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General abstract 

The temporal dynamics of key processes are a poorly understood yet potentially important 

factor in our understanding of plant coexistence in communities. Plants occupying the same 

spatial but differing temporal niches can coexist through niche differentiation, allowing 

coexistence in complex ecosystems. This thesis used barley as a model plant to investigate 

the temporal dynamics of plant and soil processes associated with nutrient uptake, and 

whether such dynamics might promote co-existence in competing plants. 

 Through a series of lab-based studies I found that competition between barley 

cultivars can lead to a shift in the timing of peak nitrogen accumulation rate. However, 

estimates of peak nitrogen accumulation rate can be influenced by the experimental design, 

software program and statistical model used in these studies. At a molecular level, plant 

competition leads to temporally dynamic changes in the concentration of the plant 

hormone salicylic acid. There were also changes in gene expression depending on the 

identity of a neighbouring plant.  

 I also explored the temporal dynamics of soil processes associated with plant 

nutrient uptake at a pot and root scale. At a pot scale, plant-plant competition did not lead 

to a significant shift in the temporal dynamics of soil carbon, nitrogen or microbial biomass. 

However, at a single root level, plant-plant competition led to a shift in the timing of peak 

activity of soil enzymes associated with nutrient turnover, indicating that the impact of 

plants on the soil microbial community might be one component of the mechanisms 

allowing temporally dynamic responses of plants to their neighbours. 

I also found that the ability to shift the timing of peak nitrogen accumulation rate in 

response to plant-plant competition has been conserved in modern cultivars of barley. This 

ability can be used in the development of greater complementarity in crop mixtures to 

improve crop yield stability.  

 I demonstrated in this thesis that shifts in the temporal dynamics of plant nitrogen 

uptake in response to plant-plant competition involve both plant and soil components and 

can be inherited. These results contribute to our understanding of plant-plant competition 

dynamics and are applicable to both developing approaches for sustainable agriculture and 

for understanding coexistence in plant communities. 
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Chapter 1 

Temporal dynamism of resource capture: a missing factor in ecology? 

 

Published as: Schofield E.J., Rowntree J.K., Paterson E., Brooker R.W. (2018) Temporal 

Dynamism of Resource Capture: A Missing Factor in Ecology? Trends in Ecology & Evolution, 

33(4), 277–286. I carried out the literature review which was then reviewed and edited by 

the other authors. 
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Abstract 

The temporal dynamics of plant resource uptake and the impacts on plant-plant interactions 

have important regulatory roles in multi-species communities. By modifying resource 

acquisition timing, plants might reduce competition and promote coexistence. But despite 

the potential to advance our understanding of community processes, this aspect of plant 

community ecology has historically received limited attention. This is partially a 

consequence of an historic reliance on measures made at single points in time. However, 

due to current technological advances this is a golden opportunity to study within-growing 

season temporal dynamism of resource capture by plants. This chapter presents new 

technologies that can be used to study this critical aspect of temporal dynamism and help 

deliver a vision for future development of this research field. 

 

1.1 - What is temporal dynamism and why is it important? 

Understanding plant community composition and functioning are fundamental challenges in 

ecology. We have yet to fully understand why specific communities exist at certain points in 

space and time, why some communities are more diverse than others, and how diversity 

impacts ecosystem function. In plant communities many theories have been proposed to 

explain plant coexistence including cyclical disturbance (Grime, 1977; Bongers et al., 2009), 

different individual responses to species interactions (Rowntree et al., 2011), multiple 

limiting resources (Tilman, 1982; Valladares et al., 2015), intraspecific trait variation 

(Mitchell and Bakker, 2014) and facilitative plant-plant interactions, particularly in extreme 

environments (Brooker et al., 2007; Butterfield et al., 2013). 

However, short-term (i.e. within-growing season) temporal dynamism in resource 

acquisition might be central to addressing these fundamental questions. Temporal 

dynamism can be described as a form of heterochrony, controlled by intrinsic gene 

expression but also influenced by external environmental factors such as climatic conditions 

(Geuten and Coenen, 2013). However, apart from in a few cases we rarely consider within-

growing season temporal dynamism in resource acquisition as a topic in its own right, in 

part because it has historically proven hard to measure. This is in contrast to our knowledge 

of plant phenology about which much is known. Phenological studies have shown the 
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importance of timing in the structure and functioning of plant communities (Tang et al., 

2016). Therefore, there can be expected to be similar important consequences for temporal 

dynamism in resource capture.  

If different species temporally segregate uptake of common resources to avoid 

competition, increased complementarity can promote plant coexistence (Li et al., 2014), 

with profound implications for biodiversity-ecosystem function relationships. Importantly, 

due to the wealth of analytical approaches now available, now is a good opportunity to 

address the historic oversight of within-growing season temporal dynamism.   

Before considering these new opportunities, previous studies of temporal dynamism 

will be examined and why short-term temporal dynamism has been overlooked to date. 

New experimental approaches to address identified knowledge gaps will be presented, 

considering the potential influence on other areas of ecology 

 

1.2 - Examples of temporal dynamism in plant communities 

Previous research provides clear examples of the importance of temporal dynamism in the 

structure and functioning of plant communities. Arguably one of the most well studied 

examples is plant-pollinator interaction dynamics, as flowering phenology can lead to 

competition or facilitation for pollinators, with inter- and intra- annual dynamics (Kipling and 

Warren, 2014; MacLeod et al., 2016). In arid environments temporal dynamism has been 

found in the growth response of plants to erratic inputs of water (Thompson and Gilbert, 

2014), depending on the timing of the water input in the growing season, and the time since 

the previous water input (Schwinning et al., 2004).  

Other examples of temporal dynamism in plant communities involve processes 

linked to the temporal dynamics of nutrient uptake. One way in which non-native species 

can become invasive is  by occupying a novel spatial or temporal niche (Wolkovich and 

Cleland, 2014). Occupying a novel temporal niche, left vacant by the native plant 

community, could allow the invasive species to capture nutrients at a time of reduced 

competition from the native community. The link to the temporal dynamics of nutrient 

uptake has not yet been proven experimentally but dynamism in resource uptake could 
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have a role in plant invasions. A similar example is the phenology of hemi-parasitic plants. 

The lifecycle of hemi-parasites occurs earlier in the growing season than their hosts, 

influencing nitrogen cycling with earlier leaf fall than the host community (March and 

Watson, 2007; Mudrák et al., 2016). However, this is another case where the link to 

temporal dynamism of nutrient uptake has not been fully explored.  

Some of the examples above clearly have a link to resource capture. A few 

experimental studies have sought to measure this process in more detail. One such example 

is that of McKane et al. (2002), who found in an arctic field study that coexisting species 

segregated the form of nitrogen, rooting depth and timing of nitrogen uptake in a tundra 

plant community. This is thought to lead to coexistence through niche differentiation 

reducing competition for key limiting factors. Another example is the Trinder et al. (2012) 

paper, which used a series of destructive harvests to examine the temporal dynamics of 

nitrogen uptake and biomass accumulation of Dactylis glomerata (Cock’s foot) and Plantago 

lanceolata (Ribwort plantain). Trinder et al. found that in response to interspecific 

competition both species shifted the timing of the maximum rate of biomass accumulation 

and nitrogen uptake by up to 17 days (Trinder et al., 2012). The species diverged the timing 

of these resource capture processes, presumably to limit direct competition for resources. 

The presence of a range of previous studies looking at temporal dynamism but few 

that have been able to specifically address temporal dynamism of resource capture suggests 

a technological limitation that has prevented direct studies.   

 

1.3 - Why does it matter that temporal dynamism has been overlooked? 

Many of the fundamental processes and properties of many terrestrial communities are 

governed by the outcome of plant-plant interactions (Lortie et al., 2004). Temporal 

segregation of nutrient uptake could support a high species diversity and have a stabilising 

effect on communities (Trinder et al., 2013), at a species (Proulx et al., 2010) and genotypic 

level (Fridley et al., 2007), as the community uses a greater proportion of the available 

resources (Allan et al., 2011). But despite a huge amount of work on plant-plant 

interactions, especially competition, there are still unanswered fundamental questions 

about the role of plant interactions in governing plant community composition.  



  

   15 
  

For example current understanding of the defined niches available cannot explain 

the level of observed coexistence (Clark, 2010). However, a better understanding of short-

term temporal dynamism in resource capture and plant interactions might help explain this 

apparent paradox. This could be due to an unmeasured trait involved in temporal dynamics 

of key processes such as nutrient capture (Figure 1.1). 

 

Figure 1.1 - Theoretical role of temporal dynamism in plant coexistence. In isolation (panels 

a and b) plants take up nutrients in a specific profile over the growing season. But when 

grown together (panel c) the two plants offset the period of maximum nutrient uptake to 

limit competition. In a multispecies community (panel d) this may lead to species occupying 

distinct temporal niches, leading to coexistence. 

 

 

 

(a) 

(d) (c) 

(b) 
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1.4 - Why has temporal dynamism in resource capture been overlooked?  

It is clear that temporal dynamism in plant community processes and interactions can be 

critical for regulating community structure and function. However, there is very limited 

knowledge about temporal dynamism of plant-plant interactions within a growing season. 

Here the reasons for why this oversight might have occurred are considered below.  

 

1.4.1 - Tradition 

Plant ecology has traditionally relied on one final biomass measurement to assess the 

consequences of plant-plant interactions. Biomass is a relatively cheap and easy measure of 

plant responses, making large-scale greenhouse and field studies possible (Trinder et al., 

2013). However, there are some drawbacks to using single time point measurements of 

biomass to assess plant-plant interactions, and especially temporal dynamism. First, the 

accumulation of biomass is rarely solely influenced by competition alone, due to the 

influence of external environmental factors (Trinder et al., 2012). This makes it an unreliable 

direct measure of the outcome of competition. Second, many studies use only single 

harvests to assess the outcome of plant-plant interactions, which is clearly inappropriate for 

measuring short-term temporal dynamism in resource capture. In addition, the precise 

timing of biomass harvest and measurement within a growing season can influence the 

perceived outcome of the plant interaction, as plants grow and develop at different times 

throughout the year (Trinder et al., 2013). The same criticisms can also be made of other 

common annual, single time-point measurements, for example flower production and seed 

set. To understand the role of temporal dynamism of resource capture in regulating 

community dynamics, repeated measures of resource capture are required.  

 

1.4.2 Traditional techniques  

Comparatively traditional approaches, for example plant biomass and tissue nutrient 

content analysis, can be used to explore issues of temporal dynamism in plant interactions, 

so long as they are coupled to multiple harvesting points through time, as used by Trinder et 

al. (2012) to examine the temporal dynamics of resource capture in Plantago lanceolata and 



  

   17 
  

Dactylis glomerata. However, although the multiple harvest approach is a valuable tool, it is 

destructive and requires large-scale, labour intensive studies. It also means that the 

subtleties of individual level temporal dynamics of resource capture and competition cannot 

be tracked.  

 

1.4.3 - Difficulties in measurement 

Single-harvest measurements of biomass might have become the tradition because doing 

anything else is difficult. The inclusion in a study of multiple harvests to track temporal 

dynamism of resource capture and plant interactions through time will increase the size and 

complexity of an experiment, and therefore reduce the complexity of the questions that can 

be asked (Allan et al., 2011; Li et al., 2014). Also, multiple harvesting means responses are 

averaged over many plants, potentially masking subtle individual responses in resource 

capture and growth. Using alternative non-destructive methods instead would allow a single 

plant to be studied over time. 

Previous studies have looked at temporal dynamism of processes related to resource 

capture, with a limited look directly at temporal dynamism of resource capture directly. This 

is likely to be due to technological limitations to study resource uptake temporal dynamics 

directly such as the use of destructive harvesting. This strengthens the case for the use of 

innovative new technologies to give temporal dynamism of resource capture the attention it 

deserves. 

 

1.5 – Research questions 

A series of questions forming a research agenda is required to advance the study of 

temporal dynamism of resource uptake. Initially it needs to be established whether 

temporal dynamism in nutrient uptake really leads to a reduction in competition and 

promote coexistence. This is the important initial question to form the basis of future 

research. The mechanism by which temporal dynamism of nutrient uptake occurs is the 

natural follow-up area of investigation, focusing on potential signalling pathways between 

neighbouring plants. Also, due to the importance of soil microbes in nutrient mobilisation, 



  

   18 
  

the role and influence of the soil community on the temporal dynamics of nutrient uptake 

merits further investigation.  

This opens up a range of questions about the consequences of temporal dynamism 

of resource capture. The influence on the physiology and morphology of the individual is a 

clear starting point. However, it is the influence on the wider community that is of greater 

interest to a range of ecologists.  There are potential impacts on any organism that interacts 

with plants including herbivores (vertebrate and invertebrate) and pollinators. This is likely 

to ultimately have cascading effects on the whole food chain, influencing the structure and 

function of entire ecosystems. 

 

1.6 - How to measure short-term temporal dynamism in resource capture and 

competition? 

In order to address the identified key research questions, new technological approaches are 

required to look at this complex series of processes involved in nutrient capture. This 

section will discuss how current technology can be used to study temporal dynamism of 

resource capture.  

 

1.6.1 - Does temporal dynamism in resource capture lead to coexistence? 

To address this question a method to detect the presence of temporal dynamism is needed. 

Destructive harvesting seems like an obvious first choice and could well form the basis of 

initial studies of temporal dynamism. However, to study temporal dynamism directly, non-

destructive techniques are likely to be required to examine the multiple steps in the process 

of nutrient uptake.  

To take up mineral nutrients, plants are reliant on soil biota to drive nutrient cycles 

that mobilise organic nutrient stocks into plant-available forms. Increasing evidence 

indicates that plants exert significant control over this process, changing rates of soil organic 

matter (SOM) mineralisation (de Vries and Caruso, 2016; Laliberté, 2016), primarily through 

the impacts of rhizodeposition on microbial process rates (rhizosphere priming effects, RPE 

(Kuzyakov, 2010; Mommer et al., 2016)). As rhizodeposition varies with plant development, 



  

   19 
  

species and genotype (Chaparro et al., 2013; Bardgett et al., 2014; Mwafulirwa et al., 2016), 

there are likely to be important implications of these plant-microbe interactions for the 

temporal dynamics of resource capture in mixed plant communities that remain to be 

resolved.  

In terms of studying components of the system that are related to plant nutrient 

availability and acquisition, one method is to study the timing of the rhizosphere priming 

effect for plants in competition vs. isolated plants. For example, recalcitrant and labile forms 

of nitrogen are mineralised by soil bacteria and fungi (Andrews et al., 2013) and mycorrhizal 

fungi provide phosphate to plants (Johri et al., 2015). Stable isotope labelling (15N/13C) of 

plants or soil provides a means of quantifying these processes, allowing plant impacts on soil 

nutrient cycles to be determined (McKane et al., 1990). This can be done non-destructively 

through isotopic partitioning of soil CO2 efflux into plant and SOM-derived components 

(Lloyd et al., 2016) or tracing 15N fluxes (derived from labelled organic matter) in soil 

solution (Zambrosi et al., 2012; Yang et al., 2013; Studer et al., 2014). This allows the key 

processes of soil community priming and nitrogen mobilisation to be measured over time. 

 

1.6.2 - How is temporal dynamism in nutrient uptake moderated in response to neighbours?  

Traditionally plant responses to a neighbouring plant have thought to occur when the zones 

of nutrient depletion in the soil overlap (Ge et al., 2000). However, as the complexities of 

plant-plant communication are revealed (Babikova et al., 2013), it is becoming clear that this 

might not be the case. One way to look at dynamic plant responses to a neighbour is 

through the use of gene expression markers. The most commonly used method to study 

gene expression in response to an external change is RNA sequencing (RNAseq). Studies in 

Arabidopsis thaliana have identified that common stress response pathways such as 

jasmonate expression are activated in response to a competitor (Masclaux, Bruessow, 

Schweizer, Gouhier-Darimont, Keller and Reymond, 2012). However, it is unclear whether 

these responses can be translated to other species and more realistic experimental setups. 

Despite these uncertainties, the use of molecular markers represents a unique opportunity 

to understand competition at a molecular level and the sequence of events that take place 
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within a plant from competitor perception, to changes in the temporal dynamics of resource 

capture.  

 

1.6.3 - How do interactions with soil organisms influence temporal dynamism in resource 

uptake?  

The soil microbial community is known to be temporally dynamic, varying with season, plant 

species and plant developmental stage (Lortie et al., 2004). Molecular techniques such as 

sequencing the 16S ribosomal RNA extracted from rhizosphere soil samples taken over a 

time series can provide a view of how the active microbial community changes. Shi et al. 

(2016) took this approach further and produced a network of microbial diversity over a 

growing season, showing how plants promote a beneficial rhizosphere, compared to the 

bulk soil (Shi et al., 2016). This approach provides a view of dynamic interactions between 

plants and the soil microbial community, allowing the tracking of soil community activity 

and associated nutrient availability over time.  

Another exciting development integrating the spatial dynamism of the soil 

community activity over a growing season is zymography. This approach focusses on specific 

functions of the soil community such as cellulase and chitinase activity (Spohn and 

Kuzyakov, 2014) and has already been used to identify ‘hot moments’ when microbial 

activity is higher than normal levels (Kuzyakov and Blagodatskaya, 2015). Such ‘moments’ 

can be occasional or occur periodically with events like spring growth and autumn leaf fall 

(Philippot et al., 2009). Soil zymography can be used to identify the areas of the plant root 

system where temporal dynamics of nutrient acquisition is most important (Spohn and 

Kuzyakov, 2014). This allows not just the soil community structure but also its activity to be 

tracked over time and linked to plant nutrient uptake dynamics. 
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1.6.4 - How does temporal dynamism of resource capture influence plant physiology and 

morphology? 

Temporal dynamism of nutrient capture is likely to influence the physiology and morphology 

of roots as they are directly involved in nutrient uptake. This could involve changes in root 

foraging behaviour and root architecture in response to a neighbouring plant.     

To study root growth and foraging activity over time, one approach is the use of 

microrhizotrons. These are small cameras inserted into the soil to record root foraging 

behaviour and are particularly useful to look at fine root development (McCormack et al., 

2015; Warren et al., 2015). However, they are limited as they do not give a view of the 

whole root system. Instead whole root system growth dynamics can be studied using plants 

grown in Perspex boxes and photographed using high definition cameras for phenomic 

analysis in automated root phenotyping facilities (Marshall et al., 2016). This allows for a 

root system to be studied in-situ, as well as dynamic root architecture changes and root 

foraging to be tracked over time. As seen in arid environments root architecture traits can 

be vital for temporal dynamism studies. Therefore, techniques such as these will allow 

studies of temporal dynamism of nutrient uptake to include the dynamics of root growth. 

For a more detailed 3D view of root architecture, X—ray CT scanning can be used to 

visualise plant roots grown in pots. The development of specialist root tracking software and 

facilities will allow much larger and more complex experiments to be carried out into 

dynamic competition for soil resources between the roots of multiple individuals. This 

approach has already been used to study root growth in response to competition between 

Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings. Both 

species increased rooting depth and altered root architecture in response to a competitor 

(Dutilleul et al., 2015). Using this approach with a time series of successive scans will allow 

us to see a 3D view of the dynamism of root growth, and the traits of dynamic root 

placement to be viewed with high temporal resolution.   
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1.7 - What is the future strategy to study temporal dynamism? 

Temporal dynamism could be a vital mechanism by which plants coexist in complex 

communities. There is now an ideal opportunity to understand the within-growing season 

temporal dynamics of resource capture as part of broader ecological system dynamics. As 

nutrient acquisition is a series of distinct, but interconnected processes, an integrated 

approach is required (Harris, 1967). A vast amount of knowledge can be gained about 

temporal dynamism in resource uptake from using these cutting edge technologies.  

 The ultimate goal in this field of research should be to integrate temporal dynamism 

as a factor in existing niche models, to define new niche space and aid the explanation of 

coexistence in complex communities. This approach can then be applied to other temporally 

dynamic processes, answering other fundamental questions about ecosystem functioning.   

 

1.8 - Conclusions 

Now is an ideal time to study and integrate within-growing season temporal dynamism into 

our understanding of coexistence. To achieve this, a clear research framework and the use 

of cutting-edge technology to study the individual stages of resource capture are required. 

This chapter has presented a clear set of questions that need to be answered in order to 

understand the mechanism and consequences of temporal dynamism in nutrient uptake. 

Although studying temporally dynamism of resource capture is not going to be straight 

forward, the potential benefit to our understanding of ecosystem functioning is likely to be 

considerable.  Lessons learnt by studying the temporal dynamics of resource capture can 

then be applied to study other temporally dynamic ecological processes.  

This thesis will use barley (Hordeum vulgare) as a model plant to investigate the 

effect of plant-plant competition on the temporal dynamics of resource capture. The use of 

barley allows the results of this thesis to be of relevance to both sustainable agriculture, 

specifically plant mixtures, as well as grassland ecology as barley is a grass species. It also 

allows molecular approaches to be used to study intracellular processes associated with 

nutrient uptake temporal dynamism, such as gene expression. Genetic approaches are often 
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not possible in wild grass species, as many do not have reference genomes available. 

Therefore, the use of barley allows these types of analyses to be carried out. 

This thesis will initially take a successive harvest approach similar to Trinder et al. 

(2012), using barley as a model plant, specifically two cultivars (Proctor and Tammi) grown 

in isolation, inter- and intra- cultivar competition (Chapter 2). The potential influence of the 

statistical model design and software used to analyse the temporal datasets in these types 

of studies will then be assessed (Chapter 3). This will then be followed up by two studies of 

soil processes, the first at a pot level studying the effect of plant competition on the 

temporal dynamics of soil processes including soil respiration and soil nitrogen dynamics 

(Chapter 4). Then a second at a single root level to study the effect of plant-plant 

interactions on the dynamics of the soil microbial community activity using zymography 

(Chapter 5). This chapter will use two enzyme classes to examine the effect of plant-plant 

competition on soil organic matter turnover and nitrogen cycling dynamics.  

The gene expression patterns of barley in inter- and intra- cultivar competition will 

be examined in Chapter 6. Microarrays will be used to identify genes up- and down- 

regulated in response to competition and differences in expression between inter- and 

intra- cultivar competition. The plant stress hormone production associated with plant-plant 

competition will be characterised in Chapter 7 using two plant hormones associated with 

abiotic and biotic stress, jasmonic acid and salicylic acid. The relative concentrations in roots 

will be used to assess the molecular response to plant-plant competition.   

Descendants of the original cultivars will then be used to investigate whether the 

descendants of Proctor, a cultivar first introduced in 1955, have inherited a temporally 

dynamic response to competition for resources (Chapter 8). The same successive harvesting 

approach as Chapter 2 and statistical analysis from Chapter 3 will be used for this study.  
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Chapter 2 

Cultivar differences and impact of plant-plant competition on temporal 

patterns of nitrogen and biomass accumulation 

Published as: Schofield E.J., Rowntree J.K., Paterson E., Brewer M.J., Price E.A.C., Brearley 

F.Q., Brooker R.W. (2019) Cultivar differences and impact of plant-plant competition on 

temporal patterns of nitrogen and biomass accumulation. Frontiers in Plant Science, 10, 215. 

I conceived the experimental design, collected and analysed the data, and wrote the 

manuscript. 
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Abstract 

Current niche models cannot explain multi-species plant coexistence in complex 

ecosystems. One explanatory factor is within-growing season temporal dynamism of 

resource capture by plants. However, the timing and rate of resource capture are 

themselves likely to be mediated by plant-plant competition. This study used barley 

(Hordeum vulgare) as a model species to examine the impacts of intra-specific competition, 

specifically inter- and intra-cultivar competition on the temporal dynamics of resource 

capture. Nitrogen and biomass accumulation of an early and late cultivar grown in isolation, 

inter- or intra- cultivar competition were investigated using sequential harvests. I did not 

find changes in the temporal dynamics of biomass accumulation in response to competition. 

However, peak nitrogen accumulation rate was significantly delayed for the late cultivar by 

14.5 days and advanced in the early cultivar by 0.5 days when in intra-cultivar competition; 

there were no significant changes when in inter-cultivar competition. This may suggest a 

form of kin recognition as the target plants appeared to identify their neighbours and only 

responded temporally to intra-cultivar competition. The Relative Intensity Index found 

competition occurred in both the intra- and inter- cultivar mixtures, but a positive Land 

Equivalence Ratio value indicated complementarity in the inter-cultivar mixtures compared 

to intra-cultivar mixtures. The reason for this is unclear but may be due to the timing of the 

final harvest and may not be representative of the relationship between the competing 

plants. This study demonstrates neighbour-identity-specific changes in temporal dynamism 

in nutrient uptake. This contributes to our fundamental understanding of plant nutrient 
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dynamics and plant-plant competition whilst having relevance to sustainable agriculture. 

Improved understanding of within-growing season temporal dynamism would also improve 

our understanding of coexistence in complex plant communities. 

 

2.1 - Introduction  

Niche differentiation is suggested to lead to coexistence of plants by reducing competition, 

either for a specific form of a resource or simultaneous demand for the same resource 

(Silvertown, 2004). However, in complex plant communities such as rain forests and 

grasslands there are seemingly insufficient niches to explain coexistence of the many 

species present. Plants seem to occupy the same niche dimensions but without it leading to 

competitive exclusion (Clark, 2010).  

One factor which is often not included in niche models is time, more specifically the 

temporal dynamism of key developmental and physiological processes such as resource 

capture (Schofield et al., 2018). Competition can be influenced by temporally dynamic 

physiological processes (Poorter et al., 2013), such as flowering (Kipling and Warren, 2014) 

and nutrient uptake (Jaeger et al., 1999). Differences in the temporal dynamics of nutrient 

capture could reduce temporal niche overlap, reducing competition for resources. This 

could result in increased complementarity and promote coexistence (Ashton et al., 2010).  

As well as temporal dynamism influencing competition, competition can influence 

the temporal dynamics of resource capture, although the extent to which these processes 

affect each other is unclear. As there are many aspects of temporal dynamism in plant 

communities that are not fully understood, temporal dynamism in resource capture may be 

currently unsuitable as an indicator of plant-plant competition. However, a change in the 

temporal dynamics of resource capture may be a wider consequence of competition or a 

mechanism by which plants avoid direct competition for resources. Trinder et al. (2012) 

found a change in the temporal dynamics of nitrogen and biomass accumulation in response 

to inter-specific plant-plant competition. But the impact of competition on temporal 

dynamism in resource capture, and how this could influence coexistence in plant 

communities, remains largely unexplored (Schofield et al., 2018). 
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There is in particular a lack of information on the relationship between temporal 

dynamism and intra-specific competition, and how the degree of relatedness of competitors 

might influence temporal dynamism. The genetic distance between competing individuals 

can influence the functional plasticity of an individual response to competition (G. P. 

Murphy et al., 2017), including biomass allocation and root morphology (Semchenko et al., 

2017). Differential competitive responses have been demonstrated between closely related 

individuals (G. P. Murphy et al., 2017), including in a number of crop species (Dudley and 

File, 2007). The use of two cultivars in this study allows a tight control of the relatedness of 

individuals, which in turn allows us to address how diversity regulates interactions and 

ultimately functions in a range of systems (not least for the development of sustainable 

agricultural practice (Schöb et al., 2018)). In this sense, crop species are ideal model systems 

for undertaking such studies.  

Here, I conducted a pot experiment with barley (Hordeum vulgare) as a model 

species, using an early and a late cultivar. Barley is a suitable model in this case as its 

nutrient uptake has been studied in detail to optimise the timing of fertiliser application in 

agriculture (Nielsen and Jensen, 1986), allowing us to address fundamental ecological 

questions of plant coexistence, as well as investigating a topic of relevance for agricultural 

practices. 

It is expected that early and late cultivars of barley will have different temporal 

dynamics of nitrogen uptake and biomass accumulation, in a similar way to two species or 

genotypes in a natural system. The two cultivars in this study have been bred for different 

uses and therefore will have differing combinations of traits. Tammi has been bred for an 

early lifecycle (Nitcher et al., 2013), whereas Proctor was bred for malting quality (Hornsey, 

2003). The nitrogen uptake and biomass accumulation dynamics are predicted to be altered 

by plant-plant competition, and this will be more pronounced in intra-cultivar compared to 

inter-cultivar competition as the individuals will more completely occupy the same niche 

space.  

This study aimed to understand: (1) whether early and late cultivars of barley exhibit 

temporal dynamics in nitrogen uptake and biomass, (2) how plant-plant competition 

changes the temporal dynamics of nitrogen and biomass accumulation in early and late 
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barley cultivars, (3) how any temporally dynamic response differs with inter- and intra- 

cultivar competition, and ultimately (4) how this impacts on niche complementarity.  

 

2.2 – Materials and methods 

2.2.1 - Temporal patterns of nitrogen and biomass accumulation 

A pot-based competition study was used to investigate temporal dynamism in nitrogen 

uptake, using barley (Hordeum vulgare) as a model species. An early (Tammi: T) and late 

(Proctor: P) cultivar of barley (sourced from The James Hutton Institute, Dundee, Scotland) 

were chosen as they have similar height and limited tillering, enabling the study to focus on 

phenological rather than physiological differences. Each cultivar was grown in pots either in 

isolation, or with another individual of either the same or other cultivar (i.e. T, P, TT, PP, TP). 

 

2.2.2 - Soil characteristics 

Soil was sourced from an agricultural field (Balruddery Farm, Invergowrie, Scotland, 

56.4837° N, 3.1314° W) that had previously contained spring barley (Hordeum vulgare) and 

had been subject to standard management for barley production (including fertiliser 

addition at a rate of 500 kg of 22N-4P-14K ha-1 yr-1). The soil had an organic matter content 

(humus) of 6.2% ± 0.3% SEM (loss-on-ignition, n = 4) and a mean pH (in water) of 5.7 ±0.02 

SEM (n = 4), a total inorganic nitrogen concentration of 1.55 ± 0.46 mg g-1 (n = 4) and 

microbial C biomass (using a chloroform extraction) of 0.06 ± 0.002 SEM mg g-1 (n = 4) 

(analysed by Konelab Aqua 20 Discrete Analyser (Thermo Scientific, Waltham, MA USA)).  

The soil was passed through a 6 mm sieve and then stored at room temperature until use. 

No fertilization of the soil occurred during the experiment.  

 

2.2.3 - Setup and growing conditions 

Seeds of both cultivars were germinated in the dark on damp paper towels and planted into 

cylindrical 2 L pots (diameter 152 mm, height 135 mm) with five replicate pots of each of 

the five treatments for each planned harvest (11 harvests in total), giving a total of 275 pots. 
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The pots were randomized to account for potential positional effects and grown in 

controlled environment rooms (Conviron, Isleham, UK) at a constant 15°C with an 8/16 

(day/night) hour photoperiod (irradiance of 100 - 150 µmol m-2 s-1) and 65% relative 

humidity, to mimic local spring-time conditions. The pots were watered twice weekly and 

the soil was kept moist to avoid competition for water. Mesh screens (45 x 16 cm, mesh size 

0.08 mm (Harrod Horticulture, Lowestoft, UK)) were inserted in those pots containing two 

plants to separate the plants above ground, and ensure competitive interactions only 

occurred below ground. Foliage was relatively upright without support and the presence of 

a screen – although important in ensuring above-ground competition was minimised – was 

unlikely to have resulted in differences in shoot development in pots with two plants 

compared to one.  

 

2.2.4 - Sequential harvesting 

Five randomly selected pots of each treatment were harvested every five days until ear 

formation (when grain begins to form) was observed on the early Tammi cultivar (60 days). 

During this period both cultivars produced flag leaves, the stage prior to grain production, 

when most nitrogen has already been absorbed (Spink et al., 2015). This covered the period 

most likely to contain the peak nitrogen and biomass accumulation rate for both cultivars, 

the focus of this study. The plants were then removed from the pots, the roots washed, and 

individual shoot and root material separated. The root and shoot material of each plant 

were dried at 30°C until a stable weight was reached and weighed. Milled shoot samples 

were analysed for carbon and nitrogen concentration (Flash EA 1112 Series, Thermo 

Scientific, Bremen, Germany). 

 

2.2.5 - Data analysis 

2.2.5.1 - Temporal patterns of nitrogen and biomass accumulation 

To analyse temporal changes in biomass and nitrogen accumulation, the rate of each was 

modelled with logistic growth curves using non-linear least squares (nls) models (R Core 

Team, 2015). A cumulative time series data set of biomass accumulation was bootstrapped 
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using resampling with replacement 1000 times to estimate variability and confidence 

intervals. A logistic growth curve was used as the nls model and this was fitted to each of 

the bootstrapped data sets to produce a set of logistic instantaneous uptake rate curves for 

each treatment, as well as sets of modelled maximum accumulation values. This was then 

repeated for the nitrogen accumulation data set. A non-linear model was used as the 

growth dynamics of plants with determinate growth such as barley (Yin et al., 2003) are 

mostly sigmoidal, making a linear growth model unsuitable (Robinson et al., 2010). 

Therefore, the use of the non-linear least squares model with bootstrapping is a robust 

method to examine the temporal dynamism of resource capture of annual species and to 

properly account for uncertainty. Significant differences between the timing of peak 

accumulation and final maximum accumulation between treatments were determined from 

the difference in bootstrapped 95 % confidence intervals of the model outputs (Appendix 1, 

Supplementary R Code 1).  

 

2.2.5.2 - Shoot C:N 

C:N ratio at the final harvest (65 days after planting) was analysed using an ANOVA test from 

the MASS package in R (R Statistical Software, R Core Team, 2016) as the residuals were 

normally distributed, with treatment as the fixed factor and C:N as the response variable 

(Appendix 1, Supplementary R Code 2). A Tukey post-hoc test was carried out to compare 

the individual treatment groups. 

 

2.2.6 - Neighbour effects  

The effect of a neighbouring plant on a target plant’s biomass was quantified using the 

Relative Intensity Index (RII; Equation 1), an index that accounts for both competitive and 

facilitative interactions between neighbouring plants (Díaz-Sierra et al., 2017). RII was 

calculated using the final harvest biomass data. For each cultivar, RII was calculated 

separately for plants grown in intra- and inter- specific competition. The mean total biomass 

of each cultivar grown in isolation was used for the Isolation value, and the individual RII 

value was then calculated for each plant of that cultivar experiencing competition.  
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Equation 1 

𝑅𝑅𝑅𝑅𝑅𝑅 =  
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 – 𝑅𝑅𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑅𝑅𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
 

 

Competition = Mean biomass of plant when in competition, Isolation = Mean biomass of 

plant in isolation. 

 

The land equivalent ratio (LER; Equation 2) was used to determine if the inter-

cultivar mixture (TP) overyielded when compared to intra-cultivar competition (TT or PP) 

(Mead and Willey, 1980). The mean LER value was calculated by randomly pairing inter- and 

intra- cultivar competition treatments using a random number generator. A LER value was 

calculated for each pairing, from which a mean and standard error of the mean was 

calculated. A mean LER value above 1 indicates that inter-cultivar pairings produced more 

biomass than to intra-cultivar combinations. As the residuals were normally distributed, the 

LER and RII values were compared between competition treatments using an ANOVA test as 

above, with treatment as the fixed factor and either LER or RII as the response variable 

(Supplementary R Code 2). 

 

Equation 2 

𝐿𝐿𝐿𝐿𝑅𝑅 =  
𝑇𝑇𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼

𝑇𝑇𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑜𝑜𝐶𝐶 𝑐𝑐𝑚𝑚𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝐼𝐼𝑚𝑚  𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼
+  

𝑃𝑃𝑚𝑚𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑚𝑚 𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼
𝑃𝑃𝑚𝑚𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑚𝑚 𝐶𝐶𝑜𝑜𝐶𝐶 𝑐𝑐𝑚𝑚𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝐼𝐼𝑚𝑚 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼

 

 

Tammi mixture biomass = Tammi biomass when in competition with Proctor, Tammi own 

cultivar biomass = Tammi biomass of the focal plant when in competition with another 

Tammi. Proctor mixture biomass = Proctor yield when in competition with Tammi, Proctor 

own cultivar biomass = Proctor biomass when in competition with another Proctor. 
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2.3 - Results  

Nitrogen (Figure 2.1a) and biomass (Figure 2.1b) accumulation were temporally distinct for 

both cultivars. The peak rate of nitrogen accumulation occurred between 17.5 – 19.0 days 

after planting for Tammi and 19.5 – 35.0 days for Proctor. The peak rate of biomass 

accumulation occurred between 47 – 48 days after planting for Tammi and 47.0 – 51.5 days 

for Proctor (Model details in Appendix 1, Table A1).   
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Figure 2.1 – Timing of peak nitrogen (panel 1a) and biomass (panel 1b) accumulation rate, 

the shoot nitrogen concentration and absolute maximum accumulated total biomass at the 

end of the experiment in barley (Hordeum vulgare). Bootstrapped modelled accumulation 

derived from non-linear least squares model (T = Tammi, P = Proctor, TP-T = Tammi in 

competition with Proctor, TP-P = Proctor in competition with Tammi, TT = Tammi own 

(b) 

(a) 
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cultivar competition, PP = Proctor own cultivar competition). Error bars represent the 95% 

confidence intervals derived from the non-linear least squares model. 

 

2.3.1 - Temporal dynamics of nitrogen uptake 

Nitrogen uptake for both cultivars followed similar temporal dynamics, increasing until 45 

days after planting, then plateauing (Figure 2.2a and 2.2b). There was no significant change 

in the timing of peak nitrogen uptake rate in response to inter-cultivar competition for 

either cultivar. However, both cultivars showed a significant shift in peak accumulation rate 

in response to intra-cultivar competition (Figure 2.1a). Tammi demonstrated an advance in 

peak uptake rate by 0.5 days and Proctor a delay of 14.5 days (Appendix 1, Table A2). 

 

Figure 2.2 – Mean cumulative nitrogen (panels 2a and 2b) and biomass (panels 2c and 2d) 

accumulation of Tammi and Proctor barley cultivars over time. Pots contained Proctor in 
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isolation (P), in competition with Tammi (TP) and in competition with another Proctor (PP), 

Tammi in isolation (T), in competition with Proctor (TP) and another Tammi (TT). Error bars 

are two times the standard error of the mean. 

 

2.3.2 - Maximum accumulated shoot nitrogen 

Proctor’s absolute maximum shoot nitrogen concentration was significantly lower when in 

competition with Tammi or Proctor compared to isolation (Figure 2.1a). Inter-cultivar 

competition caused a significantly lower maximum shoot nitrogen concentration compared 

to intra-cultivar competition for Proctor but not Tammi. Intra-cultivar competition caused a 

significantly lower maximum shoot nitrogen concentration for Tammi but not Proctor 

(Appendix 1, Table A3). 

 

2.3.3 - Temporal dynamics of biomass accumulation 

Biomass accumulation increased throughout the growing period with a lag period until 31 

days after planting and then rapidly increased during the remainder of the experiment 

(Figure 2.2c and 2.2d). In response to competition, Tammi did not exhibit a shift in peak 

biomass accumulation rate, with peak accumulation rate always occurring 47 – 48 days after 

planting. Proctor biomass accumulation rate peaked between 48 – 51.5 days after planting 

(Figure 2.1b); although there was a trend towards an earlier peak in biomass accumulation 

when in competition there were no significant differences between treatments (Appendix 1, 

Table A2).  

 

2.3.4 - Maximum accumulated total plant biomass  

For both Tammi and Proctor, absolute maximum accumulated biomass was significantly 

lower when in competition compared to isolation (Figure 2.1b). However, neither cultivar 

demonstrated a significant difference between intra- and inter- cultivar competition in 

maximum accumulated biomass (Appendix 1, Table A3).  
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2.3.5 - Shoot C:N 

Proctor in isolation had a C:N ratio of about half that of Tammi in isolation throughout the 

experiment i.e. more nitrogen relative to carbon. However, for neither cultivar were there 

significant differences in C:N ratio between plants in isolation compared to plants in 

competition at the end of the experiment (Proctor (F(2,17)  = 1.44, P = 0.26); Tammi (F(2,17)  = 

2.74, P = 0.09) (Details in Appendix 1, Table A4). 

 

2.3.6 - Neighbour effects 

The significantly negative RII of final biomass indicated competitive interactions for both 

cultivars irrespective of whether they were in inter- or intra- cultivar mixtures. RII values 

also showed that Tammi and Proctor experienced a greater intensity of competition when in 

inter-cultivar compared to intra-cultivar competition (Figure 2.3). Proctor in intra-cultivar 

competition experienced the lowest intensity of competition; however, there was no 

significant difference between the competition treatments (F(3,26) = 2.86, P = 0.06).  

The LER value for Tammi and Proctor in competition was 2.05 (± 0.35 standard 

error), indicating that the inter-cultivar mixture had a greater total biomass (root and shoot) 

than would be expected from the intra-cultivar mixtures. 

Figure 2.3 - Mean Relative Intensity Index of barley (Hordeum vulgare) Tammi and Proctor 

cultivars in inter- and intra- cultivar competition. The more negative the result the greater 
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competition the plant experienced. TP-T = Tammi in inter-cultivar competition, TP-P = 

Proctor in inter-cultivar competition, TT = Tammi in intra-cultivar competition, PP = Proctor 

in intra-cultivar competition. Error bars are two times the standard error of the mean. 

Letters indicate significant differences from a Tukey post-hoc test. 

 

2.4 - Discussion 

This experiment aimed to detect and quantify temporal dynamism in nitrogen uptake and 

biomass accumulation in two barley cultivars and determine responses to inter- and intra- 

cultivar competition.  

I found that competition significantly reduced maximum accumulated biomass and 

shoot nitrogen in both cultivars. Neither intra- or inter-cultivar competition impacted the 

timing of peak biomass accumulation in either cultivar. However, intra-cultivar competition 

significantly delayed peak nitrogen accumulation rate by 14.5 days in Proctor and advanced 

it in Tammi by 0.5 days. Relative Intensity Index values indicated that both cultivars 

experienced competition, with no significant difference in intensity between intra- and 

inter- cultivar competition. However, a positive LER value indicated that the inter-cultivar 

mixture overyielded when compared to the intra-cultivar mixtures.  

 

2.4.1 - Shifts in the timing of biomass accumulation in response to competition 

Neither of the cultivars in this study significantly altered the temporal dynamics of peak 

biomass accumulation in response to a competitor. The mismatch between biomass and 

nitrogen accumulation dynamics in response to competition indicates biomass may not 

effectively measure the temporal dynamics of within-growing season resource capture, an 

issue previously raised by Trinder et al. (2012).  

 

2.4.2 - Shifts in the timing of nitrogen accumulation in response to competition 

Tammi and Proctor only demonstrated significant changes in temporal dynamism of 

nitrogen accumulation when in intra-cultivar competition. Tammi advanced peak 
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accumulation rate by 0.5 days and Proctor delayed it by 14.5 days. As this only occurred in 

intra-cultivar competition, it suggests that this is more complex than a competition 

avoidance response based on a source-sink (soil - plant) relationship. If this was a simple 

source-sink relationship, for example, based on soil nitrogen availability (Dordas, 2009), the 

inter- and intra-cultivar responses to competition should be identical. However, a response 

to only intra-cultivar competition suggests a kin recognition mechanism. Kin recognition has 

been suggested as a mechanism by which plants alter functional traits when in competition 

with closely related individuals (Sousa-Nunes and Somers, 2010). It has been found to most 

commonly be mediated belowground through root exudates (Bais, 2015; Biedrzycki et al., 

2010). This may mediate specific responses depending on the identity of a competing plant, 

as found in this study. 

The results of this study contrast with those of a temporal dynamism study by 

Trinder et al. (2012) which examined the influence of interspecific competition on the 

temporal dynamics of nitrogen uptake and biomass accumulation using Dactylis glomerata 

and Plantago lanceolata, two perennial grassland species. Dactylis glomerata was the later 

of the two species, and P. lanceolata the earlier species. They found a seven day delay for D. 

glomerata and a five day advancement for P. lanceolata in maximum biomass accumulation 

rate in competition compared to plants in isolation, with a similar pattern of divergence for 

peak nitrogen accumulation rate. I did not find these trends between two cultivars, with no 

significant shifts in peak biomass accumulation rate and a significant delay in peak nitrogen 

accumulation rate only when Proctor was in own cultivar competition.  

In this study Proctor was the less competitive of the two cultivars, as it experienced a 

greater decrease in nitrogen and biomass accumulation when in competition compared to 

Tammi. This contrasts with the Trinder et al. (2012) study which found that D. glomerata 

took up the most nitrogen and it could be argued was therefore the most competitive, 

despite being the later species for peak nitrogen and biomass accumulation rate. Therefore, 

it should not be assumed that the earlier species or cultivar is automatically the most 

competitive.  

