to as particle-presence stress and is related to the direct fluid-particle

interaction occurring on the surfaces of the particles. Using Eq. A.8, we obtain:

ρe∂t(εe〈u〉e) =− ρe∂x · (εe〈u〉e〈u〉e)

− ∂x ·
[
εe〈σ〉e + εeρe〈ûû〉e + n〈A〉p − (1/2)∂x · (n〈B〉p)

]
− n〈f〉p + εeρeg (A.9)

where we have decomposed the convective term into the sum of two terms involving the

dyad of the average velocities and the average of the velocity fluctuations dyad. In this form,

the equation reveals that the expression of the fluid effective stress tensor is given by Eq. 3.

For liquid-particle suspensions, usually the dominant term is n〈A〉p, the leading part of the

particle-presence stress tensor.

B. Solid phase

For the dispersed phase, one can adopt two types of averages. The solid volume fraction

and the solid-phase volume average of a generic point variable ζ(x, t) are defined as follows:

εs(x, t) ≡
∑
r

∫
Λr

ψ(|x− z|)dz ; 〈ζ〉s(x, t) ≡
1

εs(x, t)

∑
r

∫
Λr

ζ(z, t)ψ(|x− z|)dz (A.10)
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The particle number density and the particle-phase volume average of a generic property

ζr(t) of (the entire) particle r are defined as follows:

n(x, t) ≡
∑
r

ψ(|x− zr(t)|) ; 〈ζ〉p(x, t) ≡
1

n(x, t)

∑
r

ζr(t)ψ(|x− zr(t)|) (A.11)

These averages are discussed in detail in the literature [35]. Here, we use solid-phase averages,

so that the fluid and solid phases are treated equally. Consider the equation of motion for

the solid phase, which holds in every point occupied by the solid material:

ρs∂tus =− ρs∂x · (usus)− ∂x · σs + ρsg (A.12)

Here, us and σs denote the point velocity and stress tensor of the solid. Multiply both sides

by ψ(|x− z|) and integrate with respect to z over the region of space occupied by the

particles; this gives:

ρsεs〈∂tu〉s =− ρsεs〈∂x · (uu)〉s − εs〈∂x · σ〉s + εsρsg (A.13)

An analogous version of Eq. A.4 holds; this allows us to manipulate the accumulation and

convective terms. Also, using Eq. A.10, we can write:

εs〈∂x · σ〉s ≡
∑
r

∫
Λr

∂z · σs(z, t)ψ(|x− z|)dz (A.14)

Now, we expand the weighting function in a Taylor series about the center zr of the generic

particle r. Doing so yields the following series, of which we retain the first two terms:

εs〈∂x · σ〉s =
∑
r

[∫
Λr

∂z · σsdz
]
ψ(|x− zr|)− ∂x ·

∑
r

[∫
Λr

(z − zr)∂z · σsdz
]
ψ(|x− zr|)

+ (1/2)∂x∂x :
∑
r

[∫
Λr

(z − zr)(z − zr)∂z · σsdz
]
ψ(|x− zr|)− · · · (A.15)

In the first term on the right-hand side, we may manipulate the volume integral using the

divergence theorem. Doing so yields:∫
Λr

∂z · σsdz =

∫
∂Λr

kr · σsdsz (A.16)

Notice that the surface integral on the right-hand side of this equation is not equal to the

force that the particle exerts on the surrounding fluid, insofar as the stress tensor featuring

in the integrand is that pertaining to the solid material. Because the particle exerts a
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force also on the particles with which it is in direct contact at any given time, the surface

integral above differs from the fluid-particle interaction force. To eliminate the stress tensor

of the solid material, and make the fluid-particle interaction force appear, we use the linear

momentum jump condition holding at the particle surface:

kr · σs = kr · σe + cr (A.17)

Here cr denotes the surface density of the contact force that particle r exerts on the particles

that are in direct contact with it. Then, we obtain:∑
r

[∫
Λr

∂z · σsdz
]
ψ(|x− zr|) =

∑
r

[∫
∂Λr

kr · σedsz +

∫
∂Λr

crdsz

]
ψ(|x− zr|) (A.18)

