

Please cite the Published Version

Skowron, Agnieszka ^(D), Lee, David S, Rodriguez De Leon, Ruben, Lim, Ling ^(D) and Owen, Bethan ^(D) (2021) Greater fuel efficiency is potentially preferable to reducing NOx emissions for aviation's climate impacts. Nature Communications, 12 (564). ISSN 2041-1723

DOI: https://doi.org/10.1038/s41467-020-20771-3

Publisher: Nature Research (part of Springer Nature)

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/627048/

Usage rights: (cc) BY

Creative Commons: Attribution 4.0

Additional Information: This is an Open Access article published in Nature Communications.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

ARTICLE

https://doi.org/10.1038/s41467-020-20771-3

COMMUNICATIONS

OPEN

Greater fuel efficiency is potentially preferable to reducing NO_x emissions for aviation's climate impacts

Agnieszka Skowron (▶^{1⊠}, David S. Lee (▶¹, Rubén Rodríguez De León (▶¹, Ling L. Lim (▶¹ & Bethan Owen (▶¹

Aviation emissions of nitrogen oxides (NO_x) alter the composition of the atmosphere, perturbing the greenhouse gases ozone and methane, resulting in positive and negative radiative forcing effects, respectively. In 1981, the International Civil Aviation Organization adopted a first certification standard for the regulation of aircraft engine NO_{v} emissions with subsequent increases in stringency in 1992, 1998, 2004 and 2010 to offset the growth of the environmental impact of air transport, the main motivation being to improve local air quality with the assumed co-benefit of reducing NO_x emissions at altitude and therefore their climate impacts. Increased stringency is an ongoing topic of discussion and more stringent standards are usually associated with their beneficial environmental impact. Here we show that this is not necessarily the right direction with respect to reducing the climate impacts of aviation (as opposed to local air quality impacts) because of the tradeoff effects between reducing NO_x emissions and increased fuel usage, along with a revised understanding of the radiative forcing effects of methane. Moreover, the predicted lower surface air pollution levels in the future will be beneficial for reducing the climate impact of aviation NO_x emissions. Thus, further efforts leading to greater fuel efficiency, and therefore lower CO₂ emissions, may be preferable to reducing NO_x emissions in terms of aviation's climate impacts.

¹ Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK. [⊠]email: a.skowron@mmu.ac.uk

mission standards for aircraft NO_x are set by the Committee on Aviation Environmental Protection of the International Civil Aviation Organisation (ICAO-CAEP). In the past, aircraft NO_x emissions standards have been set to protect local air quality and have been assumed to have co-benefits for climate protection, as aircraft NO_x results in an overall warming effect at present^{1,2}. Emissions of NO_x , whether from aviation or other sources, result in the short-term formation of ozone (O_3) (a warming) and the long-term destruction, via hydroxyl (OH) production, of small amounts (~a few percent) of ambient methane (CH₄) (a cooling)¹. In addition, the methane reduction results in a long-term reduction in O_3 (cooling)³ and a long-term reduction in H₂O in the stratosphere (cooling) from reduced oxidation of methane⁴. The net balance of these components ranges from positive for aviation NO_{x2} to negative for shipping and surface NO_r^{4-6} .

The general scientific advice given to the ICAO-CAEP to date has been to reduce emissions of both NO_x and CO₂. However, reducing both is problematic because of a technological trade-off between aviation NO_x and CO₂^{7–9}. Furthermore, one has to be very careful trading short-lived climate forcers against long-lived greenhouse gases, e.g. the reduction of NO_x emissions might result in a fuel penalty that in fact can lead to a net climate disbenefit¹⁰. Here, we present a new analysis of future aviation emission scenarios and the balance of NO_x from surface and aircraft sources, that makes this recommendation uncertain in terms of climate benefits and we suggest that the scientific evidence for reducing aircraft NO_x needs to be revisited.

At subsonic aircraft cruise altitudes of 8-12 km, the atmosphere is sensitive to aircraft NO_x emissions where O_3 production is four times more efficient than near the ground¹¹ and the aviation net NO_x effect also depends on the state of the atmosphere into which NO_x is emitted¹². Changes in emissions of any surface source that take place as a result of various air quality and climate policies may have impacts on background conditions, and consequently might have an impact on the climate effect of aviation NO_x emissions, which is not independent of background conditions. The changes in the tropospheric composition and global radiative forcing (RF) for various scenarios of anthropogenic O3 precursor emissions have been widely explored^{13–15}. However, the impact of changing surface emissions on aircraft NO_x climate effects has been virtually left out of discussions and sensitivity experiments can only be found in one study³. This present study aims to fill this gap and start the discussion on how future anthropogenic background emissions can affect the aviation climate impact.