 Trinder et al., (2012) also found that competition reduced the period between peak 

nitrogen and biomass accumulation rate compared to plants in isolation, from ten days to 

one day for D. glomerata, and from fourteen to three days for P. lanceolata. I also found this 
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effect, but only when Proctor was in competition, which caused a shortening of the period 

between peak rate of nitrogen uptake and biomass accumulation by 18.5 days in intra-

cultivar competition and 5.5 days when in inter-cultivar competition. However, the reason 

for this response is unclear. It could be a phenological change in response to competition, a 

pattern previously observed in cases of abiotic stress (Kazan and Lyons, 2016) and pathogen 

attack (Korves and Bergelson, 2003).  

 

2.4.3 -Temporal segregation of nitrogen and biomass accumulation 

The processes of nitrogen and biomass accumulation were temporally distinct for both 

cultivars. The peak rate of nitrogen accumulation was 29.0 – 29.5 days before peak biomass 

accumulation for Tammi and 16.5 – 27.5 days for Proctor (Figure 2.1). The gap between 

peak nitrogen and biomass accumulation was less variable for Tammi compared to Proctor. 

Tammi was specifically bred for an early phenotype (Nitcher et al., 2013), whereas Proctor 

was bred for malting quality (Hornsey, 2003). This selection pressure for phenology in 

Tammi may go some way to explaining the lack of variability in the gap between peak 

nitrogen and biomass accumulation in response to competition. Future studies could 

investigate whether similar response patterns are found in the genotypes of wild species or 

in wild species with contrasting phenologies. 

Barley has been found to have temporally distinct nitrogen and biomass 

accumulation, with a 23 – 24 day gap between peak nitrogen and biomass accumulation in 

field studies (Malhi et al., 2006). The gap between the peak nitrogen and biomass 

accumulation rate was shortened when Proctor was in competition, indicating the impact of 

plant-plant competition on the temporal dynamics of nitrogen accumulation. The greatest 

reduction in the gap between peak nitrogen and biomass accumulation rate occurred when 

Proctor was in intra-cultivar competition.  This was also the treatment with the lowest 

absolute shoot nitrogen concentration, suggesting delaying peak rate of nitrogen 

accumulation for this cultivar is a response to intra-cultivar competition. 
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2.4.4 - Impact of competition on final nitrogen and biomass accumulation 

Competition significantly reduced the final maximum nitrogen concentration and biomass 

that both Proctor and Tammi were able to accumulate in intra- or inter-cultivar competition. 

A Proctor competitor caused a significant decrease in Tammi maximum biomass 

accumulation and nitrogen shoot concentration, despite not achieving the greatest biomass 

above or below ground. This suggests that another factor influenced the rate of nitrogen 

uptake. Signaling through root volatile compounds or root exudates has been found in a 

number of species including legumes and grasses (Pierik et al., 2013) and may be acting 

here. Plant root exudates select for a specific microbial community (Shi et al., 2016) and 

have been found to affect the rate of microbial soil organic matter turnover (Mergel et al., 

1998). Therefore, plants may influence the timing of soil microbial community activity in 

order to reduce direct competition for resources. However, as we are only starting to 

understand the role of short term-temporal dynamism in plant interactions (Schofield et al., 

2018) it is not surprising that further studies are required to determine the role of the root 

exudates in neighbour recognition and temporally dynamic responses, and why this 

response is greater for intra- compared to inter- specific competition. 

 

2.4.5 - Shoot C:N in response to identity of a competing individual 

The two cultivars differed in their C:N ratio by the end of the experiment. This is likely due 

to the earlier cultivar Tammi being more advanced developmentally than Proctor. By the 

end of the experiment, Tammi had begun grain production, whereas Proctor had produced 

a flag leaf, the stage before grain formation. However, there was no significant increase in 

C:N in either cultivar in response to competition. Due to selective breeding for a specific 

seed C:N (grain nitrogen content) with known mapped genes (Cai et al., 2013) it is unlikely 

that C:N is highly plastic in barley, making it a poor measure of competition in this case. 

 

2.4.6 - Is greater complementarity achieved? 

The negative RII indicated both cultivars experienced competition when grown with a 

neighbouring plant, but no significant difference depending on the identity of the 
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competitor. This contrasts with the positive LER value which indicated overyielding of the 

two cultivars when grown in inter-cultivar competition compared to intra-cultivar 

competition. The reason for this is unclear and may be due to the timing of the final harvest, 

before both cultivars had set seed. This highlights the difficulty of using multiple metrics to 

measure the outcome of competition, especially as the measurements were only taken at 

the end of the experiment i.e. at a single timepoint. Therefore, single timepoint competition 

indices should be used with caution when examining the consequences of temporal 

dynamism of resource capture.   

There is a need to understand the extent to which a species or genotype is 

temporally dynamic and the factors that lead to temporal dynamism in resource capture. 

This will allow temporal dynamism in resource capture to be included in models of 

coexistence, furthering our understanding of coexistence in complex plant communities.  

 

2.5 - Conclusions 

This study demonstrates how a previously understudied factor in plant community 

coexistence, within-growing season temporal dynamism of resource capture, can be 

measured through successive harvesting and the novel application of commonly used 

statistical approaches. Only peak nitrogen accumulation rate was temporally dynamic in 

response to competition, not biomass peak accumulation rate or shoot C:N. Therefore, I 

suggest that to understand the temporal dynamics of resource capture within a growing 

season, direct measures of mineral resources accumulated (e.g. nitrogen uptake) are 

important to understand the mechanisms of temporally dynamic responses to competition. 

By measuring shoot nitrogen accumulation rate over time, intra-cultivar competition was 

found to advance peak nitrogen accumulation rate in Tammi and delay it in Proctor. This 

suggests that temporally dynamic nitrogen uptake responses are greater in intra-cultivar 

competition and may be due to kin recognition. This may be mediated through root 

exudates and the soil microbial community, an area that requires further investigation and 

extension to semi-natural and natural ecosystems. Ultimately understanding the role of 

temporal dynamism in plant communities will lead to improved niche models of coexistence 

in plant communities.  
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Chapter 3 

Model and software choice affect analysis of temporal dynamism in plants – 

shorter harvesting intervals increase accuracy over replication 
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Abstract 

Logistic growth curves have been used for over a hundred years to describe the dynamics of 

plant growth and resource capture. This includes studies of the temporal dynamics of 

resource capture by plants in competition, a potentially important factor influencing 

coexistence in complex plant communities. Logistic growth curves can enable us to assess 



  

   52 
  

the dynamics, timing and scale of peak resource accumulation. However, both the data 

analysis approach and experimental design can influence the outcome of logistic growth 

curve modelling.  This study first examined the effect of statistical model parameterisation 

and analytical software program choice on the estimate of peak accumulation rate timing. 

Two and three parameter models were compared in R, then Microsoft Excel and R were 

compared with the same model design. Second, a dummy dataset was constructed to 

investigate the effect of replicate number and sampling frequency on peak accumulation 

rate timing. Model parameterisation caused a shift of 3 – 15 days and software program a 

shift of 3 – 11 days in peak biomass accumulation rate estimate. The dummy dataset 

analysis found that both replicates and sampling frequency significantly affected the 

estimate derived from the model. With sampling intervals of six days or less there was little 

effect of replicate number. With greater sampling intervals estimates were larger. 

Therefore, this chapter recommends the use of a three parameter instead of a two 

parameter logistic model, as it accounts for variation in the starting value. It is also 

recommended sampling at a frequency of fewer than six days with 3 - 5 replicates in similar 

studies. It is also recommended that before logistic growth curve fitting is undertaken, the 

model design and the software program used to analyse the data should both be thoroughly 

explored to ensure they are fit for purpose and avoid confounding effects. Also, when 

designing experiments prior to such analyses, frequent sampling with a limited replicate 

number is the best use of limited resources whilst maintaining the accuracy and precision of 

timing estimates.  

 

3.1 - Introduction 

For the last century, logistic models have been used to visualise the growth dynamics of 

individuals and populations (Hunt, 1982; Yin et al., 2003). In population ecology they are 

used to describe the growth of a population from initial colonisation, through a period of 

exponential growth until the carrying capacity of the environment is reached (Vandermeer, 

2010). Logistic curves are also used to describe the growth of plants with determinate 

growth, such as annual species and crops which have a defined final biomass (Yin et al., 

2003). The characteristic sigmoidal accumulation curve creates a bell-shaped curve of 

instantaneous uptake rate (Hunt, 1982). 
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Many studies of plant growth explore the effect of environmental factors (abiotic 

and biotic) on the rate of resource or biomass accumulation (White, et al., 1991; Hara, van 

Der Toorn, & Mook, 1993; Trinder et al., 2012; Lipiec, et al., 2013). Most use a series of 

successive harvests during the growing period, then fit logistic (or similar) models to 

successive measurements of, for example, dry weight, height or nitrogen content. Rates of 

change can then be derived from the fitted models as the instantaneous slopes of the 

temporal trajectories (Figure 3.1), and these derived quantities used to study temporally 

dynamic processes, including biomass accumulation or resource uptake (Trinder et al., 

2012).  

   

Figure 3.1 – A hypothetical fitted logistic growth curve (orange line) of biomass from 

successive harvesting (orange circles) with the corresponding derived instantaneous 

accumulation rate curve (blue line). The number of data points and frequency of sampling 

influence the slope of the fitted curve. More frequent sampling and greater replicate number 

will lead to a more accurately fitted curve.  
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Temporal dynamism is a potentially crucial factor in models of plant community 

coexistence (Schofield, et al., 2018), and such modelling allows us to gain important 

information about the impact of experimental treatments (including the presence of 

neighbours) on the rates of processes through time. As the model-derived values are at a 

finer temporal resolution than the data on which they are based, they can provide greater 

detail about the dynamics of continuously varying processes. However, those few studies 

addressing directly the measurement of temporal dynamism in resource capture have 

employed a number of different logistic model designs and software programs to analyse 

their data and fit logistic (or related) models. This makes comparisons between such studies 

and any subsequent meta-analyses difficult to carry out. 

Two studies provide the focus for this chapter: Trinder et al. (2012) and Schofield et 

al. (2019). Both studies focused on the temporal dynamics of resource capture using 

successive harvests but used different models and software programs to analyse the 

datasets. Trinder et al. (2012) measured resource capture in two competing grassland 

species, grown either in competition or isolation. Using successive harvesting of Dactylis 

glomerata and Plantago lanceolata,  the study aimed to understand interspecific 

competition as a temporally dynamic process rather than relying on potentially misleading 

‘snapshot’ comparisons of final yields (Gibson et al., 1999). Schofield et al. (2019) used 

successive harvests to examine cultivar differences in temporal dynamics in response to 

intra-specific competition in barley (Hordeum vulgare). 

When comparing these studies, the initial factor to consider is the design of the 

logistic model used to analyse the data. Both Trinder et al. (2012) and Schofield et al. (2019) 

used the logistic growth equation. Trinder et al. (2012) used a two-parameter form of the 

logistic growth curve, whereas Schofield et al. (2019) used a three-parameter logistic model. 

However, differences in the number of parameters used in fitting logistic growth curves may 

have influenced the modelled peak nitrogen and biomass accumulation rate values. Trinder 

et al. (2012) used a two parameter logistic model to model the growth between two time 

points, using the asymptote (ymax) and a scaling factor (r) from a fixed initial value, whereas 

the logistic curve modelling undertaken by Schofield et al. (2019) used the nls (non-linear 

least squares) function in R, taking the midpoint of the logistic curve (xmid), asymptote 

(ymax) and scaling factor (scal) as parameters. Understanding the extent to which such 
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analytical differences might impact on the results is essential in drawing informed 

comparisons between multiple studies, as well as improving the accuracy of peak nutrient 

uptake rate estimates and is the first focus for this chapter. 

Another factor in the analysis of these datasets is the software program used to 

analyse the data. Those studies that have addressed the measurement of temporal 

dynamism in resource capture have employed a number of different software programs to 

analyse their data and fit logistic (or related) models, including SAS (Andersen et al., 2007; 

Moreira et al., 2015), SPSS (W. P. Zhang et al., 2017) and MATLAB (Neumann et al., 2017). 

Two of the more commonly used software programs are Microsoft Excel using the SOLVER 

add-in (Robinson, Davidson, Trinder, & Brooker, 2010; Trinder et al., 2012; Li, et al, 2014; Li 

et al., 2016) and R Statistical Software (R Core Team, 2015) (using nls within the stats 

package) (Dormann & Roxburgh, 2005; Paine et al., 2012; Wei et al., 2018; Schofield et al., 

2019). As Trinder et al. (2012) used Microsoft Excel and Schofield et al. (2019) used R, a 

comparison of these software programs as analytical tools is the second focus for this 

chapter. 

In addition to the influence of analytical approach, the frequency of sampling and 

sampling effort at each time point (number of replicates) can affect estimates (Figure 3.1) of 

temporally dynamic processes (Miller-Rushing et al., 2008). Sampling frequency and effort 

are often limited by practical considerations such as the growth form of the plant being 

studied, time, space and funding available (Goldberg & Barton, 1992; Trinder et al., 

2013).  But there must exist both a minimum sampling effort below which the quality of 

information provided is worthless, and a maximum above which further increases in effort 

provide only disproportionately small returns. Identifying sampling regimes that are both 

optimal and practical is a long-standing problem in experimental design. Temporal 

dynamism studies often vary in sampling frequency and replicate number. Paine et al. 

(2012) suggested that a minimal number of replicates with very frequent sampling would 

provide the most accurate representation of growth dynamics. However, there are few 

studies that test this hypothesis to provide recommendations using a specific curve fitting 

model. One such study by Kreyling et al. (2018) found that, when sampling environmental 

drivers along a gradient, an increase in sampling locations at the expense of replicates 

improved the predictive success and reduced systematic over or under estimation of the 
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model. However, replication improved local precision and prediction of the true value 

(Kreyling et al., 2018). Therefore, an estimation of the optimum sampling frequency and 

replicate number, while accounting for practical considerations, would strengthen the 

experimental design of resource capture temporal dynamism studies. This approach can 

then also be applied to other uses of logistic and general non-linear growth curves to 

optimise experiment size and sampling frequency.   

To summarise, here I explore the impact of analytical approach and sampling regime 

on the assessment of temporal dynamism of plant processes. In particular I tested two 

hypotheses: 1) the number of parameters in the logistic model and a different software 

program will alter the estimation of peak accumulation rate; 2) increasing replicate number 

and sampling frequency will increase the precision of the estimates of instantaneous rates 

of nitrogen and biomass accumulation up to a point, beyond which further replicates and 

more frequent sampling frequency will not improve estimates.  

 

3.2 - Materials and Methods 

The first hypothesis, concerning analytical approaches, was addressed using the Trinder et 

al. (2012) biomass accumulation dataset. The second hypothesis, concerning sampling 

regime, was addressed using a dummy dataset of biomass accumulation derived from the 

Trinder et al. (2012) biomass data.  The use of a dummy dataset allows the effect of 

replicate number and sampling frequency combinations to be compared to a known value 

of peak accumulation rate timing. 

 

3.2.1 - Comparison of model parametrisation 

The Trinder et al. (2012) biomass dataset was used to compare two and three parameter 

logistic models. To avoid potential confounding effects from use of a different software 

program, a two-parameter model with a fixed initial value was constructed in R. This 

effectively recreated in R the model used for the Excel-based analysis of Trinder et al. (2012) 

allowing us to separate the effect of software package (R vs. Excel) from model (2- or 3- 

parameter). Two and three parameter models in R were then compared. 
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3.2.2 - Comparison of software programs 

The Trinder et al. (2012) biomass dataset was used to compare analytical results from both 

the Microsoft Excel 2007 with (v12) SOLVER add-in (two parameter Excel model) (Trinder et 

al., 2012) and R nls 2-parameter approaches to analyse temporal patterns of biomass and 

nitrogen accumulation. Running the same model in both software programs allowed the 

effect of software program to be examined.  

 

3.2.3 - Effect of sampling frequency and replicate number 

To test the effect of sampling frequency and replicate number, a dummy dataset was 

created using the SSlogis function in R (R Core Team, 2015), with defined parameters based 

on the Trinder et al. (2012) biomass accumulation dataset for Dactylis glomerata grown in 

isolation. This provided a dataset with a known timing of peak biomass accumulation rate to 

which the model outcomes under different replicate and sampling frequency conditions 

could be compared. The dummy dataset was subsampled to produce datasets with 3, 5, 10 

and 20 replicates and sampling every 1, 3, 6 and 9 days after planting. These subsampled 

datasets were then run using the R nls model (Schofield et al., 2019) and estimates of peak 

timing and confidence interval width were plotted. The effect of sampling frequency, 

replicate number and interaction between the two factors were tested using an ANOVA test 

with the MASS package in R.  

 

3.3 - Results 

3.3.1 - Comparison of model parameterisation 

A comparison of the three-parameter R nls model and the two-parameter R nls model 

provided information about the effect of the number of parameters on model estimates 

with the same software. The two models produced different shaped logistic curves (Figure 

3.2a). The two-parameter model produced an earlier estimate in all treatments compared 

to the three-parameter model. The mean difference in peak biomass accumulation rate 

between the two models was 3 – 15 days (Figure 3.2b).   
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 Figure 3.2 – Panel (a) shows an example of the fitted logistic curves produced by the 

different models and software programs. In this case the modelled accumulation of biomass 

in D glomerata in isolation. Panel (b) shows the timing of peak biomass accumulation rate of 

Dactylis glomerata (D) and Plantago lanceolata (P) in isolation or interspecific competition 

(DP_P = P. lanceolata in competition, DP_D = D. glomerata in competition), using data from 

Trinder et al. (2012). The timing of peak biomass accumulation rate was modelled using a 

two parameter Excel model, R nls, and a 2 parameter model in R. Error bars are 95% 

confidence intervals.  
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3.3.2 - Comparison of software programs 

When the two-parameter model was run in both Excel (two parameter Excel model) and R 

(two parameter R model), the model estimates were different between software programs. 

However, the two programs produced similar shaped curves (Figure 3.2a). The two 

parameter R model produced an earlier estimate of peak biomass accumulation rate in 

three of the four treatments when compared to the estimate produced by the two 

parameter Excel model (Figure 3.2b). The mean difference in peak biomass accumulation 

rate was 3 to 11 days  

 

3.3.3 - Effect of sampling frequency and replicate number 

The dummy dataset peak accumulation rate timing was at 55.0 days after planting (54.6-

55.5 95% CI) (Figure 3.3a). When sampling was less frequent than 3 days, the estimate 

became less precise, as indicated by a widening of the confidence interval widths (Figure 

3.3b). With a 6-day sampling interval, the estimate was still close to the known value, i.e. 

within 1.6 days (52.02 - 57.66 95% CI with 5 replicates). At a 9-day sampling interval, the 

estimate varied by up to 3 days from the known value and had confidence interval widths of 

6 - 8 days (e.g. 50.67 – 57.60 95% CI with 5 replicates). Sampling frequency had a significant 

effect on the estimate of peak accumulation rate timing (F(3, 14985) = 864.5, P = < 0.01).   

Less frequent sampling coupled with fewer replicates led to a less accurate estimate 

with larger confidence intervals. The 95% confidence interval width was decreased with an 

increase in replicate number, but the confidence intervals were still wider than with more 

frequent sampling. The greatest disparity with the known value was at a 9-day sampling 

frequency, when only 3 replicates were used. Beyond ten replicates there was little impact 

of replicate number (Figure 3.3a).  Although replicate number had a minimal effect with the 

most frequent sampling, it had a much greater impact when sampling was less frequent. 

Overall, replicate number had a significant effect on the estimate of peak accumulation rate 

timing (F(3, 14985) = 263.1, P = < 0.01). The combination of a low replicate number and 

infrequent sampling led to the estimates furthest from the known value with the largest 

confidence intervals. There was a significant interaction between replicate number and 

sampling frequency (F(8, 14985) = 411.7, P = < 0.01). 
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Figure 3.3 – The effect of replicate number and sampling frequency on the estimate of peak 

biomass accumulation rate. Panel a shows dummy dataset estimates of timing of peak 

biomass accumulation with an increasing number of replicate. The black line shows the 

known value of peak biomass accumulation rate. The optimum estimate was found with a 

sampling interval of less than 6 days, with little effect of replicate number at less than this 

sampling frequency. Panel b shows the corresponding confidence interval width associated 

with each estimate. Smaller confidence interval widths were found with sampling at less 

than 6 day intervals. 
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3.4 - Discussion 

This study looked at the effect of model parameterisation and the software program used to 

analyse the data on the modelled timing of plant peak biomass accumulation rate. The 

effect of two commonly used software programs for data analysis, Microsoft Excel and R as 

well as two and three parameterised logistic models were examined using the Trinder et al. 

(2012) dataset of biomass accumulation. The software used and model parameterisation 

caused a shift in peak biomass accumulation rate of up to 15 days. A dummy dataset was 

also constructed with a known peak biomass accumulation rate timing to investigate the 

effect of sampling frequency and replicate number on the model outcome.  Both sampling 

frequency and replicate number had a significant impact on the timing of peak biomass 

accumulation rate, affecting the estimate of peak accumulation rate and the associated 

confidence intervals.  

 

3.4.1 - Effect of model parameterisation 

The number of parameters used to fit the logistic growth curves impacted the estimate of 

peak biomass accumulation rate timing by 3 -15 days. The two-parameter model used a 

fixed initial value as one of the model parameters, giving only two available parameters with 

which the model could be fitted (Trinder et al., 2012). The use of a model with a fixed initial 

value assumes this starting value had no error associated with it, which cannot be true of a 

measurement. This limitation in model fitting is likely to have accounted for the differences 

observed between the two and three parameter models in this study. This suggests that the 

use of a three-parameter logistic model would be more appropriate than a two-parameter 

model in temporal dynamism studies, as it accounts for variation in the initial starting value. 

Therefore, the design and parameterisation of a logistic model can have a profound effect 

on the estimate of peak biomass accumulation rate timing.  

 

3.4.2 - Effect of curve fitting statistical software 

There were differences in the estimate of peak accumulation rate between the two 

software programs even when the same basic model was used to analyse the Trinder et al. 
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(2012) dataset. The two parameter R model produced an earlier estimate of peak biomass 

accumulation rate compared to the two parameter Excel model. The difference between 

the two software programs was 3 – 11 days, a similar effect as found for differences in 

model parameterisation. Consequently, direct comparisons of conclusions drawn from 

logistic growth curves calculated using different software programs should be made with 

caution, as differing calculation processes appear to affect modelled estimates of peak 

accumulation rate. The raw data of temporal dynamism studies therefore should be made 

available and reanalysed with the most up to date models when comparing multiple studies 

in order to draw accurate comparisons between different ecosystems and species. 

The version of Microsoft Excel SOLVER add-in used by Trinder et al. (2012) to fit the 

logistic growth curve has been found to have significant issues when fitting nonlinear least 

squares models (calculated using the SOLVER add-in). McCullough and Heiser (2008) found 

that SOLVER tended to state it had found a converged result when in fact it had not. The 

methodology of the calculation is opaque and not readily available, making it unclear if a 

solution has been reached or not (Mélard, 2014).  These consistent errors lead many 

statisticians to recommend against the use of Excel to carry out statistical tests (McCullough 

and Wilson, 2005; Mccullough and Heiser, 2008) and this study would echo these 

recommendations.  

When fitting logistic growth curves, the user often has to provide starting values for 

the program to fit the model. In a previous study, when Excel and R were compared using 

test datasets with starting values close to the true value, Excel was found to successfully fit 

logistic curves to 20 of the 27 test datasets, whilst R successfully fit logistic curves to all of 

the same test datasets provided (Odeh et al., 2010). However, the same study (Odeh et al., 

2010) found both software programs performed equally well when analysing linear 

regressions. Therefore, the limitations of the software program used for analyses should be 

researched prior to use to ensure they are fit for purpose, as each have strengths and 

weaknesses when performing different statistical tests. 
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3.4.3 - Effect of sampling frequency and replicates on model estimates 

The most accurate estimate (closest to the known value) of peak accumulation rate timing 

was found with a sampling frequency of 1 - 6 days. At this sampling frequency there was 

little effect of replicate number, with variation from the known value of less than 1 day 

between the different numbers of replicates. The dataset only covered 60 growing days, a 

relatively small proportion of the total lifecycle of most plants. However, many plant 

competition experiments are of a similar length (Trinder et al. 2012). This is not to say that a 

sampling interval less than every 6 days is ideal for all plant lifeforms or environmental 

conditions, as the dummy dataset used was based on a forb (D. glomerata) growing in 

greenhouse conditions. Further studies are required to find the optimum sampling 

frequency and replicate number for other lifeforms, timescales and environmental 

conditions. Therefore, running a pilot or simulation study prior to carrying out a large scale 

temporal dynamism study would determine the appropriate sampling frequency and 

replicate number under different conditions.  

When designing experiments there are practical considerations including: space, 

time and cost (Trinder et al., 2013). This dummy dataset analysis demonstrates that in 

temporal dynamism studies of this type, more frequent sampling led to more accurate 

estimates of peak accumulation rate timing. With up to a three day sampling frequency, 

three replicates is sufficient, whereas at six days and above five replicates are required for 

good temporal resolution. This echoes the findings of Kreyling et al. (2018) that sampling 

locations (or in this case sampling frequency) are of greater importance when examining 

trends compared to replication. However, replicates are of importance when detecting 

differences between treatments, as increased replication reduced the confidence interval 

size. Therefore, three replicates should be the minimum for statistical robustness to allow 

the model to run successfully. The balance between sampling frequency and replicate 

number should therefore be in favour of sampling frequency but not completely disregard 

replicate number, to ensure the balance between the detection of treatment differences 

and sufficient temporal resolution.  
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3.4.4 - Are there potential ecological consequences of the analysis approach and 

experimental design of temporal dynamism studies? 

Both the number of model parameters and software program caused a change of up to 15 

days in the estimate of peak biomass accumulation rate. This suggests that both the model 

and software program have a similar impact on the estimated outcome. The ecological 

importance of these shifts in peak accumulation rate depends on the species being studied 

and the length of the study. For annual or short-lived species, differences in estimates of 

peak accumulation rate timing may have important consequences for the ecological 

conclusions drawn from them. For example, the lifespan of spring barley can be as little as 

four months or ~120 days with  ~60 days of active nutrient uptake (Spink, Blake, Bingham, 

Hoad, & Foulkes, 2015; Schofield et al., 2019). Therefore, a difference of 15 days represents 

25 % of the total nutrient uptake period and 12.5 % of the total lifecycle and so, in short 

lived species such as annual crops, the differences in peak accumulation rate caused by 

differences in model parameterisation and software program used for analyses may 

represent a significant proportion of the lifecycle of the plant. However, in perennial species 

that store resources between seasons these differences may have less impact on ecological 

conclusions as a result of different model and software program use.  

 

3.5 - Conclusions 

Both model parameterisation and the choice of software program caused a similar shift in 

the estimate of peak biomass accumulation rate, by up to 15 days. Therefore, when 

analysing data from temporal dynamism studies, both the number of parameters included 

in the model and the software used should be considerations. Although these differences 

are a matter of days, when studying short-lived individuals they may be important in the 

drawing of ecological conclusions. Microsoft Excel should be used with caution as there is 

evidence of errors in calculations when fitting non-linear models. Before a software 

program is used the parameterisation and calculation process should be researched to 

ensure that it is fit for purpose, as these can affect estimates of temporally dynamic 

processes. The number of replicates was found to have an overall smaller impact on the 

timing of peak accumulation rate, whilst sampling frequency had a greater effect on model 
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estimates. Therefore, when there are practical limitations, sampling frequency and 

experiment length should be prioritised. These factors are important in the design of 

experiments looking at the within-growing season temporal dynamics of resource capture 

and the factors that influence temporal dynamism of resource capture. The findings of this 

chapter will be used in the experimental design of Chapter 8.  
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Abstract 

The soil microbial community has an important role in plant-plant competition by 

converting nutrients locked away in soil organic matter into forms suitable for plant uptake. 

Plants can reduce competition for resources through niche differentiation including 

changing the temporal dynamics of nutrient uptake to reduce direct competition and 

therefore promote coexistence. However, the role of soil processes in the temporal 

dynamics of nutrient uptake in response to plant-plant competition has yet to be explored. 

This study used two barley cultivars, Tammi and Proctor, grown in isolation, intra- or inter- 

cultivar competition. Root derived and primed soil respiration were measured using 13C 

labelled CO2, alongside soil solution samples taken to analyse soil nitrogen and organic 

carbon dynamics. Soil nitrogen concentrations and microbial biomass were analysed at the 

end of the experiment. Root derived and primed soil respiration peaked at 29 days after 

planting and then decreased but showed no change in temporal dynamics with competition. 

However, plants in competition had lower respiration per unit biomass. Mineral soil 

nitrogen decreased during the experiment and dissolved organic carbon concentration 

increased, indicating soil organic matter breakdown. Only organic carbon demonstrated a 

change in temporal dynamism in response to competition. This suggests that there is a need 

to look at specific soil processes as not all may be temporally dynamic in response to 

competition.  

 

4.1 - Introduction 

The soil microbial community has an important role in nutrient cycling, mining soil organic 

matter (SOM) for nutrients that are then made accessible to plants through microbial 

turnover (Hodge et al., 2000).  This background process is influenced by seasonal pulses of 

nutrients associated with spring warming in temperate environments (Bardgett et al., 2005) 

or seasonal rains in semi-arid environments, providing temporally dynamic inputs of 

nutrients into a system (Chesson et al., 2004).  

Much of the activity of the soil microbial community is supported by plant roots, 

through the exudation of low molecular weight organic compounds into the rhizosphere 

(Alegria Terrazas et al., 2016; de Vries and Caruso, 2016; Laliberté, 2016). This stimulates 
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the soil microbial community to mine SOM for nutrients (Rhizosphere Priming Effect (RPE) 

(Dijkstra et al., 2013)). In this study priming is defined as the plant driven SOM 

mineralisation activity carried out by the soil microbial community (i.e. the increase in SOM 

mineralisation, relative to unplanted soil). The RPE is dependent on the availability of 

nutrients (Dijkstra et al., 2013), soil carbon-nitrogen ratio (C:N) (Lloyd et al., 2016) and 

microbial demand for resources (Hodge et al., 2000). There is increasing evidence that root 

exudation of labile carbon can stimulate the activity of SOM decomposers and provide the 

plant with enhanced nutrient availability (Hamilton III and Frank, 2001). The RPE is could 

well be temporally dynamic, as root exudation quality and quantity varies with plant 

developmental stage (Chaparro et al. 2012), as well as between genotypes and species 

(Mommer et al. 2016). Therefore, RPE is a critical component of plant nutrient uptake and is 

likely to be an intrinsic component of the temporal dynamics of nutrient uptake.   

The temporal dynamics (timing and rate) of nutrient uptake are important for plant 

development, successful flowering (Ne’eman et al., 2006), viable seed set (Fenner, 1991) 

and long term species survival. The timing and rate of nutrient uptake varies over the course 

of a growing season, and in some species coincides with plant demand (Trinder et al., 2012). 

Differences in the temporal dynamics of nutrient uptake are evident at a species (Trinder et 

al., 2012) and genotype level (Schofield et al., 2019). These dynamics may be one 

mechanism by which plants segregate nutrient uptake over time, reducing direct 

competition for resources and ultimately promoting coexistence. This may be important to 

understand coexistence in complex ecosystems. In current niche models there are 

seemingly insufficient niches to explain the coexistence of species in ecosystems such as 

rain forests and grasslands (Clark, 2010). However, these models often overlook time as a 

factor, in particular within-growing season temporal dynamism of nutrient uptake (Schofield 

et al., 2018). Therefore, understanding the temporal dynamics of nutrient uptake would 

allow the integration of another currently missing factor in niche models. 

Temporal dynamism in nutrient uptake has the potential to alter plant interactions 

but competition can also impact the temporal dynamics of nutrient uptake. Trinder et al. 

(2012) found that interspecific competition between Dactylis glomerata and Plantago 

lanceolata altered the temporal dynamics of nitrogen and biomass accumulation in both 
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species. Therefore, plant-plant competition can influence the temporal dynamics of 

resource uptake, which can in turn influence the extent of competition between individuals.  

A previous study (Schofield et al., 2019) used barley (Hordeum vulgare) as a model species, 

growing two cultivars with differing phenology, an early (Tammi) and late (Proctor), in 

isolation, intra-cultivar and inter-cultivar competition. Temporally dynamic shifts were not 

evident in the rate of biomass accumulation but were found in peak nitrogen accumulation 

rate. Proctor delayed peak nitrogen uptake rate by 14.5 days and Tammi advanced it by 0.5 

days when in intra-cultivar competition compared to inter-cultivar competition and plants in 

isolation. This study will test whether, in parallel to these plant level effects, the temporal 

dynamics of soil processes are impacted by plant-plant competition. It is expected that peak 

priming of the soil microbial community will be significantly delayed when Proctor is in 

intra-cultivar competition but not in the other treatments, in line with the shifts observed in 

Chapter 2 (Schofield et al., 2019).  

 

4.2 - Materials and Methods 

4.2.1 - Soil characteristics 

The soil was sampled from an agricultural field (Balruddery Farm, Invergowrie, Scotland, 

56.4837° N, 3.1314° W) that had previously contained spring barley (Hordeum vulgare) and 

had been subject to standard management for barley production (including fertiliser 

addition at a rate of 500 kg of 22N-4P-14K ha-1 yr-1).  The soil had an organic matter content 

(humus) of 6.2% ± 0.3% SEM (loss-on-ignition, n = 4) and a mean pH (in water) of 5.7 ±0.02 

SEM (n = 4), a total inorganic nitrogen concentration of 1.55 ± 0.46 mg g-1 (n = 4) and 

microbial C biomass (using a chloroform extraction) of 0.06 ± 0.002 SEM mg g-1 (n = 4) 

(analysed by Konelab Aqua 20 Discrete Analyser (Thermo Scientific, Waltham, MA USA)).  

The soil was passed through a 6 mm sieve and stored at 4°C prior to use. 

 

4.2.2 - Experimental setup 

In this experiment two cultivars of Barley (Hordeum vulgare), the early developing Tammi 

and late Proctor were grown in isolation, and in intra- or inter- cultivar competition (T, P, TT, 
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PP, TP). Plants were grown in a carbon-13 enriched CO2 (13CO2) environment during the 

entire growth period. This continuous labelling ensures that the plant C is uniformly labelled 

above and below ground, and therefore allows partitioning of plant and soil sources of 

respiration.  Respiration by plant roots as well as respiration of 13C-labelled root exudates by 

the soil microbial community will result in detectable 13CO2 in soil respiration gas samples. 

This is a useful measure of plant investment in roots over time. In addition, any increase 

(relative to the unplanted controls) in soil organic matter derived respiration (12CO2) found 

in the planted treatments provides an indication of the priming effect plant roots are having 

on the soil microbial community (Murphy et al., 2015). 

The pots were packed to a dry bulk density of 1 g cm-3 and watered to 54 % of the 

soil water holding capacity, to provide sufficient moisture to the plants whilst limiting 

waterlogging of the soil. This was maintained by watering twice a week, including on the day 

of soil respiration sampling for the duration of the experiment, to limit competition for 

water. Pots containing bare soil were included as controls. Seeds of Tammi and Proctor 

cultivars of barley were germinated before being planted into pots, with four replicates of 

each treatment, 24 pots in total. The pots also contained a respiration chamber, a jar with a 

sealed lid containing ports to allow flushing of the headspace and an open bottom inserted 

2 cm into the soil in the middle of the pot (headspace volume 210 ml). Germinated barley 

plants were planted at the side of the respiration chamber when the pot contained one 

plant, and on either side of a respiration chamber in pots with two plants (Diagram 4.1).  

Pots with rigid sides (diameter = 102 mm, depth = 135 mm) were used to avoid shifting of 

the respiration chamber when the pots were moved. 
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Diagram 4.1 – Experimental setup of the soil respiration experiment, showing the 

positioning of the plants and respiration chamber. The seedlings were planted either side of 

an open-ended glass chamber, creating a headspace for the collection of CO2 samples. Two 

ports with valves were attached to the top of the sealed headspace, one to allow for the 

flushing of the headspace with CO2 free air prior to incubation and the other for the 

collection of CO2 post incubation.  

 

The pots were placed into labelling chambers with an atmosphere of 400 ppm 

carbon dioxide, containing a mixture of 12C and 13C CO2 (total flow rate 20 L min-1) giving a 
13C isotopic enrichment of 2.60 atom percent (atm %), using mass flow controllers (Flotech 

Solutions, Stockport, UK). The tanks were kept at 15°C, with an 8/16 (day/night) 

photoperiod and 75 % relative humidity, higher than the previous experiment (Schofield et 

al., 2019) due to the smaller size of the tanks. The ambient temperature of the controlled 

environment room was reduced when the lights were on, to maintain a constant 

temperature in the labelling chamber. The pots were arranged randomly in six rows of four 

pots and were repositioned within the tank containing the 13C CO2 atmosphere every few 

days to minimize potential positional effects. 

 

Rigid sided pot to 
avoid soil shifting 

Open ended respiration 
chamber creating a 
headspace for the collection 
of CO2 samples 

Valve sealed port for the 
collection of CO2 samples 

Valve sealed port 
for headspace 
flushing with CO2 
free air 

13C02 taken in by plants, 
fixed via photosynthesis 
and 13C labelled 
carbohydrates exuded 
through roots  

Exudates prime soil 
microbial community 
breakdown of soil 
organic matter, releasing 
12CO2 

Mixture of 12CO2 and 
13CO2 collected in 
headspace 
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4.2.3 - Soil respiration sampling 

Soil respiration samples were taken once a week for six weeks through a valve in the 

respiration chamber. On sampling days, the headspace of the respiration chamber was 

flushed with CO2 free air for five minutes, the CO2 concentration recorded, and the jars 

sealed (C1 value in Equation 2). The pots were then replaced into the tanks and incubated in 

the dark for three hours. Ten ml of air from the headspace of each pot was sampled, the 

CO2 concentration recorded (EGM-4, PP Systems, Amesbury, Massachusetts, USA) and 

samples taken for isotopic analysis. The 12C to 13C ratio was analysed using a gas bench 

(Deltaplus Advantage Thermo Scientific, Bremen, Germany) interfaced with an isotopic ratio 

mass spectrometer (Trace Ultra GC Thermo Scientific, Bremen, Germany). After 42 days, the 

pots were harvested, the shoots separated and the total root biomass for the pot washed. 

The shoots and roots were stored at -20°C then freeze dried and weighed.  

 

4.2.4 - Soil solution sampling 

Soil solution samples were taken weekly using a micro-rhizon soil solution sampler (Van 

Walt Environmental Equipment & Services, Surrey, UK) and frozen at -20°C prior to analysis. 

Soil solution samples were selected for analysis covering the period of 21-35 days after 

planting, the period of maximum soil microbial community priming based on the soil-

derived CO2 flux results. Solutions were analysed for nitrate (NO3), ammonium (NH4), total 

organic carbon (TOC), total nitrogen in soil solution (TN) and total organic nitrogen (TON) 

concentration directly, using a Konelab Aqua 20 Discrete Analyser (Thermo Scientific, 

Waltham, MA USA).  

 

4.2.5 - Soil mineral nitrogen  

The bulk soil mineral nitrogen concentration at the end of the soil respiration experiment 

was measured using potassium chloride (KCl) extraction (McTaggart and Smith, 1993). Fifty 

ml of 1 M KCl was added to the wet equivalent of 12.5 g of dry soil. This was then mixed in 

an end-over-end shaker for 1 hour, then filtered through Type 1 Whatman filter paper (GE 

Healthcare Life Sciences, Buckinghamshire, UK), which had been pre-rinsed with 1 M KCl 
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three times. The samples were analysed using a Konelab Aqua 20 Discrete Analyser (Thermo 

Scientific, Waltham, MA USA). 

 

4.2.6 - Microbial biomass 

Microbial biomass was measured by the difference in dissolved organic carbon (DOC) 

concentration between extracts from chloroform fumigated and non-fumigated soil samples 

(Vance et al., 1987). Two samples of moist soil were taken from a homogenous soil sample 

from each pot at the end of the experiment, with the equivalent mass of 12.5 g dry soil. The 

samples to be fumigated were placed in a vacuum desiccator containing chloroform and a 

vacuum applied overnight. The fumigated and non-fumigated soils were then added to 50 

ml 0.5 M potassium sulphate (K2SO4) and mixed using an end-over-end shaker for 30 min. 

The samples were filtered through Whatman 42 filter paper (GE Healthcare Life Sciences, 

Buckinghamshire, UK) and analysed using an OI 1010 TOC Analyser (O.I. Analytical, Texas, 

USA). The difference in carbon content between the fumigated and non-fumigated samples 

was then used to determine the microbial biomass (conversion factor 0.45 (Wu et al., 1990)) 

per pot.  

 

4.2.6 - Statistical analysis 

The data were analysed differently, depending on whether it was a repeated measure or 

was sampled at the end of the experiment (Table 4.1).  
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Table 4.1 – Sampling frequency of data collected in this study and the statistical test applied 

for analysis. NH4 = ammonium, NO3 = nitrate, TOC = total organic carbon, TON = total 

organic nitrogen, TN = total nitrogen, DOC = dissolved organic carbon. 

 

4.2.6.1 - Root derived respiration 

Root derived respiration is a measure of the overall respiration derived from the root 

carbon. The delta value (δ) describes the ratio of 12C to 13C in the sample. The control δ13C 

value measured the soil source signature (i.e. CO2 flux from unplanted soil), accounting for 

the diffusion of 13CO2 from the atmosphere into the soil. The root derived respiration value 

was a proxy for plant and microbial mineralisation. It was analysed directly from milled dried 

root samples taken at the end of the experiment providing the δ13C root for Equation 1 

(Murphy et al., 2017). These values were then expressed as respiration per gram of soil per 

hour (µg CO2 g
-1 hr-1). 

 

 

Measure Time of sampling (Days 

since planting) 

Statistical test used 

 15 21 29 35 42  

Root respiration       Peak respiration timing compared using a Kruskal-Wallis test. Random factor = 

Pot number, Treatment = fixed factor. 

Root Priming Effect      Peak priming timing compared using a Kruskal-Wallis test. Random factor = 

Pot number, Treatment = fixed factor. 

Soil solutions: NH4
+, 

NO3
-, TOC, TON, TN 

     Linear model, Fixed factors = treatment and time point sampled. Effect of 

each factor and interaction between each factor tested. 

Bulk soil nitrogen: 

NH4
+, NO3

-, TON 

     Kruskal-Wallis test. Random factor = pot number, Fixed factor = Treatment. 

Microbial biomass 

(DOC) 

     Kruskal-Wallis test.  Random factor = pot number, Fixed factor = Treatment. 

Final root biomass      Students t-test comparing treatments with one and two plants per pot. 

Random factor = Pot number. Fixed factor = treatment. 

Root respiration per 

unit biomass 

     Students t-test comparing treatments with one and two plants per pot. 

Random factor = Pot number. Fixed factor = treatment. 
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Equation 1 

𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶 𝑚𝑚𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑚𝑚𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (δ13C sample −  
(δ13C sample −  δ13C control)

(δ13C root −  δ13C control)
 

δ13C (‰) sample was taken from the planted pots, δ13C (‰) control from unplanted pots 

δ13C root is a proxy for root derived respiration including microbial mineralisation of root 

derived substrates (Murphy et al. 2017).  

 

4.2.6.2 - SOM derived respiration 

This is the respiration derived from the microbial mineralisation of SOM alone. It was 

calculated by subtracting the root derived respiration rate from the total respiration rate 

over the incubation period (Equation 2). 

 

Equation 2 

𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝐶𝐶𝑚𝑚𝐶𝐶𝑐𝑐𝐶𝐶𝑑𝑑 𝑚𝑚𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑚𝑚𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (𝐶𝐶2 − 𝐶𝐶1) − 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝐶𝐶𝑚𝑚𝐶𝐶𝑐𝑐𝐶𝐶𝑑𝑑 𝑚𝑚𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑚𝑚𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

C1 = CO2 concentration after flushing the respiration chamber with CO2 free air, C2 = CO2 

concentration after three hours of incubation (Mwafulirwa et al., 2017). 

 

4.2.6.3 - Root priming effect 

The root priming effect is the soil respiration rate promoted above that of the bare soil 

controls when the plant respiration rate is subtracted (Equation 3).  