The term associated with the first integral on the right-hand side is the average force that

the particles exert on the fluid. For the other term, it is:∑
r

[∫
∂Λr

crdsz

]
ψ(|x− zr|)

=
∑
r

[∑
s 6=r

frs

]
ψ(|x− zr|) = ∂x ·

[
n〈C〉p − (1/2)∂x · (n〈D〉p)

]
(A.19)

The last passage is proved in Mazzei [52]. Here, frs is the direct contact force that particle r

exerts on particle s. Furthermore, the tensors n〈C〉p and n〈D〉p are defined by Eqs. 9 and

10. With these results, we finally obtain:∑
r

[∫
Λr

∂z · σsdz
]
ψ(|x− zr|) =− n〈f〉p + ∂x ·

[
n〈C〉p − (1/2)∂x · (n〈D〉p)

]
(A.20)

To eliminate the stress tensor of the solid material from the second term featuring on the

right-hand side of Eq. A.15, we use Eq. A.12, writing:∑
r

[∫
Λr

(z − zr)∂z · σsdz
]
ψ(|x− zr|) =

∑
r

[∫
Λr

(z − zr)(ρsg − ρsu̇s)dz
]
ψ(|x− zr|)

=−
∑
r

[∫
Λr

(z − zr)(ρsu̇s)dz
]
ψ(|x− zr|) (A.21)

in which u̇s denotes the substantial derivative of the local velocity of the particle material.

The gravitational field gives no contribution because it is constant (and the particle is

spherical). Since the particle is assumed to be rigid, the following kinematic equation holds:

u̇s = u̇r − (z − zr)× ω̇r − (z − zr)(ωr · ωr) + (z − zr) · ωrωr (A.22)
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where ur is the velocity of the center of particle r and ωr is the angular velocity of particle r

(both functions only of t, differently from us, which depends also on the space coordinates),

while u̇r and ω̇r are their time derivatives. Replacing this in Eq. A.21 gives:∑
r

[∫
Λr

(z − zr)∂z · σsdz
]
ψ(|x− zr|)

= (1/2)
∑
r

I× Isω̇rψ(|x− zr|) + (Is/2)(n〈ω · ω〉pI − n〈ωω〉p) (A.23)

where I is the unit tensor and Is is the moment of inertia of the particle. To manipulate the

term involving the angular acceleration of the particle, we employ the angular momentum

balance equation for the particle. Hence, we write:

∑
r

I× Isω̇rψ(|x− zr|) = −
∑
r

[∫
∂Λr

aI×kr× (kr · σe)dsz
]
ψ(|x− zr|)

−
∑
r

[∑
s 6=r

aI×krs× frs
]
ψ(|x− zr|) (A.24)

Since it is:

I×a× b = ba− ab (A.25)

for any vectors a and b, if we use this tensorial relation and the definitions given in Eqs. 4

and 9, we reach the following result:∑
r

I× Isω̇rψ(|x− zr|) =
(
n〈A〉p − n〈A〉Tp

)
+
(
n〈C〉p − n〈C〉Tp

)
(A.26)

whence: ∑
r

[∫
Λr

(z − zr)∂z · σsdz
]
ψ(|x− zr|)

= (1/2)
[(
n〈A〉p − n〈A〉Tp

)
+
(
n〈C〉p − n〈C〉Tp

)
+ Is(n〈ω · ω〉pI − n〈ωω〉p)

]
(A.27)

For convenience, we denote this tensor as n〈Ω〉p. We neglect the third term in Eq. A.15, since

following Jackson [34], we omit terms that are small of O(a2/L2) relative to those retained

(where L is the shortest significant macroscopic length scale associated with the flow). Thus,

33



Eq. A.15 reduces to:

εs〈∂x · σ〉s =− n〈f〉p + ∂x ·
[
n〈C〉p − (1/2)∂x · (n〈D〉p)− n〈Ω〉p

]
(A.28)

Introducing all these results in Eq. A.13, and decomposing the convective term as we did

for the fluid phase, leads to the following equation:

ρs∂t(εs〈u〉s) =− ρs∂x · (εs〈u〉s〈u〉s)

− ∂x ·
[
εsρs〈ûû〉s + n〈C〉p − (1/2)∂x · (n〈D〉p)− n〈Ω〉p

]
+ n〈f〉p + εsρsg (A.29)

The order of magnitude of n〈Ω〉p depends on that of the particle mean angular velocity, 〈ω〉p.