Using a suitable three-dimensional chemistry transport model (CTM) of the global atmosphere (MOZART3)^{16,17}, we examine the changes in the tropospheric composition and the net RF from aviation NO_x emissions for 30% reductions in the most recent present-day inventories available (2006) of O₃ precursor emissions (NO_x, carbon monoxide - CO, non-methane volatile organic compounds - NMVOC) and for a future (2050) range of Representative Concentration Pathways (RCP) scenarios together with ICAO-CAEP aviation emission projections (see Methods for details of models used and simulations). These simulations allow an analysis of the relative benefits to reducing aviation impacts from reducing aviation and background NO_x emissions.

Results

Aviation net NO_x radiative forcing in 2050. The resulting RFs (Table 1) highlight that an aviation net NO_x RF can vary greatly depending on the background condition, and both anthropogenic surface and aircraft emissions affect the aviation net NO_x RF. At present, all scenarios predict increased aircraft NO_x emissions in the year 2050 that reach 2.17 Tg(N) year⁻¹ for the low air-traffic

Fig. 1 Net NO_{x} radiative forcing by emission rate, original CH_4

parameterisation. Aviation net NO_x radiative forcing (RF) (the sum of the short-term positive O₃ RF perturbation and the negative RF terms caused by a reduction in CH₄ lifetime, see Methods), by aviation NO_x emission rate according to a range of background emission scenarios, utilising the IPCC Fifth Assessment Report⁵⁹ simplified expression for the calculation of CH₄ forcing. Aviation net NO_x RF systematically increases with increasing NO_x emissions from aviation, showing a variation according to the background surface emissions, with high mitigation (RCP 2.6) having a smaller aviation net NO_x RF than, lower mitigation scenarios (RCP 4.5, RCP 8.5) for the same aviation NO_x emission. Overall uncertainties are indicated by the grey shading, which is one standard deviation (68% confidence interval) from the ensemble of 20 NO_x studies presented in Supplementary Fig. 1.

growth and optimistic technology development and 5.59 Tg(N) year⁻¹ for high air-traffic growth and low technology development: which compared with the year 2006, 0.71 Tg(N) year-1, are significant increases. In contrast, reductions of surface O3 precursor emissions are projected under each of the applied RCP scenarios for the year 2050, for which the cleanest background is predicted under RCP 2.6. The total aircraft net NO_x RF in 2006 is 3.5 mW m^{-2} and it increases to between $5.8 \text{ and } 12.5 \text{ mW m}^{-2}$ in 2050 for low- and high-growth scenarios, respectively; within each RCP scenario, the net aviation NO_x RF can differ by $\sim 23\%$, depending on background conditions. The largest aviation net NO_x RF is observed under RCP 8.5 and the smallest for RCP 2.6 (for equal aviation NO_x emissions). This significant increase in the aviation net NO_x RF for 2050 is driven mainly by an intense rise of aviation NO_x emissions; however, reduced surface emissions resulting in a cleaner background atmosphere in the year 2050 to some extent mitigates the aviation impact (Fig. 1). For instance, if the anthropogenic surface emissions were kept constant at present levels, the 2050 aircraft net NO_x RF of the high air-traffic growth would be 17.5 mW m^{-2} , that is 48% greater than under the 2050 RCP 2.6 and 28% greater than under 2050 RCP 8.5 background conditions.

This observed increase of aviation net NO_x RFs in the future is in agreement with other studies that have explored the climate impact from aviation NO_x emissions in 2050. Global CTMs and chemistry-climate models (CCMs) using 2050 aviation emissions derived from the Aviation Environmental Design Tool (AEDT) and the RCP 4.5 background scenario have been employed^{18–20}. Unger et al.¹⁹ calculated that both the positive short-term O₃ and negative CH₄ RFs in 2050 increased by ~80% for the AEDT Base scenario (4.0 Tg(N) year⁻¹), whereas Khodayari et al.²⁰ estimated