 

Equation 3 

𝑃𝑃𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝑐𝑐𝐶𝐶 = 𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝐶𝐶𝑚𝑚𝐶𝐶𝑐𝑐𝐶𝐶𝑑𝑑 𝑚𝑚𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑚𝑚𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑚𝑚𝐼𝐼𝐶𝐶𝐶𝐶 − 𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐼𝐼 𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼 𝑚𝑚𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑚𝑚𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑚𝑚𝐼𝐼𝐶𝐶𝐶𝐶 
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4.3 – Results 

4.3.1 - Root biomass 

At the point of harvest there was no significant difference in the total root biomass between 

the treatments containing one plant compared to those containing two (t9 = -0.72, P = 0.45). 

Therefore, there was a lower root biomass per plant in pots where plants were in 

competition compared to those containing plants in isolation.  

 

4.3.2 - Root derived respiration 

The rate of root-derived respiration increased until a peak at between 21 - 29 days, and 

then declined; this was true for all the treatments.  There was no significant difference 

between the two cultivars, or any of the treatments in terms of the magnitude or timing of 

root-derived respiration. At the end of the experiment when the plants were harvested, the 

treatments with two plants had significantly lower root-derived respiration per unit biomass 

compared to those with one plant (t9 = 2.72, P = 0.02) (Figure 4.1). 

 

 4.3.3 - Root priming effect 

There was no significant difference in the timing of peak priming promoted by either cultivar 

grown in isolation compared to when in competition (χ2 4 = 2.77, P = 0.59) (Figure 4.2), as 

the peak in root primed activity occurred at 29 days for both cultivars, regardless of whether 

in competition or isolation. This followed the pattern of root-derived respiration, as peak 

priming coincided with peak root respiration rate.  
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Figure 4.1 – Root-derived rate of soil respiration per unit biomass at the end of the 

experiment, after 42 days of growth. Root-derived rate of soil respiration per unit biomass 

was derived from isotopic and respiration data of two barley cultivars grown together or in 

isolation. Pots contained Proctor in isolation (P), in competition with Tammi (TP) and in 

competition with another Proctor (PP), Tammi in isolation (T), competition with Proctor (TP) 

and another Tammi (TT). Error bars are two times the Standard Error of the Mean (SEM). 

Letters indicate significant differences. 
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Figure 4.2 – Root priming effect over time in soils under two barley cultivars relative to the 

unplanted controls. Pots contained Proctor in isolation (P), in competition with Tammi (TP) 

and in competition with another Proctor (PP) (panel a), Tammi in isolation (T), competition 

with Proctor (TP) and another Tammi (TT) (panel b). Error bars are two times the Standard 

Error of the Mean (SEM). 
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-2

0

2

4

6

15 21 29 35 42

Pr
im

ed
 so

il 
re

sp
ira

tio
n 

(u
g 

CO
2

g-1
so

il 
hr

-1
)

Days since planting

T TP TT

-2

0

2

4

6

15 21 29 35 42

Pr
im

ed
 so

il 
re

sp
ira

tio
n 

(u
g 

CO
2

g-1
so

il 
hr

-1
)

Days since planting

P PP TP

(a) 

(b) 



  

   82 
  

4.3.5 - Soil solution analysis 

The concentration of ammonium (NH4+) in the soil solution samples was not significantly 

affected by time or treatment between the planted treatments (F(12,46) = 1.09, P = 0.39). This 

was also found for nitrate (F(12,46) = 1.92, P = 0.06), total organic nitrogen (F(14, 44) = 1.62, P = 

0.11) and total nitrogen (F(14, 45) = 1.55, P = 0.13).  

 There were significant effects of both time (F(2, 45) = 9.52, P <0.01) and treatment (F(4, 

45) = 4.23, P <0.01) on the concentration of TOC in the soil solutions (Figure 4.3). However, at 

the end of the experiment there was no significant difference between the treatments. 

There was also no significant interaction between time and treatment (F(8, 45) = 0.79, P = 

0.61). 

 

Figure 4.3 – Mean soil solution concentration of total organic carbon from pots containing 

barley cultivars grown in isolation, inter- or intra- cultivar competition. Proctor = P, Proctor 

and Proctor = PP, Tammi and Proctor = TP, Tammi = T, Tammi and Tammi = TT. Error bars 

are the twice the standard error of the mean. Letters indicate significant differences. 
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4.3.6 - Soil nitrogen  

By the end of the experiment the concentrations of both ammonium and nitrate in bulk soil 

samples were low (Figure 4.4). There were no significant differences in ammonium 

concentration at the end of the experiment (χ25 = 4.88, P = 0.42). However, there was a 

significant difference between the treatments (χ25 = 14.29, P = 0.01), with nitrate 

concentration lower in the PP and T treatments compared to the other treatments. 

Figure 4.4 – Mean concentration of NO3 and NH4 extracted from soil samples at the end of 

the soil respiration experiment. (T = Tammi, P = Proctor, TP = Tammi and Proctor in 

competition, TT = Tammi own cultivar competition, PP = Proctor own cultivar competition, 

bare = bare soil control). Error bars are two times the standard error of the mean. 
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examine potential impacts of priming on nitrogen dynamics. Bulk soil samples from the end 

of the experiment were taken to determine if there was any cultivar or competition effect 

on the final soil mineral nitrogen concentration and microbial biomass. 

 

4.4.1 - Root respiration and priming are not temporally dynamic in response to competition 

Root respiration and priming were not significantly different between pots containing plants 

in competition compared to isolation. This indicates the impact that competition had on net 

root respiration and priming as the measurements taken were at the pot scale. The 

measurements taken in this study when plants were in competition represent the combined 

fluxes of both plants, instead of each individual plant separately. Competition may have 

caused upregulation in one individual and downregulation in the other, leading to a lack of 

individual response resolution. Further studies labelling an individual plant could determine 

if there is variation at an individual plant scale. 

Root biomass and total respiration at the end of the experiment were not 

significantly different between treatments containing one or two plants. However, at the 

end of the experiment there was a lower root respiration per unit biomass in treatments 

with two plants.  This indicates that competition limited plant growth and activity. A low 

respiration per unit biomass in the competition treatments may also be due to the period of 

low RPE at the end of the experiment (Figure 4.2). This may have been because soil nitrogen 

became depleted more quickly in these pots compared to those that contained only one 

plant.  

Peak root respiration and the root priming effect both occurred between 25-29 days 

after planting in all treatments. The fact these events coincide supports the root priming 

effect theory, as greater root respiration indicates more root activity (including the 

exudation of organic carbon), which can lead to priming of the soil community and turnover 

of the soil microbial community within days (Hodge et al., 2000).  

The rhizosphere priming effect, mediated by impacts of root exudation of microbial 

communities, did not exhibit any temporally dynamic change in response to the presence of 

a competitor, regardless of the identity of the competitor. Soil community priming is 
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important when concentrations of bioavailable nutrients are insufficient to support plant 

requirements (Dijkstra et al., 2013).  This experiment used a fertilized agricultural soil, with 

high nitrogen content at the beginning of the experiment, which may have delayed a 

competition response in a neighbouring plant. Detection of a neighbouring plant can occur 

through overlapping of nitrogen depletion zones (Craine and Dybzinski, 2013) or through 

belowground signaling, for example using volatile organic compounds or root exudates 

(Pierik et al., 2013). However, the dataset was highly variable and the frequency of sampling 

may have been too low to measure the timing of these soil processes, many of which occur 

over the timescale of hours (Hodge et al., 2000). Therefore, a clear determination of fine 

scale temporal dynamism of RPE may require a similar study at a finer temporal scale. Also, 

a direct focus on specific microbial processes involved in nutrient mobilisation from organic 

matter rather than carbon mineralisation would lead to a more sensitive assay of soil 

microbial processes. 

Despite the effect of RPE, at the end of the experiment there was no significant 

difference in the microbial biomass between the planted treatments. By the end of the 

experiment there was extensive root growth, and so all soil within the pots was considered 

to be rhizosphere. This could indicate that any increase in microbial biomass was transient, 

occurring during the period of peak priming and was therefore not recorded at the end of 

the experiment. Alternatively it could suggest that priming by plants in competition 

compared to those in isolation does not support a larger microbial population but a 

community with different functioning (Houlden et al., 2008). The observed temporal 

dynamics of TOC indicates SOM mining during the period, with a stronger response likely to 

be found as soil closer to roots is sampled.  

There was a significantly higher total TOC concentration in the soil solutions sampled 

from planted treatments compared to the unplanted control. As positive priming of the soil 

community occurred it indicates SOM was being broken down by the soil microbial 

community (Dijkstra et al., 2013). There were also significant differences between some of 

the planted treatments and over time. However, there was no significant difference in TOC 

concentration at the final sampling date, suggesting that although cultivar and competition 

may have altered the temporal dynamics of TOC formation, it had little effect on the final 

TOC concentration. This contrasts with the soil respiration results, which suggest little 
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temporal dynamism in the soil community activity. This suggests that changes in the 

temporal dynamics of the soil community may be better examined by looking at individual 

processes instead of total activity. Further studies including measures of microbial 

community structure and function changes over time are needed to test this hypothesis. 

  The lack of difference in soil nitrogen at the end of the study suggests that plants 

took up all the available nitrogen, depleting the mineral nitrogen pool.  The concentration of 

nitrogen in soil solution is a function of both production (SOM breakdown) and consumption 

(plant uptake) processes. Therefore, differences in the concentration of nitrogen forms may 

be due to an increase or decrease in either the production of nitrate and ammonium or 

plant consumption rates. As NO3 and NH4 are intermediates between SOM and plant 

assimilated nitrogen (Hodge et al., 2000), they are unlikely to be highly abundant in the soil 

solution, as they are rapidly taken up by plants. Any differences between the treatments 

therefore would be an indication of a bottleneck in the nitrogen mineralisation process 

(Chapman et al., 2006).  There may also be a balance between immobilization of nitrogen by 

microbes and plant uptake, leading to competition between plants and microbes for 

different forms of nitrogen. The intensity of competition depends on the predominant 

nitrogen form, its availability and demand for it (Schimel and Bennett, 2004). As it is the 

depolymerisation of macromolecules that is thought to be the limiting factor in nitrogen 

mineralisation (Schimel and Bennett, 2004), understanding the dynamics of the breakdown 

of macromolecules may help explain nitrogen dynamics in this study.   

There was also no significant differences found in the soil samples taken at the end 

of the experiment, with no significant difference in NH4, NO3 or TON between any of the 

planted treatments. By the end of the experiment the plants were exhibiting symptoms of 

nitrogen deficiency and remobilisation of nitrogen from the older leaves. This is supported 

by the significant decrease in total nitrogen in the planted soils compared to the bare soil 

controls. Therefore, all the planted treatments utilised the available nitrogen, with plants in 

isolation absorbing more nitrogen per unit biomass than those in competition until the 

nitrogen in the pots was depleted. The absence of promotion of an increase in RPE may 

have been due to the life stage of the plants. All the plants in this study had begun to 

produce flag leaves, the growth stage prior to grain production, a sign of a reduction in 

nitrogen uptake and an increase in nitrogen remobilisation. This may explain why nitrogen 
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deficiency did not lead to an increase in RPE. Soil solutions with weekly sampling are 

therefore unlikely to be an effective method to study nitrogen fluxes over a growing season, 

as fluxes occur over the timescale of hours and are likely to have been missed with weekly 

sampling. 

 

 4.4.2 - Effect on final soil nitrogen concentration 

Planted soil samples at the end of the experiment had significantly lower concentrations of 

NO3, TON and TN in planted treatments compared to the unplanted control. This 

demonstrates the depletion of soil nitrogen in the planted treatments as the plants grew. 

However, there was no difference between the planted treatments. This may be due to 

sampling at the end of the experiment when nutrients were likely to be severely limited. 

Therefore, to understand the temporal dynamics of soil nitrogen depletion, sampling 

throughout the experiment is likely to be required.  

There was an opposing trend in final microbial biomass which was significantly 

higher in planted treatments compared to unplanted controls but not significantly different 

between planted treatments. This suggests a link between nitrogen depletion and microbial 

biomass but no significant effect of cultivar or planting density.  

 

4.4.3 - Are soil processes temporally dynamic in response to plant-plant competition? 

Most of the soil processes in this study did not show shifts in temporal dynamics in response 

to cultivar, intra- or inter-cultivar competition. In all treatments root respiration and 

microbial decomposition of SOM peaked between 21 and 29 days after planting. The lack of 

temporal dynamism in root respiration and priming do not support the previous study 

(Schofield et al., 2019; Chapter 2), which found a reduction in biomass and nitrogen 

accumulation with competition and a delay in peak nitrogen uptake rate in Proctor intra-

cultivar competition. The only temporally dynamic process found in this study was the soil 

solution concentration of TOC, indicating SOM breakdown by the soil microbial community 

occurred, primed by root activity. 
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4.5 - Conclusions 

This study has found that the temporal dynamics of root derived respiration and RPE did not 

differ between the two cultivars and is not influenced by plant-plant competition. The 

evidence from this study suggests that this sampling method and frequency may not be able 

to detect changes in soil nitrogen temporal dynamics in response to plant-plant 

competition. However, total organic carbon in soil solutions was found to be a good 

indicator of the temporal dynamics of SOM breakdown in response to plant root activity. 

Although plant-plant competition did not affect the temporal dynamics of the soil processes 

studied here, soil processes are likely to have an important role in mediating the temporal 

dynamics of nutrient uptake.  
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Chapter 5 

Plant-plant competition influences temporal dynamism of soil microbial 

enzyme activity 
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Abstract 

Root-derived compounds can change rates of soil organic matter decomposition 

(rhizosphere priming effects) through microbial production of extracellular enzymes. Such 

soil priming can be affected by plant identity and soil nutrient status. However, the effect of 

plant-plant competition on the temporal dynamics of soil organic matter turnover processes 

is not well understood. This study used zymography to detect the spatial and temporal 

pattern of cellulase and leucine aminopeptidase activity, two enzyme classes involved in soil 

organic matter turnover. The effect of plant-plant competition on enzyme activity was 

examined using barley (Hordeum vulgare) plants grown in i) isolation, ii) intra- and iii) inter-

cultivar competition. The enzyme activities of leucine aminopeptidase and cellulase were 

measured from portions of the root system at 18, 25 and 33 days after planting, both along 

the root axis and in the root associated area with detectable enzyme activity. The activities 

of cellulase and leucine aminopeptidase were both strongly associated with plant roots, and 

increased over time. An increase in the area of cellulase activity around roots was delayed 

when plants were in competition compared to in isolation. A similar response was found for 

leucine aminopeptidase activity, but only when in intra-cultivar competition, and not when 

in inter-cultivar competition. Therefore, plant-plant competition had a differential effect on 

enzyme classes, which was potentially mediated through root exudate composition. This 

study demonstrates the influence of plant-plant competition on soil microbial activity and 

provides a potential mechanism by which temporal dynamism in plant resource capture can 

be mediated. 
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5.1 - Introduction 

One of the key processes governing plant nutrient acquisition is mineralisation of soil 

organic matter (SOM) mediated by microbial communities, a process that can be 

significantly influenced by plant roots (rhizosphere priming effects: Murphy et al., 2017). 

Plant root exudates contain large quantities of labile carbon, and increase carbon availability 

to the soil microbial community (Kuzyakov et al., 2000; Garcia-Pausas and Paterson, 2011). 

Addition of carbon causes an increase in the carbon to nitrogen to phosphorus ratio (C:N:P), 

leading to nutrient “mining” by the soil microbial community to restore the stoichiometry of 

these resources (Paterson, 2003), driven by extracellular enzyme production (Penton and 

Newman, 2007). These rhizosphere priming effects eventually lead to plant nutrient 

acquisition through turnover of the soil microbial community (Hodge et al., 2000). 

  The breakdown of organic matter in the soil is driven by enzyme activity, the 

majority (90 - 95 %) of which is derived from the soil microbial community (Xu et al., 2014), 

with some directly from plant roots (Spohn and Kuzyakov, 2013). Enzymatic activity is 

temporally dynamic, changing in response to the prevailing environmental conditions and 

associated plant community activity throughout the growing season (Bardgett et al., 2005). 

The temporal dynamics of soil processes vary with abiotic conditions such as temperature 

(Steinweg et al. 2012) and nutrient availability (Mbuthia et al. 2015). Therefore, enzyme 

activity can be used as a measure of a range of soil microbial community activities and the 

influence of different factors on these processes, including plant-plant interactions, through 

time.  

 As a focus for assessing temporal dynamism in soil enzyme activity, and the impact 

on this of plant-plant interactions, this study chose two catabolic enzyme classes involved in 

SOM breakdown and nitrogen cycling, cellulase (EC number: 3.2.1.4) and leucine 

aminopeptidase (EC number 3.4.1.1). Both the spatial and temporal dynamics of catabolic 

enzymes, including cellulase and leucine aminopeptidase can be examined using 

zymography. This method uses fluorescently labelled substrates to measure extracellular 

enzyme activity in soil. The area and intensity of fluorescence can be calibrated and used for 

spatial quantification of enzyme activity (Spohn and Kuzyakov, 2014). As this method is non-

destructive, it allows a range of enzymes to be studied spatially and temporally (Giles et al., 

2018), making it ideal to explore the impact of plant-plant competition on the temporal 
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dynamics of soil enzyme activity. Measuring enzyme activity is not a direct measure of 

nutrient cycling. An increase in enzyme activity could indicate an increase in turnover of 

SOM through mining by the soil microbial community or an increase in nutrient demand as 

the soil microbial community produce secrete more extracellular enzymes due to a lack of 

available nutrients. 

The intensity of competition between plants for nutrients can vary spatiotemporally 

(Caffaro et al., 2013); this can alter the temporal dynamics of nitrogen accumulation 

(Schofield et al., 2019) when plants are in competition compared to isolation, with potential 

consequences for the temporal dynamics of soil microbial community enzyme activity. The 

temporal dynamics of nitrogen and biomass accumulation have been studied in barley 

(Hordeum vulgare) (Schofield et al., 2019). A delay in peak nitrogen uptake was found when 

the Proctor cultivar was grown in intra-cultivar competition but not inter-cultivar 

competition. This response may be due to a change in the temporal dynamics of root 

associated soil enzyme activity influencing nutrient availability for plants. Therefore, to 

explore whether such changes in the timing of soil processes do occur, Proctor was chosen 

as the focal cultivar of this study.  

As well as plant-plant competition, plants compete with microbes for resources 

(Schimel and Bennett, 2004), another factor that is likely to be temporally dynamic. There 

are periods of high competition between plants and microbes during periods of plant 

nitrogen uptake (Bardgett et al., 2003). This is likely to influence the temporal dynamics of 

extracellular enzyme production by the soil microbial community as microbes compete with 

plants for nitrogen but are also influenced by plant-plant competition. Another factor that 

influences exoenzyme activity is microbial biomass. An increase in exoenzyme production 

could be due to the existing microbes producing more enzymes or an increase in microbial 

biomass. In order to determine this, microbial biomass needs to be quantified alongside 

enzyme activity.  

Two main approaches for analysing zymography images have emerged in the last 

decade. Spohn and Kuzyakov (2014) measured the root associated area of cellulase activity 

as a percentage of the total sampled area (root associated area) when assessing the activity 

of cellulases, chitinases and phosphatases in the presence of living and dead Lupinus 

polyphyllus roots. Alternatively, Giles et al. (2018) took a root-centric approach, measuring 
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phosphatase activity along Hordeum vulgare root axis (root axis). The Spohn and Kuzyakov 

(2014) method takes a subsection of the greyscale values, excluding the lightest and darkest 

pixels; in contrast Giles et al. (2018) used the total pixel range.  The Spohn and Kuzyakov 

(2014) method excludes pixels that are extremely bright, which may skew the total dataset. 

However, by focussing on the extent of activity in terms of area instead of intensity of 

activity along the root axis, a relatively small proportion of the soil volume, subtle temporal 

dynamics of enzyme activity may be more easily detected.  

This study aimed to determine the influence of plant-plant competition on the 

activity of the soil microbial community while keeping other environmental factors constant. 

Whilst this study has not measured the effect of plant-plant competition on plant-microbe 

competition directly, the former has been suggested to influence the latter (Hortal et al., 

2017). This study took the opportunity to use both approaches for analysing zymography 

images. The aim was to determine the effect of plant-plant competition on the temporal 

activity dynamics of the two enzyme classes, outside of the zone of most intense 

competition. Plant root architecture can demonstrate a compensatory response to plant-

plant competition (Caffaro et al., 2013). It is expected that enzyme activity surrounding 

plant roots will show similar trends to root architecture, with increased enzyme activity 

surrounding roots outside the zone of most intense competition when the plants are in 

competition compared to isolation. As competition can be less intense between more 

closely related individual plants, due to changes in the temporal dynamics of resource 

capture, it is expected that interactions between more closely related individuals will 

promote less intense enzyme activity than inter-cultivar competition. 

 

5.2 - Materials and methods 

5.2.1 - Soil characterisation 

Soil was collected from an agricultural field that had previously been cropped with spring 

barley (Hordeum vulgare) and had been subject to standard fertilisation conditions (500 kg 

of N ha-1 yr-1 in the ratio of N 22 : P 4 : K 14) (Balruddery Farm, Invergowrie, Scotland, 

56.4837° N, 3.1314° W). The soil was then passed through a 3 mm sieve to homogenise the 

substrate and then stored at 4°C until planting. The soil had an organic matter content 
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(humus) of 6.2 % ± 0.3 % SEM (loss-on-ignition, n = 4) and a mean pH (in water) of 5.7 ± 0.02 

SEM (n = 4), a total inorganic nitrogen concentration of 1.55 ± 0.46 mg g-1 (n = 4) and 

microbial C biomass (using a chloroform extraction) of 0.06 ± 0.002 SEM mg g-1 (n = 4). No 

fertilisation occurred during the experiment.  

 

5.2.2 - Rhizobox preparation  

Rhizoboxes (150 mm x 150 mm x 10 mm Perspex boxes with a removable side for access to 

roots) were packed to a bulk density of 1.26 g cm-3, ensuring the soil was level with the edge 

of each box. Seeds of Proctor and Tammi barley (Hordeum vulgare) cultivars were pre-

germinated on damp tissue paper in the dark at room temperature for two days before 

planting. Three replicates of each treatment: Proctor alone (P), Proctor in intra-cultivar 

competition (PP) and Proctor in inter-cultivar competition with Tammi (TP) were planted, as 

well as a bare soil control, giving 12 rhizoboxes in total. In the planted treatments, the 

germinated seeds were placed on the surface of the soil, ensuring contact between the 

emerging roots and soil surface, and then the side of the box was replaced and secured. In 

the planted treatments containing two plants, the germinated seeds were placed 2.5 cm 

apart to ensure no aboveground interaction between the two plants.  

The rhizoboxes were wrapped in foil to exclude light from the roots and placed at a 

45° angle to encourage root growth over the soil surface. The rhizoboxes were kept in a 

controlled environment cabinet (Jumo IMAGO 3000, Harlow, Essex, UK) at a constant 15°C, 

65 % relative humidity and a 16/8 (day/night) (light intensity: 200 µmol m-2 s-1) photoperiod 

for the duration of the experiment to mimic local springtime conditions. Each rhizobox was 

watered weekly with sufficient water to maintain soil moisture at field capacity and prevent 

root desiccation.  

 

5.2.3 - Soil zymography 

Enzyme activity was measured three times at weekly intervals between 18 and 39 days after 

planting. This is the period prior to and including peak barley nitrogen accumulation rate 

found in the previous study (Schofield et al. 2019; Chapter 2). Areas away from the 
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competition zone between the two plants were visually identified and labelled on the 

rhizobox rim to ensure measurements of soil enzyme activity occurred at a consistent 

location throughout the study. These were roots of the focal individual that consistently did 

not encounter roots of the other individual within the system. This setup was used to 

indicate whether a compensatory or systemic response to plant-plant competition could be 

detected in soil enzyme activity.  

Two fluorescently labelled substrates were selected for this study; 4-

methylumbellferyl ß-D-cellobioside, a substrate of cellulase which was imaged at 365 nm 

(excitation at 365 nm, emission at 455 nm) and L-leucine-7-amido-methylcoumarin 

hydrochloride, a substrate of leucine aminopeptidase that was imaged at 302 nm (excitation 

at 327 nm, emission at 349 nm) (Sigma-Aldrich, Reading, UK). Both substrates were diluted 

to a 6 mM concentration, the concentration used in previous studies using 

methylumbellferyl ß-D-cellobioside (Spohn and Kuzyakov, 2014) and the optimum 

concentration found during preliminary experiments (results not shown). A 47 mm diameter 

polyamide membrane (Whatman, GE Healthcare, Buckinghamshire, UK) was soaked in 300 

µl of 6 mM of 4-methylumbellferyl ß-D-cellobioside or L-leucine-7-amido-methylcoumarin 

hydrochloride. On sampling days, the side of each rhizobox was removed and a 1 % agarose 

(Invitrogen, Carlsbad, CA, USA) gel of 1 mm thickness was placed on the soil surface to 

protect the membrane from soil particles which could adhere to it and disrupt the final 

image, whilst allowing the diffusion of extracellular enzymes (Spohn and Kuzyakov, 2014). 

The membrane was then placed on top of the gel and the foil was replaced over the top to 

exclude light and minimise moisture loss during enzyme assays.  

Previous studies have incubated similar substrate soaked membranes for between 

30 minutes and 3 hours (Spohn and Kuzyakov, 2014; Giles et al., 2018). Therefore, a 

preliminary study was carried out which found that, for this system, an incubation of 1 hour 

gave a good level of resolution and UV intensity when viewed (results not shown). Following 

incubation (1 h), the membrane was placed onto a fresh 1 % agarose gel to minimise 

bubbling of the membrane during imaging. The membrane and gel were then placed in an 

UV imaging box (BioDoc-It2 Imager, Analytik Jena, Upland, CA) and imaged at 365 nm (Spohn 

and Kuzyakov, 2014). This was repeated for L-leucine-7-amido-methylcoumarin 

hydrochloride, which was imaged at 302 nm (Ma et al., 2018). This order of substrate 
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sampling was maintained throughout the experimental period (Spohn and Kuzyakov, 2014). 

The sampled area was marked on the rim of each rhizobox to ensure that the same area was 

sampled each time for both enzymes. After sampling, the rhizobox was watered and 

replaced in the controlled environment chamber. 

 

5.2.4 - Calibration curves 

Known dilutions of 4-methylumbelliferone (the fluorescent tag of 4-methylumbellferyl ß-D-

cellobioside) and 7-amino-4-methylcoumarin (the fluorescent tag of L-leucine-7-amido-

methylcoumarin hydrochloride ) (1, 2, 4, 6 mM) were prepared and used to soak 

membranes, using the same procedure as the experiment (Giles et al., 2018). The 

membranes were then imaged using the same method and settings as the samples. The 

images were used to calculate the substrate concentration per mm2 and provide the 

calibration curve values from the sample images. This also informed the range of 8 bit 

greyscale values (the integer brightness value per pixel between 0 - 255) sampled in the 

percentage area analysis (Spohn and Kuzyakov, 2014).  

 

5.2.5 - Root growth measurements 

The roots of each rhizobox were photographed weekly from 4 - 39 days after planting using 

an iPhone 6 (8 - megapixel iSight camera with 1.5 µm pixels, Apple Inc). The root 

architecture photographs were then analysed using the SmartRoot plugin (Lobet et al., 

2011) of the ImageJ software (Schneider et al., 2012). The roots of each plant were manually 

traced and labelled using the Trace tool. This was used to measure total root length over 

time. Dry root biomass was also recorded at the end of the experiment by drying roots at 

100 ° C for 24 hours. 

The effect of time and treatment on the measured root architecture parameters 

were assessed using a Generalized Least Squares model using the nlme package in R (R 

statistical software, R Core Team, 2016). Time and treatment were included as fixed factors 

as well as the interaction between treatment and time. A covariate of rhizobox number and 

treatment was included to account for autocorrelation caused by the repeated measures in 
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this study. This was followed by an ANOVA test (MASS package, R statistical software, R 

Core Team, 2016).  

 

5.2.6 - Enzyme image analysis 

The intensity and location of enzyme activity was analysed using two approaches: root axis 

activity (Giles et al., 2018) and root associated area (Spohn and Kuzyakov, 2014). These two 

approaches differ in that the root axis activity records soil enzyme activity only along the 

root itself, whereas the root associated area measures soil enzyme activity in the 

surrounding rhizosphere as well. By comparing these two approaches the most appropriate 

image analysis method to study the temporal dynamics in root associated soil microbial 

activity can be determined. Root associated area was defined as the percentage of the total 

sampled area with greyscale values above a threshold defined by the calibration curves that 

indicated enzyme activity.  

 

5.2.5.1 Root axis enzyme activity 

For this approach, root axis image analysis technique developed by Giles et al. (2018) was 

used. Proctor roots contained within the sample area were tracked using the segmented 

line tool in the Fiji image analysis software (Schindelin et al., 2012). The RProfile plugin 

developed by Giles et al. (2018) was then used to extract a profile of greyscale values along 

the sampled root. The nodes of the segmented line placed along the root were then 

centralised and placed evenly along the sampled root to refine the data using the Python 

script developed by Giles et al. (2018). The mean greyscale value was calculated for each 

root (subsequently referred to as ‘root axis activity’).  

 

5.2.5.2 - Root associated area analysis 

To measure the root associated area of enzyme activity, the approach developed by Spohn 

and Kuzyakov (2014) was used. Each image was first converted into an 8-bit greyscale 

image. The range of 80 - 170 grey values was extracted from each image (informed by the 
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calibration curves) then split into 10 grey value increments, and the area of each increment 

measured using Image J Software (Schneider et al., 2012). This was then expressed as a 

percentage of the total membrane area (subsequently referred to root associated area). The 

percentage root associated area was then compared between treatments. The mean 

enzyme activity rate was the most common enzyme activity rate, i.e. the rate with the 

greatest percentage cover of the total sampled area.  

 

5.2.7 - Statistical analysis 

The effect of time and treatment on the root axis activity and root associated area were 

each assessed using a Generalised Least Squares model, accounting for repeated measures 

with an autocorrelation term, using the nlme package (Pinheiro et al., 2016) in R (R Core 

Team, 2015). This was followed by an ANOVA test for significant differences using the MASS 

package (Venables and Ripley, 2002) in R (R Core Team, 2015). The interaction between 

treatment and time was included as a fixed factor, to detect differences between 

treatments in enzyme activity temporal dynamics, with an autocorrelation term for 

treatment and rhizobox number. 

 

5.3 - Results 

5.3.1 - Total root growth 

Total root length increased over time for all treatments (Table 5.1). There was a significant 

effect of treatment (F(2,52) = 5.45, P = <0.01) and time (F(4,52) = 45.04, P = <0.01) on total root 

length but no significant interaction between treatment and time (F(8,52) = 1.27, P = 0.28). 

There was no significant difference in total root biomass between the different treatments  

at 33 days (F(2,10) = 0.78, P = 0.48).  
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Table 5.1 – Mean total root length and biomass at 33 days after planting of Proctor barley 

plants in isolation (P), intra-cultivar competition (PP) and inter-cultivar competition (TP) (n = 

3). Values in the brackets are the standard error of the mean (SEM). 

Treatment Total root length (mm) Root biomass (g) 

P 158 (±23.2) 0.036 (±0.004) 

PP 138 (±15.5) 

 

0.191 (±0.004) 

TP 153 (±42.4) 

 

0.042 (±0.007) 

 

5.3.2 - Root axis activity 

Mean cellulase root axis activity at 33 days after planting ranged between 1.4 and 11.8 pmol 

mm-2 h-1 and leucine aminopeptidase between 4.5 and 6.3 pmol mm-2 h-1 (Figure 5.1). For 

cellulase activity there was a significant effect of treatment (F(2,42) = 5.03, P = 0.01) but no 

significant effect of time (F(2,42) = 0.51, P = 0.60) or interaction between treatment and time 

(F(4,42) = 0.94, P  = 0.45). However, there was no significant effect of time (F(2,63) = 2.92, P = 

0.06), treatment (F(2,63) = 2.74, P = 0.07) or the interaction between the two factors (F(4,63) = 

1.02, P = 0.40) for leucine aminopeptidase activity.  
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Figure 5.1 – Mean cellulase and leucine aminopeptidase (pmol mm-2 h-1) along the root axis 

of Proctor roots grown in isolation (P), intra- (PP) and inter- (TP) cultivar competition (n =12).  

A= Mean root axis cellulase activity, B = Mean root axis leucine aminopeptidase. Boxplots 

show the median, first and third quartiles and whiskers the maximum and minimum values. 

Significant differences (P = <0.05) denoted by asterisks. 
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5.3.3 - Root associated area 

The activity of both enzyme groups was highest nearest to the sampled roots, indicated by 

the brighter areas, and decreased with distance from them. The consistent sampling 

position is shown for each pot in Figure 5.2. Cellulase activity was not solely localised to the 

axis of sampled roots, and activity away from roots increased with time (Figure 5.3), with a 

mean root associated area activity of 0.57 -2.10 pmol mm-2 h-1 33 days after planting. When 

Proctor was grown in isolation, the root associated area of cellulase activity was relatively 

constant (53 – 58 %) (Figure 5.5a). However, when Proctor was in inter- or intra- cultivar 

competition the initial percentage area was low (11 % in intra-cultivar  competition and 13 

% in inter-cultivar competition) but then rapidly increased to 25 days before stabilising at a 

similar percentage as Proctor in isolation (47 % in intra-cultivar competition and 58% in 

inter-cultivar competition) (Figure 5.5a). This shows a delay in the area of cellulase activity 

when Proctor was in competition compared to isolation. This is demonstrated in Figure 5.3, 

with darker images in the competition treatments at 18 days after planting compared to the 

isolation treatment. The root associated area in which cellulase activity occurred in the 

planted treatments showed a significant effect of treatment (F(2,17) = 4.72, P = 0.02), time 

(F(2,17) = 44.98, P = <0.01) and interaction between treatment and time (F (2,17) = 12.88, P = 

<0.01).  
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Figure 5.2 – Images of the sampled rhizoboxes, showing the consistent sampling location 

used in this study and the relationship between root presence and soil enzyme activity.  
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Figure 5.5 – The mean percentage of sampled areas in which the activity of cellulase and 

leucine aminopeptidase were recorded (n = 12). Cellulase activity (a) and leucine 

aminopeptidase (b) activity were sampled surrounding Proctor roots outside the competition 

zone of plants grown in isolation, intra-cultivar competition and inter-cultivar competition. 

Significant differences (P = <0.05) denoted by asterisks. 

 

Leucine aminopeptidase activity occurred beyond the immediate rhizosphere (Figure 

5.4). Mean root associated area activity at 33 days after planting ranged from 0.91 to 3.48 

pmol mm-2 h-1. When Proctor was grown in isolation and inter-cultivar competition, leucine 
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aminopeptidase root associated area steadily increased over time (Figure 5.5b). At 25 days, 

the intra-cultivar competition root associated area was lower (31 %) than in isolation (48 %) 

and inter-cultivar competition (52 %) (Figure 5.5b), indicating a delay in leucine 

aminopeptidase activity in intra-cultivar competition compared to isolation and inter-

cultivar competition.  This is demonstrated in Figure 5.4, with darker images in the intra-

cultivar competition treatment at 18 days after planting compared to the isolation and 

inter-cultivar competition treatments. There was a significant effect of treatment (F(2,17) = 

31.72, P = <0.01), time (F(2,17) = 30.36, P = <0.01) and a significant interaction between time 

and treatment on the root associated percentage area of leucine aminopeptidase activity 

(F(2,17) = 7.42, P = <0.01). Model details are in Appendix 2, Supplementary Figure A1.  

 

5.4 - Discussion 

This experiment aimed to determine the effect of plant-plant competition in barley on the 

temporal dynamics of nutrient cycling by measuring activity of cellulase and leucine 

aminopeptidase, two enzyme classes associated with nutrient turnover, specifically of 

carbon and nitrogen. Root axis activity for both enzyme classes was not significantly 

temporally dynamic (the interaction between time and treatment) when the focal plant 

(Proctor cultivar of barley) was in intra- and inter- cultivar competition compared to 

isolation. However, using the Spohn and Kuzyakov (2014) root associated area approach, 

cellulase activity was found to be delayed when in intra- and inter- cultivar competition 

compared to isolation (significant interaction between treatment and time). In contrast, 

leucine aminopeptidase root associated area was delayed when in intra-competition, but 

not inter-cultivar competition compared to isolation (significant interaction between 

treatment and time). This demonstrates that the temporal dynamics of soil enzyme activity 

were influenced by plant-plant competition independent of other environmental factors, 

that plant-plant competition did not have a uniform effect on different classes of soil 

enzymes, and that the observed effects are also dependent on the method of 

measurement. 
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5.4.1 - Root axis activity  

Both cellulase and leucine aminopeptidase mean root axis activity was much higher than the 

whole sampled area, 3 - 4 times higher for leucine aminopeptidase and 4 - 6 times for 

cellulase. This is most likely due to the influence of plant root exudates, which provide a 

source of labile carbon, increase the rate of SOM mineralisation and, consequently, carbon 

and nitrogen cycling in the rhizosphere compared to bulk soil (Bengtson et al., 2012; C. J. 

Murphy et al., 2017). However, along root activity did not vary significantly over time for 

either enzyme class. The area of root system sampled was in the zone of maturation, a zone 

associated with a stable rate of nutrient uptake (Giles et al., 2018). I hypothesised that 

plant-plant competition would have changed the temporal dynamics of root axis enzymatic 

activity, but it seems the inherent stability of this root zone was greater than the influence 

of plant-plant competition. Other root zones are associated with uptake of specific 

nutrients, for example the apical root zone is associated with iron absorption and the 

elongation zone with sulphur uptake (Travis S Walker et al., 2003). Therefore, depending on 

the root zone sampled and nutrient studied, there will likely be differing patterns of enzyme 

activity.  

 There is the potential for some enzyme activity to be produced by the plants 

themselves: up to 10 % (Xu et al., 2014). Plant-derived leucine aminopeptidases genes have 

been detected in the plant genome, and found to have a role in protein turnover (Bartling 

and Weiler, 1992). Plants also have cellulases, but these are used for remodelling of cell 

walls and are not thought to be strong enough for large scale degradation of cellulose 

(Hayashi et al., 2005). Therefore, due to their intra-cellular roles, it is unlikely that plant-

derived enzymes contributed to the enzyme activity outside of the plant roots detected in 

this study.   

 

5.4.2 - Root associated area 

Cellulase and leucine aminopeptidase root associated area were not solely confined to the 

root axis, with increased activity across the sampled areas, including background soil 

activity. Cellulase root associated area was temporally dynamic, with a delay in peak enzyme 

activity (i.e. when the largest percentage area of membrane was recording either cellulase 
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or leucine aminopeptidase activity) when in competition compared to isolation. The 

zymography assay measured total cellulase activity of multiple microbial functional groups 

and did not differentiate between exo- and endo-glucanase activities. Exo-glucanases break 

glucose from the end of cellulase polymers, whilst endo-glucanases break bonds within the 

cellulose chains (Pappan et al., 2011). There may have been differing dynamics if endo- and 

exo-glucanase activity were examined separately.  

Leucine aminopeptidase root associated area also demonstrated a delay in activity 

but only when Proctor was in intra-cultivar competition. This delay in leucine 

aminopeptidase root associated area when in intra-cultivar competition echoes a similar 

trend to the delay of 14.5 days in Proctor peak above-ground nitrogen accumulation rate 

found in a previous study (Schofield et al., 2019). The mechanism that links these two 

observations is not clear. Proctor plants may have delayed peak root exudate production 

when in intra-cultivar competition, influencing microbial activity to limit competition 

between the two plants. However, there may also be further mechanisms, for example 

involving plant-microbe signalling, already known to be important in recruitment of 

microbial symbionts and plant growth promoting rhizobacteria (Chagas et al., 2018; 

Labuschagne et al., 2018). 

As the same area was sampled consistently over the experiment, the sampled area 

became increasingly far from the root tip, a known hotspot of soil microbial community 

enzyme activity. This may have influenced the activity of the two enzyme classes. 

Phosphatase activity has previously been found to vary with distance from the root tip (Giles 

et al. 2018), which may have influenced the results presented. However, there was no 

significant difference in root biomass or total root length between any of the treatments 

(Table 5.1), indicating that the relative sampling position remained consistent across 

treatments in this study. One benefit of sampling in the mature root zone is that it allows 

comparisons among treatments as the sampled areas were all a similar distance from the 

root tip at each time point. The zone of maturation is a region of the root with less 

exudation compared to the zone of elongation (Badri and Vivanco, 2009), but with root hairs 

that provide greater surface area for nutrient absorption (Gilroy and Jones, 2000). There 

may have also been an influence of root branching which occurred in some of the sampled 

areas due to plant foraging for nutrients (Forde, 2014). This hypothesis requires further 
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sampling of a greater proportion of the root system for a high resolution of spatiotemporal 

trends in microbial enzyme activity with root branching.   

 

5.4.3 - What role could root exudates have in the temporal dynamics of enzyme activity? 

The different patterns of soil enzyme activity associated with the three treatments may 

have been driven by differences in root exudation, with changes in root exudate 

composition then affecting microbial activity. Plants select for a specific microbial 

community through root exudates (Hu et al., 2018; Shi et al., 2011). Therefore, root 

exudates may do more than simply increase the rate of nitrogen mineralisation (Mergel et 

al., 1998), and may also influence the timing of mineralisation by influencing soil microbial 

community composition.   

Root exudation quality and quantity is known to change over time (van Dam and 

Bouwmeester, 2016) with root exudates increasing the carbon to nitrogen ratio in the 

rhizosphere, regulating mining of SOM by the soil microbial community (Chaparro et al., 

2012; Meier et al., 2017). Exudates also act as a form of signalling between plants (van Dam 

and Bouwmeester, 2016), eliciting a change in root architecture (Caffaro et al., 2013), 

branching (Forde, 2014) and biomass allocation (Schmid et al., 2015). Therefore, the 

observed delay in soil enzyme activity could be regulated by temporally dynamic root 

exudation. Root branching would have also increased the total root area within the 

measurement areas, potentially increasing the total exudates available to the soil microbial 

community and promoting greater enzymatic activity. Consequently, the active control of 

root exudates instead of root biomass or surface area alone may be an important part of the 

mechanism behind the observed shifts in soil microbial community activity. Combining this 

research with measurements of microbial biomass in the rhizosphere soil would help 

determine if the increase in exudation is promoting an increase in exoenzyme production 

through priming of the soil microbial community (Dijkstra et al., 2013) or if increases in 

exoenzyme production are due to an increased microbial biomass. This is an avenue for 

future research.  
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5.4.4 - Temporal dynamics of enzyme activity in response to plant-plant competition 

The soil enzyme classes in this study demonstrated different temporal patterns in activity in 

response to changes in plant-plant competition. Relative to the isolated-plant control, the 

temporal dynamics of cellulase root associated area were influenced by both intra- and 

inter-cultivar competition, whereas leucine aminopeptidase dynamics were only 

significantly influenced by intra-cultivar competition.  

The influence of plant-plant competition on the temporal dynamics of root 

associated enzyme area occurred beyond the immediate zone surrounding the root. This 

contrasts with the results of Ma et al. (2018), who found a strong localisation of leucine 

aminopeptidase and cellulase activity close to plant roots across the whole root system. 

Furthermore, they found that the root associated area did not increase over time around 

lentil roots (Lens culinaris) and only began to increase around Lupin (Lupinus albus) roots 

eight weeks into the study  (Ma et al. 2018). This is much later than the barley in this study, 

where sampling occurred in the first month of growth, the period prior to peak nitrogen 

accumulation rate in these barley cultivars (Schofield et al., 2019). This is likely to be a 

period of soil microbial community priming to mine for nitrogen within soil organic matter 

and may account for the differences between Ma et al.’s and this study. In this study the 

extent of the rhizosphere and therefore activity of leucine aminopeptidase and cellulase 

may have increased over time, as labile carbon in root exudates diffused away from roots 

and the zone of nutrient depletion surrounding roots enlarged.  