If this and ∂x× 〈u〉e have equal order of magnitude, a common situation for liquid-particle

mixtures, |〈ω〉p|/|〈u〉e| is O(1/L) and n〈Ω〉p is O(a2/L2). So, this tensor can be neglected.

Then, from Eq. A.29, we arrive at the definition of solid effective stress tensor given in Eq. 8.

Note that if to derive the equation of motion for the solid phase one uses particle-phase

averages (for this, see 34), the resulting expression for the solid effective stress tensor is:

〈S〉p(x, t) ≡ εs(x, t)ρs〈ûû〉p(x, t) + n(x, t)〈C〉p(x, t)− (1/2)∂x · [n(x, t)〈D〉p(x, t)] (A.30)

So, when |〈ω〉p|/|〈u〉e| is O(1/L), we see that 〈S〉s = 〈S〉p + O(a2/L2); thus, at the level of

approximation adopted, the two tensors are equal.

B. CONNECTION WITH THE WORK OF BATCHELOR

In Batchelor [36], the goal is deriving an expression for the stress tensor of a fluid-particle

suspension. The result (Eq. 4.5 of the article) can be written as follows:

Σ = εe〈p〉eI − µe〈γ̇〉v + Σ(p) = εe〈σ〉e + Σ(p) (B.1)

As we can see, Σ(p) groups together all the contributions to the effective stress tensor of the

suspension related to the particles (plus the fluid-phase kinetic stress). Σ(p) is referred to as

particle stress tensor and comprises four terms:

Σ(p) = Σ(p)
1 + Σ(p)

2 + Σ(p)
3 + Σ(p)

4 (B.2)
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where:

Σ(p)
1 (x, t) ≡ (1/V )a

∑
r

∫
∂Λr

kr(z, t)kr(z, t) · σe(z, t)dsz (B.3)

Σ(p)
2 (x, t) ≡ (1/V )

∑
r

∫
∂Λr

µe

[
ue(z, t)kr(z, t) + kr(z, t)ue(z, t)

]
dsz (B.4)

Σ(p)
3 (x, t) ≡ (1/V )

∑
r

∫
Λr

(z − zr)ρsas(z, t)dz (B.5)

Σ(p)
4 (x, t) ≡ (1/V )

∫
Λe

ρeue(z, t)ue(z, t)dz + (1/V )
∑
r

∫
Λr

ρsus(z, t)us(z, t)dz (B.6)

Here, V denotes the volume of the region over which the average is performed (in Batchelor’s

analysis, this is the entire region occupied by the suspension, since the suspension is assumed

to be statistically uniform) and as is the solid point acceleration relative to the mean value of

the acceleration in V (in the case studied, this value is uniform). The summations are over

all the particles in the suspension.

As Batchelor states, for rigid particles Σ
(p)
2 is zero; hence, since we are interested in rigid

particles, we disregard this term. Also, he employs the weighting function ψ(|x− z|) = 1/V .

Therefore, we can write:

Σ(p)
1 (x, t) = a

∑
r

[∫
∂Λr

kr(z, t)kr(z, t) · σe(z, t)dsz
]
ψ(|x− zr|) (B.7)

Σ(p)
3 (x, t) =

∑
r

[∫
Λr

(z − zr)ρsu̇sdz
]
ψ(|x− zr|) (B.8)

Σ(p)
4 (x, t) =

∫
Λe

ρeu(z, t)u(z, t)ψ(|x− z|)dz +
∑
r

∫
Λr

ρsu(z, t)u(z, t)ψ(|x− z|)dz (B.9)

In Eq. B.8, we have replaced as with the solid point acceleration u̇s, since the two differ by a

constant vector that contributes nothing to the integral in Eq. B.8.