Emissions			RF, mW m ⁻²					
	Background	Aircraft	sO ₃	CH₄	10 ₃	swv	Net NO _x	
2006 IPCC AR5	Base	REACT4C	14.8	-6.9	-3.4	-1.0	3.5	
	-30% NO _x		17.7	-9.5	-4.8	-1.4	2.0	
	-30% CO		14.1	-6.7	-3.4	-1.0	3.0	
	-30% NMVOC		13.9	-6.7	-3.4	-1.0	2.8	
	-30% ALL		16.2	-8.5	-4.3	-1.3	2.2	
2050	RCP 8.5	Low NO _x High Tech	45.9	-23.4	-11.7	-3.5	7.2	
	RCP 4.5	_	43.7	-22.6	-11.3	-3.4	6.4	
	RCP 2.6		40.6	-21.1	-10.5	-3.2	5.8	
	RCP 8.5	High NO, Low Tech	96.3	-50.8	-25.4	-7.6	12.5	
	RCP 4.5		90.7	-48.6	-24.3	-7.3	10.6	
	RCP 2.6		83.9	-45.3	-22.7	-6.8	9.2	

Table 1 Aircraft NO_x radiative forcing (RF, mW m⁻²) for different background and aircraft emission scenarios in 2006 and 2050. Net NO_x RF is a sum of a short-term O₃ (sO₃), CH₄, CH₄-induced O₃ (IO₃) and SWV.

the 2050 short-term O₃ RF to be 48-75% greater than in 2006, and the 2050 CH₄ RF increased by 57-80%. From these studies, the available 2050 short-term O3 RF ranged from 30 to 162 mW m^{-2} and the CH₄ RF varied from -36 to -72 mW m^{-2} (all estimates are for AEDT-Base and RCP 4.5 scenarios)^{18,21}. The 90.7 and $-48.6 \text{ mW} \text{ m}^{-2}$ calculated in this study with the RCP 4.5 background emissions are in line with estimates found in the literature. The existing spread in the calculated aviation NO_xinduced effects is the result of both differences in the projections of aircraft emissions and the inter-model differences. The latter difference raises an important level of uncertainty³, for which the differences in model chemistry schemes and the treatment of physical processes play an important role. Also, due to the inclusion of more feedback processes and coupled interactions (particularly aerosol and cloud coupling processes), different responses between the offline models (CTMs) and the fully coupled models (CCMs) can be observed¹⁸. However, based on the reported net NO_x RFs available in the literature any systematic differences between CTMs and CCMs cannot be identified (Supplementary Fig. 1 and Supplementary Note 2).

The impact of surface emissions on aviation net NO_x radiative forcing. Not only does the overall reduction of background emissions (i.e. different RCP scenarios) change the aircraft impact (same aircraft emissions), but also the mix of these reductions can have an impact. This is demonstrated by reducing individual precursors by -30% (NOx, CO, NMVOC), and all together (ALL), which changes the oxidative capacity of the atmosphere (Fig. 2). Figure 2 illustrates that a reduction of background NO_x emissions (alone) leads to a significant decrease in hydroxyl radical (OH) concentrations, while the reduction of CO and NMVOC emissions (individually) increases OH concentrations as their oxidation process becomes limited, leading to a reduced production of hydroperoxy radicals (HO₂). As a result of the above, the reduction in surface NO_x emissions increases CH₄ lifetime and decreases the concentration of tropospheric O₃, while the reductions of CO and NMVOC cause the decrease of both tropospheric O₃ and CH₄, an observation that is consistent with other studies^{5,22}. These dependencies are observed not only near the ground but also in the upper troposphere-lower stratosphere (UTLS) region, where most of aviation emissions occur; therefore, affecting aviation effects (Supplementary Fig. 2). In general, reducing surface emissions of NOx, CO and NMVOC individually decreases the net aviation NO_x RF by up to 43%, the most effective being a reduction in surface NO_x emissions alone, and the least effective being a reduction in CO, which results in a reduction of aviation net NO_x RF of 14% (Table 1). A

Fig. 2 The oxidative capacity of the troposphere under different background conditions. By reducing emissions of individual precursors by 30% (NO_x, CO, NMVOC), and all together (ALL) changes the concentrations of hydroxyl radical and hydroperoxyl. The oxidative capacity of the atmosphere to a great extent controls the abundance of most trace gas species, hence affecting CH₄ lifetime and concentration of O₃ (see text for details). Values are averaged globally within the vertical domain extending from surface to 100 hPa and modelled by MOZART-3 CTM.

simultaneous reduction of all surface emissions by 30% decreases the aviation net NO_x RF by 37% (for the same aircraft emissions). The reduction of surface NO_x has the greatest potential in affecting the aviation net NO_x RF; any 1% change of surface NO_x emissions, modifies aircraft net NO_x RF by ~1.5% (this estimate is inventory-dependent and here it varies from 1.4% to 1.6% for REACT4C 2006 data and high NO_x 2050 scenario, respectively).