This study does however have its limitations. The rhizobox system is a very artificial 

setup with roots growing in a single plane, which would influence root growth and 

development. This does not account for the 3D nature of root growth and interactions with 

the soil particles and the soil microbial community. More complex interactions and 

temporally dynamic responses may be occurring in a 3D system through localised changes in 

the soil microbial community. Therefore, development of the zymography method in order 

to sample 3D root systems is a natural avenue for future research.   There also need to be 

measures of nutrient concentration and microbial biomass as measurements of enzyme 

activity alone cannot be directly extrapolated as an indicator of nutrient cycling. Including 

these measures would determine if greater enzyme activity was due to an increase in 

microbial biomass or increased microbial demand for nutrients.  
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The temporal dynamics of enzyme activity are likely to be strongly influenced by 

environmental conditions including temperature (Steinweg et al. 2012), soil moisture 

(Barros et al. 1995) and soil nutrient concentration (Mbuthia et al. 2015). This study 

demonstrates that the temporal dynamics of the two groups of enzymes, both involved in 

nutrient turnover, were affected differently by plant-plant competition when grown in 

constant environmental conditions. This could be due to the composition of root exudates 

and concentration of secondary metabolites that selected for a soil microbial community 

with specific functions (Hu et al., 2018; Shi et al., 2016). Plants could have therefore 

regulated soil  microbial community activity through the differing sensitivity of microbial 

taxa to root exudates (Shi et al., 2011; Zhang et al., 2017). 

 

5.5 - Conclusions 

Root axis activity of leucine aminopeptidase and cellulase was not temporally dynamic in 

response to plant-plant competition. Plant-plant competition influenced the root associated 

area of the two enzyme classes in this study differently. The extent of root associated 

cellulase area was delayed by inter- and intra-cultivar competition, whilst leucine 

aminopeptidase root associated area was only delayed by intra-cultivar competition. This 

may have been mediated through root exudates selecting for specific microbial functions. 

Therefore, conclusions concerning the temporal dynamics of nutrient cycling are likely to be 

dependent on the enzyme class being studied and method of image analysis used. Changes 

in these temporal dynamics may have been mediated through changes in the quantity and 

composition of root exudates by plants in competition, leading to a delay in peak soil 

enzyme activity. The extent of plant root influence was found to increase over time as 

exudates diffused away from roots, an important factor in studies of the soil microbial 

community activity. This study therefore demonstrates the close link between the temporal 

dynamics of plant and microbial resource capture and the influence each process has on the 

other.   

 

 



  

   114 
  

References 

Badri, D. V. and Vivanco, J. M. (2009) Regulation and function of root exudates. Plant, Cell 

and Environment, 32(6), 666–681. 

Bardgett, R. D., Streeter, T. C. T. C. and Bol, R. (2003) Soil Microbes Compete Effectively With 

Plants For Organic-Nitrogen Inputs To Temperate Grasslands. Ecology, 84(5), 1277–1287. 

Bardgett, R. D., Bowman, W. D., Kaufmann, R. and Schmidt, S. K. (2005) A temporal 

approach to linking aboveground and belowground ecology. Trends in Ecology and 

Evolution, 20(11), 634–641. 

Barros, N., Gomez-Orellana, I., Feijóo, S. and Balsa, R. (1995) The effect of soil moisture on 

soil microbial activity studied by microcalorimetry. Thermochimica Acta, 249, 161–168. 

Bartling, D. and Weiler, E. W. (1992) Leucine aminopeptidase from Arabidopsis thaliana 

Molecular evidence for a phylogenetically conserved enzyme of protein turnover in higher 

plants. European Journal of Biochemistry, 205(1), 425–431. 

Bengtson, P., Barker, J. and Grayston, S. J. (2012) Evidence of a strong coupling between 

root exudation, C and N availability, and stimulated SOM decomposition caused by 

rhizosphere priming effects. Ecology and Evolution, 2(8), 1843–52. 

Caffaro, M. M., Vivanco, J. M., Botto, J. and Rubio, G. (2013) Root architecture of 

Arabidopsis is affected by competition with neighbouring plants. Plant Growth Regulation,  

70(2), 141–147. 

Chagas, F. O., Pessotti, R. D. C., Caraballo-Rodríguez, A. M. and Pupo, M. T. (2018) Chemical 

signaling involved in plant-microbe interactions. Chemical Society Reviews, 47(5), 1652–

1704. 

Chaparro, J. M., Sheflin, A. M., Manter, D. K. and Vivanco, J. M. (2012) Manipulating the soil 

microbiome to increase soil health and plant fertility. Biology and Fertility of Soils, 48, 489–

499. 

van Dam, N. M. and Bouwmeester, H. J. (2016) Metabolomics in the Rhizosphere: Tapping 

into Belowground Chemical Communication. Trends in Plant Science, 21(3), 256-265. 



  

   115 
  

Forde, B. G. (2014) Nitrogen signalling pathways shaping root system architecture: An 

update. Current Opinion in Plant Biology, 21, 30–36. 

Garcia-Pausas, J. and Paterson, E. (2011) Microbial community abundance and structure are 

determinants of soil organic matter mineralisation in the presence of labile carbon. Soil 

Biology and Biochemistry, 43(8), 1705–1713. 

Giles, C. D., Dupuy, L., Boitt, G., Brown, L. K., Condron, L. M., Darch, T., Blackwell, M. S. A., 

Menezes-Blackburn, D., Shand, C. A., Stutter, M. I., Lumsdon, D. G., Wendler, R., Cooper, P., 

Wearing, C., Zhang, H., Haygarth, P. M. and George, T. S. (2018) Root development impacts 

on the distribution of phosphatase activity: Improvements in quantification using soil 

zymography. Soil Biology and Biochemistry, 116, 158–166. 

Gilroy, S. and Jones, D. L. (2000) Through form to function: Root hair development and 

nutrient uptake. Trends in Plant Science, 5(2), 56–60. 

Hayashi, T., Yoshida, K., Woo Park, Y., Konishi, T. and Baba, K. (2005) Cellulose metabolism in 

plants. International Review of Cytology, 247, 1–34. 

Hodge, A., Robinson, D. and Fitter, A. (2000) Are microorganisms more effective than plants 

at competing for nitrogen? Trends in Plant Science, 5(7), 304–308. 

Hortal, S., Lozano, Y. M., Bastida, F., Armas, C., Moreno, J. L., Garcia, C. and Pugnaire, F. I. 

(2017) Plant-plant competition outcomes are modulated by plant effects on the soil 

bacterial community. Scientific Reports, 7(1), 17756. 

Hu, L., Robert, C. A. M., Cadot, S., Zhang, X., Ye, M., Li, B., Manzo, D., Chervet, N., Steinger, 

T., van der Heijden, M. G. A., Schlaeppi, K. and Erb, M. (2018) Root exudate metabolites 

drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. 

Nature Communications, 9(1), 738. 

Kuzyakov, Y., Friedel, J. . and Stahr, K. (2000) Review of mechanisms and quantification of 

priming effects.’ Soil Biology and Biochemistry, 32(11–12), 1485–1498. 

Labuschagne, N., Madala, N. E., Piater, L. A., Mhlongo, M. I. and Dubery, I. A. (2018) The 

Chemistry of Plant–Microbe Interactions in the Rhizosphere and the Potential for 



  

   116 
  

Metabolomics to Reveal Signaling Related to Defense Priming and Induced Systemic 

Resistance. Frontiers in Plant Science, 9, 1–17. 

Lobet, G., Pagès, L. and Draye, X. (2011) A Novel Image-Analysis Toolbox Enabling 

Quantitative Analysis of Root System Architecture. Plant Physiology, 157(1), 29–39. 

Ma, X., Zarebanadkouki, M., Kuzyakov, Y., Blagodatskaya, E., Pausch, J. and Razavi, B. S. 

(2018) Spatial patterns of enzyme activities in the rhizosphere: Effects of root hairs and root 

radius. Soil Biology and Biochemistry, 118, 69–78. 

Mbuthia, L. W., Acosta-Martínez, V., DeBruyn, J., Schaeffer, S., Tyler, D., Odoi, E., Mpheshea, 

M., Walker, F. and Eash, N. (2015) Long term tillage, cover crop, and fertilization effects on 

microbial community structure, activity: Implications for soil quality. Soil Biology and 

Biochemistry, 89, 24–34. 

Meier, I. C., Finzi, A. C. and Philiips, R. P. (2017) Root exudates increase N availability by 

stimulating microbial turnover of fast-cycling N pools. Soil Biology and Biochemistry, 106, 

119–128. 

Mergel, A., Timchenko, A. and Kudeyarov, V. (1998) Role of plant root exudates in soil 

carbon and nitrogen transformation. In Root Demographics and Their Efficiencies in 

Sustainable Agriculture, Grasslands and Forest Ecosystems. Springer, Netherlands, 43–54. 

Murphy, C. J., Baggs, E. M., Morley, N., Wall, D. P. and Paterson, E. (2017) Nitrogen 

availability alters rhizosphere processes mediating soil organic matter mineralisation. Plant 

and Soil, 417(1–2), 499–510. 

Pappan, K., Wang, H., Prade, R., Segato, F., Mort, A., Lee, D. and Squina, F. (2011) High-

Temperature Enzymatic Breakdown of Cellulose. Applied and Environmental Microbiology, 

77(15), 5199–5206. 

Paterson, E. (2003) Importance of rhizodeposition in the coupling of plant and microbial 

productivity. European Journal of Soil Science, 54(4), 741–750. 

Penton, C. R. and Newman, S. (2007) Enzyme activity responses to nutrient loading in 

subtropical wetlands. Biogeochemistry, 84(1), 83–98. 



  

   117 
  

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and Team, R. C. (2016) _nlme: Linear and 

Nonlinear Mixed Effects Models_., R package version 3.1-128, (URL: http://CRAN.R-pro.) , 

(Accessed 23/01/2020). 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., 

Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., 

Tomancak, P. and Cardona, A. (2012) Fiji: an open-source platform for biological-image 

analysis. Nature Methods, 9(7), 676–682. 

Schimel, J. P. and Bennett, J. (2004) Nitrogen mineralization: Challenges of a changing 

paradigm. Ecology, 85, 591–602. 

Schmid, C., Bauer, S. and Bartelheimer, M. (2015) Should I stay or should I go? Roots 

segregate in response to competition intensity. Plant and Soil, 391(1–2), 283–291. 

Schneider, C. A., Rasband, W. S. and Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 years of 

image analysis. Nature Methods, 9(7), 671–675. 

Schofield, E. J., Rowntree, J. K., Paterson, E., Brewer, M. J., Price, E. A. C., Brearley, F. Q. and 

Brooker, R. W. (2019) Cultivar differences and impact of plant-plant competition on 

temporal patterns of nitrogen and biomass accumulation. Frontiers in Plant Science, 10, 215. 

Shi, S., Nuccio, E. E., Shi, Z. J., He, Z., Zhou, J. and Firestone, M. K. (2016) The interconnected 

rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology letters, 

19(8), 926–936. 

Shi, S., Richardson, A. E., O’Callaghan, M., DeAngelis, K. M., Jones, E. E., Stewart, A., 

Firestone, M. K. and Condron, L. M. (2011) Effects of selected root exudate components on 

soil bacterial communities. FEMS Microbiology Ecology, 77(3), 600–610. 

Spohn, M. and Kuzyakov, Y. (2013) Distribution of microbial- and root-derived phosphatase 

activities in the rhizosphere depending on P availability and C allocation - Coupling soil 

zymography with 14C imaging. Soil Biology and Biochemistry, 67, 106–113. 

Spohn, M. and Kuzyakov, Y. (2014) Spatial and temporal dynamics of hotspots of enzyme 

activity in soil as affected by living and dead roots-a soil zymography analysis. Plant and Soil, 

379(1–2), 67–77. 



  

   118 
  

Steinweg, J. M., Dukes, J. S. and Wallenstein, M. D. (2012) Modelling the effects of 

temperature and moisture on soil enzyme activity: Linking laboratory assays to continuous 

field data. Soil Biology and Biochemistry, 55, 85–92. 

R Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation 

for Statistical Computing, 1, 409. 

Venables, W. N. and Ripley, B. D. I. (2002) Modern Applied Statistics with S. Fourth Edition, 

Springer, New York. 

Walker, T. S., Bais, H. P., Grotewold, E. and Vivanco, J. M. (2003) Root exudation and 

rhizosphere biology. Plant physiology, 132(1), 44–51. 

Xu, Z., Yu, G., Zhang, X., Ge, J., He, N., Wang, Q. and Wang, D. (2014) The variations in soil 

microbial communities, enzyme activities and their relationships with soil organic matter 

decomposition along the northern slope of Changbai Mountain. Applied Soil Ecology, 86, 

19–29. 

Zhang, R., Vivanco, J. M. and Shen, Q. (2017) The unseen rhizosphere root–soil–microbe 

interactions for crop production. Current Opinion in Microbiology, 37, 8–14. 

 

 

 

 

 

 

 

 

 

 

 



  

   119 
  

Chapter 6 

Gene expression response to intra- and inter- cultivar competition and 

potential consequences for temporal dynamics of resource capture 
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Abstract 

Belowground, plants are known to respond to the presence of a neighbouring individual 

through the modification of root architecture, changing patterns of root branching and the 
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temporal dynamics of nutrient uptake. However, to aid in elucidating the mechanisms 

behind a change in the temporal dynamics of nutrient uptake, the changes at a gene 

expression level require characterisation. This study aimed to characterise gene expression 

associated with intra-specific plant-plant competition during early plant growth. Barley 

(Hordeum vulgare, cv. Proctor) plants were grown in isolation, intra-cultivar and inter-

cultivar competition for 19 days, then root material was harvested for gene expression 

analysis. A core set of genes were identified that were significantly differentially expressed 

in both competition treatments (17 total, 11 upregulated, 6 downregulated). Genes that 

were unique to each competition treatment were also identified. A greater number of genes 

were significantly differentially expressed in inter-cultivar competition (117 total, 58 

upregulated, 59 downregulated) compared to intra-cultivar competition (41 total, 22 

upregulated, 19 downregulated). The combination of up and down regulated genes in each 

competition treatment had a number of different identified functions. The majority of 

significantly differentially expressed genes were associated with plant growth and 

development, suggesting a growth pattern change in response to the presence of a 

competitor. This indicates a differential response at a gene expression level depending on 

the identity of a competing individual, and at a time which is likely to be prior to 

competition induced nutrient deficiency.  Therefore, plants may be able to respond 

differently depending on how closely related they are to a competitor, to potentially favour 

those that are more closely related and compete more intensely with more distantly related 

individuals.  

 

6.1 - Introduction 

Plants respond to stress in a number of ways depending on the type of stress i.e. abiotic or 

biotic (Ramakrishna and Ravishankar, 2011; Schmid et al., 2013) or the combination of 

stresses a plant is experiencing (Bowsher et al., 2017). Reponses can include a change in 

shoot architecture due to shading stress (Cahill, 2003) or root architecture changes from 

nutrient deficiency stress as roots forage for nutrients (Caffaro et al., 2013). Plants can also 

alter the partitioning of resources between roots and shoots in response to nutrient 

limitation and plant-plant competition (Berendse and Möller, 2009), as well as the timing of 

key processes, such as resource capture, to limit competition for common resources 
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(Schofield et al., 2018). Changes in the temporal dynamics of resource capture have been 

found in response to plant-plant competition in annual (Schofield et al., 2019) and perennial 

(Trinder et al., 2012) species.  

 Mediation of plant responses to stress occurs at a molecular level through a series of 

plant growth regulators (Verma et al., 2016). These cause changes in gene expression via 

transcription factors, which then mediates downstream responses to stress (Does et al., 

2013). The suite of genes up or down regulated are specific to the type of stress or 

combination of stresses being experienced by the plant (Suzuki et al., 2014). Also, when 

there is a combination of stresses, for example heat and drought (which often co-occur), the 

profile of gene expression is not a combination of the two individual stresses, but a unique 

pattern of expression (Zandalinas et al., 2018). These patterns may ‘tailor’ the response of a 

plant to specific environmental conditions, to minimise the negative impacts of stress.  

A few studies have addressed the issue of gene expression patterns associated with 

plant-plant competition. These studies identified the accumulation of defensive secondary 

metabolites (Masclaux, Bruessow, Schweizer, Gouhier-Darimont, Keller, Reymond, et al., 

2012) and pathogen related proteins in response to plant-plant competition (Schmid et al., 

2013). The role of pathogen related proteins in plant-plant competition is unclear, but the 

proteins have been associated with a biotic stress response (Schmid et al., 2013). Also, 

genes associated with nutrient starvation, cold and salinity stress were upregulated in 

response to plant-plant competition (Schmid et al., 2013). Bowsher et al. (2017), using 

Trifolium species grown in field soil, found a core set of genes associated with both biotic 

and abiotic stress expressed in response to plant-plant competition. In addition, differential 

gene expression was found in response to a heterospecific competitor compared to a 

conspecific competitor (Bowsher et al., 2017). Conspecific competition has also been found 

to elicit a change in gene expression in a neighbouring individual (Subrahmaniam et al., 

2018). Intra-cultivar competition in barley has been found to elicit a temporally dynamic 

response in nitrogen accumulation rate (Schofield et al., 2019; Chapter 2) but the impact of 

this at a molecular level has yet to be explored. 

Barley (Hordeum vulgare) has been the subject of a concerted effort to sequence 

and annotate its genome, to identify genes with known functions (Schulte et al., 2009). 

Using barley as a model plant provides information about plant-plant competition in an 
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ecologically (grasses) and economically (cereals) important group. In crop plants, 

competition between individuals is likely to influence yield. Therefore, in order to maintain 

or increase crop yields we need to better understand the mechanism behind interactions 

between neighbouring plants. The majority of gene expression studies have been carried 

out using the model plant Arabidopsis thaliana grown in lab conditions (Masclaux, 

Bruessow, Schweizer, Gouhier-Darimont, Keller, Reymond, et al., 2012; Schmid et al., 2013; 

Subrahmaniam et al., 2018). In contrast, the use of a crop species grown in soil, as in this 

study, provides information relevant to both agriculture and ecology.  

Previous studies can help us pinpoint combinations of cultivars and key time points 

during intra-cultivar interactions which are likely to be of interest with respect to gene 

expression. Specifically, the previous study (Schofield et al., 2019; Chapter 2) examined the 

temporal dynamics of peak nitrogen uptake rate in an early cultivar, Tammi, and late 

cultivar, Proctor, when the plants were in isolation, intra- and inter- cultivar competition. 

Peak nitrogen accumulation rate significantly shifted in both cultivars with intra-cultivar 

competition, but not inter-cultivar competition compared to isolation. At 19 days after 

planting, nitrogen accumulation rate peaked for Proctor plants in isolation and inter-cultivar 

competition but not intra-cultivar competition, which peaked at 33 days after planting 

(Schofield et al., 2019; Chapter 2). Based on these data, I would expect differences in the 

pattern of gene expression at 19 days after planting between plants in intra-cultivar 

competition, compared to those in isolation or inter-cultivar competition, and the latter pair 

to be more similar to each other. 

 In this study, therefore, I examined the patterns of gene expression of Proctor plants 

grown in isolation, intra- and inter-cultivar competition at 19 days after planting. The aim of 

the study was to identify specific and common sets of differentially expressed genes when 

Proctor was grown under inter- and intra-cultivar competition conditions compared to when 

it was grown in isolation.  
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6.2 - Materials and methods 

6.2.1 - Soil characterisation  

Soil was collected from an agricultural field that had previously cropped spring barley 

(Hordeum vulgare), and had previously been cultivated using standard fertilisation practice 

(500 kg of 22N-4P-14K ha-1 yr-1) (Sourced from Balruddery Farm, Invergowrie, Scotland, 

56.4837° N, 3.1314° W). The soil was homogenised through a 6 mm sieve and thoroughly 

mixed, then stored at 4°C until planting. The soil organic content was 6.2 % ± 0.3 % SEM 

(loss-on-ignition, n = 4), with a mean pH of 5.7 ± 0.02 SEM (n = 4) in water. 

 

6.2.2 - Experimental setup 

Proctor plants were grown in isolation (P), intra-cultivar competition (PP) and inter-cultivar 

competition with Tammi (TP), with four replicates of each of the three treatments, giving 12 

pots in total. Pots (diameter = 102 mm, depth = 135 mm) were filled to a bulk density of 1 g 

cm-3. Proctor and Tammi plants were pre-germinated on damp tissue paper at room 

temperature in the dark for three days prior to planting. Germinated seeds were planted 25 

mm deep and approximately 50 mm apart within the pot. Pots were grown in a greenhouse 

(18 °C with supplementary lighting) for 19 days with weekly watering to 60 % water holding 

capacity to limit competition for water. Mesh screens (45 x 16 cm, mesh size 0.08 mm 

(Harrod Horticulture, Lowestoft, UK)) were inserted into pots to ensure competition only 

occurred underground. 

Harvesting was carried out after 19 days in replicate blocks. This was during the 

period of peak nitrogen accumulation rate, and prior to peak biomass accumulation rate 

and grain filling (Schofield et al., 2019; Chapter 2). The plants were removed from pots, 

separated and roots rinsed. The washed roots of each individual were placed into vials, 

sealed and placed into liquid nitrogen within three minutes of harvesting. The vials were 

then stored at -80 °C until RNA was extracted. 
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6.2.3 - RNA microarray analysis  

This method uses short pieces of DNA, complementary to known genes (identified through 

genome sequencing) that are individually printed on a glass slide known as a microarray. 

The microarray slide in this study had 61,000 complementary sequences printed on it. RNA 

was extracted from the samples, cleaned and converted into cDNA. The cDNA was then 

labelled using a fluorescent dye and added to the slide. The slides were incubated overnight 

and then scanned for fluorescence at each printed gene. The level of fluorescence was then 

used to determine whether the expression of the gene increased or decreased (Kaliyappan 

et al., 2012) in each of the competition treatments compared to plants in isolation.   

RNA was extracted using a Qiagen RNeasy Mini Kit (Qiagen, Manchester, UK), as 

recommended by the manufacturer with an additional clean-up step consisting of a phenol-

chloroform extraction (Toni et al., 2018). RNA was quantified using a NanoDrop™ 

2000/2000c (Thermo Fisher Scientific, UK) and quality measured using a Bioanalyser (Agilent 

Technologies UK, Edinburgh UK).  

Microarray processing was performed using a custom-designed barley Agilent 

microarray (A-MEXP-2357; www.ebi.ac.uk/arrayexpress). One microarray was used for each 

of the twelve replicates. The microarray contains c. 61,000 60-mer probes derived from 

predicted barley transcripts and full-length cDNAs (IBGSC, 2012). Samples were labelled 

using an Agilent One Colour Low Input Quick Amp Labelling Kit (Agilent, Santa Clara, CA, 

USA) and hybridised to microarrays as recommended according to the ‘One-Color 

Microarray-Based Gene Expression Analysis’ protocol (v 6.5, Agilent Technologies). Scanning 

was performed using an Agilent G2565CA Microarray Scanner (Agilent, Santa Clara, CA, USA) 

at 3 µm resolution. 

 

6.2.4 - Data analysis 

Data from the scanned microarray images were extracted using Feature Extraction Software 

(v. 10.7.3.1; Aglient, Santa Clara, CA, USA). Following visual quality control, data from each 

microarray was imported into GeneSpring software (v. 7.3; Aglient, Santa Clara, CA, USA) for 

data analysis. Data were normalised using default Agilent FE one-colour settings in 
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GeneSpring. In addition, data were filtered to remove inconsistent probe data flagged as 

absent in more than one replicate per sample. Following filtering using feature flags to 

assess outliers in the data, reliable data from 26,006 probes were taken forward for 

statistical analysis. Putative differentially expressed genes (≥ two-fold change) were 

identified through pairwise analysis (Student’s t-test) of Proctor plants in isolation (P) with 

intra-specific competition (PP: 41 genes) or inter-specific competition (TP: 117 genes). Gene 

lists were compared to identify those which are common or specific to each competition 

type. Corrections for multiple testing did not allow any genes though the filtering process, 

due to the subtle nature of the expected changes in gene expression.  

Differentially expressed genes were categorised by function using the rice 

annotation description in the UniProt database (www.uniprot.org). Based on the rice 

described function, the genes were placed into five categories: growth and development; 

plant stress; genome rearrangement; gene expression control; and those of unknown 

function.  

 

6.2.5 - Validation of microarrays using qRT-PCR 

A technical validation was carried out to validate the trends in gene expression observed in 

the microarrays using quantitative reverse transcription-PCR (qRT-PCR). For this, five stress 

response genes that were significantly differentially expressed in the microarrays were 

selected (MLOC_74116.1 – Chalcone synthase, MLOC_25773.1 – Jasmonate induced, 

MLOC_23705.2 – Jacalin lectin like protein, MLOC_81765.1 – WIP wounding protein, 

MLOC_44884.1 – Zinc finger protein, plus protein phosphatase 2 (PDF2), a commonly used 

housekeeping gene (Warzybok and Migocka, 2013) as an internal control. As stress genes 

were predicted to be upregulated in response to plant-plant competition, these were 

chosen for the validation to confirm the observed microarray gene expression patterns. 

Primer pairs were designed for each of the five genes (Table 6.1) with an internal probe 

using the Roche Universal ProbeLibrary (Roche, Basel, Switzerland). RNA from each 

treatment was pooled, treated with a DNase (DNase I kit, Thermo-Fisher Scientific, 

Manchester, United Kingdom) and converted to cDNA (TaqMan® cDNA kit, Thermo-Fisher 

Scientific, Manchester, United Kingdom).  
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Primer pair efficiencies were initially tested using serial dilutions which were then 

analysed using StepOne thermocycler (ThermoFisher Scientific (Applied Biosystems), 

Waltham, MA, USA). Only three primer pairs were efficient enough to be carried forward to 

the validation: MLOC_23705.2 – Jacalin lectin like protein, MLOC_25773.1 – Jasmonate 

induced and MLOC_74116.1 – Chalcone synthase. These were taken forward to the qRT-PCR 

assay and analysed using a StepOne thermocycler (ThermoFisher Scientific (Applied 

Biosystems), Waltham, MA, USA) (15 min 95°C, followed by 40 cycles of 10 seconds 95°C 

and 60 seconds at 60°C) with three technical replicates for each treatment. The results were 

then normalised to the isolation (P) treatment. These results were compared to the gene 

expression patterns from the microarray to confirm the magnitude and direction (up or 

down regulation) of gene expression.  

 

Table 6.1 - qRT-PCR primers used in this study.  

Gene name Forward primer Reverse primer Reference gene 

Chalcone 

synthase 

cagaagacgaggtgggtgat gcagaaggccatcaagga MLOC_74116.1 

Jasmonate 

induced 

ttgttaaaggcgagcttgagt acaagacgtcccgtatggag MLOC_25773.1 

Jacalin lectin like 

protein 

ggaaatggagggggtgataa cgagccactgctaactgtgat MLOC_23705.2 

WIP wounding 

protein 

atgcatgggaaatcagtggt attgatttcggttgcgtttt MLOC_81765.1 

Zinc finger protein cctacagagcatgcatagttgc aggaaaaaggattttccgatg MLOC_44884.1 

 

6.3 - Results  

6.3.1 - Common competition genes 

A core set of genes was identified by comparing the list of genes significantly differentially 

expressed in each competition treatment. This identified 17 genes common to both 

competition treatments (Figure 6.1). Six of these genes were downregulated and 11 
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upregulated (Table 6.2). Of these, four upregulated genes were associated with plant stress 

response, including genes induced by jasmonate production, abiotic stress, reactive oxygen 

species production and genes involved in flavonoid production (Table 6.2). The majority of 

the significantly differentially expressed genes identified that were common to both 

competition treatments had functions linked with plant metabolism and growth, with one 

gene identified as being involved in the control of gene expression. The remaining genes 

were of unknown function. Two genes were found to be differentially downregulated in 

intra-cultivar competition and upregulated in inter-cultivar competition. One was associated 

with abiotic stress tolerance, whereas the other had a role in general plant metabolism.   

 

6.3.2 - Intra-cultivar competition genes 

A total of 41 genes (listed in Appendix 3) were significantly differentially expressed (P ≤ 0.05 

with ≥ 2 fold change in expression) only when the plants were in intra-cultivar competition 

compared to plants grown in isolation. The identified genes consisted of those associated 

with plant growth and development (34 %), stress (24 %), gene expression regulation (9 %) 

and genome rearrangement (7 %) (Figure 6.1). The majority of the stress associated genes 

were downregulated, with only three genes upregulated (Figure 6.1). Genes associated with 

biotic and abiotic stress were downregulated, as well as genes associated with fungal 

pathogen response. Plant growth and development associated genes were both up and 

down regulated, with similar mixed patterns for gene expression and genome 

rearrangement. Of the ten genes with unknown function, seven were upregulated and three 

downregulated (Figure 6.1). 

 

6.3.3 - Inter-cultivar competition genes 

A total of 117 genes (listed in Appendix 3, Table A2) were significantly (P ≤ 0.05 with ≥ 2 fold 

change in expression) differentially expressed only in the inter-cultivar competition 

compared to isolation, 76 more than Proctor in intra-cultivar competition. The identified 

genes significantly differentially expressed were from a range of functional groups, with the 

majority (53 %) associated with plant growth and development. A further 15 % were 
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associated with control of plant gene expression, 6 % with genome rearrangement and 9 % 

with plant stress (Figure 6.1). Those involved in gene expression control were predominantly 

transcription factors or DNA binding proteins. The differentially expressed genes associated 

with plant stress response were predominantly associated with a general stress response, 

instead of a response to a specific stressor. Half of the genes associated with plant stress 

were upregulated and half downregulated. This was the same pattern in genes associated 

with growth and development and gene expression control, with similar proportions of both 

up and down regulated genes (Figure 6.1). There were 27 genes identified of unknown 

function, of which 14 were downregulated and 13 upregulated.  

 

Figure 6.1- Functional groups of genes significantly (P ≤ 0.05, with a ≥ 2 fold change in 

expression) differentially expressed in competition treatments compared to Proctor plants in 

isolation. Plants were grown in inter-cultivar competition (TP) and intra-cultivar competition 

(PP), and genes that were common to both competition treatments were also identified 

(common) compared to plants in isolation.  
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Table 6.2 - List of significantly (P ≤ 0.05 with ≥ 2 fold change in expression) differentially 

expressed genes common to both competition treatments, with annotated functions from 

the UniProt database.  

Primary 

Accession 

Rice description Function Up (↑)/down (↓) 

regulated 

Plant stress  

MLOC_74116.1 Chalcone synthase, 

putative, expressed 

Initial step of flavonoid 

production pathway - plant 

secondary metabolite 

production 

↑ 

MLOC_25773.1 Jasmonate-induced 

protein, putative 

Ribosomal inactivating 

protein thought to be part of 

plant defence 

↓ 

MLOC_17545.2 Laccase precursor 

protein, putative, 

expressed 

Abiotic stress tolerance 

including drought and salinity 

↓(intra-cultivar 

competition) ↑(inter-

cultivar competition) 

AK373696 Leucoanthocyanidin 

reductase, putative, 

expressed 

Enzyme involved in flavenoid 

production 

↑ 

MLOC_64053.1 Metal cation 

transporter, putative, 

expressed 

Involved in zinc and iron 

uptake. Can also transport 

cadmium, cobalt, zinc and to 

a lesser extent nickel and 

copper. Also involved in 

response to ROS 

↑ 

Metabolism, growth and development  

MLOC_53163.1 Profilin domain 

containing protein, 

expressed 

Involved in cell development, 

cytokinesis, membrane 

trafficking, and cell motility 

↑ 
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MLOC_42095.1 No apical meristem 

protein, putative, 

expressed 

Plant development protein ↑ 

MLOC_44922.1 RING-H2 finger 

protein, putative, 

expressed 

Protein modification role ↑ 

MLOC_6963.5 Plant PDR ABC 

transporter 

associated domain 

containing protein, 

expressed 

ATP production ↑ 

AK364469 Hydrolase, alpha/beta 

fold family domain 

containing protein, 

expressed 

General role in metabolism ↓ (intra-cultivar 

competition) ↑ (inter-

cultivar competition) 

MLOC_54094.1 Hexokinase, putative, 

expressed 

Involved in glucose 

metabolism 

↑ 

Gene expression control  

MLOC_9821.2 SWIB/MDM2 domain 

containing protein, 

expressed 

Chromatin modification to 

control transcription 

↓ 

Unknown function  

MLOC_52935.1 DUF567 domain 

containing protein, 

putative, expressed 

Unknown function ↓ 

MLOC_41636.1 Expressed protein Unknown function ↓ 

MLOC_64800.1 Expressed protein Unknown function ↑ 

AK367837 Expressed protein Unknown function ↑ 

MLOC_41796.1 Hypothetical protein Unknown function ↑ 
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6.3.4 - Validation of expression patterns using qRT-PCR 

The expression of the chosen validation genes followed the same patterns in both the 

microarray and qRT-PCR analyses (Table 6.3). This validates the pattern of expression found 

in the microarray analysis. The results are normalised to the isolation treatment which is 

represented as 1.00 in Table 6.3.  

 

Table 6.3 – Comparison of the expression patterns of three genes selected for validation 

measured by microarray and qRT-PCR in the three treatments. Expression patterns were 

normalised to plants in isolation (P) and gene expression in this category is therefore 

represented as 1.00. Plants were grown in intra-cultivar competition (PP) and inter-cultivar 

competition. Values under 1.00 indicate down-regulation and above 1.00 up-regulation. 

Similar values between microarray and qRT-PCR indicate a similar magnitude of gene 

expression change.   

 

6.4 - Discussion 

This exploratory study aimed to investigate potential markers for inter- and intra- cultivar 

competition and patterns in gene expression. Barley cv. Proctor plants were grown in 

isolation, inter- and intra-cultivar competition for 19 days in agricultural soil. A core set of 17 

Primary 

Accession 

Rice description P PP TP 

  Micro

-array 

qRT-

PCR 

Micro

-array  

qRT-

PCR 

Micro

-array 

qRT-

PCR 

MLOC_23705 Jacalin-like lectin domain 

containing protein, putative, 

expressed 

1.00 1.00 0.09 0.13 0.29 0.45 

MLOC_25773 jasmonate-induced protein, 

putative 

1.00 1.00 0.41 0.50 0.41 0.50 

MLOC_74116 chalcone synthase, putative, 

expressed 

1.00 1.00 2.44 2.40 2.84 2.65 
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genes were significantly differentially expressed in both competition treatments, but there 

were also genes that were uniquely expressed in each of the competition treatments. A 

total of 117 (58 upregulated, 59 downregulated) genes were differentially expressed in 

inter-cultivar competition, compared to 41 (22 upregulated, 19 downregulated) in intra-

cultivar competition. The majority of genes were associated with growth and development 

but there were others associated with plant stress and the control of gene expression.  

 

6.4.1 - Genes of unknown function 

A total of 42 differentially expressed genes were of unknown function, with a mixture of up 

and down regulation. The current barley whole genome sequence was completed in 2012 

and is yet to be fully annotated (Mayer et al., 2012a). Consequently the rice genome was 

used for many of the functional annotations in this study: rice was the first complete crop 

genome to be published in 2006 and is well annotated (Jackson, 2016). The genes in this 

study that are of unknown function have either not been annotated in rice, are not similar 

enough to the rice homologues, or are unique to barley. Future barley annotation projects 

may allow the function of these genes to be identified. This includes transcriptome 

sequencing to validate gene annotation, using closely related species as a reference genome 

(Mayer et al., 2012a). 

 

6.4.2 - Patterns of gene expression  

Gene expression differed between the two competition treatments in terms of the total 

number of genes significantly differentially expressed, the pattern of up and down 

regulation and the function of the genes. The observation of a core set of ‘competition 

genes’ differentially expressed in both competition treatments, as well as uniquely 

expressed genes in each competition treatment, has been found previously by Bowsher et 

al. (2017) in Trifolium fucatum, and Schmid et al. (2013) in Arabidopsis thaliana. This 

included genes associated with disease resistance (Bowsher et al., 2017), gene expression 

and transcription factors (Schmid et al., 2013). In these earlier studies, core genes 

represented multiple functions, the same trend as found in this study. It is thought that 
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these are involved in the recognition of a neighbouring individual regardless of its identity 

(Bowsher et al., 2017), something again supported by this study.  

In this study, the upregulated core ‘competition genes’ included those involved in 

abiotic stress response, indicating that simply categorising genes as involved in plant stress 

may be too simplistic, as they are part of a larger signalling pathway which can also be 

involved in responses to plant-plant interactions. There was also an unexpected lack of 

nutrient deficiency associated genes expressed in the competition treatments. This suggests 

that the gene-level response to plant-plant competition is not the same as nutrient 

deficiency. Notably the sampling point for this study may have been before nutrient 

deficiency responses occurred. At 19 days after planting, there were minimal physical root-

root interactions and peak nitrogen accumulation rate occurred (Schofield et al., 2019; 

Chapter 2). Further experiments with sampling throughout the growth period could be used 

to characterise dynamics of competition interactions as nutrient deficiency becomes 

increasingly apparent.  

 The plant stress genes identified in this study (Appendix 3, Tables 1A and 2A) have 

been associated with both biotic and abiotic stress responses. Stress responses linked to 

pathogen defence have been found in Arabidopsis thaliana plants grown in both inter- and 

intra- specific competition (Masclaux, Bruessow, Schweizer, Gouhier-Darimont, Keller, 

Reymond, et al., 2012; Schmid et al., 2013). Defence responses, in particular increased 

jasmonate associated gene expression, have been found to lead to the upregulation of 

nutrient deficiency response genes (Schmid et al., 2013). However, this study found a 

mixture of up and down regulation of plant stress associated genes. In addition, there were 

differing patterns of gene expression in terms of gene identity, and up or down regulation 

between the inter- and intra-cultivar competition treatments. The combination of up and 

down regulation of a number of genes may mediate the intensity of a plant response to a 

neighbouring plant, depending on the identity of a neighbour. The combination of gene 

function and level of expression may consequently ‘tailor’ the response to a neighbouring 

plant, as discussed below.  

The majority of significantly expressed genes were categorised as part of a growth 

and development response to competition. Many of these genes have only generalised 

identified functions or are involved in a large range of cellular processes (The UniProt 
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Consortium, 2018). Therefore, characterising the growth response in each competition 

treatment is difficult. Further studies with more frequent sampling over the growth period 

would provide more evidence of a link between the observed gene expression patterns and 

growth responses such as biomass and nutrient accumulation.  

A number of the identified genes were associated with the control of gene 

expression through histone modifications and transcription factors (The UniProt 

Consortium, 2018). The expression pattern of these genes mimicked the pattern seen in the 

growth and development genes and may therefore be part of the same growth processes. 

Changes in the control of gene expression could indicate changes in the physiology and 

morphology of Proctor roots in competition (Malamy, 2005). 

 

6.4.3 - Multiple testing and validation 

The expression of genes in this study were subtle and did not pass through a multiple 

testing correction filter. This suggests that at this stage of growth there are only subtle 

changes in gene expression. However, the direction and magnitude of expression in the 

microarrays were confirmed in the qRT-PCR validation. This demonstrates that the gene 

expression patterns were unlikely to be an artefact of the microarray data analysis. The 

magnitude of these gene expression responses to plant-plant competition may increase 

over time or with greater environmental stress, allowing genes to pass through the filter. 

The inclusion of multiple time points in future studies would allow this hypothesis to be 

tested.  

   

6.4.4 - What does this mean in terms of plant-plant competition? 

Competition between plants has traditionally been characterised as a scramble for limited 

available resources, with plant responses occurring due to resource depletion (Schenk, 

2006). At the early stage of plant growth investigated in this study, during the period of 

peak nitrogen accumulation and prior to peak biomass accumulation rate and grain 

production, there was a lack of genes differentially expressed that were associated with 

nutrient stress or foraging. However, there were changes in the expression of genes 
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associated with plant growth and other stress roles. These changes in gene expression 

patterns potentially indicate the detection of a neighbouring individual occurred before 

nutrients became limiting, suggesting a form of neighbour recognition. Furthermore, fewer 

gene expression changes were found in intra-cultivar competition compared to inter-cultivar 

competition, indicating that not only the presence but also the identity of a neighbour can 

be detected by the plants. Such an effect has previously been found in Trifolium (Bowsher et 

al., 2017) in response to a congeneric individual compared to a heterospecific individual. 

These studies included competition for light which likely to have led to different gene 

expression patterns to those in this chapter, where shading was limited using mesh screens. 

If this study was repeated with competition aboveground also allowed, the pattern of 

differentially expressed genes would likely be different due to the additional effect of 

shading.  

Such responses may indicate a form of kin recognition. Kin recognition is the 

modification of plant behaviour depending on the identity of a neighbouring plant (Dudley 

et al., 2013). Underlying mechanisms include root exudates (Semchenko et al., 2014), 

volatile compounds (Delory et al., 2016) or via the soil microbial community (Hortal et al., 

2017a) prior to physical root contact. The unique chemical fingerprint of an individual can 

be recognised by a neighbouring plant, which can then respond depending on neighbour 

identity (Karban et al., 2013; Depuydt, 2014). The differences in gene expression patterns of 

plants in inter- and intra- cultivar competition in this study provide evidence for differing 

responses depending on neighbour identity. Differences in gene expression between plants 

in isolation and intra-cultivar competition also suggest that the mechanism of recognition of 

a closely related individual (self/non-self-recognition) is different to recognition of its own 

roots (self-recognition) (Biedrzycki et al., 2010; Depuydt, 2014).  

Kin recognition is thought to lead to reduced strength of competition between 

closely related individuals (Dudley et al., 2013), although there is no direct evidence for this 

in this study. The identity of the genes differentially expressed in intra-cultivar competition 

is likely to form part of the response to a closely related neighbouring individual, and gene 

identity may be of greater importance than simply the number of differentially expressed 

genes. Future research, using more quantitative methods such as RNA sequencing (Pounds, 
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2006) and into the function of genes identified in this study may elucidate the mechanism 

behind the observed differences, and confirm the patterns observed here.   

 

6.5 - Conclusions 

This study demonstrates plant recognition of the identity of a neighbour at a molecular level 

before it is reflected through changes in nitrogen and biomass accumulation dynamics. This 

is characterised by a change in expression of genes predominantly associated with growth 

and development, plant stress and gene expression control. A core set of genes was 

identified associated with both inter- and intra- cultivar competition. The gene expression 

patterns in this study indicate differences in responses depending on the identity of a 

neighbouring individual. This may be more dependent on the function of the genes than 

simply the number of differentially expressed genes, but the power of detection is weak. 

These findings suggest differential root growth responses depending on the identity of a 

neighbouring plant, providing further evidence for kin recognition in barley. No nutrient 

stress associated genes were found to be differentially expressed in this study, but the 

differential expression of growth and development genes may occur prior to nutrient stress. 

Therefore, it is likely that detection of a neighbouring competitor occurs prior to nutrient 

deficiency. 
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Chapter 7 

The temporal dynamics of salicylic acid and jasmonic acid production in 

response to early stage plant-plant competition 
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Abstract 

Plant-plant competition, both inter- and intra- specific, has been found to change the 

temporal dynamics of resource capture. This may be a missing factor in explaining plant 

coexistence in complex plant communities. The mechanisms behind a temporally dynamic 

response to a neighbouring plant are unclear but is likely to be mediated via plant growth 
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regulators. To address this, an experiment was conducted to examine how plant growth 

regulators, common indicators of plant stress, vary with plant-plant competition over time. 

Two target plant stress hormones were selected, salicylic acid and jasmonic acid, which 

moderate the response of plants to both biotic and abiotic stress. Barley was chosen as a 

model plant and was grown in isolation, and in intra- and inter- cultivar competition. Plants 

were harvested at intervals between 15 – 27 days after planting, covering the period up to 

and including plant peak nitrogen accumulation rate. Jasmonic and salicylic acid were 

extracted from roots and analysed using a High Performance Liquid Chromatography High-

Resolution Quadrupole Time-of-Flight Mass Spectrometer. Whilst jasmonic acid was not 

detected in the samples, the concentration of salicylic acid in plants in isolation was higher 

than basal levels measured in previous studies, suggesting that all the plants in this study 

were under some level of stress. The concentration of salicylic acid varied over time but 

there were no statistically significant effects of the treatments.  At 21 days after planting, 

there was a trend towards a greater concentration of salicylic acid in the competition 

treatments and a greater concentration in intra-cultivar competition compared to inter-

cultivar competition. This supports the theory that salicylic acid potentially has a role in the 

acclimation of plants to competition stress.  

 

7.1 - Introduction 

Plants respond to competition from neighbouring plants in a number of ways including 

changes in physiology (Trinder et al., 2013), biochemistry (Laliberté, 2016) and the temporal 

dynamics of resource capture (Trinder et al., 2012). The timing and rate of nutrient capture 

have been shown to change with intra- (Schofield et al., 2019) and inter- specific plant-plant 

competition (Trinder et al., 2012). A change in the temporal dynamics of nutrient uptake is 

thought to reduce direct competition and promote coexistence between plants (Schofield et 

al., 2018). However, the mechanism that regulates changes in the temporal dynamics of 

nutrient capture in response to plant-plant competition is unclear. 