Σ
(p)
1 = n〈A〉p, the leading part of the particle-presence stress tensor ; the part ∂x · (n〈B〉p)

is not recovered because is zero for statistically uniform suspensions. Moreover, as shown in

Appendix A (see Eqs. A.21 and A.27), Σ
(p)
3 =−n〈Ω〉p, a term that (as discussed) often can

be neglected. Finally, it is:

Σ(p)
4 = εeρe〈ûû〉e + εsρs〈ûû〉s (B.10)
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The collisional stress tensor does not appear in the particle stress tensor because Batchelor

did not account for particle collisions. With these results, we then obtain:

Σ(p) = n〈A〉p + εeρe〈ûû〉e + εsρs〈ûû〉s − n〈Ω〉p (B.11)

We conclude that if |〈ω〉p|/|〈u〉e| is O(1/L), so that n〈Ω〉p is O(a2/L2), and if we neglect the

kinetic stress terms, the particle stress tensor coincides with (the leading part of) the particle-

presence stress tensor. But in general these two tensors differ.

C. ON THE STEADY WIDE-GAP COUETTE FLOW SOLUTION PRESENTED

IN MORRIS AND BOULAY

In Section III B, to be consistent with the rest of our work, we have not used the notation

adopted by Morris and Boulay [15]. We briefly repeat the analysis of the steady wide-gap

Couette flow solution employing the original notation and clarifying a few additional aspects.

The starting is point Eq. 31, which we now write as follows:

d(r2Σf,rθ)

dr
= 0 ;

d(r2Σp,rθ)

dr
= 0 (C.1 a,b)

Both equations must be satisfied, but Morris and Boulay consider only the second. This is

reported at page 1222, at the beginning of Section A, where the authors state “The steady

or developed flow which occurs after particle migration is complete satisfies ∇ ·Σp = 0. In

Secs. III A–C, we shall only need to consider the particle contributions to the stress and the

subscript p will be dropped from the particle stress.”

So, based on what the authors say, from page 1223 when they write ∇·Σ = 0, they mean

∇ ·Σp = 0. Now, their closures are:

Σf = 2ηE ; Σp = 2ηηp(φ)E − ηγ̇Q(φ) (C.2 a,b)

where η is the fluid viscosity, a constant. As we said, Morris and Boulay did not consider Eq.

C.1a, but this equation must be satisfied. Using Eq. C.2a in Eq. C.1a yields d(r2 γ̇)/dr = 0.

Considering this result, let us use Eq. C.1b. From it, we obtain:

2ηηp(φ)
d(r2γ̇)

dr
+ 2ηr2γ̇

dηp(φ)

dr
= 0 ⇒

dηp(φ)

dr
= 0 (C.3)

This means that ηp(φ) does not change with r, which in turn means that φ is uniform. That

is, no migration has taken place, a result that is incorrect. Note that this problem is related
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to the closure of Σf , in which the viscosity is a constant.

In Section B, when modeling the steady wide-gap Couette flow, Morris and Boulay did

find that migration occurs and did obtain good results because a) they did not solve Eq. C.1a

and b) in the (un-tagged) equation below Eq. 28 of their article, they used ηs(φ) = 1 + ηp(φ)

instead of ηp(φ). Morris and Boulay solved only the following equation:

d

dr

[
2ηηs(φ)r2γ̇

]
= 0 (C.4)

This is the very equation one obtains when using the following closures, where Σp is set to

zero and the particle-presence stress is ascribed to the fluid effective stress tensor:

Σf =− 〈p〉eI + 2ηηs(φ)E − ηγ̇Q(φ) ; Σp = 0 (C.5 a,b)

where, in Eq. C.5a, we have accounted for the pressure term. So, the equation that Morris

and Boulay solved is consistent with what we argue in our article.
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