 As plant roots grow they release a range of compounds including volatile organic 

compounds (VOCs) (Ninkovic et al., 2016) and water soluble compounds in root exudates 

(Yang et al., 2013). These chemical signatures are often unique at the species and genotype 
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level, allowing inter- and intra- specific recognition of neighbouring individuals (Chaparro et 

al., 2012). The presence of a competing individual or root exudates of a competitor have 

been found to induce a change in plant root architecture (Caffaro et al., 2013). At a 

molecular level, a neighbouring plant can cause upregulation of stress associated plant 

growth regulators (PGRs), including salicylic acid (SA) and jasmonic acid (JA) (van Dam and 

Bouwmeester, 2016). However, the temporal relationships between SA and JA production 

and nutrient capture when plants are in competition have yet to be explored. 

The presence of a neighbouring plant belowground is initially detected by receptors 

embedded in the root epidermis (Trewavas, 2002). The signal is transduced via the 

production of reactive oxygen species (ROS) and calcium ions within cells (Tuteja and 

Mahajan, 2011). Under abiotic stress and some cases of biotic stress this has been found to 

cause an increase in abscisic acid concentration (Rejeb et al., 2014). This in turn induces the 

production of SA and JA (Verma et al., 2016). These PGRs are involved in the mediation of 

responses to biotic stress such as pathogen and pest attack (An and Mou, 2011) and abiotic 

stresses including drought and salinity (Ahmad et al., 2016; Zhu, 2016). Salicylic acid 

production has been found to be associated with a response to drought (Khan et al., 2015) 

and biotrophic pests (Glazebrook, 2005), whereas jasmonic acid production has been more 

frequently associated with necrotrophic pest response (L. Zhang et al., 2017). The relative 

proportion of these two PGRs moderate a specific response to a stressor through crosstalk, 

each mediating the expression of the other PGR to produce either an antagonistic or 

synergistic response (Does et al., 2013). The balance between JA and SA is specific to each 

stressor or combination of stresses being experienced (Zandalinas et al., 2018). This may 

include the stress of a neighbouring individual competing for a limited pool of resources, for 

example soil nitrogen, a hypothesis which has yet to be tested. 

Due to its importance as a crop plant, barley (Hordeum vulgare) has been the focus 

of previous research, including characterisation of the timing and rates of nitrogen and 

biomass accumulation (Schofield et al., 2019; Chapter 2). Proctor was chosen as the focal 

cultivar for this study as in a previous study (Schofield et al., 2019; Chapter 2) it 

demonstrated large temporal shifts in nitrogen accumulation in response to a neighbour. 

Specifically, it shifted peak nitrogen accumulation 14.5 days later when in intra-cultivar 

competition compared to plants in isolation and inter-cultivar competition, from 19.5 to 33 
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days after planting (Schofield et al., 2019; Chapter 2). At a molecular level, plant-plant 

competition in Proctor has also been examined at a single time point (Chapter 6) using 

microarrays to characterise gene expression in Proctor roots of plants in inter- and intra- 

cultivar competition. At 19 days after planting there were more genes differentially 

expressed under inter-cultivar competition compared to intra-cultivar competition. The 

genes that were up- and down-regulated had a range of roles in defence, growth and 

development, and the control of gene expression. These processes are often regulated by 

plant hormones and the crosstalk between them (Masclaux, Bruessow, Schweizer, Gouhier-

Darimont, Keller, Reymond, et al., 2012; Verma et al., 2016). Therefore, measuring the 

concentration of plant growth regulators could be used to investigate the timing and 

magnitude of plant-plant competition at a molecular level.  

This study focussed on the period surrounding peak nitrogen accumulation rate, 

when competition is expected to be the most intense, and tested how two plant stress 

indicators (JA and SA) varied with plant-plant competition treatments and over time in 

barley (Hordeum vulgare cv. Proctor) roots. Concentrations of JA and SA were measured in 

Proctor roots grown in intra- and inter- cultivar competition compared to plants grown in 

isolation. Samples were analysed between 15 to 27 days of growth, which covers the period 

surrounding peak nitrogen accumulation rate (19 days) in this cultivar. It is expected that: 1) 

there will be higher concentrations of JA and SA in the competition treatments compared to 

plants in isolation, indicating that these plants are experiencing elevated levels of stress; 2) 

the concentration of SA and JA will be temporally dynamic and will increase over time as 

nutrients become depleted, and that the relative concentration of SA compared to JA will 

also increase over time as nutrients become depleted, mimicking the pattern of SA and JA 

seen in nutrient deficiency stress (Khan et al., 2015); 3) inter-cultivar competition with 

Tammi will produce the greatest of the two stress responses (i.e. the highest concentration 

of SA and JA) in Proctor plants, as in a previous study (Chapter 2) the individuals of this 

cultivar did not alter the temporal dynamics of nitrogen accumulation to potentially reduce 

the stress of plant-plant competition (Schofield et al., 2019). 
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7.2 - Materials and methods 

7.2.1 - Soil characterisation 

Soil was used from an agricultural field that had contained spring barley (Hordeum vulgare) 

and had been subjected to standard fertilisation conditions previously (500 kg of 22N-4P-

14K ha-1 yr-1) (Sourced from Balruddery Farm, Invergowrie, Scotland, 56.4837° N, 3.1314° 

W). Upon collection, the soil was homogenised and passed through a 6 mm sieve, then 

stored at 4°C prior to planting. It had an organic matter content of 6.2 % ± 0.3 % SEM (loss-

on-ignition, n = 4) and a mean pH (in water) of 5.7 ± 0.02 SEM (n = 4). 

 

7.2.2 - Experimental setup 

For this study I used the same cultivars of barley (Hordeum vulgare) as were used by 

Schofield et al. (2019) (Chapter 2). Proctor plants were grown in isolation (P), intra- (PP) or 

inter- cultivar competition with Tammi (TP), with three replicates of the three treatments 

for each of the five harvests (45 pots total). Cylindrical 2 litre pots (diameter 152 mm, height 

135 mm) were filled with field soil. Seeds of both cultivars were pre-germinated on damp 

tissue paper for two days before planting. In pots containing two plants, seeds were planted 

approximately 5 cm apart and an aboveground mesh screen placed between the two 

individuals (45 x 16 cm, mesh size 0.08 mm (Harrod Horticulture, Lowestoft, UK)) to ensure 

competitive interactions only occurred belowground. The presence of a screen was unlikely 

to have led to differences in shoot development as the foliage was upright; therefore 

screens were only inserted into pots with two plants.  

To account for potential positional effects, the pots were randomised and then 

grown in a controlled environment room (Conviron, Isleham, UK). The rooms were kept at 

15°C constantly with an 8/16 (day/night) hour photoperiod and 65 % relative humidity, to 

mimic local spring conditions.  
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7.2.3 - Harvesting 

Five harvests were carried out between 15 and 27 days after planting. This covered the 

majority of the nitrogen uptake period (17 – 33 days after planting; Schofield et al., 2019).  

At each harvest all plants were harvested within 2 hours of each other. The plants were 

removed from pots, the roots washed, then shoot and root material separated. The roots 

were then flash frozen in liquid nitrogen within 3 minutes of harvest to halt metabolic 

activity. Material was stored at -80°C prior to freeze drying, and then stored at room 

temperature until extraction of JA and SA. 

 

7.2.4 - Extraction of jasmonic acid and salicylic acid 

The extraction and analysis method developed by Forcat et al. (2008) was used in this study. 

Sampled root material was ground and extracted using a 10% methanol, 1% acetic acid 

(Sigma-Aldrich, Poole, United Kingdom) extraction solution. Internal deuterated standards 

of 5000 ng ml-1 salicylic acid-D6 and jasmonic-D5 acid (Sigma-Aldrich, Poole, United 

Kingdom) were added to measure percentage recovery during analysis whilst differentiating 

from native sources of JA and SA in the samples. The extracts were filtered through a 0.2 µm 

filter (Fisher Scientific, Loughborough, United Kingdom) to remove any remaining 

particulates. A solvent exchange was then carried out based on initial trial data (not 

presented) to improve SA and JA peak shape. The 10 % methanol extraction solution was 

replaced with 95 % distilled water 5 % acetonitrile (Sigma-Aldrich, Poole, United Kingdom) 

to match the mobile phase of the solvent. The extracts were then stored in 50 µl of this 

solvent in glass vials at 4°C prior to analysis. 

The analytical instrument in this study differed from that used by Forcat et al. (2008). 

An Accucore 3 µm C18 100 mm x 2.0 mm column (Thermo Scientific, Waltham, 

Massachusetts, USA) was used at 35°C. Samples (50 µl) were analysed using an Agilent 1260 

series Agilent 6540 UHD Accurate-Mass High Performance Liquid Chromatography High-

Resolution Quadrupole Time-of-Flight Mass Spectrometer (HPLC-HRqTOFMS) (Aglient, Santa 

Clara, California, USA). The solvent gradient was 5% A (95% H2O: 5% CH3CN: 0.1% CHOOH), 

95% B (95% CH3CN: 5% H2O: 0.1% CHOOH) to 95% A, 5% B over 15 min. To avoid 

contamination in the instrument, the first 2 min of the run was directed to waste. A needle 
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wash and blank was run after every sample to avoid contamination between samples. The 

solvent flow rate was 0.2 ml min-1. The HPLC-HRqTOFMS ion source was Dual Agilent Jet 

Stream Electrospray Ionization (AJS ESI) with a negative ion polarity. The method was 

optimised to the following conditions: gas temperature 325°C, gas flow 5 l min-1, Gas Sheath 

Flow 10 (arbitrary units), fragmentor voltage 80V. 

 

7.2.5 - Data quantification and analysis  

Undeuterated standard SA and JA (Sigma-Aldrich, Poole, United Kingdom) were run at 

concentrations of 0.05 - 99 pg µl-1 with internal deuterated standard at 50 pg µl-1 to 

determine the detection limit of the instrument. This found that the range of 0.2 – 20 pg µl-1 

of the undeuterated standard could be reliably quantified by the instrument. The inclusion 

of internal deuterated standards at a known concentration allowed the quantification of SA 

and JA whilst differentiating from the SA and JA present in the sample. Deuteration, the 

addition of deuterium, a heavy form of hydrogen, gave the standards a slightly different 

mass compared to the compounds being analysed, allowing them to be differentiated within 

the samples. This allowed the areas of the peaks to be compared and the concentration of 

the undeuterated SA and JA determined. Standard concentrations of undeuterated and 

deuterated SA and JA were run at the start and end of the instrument run and blanks run 

between each sample to monitor instrument performance over the course of running the 

samples.  

The effects of time, treatment and interactions between these two factors were 

examined with a Generalised Least Squares model using the nlme package (Pinheiro et al., 

2016) in R (R Core Team, 2015). Repeated measures were accounted for using an 

autocorrelation term. This was followed by an ANOVA test for significant differences using 

the MASS package (Venables and Ripley, 2002) in R (R Core Team, 2015). 
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7.3 - Results 

7.3.1 - Salicylic acid 

The concentration of salicylic acid in the roots varied between 5 and 12 ng g-1. At 15 days 

after planting, the concentration of SA was similar between the treatments at around 10 ng 

g-1 (Figure 7.1). At 21 days after planting, when compared to plants in isolation (6 ng g-1), SA 

was higher in Proctor plants in competition (9 ng g-1 in inter-cultivar competition), 

particularly in intra-cultivar competition (13 ng g-1). By 27 days after planting the 

concentration of salicylic acid had fallen in all the treatments to around 6 ng g-1. Despite 

these trends there was no statistically significant effect of time (F(4,30) = 0.68, P = 0.51), 

treatment (F(2,30) = 1.95, P = 0.12) or the interaction of these two factors (F(8,30) = 1.05, P = 

0.42).  

Figure 7.1 – Concentration of salicylic acid extracted from roots of Proctor sampled over the 

first month of growth. Proctor plants were grown in isolation (P), intra-cultivar competition 

(PP) or inter-cultivar competition (TP). Error bars are twice the standard error of the mean. 
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7.3.2 - Jasmonic acid 

Jasmonic acid was not detected in any sample at a concentration above the instrument 

detection limit of 0.2 ng g-1, possibly due to the presence of isobaric compounds, which are 

those with a similar mass to JA that may have increased the background signal and obscured 

any JA peaks.  

 

7.4 - Discussion 

This study aimed to test how plant stress hormone (SA and JA) concentrations varied with 

plant-plant competition over time. Jasmonic acid was not detected in root samples but 

salicylic acid was detected in all of the samples. Salicylic acid demonstrated some temporally 

dynamic trends in concentration, although these trends were non-significant, with increased 

concentration at 21 days after planting and then declining, making this a potentially 

interesting time point for more detailed future studies. 

 

7.4.1 - Salicylic acid 

The concentration of salicylic acid (SA) in this study ranged from 5 to 12 ng g-1. This suggests 

that plants in both competition and isolation experienced some level of stress during the 

study. However, direct comparisons between plant-plant competition stress and other 

forms of stress are limited due to the lack of data on endogenous SA production in barley, in 

particular barley roots. The majority of SA studies in the last five years which use barley 

have focussed on the exogenous application of SA to improve stress tolerance (Khan et al., 

2015; Mutlu et al., 2016; Kim et al., 2017; Guo et al., 2019), with only a few studies 

addressing endogenous SA concentration in response to stress (Chaman et al., 2003; Rivas-

San Vicente and Plasencia, 2011). This is therefore an important area for future work to 

determine the role of SA in moderating different forms and intensities of plant stress. This 

would allow plant stresses to be better characterised, and the development of plant 

breeding and management to limit stress in crops, potentially improving productivity.  
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7.4.2 - Jasmonic acid 

The concentration of jasmonic acid was below the detection limit of the instrument in this 

study. This may be due to interference from isobaric compounds, which had the same mass 

as JA present in the sample. There are thousands of metabolites in a plant at any one time 

(Wang et al., 2019), which may have interfered with the detection of JA in barley. Studies of 

jasmonic acid should include the development of a clean-up step prior to the solvent 

exchange step to remove potential isobaric compounds.  

 

7.4.3 - Potential link with temporal dynamism in nutrient uptake 

This study indicated that SA concentration in barley may demonstrate temporally dynamic 

trends during the first month of growth. Although the results were not statistically 

significant, a trend towards a higher SA concentration in intra-cultivar competition 

compared to inter-cultivar competition at 21 days after planting indicates that this may be a 

potentially crucial time for spring barley plant-plant interactions. In order to study this 

further, more power is required for statistical analysis. Increasing both the sampling 

frequency to daily sampling, and the number of replicates sampled around this time point, 

would provide greater temporal resolution.  

A previous study (Schofield et al., 2019; Chapter 2) found that peak nitrogen 

accumulation rate occurred for Proctor plants grown in isolation and inter-cultivar 

competition at 19 to 22 days after planting; for plants grown in intra-cultivar competition 

this occurred at 33 days. In this study, the higher concentration of SA in the intra-cultivar 

competition treatment compared to the other treatments suggests a differential response 

to competition mediated at a molecular level.  

An observed increase in SA concentration is often considered to be a response to 

oxidative stress (Verma et al., 2016). However, SA has been found to have roles in plant 

processes beyond plant defence, including germination (Rajjou et al., 2006), response to 

cadmium toxicity (Krantev et al., 2008), and photosynthesis regulation (Rivas-San Vicente 

and Plasencia, 2011). It has been found to also have a role in plant growth and programmed 

cell death (Rivas-San Vicente and Plasencia, 2011), development, and plant-microbe 
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interactions (Herrera Paredes et al., 2016; Chagas et al., 2018). Another potentially 

important role of SA is in acclimatisation to stress i.e. improving plant tolerance to stress by 

limiting damage. The accumulation of SA has been found to acclimatise plants to drought 

through the induction of defensive and antioxidant compound production to limit reactive 

oxidative stress damage (Sharma et al., 2017). Salicylic acid also promoted the accumulation 

of unsaturated fatty acids and antioxidant production to protect against cold induced 

cellular damage (Pál et al., 2013). Salinity stress SA mediated responses include a reduction 

in photosynthetic pigments and an accumulation of carotenoids and sucrose to protect 

against oxidative stress (Szepesi et al., 2009). There may therefore be a role of SA in 

acclimatising plants to the stress of plant-plant competition for nutrients. 

 

7.4.4 - Understanding the mechanism of plant-plant competition at a molecular level 

The experimental approach in this study aimed to measure plant hormone concentrations 

to understand plant stress responses to plant-plant competition. However, as no clear 

patterns were detected, the system may be more complex and changes more subtle than 

expected. It may also be the case that signalling compounds other than SA and JA are 

involved in responses to plant-plant competition. Salicylic acid interacts with auxin during 

vegetative growth, and with JA, abscisic acid, gibberellins and ethylene during growth and 

development (Rivas-San Vicente and Plasencia, 2011). Genes that were upregulated at 19 

days after planting included those involved in flavonoid production (Chapter 6). Therefore, 

flavonoids may be another potential indicator of plant-plant competition. Flavonoids have a 

range of roles in plants including root-rhizosphere communication, in particular root 

nodulation (Liu and Murray, 2016) as well as defence against pathogens and environmental 

stress (Treutter, 2005). The role of flavonoids in plant stress is of particular relevance when 

studying plant-plant competition as it likely contains a stress response component.  

Measuring the temporal dynamics of multiple PGRs and other metabolites 

simultaneously using a metabolic screen may provide a better indication of the type of 

response at a molecular level and the downstream consequences that lead to the 

temporally dynamic change in nutrient uptake rate. At 21 days after planting, there is an 

indication of differences between the treatments, and a metabolomic screen using either 
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mass spectrometry or NMR methods, as detailed by Balmer et al., (2013), would provide a 

more comprehensive view of the response to a competitor at a molecular level. The 

metabolic profiles of barley under biotic stress, specifically pest and pathogen attack, have 

been characterised using HPLC-DAD (high performance liquid chromatography with diode-

array detection) (Balmer et al., 2013) and could be used to draw comparisons between 

different forms of plant stress, identifying commonalities and differences.   

A series of linked studies would be required to examine the effect of plant-plant 

competition on gene expression, secondary metabolite production, and to then link this to 

physiological changes. Experimental approaches including studies of gene expression using 

microarrays or transcriptome sequencing (Liu et al., 2007) can then be combined with 

proteomic and metabolomic studies using mass spectrometry (Griffiths and Wang, 2009). 

This would provide an idea of the cascade of processes from detection of a neighbouring 

plant to a physiological or growth response. The integration of such datasets would involve 

functional analysis and topological network analysis, as well as multivariate and regression 

approaches (Bartel et al., 2013; Haider and Pal, 2013; Wang et al., 2016) 

There is also a need to test multiple plant tissues to identify tissue specific responses 

to plant-plant competition. This study focussed on root tissue as screens in the study 

allowed only interactions between roots. However, a systemic response to plant-plant 

competition may involve different responses in multiple tissues which vary during growth. 

Sampling multiple tissues over time would provide information about spatial and temporal 

variation in plant-plant competition responses within individual plants. Such studies could 

answer key questions about the role of plant hormones in plant-plant interactions. 

 

7.5 - Conclusions 

In this study I found temporally dynamic trends in the concentration of salicylic acid in 

response to growth stage, particularly when in intra-specific competition, however these 

trends were not statistically significant. At 21 days after planting – when SA concentrations 

were higher in intra-cultivar competition compared to inter-cultivar competition – is a 

potentially important time point that may be crucial for determining plant-plant 

competition in spring barley, warranting future investigation. Jasmonic acid was not 
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detected above the instrument detection limit, potentially due to the presence of isobaric 

compounds. This suggests that the extraction method may require a further clean-up step 

to improve the detectability of JA. However, to understand the plant stress response to 

plant-plant competition, measuring multiple metabolites simultaneously is a logical next 

step. This would allow the detection of subtle stress signalling in response to temporally 

dynamic plant-plant competition 
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Abstract  

The timing and rate of resource capture is a potentially important factor in coexistence 

within plant communities and may therefore also be an important factor in the design of 

crop mixtures. The temporal dynamism of nitrogen accumulation has been found to be 

affected by plant-plant competition in the Proctor cultivar of barley (Hordeum vulgare cv. 

Proctor), with a delay of 14.5 days in peak nitrogen accumulation rate when in intra-cultivar 

competition. There is potential to use this ability to shift the timing of peak nitrogen 

accumulation in crop mixtures to improve complementarity and resource use efficiency. 

However, it is not known if temporal dynamism in nitrogen and biomass accumulation have 

been conserved in the modern cultivar descendants of Proctor. Three cultivars that are 

descendants with increasing genetic distance from Proctor - Krona, Annabell and Chanson - 

were selected and grown in isolation, inter- and intra- cultivar competition. Sampling 

occurred every five days between 20 and 55 days after planting, and plant shoot biomass, 

nitrogen concentration and C:N were measured at each time point. The detected temporally 

dynamic trends in nitrogen accumulation of Proctor differed from the trends in a previous 

study by up to 16.5 days. Proctor, Krona, Annabell and Chanson all demonstrated a 2 – 3 day 

earlier peak in nitrogen accumulation rate timing when in competition compared to 

isolation. All cultivars apart from Annabell also had lower total accumulated nitrogen when 

in competition compared to isolation. These results demonstrate that temporal dynamism is 

conserved in modern cultivars of barley, and indicates the potential to utilise the temporal 

dynamics of resource capture in the development of temporally complementary crop 

mixtures. 

 

8.1 - Introduction 

Intercropping and crop mixtures have been used for millennia to improve crop yield stability 

and reduce inputs of fertiliser, herbicide and pesticides (Brooker et al., 2015). 

Complementarity between intercrops is often based on root and shoot architecture (Postma 

and Lynch, 2012; Zhu et al., 2016) and the ability of one crop to fix nitrogen (Bedoussac et 

al., 2015). However, the temporal dynamics of resource capture are likely to be another 

factor in intercrop complementarity. By occupying different temporal niches, plants can 
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reduce direct competition for resources whilst occupying the same spatial niche, promoting 

coexistence between individuals (Schofield et al., 2018). In an agricultural system, 

complementarity in the temporal dynamics of resource capture is likely to lead to increased 

resource use efficiency, potentially increasing yield whilst reducing input of fertilisers 

(Ghaley et al., 2005). The temporal dynamics of resource capture have been explored in 

intercrops, including complementary canopy growth in relay intercropping of wheat 

(Triticum aestivum) and cotton (Gossypium hirsutum L) (Zhang et al., 2008), as well as 

complementary temporal dynamics of nutrient uptake in wheat (Triticum aestivum L.) and 

faba bean (Vicia faba L.) (Li et al., 2014).  

 Complementarity has also been explored to some extent at an intra-specific level. A 

recent meta-analysis found that intraspecific crop mixtures on average increase crop yield 

amount and stability, whilst reducing the negative impact of pests and diseases (Reiss and 

Drinkwater, 2018). However, plasticity in temporal dynamics of resource capture in 

response to plant-plant competition of spring barley mixtures has yet to be explored. 

  Plasticity in the temporal dynamics of resource capture rate has not been actively 

selected for during breeding of spring malting barley in the last 100 years, where the focus 

has been on maximising yield, pest and disease resistance and malting quality (Friedt et al., 

2011). However, crop domestication has been found to increase the competitiveness of 

individuals and reduce complementarity in mixtures (Milla et al., 2017). This is due to mostly 

inadvertent (apart from selection for weed suppression, e.g. Benaragama et al., (2014)) 

selection for competitive traits in crops and against complementary behaviour (Milla et al., 

2014). The ability to shift the temporal dynamics of resource capture might therefore have 

been lost as part of this selection process. This may have occurred through the 

accumulation of random mutations in the protein coding regions of these genes, which were 

not under selection pressure to be functionally maintained in the genome (Lahti et al., 

2009).  

The temporal dynamics of nitrogen and biomass accumulation have previously been 

studied in barley (Hordeum vulgare). Schofield et al. (2019) (Chapter 2) used the Tammi and 

Proctor cultivars to investigate temporal dynamism of nitrogen and biomass accumulation 

rate with plant-plant competition. A shift in peak nitrogen accumulation rate timing was 

found in both cultivars: when in intra-cultivar competition, but not in inter-cultivar 
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competition, Tammi advanced peak nitrogen accumulation rate by 0.5 days and Proctor 

delayed it by 14.5 days. As Proctor showed the greatest shift in peak nitrogen accumulation 

rate timing with intra-cultivar competition, it was chosen to further investigate the potential 

heredity of resource capture temporal dynamics.  

 Proctor is a spring malting barley cultivar developed in the 1940s and first introduced 

commercially in the UK in 1955 (Hayward, 1958). This was prior to the widespread use of 

recurrent selection, introduced to increase the speed of new cultivar production in barley by 

using a small genetic base (McProud, 1979). Proctor was favoured due to its high yield and 

malt quality (Gothard et al., 1978) and is the ancestor of many spring malting barley 

cultivars (Friedt et al., 2011). This raises the question of whether the observed change in 

temporal dynamics of peak nitrogen accumulation rate of Proctor in intra-cultivar 

competition has been maintained in its descendants, including modern barley cultivars.  

The three spring barley cultivars selected have increasing genetic distance from 

Proctor as detailed in Figure 8.1. Krona is the result of a complex cross including Proctor and 

at least four other cultivars (Hatz et al., 2002; von Bongsong, 2014). It is a malting cultivar 

first introduced in 1989 and was popular in Germany for brewing for the period of roughly 

twenty years from its introduction (Oliver, 2014). Annabell is a cross of Krona and another 

cultivar, ST 900 14DH (Vratislav Psota et al., 2009), and therefore a second generation 

descendent of Proctor. It was first introduced in 1999 (Xu et al., 2018), and was popular due 

to the high quantity of malt produced (Friedt et al., 2011). Chanson is a seventh generation 

descendent of Proctor and is also the result of a complex cross. It is a modern malting 

cultivar that has been on the AHDB Recommended list since 2017 (Stein and Muehlbauer, 

2018).    

This study investigated if shifts in the temporal dynamics of nitrogen and biomass 

accumulation rate in response to plant-plant competition have been maintained or lost in 

Krona, Annabell and Chanson, three spring barley descendants of Proctor. It is expected that 

as this trait has not been actively selected for, temporal shifts will be less apparent in Krona, 

Annabell and Chanson compared to Proctor. Barley breeding for monocultures may have 

selected against collaborative behaviours (Milla et al., 2014) such as temporally dynamic 

shifts in nutrient uptake rate to promote plant community coexistence. Therefore, the 

genes that control temporally dynamic shifts might have been lost during the breeding of 
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modern barley cultivars. This may have led to a reduction in the ability of modern cultivars 

to shift resource capture dynamics in response to competition pressure. 

 

 

Figure 8.1 – The pedigree of the four cultivars used in this study highlighted in orange and 

generations between them (Dr Bill Thomas, personal communication). 

 

8.2 - Materials and Methods  

8.2.1 - Soil characterisation 

Soil was sourced from an agricultural field in July 2019 (Balruddery Farm, Invergowrie, 

Scotland, 56.4837° N, 3.1314° W) that had previously contained spring barley (Hordeum 

vulgare) and had been subject to standard management for barley production (including 

fertiliser addition at a rate of 500 kg of 22N-4P-14K ha-1 yr-1). The soil had an organic matter 

content (humus) of 6.2% ± 0.3% SEM (loss-on-ignition, n = 4) and a mean pH (in water) of 

5.7 ±0.02 SEM (n = 4), a total inorganic nitrogen concentration of 1.55 ± 0.46 mg g-1 (n = 4) 

and microbial C biomass (using a chloroform extraction) of 0.06 ± 0.002 SEM mg g-1 (n = 4) 

Proctor

Gimpel

Krona

Annabell

Mozart

Isabella

Columbus

Chanson
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(analysed by Konelab Aqua 20 Discrete Analyser (Thermo Scientific, Waltham, MA USA)).  

Before use, the soil was passed through a 6 mm sieve, then stored at 4°C until planting 

occurred. No fertilization of the soil occurred during the experiment.  

 

8.2.2 - Experimental setup 

Pots (diameter 152 mm, height 135 mm) were planted with one of the four focal cultivars 

(Proctor (P), Krona (K), Annabell (A) or Chanson (C)) in one of three treatments: isolation, 

inter-cultivar competition or intra-cultivar competition. Inter-cultivar treatments were 

grown in competition with Tammi (T), an early spring barley cultivar with no known shared 

heritage with any of the focal cultivars, to provide a baseline competitive response to a 

neighbouring plant that was not a descendent of Proctor (P, PP, TP, K, KK, TK, A, AA, TA, C, 

CC, TC).  Three replicates for each treatment for each of the eight planned harvests were 

planted, giving a total of 288 pots. This experimental design was influenced by the statistical 

analysis in Chapter 3 whilst accounting for practical constraints of space and cost. Barley 

seeds were germinated in the dark on damp paper at room temperature for three days prior 

to planting. Germinated seeds were planted at a depth of 2 cm and those in the competition 

treatments were planted 6 cm apart. Pots were arranged randomly to avoid potential 

positional effects. Mesh screens (45 x 16 cm, mesh size 0.08 mm (Harrod Horticulture, 

Lowestoft, UK) were inserted between competing plants, to ensure competition only 

occurred belowground. The foliage was relatively upright and would have been unlikely to 

be affected by a screen, therefore screens were only inserted in competition treatments.  

 

8.2.3 - Harvesting and sample processing 

Three pots of each treatment were selected randomly at each successive harvest, every 5 

days from 20 to 55 days after planting. Shoot material was cut at soil level and dried at 

100°C to a constant mass. Shoots of the focal cultivars were milled and analysed for carbon 

and nitrogen concentration (Flash EA 1112 Series, Thermo Scientific, Bremen, Germany). 
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8.2.4 - Statistical analysis 

8.2.4.1 - Carbon and nitrogen temporal dynamics 

The non-linear least squares with bootstrapping approach developed in Chapter 2 was used 

to analyse the data (Schofield et al., 2019; Chapter 2). Logistic growth curves were modelled 

using non-linear least squares (nls) models (R Core Team, 2015). This allowed the estimation 

of peak accumulation rate timing and absolute maximum accumulated biomass and 

nitrogen. Significant differences in peak rate timing and maximum accumulation were 

determined from the difference in bootstrapped 95 % confidence intervals of the model 

outputs.  

 

8.2.4.2 - Carbon to nitrogen ratio 

At the final harvest (55 days after planting) differences between the four cultivars and 

between the competition treatments were analysed using an ANOVA test from the MASS 

package (Venables and Ripley, 2002) in R (R Statistical Software, R Core Team, 2015). The 

fixed factor in this analysis was treatment or cultivar, with C:N as the response variable. A 

Tukey post-hoc test was carried out to compare the treatment groups.  

 

8.3 - Results 

8.3.1 -Temporal dynamics of biomass accumulation 

Biomass accumulated steadily over the growing period in all the cultivars in this study 

(Figure 8.2). There was a lag period until 35 days after planting, then biomass accumulation 

rate increased rapidly until the end of the experiment. The biomass accumulation rate 

derived from the non-linear least squares model peaked at between 50 – 65 days after 

planting for all the cultivars grown in isolation. Details of the confidence interval differences 

between the treatments and cultivars are detailed in Tables A1 and A2 of Appendix 4. Plant-

plant competition led to a significant shift in the timing of peak biomass accumulation rate 

in Proctor. Proctor also demonstrated a significant decrease in absolute maximum biomass 

accumulation in both inter- and intra- cultivar competition compared to isolation, 
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accompanied by a significantly earlier peak biomass accumulation rate timing (Figure 8.3a). 

When Proctor was in inter-cultivar competition, peak biomass accumulation rate timing was 

11.5 days earlier than plants in isolation or intra-cultivar competition. Krona (Figure 8.3b) 

did not demonstrate significant shifts in peak biomass accumulation rate timing or absolute 

maximum accumulated biomass in inter- and intra- cultivar competition. For Annabell, there 

were no significant shifts in peak biomass accumulation rate timing in inter- or intra- cultivar 

competition, but absolute maximum accumulated biomass was significantly lower when the 

plants were in inter-cultivar competition compared to plants in isolation (Figure 8.3c). 

Chanson (Figure 8.3d) also did not demonstrate significant shifts in peak biomass 

accumulation rate timing or absolute maximum accumulated biomass when in either inter- 

or intra- cultivar competition. 
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8.3.2 - Temporal dynamics of nitrogen accumulation 

Nitrogen accumulation increased rapidly until 35 days when it then began to plateau, which 

then continued for the remainder of the experiment (Figure 8.4). Details of the confidence 

interval differences between the treatments and cultivars can be found in Tables A1 and A2 

of Appendix 4. Nitrogen accumulation rate peaked at 24.5 - 28 days after planting for all 

cultivars and treatments. The absolute maximum accumulated nitrogen and the timing of 

peak accumulation rate were both shifted by plant-plant competition, with differences 

among the cultivars. The timing of peak nitrogen accumulation rate in Proctor was 

significantly earlier in both inter- and intra- cultivar competition compared to Proctor in 

isolation. When in intra-cultivar competition the timing of peak accumulation rate was 

earlier by 2.5 days and 3.5 days earlier in inter-cultivar competition. There was also a 

significantly lower absolute maximum accumulated nitrogen concentration in both 

competition treatments compared to plants in isolation (Figure 8.5a). This trend was very 

similar to Krona, which significantly shifted peak nitrogen accumulation rate timing earlier 

by 2 days in response to both inter- and intra-cultivar competition. There was also a 

significantly lower level of absolute maximum accumulated nitrogen when the plants were 

in competition compared to isolation (Figure 8.5b).  

Annabell demonstrated similar changes in nitrogen temporal dynamics compared to 

the other cultivars when in competition. When in inter-cultivar competition, peak nitrogen 

accumulation rate timing shifted, with a significant advancement of 3 days compared to 

plants in isolation and a significantly lower absolute maximum accumulated nitrogen. 

However, when in intra-cultivar competition maximum nitrogen accumulation was 

significantly higher than Annabell in isolation and peak nitrogen accumulation rate timing 

was 2 days earlier than plants in isolation (Figure 8.5c).  

The temporal dynamics of nitrogen accumulation in Chanson, the most modern of 

the cultivars, were similar to the other cultivars. When in intra-cultivar competition peak 

nitrogen accumulation rate timing was significantly earlier by 2.5 days than Chanson in 

isolation and 3 days earlier when in inter-cultivar competition (Figure 8.5d). The biomass 

and nitrogen responses to intra- and inter- cultivar competition for each cultivar are 

detailed in Table 8.1.  
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8.3.3 - C:N ratio 

The carbon to nitrogen ratio increased over time as the plants accumulated relatively less 

nitrogen than carbon. However, there were no significant differences between the four 

cultivars grown in isolation at the end of the experiment (F(3,8) = 1.28, P = 0.35). There was 

also no significant difference between the competition treatments at the end of the 

experiment (F(11,23) = 2.03, P = 0.07). Details of the Tukey tests are detailed in Appendix 4, 

Table A3. 

 

Table 8.1 – Summary of the biomass and nitrogen responses to intra- and inter- cultivar 

competition. 

Cultivar Biomass timing shift 
in competition 

Biomass maximum 
accumulation 
change with 
competition 

Nitrogen timing 
shift in 
competition 

Nitrogen maximum 
accumulation change 
with competition 

Proctor Earlier peak in inter-
cultivar competition 
only 

Lower in both 
competition 
treatments 

Earlier peak in 
both competition 
treatments 

Lower in both 
competition treatments 

Krona Earlier peak in both 
competition 
treatments 

No significant 
differences 

Earlier peak in 
both competition 
treatments 

Lower in both 
competition treatments 

Annabell No significant shifts Lower in inter-
cultivar competition 
only 

Earlier peak in 
both competition 
treatments 

Higher when in inter-
cultivar competition only 

Chanson No significant shifts No significant 
differences 

Earlier peak in 
both competition 
treatments 

Lower in both 
competition treatments 

 

8.4 - Discussion 

This study aimed to determine if the ability to shift the temporal dynamics of biomass and 

nitrogen in barley in response to plant-plant competition had been maintained or lost from 

the descendants of Proctor as a result of selective breeding. The absolute maximum 

accumulated biomass was significantly lower in Proctor in both inter- and intra- cultivar 

competition and Annabell when in inter-cultivar competition. The timing of peak biomass 

accumulation rate shifted significantly earlier only in Proctor when in inter-cultivar 

competition. Peak nitrogen accumulation rate timing was significantly earlier in both intra- 
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and inter- cultivar competition in Proctor, Krona, Annabell and Chanson. Proctor, Krona and 

Chanson also had significantly lower absolute maximum accumulated nitrogen in 

competition treatments compared to plants in isolation. However, Annabell had a significant 

increase in absolute maximum accumulated nitrogen when in intra-cultivar competition. 

This demonstrates that the ability to shift the temporal dynamics of nitrogen accumulation 

rate has not been lost during the breeding of modern barley cultivars, and the potential 

remains for developing temporally complementary crop mixtures using modern cultivars.  

 

8.4.1 - General patterns of temporal dynamics of nitrogen and biomass accumulation 

Nitrogen accumulation rate peaked at 23 - 28 days after planting, 27 – 32 days before peak 

biomass accumulation rate. However, the temporal dynamics of biomass and nitrogen 

accumulation demonstrated different shifts in response to inter- and intra- cultivar 

competition. This follows the trend seen in the previous temporal dynamism study, which 

also found a lack of consistent responses to plant-plant competition between biomass and 

nitrogen accumulation dynamics (Schofield et al., 2019; Chapter 2).  

 Several plant processes have been found to be closely linked during growth 

including: light interception and carbon assimilation (Van Heerden et al., 2010), as well as  

nutrient uptake and carbon assimilation (Lamaze et al., 2003). Although these processes are 

linked most of the time, under certain conditions these processes can uncouple. For 

example, cumulative intercepted solar radiation and biomass accumulation in sugar cane 

(Saccharum officinarum) increase linearly but uncouple at high levels of cumulative solar 

irradiation interception, when biomass accumulation is limited by a high sugar 

concentration and cooler temperatures (Van Heerden et al., 2010). Nitrogen and biomass 

accumulation rate have also been found to uncouple during spring growth of evergreen 

shrubs to temporarily alleviate competition stress (Lamaze et al., 2003). This is one potential 

explanation for the differing shifts in biomass and nitrogen accumulation dynamics in this 

experiment. Plant recognition processes or competition stress early in the growth cycle of 

barley may lead to a similar response, as plants temporarily uncouple these two processes 

to reduce competition for resources. 
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 Despite differing shifts in peak biomass and nitrogen accumulation rate timing 

among the cultivars, there were no significant differences in shoot C:N at the end of the 

harvesting period. Grain C:N is used as an indicator of malting quality, with a low nitrogen 

content desired for malting (Janković et al., 2011). Grain nitrogen concentration has been 

strongly selected for in the development of malting barley cultivars (Munoz-Amatriain et al., 

2010). The requirement for a grain low in nitrogen may constrain shoot C:N just prior to 

grain production and nitrogen remobilisation, to ensure the grain has the desired C:N. At 

the end of this study the barley plants had produced a flag leaf, the stage prior to grain 

filling that occurs towards the end of the nitrogen uptake period (Spink et al., 2015). Shoot 

nitrogen in barley peaks at the grain filling stage, whilst carbon accumulation continues over 

the whole growing season (Haugen-Kozyra et al., 1993). Therefore, barley may be able to 

uncouple nitrogen and biomass accumulation rate during the early stages of growth but the 

difference in carbon and nitrogen accumulation dynamics ensure that shoot C:N is 

maintained towards the end of vegetative growth. 

 

8.4.2 - Biomass temporal dynamism cultivar differences 

Proctor was the only cultivar that demonstrated a significant shift in the timing of peak 

biomass accumulation rate when in inter-cultivar competition. This suggests that there is no 

linear relationship between temporal dynamics of biomass accumulation and relatedness to 

Proctor. However, genetic relationships among cultivars are unlikely to be linear, with 

complex crosses involved in the lineages of the cultivars in this study (Kim, 2014).  

Krona did not demonstrate significant shifts in the temporal dynamics of biomass 

accumulation. Although this may suggest that the temporally dynamic changes in biomass 

accumulation have not been under selection during modern breeding, biomass has 

previously been found to be a poor indicator of the temporal dynamics of resource capture 

(Schofield et al., 2019; Chapter 2). Therefore, this may not answer the question of whether 

shifts in temporal dynamism in nitrogen accumulation has been bred out of modern barley 

cultivars. Also, many of the estimates derived from the model have peak biomass 

accumulation rate timing estimates that peak after the end of the experiment. Therefore, 
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extending the length of the study may allow more accurate estimates of peak biomass 

accumulation rate timing. 

 

8.4.3 - Nitrogen temporal dynamism cultivar differences 

Peak nitrogen accumulation timing was similar among the cultivars in this study, and 

occurred between 24.5 and 28 days after planting. All of these cultivars have been bred for 

modern agriculture in a northern European climate (Friedt et al., 2011), with the same 

growing season length and growing conditions. Therefore, there are unlikely to be 

substantial differences in the nutrient uptake dynamics between the cultivars in this study.  

However, significant shifts in peak nitrogen accumulation rate timing with plant-plant 

competition were observed in this study. Proctor, Krona, Annabell and Chanson 

demonstrated a significantly earlier shift in the timing of peak accumulation rate when in 

competition compared to isolation by 2 – 3 days. This was accompanied by a decrease in 

absolute nitrogen accumulated. However, Annabell demonstrated the opposite trend, with 

an increase in the percentage nitrogen in the plant shoots when the plants were in inter-

cultivar competition. This suggests that either the plants in inter-cultivar competition 

accumulated more nitrogen than Proctor plants in other treatments, or accumulated less 

biomass when in competition with Tammi than the other treatments. There was a 

significant decrease in the maximum accumulated biomass in this study when the plants 

were in competition, suggesting the latter explanation. The mechanism of this is unclear but 

supports the idea that biomass and nitrogen accumulation dynamics were uncoupled in this 

experiment.  

The differing nitrogen uptake response to plant-plant competition may have been 

due to the influence of the ST 900 14DH cultivar, crossed with Krona in the breeding of 

Annabell (Vratislav Psota et al., 2009). ST 900 14DH may have differing patterns of biomass 

and nitrogen accumulation in response to plant-plant competition compared to Krona. The 

cascade of gene expression involved in nitrogen uptake and associated processes including 

root growth and biomass accumulation have been characterised using gene regulatory 

network analysis (Varala et al., 2018; Knoch et al., 2020). The nitrogen and biomass 

accumulation patterns may have a genetic component, which can be inherited in 
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subsequent generations. The combination of ST 900 14DH and Krona may have led to the 

mixing of these genes, and consequently a change in nitrogen and biomass accumulation in 

response to plant-plant competition in Annabell compared to Krona. Therefore, in order to 

test this hypothesis, the patterns of nitrogen and biomass accumulation with plant-plant 

competition in ST 900 14DH need to be measured.  

 

8.4.4 - Why might this study differ from the previous study? 

The temporal dynamics of biomass and nitrogen accumulation of Proctor in this study are 

not the same as the trends seen in Schofield et al. (2019) (Chapter 2). In the study described 

in Chapter 2 there was no significant effect of competition on the temporal dynamics of 

biomass accumulation and a delay of 14.5 days in peak nitrogen accumulation rate timing 

when in intra-cultivar competition. However, in this study the shifts in peak nitrogen 

accumulation rate timing were different, with a shift of 2.5 – 3.5 days earlier when in intra- 

and inter-cultivar competition compared to plants in isolation. These differences in 

temporal dynamism estimates may have been due to the different length and replicate 

number of the two experiments. The study in Chapter 2 was 15 – 60 days sampling length 

with five replicates, whereas this study was 20 – 55 days in length with three replicates. This 

may have affected the model estimates of peak biomass and nitrogen accumulation rate 

timing, an issue explored in Chapter 3. This chapter found that the sampling frequency and 

replicate number both have a significant effect on estimates of peak biomass accumulation 

rate timing.  

The difference between 3 and 5 replicates under idealised conditions was 2 days in 

peak biomass accumulation rate timing (Chapter 3). Therefore, the differences in the two 

experimental designs are likely to have contributed to the observed differences in temporal 

dynamism shifts between the studies. However, this alone is insufficient to explain the 

differences. This experiment was carried out two years after the one in Chapter 2. 

Therefore, other genotype by environment factors such as seed age and soil variation may 

also be important. Further investigation into the mechanism of shifts in the temporal 

dynamics of nitrogen accumulation may provide other factors that affected the timing of 

peak nitrogen accumulation rate timing. 
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8.4.5 - Have shifts in temporal dynamism of nitrogen accumulation been lost in modern 

cultivars? 

The fact that the four cultivars in this study have a similar pattern of shifted peak nitrogen 

accumulation rate timing suggests that temporal dynamism in nitrogen accumulation rate 

has not been accidently lost from the gene pool when these cultivars were developed. 

Historically the focus of barley breeding has been on grain quantity and quality (Bringhurst, 

2015). This includes grain cell wall composition modifications to improve malt quality 

(Bamforth and Kanauchi, 2001), as well as maximising sugar and alcohol extraction from 

grain (Jamar et al., 2011). As the temporal dynamics of nitrogen and biomass accumulation 

have not been under such selection pressure in the past, it provides an untapped potential 

to improve crop resource use efficiency by altering the timing of key processes. 

 The complete cascade of gene expression that contribute to shifts in the temporal 

dynamics of nitrogen accumulation in response to plant-plant competition has yet to be 

identified. A temporally dynamic shift is likely to include several components within nutrient 

uptake, plant growth, plant growth regulator production and stress responses, based on the 

gene expression data presented in Chapter 6. This is likely to involve a range of genes, 

similar to the quantitative trait loci trait of fermentability (Thomas, 2003; Rostoks et al., 

2006; Bringhurst, 2015). Studies that use microarrays and qRT-PCR such as that described in 

Chapter 6 can be used to identify candidate genes involved in the temporal dynamics of 

resource capture (Masclaux, Bruessow, Schweizer, Gouhier-Darimont, Keller, Reymond, et 

al., 2012; Janská et al., 2013). These can then inform breeding of temporally dynamic crops 

or temporally complementary crop mixtures. 

 The shifts in peak nitrogen accumulation rate timing were statistically significant but 

were small. In barley 2 – 3 days is only 3.3 – 5 % of the total lifecycle of the plant, a relatively 

small shift in terms of the total 60 day period of nutrient uptake of spring barley (Spink et 

al., 2015). These are statistically significant shifts but may not represent highly biologically 

significant temporal shifts. This study was carried out under ideal growing conditions, and 

greater shifts in nitrogen accumulation dynamics may occur under less favourable 

conditions to limit potential stress damage experienced by the plant. Nelissen et al., (2019) 

compared studies in growth chambers to those in field conditions and found that the 

baseline expression of some stress tolerance genes in the field were higher than stressed 
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plants grown in growth chamber conditions. Differences in environmental conditions in the 

field can significantly impact the outcome of studies with the same setup (Nelissen et al., 

2019). Therefore, future work using plants grown in stress conditions may find that greater 

plant stress induces greater temporal shifts in resource capture dynamics.  

 

8.4.6 - Does this have consequences for future breeding and crop mixtures? 

The magnitude of temporal shifts in nitrogen accumulation rate in this study are small but 

demonstrate the presence of temporally dynamic shifts in response to plant-plant 

competition in modern barley cultivars. Growing barley under stress conditions may lead to 

greater shifts in resource accumulation dynamics with plant-plant competition. This is 

important with the predicted increase in weather variability over the next 50 years 

(Mahmood et al., 2019) and an increasing need for crops resilient to climate change 

(Newton et al., 2011). Crops that are resilient under climatic variability are likely to produce 

yield stability across a number of variable years (Powell et al., 2012). The ability to shift the 

timing of key processes may therefore be an adaptive advantage in an uncertain climate. 

 Increasing resilience in barley using temporal dynamism of resource capture could 

occur in two ways. One method involves breeding new barley cultivars that show high levels 

of temporal plasticity in resource capture. Repeated crossing of elite barley lines is the 

conventional method of barley breeding (Munoz-Amatriain et al., 2010). This can be guided 

by gene expression and mapping studies to locate candidate genes in marker assisted 

breeding (Fang et al., 2019). However, this relies on the identification and mapping of key 

genes to be crossed (Ren et al., 2016). Many of the candidate genes identified in Chapter 6 

had generalised functions and may have a range of functions beyond the temporal dynamics 

of nitrogen accumulation. This may have consequences for breeding as there may be 

unintended impacts on other stages of growth. 

 The other method involves the utilisation of crop mixtures. Simultaneously growing 

multiple cultivars or species in an area has been found to improve crop yield and yield 

stability between years (Brooker et al., 2015). Barley cultivar mixtures have been found to 

improve complementarity, stress tolerance and resource use efficiency (Creissen et al., 

2016). Also, mixtures that have evolved together show greater facilitation and reduced 
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competition compared to monocultures (Schöb et al., 2018). However, the traits that 

contribute to this have yet to be identified. One of these may be the ability to shift the 

temporal dynamics of resource capture in response to competition. Yield stability could be 

further improved by using barley cultivars with complementary patterns of resource capture 

temporal dynamics. There has been much focus on enhancing complementarity using 

legume intercropping to improve nitrogen and phosphorous use efficiency (Duchene et al., 

2017), but limited focus on temporal complementarity. This is a potential area to improve 

crop mixture resource use efficiency, yield and yield stability. 

 

8.5 - Conclusions 

Temporally dynamic shifts in peak nitrogen accumulation rate were found to be conserved 

in all the descendants of Proctor in this study. Krona, Annabell and Chanson had a similar 

response to inter- and intra- cultivar competition as Proctor. As temporal dynamism of 

nitrogen accumulation rate has been conserved in Chanson, a modern barley cultivar, it 

demonstrates the potential for breeding barley cultivars that have highly plastic temporal 

dynamics of resource capture or cultivar mixtures that are temporally complementary. The 

temporal shifts in peak nitrogen accumulation rate were small, most likely due to being 

grown under ideal, low stress conditions. Increased plant stress may lead to greater shifts in 

peak nitrogen accumulation rate timing. Future studies using more realistic field conditions 

would explore the potential for temporally complementary crop mixtures.  
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General conclusions 

The temporal dynamism of key processes is a potentially important missing factor in our 

understanding of coexistence in plant communities. Currently, coexistence cannot be 

explained in complex, species-rich ecosystems through processes such as niche 

differentiation, as many plants seemingly occupy the same niches. The inclusion of temporal 

dynamism allows plants to occupy the same spatial niche but different temporal niches, 

promoting coexistence. One important temporally dynamic process, and the focus of this 

thesis, is the temporal dynamics of nutrient uptake, specifically nitrogen. This work 

demonstrates that the use of novel techniques, and refinement of previously utilised 

approaches, can be used to study temporal dynamism of plant nitrogen uptake. The main 

finding of this thesis is that the timing and rate of nutrient uptake is affected by intra-

specific competition between neighbouring plants and, critically, that this response depends 

on the identity of the competitor.  

 The ability to shift the temporal dynamics of key processes such as nutrient uptake is 

intrinsically linked to the concept of niche differentiation as shifting the timing of peak 

accumulation of nutrients would lead to a species or genotype occupying a different 

temporal niche. Therefore, temporal dynamism and temporal niche plasticity could be seen 

as the same concept, as a temporal niche is the timing of an activity or behaviour (Terradas 

et al., 2009). However, temporal dynamism also accounts for rate (in this case the rate of 

nutrient uptake) as well as timing (Schofield et al., 2019). Therefore, temporal dynamism 

can be seen as part of the concept of niche differentiation that accounts for both the timing 

and rate of a process.  

The studies presented in this thesis used barley (Hordeum vulgare) as a model plant, 

and, as a result, the outcomes of my work have implications for both fundamental 

ecological research and sustainable agriculture. Barley is an ideal model plant as its genetics 

(Mayer et al., 2012b), morphology (Spink et al., 2015), physiology (Adem et al., 2014) and 

growth dynamics (Neumann et al., 2017) have been well studied in an agricultural setting. In 

addition, there has been an increasing cross-over between ecological and agricultural 

studies (Brooker et al., 2015), with ecological principles informing sustainable agricultural 
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practices and vice versa. Consequently, this type of research on barley sits at a key point of 

interface between fundamental ecological and applied agricultural research. 

This body of work aimed to identify temporally dynamic shifts in the nitrogen and 

biomass accumulation rate of plants, and the activity of the associated soil microbial 

community in response to plant-plant competition. The results of these studies are 

summarised in Figure 9.1. Nitrogen accumulation was found to be temporally dynamic in 

response to intra-specific competition (Schofield et al., 2019; Chapter 2). Peak nitrogen 

accumulation rate shifted in barley when in intra-cultivar but not inter-cultivar competition. 

However, the logistic model design and software program used for analysis can affect the 

estimate of peak accumulation rate (Chapter 3). These findings are applicable to temporal 

dynamism studies in which the data can be fitted with a logistic curve, including the biomass 

and nutrient accumulation of plants with deterministic growth and grain filling in cereal 

crops.   

There were no significant timing shifts in soil processes associated with plant-plant 

competition when measured at the pot level (Chapter 4). However, at a smaller spatial scale 

the temporal dynamics of soil enzyme activity were affected by plant-plant competition. 

Peak cellulase area activity was delayed by plant-plant competition, whereas leucine 

aminopeptidase activity was delayed only in intra-specific competition (Chapter 5). 

Therefore, plant-plant competition differentially affected the activity of soil enzymes with 

different roles and at different spatial scales, most likely due to differing scales and 

methodologies of measurement.  

Going into detail with plant belowground processes, plant root gene expression was 

affected by plant-plant competition at an early growth stage, and prior to obvious signs of 

nutrient stress, suggesting plant competitive interactions begin early in plant growth and 

development (Chapter 6). A core set of genes expressed in both inter- and intra- cultivar 

competition indicates that plant-plant competition caused a general response in a 

neighbouring plant. However, a set of genes unique to each competition treatment 

indicates that the response to plant-plant competition also has a neighbour-dependant 

component. A greater number of genes were differentially expressed in barley plants when 

in inter-cultivar competition compared to intra-cultivar competition.  This supports the idea 

of a differential response depending on the identity of a competing individual, most likely 
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mediated via plant-plant communication such as root exudates, volatile organic compounds 

or via the soil microbial community. The mechanisms behind this process are an area for 

future research including root exudate and volatile organic compound sampling, as well as 

more detailed gene expression studies at multiple time points.  

The link between gene expression and stress hormone production was less clear 

(Chapter 7). Salicylic acid concentration was highly variable and thus no statistically 

significant trends in the temporal dynamics were seen. A greater number of replicates and 

more sampling time points may yield a clearer pattern of stress hormone concentration 

changes over time. Twenty-one days after planting is a potentially interesting time point, 

when the concentration of salicylic acid was higher in inter-cultivar competition than in 

intra-cultivar competition (Chapter 7).  Further studies focussing on the period around 21 

days after planting with additional markers of competition, such as more metabolites, 

potentially the flavonoids and signalling compounds identified in the microarray analysis 

(Chapter 6), would provide a clearer picture of the molecular level responses to plant-plant 

competition.  

Against expectations, the temporal dynamics of nitrogen accumulation rate was 

conserved in the modern barley cultivars; Krona, Annabell and Chanson (Chapter 8). All of 

the modern cultivars showed temporally dynamic shifts in nitrogen accumulation rate in 

response to plant-plant competition. Krona, Annabell and Chanson demonstrated the same 

trends as Proctor, shifting earlier in response to inter- and intra- cultivar competition. This 

suggests that the ability to shift peak nitrogen accumulation rate in response to plant-plant 

competition may be a heritable trait. Further studies to map the genes involved in this 

response could support this theory. The trends in nitrogen accumulation dynamics differed 
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from those in Chapter 2 by up to 16.5 days. These differences are potentially due to 

unmeasured factors, such as seed age and soil factors and this merits further investigation.  

Figure 9.1 – A summary of the core studies carried out in this thesis, detailing the timing of 

each study and how they relate to each other within the first 60 days of barley growth. 

Tentative links can be made between the studies in this thesis, displayed in Figure 

9.2. It is likely that the initial step of a temporally dynamic response is the perception of a 

neighbour through water soluble exudates and VOCs (Semchenko et al., 2014). This leads to 

a change in stress hormone (Chapter 7) production and gene expression changes (Chapter 

6). There may then be a change in the quality or quantity of root exudation to prime the soil 

community to mine for nutrients (Mwafulirwa et al., 2016). This induces changes in the 

temporal dynamics of the activity of the soil microbial community as seen in Chapter 5. The 

plant would detect changes in nutrient availability, leading to further changes in gene 

expression. Ultimately the physiological response of a shift in the timing of peak nitrogen 

accumulation rate results from these molecular level changes (Chapter 2). There are also 

likely to be a number of feedback processes that moderate the process over time (Figure 

9.2). Therefore, some of the studies in this thesis can be linked but there are still missing 

pieces of the puzzle that are avenues for future research.  
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Figure 9.2 – Links between the studies in this thesis based on experimental evidence and 

existing literature. Blue boxes indicate work carried out in this thesis, green boxes indicate 

potential links based on existing knowledge of plant competitive processes. Grey arrows 

show the expected order of these processes and the feedback loops between them.  
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Future work 

Using barley as a model plant creates two future avenues of research: the development of 

both sustainable agriculture and our understanding of plant community coexistence.  

There has been much focus on the role of plant mixtures in sustainable agriculture. 

Mixtures have been found to improve crop yield, quality and maintain overall yield between 

years i.e. improve yield stability (Brooker et al., 2015). Sustainable agriculture has previously 

explored spatial complementarity between intercrops (Postma et al., 2014; Zhu et al., 2016) 

and the inclusion of legumes in crop mixtures (Ghaley et al., 2005; Bedoussac and Justes, 

2010), identifying these as important for sustainable production. The data in this thesis 

demonstrates that the temporal dynamics of plant nutrient uptake is another mechanism 

with potential for exploitation in sustainable agriculture. By understanding the effect of 

plant-plant competition on the temporal dynamics of nutrient uptake, temporally 

complementary crop mixtures can be developed. Although this thesis has focussed on intra-

specific plant interactions, the same principles can be applied to inter-specific crop mixtures. 

For example, the successive harvesting experimental setup used in this thesis can be applied 

to a range of agricultural and ecological studies using different species and time periods. 

The experimental design can also be adapted to specific circumstances using the sampling 

frequency and replicate number framework developed in Chapter 3. However, if these 

studies are to be carried out on a large scale, this form of nitrogen analysis is destructive, 

requiring large scale studies with multiple samples, increasing experimental costs. 

Therefore, the development of a non-destructive proxy measure of plant nitrogen content 

such as leaf spectrometry using a chlorophyll meter would make these studies more 

feasible, as well as being useful for field-based plant nitrogen measurements. 

  Many of the studies in this thesis could be extended in order to further understand 

the link between the plant and soil components of the temporal dynamics of resource 

capture. This forms a vital missing factor in plant community coexistence theory. The 

microarrays used in the gene expression study of Chapter 6 only captured one time point. 

Future work to expand on this would include sampling gene expression at multiple time 

points during the growth cycle. This would indicate how gene expression in response to 

plant-plant interactions changes over time. It may be found that over time expression of 

genes associated with nutrient deficiency increases, as has been found in Arabidopsis 
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thaliana (Masclaux, Bruessow, Schweizer, Gouhier-Darimont, Keller, Reymond, et al., 2012). 

The characterisation of differences in gene expression may provide information about the 

mechanism of temporally dynamic shifts in resource accumulation. This could also generate 

target genes for future marker assisted breeding programs. Another important factor to 

consider is if the pattern of gene expression changes with different cultivars of barley. This 

may be detected at a gene expression level by characterising the expression patterns 

associated with differing nitrogen accumulation dynamics.  

Root exudation quality and quantity is known to vary depending on location within 

the root zone, with greater exudation near the root tip and in the zone of elongation (Travis 

S. Walker et al., 2003). This is impacted by, and impacts on, the activity of the soil microbial 

community (Canarini et al., 2019). The zymography sampling in Chapter 5 only sampled at 

one root zone location, i.e. in the zone of maturation. The temporal dynamics of soil enzyme 

activity associated with plant roots in the zone of elongation or at the root tip may differ 

from the zone of maturation. Therefore, sampling the activity of multiple enzyme classes 

across the root zones would provide a view of both the temporal and spatial dynamics of 

soil enzyme activity, allowing further understanding the fundamental link between the soil 

and plant dynamics in plant community coexistence.  

The focus on salicylic acid and jasmonic acid in Chapter 7 could be expanded to 

include a full metabolomic screen using a method such as mass spectrometry. Twenty one 

days after planting has been identified as a potentially interesting time point for further 

studies. By investigating other potentially important compounds, molecular indicators of 

plant-plant competition could be identified and used to track plant competition stress over 

time. Combined with the gene expression data from a time series of microarrays this can be 

used to characterise plant-plant competition responses over time, linking the observed 

physiological and molecular level responses.  

The work in Chapter 8 illustrates the conservation of a temporally dynamic nitrogen 

accumulation rate in response to plant-plant competition in the descendants of Proctor. The 

next step in future work would be to examine the temporal dynamics of resource capture 

under field and stress conditions to determine the potential benefit of temporally dynamics 

shifts in these circumstances. This can then be used to develop crop mixtures with 
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temporally complementary resource capture dynamics, which can then be tested under 

field conditions.  

 

Initial steps 

The previous section details a large number of potential future avenues for research. The 

work in this thesis has demonstrated methods to detect temporally dynamic shifts in 

processes associated with nutrient uptake in response to plant-plant competition. It also 

addresses the interactions between the plant and soil processes involved in temporally 

dynamic shifts of key processes. However, in order to add temporal dynamism as a factor in 

models of coexistence in complex plant communities and crop mixtures, I suggest focusing 

on understanding the mechanisms of temporally dynamic responses to plant-plant 

competition. This would initially involve expanding the gene expression study to include 

multiple time points, covering the barley lifecycle. The gene expression data would provide 

information about how plant responses to competition for nutrients vary over time. This 

type of study would need to be combined with a metabolome study to begin linking gene 

expression to physiological and biochemical responses to plant-plant competition. These 

studies would form the basis for a mechanistic approach to understanding plant-plant 

interactions at a molecular level and link it to the physiological changes detailed in this 

thesis. 
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Appendix 1 

Supporting R Code 1 

n.col <- ncol(Tammi) 

n.row <- nrow(Tammi)-1 # line one is time data so subtract 

 

Tammi.time <- as.numeric(Tammi[1,]) # extract the times 

Tammi.time <- rep(Tammi.time,each=n.row) 

Tammi1 <- ts(Tammi[-1,]) #needs to be a time series to bootstrap correctly 

 

#resampling bootstrap 

TammiBoot <- list() #creates list to put values in 

for(i in 1:1000){ 

    TammiBoot[[i]] <- Tammi1 # copy the original data to a list entry for TammiBoot (so we ge

t the right size object) 

    for(j in 1:n.col){ 

        # replace each column of TammiTemp with a resample of the n.row data points at that t

ime 

        TammiBoot[[i]][,j] <- sample(Tammi1[,j], size=n.row, replace=TRUE) 

    } 

} 

 

TammiBoot 

 

#make data cumulative 

TammiBootCumul <- list() 

TammiBootforAnalysis <- list() 

for(i in 1:1000){ 

    TammiBootCumul[[i]] <- (t(apply(TammiBoot[[i]],1,cumsum))) 

    TammiBootforAnalysis[[i]] <- c(TammiBootCumul[[i]]) # convert to vector form for nls 

} 

 

n.models <- 1000 
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# run the nls on the bootstrap resamples 

Tammi.a <- array(NA,dim=c(n.models,4)) 

Tammi.b <- array(NA,dim=c(n.models,4)) 

Tammi.c <- array(NA,dim=c(n.models,4)) 

TammiBootModels <- list() 

for(i in 1:n.models){ 

    Tammi.temp <- TammiBootforAnalysis[[i]] 

    TammiBootModels[[i]] <- nls(Tammi.temp ~ SSlogis(Tammi.time, a, b, c)) # need to be abl

e to loop this for every line of the matrix 

    Tammi.a[i,] <- summary(TammiBootModels[[i]])$coef["a",] 

    Tammi.b[i,] <- summary(TammiBootModels[[i]])$coef["b",] 

    Tammi.c[i,] <- summary(TammiBootModels[[i]])$coef["c",] 

} 

colnames(Tammi.a) <- colnames(summary(TammiBootModels[[1]])$coef) 

colnames(Tammi.b) <- colnames(summary(TammiBootModels[[1]])$coef) 

colnames(Tammi.c) <- colnames(summary(TammiBootModels[[1]])$coef) 

 

# Maximum points 

# Mean peak time from the bootstrap (x-axis) 

mean(Tammi.b[,"Estimate"]) 

# CI for peak time from the bootstrap (x-axis) 

quantile(Tammi.b[,"Estimate"],probs=c(0.025,0.975)) # 95% 

# Calculate vector of bootstrapped peak heights of rate per day (y-axis) 

Tammi.peaks <- Tammi.a[,"Estimate"]/(4*Tammi.c[,"Estimate"]) 

# Mean peak rate from the bootstrap (y-axis) 

mean(Tammi.peaks) 

# CI for peak rate from the bootstrap (y-axis) 

quantile(Tammi.peaks,probs=c(0.025,0.975)) # 95% 

 

#significant differences in timing 

Tammi.peaks.T <- Tammi.b 
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Tammi.peaks.TT <- Tammi.b 

Tammi.peaks.TP <-Tammi.b 

Proctor.peaks.P <- Tammi.b 

Proctor.peaks.TP <- Tammi.b 

Proctor.peaks.PP <- Tammi.b 

 

Tammi.peaks.T.minus.Tammi.peaks.TP <- Tammi.peaks.T[sample(1000)] - Tammi.peaks.TP[s

ample(1000)] 

quantile(Tammi.peaks.T.minus.Tammi.peaks.TP,probs=c(0.025,0.975)) 

 

Tammi.peaks.T.minus.Tammi.peaks.TT <- Tammi.peaks.T[sample(1000)] - Tammi.peaks.TT[s

ample(1000)] 

quantile(Tammi.peaks.T.minus.Tammi.peaks.TT,probs=c(0.025,0.975)) 

 

Proctor.peaks.P.minus.Proctor.peaks.PP <- Proctor.peaks.P[sample(1000)] - Proctor.peaks.P

P[sample(1000)] 

quantile(Proctor.peaks.P.minus.Proctor.peaks.PP,probs=c(0.025,0.975)) 

 

Proctor.peaks.P.minus.Proctor.peaks.TP <- Proctor.peaks.P[sample(1000)]- Proctor.peaks.TP

[sample(1000)] 

quantile(Proctor.peaks.P.minus.Proctor.peaks.TP,prob=c(0.025,0.975)) 

 

#Testing for significant accumulation differences in bootstrapped samples 

Tammi.acc.T <- Tammi.peaks 

Tammi.acc.TT <- Tammi.peaks 

Tammi.acc.TP <- Tammi.peaks 

Proctor.acc.P <- Tammi.peaks 

Proctor.acc.PP <- Tammi.peaks 

Proctor.acc.TP <- Tammi.peaks 

 

Tammi.acc.T.minus.Tammi.acc.TT <- Tammi.acc.T[sample(1000)] - Tammi.acc.TT[sample(10

00)] 
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quantile(Tammi.acc.T.minus.Tammi.acc.TT,prob=c(0.025,0.975)) 

 

Tammi.acc.T.minus.Tammi.acc.TP <- Tammi.acc.T[sample(1000)] - Tammi.acc.TP[sample(10

00)] 

quantile(Tammi.acc.T.minus.Tammi.acc.TP,prob=c(0.025,0.975)) 

 

Proctor.acc.P.minus.Proctor.acc.PP <- Proctor.acc.P[sample(1000)] - Proctor.acc.PP[sample(

1000)] 

quantile(Proctor.acc.P.minus.Proctor.acc.PP,prob=c(0.025,0.975)) 

 

Proctor.acc.P.minus.Proctor.acc.TP <- Proctor.acc.P[sample(1000)] - Proctor.acc.TP[sample(

1000)] 

quantile(Proctor.acc.P.minus.Proctor.acc.TP,prob=c(0.025,0.975)) 

 

Supporting R Code 2 

CN_65days$treatment <- (CN_65days$treatment) 

CN_65days$ID <- (CN_65days$ID) 

 

Res <- aov(CN ~ treatment, data = CN_65days) 

fit <- aov(Res) 

TukeyHSD(fit) 

 

Table A1 – Model parameters of the logistic growth curve fitting using a nls model of biomas

s and nitrogen accumulation of Proctor and Tammi barley varieties grown in isolation, intra-   

and inter- cultivar competition. 95% confidence intervals are shown in brackets. 

Treatment Peak timing (days since planting) Absolute maximum (mg) 
Biomass   

T 48.0 (44.5 - 51.5) 1527.3 (1342.5 - 1707.2) 
TT 47.0 (45.0 - 49.0) 1069.5 (986.6 - 1149.3) 
TP-T 47.0 (44.5 - 50.5) 1221.8 (1068.8 - 1368.6) 
P 51.5 (49.5 - 54.5) 1125.1 (1042.6 - 1207.0) 
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Table A2 - Bootstrapped confidence interval differences of timing of peak biomass and  

nitrogen accumulation of Proctor (P) and Tammi (T) barley plants grown in isolation (T, P),  

inter-cultivar competition (TT, PP) and inter-cultivar competition (Tammi: TP-T, Proctor:  

TP-P). Asterisks indicate significant differences. 

 

Treatment CI differences in timing of peak accumulation rate 
Biomass  
T vs. TT -9.0, 11.0 
T vs. TP-T -10.0, 11.0  
P vs. PP- -9.0, 16.5 
P vs. TP-P -8.0, 13.0 
Nitrogen  
T vs. TT 11.5, 14.0* 
T vs. TP-T -12.0, 13.0 
P vs. PP -13.0, 12.5 
P vs. TP-P -33.0, -29.5* 

 

Table A3 - Bootstrapped confidence interval differences of absolute maximum biomass and 

shoot nitrogen accumulation of Proctor (P) and Tammi (T) barley plants grown in isolation 

(T, P), inter-cultivar competition (TT, PP) and inter-cultivar competition (Tammi: TP-T, 

Proctor: TP-P). Asterisks indicate significant differences. 

Treatment CI differences in maximum accumulation 
Biomass   
T vs. TT 268.10, 653.69* 
T vs. TP-T 89.81, 547.62* 
P vs. PP 312.00, 523.62* 

PP 48.5 (46.0 - 52.5) 705.0 (630.7 - 785.1) 
TP-P 47.0 (42.0 - 54.0) 530.9 (530.9 - 687.4) 
Nitrogen   
T 19.0 (18.5 - 20.0) 210.0 (190.0 - 220.0) 
TT 17.5 (17.0 - 18.0) 160.0 (150.0 - 180.0) 
TP-T 18.5 (17.5 20.0) 160.0 (150.0 - 170.0) 
P 19.5 (18.5 - 20.5) 210.0 (190.0 - 230.0) 
PP 35.0 (33.5 - 36.0) 120.0 (100.0 - 140.0) 
TP-P 20.5 (19.5 - 21.0) 170.0 (150.0 - 190.0) 
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P vs. TP-P 441.20, 728.07* 
TP-P vs. PP  -8.82, 302.41 
TP-T vs. TT -332.64, 19.17 
Nitrogen  
T vs. TT 0.03, 0.07* 
T vs. TP-T 0.03, 0.07* 
P vs. PP 0.06, 0.11* 
P vs. TP-P 0.01, 0.06* 
TP-P vs. PP  1.98, 2.02* 
TP-T vs. TT -0.02, 0.02 

 

Table A4 – Model parameters of the ANOVA analysis carried out on shoot C:N of Proctor and  

Tammi barley varieties grown in isolation, intra- and inter- cultivar competition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proctor 
 Degrees of 

Freedom 
Sum of 
squares 

Mean of 
squares 

F value P value 

Treatment 2 203.3 101.64 1.44 0.26 
Residuals 17 1196.7 70.39   
Tammi 
Treatment 2 2915 1457.6 2.74 0.09 
Residuals 17 9053 532.5   
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Appendix 2 

Figure A1 – Details of the Generalised Least Squares model used to analyse root associated 

area and root axis activity. * denotes significant results. 

 Time  Treatment Time*Treatment 
Cellulase root associated 
area 

F(2,17) = 44.98, P = 
<0.0001* 

F(2,17) = 4.71, P = 
<0.0001* 

F(2,17) = 12.88, P = 
0.0001* 

Leucine aminopeptidase 
root associated area 

F(2,17) = 30.36, P = 
<0.0001* 

F(2,17) = 31.72, P = 
<0.0001* 

F(2,17) = 7.42, P = 
0.0012* 

Cellulase root axis activity F(72,63) = 0.51, P = 
0.60 

F(72,63) = 5.03, P = 
0.01 * 

F(72,63) = 0.94, P = 0.45 

Leucine aminopeptidase 
root axis activity 

F(72,63) = 2.74, P = 
0.07 

F(72,63) = 2.92, P = 
0.06 

F(72,63) = 1.02, P = 0.40 
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Appendix 3 

Table A1 - List of significantly (P ≤ 0.05 with ≥ 2 fold change in expression) differentially 

expressed genes expressed in intra-cultivar competition, with annotated functions from the 

UniProt database. 

Primary 
Accession 

Rice description Function Up/down 
regulated 

Plant defence  
MLOC_23705.2 Jacalin-like lectin domain 

containing protein, putative, 
expressed 

Biotic and abiotic 
stress response, 
specifically fungal 
resistance 

↓ 

MLOC_47908.1 Jasmonate-induced protein, 
putative, expressed 

Induced by 
jasmonate 
production 

↓ 

AK359282 Jacalin-like lectin domain 
containing protein, putative, 
expressed 

Biotic and abiotic 
stress response, 
specifically fungal 
resistance 

↓ 

MLOC_74229.1 Ribosome inactivating protein, 
expressed 

Common plant 
defence protein 
thought to defend 
against viral and 
fungal attack 

↓ 

MLOC_33768.7 Stress responsive A/B Barrel 
domain containing protein, 
expressed 

Thought to be 
involved in plant 
stress response 
including salt stress 

↑ 

MLOC_29656.1 HEV3 - Hevein family protein 
precursor, expressed 

General stress 
response - drought, 
salt, fungus, 
herbivore, virus and 
systematic acquired 
resistance 

↓ 

MLOC_53527.1 HEV3 - Hevein family protein 
precursor, expressed 

General stress 
response - drought, 
salt, fungus, 
herbivore, virus and 
systematic acquired 
resistance 

↓ 

MLOC_22174.2 Laccase precursor protein, 
putative 

Abiotic stress 
tolerance including 
drought and salinity 

↑ 
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AK359587 1-aminocyclopropane-1-
carboxylate oxidase protein, 
putative, expressed 

Enzyme involved in 
ethylene biosynthesis 

↓ 

MLOC_15369.1 Verticillium wilt disease 
resistance protein, putative, 
expressed 

Putative verticillium 
wilt disease 
resistance protein 

↑ 

Metabolism, growth and development  
MLOC_56921.1 Cytochrome P450, putative, 

expressed 
Role in general 
metabolism 

↓ 

MLOC_58866.1 Pyridoxal-dependent 
decarboxylase protein, 
putative, expressed 

Active form of 
vitamin B6, involved 
as a co-enzyme in 
many metabolic 
reactions including 
amino acid 
biosynthesis 

↓ 

AK249901.1 BBTI4 - Bowman-Birk type 
bran trypsin inhibitor 
precursor, expressed 

Serine-type 
endopeptidase 
inhibitor activity - 
inhibits activity of 
endopeptidases 

↑ 

MLOC_20612.1 Transferase family protein, 
putative, expressed 

Production of glucose 
polymers 

↑ 

AK363287 Serine esterase, putative, 
expressed 

Hydrolysis of 
polypeptides 

↓ 

MLOC_74633.2 Citrate transporter, putative, 
expressed 

Mitrochondrial 
transporter protein 

↑ 

MLOC_62337.1 Helix-loop-helix DNA-binding 
domain containing protein 

Transcription factor ↓ 

MLOC_13480.1 Glycerophosphoryl diester 
phosphodiesterase family 
protein, putative, expressed 

Lipid metabolism ↓ 

AK368375 OsFBX64 - F-box domain 
containing protein, expressed 

Protein interactions, 
cell cycle, protein 
ubiquitination 

↑ 

MLOC_23023.1 Membrane-associated 30 kDa 
protein, chloroplast precursor, 
putative, expressed 

Chloroplast 
membrane protein 

↑ 

AK369652 Ribulose bisphosphate 
carboxylase small chain, 
chloroplast precursor, 
putative, expressed 

Protein in chloroplast 
stroma part of the 
Calvin cycle 

↑ 

MLOC_47977.1 Preprotein translocase subunit 
secY, putative, expressed 

Protein 
transmembrane 
transporter and 
signal transduction 

↑ 
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MLOC_32850.1 T-complex protein, putative, 
expressed 

Protein folding and 
ATP binding 

↑ 

MLOC_9983.1 Integral membrane protein 
DUF6 containing protein, 
expressed 

Potential membrane 
proteins with some 
signalling potential 
from animal and 
microbial orthologs 

↑ 

MLOC_12671.1 Peptidyl-prolyl cis-trans 
isomerase, FKBP-type, 
putative, expressed 

Family of molecular 
chaperones that 
regulate cellular 
processes 

↑ 

Gene expression control  
MLOC_2169.1 la domain containing protein, 

putative, expressed 
Histone modification 
and chromatin 
remodelling 

↑ 

MLOC_75618.1 DEAD-box ATP-dependent RNA 
helicase 7, putative, expressed 

RNA, helicase and 
ATP binding protein 

↑ 

MLOC_34063.1 la domain containing protein, 
putative, expressed 

Histone modification 
and chromatin 
remodelling 

↓ 

Genome rearrangement  
MLOC_46646.1 Retrotransposon protein, 

putative, unclassified 
Genome 
rearrangement 

↑ 

MLOC_59110.1 Transposon protein, putative, 
unclassified, expressed 

Genome 
rearrangement 

↓ 

MLOC_32827.1 Retrotransposon protein, 
putative, unclassified 

Genome 
rearrangement 

↑ 

Unknown function  
MLOC_63825.1 No hits found Unknown function ↓ 
MLOC_61312.1 Conserved hypothetical 

protein 
Unknown function ↑ 

MLOC_8387.1 Hypothetical protein Unknown function ↑ 
MLOC_26566.1 Uncharacterized 50.6 kDa 

protein in the 5region of gyrA 
and gyrB, putative, expressed 

Unknown function ↑ 

MLOC_36029.1 Expressed protein Unknown function ↓ 
MLOC_18226.2 Conserved hypothetical 

protein 
Unknown function ↑ 

MLOC_75527.1 Expressed protein Unknown function ↑ 
MLOC_34210.1 No hits found Unknown function ↑ 
MLOC_60892.1 No hits found Unknown function ↓ 
MLOC_15135.2 Expressed protein Unknown function ↑ 
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Figure A2 - List of significantly (P ≤ 0.05 with ≥ 2 fold change in expression) differentially 

expressed genes expressed in inter-cultivar competition, with annotated functions from the 

UniProt database. 

Primary Accession Rice description Function Up/down 
regulated 

Plant defence  
MLOC_5633.1 Respiratory burst oxidase, putative, 

expressed 
Production of ROS in 
response to plant 
pathogen attack 

↓ 

MLOC_24632.1 DUF567 domain containing protein, 
putative, expressed 

Plant defence 
against pathogens 

↓ 

MLOC_55663.1 Peroxidase precursor, putative, 
expressed 

Stress response to 
environmental 
stresses such as 
wounding, pathogen 
attack and oxidative 
stress. These 
functions might be 
dependent on each 
isozyme/isoform in 
each plant tissue 

↓ 

AK252327.1 GDSL-like lipase/acylhydrolase, 
putative, expressed 

Tissue dependent, 
stress response in 
roots  

↓ 

MLOC_54129.1 Peroxidase precursor, putative, 
expressed 

General stress 
response 

↓ 

AK354203 14-3-3 protein, putative, expressed Regulation of 
pathogen defense-
related proteins and 
modulate signal 
transduction 

↓ 

MLOC_76289.1 Protein kinase PKN/PRK1, effector, 
putative, expressed 

Potential role in 
plant defence in rice, 
plasma membrane 
protein 

↑ 

MLOC_26919.1 Cupin domain containing protein, 
expressed 

Role in plant 
development and 
defence 

↑ 

MLOC_70601.1 Heat shock protein, putative Heat shock response ↑ 
MLOC_59149.1 Stress responsive protein, putative, 

expressed 
General stress 
response 

↑ 

MLOC_67097.1 HVA22, putative, expressed ABA or stress-
inducible gene 
expression, for 

↑ 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143173/#pone.0103611-RoyChoudhury1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143173/#pone.0103611-RoyChoudhury1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143173/#pone.0103611-RoyChoudhury1
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dehydration 
protection  

MLOC_81765.1 WIP1 - Wound-induced protein 
precursor 

Endopeptidase 
inhibitor involved in 
herbivore defence 

↑ 

Metabolism, growth and development  
MLOC_65390.1 Pectinesterase, putative, expressed Plant cell wall 

modification and 
subsequent 
breakdown 

↓ 

MLOC_9250.2 Cysteine synthase, putative, expressed Cysteine production ↓ 
MLOC_1081.1 Mitochondrial chaperone BCS1, 

putative, expressed 
Part of 
mitochondrial 
respiratory chain 

↓ 

MLOC_8151.2 CBS domain-containing protein, 
putative, expressed 

Transmembrane 
protein or DNA 
binding protein 

↑ 

AK362212 CSLC1 - cellulose synthase-like family C, 
expressed 

Cellulose synthesis ↓ 

MLOC_21213.1 Ergosterol biosynthetic protein 28, 
putative, expressed 

Protein binding ↓ 

MLOC_12426.1 Gibberellin receptor GID1L2, putative, 
expressed 

Gibberellin receptor 
involved in the 
regulation of plant 
development and 
growth 

↓ 

MLOC_54679.5 Alpha/beta hydrolase fold, putative, 
expressed 

Plant cuticle 
production process 

↓ 

MLOC_44884.1 CW-type Zinc Finger, putative, 
expressed 

Bind DNA, RNA, 
protein and/or lipid 
substrates 

↓ 

AK370749 Receptor-like protein kinase precursor, 
putative, expressed 

Precursor to RLKs - 
involved in 
hormonal response 
pathways, cell 
differentiation, plant 
growth and 
development, self-
incompatibility, and 
symbiont and 
pathogen 
recognition. 

↓ 

AK371913 Phosphoesterase family protein, 
putative, expressed 

Phosphate 
breakdown 

↓ 

MLOC_75273.1 Cytochrome P450, putative, expressed Role in general 
metabolism 

↓ 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143173/#pone.0103611-RoyChoudhury1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143173/#pone.0103611-RoyChoudhury1
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MLOC_75265.1 OsIAA27 - Auxin-responsive Aux/IAA 
gene family member, expressed 

Regulation of Auxin 
production 

↓ 

AK365257 Receptor-like kinase ARK1AS, putative, 
expressed 

ATP, polysaccharide 
binding and protein 
kinase activity 

↓ 

MLOC_75041.1 COBRA, putative, expressed Key regulator of the 
orientation of cell 
expansion in the 
root 

↓ 

MLOC_44152.1 Serine/threonine-protein kinase 
receptor precursor, putative, 
expressed 

Precursor to 
receptors involved in 
protein 
phosphorylation 

↓ 

MLOC_71416.1 BBTI12 - Bowman-Birk type bran 
trypsin inhibitor precursor, expressed 

Stops endopeptidase 
activity 

↓ 

MLOC_36591.3 Resistance protein LR10, putative ADP binding protein ↓ 
MLOC_3978.1 OsSub3 - Putative Subtilisin 

homologue, expressed 
Protease activity ↓ 

AK357656 OsPOP8 - Putative Prolyl 
Oligopeptidase homologue, expressed 

Peptidase activity ↓ 

MLOC_39668.1 BBTI8 - Bowman-Birk type bran trypsin 
inhibitor precursor, expressed 

Stops endopeptidase 
activity 

↓ 

MLOC_56507.3 MLO domain containing protein, 
putative, expressed 

Plant integral 
membrane proteins, 
Mlo proteins 
function as G-
protein coupled 
receptors in plants  

↓ 

MLOC_60267.2 Kelch repeat protein, putative, 
expressed 

Protein degradation ↓ 

MLOC_78778.1 Cytokinin-N-glucosyltransferase 1, 
putative, expressed 

glucose transferase ↓ 

AK365385 Hydrolase, alpha/beta fold family 
domain containing protein, expressed 

Hydrogen removal 
from molecules, 
diverse role in plant 
metabolism 

↓ 

MLOC_73656.2 BBTI13 - Bowman-Birk type bran 
trypsin inhibitor precursor, expressed 

Stops endopeptidase 
activity 

↓ 

MLOC_69485.1 S-locus-like receptor protein kinase, 
putative, expressed 

ATP, polysaccharide 
binding and protein 
kinase activity 

↓ 

AK363181 Cytochrome P450, putative, expressed General role in 
metabolism 

↑ 

AK370360 BBTI13 - Bowman-Birk type bran 
trypsin inhibitor precursor, expressed 

Stops endopeptidase 
activity 

↑ 
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MLOC_70810.1 Cytochrome P450, putative, expressed General role in 
metabolism 

↑ 

MLOC_54362.3 Leaf senescence related protein, 
putative, expressed 

Role in leaf 
senescence 

↑ 

MLOC_71020.1 Jacalin-like lectin domain containing 
protein, expressed 

Carbohydrate 
binding 

↑ 

AK353701 Transferase family protein, putative, 
expressed 

Transfer functional 
groups of molecules 

↑ 

MLOC_79920.2 Slowmo homolog, putative F box protein 
involved in plant 
development and 
auxin transport 

↑ 

MLOC_41188.2 Growth regulator related protein, 
putative, expressed 

Role in growth 
regulation 

↑ 

MLOC_11916.3 OsSCP24 - Putative Serine 
Carboxypeptidase homologue, 
expressed 

Protein maturation 
predominantly 
involved in seed 
filling 

↑ 

MLOC_59286.1 Jacalin-like lectin domain containing 
protein, expressed 

Carbohydrate 
binding 

↑ 

MLOC_56250.1 Glycosyl hydrolases family 16, putative, 
expressed 

Hydrolysis of glucose 
polymers 

↑ 

AK356853 Ribosome-binding factor A, chloroplast 
precursor, putative, expressed 

Plastid function in 
thylakoid 
membranes 

↑ 

AK359892 Membrane protein, putative, 
expressed 

Membrane protein ↑ 

MLOC_4447.2 DnaK family protein, putative, 
expressed 

Molecular 
chaperone 

↑ 

AK355829 Plant-specific domain TIGR01627 
family protein, expressed 

Secondary cell wall 
production, xylan 
production 

↑ 

MLOC_37864.1 Plastocyanin-like domain containing 
protein, putative, expressed 

Electron transfer in 
electron transport 
chain 

↑ 

AK356722 Glycosyl hydrolase family 29, putative, 
expressed 

Metabolism of 
various 
carbohydrates 

↑ 

MLOC_7763.2 Phosphoethanolamine/phosphocholine 
phosphatase, putative, expressed 

Maintenance of 
cellular phosphate 
homeostasis 

↑ 

MLOC_58520.1 Cytochrome P450, putative, expressed Role in general 
metabolism 

↑ 

MLOC_2049.1 Cytokinin-O-glucosyltransferase 1, 
putative, expressed 

Cell division and 
plant development 

↑ 
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AK366167 Cytochrome P450, putative, expressed Role in general 
metabolism 

↑ 

MLOC_73743.2 Cytochrome P450, putative, expressed Role in general 
metabolism 

↑ 

AK366176 Dehydrogenase E1 component domain 
containing protein, expressed 

Catalyzes the overall 
conversion of 
pyruvate to acetyl-
CoA and CO2 

↑ 

AK372803 Acyl-desaturase, chloroplast precursor, 
putative, expressed 

Catalyzes 
desaturation of 
stearic to oleic acid 
in the stroma of 
chloroplasts 

↑ 

MLOC_64351.2 AAA-type ATPase family protein, 
putative, expressed 

ATP binding ↑ 

MLOC_18785.1 Gibberellin 20 oxidase 2, putative, 
expressed 

Key oxidase enzyme 
in the biosynthesis 
of gibberellin 

↑ 

MLOC_64714.1 C2 domain containing protein, 
putative, expressed 

Transferase activity ↑ 

MLOC_44618.1 Purple acid phosphatase precursor, 
putative, expressed 

Hydrolysis of 
phosphatase esters 

↑ 

AK364355 Dehydrogenase E1 component domain 
containing protein, expressed 

Catalyses the overall 
conversion of 
pyruvate to acetyl-
CoA and CO2 

↑ 

Gene expression control  
AK362038 B3 DNA binding domain containing 

protein, expressed 
Transcription factor ↓ 

MLOC_64636.1 AP2 domain containing protein, 
expressed 

Transcription 
regulation 

↓ 

MLOC_25297.1 trp repressor/replication initiator, 
putative, expressed 

Regulation of 
transcription 

↓ 

MLOC_69530.1 AP2 domain containing protein, 
expressed 

DNA binding and 
transcription factor 
activity 

↓ 

MLOC_36338.1 PPR repeat domain containing protein, 
putative, expressed 

Regulation of gene 
expression at the 
RNA level 

↓ 

MLOC_59073.1 Zinc finger, C3HC4 type domain 
containing protein, expressed 

Bind DNA, RNA, 
protein and/or lipid 
substrates 

↓ 

MLOC_5568.1 MYB family transcription factor, 
putative, expressed 

Transcription factor ↓ 
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MLOC_15681.2 No apical meristem protein, putative, 
expressed 

DNA binding and 
transcription factor 
activity 

↑ 

AK373398 OsMADS16 - MADS-box family gene 
with MIKCc type-box, expressed 

DNA binding and 
transcription factor 
activity involved in 
plant development 

↑ 

MLOC_78895.1 MYB family transcription factor, 
putative, expressed 

Transcription factor ↑ 

MLOC_16981.1 MYB-like DNA-binding domain 
containing protein, putative, expressed 

DNA binding and 
transcription factor 

↑ 

MLOC_70077.2 EF hand family protein, putative, 
expressed 

Proteins involved in 
transcription and 
translation, protein- 
and nucleic-acid-
binding proteins and 
a large number of 
unknown proteins 

↑ 

MLOC_5666.3 Zinc finger C-x8-C-x5-C-x3-H type 
family protein 

mRNA splicing and 
metal binding 

↑ 

AK250810.1 BEE 1, putative, expressed Transcription factor ↑ 
MLOC_74184.1 MYB family transcription factor, 

putative, expressed 
Transcription factor ↑ 

Unknown function ↑ 
MLOC_17458.1 No hits found Unknown function ↓ 
MLOC_7244.1 No hits found Unknown function ↓ 
MLOC_43425.2 Expressed protein Unknown Function ↓ 
AK372631 Expressed protein Unknown function ↓ 
MLOC_58164.2 Expressed protein Unknown function ↓ 
MLOC_25269.1 No hits found Unknown function ↓ 
MLOC_279.1 Expressed protein Unknown function ↓ 
MLOC_45654.1 Hypothetical protein Unknown function ↓ 
AK360714 Expressed protein Unknown function ↓ 
MLOC_42173.1 Hypothetical protein Unknown function ↓ 
MLOC_9555.1 No hits found Unknown function ↓ 
MLOC_30862.1 No hits found Unknown function ↓ 
MLOC_26013.2 No hits found Unknown function ↓ 
MLOC_31997.1 No hits found Unknown function ↓ 
AK357333 Conserved hypothetical protein Unknown function ↑ 
AK370260 Membrane associated DUF588 domain 

containing protein, putative, expressed 
Unknown function ↑ 

MLOC_17880.1 Expressed protein Unknown function ↑ 
TA37439_4513 Expressed Protein Unknown function ↑ 
AK374255 Expressed protein Unknown function ↑ 
MLOC_80571.3 Expressed protein Unknown function ↑ 
MLOC_75289.1 Expressed protein Unknown function ↑ 
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AK372024 Hypothetical protein Unknown function ↑ 
TA30814_4513 Expressed protein Unknown function ↑ 
MLOC_60871.1 Expressed protein Unknown function ↑ 
MLOC_65531.1 Expressed protein Unknown function ↑ 
MLOC_7807.1 Expressed protein Unknown function ↑ 
MLOC_34983.1 expressed protein Unknown function ↑ 
Genome rearrangement  
MLOC_38459.1 Retrotransposon protein, putative, 

unclassified 
Genome 
rearrangement 

↓ 

MLOC_44903.1 Retrotransposon protein, putative, 
Ty3-gypsy subclass 

Genome 
rearrangement 

↓ 

MLOC_30295.1 Retrotransposon protein, putative, 
unclassified, expressed 

Genome 
rearrangement 

↓ 

MLOC_31569.1 Retrotransposon protein, putative, 
unclassified 

Genome 
rearrangement 

↑ 

MLOC_29900.1 Retrotransposon protein, putative, 
LINE subclass 

Genome 
rearrangement 

↑ 

MLOC_23089.1 Retrotransposon protein, putative, 
unclassified 

Genome 
rearrangement 

↑ 

AK376450 Transferase family protein, putative, 
expressed 

Genome 
rearrangement 

↑ 
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Appendix 4 

Table A1 – Model parameters of the logistic growth curve fitting using a nls model of biomas

s and nitrogen accumulation of Proctor (P), Annabell (A), Chanson (C) and Krona (K) cultivars  

grown in isolation (A, C, K, P), intra-cultivar competition (AA, CC, KK, PP) and inter-cultivar       

competition with Tammi (T), (TA-A, TC-C, TK-K, TP-P). 95% confidence intervals are shown in 

brackets. 

 

 

Treatment Peak nitrogen accumulation  rate 
timing (Days after planting) 

Maximum accumulated shoot nitrogen 
(% dry mass) 

A 27.5 (26.0,28.5) 6.1 (5.55, 6.63) 
AA 25.5 (25.0,26.0) 5.18 (4.09, 6.18) 
TA-A 24.5 (24.0,25.0) 4.05 (3.50,4.50) 
C 27.5 (26.5,28.0) 5.79 (4.99, 6.62) 
CC 25 (23.5,26.0) 3.43 (2.88, 4.02) 
TC-C 24.5 (24.0,25.5) 4.87 (3.92, 5.80) 
K 26.5 (26.0,26.5) 5.79 (5.27, 6.35) 
KK 24.5 (24.0,25.5) 4.15 (3.58, 4.84) 
TK-K 24.5 (24.0,25.0) 4.16 (3.90, 4.42) 
P 28 (27.0,30.0) 5.75 (5.26, 6.23) 
PP 25.5 (24.5, 26.0) 4.35 (3.59, 5.04) 
TP-P 24.5 (24.0, 25.5) 4.16 (3.80, 4.56)  

Peak biomass accumulation  rate 
timing (Days after planting) 

Maximum accumulated biomass (mg) 

A 53.5 (49.5, 61.5) 1699.88 (1439.32, 2213.05) 
AA 54.0 (50.0, 60.0) 1313.12 (1124.68, 1671.83) 
TA-A 49.0 (46.0, 52.0) 947.75 (815.04, 1111.85) 
TA-T 50.5 (47.0, 56.0) 1619.83 (1385.08, 1868.48) 
C 64.0 (54.0, 88.0)  5499.00 (2015.74, 15278.94) 
CC 53.5 (48.0, 64.5) 1473.3 (1093.15, 2672.23) 
TC-C 53.5 (48.5, 62.0) 1283.88 (1049.80, 1737.84) 
TC-T 50.5 (47.0, 56.0)  1636.39 (1407.42, 1891.19) 
K 51.0 (47.0, 57.0) 1643.7 (1442.85, 1887.95) 
KK 55.5 (47.5, 71.5) 1478.36 (1001.49, 3097.41) 
TK-K 52.5 (45.5, 60.5) 1302 (961.93, 1831.10) 
TK-T 46.5 (45.0, 48.5) 1615.98 (1519.52, 1708.95) 
P 59.0 (54.0, 64.0) 1849.27 (1521.10, 2331.46) 

PP 58.5 (54.0, 64.5) 1329.25 (1154.10, 1693.44) 
TP-P 48.0 (47.0, 49.5) 689. 76 (683.09, 698.88) 
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Table A2 - Bootstrapped confidence interval differences of timing of peak accumulation rate 

and maximum accumulated nitrogen and biomass of Proctor (P), Annabell (A), Chanson (C) 

and Krona (K) barley cultivars grown in isolation (A, C, K, P), inter-cultivar competition (AA, 

CC, KK, PP) and inter-cultivar competition with Tammi (T) (TA-A, TC-C, TK-K, TP-P). Asterisks 

indicate significant differences. 

Treatment  CI differences in timing of peak 
accumulation rate 

CI differences in maximum 
accumulation 

Nitrogen   
A vs AA 0.09, 0.59* -0.17, 2.14 
A vs TA-A 0.29, 0.76* 1.31, 2.78* 
C vs CC 0.16, 0.81* 1.36, 3.33* 
C vs TC-C 0.29, 0.79 -0.31, 2.20 
K vs KK 0.19, 0.62* 0.75, 2.43* 
K vs TK-K 0.26, 0.60 1.03, 2.23* 
P vs PP 0.24, 0.91* 0.52, 2.33* 
P vs TP-P 0.41, 1.03* 0.95, 2.17* 
Biomass 

  

A vs AA -1.53, 1.76 430.70, 1293.10* 
A vs TA-A -0.19, 2.76 -38.50, 975.50 
C vs CC -0.81, 6.78 126.59, 14111.20* 
C vs TC-C -0.56, 6.75* 652.31, 14110.10* 
K vs KK -4.14, 1.08* -1579.00, 733.32 
K vs TK-K -2.08, 1.50 -206.37, 793.83 
P vs PP -1.35, 1.63 834.66, 1060.98* 
P vs TP-P 1.16, 3.26* 0.42, 1060.88* 

 

Table A3 – Details of the C:N ANOVA Tukey test results. 

Comparison diff lwr upr P adj 

C-A 13.971 -16.785 44.7273 0.50371 
K-A    7.86765 -22.889 38.624 0.84398 
P-A   -2.9653 -33.722 27.7911 0.98902 
K-C   -6.1033 -36.86 24.653 0.91765 
P-C -16.936 -47.693 13.8201 0.35513 
P-K -10.833 -41.589 19.9234 0.68394 
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Temporal dynamism of plant resource capture, and its impacts on plant–plant
interactions, can have important regulatory roles in multispecies communi-
ties. For example, by modifying resource acquisition timing, plants might
reduce competition and promote their coexistence. However, despite the
potential wide ecological relevance of this topic, short-term (within growing
season) temporal dynamism has been overlooked. This is partially a conse-
quence of historic reliance on measures made at single points in time. We
propose that with current technological advances this is a golden opportunity
to study within growing season temporal dynamism of resource capture by
plants in highly informative ways. We set out here an agenda for future
developments in this research field, and explore how new technologies
can deliver this agenda.

What is Temporal Dynamism and Why Is It Important?
Understanding plant community composition and functioning are fundamental challenges in
ecology. It is not yet fully understood why specific communities exist at particular points in
space and time, why some communities are more diverse than others, and how diversity
impacts on ecosystem function. In plant communities, many theories have been proposed to
explain plant coexistence, including cyclical disturbance [1,2], different individual responses to
species interactions [3], multiple limiting resources [4,5], intraspecific trait variation [6], and
facilitative plant–plant interactions, particularly in extreme environments [7,8].

We argue that short-term (i.e., within growing season) temporal dynamism (see Glossary) in
resource acquisition might be central to addressing these fundamental challenges. Temporal
dynamism can be described as a form of heterochrony that is controlled by intrinsic gene
expression but also influenced by external environmental factors such as climatic conditions [9].
However, apart from a few cases,within growing season temporal dynamism in resource
acquisition is rarely considered as a topic in its own right, in part because it has historically
proven hard to measure. This contrasts, for example, with our knowledge of other temporally
dynamic processes such as plant phenology, about which much more is known.

Phenological studies have shown the importance of the timing of key events in the structure and
functioning of plant communities [10]. Therefore, similar important consequences for temporal
dynamism in resource capture might reasonably be expected. For example, if different
species temporally segregate the capture of common resources to avoid competition,
increased complementarity can promote plant coexistence [11], with profound implications
for fundamental processes such as biodiversity–ecosystem function relationships. Importantly,
we propose that, owing to the wealth of new analytical approaches that are currently available,
now is the time to address the historical oversight of within growing season temporal
dynamism.
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Glossary
Heterochrony: a change in the
timing and rate of a developmental
process within an organism
compared to an ancestral species,
including the onset and duration of
flowering, leaf production, and
internodal length [9].
Resource capture: the acquisition
of resources, including nutrient,
water, and light, by a plant. This is
commonly expressed as a rate,
namely units of resource capture
over a period of time.
Soil zymography: non-destructive
method to measure chitinase,
cellulase, or nitrogen mineralisation
hotspots at a fine spatial resolution in
the soil. Useful for studying changes
in the location and intensity of
enzymatic activity over time.
Temporal dynamism: variation
through time in the rate or effect of a
particular process. For example, this
could be variation in the per unit
biomass capture by a plant of soil
nutrients or water, or the extent to
which neighbouring plants compete
with each other (which might itself
result from temporal dynamism in
resource capture by individuals).
Such temporal dynamism can be
driven by external factors (changes
through time in climate or resource
availability) or intrinsic factors (e.g.,
plant developmental stage).
Temporal segregation: a shift in
the timing of a process in response
to a neighbouring individual.
Commonly observed in animal
feeding, it limits niche overlap and
promotes coexistence. Some niche
overlap is still to be expected, but
direct resource competition is
reduced.
Within growing season temporal
dynamism: variation through time,
but within a given growing season, in
the rate or effect of a particular
process. Such variation is distinct
from interannual variation, which
might be caused by factors such as
variation in climate between growing
seasons.
Before considering these new opportunities, we examine previous studies of temporal dyna-
mism, with a focus on resource capture. We discuss the limitations of, and lessons learned
from, previous studies and how they can form the basis of a future research agenda. We then
focus on new experimental approaches, considering how these can address current knowl-
edge gaps, and discuss the wider relevance of this subject area to ecology.

Past Studies of Temporal Dynamism in Plant Communities
Previous research provides clear examples of how temporal dynamism of ecological processes
can regulate thestructureand functioningofplant communities.Arguably, oneof thebest-studied
examples is plant–pollinator interaction dynamics. Pollinators vary the plant species visited
interannually, which promotes coexistence in species-rich communities [12,13]. Other examples
involve temporally dynamic resourcecapture; in arid environments, temporal dynamismhasbeen
found in thegrowth responseof plants to erratic inputs ofwater [14], dependingonboth the timing
of thewater input in the growing season and the time since the previouswater input [15]. In alpine
systems, nutrient turnover is temporally dynamic, withmineralisation occurring throughoutwinter
[16], and spring microbial turnover then providing nutrients to plants [17].

Such temporal dynamics are not only of academic interest – they can play a central role in
regulating the impacts of key environmental change drivers. For example, one way non-native
species can become invasive is by occupying a vacant niche [18]. Occupying a temporal niche
left vacant by the native plant community could allow the invasive species to capture nutrients at
a time of reduced competition. It may appear that in some cases invasive species take over a
niche from native species. However, it is unclear whether invasive species establishment
depends on the exploitation of a temporal niche gap. Although phenological differences
between native and invasive species have been shown [16], the underlying role of within
growing season temporal dynamism in nutrient capture has yet to be demonstrated (probably
for the reasons we discuss below). A similar example is the phenology of hemiparasitic plants.
The life cycle of many hemiparasites is shortened relative to its hosts, influencing nitrogen
cycling with earlier leaf fall than the host community [19,20]. Early leaf fall provides an input of
nitrogen to the host community when it becomes limited [21]. Here the rate of water and
nitrogen uptake by R. minor parasitizing Hordeum vulgare (barley) has received attention [22],
but the temporal dynamics of this interaction have yet to be explored.

These examples, only a selection from the many that could be listed, demonstrate the likely
importance of temporal dynamism of resource capture by plants. Far fewer studies have sought
to measure this process directly. An important example is the work by Trinder et al. which used
a series of destructive harvests to examine the temporal dynamics of nitrogen capture and
biomass accumulation of Dactylis glomerata (cock’s foot) and Plantago lanceolata (ribwort
plantain). Trinder et al. found that, in response to interspecific competition, both species shifted
the timing of themaximum rate of biomass accumulation and nitrogen capture by up to 17 days
[23]. The species diverged the timing of these resource capture processes in ways that possibly
reduce direct competition. However, it is notable that this type of study, looking explicitly at the
temporal dynamism of resource capture, is to the best of our knowledge extremely rare.

Why Does It Matter that Temporal Dynamism Has Been Overlooked?
Many of the fundamental processes and properties of terrestrial communities are governed by
the outcome of plant–plant interactions [24]. However, despite a huge amount of work on
plant–plant interactions, especially competition, there are still unanswered questions about the
role of plant–plant interactions in governing plant community composition.
2 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy
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Box 1. Theory of Temporal Dynamism of Nutrient Capture

Plants do not uniformly take up nutrients throughout the growing season. Instead, nutrient capture is regulated based on the nutrient requirements and growth stage
of the plant [56]. When plants are grown in isolation, nutrients are taken up at the optimum time (Figure I; panels A and B show two individuals grown in isolation).
However, when plants are grown together the timing of nutrient capture might change, perhaps to minimise competition (panel C shows the two individuals grown
together). This can then promote the coexistence of competing individuals [11], and might be an important factor in communities such as tropical rainforests and
grasslands, with multiple species timing key processes differently to minimise competition (panel D shows a hypothetical multispecies community, with each line
representing a different species).

Figure I. Theoretical Role of Temporal Dynamism in Plant Coexistence. In isolation (A,B) plants take up nutrients in a specific profile over the growing season.
By contrast, when grown together (C) the two plants offset the period of maximum nutrient capture to limit competition. In a multispecies community (D) this could
lead to species occupying distinct temporal niches, leading to coexistence.
For example, our current understanding of the niches available within plant communities, which
strongly regulate plant–plant interactions, cannot explain the level of observed coexistence [25].
A better understanding of short-term temporal dynamism in resource capture, and its con-
sequences for plant–plant interactions, might help to explain this apparent paradox. Temporally
dynamic resource-capture processes, and the temporal niche segregation which this could
enable, could alter crucial plant–plant interactions so as to have a stabilising effect on
communities. This would allow a higher diversity than would otherwise be the case to be
supported [26], at potentially both a species [27] and genotypic level [28], with the community
using a greater proportion of the available resources [29]. In this example, temporal dynamism
in resource capture can be considered as an unmeasured trait (Box 1).
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Why Has Temporal Dynamism in Resource Capture Been Overlooked?
Given the general importance of the temporal dynamism of ecological processes, and the
likelihood that in many cases this is related also to temporally dynamic resource capture within a
growing season, why have so few studies explicitly addressed this latter topic?

Plant ecology has traditionally relied on one final biomass measurement to assess the con-
sequences of plant–plant interactions. Biomass is a relatively cheap and easy measure of plant
response, making large-scale greenhouse and field studies possible [26]. However, there are
some drawbacks to using single timepoint measurements of biomass to assess plant–plant
interactions, and especially the short-term temporal dynamism of these processes. First, owing
to the influence of other external environmental factors, the accumulation of biomass is rarely
influenced by competition alone [23]. This makes it an unreliable direct measure of the outcome
of competition. The use of only single harvesting to assess the outcome of plant–plant
interactions is clearly inappropriate for measuring short-term temporal dynamism in resource
capture. In addition, the precise timing of biomass harvest and measurement within a growing
season can influence the perceived outcome of the plant–plant interaction because plants grow
and develop at different times throughout the year [26]. The same criticisms can also be made
of other common annual, single timepoint measurements, for example, flower production and
seed set. To understand the role of temporal dynamism of resource capture in regulating
community dynamics, repeated measures of resource capture are required. However, to take
this step we need first to realise and accept the limitations of single timepoint studies, andmove
to more detailed studies of the competitive process itself.

Traditional approaches, for example plant biomass and tissue nutrient-content analysis, can be
used to explore issues of temporal dynamism in plant–plant interactions. However, they need to
be coupled to multiple harvesting points through time, as used by Trinder et al. to examine the
temporal dynamics of resource capture in Plantago lanceolata and Dactylis glomerata [23].
Although the multiple-harvest approach is a valuable tool, it is destructive and requires large-
scale and labour-intensive studies. The inclusion in a study of multiple harvests to track
temporal dynamism of resource capture and plant–plant interactions through time increases
the size and complexity of an experiment, and therefore reduces the complexity of the
questions that can be asked [11,29]. In addition, multiple harvesting means that responses
are averaged over many plants, potentially masking subtle dynamic individual-level responses
in resource capture and growth. Non-destructive methods would instead allow the responses
of an individual plant to be studied over time.

Such drivers of the historical oversight support a case for the use of innovative new technolo-
gies, particularly non-destructive and direct measures of resource capture, such that temporal
dynamism of resource capture can be given the attention it deserves.

Setting and Addressing a New Research Agenda
From the above discussions, and consideration of well-known ecological concepts, a series
of questions can be presented (see Outstanding Questions) in a clear research agenda. If
addressed, this agenda could advance the study of temporal dynamism of resource capture.
Importantly, this research agenda is not only of relevance to plant ecophysiologists or
community ecologists. By influencing, for example, the temporal availability of resources
to other groups such as soil organisms, pollinators, and herbivores, the study of temporal
dynamism in plant resource capture will likely have wide-reaching consequences for eco-
logical research.
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As discussed, although temporal dynamism in resource capture can itself be detected using
destructive harvesting techniques [59_TD$DIFF][23], new technological approaches will be necessary to look
at the complex series of processes involved in the dynamics of plant nutrient capture and its role
in community composition. Below, we provide examples of how these advances might enable
some of the key questions of the research agenda to be addressed.

What Is the Interaction Between Temporal Dynamism of Resource Capture with Plant
Physiology and Morphology?
The plasticity of plant root traits may facilitate the temporal dynamics of resource capture, while
at the same time root physiology and morphology could be influenced by changes in the
temporal dynamics of nutrient uptake. Therefore, the relationship between temporal dynamism
of resource capture and root traits is a key topic because roots are the organs of nutrient
uptake.

Microrhizotrons – small cameras inserted into the soil to record root foraging and fine root
developing [30,31] – allow the study of root foraging activity. However, they are limited in not
giving a view of the whole root system.Whole root system growth dynamics can be studiedwith
automated root phenotyping facilities, using high-definition cameras to photograph root
development of plants grown in Perspex boxes [32]. Changes in root morphology and foraging
can then be related to the location of soil microbial activity (soil zymography, see below) and
plant nutrient capture.

For a 3D view of root growth dynamics, X-ray computed tomography (CT) scanning can be
used to visualise plant roots grown in soil. Root architectural development can then be related
to resource capture. The development of specialist root-tracking software and facilities [33] will
allowmuch larger andmore complex experiments to be carried out on dynamic competition for
soil resources between the roots of multiple individuals. This approach has already been used
to study root growth in response to competition between Populus tremuloides (quaking aspen)
and Picea mariana (black spruce) seedlings. Both species increased rooting depth and altered
root architecture in response to a competitor [34], but this study did not simultaneously assess
soil resource capture. By combining successive scanning of root growth and successive
destructive harvesting to look at the temporal dynamics of nutrient uptake, the relationship
between root growth and nutrient uptake can begin to be addressed.

Is Temporal Dynamism in Nutrient Capture Moderated in Response to Neighbours Simply
by Overlapping Depletion Zones or by More Complex Signalling Pathways?
Traditionally plant competitive responses to a neighbour have been thought to occur when the
zones of nutrient depletion in the soil overlap [35]. As the complexities of plant–plant commu-
nication are revealed [36], it is becoming clear that plant–plant competitive interactions might
not occur solely based on nutrient availability. RNA sequencing, which enables us to examine
the genes upregulated in specific circumstances in tissue samples, is one way to look at
dynamic plant responses to the presence of a neighbour.

Studies inArabidopsis thaliana have identified that common stress-response pathways such as
jasmonate production are activated in response to a competitor [37]. Detection of the upre-
gulation of stress-associated genes can indicate when a target plant detects the presence of a
neighbour, whether the response differs depending on the identity of the neighbour, and the
length of time between neighbour detection and any form of additional physiological response
by the target plant (e.g., priming of soil microbes; see below).
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A key question is whether upregulation of gene expression occurs before the nutrient-depletion
zones of neighbouring plants overlap. Such an effect would indicate that responses to
neighbouring plants are more complex than simply a response to the overlap of soil depletion
zones as a consequence of developing root systems. The question of whether plants start
responding to neighbours and to the threat of potential competition long before they come into
close physical contact can then be addressed. This approach, therefore, provides a unique
opportunity to understand temporal dynamism and competition at a molecular level, and to
determine how temporal dynamism of resource capture is moderated in response to competi-
tion through a cascade of molecular responses in the target plant.

How Does the Activity of the Soil Microbial Community Influence Temporal Dynamism in
Resource Capture?
Throughout the year, soil microbial communities mineralise and immobilise nutrients from soil
organic matter (SOM), driving nutrient cycles that mobilise organic nutrient stocks into plant-
available forms during the growing season [38,39]. Plants can influence these processes
through the rhizodeposition of labile carbon and amino acids to influence microbial process
rates (rhizosphere priming effects, RPE [40,41]), with rhizodeposition varying with plant devel-
opment, species, and genotype [42–44].

One method to examine the influence of plants on the dynamics of SOM mineralisation is to
study the timing of rhizosphere priming effects for plants in competition versus isolated plants.
Stable-isotope labelling (15 [58_TD$DIFF]N/13C) can allow plant impacts on soil nutrient cycles to be quantified
[45]. This can be done non-destructively and dynamically through isotopic partitioning of soil
CO2 efflux into plant and SOM-derived components [46], or tracing 15N fluxes (derived from
labelled organic matter) in soil solution [47–49]. This approach allows the timing and magnitude
of soil community priming to be measured over time, and compared relative to other temporally
dynamicmeasurements including RNA expression (see above) and resource capture (Figure 1).

Further information about specific soil microbial activities can then be provided through soil
zymography, allowing the location and intensity of enzyme activity in soil to be quantified over
time [50]. This methodology has already been used to identify ‘hot moments’ when microbial
activity is higher than background levels [51][61_TD$DIFF]. Such ‘moments’ can be occasional or occur
periodically with events such as spring growth and autumn leaf fall [52]. Using these techniques,
it can be assessed, for example, whether periods of greater microbial activity precede plant
nutrient capture or whether they are themselves dependent on priming activities by the plant.

How Are the Temporal Dynamics of Soil Microbial Community Composition Influenced by
Plant Temporal Dynamics?
A crucial factor regulating the functional capacity of soil communities to mediate nutrient cycling
is their composition. The soil community is known to be temporally dynamic seasonally andwith
plant developmental stage [24]. Shi et al. used a 16S ribosomal RNA approach to produce a
network representation of microbial diversity over two growing seasons, comparing bulk and
rhizosphere soil (Figure 2) [53]. The decreasing cost, increasing throughput capacity, and
analysis speed of genomics creates an opportunity to study temporal dynamism in the soil
community over the growing season [54]. When compositional studies are combined with
studies of soil microbial activity (e.g., using metatranscriptomics), it can be assessed how
changes in the dynamism of plant resource capture are associated with either short-term (i.e.,
more activity-based) or long-term (i.e., more community-composition based) changes in the
soil community.
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Figure 1. The Potential Role of Soil Zymography in Studying Temporal Dynamism in Soil Community Activity. The potential role that soil zymography
analysis can play in studying the temporal dynamics of soil functions. The cellulase activity surrounding roots of Lupinus polyphyllus (large-leaved lupin) was analysed
18 days after sowing (A), and 10 days (B), 20 days (C [56_TD$DIFF]), and 30 days (D) after cutting shoots. [57_TD$DIFF]Adapted, with permission, from [50].
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Figure 2. Temporal Dynamics of the Plant-Associated Soil Community. The figure shows the potential role of soil community characterisation and network
analysis in studying the temporal dynamics of the soil community associated with resource capture. (A,B) Differences in the rhizosphere and bulk soil community of
Avena fatua were compared over two growing seasons. Samples were taken every 3 weeks (w) for two seasons. Shi et al. looked at the difference in the diversity and
level of interconnection between bulk and rhizosphere soil. Nodes represent operational taxonomic units (OTUs), and lines represent the linkages between them. The
rhizosphere soil becomes more interconnected but less diverse over time because the plant exerted a selection pressure on the soil community. [57_TD$DIFF]Adapted, with
permission, from [53].
What Is the Future Strategy To Study Temporal Dynamism?
Temporal dynamism is an overlooked factor in ecology and could be a vital central mechanism
by which plants coexist in complex communities. Although studying temporal dynamism of
resource capture will not be straightforward, the potential benefit to the understanding of
ecosystem functioning is likely to be considerable. There is now an ideal opportunity to
understand the within growing season temporal dynamics of resource capture as part of
broader ecological system dynamics.
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Outstanding Questions
A Research Agenda for Temporal
Dynamism in Plant Resource Capture

The following are key research ques-
tions which set out a clear research
agenda for linking the issue of temporal
dynamism in resource capture to cen-
tral aspects of plant ecophysiology,
plant community ecology, and com-
munity ecology more widely. We have
ordered them such that they run from
studies which might be conducted on
individual plants to studies with
increasing complexity in terms of biotic
interactions – initially interactions with
other plants, then with soil organisms,
then with other elements of the wider
community (for example pollinators
and herbivores).

(i) What is the interaction of temporal
dynamism of resource capture with
plant physiology and morphology?

(ii) Is temporal dynamism in phenology
matched by patterns of temporal
dynamism in nutrient uptake?
To understand the role of temporal dynamism of resource capture in plant coexistence it needs
to be understood how plants coordinate temporally dynamic responses, the intermediary role
of the soil microbial community, and the consequences at the individual plant and plant
community level. Therefore, to study these distinct but interconnected processes, an inte-
grated approach is required [55]. From the examples we have discussed above it is clear that a
vast amount of knowledge can be gained about temporal dynamism in resource capture from
using these cutting-edge technologies. Once the fundamental questions about temporal
dynamism of resource capture have been addressed, the wider community-level consequen-
ces can then be considered, building upon these fundamental studies.

The ultimate goal of this research should be to integrate temporal dynamism as a factor into
existing models, to define new niche space, and aid the explanation of coexistence in complex
communities. Only then can the question of whether temporal dynamism in resource capture
leads to coexistence of neighbouring plants can begin to be addressed. This approach can
then be applied to other temporally dynamic processes, answering other fundamental ques-
tions about ecosystem functioning.
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Elizabeth A. C. Price2, Francis Q. Brearley2 and Rob W. Brooker1
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Current niche models cannot explain multi-species plant coexistence in complex
ecosystems. One overlooked explanatory factor is within-growing season temporal
dynamism of resource capture by plants. However, the timing and rate of resource
capture are themselves likely to be mediated by plant-plant competition. This study
used Barley (Hordeum sp.) as a model species to examine the impacts of intra-
specific competition, specifically inter- and intra-cultivar competition on the temporal
dynamics of resource capture. Nitrogen and biomass accumulation of an early and late
cultivar grown in isolation, inter- or intra- cultivar competition were investigated using
sequential harvests. We did not find changes in the temporal dynamics of biomass
accumulation in response to competition. However, peak nitrogen accumulation rate
was significantly delayed for the late cultivar by 14.5 days and advanced in the early
cultivar by 0.5 days when in intra-cultivar competition; there were no significant changes
when in inter-cultivar competition. This may suggest a form of kin recognition as the
target plants appeared to identify their neighbors and only responded temporally to
intra-cultivar competition. The Relative Intensity Index found competition occurred in
both the intra- and inter- cultivar mixtures, but a positive Land Equivalence Ratio
value indicated complementarity in the inter-cultivar mixtures compared to intra-cultivar
mixtures. The reason for this is unclear but may be due to the timing of the final harvest
and may not be representative of the relationship between the competing plants. This
study demonstrates neighbor-identity-specific changes in temporal dynamism in nutrient
uptake. This contributes to our fundamental understanding of plant nutrient dynamics
and plant-plant competition whilst having relevance to sustainable agriculture. Improved
understanding of within-growing season temporal dynamism would also improve our
understanding of coexistence in complex plant communities.

Keywords: Hordeum sp. (Barley), nitrogen, nutrient uptake, peak accumulation rate, plant-plant competition,
plant community coexistence, temporal dynamism

INTRODUCTION

Niche differentiation is suggested to lead to coexistence of plants by reducing competition,
either for a specific form of a resource or simultaneous demand for the same resource
(Silvertown, 2004). However, in complex plant communities such as rain forests and
grasslands there are seemingly insufficient niches to explain coexistence of the many species
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present. Plants seem to occupy the same niche
dimensions but without it leading to competitive exclusion
(Clark, 2010).

One factor which is often not included in niche models is time,
more specifically the temporal dynamism of key developmental
and physiological processes such as resource capture (Schofield
et al., 2018). Competition can be influenced by temporally
dynamic physiological processes (Poorter et al., 2013), such
as flowering (Kipling and Warren, 2014) and nutrient uptake
(Jaeger et al., 1999). Differences in the temporal dynamics
of nutrient capture could reduce temporal niche overlap,
reducing competition for resources. This could result in increased
complementarity and promote coexistence (Ashton et al., 2010).

As well as temporal dynamism influencing competition,
competition can influence the temporal dynamics of resource
capture, although the extent to which these processes affect
each other is unclear. As there are many aspects of temporal
dynamism in plant communities that are not fully understood,
temporal dynamism in resource capture may be currently
unsuitable as an indicator of plant-plant competition. However,
a change in the temporal dynamics of resource capture may be
a wider consequence of competition or a mechanism by which
plants avoid direct competition for resources. Trinder et al.
(2012) found a change in the temporal dynamics of nitrogen
and biomass accumulation in response to inter-specific plant-
plant competition. But the impact of competition on temporal
dynamism in resource capture, and how this could influence
coexistence in plant communities, remains largely unexplored
(Schofield et al., 2018).

There is in particular a lack of information on the relationship
between temporal dynamism and intra-specific competition,
and how the degree of relatedness of competitors might
influence temporal dynamism. The genetic distance between
competing individuals can influence the functional plasticity of
an individual response to competition (Murphy et al., 2017),
including biomass allocation and root morphology (Semchenko
et al., 2017). Differential competitive responses have been
demonstrated between closely related individuals (Murphy et al.,
2017), including in a number of crop species (Dudley and
File, 2007). The use of two cultivars in this study allows a
tight control of the relatedness of individuals, which in turn
allows us to address how diversity regulates interactions and
ultimately functions in a range of systems [not least for the
development of sustainable agricultural practice (Schöb et al.,
2018)]. In this sense, crop species are ideal model systems for
undertaking such studies.

Here, we conducted a pot experiment with Barley (Hordeum
vulgare) as a model species, using an early and a late
cultivar. Barley is a suitable model in this case as its nutrient
uptake has been studied in detail to optimize the timing of
fertilizer application in agriculture (Nielsen and Jensen, 1986),
allowing us to address fundamental ecological questions of plant
coexistence, as well as investigating a topic of relevance for
agricultural practices.

It is expected that early and late cultivars of barley will have
different temporal dynamics of nitrogen uptake and biomass
accumulation, in a similar way to two species or genotypes in a

natural system. The two cultivars in this study have been bred for
different uses and therefore will have differing combinations of
traits. Tammi has been bred for an early lifecycle (Nitcher et al.,
2013), whereas Proctor was bred for malting quality (Hornsey,
2003). The nitrogen uptake and biomass accumulation dynamics
are predicted to be altered by plant-plant competition, and this
will be more pronounced in intra-cultivar compared to inter-
cultivar competition as the individuals will more completely
occupy the same niche space.

This study aimed to understand: (1) whether early and
late cultivars of barley exhibit temporal dynamics in nitrogen
uptake and biomass, (2) how plant-plant competition changes
the temporal dynamics of nitrogen and biomass accumulation in
early and late barley cultivars, (3) how any temporally dynamic
response differs with inter- and intra- cultivar competition, and
ultimately (4) how this impacts on niche complementarity.

MATERIALS AND METHODS

Temporal Patterns of Nitrogen and
Biomass Accumulation
A pot-based competition study was used to investigate temporal
dynamism in nitrogen uptake, using barley (Hordeum sp.) as a
model species. An early (Tammi: T) and late (Proctor: P) cultivar
of barley (sourced from The James Hutton Institute, Dundee,
United Kingdom) were chosen as they have similar height and
limited tillering, enabling the study to focus on phenological
rather than physiological differences. Each cultivar was grown in
pots either in isolation, or with another individual of either the
same or other cultivar (i.e., T, P, TT, PP, and TP).

Soil Characteristics
Soil was sourced from an agricultural field (Balruddery Farm,
Invergowrie, United Kingdom) that had previously contained
spring barley (Hordeum sp.) and had been subject to standard
management for barley production (including fertilizer addition
at a rate of 500 kg of 22N-4P-14 K ha−1 year−1). The soil
had an organic matter content of 6.2 ± 0.3% SEM (n = 4),
a mean pH (in water) of 5.5 ± 0.02 SEM (n = 4), a total
organic nitrogen concentration of 0.078 ± 0.024 mg l−1, mean
NH4 concentration of 0.008 ± 0.006 mg l−1 and mean NO3
concentration of 0.078 ± 0.024 mg l−1 (n = 4) and microbial
biomass of 0.06 ± 0.002 SEM mg g−1 (n = 4) [analyzed by
Konelab Aqua 20 Discrete Analyser (Thermo Fisher Scientific,
Waltham, MA, United States)]. Before use, the soil was passed
through a 6 mm sieve. No fertilization of the soil occurred
during the experiment.

Setup and Growing Conditions
Seeds of both cultivars were pre-germinated in the dark on damp
paper towels and planted into cylindrical 2 L pots (diameter
152 mm, height 135 mm) with five replicate pots of each of
the five treatments for each planned harvest (11 harvests in
total), giving a total of 275 pots. The pots were randomized to
account for potential positional effects and grown in controlled
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environment rooms (Conviron, Isleham, United Kingdom) at
a constant 15◦C with an 8/16 (day/night) hour photoperiod
(irradiance of 100–150 µmol m−2 s−1) and 65% relative
humidity, to mimic local spring-time conditions. The pots were
watered twice weekly and the soil was kept moist to avoid
competition for water. Mesh screens [45 cm × 16 cm, mesh size
0.08 mm (Harrod Horticulture, Lowestoft, United Kingdom)]
were inserted in those pots containing two plants to separate the
plants above ground, and ensure competitive interactions only
occurred below ground. Foliage was relatively upright without
support and the presence of a screen – although important
in ensuring above-ground competition was minimized – was
unlikely to have resulted in differences in shoot development in
pots with two plants compared to one.

Sequential Harvesting
Five randomly selected pots of each treatment were harvested
every 5 days until ear formation (when grain begins to form)
was observed on the early Tammi cultivar (60 days). During
this period both cultivars produced flag leaves, the stage prior to
grain production, when most nitrogen has already been absorbed
(Spink et al., 2015). This covered the period most likely to
contain the peak nitrogen and biomass accumulation rate for
both cultivars, the focus of this study. The plants were then
removed from the pots, the roots washed, and individual shoot
and root material separated. The root and shoot material of each
plant were dried at 30◦C until a stable weight was reached and
weighed. Milled shoot samples were analyzed for carbon and
nitrogen concentration (Flash EA 1112 Series, Thermo Fisher
Scientific, Bremen, Germany).

Data Analysis
Temporal Patterns of Nitrogen and Biomass
Accumulation
To analyze temporal changes in biomass and nitrogen
accumulation, the rate of each was modeled with logistic
growth curves using non-linear least squares (nls) models
(R Core Team, 2015). A cumulative time series data set of
biomass accumulation was bootstrapped using resampling with
replacement 1000 times to estimate variability and confidence
intervals. A logistic growth curve was used as the nls model and
this was fitted to each of the bootstrapped data sets to produce
a set of logistic instantaneous uptake rate curves for each
treatment, as well as sets of modeled maximum accumulation
values. This was then repeated for the nitrogen accumulation
data set. A non-linear model was used as the growth dynamics of
plants with determinate growth such as barley (Yin et al., 2003)
are mostly sigmoidal, making a linear growth model unsuitable
(Robinson et al., 2010). Therefore, the use of the non-linear least
squares model with bootstrapping is a robust method to examine
the temporal dynamism of resource capture of annual species
and to properly account for uncertainty. Significant differences
between the timing of peak accumulation and final maximum
accumulation between treatments were determined from the
difference in bootstrapped 95% confidence intervals of the model
outputs (Supplementary R Code 1).

Shoot C:N
C:N ratio at the final harvest (65 days after planting) was analyzed
using an ANOVA test from the MASS package in R (R Statistical
Software, R Core Team, 2015) as the residuals were normally
distributed, with treatment as the fixed factor and C:N as the
response variable (Supplementary R Code 2). A Tukey post hoc
test was carried out to compare the individual treatment groups.

Neighbor Effects
The effect of a neighboring plant on a target plant’s biomass was
quantified using the Relative Intensity Index (RII; Eq. 1), an index
that accounts for both competitive and facilitative interactions
between neighboring plants (Díaz-Sierra et al., 2017). RII was
calculated using the final harvest biomass data. For each cultivar,
RII was calculated separately for plants grown in intra- and inter-
specific competition. The mean total biomass of each cultivar
grown in isolation was used for the Isolation value, and the
individual RII value was then calculated for each plant of that
cultivar experiencing competition.

RII =
(
Competition − Isolation

)(
Competition + Isolation

) (1)

Competition = Biomass of plant when in competition,
Isolation = Mean biomass of plant in isolation.

The land equivalent ratio (LER; Eq. 2) was used to determine
if the inter-cultivar mixture (TP) overyielded when compared
to intra-cultivar competition (TT or PP) (Mead and Willey,
1980). The mean LER value was calculated by randomly pairing
inter- and intra- cultivar competition treatments using a random
number generator. A LER value was calculated for each pairing,
from which a mean and SEM was calculated. A mean LER
value above 1 indicates that inter-cultivar pairings produced
more biomass than to intra-cultivar combinations. As the
residuals were normally distributed, the LER and RII values were
compared between competition treatments using an ANOVA test
as above, with treatment as the fixed factor and either LER or RII
as the response variable (Supplementary R Code 2).

LER =
Tammi mixture biomass

Tammi own cultivar biomass
+

Proctor mixture biomass
Proctor own cultivar biomass

(2)

Tammi mixture biomass = Tammi biomass when in competition
with Proctor, Tammi own cultivar biomass = Tammi biomass
of the focal plant when in competition with another Tammi.
Proctor mixture biomass = Proctor yield when in competition
with Tammi, Proctor own cultivar biomass = Proctor biomass
when in competition with another Proctor.

RESULTS

Nitrogen (Figure 1A) and biomass (Figure 1B) accumulation
were temporally distinct for both cultivars. The peak rate of
nitrogen accumulation occurred between 17.5 and 19.0 days after
planting for Tammi and 19.5–35.0 days for Proctor. The peak rate
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FIGURE 1 | Timing of peak nitrogen (A) and biomass (B) accumulation rate, the shoot nitrogen concentration and absolute maximum accumulated total biomass at
the end of the experiment in barley (Hordeum sp.). Bootstrapped modeled accumulation derived from non-linear least squares model (T, Tammi; P, Proctor; TP-T,
Tammi in competition with Proctor; TP-P, Proctor in competition with Tammi; TT, Tammi own cultivar competition; PP, Proctor own cultivar competition). Error bars
represent the 95% confidence intervals derived from the non-linear least squares model.

of biomass accumulation occurred between 47 and 48 days after
planting for Tammi and 47.0–51.5 days for Proctor (Model details
in Supplementary Table 1).

Temporal Dynamics of Nitrogen Uptake
Nitrogen uptake for both cultivars followed similar temporal
dynamics, increasing until 45 days after planting, then plateauing
(Figures 2A,B). There was no significant change in the timing
of peak nitrogen uptake rate in response to inter-cultivar

competition for either cultivar. However, both cultivars showed
a significant shift in peak accumulation rate in response to
intra-cultivar competition (Figure 1A). Tammi demonstrated an
advance in peak uptake rate by 0.5 days and Proctor a delay of
14.5 days (Supplementary Table 2).

Maximum Accumulated Shoot Nitrogen
Proctor’s absolute maximum shoot nitrogen concentration
was significantly lower when in competition with Tammi
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FIGURE 2 | Mean cumulative nitrogen (C,D) and biomass (A,B) accumulation of Tammi and Proctor barley cultivars over time. Pots contained Proctor in isolation
(P), in competition with Tammi (TP) and in competition with another Proctor (PP), Tammi in isolation (T), in competition with Proctor (TP) and another Tammi (TT). Error
bars are two times the SEM.

or Proctor compared to isolation (Figure 1A). Inter-cultivar
competition caused a significantly lower maximum shoot
nitrogen concentration compared to intra-cultivar competition
for Proctor but not Tammi. Intra-cultivar competition caused a
significantly lower maximum shoot nitrogen concentration for
Tammi but not Proctor (Supplementary Table 3).

Temporal Dynamics of Biomass
Accumulation
Biomass accumulation increased throughout the growing period
with a lag period until 31 days after planting and then
rapidly increased during the remainder of the experiment
(Figures 2C,D). In response to competition, Tammi did not
exhibit a shift in peak biomass accumulation rate, with peak
accumulation rate always occurring 47–48 days after planting.
Proctor biomass accumulation rate peaked between 48 and
51.5 days after planting (Figure 1B); although there was a
trend toward an earlier peak in biomass accumulation when
in competition there were no significant differences between
treatments (Supplementary Table 2).

Maximum Accumulated Total Plant Biomass
For both Tammi and Proctor, absolute maximum accumulated
biomass was significantly lower when in competition
compared to isolation (Figure 1B). However, neither cultivar
demonstrated a significant difference between intra- and
inter- cultivar competition in maximum accumulated biomass
(Supplementary Table 3).

Shoot C:N
Proctor in isolation had a C:N ratio of about half that of Tammi in
isolation throughout the experiment, i.e., more nitrogen relative
to carbon. However, for neither cultivar were there significant
differences in C:N ratio between plants in isolation compared
to plants in competition at the end of the experiment [Proctor
(F(2,17) = 1.44, P = 0.26); Tammi (F(2,17) = 2.74, P = 0.09)] (details
in Supplementary Table 4).

Neighbor Effects
The significantly negative RII of final biomass indicated
competitive interactions for both cultivars irrespective of whether
they were in inter- or intra- cultivar mixtures. RII values also
showed that Tammi and Proctor experienced a greater intensity
of competition when in inter-cultivar compared to intra-cultivar
competition (Figure 3). Proctor in intra-cultivar competition
experienced the lowest intensity of competition; however, there
was no significant difference between the competition treatments
[F(3,26) = 2.86, P = 0.06].

The LER value for Tammi and Proctor in competition was
2.05 (±0.35 SE), indicating that the inter-cultivar mixture had a
greater total biomass (root and shoot) than would be expected
from the intra-cultivar mixtures.

DISCUSSION

This experiment aimed to detect and quantify temporal
dynamism in nitrogen uptake and biomass accumulation in two
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FIGURE 3 | Mean relative intensity index of barley (Hordeum sp.) Tammi and Proctor cultivars in inter- and intra-cultivar competition. The more negative the result the
greater competition the plant experienced. TP-T, Tammi in inter-cultivar competition; TP-P, Proctor in inter-cultivar competition; TT, Tammi in intra-cultivar
competition; PP, Proctor in intra-cultivar competition. Error bars are two times the SEM. Letters indicate significant differences from a Tukey post hoc test.

barley cultivars and determine responses to inter- and intra-
cultivar competition.

We found that competition significantly reduced maximum
accumulated biomass and shoot nitrogen in both cultivars.
Neither intra- or inter-cultivar competition impacted the timing
of peak biomass accumulation in either cultivar. However,
intra-cultivar competition significantly delayed peak nitrogen
accumulation rate by 14.5 days in Proctor and advanced
it in Tammi by 0.5 days. Relative Intensity Index values
indicated that both cultivars experienced competition, with no
significant difference in intensity between intra- and inter-
cultivar competition. However, a positive LER value indicated
that the inter-cultivar mixture overyielded when compared to the
intra-cultivar mixtures.

Shifts in the Timing of Biomass
Accumulation in Response to
Competition
Neither of the cultivars in this study significantly altered the
temporal dynamics of peak biomass accumulation in response
to a competitor. The mismatch between biomass and nitrogen
accumulation dynamics in response to competition indicates
biomass may not effectively measure the temporal dynamics
of within-growing season resource capture, an issue previously
raised by Trinder et al. (2012).

Shifts in the Timing of Nitrogen
Accumulation in Response to
Competition
Tammi and Proctor only demonstrated significant changes in
temporal dynamism of nitrogen accumulation when in intra-
cultivar competition. Tammi advanced peak accumulation rate

by 0.5 days and Proctor delayed it by 14.5 days. As this only
occurred in intra-cultivar competition, it suggests that this is
more complex than a competition avoidance response based on
a source-sink (soil – plant) relationship. If this was a simple
source-sink relationship, for example, based on soil nitrogen
availability (Dordas, 2009), the inter- and intra-cultivar responses
to competition should be identical. However, a response to only
intra-cultivar competition suggests a kin recognition mechanism.

Kin recognition has been suggested as a mechanism by which
plants alter functional traits when in competition with closely
related individuals (Sousa-Nunes and Somers, 2010). It has been
found to most commonly be mediated belowground through root
exudates (Biedrzycki et al., 2010; Bais, 2015). This may mediate
specific responses depending on the identity of a competing plant,
as found in this study.

The results of this study contrast with those of a temporal
dynamism study by Trinder et al. (2012) which examined the
influence of interspecific competition on the temporal dynamics
of nitrogen uptake and biomass accumulation using Dactylis
glomerata and Plantago lanceolata, two perennial grassland
species. D. glomerata was the later of the two species, and
P. lanceolata the earlier species. They found a 7 days delay for
D. glomerata and a 5 days advancement for P. lanceolata in
maximum biomass accumulation rate in competition compared
to plants in isolation, with a similar pattern of divergence
for peak nitrogen accumulation rate. We did not find these
trends between two cultivars, with no significant shifts in peak
biomass accumulation rate and a significant delay in peak
nitrogen accumulation rate only when Proctor was in own
cultivar competition.

In our study Proctor was the less competitive of the two
cultivars, as it experienced a greater decrease in nitrogen and
biomass accumulation when in competition compared to Tammi.
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This contrasts with the Trinder et al. (2012) study which found
that D. glomerata took up the most nitrogen and it could be
argued was therefore the most competitive, despite being the
later species for peak nitrogen and biomass accumulation rate.
Therefore, it should not be assumed that the earlier species or
cultivar is automatically the most competitive.

Trinder et al. (2012) also found that competition reduced
the period between peak nitrogen and biomass accumulation
rate compared to plants in isolation, from 10 to 1 days for
D. glomerata, and from fourteen to 3 days for P. lanceolata. We
also found this effect, but only when Proctor was in competition,
which caused a shortening of the period between peak rate
of nitrogen uptake and biomass accumulation by 18.5 days in
intra-cultivar competition and 5.5 days when in inter-cultivar
competition. However, the reason for this response is unclear.
It could be a phenological change in response to competition, a
pattern previously observed in cases of abiotic stress (Kazan and
Lyons, 2016) and pathogen attack (Korves and Bergelson, 2003).

Temporal Segregation of Nitrogen and Biomass
Accumulation
The processes of nitrogen and biomass accumulation were
temporally distinct for both cultivars. The peak rate of
nitrogen accumulation was 29.0–29.5 days before peak biomass
accumulation for Tammi and 16.5–27.5 days for Proctor
(Figure 1). The gap between peak nitrogen and biomass
accumulation was less variable for Tammi compared to Proctor.
Tammi was specifically bred for an early phenotype (Nitcher et al.,
2013), whereas Proctor was bred for malting quality (Hornsey,
2003). This selection pressure for phenology in Tammi may
go some way to explaining the lack of variability in the gap
between peak nitrogen and biomass accumulation in response
to competition. Future studies could investigate whether similar
response patterns are found in the genotypes of wild species or in
wild species with contrasting phenologies.

Barley has been found to have temporally distinct nitrogen
and biomass accumulation with a 23–24 day gap between
peak nitrogen and biomass accumulation in field studies
(Malhi et al., 2006). The gap between the peak nitrogen and
biomass accumulation rate was shortened when Proctor was in
competition, indicating the impact of plant-plant competition on
the temporal dynamics of nitrogen accumulation. The greatest
reduction in the gap between peak nitrogen and biomass
accumulation rate occurred when Proctor was in intra-cultivar
competition. This was also the treatment with the lowest absolute
shoot nitrogen concentration, suggesting delaying peak rate of
nitrogen accumulation for this cultivar is a response to intra-
cultivar competition.

Impact of Competition on Final Nitrogen
and Biomass Accumulation
Competition significantly reduced the final maximum nitrogen
concentration and biomass that both Proctor and Tammi were
able to accumulate in intra- or inter-cultivar competition.
A Proctor competitor caused a significant decrease in
Tammi maximum biomass accumulation and nitrogen shoot
concentration, despite not achieving the greatest biomass above

or below ground. This suggests that another factor influenced
the rate of nitrogen uptake. Signaling through root volatile
compounds or root exudates has been found in a number of
species including legumes and grasses (Pierik et al., 2013) and
may be acting here. Plant root exudates select for a specific
microbial community (Shi et al., 2016) and have been found
to affect the rate of microbial soil organic matter turnover
(Mergel et al., 1998). Therefore, plants may influence the timing
of soil microbial community activity in order to reduce direct
competition for resources. However, as we are only starting to
understand the role of short term-temporal dynamism in plant
interactions (Schofield et al., 2018) it is not surprising that further
studies are required to determine the role of the root exudates
in neighbor recognition and temporally dynamic responses,
and why this response is greater for intra- compared to inter-
specific competition.

Shoot C:N in Response to Identity of a
Competing Individual
The two cultivars differed in their C:N ratio by the end of the
experiment. This is likely due to the earlier cultivar Tammi being
more advanced developmentally than Proctor. By the end of
the experiment, Tammi had begun grain production, whereas
Proctor had produced a flag leaf, the stage before grain formation.
However, there was no significant increase in C:N in either
cultivar in response to competition. Due to selective breeding for
a specific seed C:N (grain nitrogen content) with known mapped
genes (Cai et al., 2013) it is unlikely that C:N is highly plastic in
barley, making it a poor measure of competition in this case.

Is Greater Complementarity Achieved?
The negative RII indicated both cultivars experienced
competition when grown with a neighboring plant, but
no significant difference depending on the identity of the
competitor. This contrasts with the positive LER value which
indicated overyielding of the two cultivars when grown in inter-
cultivar competition compared to intra-cultivar competition.
The reason for this is unclear and may be due to the timing of the
final harvest, before both cultivars had set seed. This highlights
the difficulty of using multiple metrics to measure the outcome
of competition, especially as the measurements were only taken
at the end of the experiment, i.e., at a single timepoint. Therefore,
single timepoint competition indices should be used with caution
when examining the consequences of temporal dynamism of
resource capture.

There is a need to understand the extent to which a species
or genotype is temporally dynamic and the factors that lead
to temporal dynamism in resource capture. This will allow
temporal dynamism in resource capture to be included in models
of coexistence, furthering our understanding of coexistence in
complex plant communities.

CONCLUSION

This study demonstrates how a previously overlooked factor in
plant community coexistence, within-growing season temporal
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dynamism of resource capture, can be measured through
successive harvesting and the novel application of commonly
used statistical approaches. Only peak nitrogen accumulation
rate was temporally dynamic in response to competition, not
biomass peak accumulation rate or shoot C:N. Therefore, we
suggest that to understand the temporal dynamics of resource
capture within a growing season, direct measures of mineral
resources accumulated (e.g., nitrogen uptake) are important to
understand the mechanisms of temporally dynamic responses
to competition. By measuring shoot nitrogen accumulation rate
over time, intra-cultivar competition was found to advance
peak nitrogen accumulation rate in Tammi and delay it in
Proctor. This suggests that temporally dynamic nitrogen uptake
responses are greater in intra-cultivar competition and may
be due to kin recognition. This may be mediated through
root exudates and the soil microbial community, an area that
requires further investigation and extension to semi-natural
and natural ecosystems. Ultimately understanding the role of
temporal dynamism in plant communities will lead to improved
niche models of coexistence in plant communities.
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Plant-plant competition influences temporal dynamism of soil microbial 
enzyme activity 

E.J. Schofield a,b,*, R.W. Brooker a, J.K. Rowntree b, E.A.C. Price b, F.Q. Brearley b, E. Paterson a 

a The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK 
b Ecology and Environment Research Centre, School of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK  

A B S T R A C T   

Root-derived compounds can change rates of soil organic matter decomposition (rhizosphere priming effects) through microbial production of extracellular enzymes. 
Such soil priming can be affected by plant identity and soil nutrient status. However, the effect of plant-plant competition on the temporal dynamics of soil organic 
matter turnover processes is not well understood. This study used zymography to detect the spatial and temporal pattern of cellulase and leucine aminopeptidase 
activity, two enzyme classes involved in soil organic matter turnover. The effect of plant-plant competition on enzyme activity was examined using barley (Hordeum 
vulgare) plants grown in i) isolation, ii) intra- and iii) inter-cultivar competition. The enzyme activities of leucine aminopeptidase and cellulase were measured from 
portions of the root system at 18, 25 and 33 days after planting, both along the root axis and in the root associated area with detectable enzyme activity. The activities 
of cellulase and leucine aminopeptidase were both strongly associated with plant roots, and increased over time. An increase in the area of cellulase activity around 
roots was delayed when plants were in competition compared to in isolation. A similar response was found for leucine aminopeptidase activity, but only when in 
intra-cultivar competition, and not when in inter-cultivar competition. Therefore, plant-plant competition had a differential effect on enzyme classes, which was 
potentially mediated through root exudate composition. This study demonstrates the influence of plant-plant competition on soil microbial activity and provides a 
potential mechanism by which temporal dynamism in plant resource capture can be mediated.   

1. Introduction 

One of the key processes governing plant nutrient acquisition is 
mineralisation of soil organic matter (SOM) mediated by microbial 
communities, a process that can be significantly influenced by plant 
roots (rhizosphere priming effects: Murphy et al., 2017). Plant root ex-
udates contain large quantities of labile carbon, and increase carbon 
availability to the soil microbial community (Garcia-Pausas and Pater-
son, 2011; Kuzyakov et al., 2000). Addition of carbon causes an increase 
in the carbon to nitrogen to phosphorus ratio (C:N:P), leading to nutrient 
“mining” by the soil microbial community to restore the stoichiometry 
of these resources (Paterson, 2003), driven by extracellular enzyme 
production (Penton and Newman, 2007). These rhizosphere priming 
effects eventually lead to plant nutrient acquisition through turnover of 
the soil microbial community (Hodge et al., 2000). 

The breakdown of organic matter in the soil is driven by enzyme 
activity, the majority (90–95%) of which is derived from the soil mi-
crobial community (Xu et al., 2014), with some directly from plant roots 
(Spohn and Kuzyakov, 2013). Enzymatic activity is temporally dynamic, 
changing in response to the prevailing environmental conditions and 
associated plant community activity throughout the growing season 

(Bardgett et al., 2005). The temporal dynamics of soil processes vary 
with abiotic conditions such as temperature (Steinweg et al., 2012) and 
nutrient availability (Mbuthia et al., 2015). Therefore, using enzyme 
activity as a measure of a range of soil microbial community activities 
and the influence of different factors on these processes, including 
plant-plant interactions, through time. 

As a focus for assessing temporal dynamism in soil enzyme activity, 
and the impact on this of plant-plant interactions, this study chose two 
catabolic enzyme classes involved in SOM breakdown and nitrogen 
cycling, cellulase (EC number: 3.2.1.4) and leucine aminopeptidase (EC 
number 3.4.1.1). Both the spatial and temporal dynamics of catabolic 
enzymes, including cellulase and leucine aminopeptidase can be 
examined using zymography. This method uses fluorescently labelled 
substrates to measure extracellular enzyme activity in soil. The area and 
intensity of fluorescence can be calibrated and used for spatial quanti-
fication of enzyme activity (Spohn and Kuzyakov, 2014). As this method 
is non-destructive, it allows a range of enzymes to be studied spatially 
and temporally (Giles et al., 2018), making it ideal to explore the impact 
of plant-plant competition on the temporal dynamics of soil enzyme 
activity. 

The intensity of competition between plants for nutrients can vary 
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spatiotemporally (Caffaro et al., 2013); this can alter the temporal dy-
namics of nitrogen accumulation (Schofield et al., 2019) when plants are 
in competition compared to isolation, with potential consequences for 
the temporal dynamics of soil microbial community enzyme activity. 
The temporal dynamics of nitrogen and biomass accumulation have 
been studied in barley (Hordeum vulgare) (Schofield et al., 2019). A delay 
in peak nitrogen uptake was found when the Proctor cultivar was grown 
in intra-cultivar competition but not inter-cultivar competition. This 
response may be due to a change in the temporal dynamics of root 
associated soil enzyme activity influencing nutrient availability for 
plants. Therefore, to explore whether such changes in the timing of soil 
processes do occur, Proctor was chosen as the focal cultivar of this study. 

Two main approaches for analysing zymography images have 
emerged in the last decade. Spohn and Kuzyakov (2014) measured the 
root associated area of cellulase activity as a percentage of the total 
sampled area (root associated area) when assessing the activity of cel-
lulases, chitinases and phosphatases in the presence of living and dead 
Lupinus polyphyllus roots. Alternatively, Giles et al. (2018) took a 
root-centric approach, measuring phosphatase activity along Hordeum 
vulgare root axis (root axis). The Spohn and Kuzyakov (2014) method 
takes a subsection of the greyscale values, excluding the lightest and 
darkest pixels; in contrast Giles et al. (2018) used the total pixel range. 
The Spohn and Kuzyakov (2014) method excludes pixels that are 
extremely bright, which may skew the total dataset. However, by 
focussing on the extent of activity in terms of area instead of intensity of 
activity along the root axis, a relatively small proportion of the soil 
volume, subtle temporal dynamics of enzyme activity may be more 
easily detected. 

This study aimed to determine the influence of plant-plant compe-
tition on the soil microbial community while keeping other environ-
mental factors constant. We also took the opportunity to use both 
approaches for analysing zymography images. Our aim was to deter-
mine the effect of plant-plant competition on the temporal activity dy-
namics of the two enzyme classes, outside of the zone of most intense 
competition. Plant root architecture can demonstrate a compensatory 
response to plant-plant competition (Caffaro et al., 2013). It is expected 
that enzyme activity surrounding plant roots will show similar trends to 
root architecture, with increased enzyme activity surrounding roots 
outside the zone of most intense competition when the plants are in 
competition compared to isolation. As competition can be less intense 
between more closely related individual plants, due to changes in the 
temporal dynamics of resource capture, it is expected that interactions 
between more closely related individuals will promote less intense 
enzyme activity than inter-cultivar competition. 

2. Materials and methods 

2.1. Soil characterisation 

Soil was collected from an agricultural field that had previously been 
cropped with spring barley (Hordeum sp.) and had been subject to 
standard fertilisation conditions (500 kg of N ha� 1 yr� 1 in the ratio of N 
22: P 4: K 14) (Balruddery Farm, Invergowrie, Scotland, 56.4837� N, 
3.1314� W). The soil was then passed through a 3 mm sieve to homog-
enise the substrate. The soil had an organic matter content (humus) of 
6.2% � 0.3% SEM (loss-on-ignition, n ¼ 4) and a mean pH (in water) of 
5.7 � 0.02 SEM (n ¼ 4), a total inorganic nitrogen concentration of 
1.55 � 0.46 mg g� 1 (n ¼ 4) and microbial C biomass (using a chloroform 
extraction) of 0.06 � 0.002 SEM mg g� 1 (n ¼ 4). No fertilisation 
occurred during the experiment. 

2.2. Rhizobox preparation 

Rhizoboxes (150 mm � 150 mm x 10 mm Perspex boxes with a 
removable side for access to roots) were packed to a bulk density of 
1.26 g cm� 3, ensuring the soil was level with the edge of each box. Seeds 

of Proctor and Tammi barley (Hordeum sp.) cultivars were pre- 
germinated on damp tissue paper in the dark at room temperature for 
two days before planting. Three replicates of each treatment: Proctor 
alone (P), Proctor in intra-cultivar competition (PP) and Proctor in inter- 
cultivar competition with Tammi (TP) were planted, as well as a bare 
soil control, giving 12 rhizoboxes in total. In the planted treatments, the 
germinated seeds were placed on the surface of the soil, ensuring contact 
between the emerging roots and soil surface, and then the side of the box 
was replaced and secured. In the planted treatments containing two 
plants, the germinated seeds were placed 2.5 cm apart to ensure no 
aboveground interaction between the two plants. 

The rhizoboxes were wrapped in foil to exclude light from the roots 
and placed at a 45� angle to encourage root growth over the soil surface. 
The rhizoboxes were kept in a controlled environment cabinet (Jumo 
IMAGO 3000, Harlow, Essex, UK) at a constant 15 �C, 65% relative 
humidity and a 16/8 (day/night) (light intensity: 200 μmol m� 2 s� 1) 
photoperiod for the duration of the experiment to mimic local spring-
time conditions. Each rhizobox was watered weekly with sufficient 
water to maintain soil moisture at field capacity and prevent root 
desiccation. 

2.3. Soil zymography 

Enzyme activity was measured three times at weekly intervals be-
tween 18 and 39 days after planting. This is the period prior to peak 
barley nitrogen accumulation rate found in our previous study (Scho-
field et al., 2019). Areas away from the competition zone between the 
two plants were visually identified and labelled on the rhizobox rim to 
ensure measurements of soil enzyme activity occurred at a consistent 
location throughout the study. These were roots of the focal individual 
that consistently did not encounter roots of the other individual within 
the system. This setup was used to indicate whether a compensatory or 
systemic response to plant-plant competition could be detected in soil 
enzyme activity. 

Two fluorescently labelled substrates were selected for this study; 4- 
methylumbellferyl ß-D-cellobioside, a substrate of cellulase which was 
imaged at 365 nm (excitation at 365 nm, emission at 455 nm) and L- 
leucine-7-amido-methylcoumarin hydrochloride, a substrate of leucine 
aminopeptidase that was imaged at 302 nm (excitation at 327 nm, 
emission at 349 nm) (Sigma-Aldrich, Reading, UK). Both substrates were 
diluted to a 6 mM concentration, the concentration used in previous 
studies using methylumbellferyl ß-D-cellobioside (Spohn and Kuzyakov, 
2014) and the optimum concentration found during preliminary ex-
periments (results not shown). A 47 mm diameter polyamide membrane 
(Whatman, GE Healthcare, Buckinghamshire, UK) was soaked in 300 μl 
of 6 mM of 4-methylumbellferyl ß-D-cellobioside or L-leucine-7-ami-
do-methylcoumarin hydrochloride. On sampling days, the side of each 
rhizobox was removed and a 1% agarose (Invitrogen, Carlsbad, CA, 
USA) gel of 1 mm thickness was placed on the soil surface to protect the 
membrane from soil particles which could adhere to it and disrupt the 
final image, whilst allowing the diffusion of extracellular enzymes 
(Spohn and Kuzyakov, 2014). The membrane was then placed on top of 
the gel and the foil was replaced over the top to exclude light and 
minimise moisture loss during enzyme assays. 

Previous studies have incubated similar substrate soaked membranes 
for between 30 min and 3 h (Giles et al., 2018; Spohn and Kuzyakov, 
2014). Therefore, a preliminary study was carried out which found that, 
for this system, an incubation of 1 h gave a good level of resolution and 
UV intensity when viewed (results not shown). Following incubation 
(1 h), the membrane was placed onto a fresh 1% agarose gel to minimise 
bubbling of the membrane during imaging. The membrane and gel were 
then placed in an UV imaging box (BioDoc-It2 Imager, Analytik Jena, 
Upland, CA) and imaged at 365 nm (Spohn and Kuzyakov, 2014). This 
was repeated for L-leucine-7-amido-methylcoumarin hydrochloride, 
which was imaged at 302 nm (Ma et al., 2018). This order of substrate 
sampling was maintained throughout the experimental period (Spohn 
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and Kuzyakov, 2014). The sampled area was marked on the rim of each 
rhizobox to ensure that the same area was sampled each time for both 
enzymes. After sampling, the rhizobox was watered and replaced in the 
controlled environment chamber. 

2.4. Calibration curves 

Known dilutions of 4-Methylumbelliferone (the fluorescent tag of 4- 
methylumbellferyl ß-D-cellobioside) and 7-Amino-4-methylcoumarin 
(the fluorescent tag of L-leucine-7-amido-methylcoumarin hydrochlo-
ride) (1, 2, 4, 6 mM) were prepared and used to soak membranes, using 
the same procedure as the experiment (Giles et al., 2018). The mem-
branes were then imaged using the same method and settings as the 
samples. The images were used to calculate the substrate concentration 
per mm2 and provide the calibration curve values from the sample im-
ages. This also informed the range of 8 bit greyscale values (the integer 
brightness value per pixel between 0 and 255) sampled in the percentage 
area analysis (Spohn and Kuzyakov, 2014). 

2.5. Root growth measurements 

The roots of each rhizobox were photographed weekly from 4 to 39 
days after planting using an iPhone 6 (8 - megapixel iSight camera with 
1.5 μm pixels, Apple Inc). The root architecture photographs were then 
analysed using the SmartRoot plugin (Lobet et al., 2011) of the ImageJ 
software (Schneider et al., 2012). The roots of each plant were manually 
traced and labelled using the Trace tool. This was used to measure total 
root length over time. Dry root biomass was also recorded at the end of 
the experiment by drying roots at 100 �C for 24 h. 

The effect of time and treatment on the measured root architecture 
parameters were assessed using a Generalised Least Squares model using 
the nlme package in R (R statistical software, R Core Team, 2016). Time 
and treatment were included as fixed factors as well as the interaction 
between treatment and time. A covariate of rhizobox number and 
treatment was included to account for autocorrelation caused by the 
repeated measures in this study. This was followed by an ANOVA test 
(MASS package, R statistical software, R Core Team, 2016). 

2.6. Enzyme image analysis 

The intensity and location of enzyme activity was analysed using two 
approaches: root axis activity (Giles et al., 2018) and root associated 
area (Spohn and Kuzyakov, 2014). These two approaches differ in that 
the root axis activity records soil enzyme activity only along the root 
itself, whereas the root associated area measures soil enzyme activity in 
the surrounding rhizosphere as well. By comparing these two ap-
proaches the most appropriate image analysis method to study the 
temporal dynamics in root associated soil microbial activity can be 
determined. Root associated area was defined as the percentage of the 
total sampled area with greyscale values above a threshold defined by 
the calibration curves that indicated enzyme activity. 

2.6.1. Root axis enzyme activity 
For this approach, root axis image analysis technique developed by 

Giles et al. (2018) was used. Proctor roots contained within the sample 
area were tracked using the segmented line tool in the Fiji image anal-
ysis software (Schindelin et al., 2012). The RProfile plugin developed by 
Giles et al. (2018) was then used to extract a profile of greyscale values 
along the sampled root. The nodes of the segmented line placed along 
the root were then centralised and placed evenly along the sampled root 
to refine the data using the Python script developed by Giles et al. 
(2018). The mean greyscale value was calculated for each root (subse-
quently referred to as ‘root axis activity’). 

2.6.2. Root associated area analysis 
To measure the root associated area of enzyme activity, the approach 

developed by Spohn and Kuzyakov (2014) was used. Each image was 
first converted into an 8-bit greyscale image. The range of 80–170 Gy 
values was extracted from each image (informed by the calibration 
curves) then split into 10 Gray value increments, and the area of each 
increment measured using Image J Software (Schneider et al., 2012). 
This was then expressed as a percentage of the total membrane area 
(subsequently referred to root associated area). The percentage root 
associated area was then compared between treatments. The mean 
enzyme activity rate was the most common enzyme activity rate, i.e. the 
rate with the greatest percentage cover of the total sampled area. 

2.7. Statistical analysis 

The effect of time and treatment on the root axis activity and root 
associated area were each assessed using a Generalised Least Squares 
model, accounting for repeated measures with an autocorrelation term, 
using the nlme package (Pinheiro et al., 2016) in R (R Core Team, 2015). 
This was followed by an ANOVA test for significant differences using the 
MASS package (Venables and Ripley, 2002) in R (R Core Team, 2015). 
The interaction between treatment and time was included as a fixed 
factor, to detect differences between treatments in enzyme activity 
temporal dynamics, with an autocorrelation term for treatment and 
rhizobox number. 

3. Results 

3.1. Total root growth 

Total root length increased over time for all treatments (Table 1). 
There was a significant effect of treatment (F(2,52) ¼ 5.45, P ¼ <0.01) 
and time (F(4,52) ¼ 45.04, P ¼ <0.01) on total root length but no sig-
nificant interaction between treatment and time (F(8,52) ¼ 1.27, 
P ¼ 0.28). There was no significant difference in total root biomass be-
tween the different treatments at 33 days (F(2,10) ¼ 0.78, P ¼ 0.48). 

3.2. Root axis activity 

Mean cellulase root axis activity at 33 days after planting ranged 
between 1.4 and 11.8 pmol mm� 2 h� 1 and leucine aminopeptidase be-
tween 4.5 and 6.3 pmol mm� 2 h� 1 (Fig. 1). For cellulase activity there 
was a significant effect of treatment (F(2,42) ¼ 5.03, P ¼ 0.01) but no 
significant effect of time (F(2,42) ¼ 0.51, P ¼ 0.60) or interaction between 
treatment and time (F(4,42) ¼ 0.94, P ¼ 0.45). However, there was no 
significant effect of time (F(2,63) ¼ 2.92, P ¼ 0.06), treatment 
(F(2,63) ¼ 2.74, P ¼ 0.07) or the interaction between the two factors 
(F(4,63) ¼ 1.02, P ¼ 0.40) for leucine aminopeptidase activity. 

3.3. Root associated area 

The activity of both enzyme groups was highest nearest to the 
sampled roots, indicated by the brighter areas, and decreased with dis-
tance from them. The consistent sampling position is shown for each pot 
in Fig. 2. Cellulase activity was not solely localised to the axis of sampled 
roots, and activity away from roots increased with time (Fig. 3), with a 
mean root associated area activity of 0.57–2.10 pmol mm� 2 h� 1 33 days 

Table 1 
Mean total root length and biomass at 33 days after planting of Proctor barley 
plants in isolation (P), intra-cultivar competition (PP) and inter-cultivar 
competition (TP) (n ¼ 3). Values in the brackets are the standard error of the 
mean (SEM).  

Treatment Total root length (mm) Root biomass (g) 

P 158 (�23.2) 0.036 (�0.004) 
PP 138 (�15.5) 0.191 (�0.004) 
TP 153 (�42.4) 0.042 (�0.007)  
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after planting. When Proctor was grown in isolation, the root associated 
area of cellulase activity was relatively constant (53–58%) (Fig. 5a). 
However, when Proctor was in inter- or intra-cultivar competition the 
initial percentage area was low (11% in intra-cultivar competition and 
13% in inter-cultivar competition) but then rapidly increased to 25 days 
before stabilising at a similar percentage as Proctor in isolation (47% in 
intra-cultivar competition and 58% in inter-cultivar competition) 
(Fig. 5a). This shows a delay in the area of cellulase activity when 
Proctor was in competition compared to isolation. This is demonstrated 
in Fig. 3, with darker images in the competition treatments at 18 days 
after planting compared to the isolation treatment. The root associated 
area in which cellulase activity occurred in the planted treatments 
showed a significant effect of treatment (F(2,17) ¼ 4.72, P ¼ 0.02), time 
(F(2,17) ¼ 44.98, P ¼<0.01) and interaction between treatment and time 
(F (2,17) ¼ 12.88, P ¼ <0.01). Model details are in Supplementary Fig. 1. 

Leucine aminopeptidase activity occurred beyond the immediate 
rhizosphere (Fig. 4). Mean root associated area activity at 33 days after 
planting ranged from 0.91 to 3.48 pmol mm� 2 h� 1. When Proctor was 
grown in isolation and inter-cultivar competition, leucine aminopepti-
dase root associated area steadily increased over time (Fig. 5b). At 25 

days, the intra-cultivar competition root associated area was lower 
(31%) than in isolation (48%) and inter-cultivar competition (52%) 
(Fig. 5b), indicating a delay in leucine aminopeptidase activity in intra- 
cultivar competition compared to isolation and inter-cultivar competi-
tion. This is demonstrated in Fig. 4, with darker images in the intra- 
cultivar competition treatment at 18 days after planting compared to 
the isolation and inter-cultivar competition treatments. There was a 
significant effect of treatment (F(2,17) ¼ 31.72, P ¼ <0.01), time 
(F(2,17) ¼ 30.36, P ¼ <0.01) and a significant interaction between time 
and treatment on the root associated percentage area of leucine 
aminopeptidase activity (F(2,17) ¼ 7.42, P ¼ <0.01). Model details are in 
Supplementary Fig. 1. 

4. Discussion 

This experiment aimed to determine the effect of plant-plant 
competition in barley on the temporal dynamics of nutrient cycling by 
measuring activity of cellulase and leucine aminopeptidase, two enzyme 
classes associated with nutrient turnover, specifically of carbon and 
nitrogen. Root axis activity for both enzyme classes was not significantly 

Fig. 1. Mean cellulase and leucine aminopeptidase activity (pmol mm� 2 h� 1) along the root axis of Proctor roots grown in isolation (P), intra- (PP) and inter- (TP) 
cultivar competition (n ¼ 12). A ¼Mean root axis cellulase activity, B ¼Mean root axis leucine aminopeptidase. Boxplot shows the median, first and third quartiles 
and whiskers the maximum and minimum values. Significant differences (P ¼ <0.05) denoted by asterisk. 
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temporally dynamic (the interaction between time and treatment) when 
the focal plant (Proctor cultivar of barley) was in intra- and inter- 
cultivar competition compared to isolation. However, using the Spohn 
and Kuzyakov (2014) root associated area approach, cellulase activity 
was found to be delayed when in intra- and inter-cultivar competition 
compared to isolation (significant interaction between treatment and 
time). In contrast, leucine aminopeptidase root associated area was 
delayed when in intra-competition, but not inter-cultivar competition 
compared to isolation (significant interaction between treatment and 
time). This demonstrates that the temporal dynamics of soil enzyme 
activity were influenced by plant-plant competition independent of 
other environmental factors, that plant-plant competition did not have a 
uniform effect on different classes of soil enzymes, and that the observed 
effects are also dependent on the method of measurement. 

4.1. Root axis activity 

Both cellulase and leucine aminopeptidase mean root axis activity 
was much higher than the whole sampled area, 3–4 times higher for 
leucine aminopeptidase and 4–6 times for cellulase. This is most likely 
due to the influence of plant root exudates, which provide a source of 

labile carbon, increase the rate of SOM mineralisation and, conse-
quently, carbon and nitrogen cycling in the rhizosphere compared to 
bulk soil (Bengtson et al., 2012; Murphy et al., 2017). However, along 
root activity did not vary significantly over time for either enzyme class. 
The area of root system sampled was in the zone of maturation, a zone 
associated with a stable rate of nutrient uptake (Giles et al., 2018). We 
hypothesised that plant-plant competition would have changed the 
temporal dynamics of root axis enzymatic activity, but it seems the 
inherent stability of this root zone was greater than the influence of 
plant-plant competition. Other root zones are associated with uptake of 
specific nutrients, for example the apical root zone is associated with 
iron absorption and the elongation zone with sulphur uptake (Walker 
et al., 2003). Therefore, depending on the root zone sampled and 
nutrient studied, there will likely be differing patterns of enzyme 
activity. 

There is the potential for some enzyme activity to be produced by the 
plants themselves: up to 10% (Xu et al., 2014). Plant-derived leucine 
aminopeptidases genes have been detected in the plant genome, and 
found to have a role in protein turnover (Bartling and Weiler, 1992). 
Plants also have cellulases, but these are used for remodelling of cell 
walls and are not thought to be strong enough for large scale 

Fig. 2. Images of the sampled rhizoboxes, showing the consistent sampling location used in this study and the relationship between root presence and soil 
enzyme activity. 
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degradation of cellulose (Hayashi et al., 2005). Therefore, due to their 
intra-cellular roles, it is unlikely that plant-derived enzymes contributed 
to the enzyme activity outside of the plant roots detected in this study. 

4.2. Root associated area 

Cellulase and leucine aminopeptidase root associated area were not 
solely confined to the root axis, with increased activity across the 
sampled areas, including background soil activity. Cellulase root asso-
ciated area was temporally dynamic, with a delay in peak enzyme 

Fig. 3. Soil zymography images showing (pmol mm� 2 h� 1) cellulase activity around Proctor roots sampled from plants grown in isolation and competition as well as 
a bare soil control (n ¼ 3). A. ¼ Bare soil control, B. ¼ Proctor, C. ¼ Proctor and Proctor, D. ¼ Proctor and Tammi. 

Fig. 4. Soil zymography images showing (pmol mm� 2 h� 1) leucine aminopeptidase activity around Proctor roots sampled from plants grown in isolation and 
competition as well as a bare soil control (n ¼ 3). A. ¼ Bare soil control, B. ¼ Proctor, C. ¼ Proctor and Proctor, D. ¼ Proctor and Tammi. 
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activity (i.e. when the largest percentage area of membrane was 
recording either cellulase or leucine aminopeptidase activity) when in 
competition compared to isolation. The zymography assay measured 
total cellulase activity of multiple microbial functional groups and did 
not differentiate between exo- and endo-glucanase activities. Exo- 
glucanases break glucose from the end of cellulase polymers, whilst 
endo-glucanases break bonds within the cellulose chains (Pappan et al., 
2011). There may have been differing dynamics if endo- and 
exo-glucanase activity were examined separately. 

Leucine aminopeptidase root associated area also demonstrated a 
delay in activity but only when Proctor was in intra-cultivar 

competition. This delay in leucine aminopeptidase root associated area 
when in intra-cultivar competition echoes a similar trend to the delay of 
14.5 days in Proctor peak above-ground nitrogen accumulation rate 
found in a previous study (Schofield et al., 2019). The mechanism that 
links these two observations is not clear. Proctor plants may have 
delayed peak root exudate production when in intra-cultivar competi-
tion, influencing microbial activity to limit competition between the two 
plants. However, there may also be further mechanisms, for example 
involving plant-microbe signalling, already known to be important in 
recruitment of microbial symbionts and plant growth promoting rhizo-
bacteria (Chagas et al., 2018; Labuschagne et al., 2018). 

Fig. 5. The mean percentage of sampled areas in which the activity of cellulase and leucine aminopeptidase were recorded (n ¼ 12). Cellulase activity (a) and leucine 
aminopeptidase (b) activity were sampled surrounding Proctor roots outside the competition zone of plants grown in isolation, intra-cultivar competition and inter- 
cultivar competition. Significant differences (P ¼ <0.05) denoted by asterisks. 
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As the same area was sampled consistently over the experiment, the 
sampled area became increasingly far from the root tip, a known hotspot 
of soil microbial community enzyme activity. This may have influenced 
the activity of the two enzyme classes. Phosphatase activity has previ-
ously been found to vary with distance from the root tip (Giles et al., 
2018), which may have influenced the results presented. However, there 
was no significant difference in root biomass or total root length be-
tween any of the treatments (Table 1), indicating that the relative 
sampling position remained consistent across treatments in this study. 
One benefit of sampling in the mature root zone is that it allows com-
parisons among treatments as the sampled areas were all a similar dis-
tance from the root tip at each time point. The zone of maturation is a 
region of the root with less exudation compared to the zone of elonga-
tion (Badri and Vivanco, 2009), but with root hairs that provide greater 
surface area for nutrient absorption (Gilroy and Jones, 2000). There may 
have also been an influence of root branching which occurred in some of 
the sampled areas due to plant foraging for nutrients (Forde, 2014). This 
hypothesis requires further sampling of a greater proportion of the root 
system for a high resolution of spatiotemporal trends in microbial 
enzyme activity with root branching. 

4.3. What role could root exudates have in the temporal dynamics of 
enzyme activity? 

The different patterns of soil enzyme activity associated with the 
three treatments may have been driven by differences in root exudation, 
with changes in root exudate composition then affecting microbial ac-
tivity. Plants select for a specific microbial community through root 
exudates (Hu et al., 2018; Shi et al., 2011). Therefore, root exudates may 
do more than simply increase the rate of nitrogen mineralisation (Mergel 
et al., 1998), and may also influence the timing of mineralisation by 
influencing soil microbial community composition. 

Root exudation quality and quantity is known to change over time 
(van Dam and Bouwmeester, 2016) with root exudates increasing the 
carbon to nitrogen ratio in the rhizosphere, regulating mining of SOM by 
the soil microbial community (Chaparro et al., 2012; Meier et al., 2017). 
Exudates also act as a form of signalling between plants (van Dam and 
Bouwmeester, 2016), eliciting a change in root architecture (Caffaro 
et al., 2013), branching (Forde, 2014) and biomass allocation (Schmid 
et al., 2015). Therefore, the observed delay in soil enzyme activity could 
be regulated by temporally dynamic root exudation. Root branching 
would have also increased the total root area within the measurement 
areas, potentially increasing the total exudates available to the soil mi-
crobial community and promoting greater enzymatic activity. Conse-
quently, the active control of root exudates instead of root biomass or 
surface area alone may be an important part of the mechanism behind 
the observed shifts in soil microbial community activity. This is an 
exciting avenue for future research. 

4.4. Temporal dynamics of enzyme activity in response to plant-plant 
competition 

The soil enzyme classes in this study demonstrated different tem-
poral patterns in activity in response to changes in plant-plant compe-
tition. Relative to the isolated-plant control, the temporal dynamics of 
cellulase root associated area were influenced by both intra- and inter- 
cultivar competition, whereas leucine aminopeptidase dynamics were 
only significantly influenced by intra-cultivar competition. 

The influence of plant-plant competition on the temporal dynamics 
of root associated enzyme area occurred beyond the immediate zone 
surrounding the root. This contrasts with the results of Ma et al. (2018), 
who found a strong localisation of leucine aminopeptidase and cellulase 
activity close to plant roots across the whole root system. Furthermore, 
they found that the root associated area did not increase over time 
around lentil roots (Lens culinaris) and only began to increase around 
Lupin (Lupinus albus) roots eight weeks into the study (Ma et al., 2018). 

This is much later than the barley in our study, where sampling occurred 
in the first month of growth, the period prior to peak nitrogen accu-
mulation rate in these barley cultivars (Schofield et al., 2019). This is 
likely to be a period of soil microbial community priming to mine for 
nitrogen within soil organic matter and may account for the differences 
between Ma et al.’s and our study. In our study the extent of the 
rhizosphere and therefore activity of leucine aminopeptidase and 
cellulase may have increased over time, as labile carbon in root exudates 
diffused away from roots and the zone of nutrient depletion surrounding 
roots enlarged. 

Our study does however have its limitations. The rhizobox system is 
a very artificial setup with roots growing in a single plane, which would 
influence root growth and development. This does not account for the 
3D nature of root growth and interactions with the soil particles and the 
soil microbial community. More complex interactions and temporally 
dynamic responses may be occurring in a 3D system through localised 
changes in the soil microbial community. Therefore, development of the 
zymography method in order to sample 3D root systems is a natural 
avenue for future research. 

The temporal dynamics of enzyme activity are likely to be strongly 
influenced by environmental conditions including temperature (Stein-
weg et al., 2012), soil moisture (Barros et al., 1995) and soil nutrient 
concentration (Mbuthia et al., 2015). This study demonstrates that the 
temporal dynamics of the two groups of enzymes, both involved in 
nutrient turnover, were affected differently by plant-plant competition 
when grown in constant environmental conditions. This could be due to 
the composition of root exudates and concentration of secondary me-
tabolites that selected for a soil microbial community with specific 
functions (Hu et al., 2018; Shi et al., 2016). Plants could have therefore 
regulated soil microbial community activity through the differing 
sensitivity of microbial taxa to root exudates (Shi et al., 2011; Zhang 
et al., 2017). 

5. Conclusions 

Root axis activity of leucine aminopeptidase and cellulase was not 
temporally dynamic in response to plant-plant competition. Plant-plant 
competition influenced the root associated area of the two enzymes in 
this study differently. The extent of root associated cellulase area was 
delayed by inter- and intra-cultivar competition, whilst leucine amino-
peptidase root associated area was only delayed by intra-cultivar 
competition. This may have been mediated through root exudates 
selecting for specific microbial functions. Therefore, conclusions con-
cerning the temporal dynamics of nutrient cycling are likely to be 
dependent on the enzyme class being studied and method of image 
analysis used. Changes in these temporal dynamics may have been 
mediated through changes in the quantity and composition of root ex-
udates by plants in competition, leading to a delay in peak soil enzyme 
activity. The extent of plant root influence was found to increase over 
time as exudates diffused away from roots, an important factor in studies 
of the soil microbial community activity. This study therefore demon-
strates the close link between the temporal dynamics of plant and mi-
crobial resource capture and the influence each process has on the other. 
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