There is a well-known increase in O_3 production (per unit of emitted N) as background NO_x levels decrease and this is what we observe here as well. However, we also calculate a strong dependence of aircraft CH₄ lifetime reduction on surface emissions that becomes more efficient with decreasing NO_x . So, for a cleaner NO_x background the positive short-term O_3 RF increases, as expected, but the associated CH₄ RF (and all the CH₄-induced RFs) reduction increases even more, explaining why the net NO_x RF decreases, rather than increasing³ for a cleaner NO_x background. This strong CH₄ response is possibly triggered by increased CH₄ lifetime due to reduced oxidative capacity (Fig. 2). The 30% reduction of surface NO_x increases the positive short-term O_3 RF by 16%; however, the magnitude of the negative long-term CH_4 RF increases even more, by 28%. Thus, less background NO_x reduces the net NO_x effect from aviation (for the same aviation NO_x emissions). Moreover, it turns out that decreasing surface NO_x emissions plays a larger role in reducing the aviation net NO_x RF than decreasing aircraft NO_x emissions (Fig. 3) in percentage terms. Figure 3 shows a steeper slope in the reduction of net NO_x RF from percentage changes in surface emissions than from aviation emissions themselves. For example, in order to reduce the global climate impact of aviation NO_x by

Fig 3 Aviation net NO_x radiative forcing change versus percentage change in NO_x emission rates from surface and aviation sources. The aviation NO_x response has been explored for varying, both, surface (red) and aviation (blue) emissions (dots are individual experiments, lines are the best fit lines). In the red case whilst surface NO_x emissions are changing, aircraft NO_x emissions are kept constant and this has been analysed for the highest and lowest projected range of aircraft NO_x emissions, 2050 HighNO_x-LowTech scenario (red dashed line; n = 2, $r^2 = 1.00$) and 2006 REACT4C (red dotted line; n = 4, $r^2 = 1.00$, p < 0.05). In the blue case whilst aircraft NO_x emissions are changing, the surface NO_x emissions are kept constant and this has been analysed for the highest and lowest projected range of surface NO_x emissions, 2005 IPCC AR5 (blue dotted line; n = 4, $r^2 = 0.998$, p < 0.05) and 2050 RCP 2.6 (blue dashed line; n =3, $r^2 = 0.998$, p < 0.05). The exact experiments that are used here are presented in Supplementary Table 1.

1 mW m⁻², a 17% reduction in present levels of surface NO_x emissions is needed; in the case of aviation NO_x, it requires the reduction of emissions by 35%. Reducing aviation NO_x emissions by such a large amount (35%) for, e.g. a 1 W m⁻² net NO_x RF reduction could be quite technologically challenging and have a strong risk of increasing aircraft CO₂ emissions with a potentially perverse total RF outcome¹⁰. If a scenario is envisaged of falling surface NO_x emissions, reducing aircraft NO_x emissions at the expense of either missed opportunities to reduce CO₂ emissions or even actually increasing CO₂ emissions could be exactly the wrong thing to do and induce perverse climate outcomes.

Discussion

The short-term O₃ RF is very sensitive to changes in all explored changes in surface precursor emissions (NO_x, CO and NMVOC). The long-term CH₄ RF is mainly affected by the reduction in surface NO_x emissions and it changes very little in the case of the reductions of surface CO and NMVOC alone (probably due to the decrease in OH consumption by CO). This is in agreement with responses from other sensitivity tests performed with UCI CTM by Holmes et al.,³ with the difference that our short-term aviation O₃ RF is not as responsive to surface CO emissions as those modelled with the UCI CTM. In addition, after accounting for the long-term negative RFs that were not given in their 2011 paper (long-term O₃) and reductions in stratospheric water vapour, SWV), they also observe that the reduction in surface NO_x emissions decreases the RF from aviation NO_x, a 42% reduction in the aviation net NO_x RF resulting from a halving of surface NO_x emissions (C. D. Holmes, personal communication, October 19, 2018), which is in reasonable agreement with the sensitivity shown here. In general, to a great extent, the long-term CH4-mediated effects drive the response of aviation net NO_r RF resulting from modified NO_r emissions. Taking into account that these long-term RFs are fully parametrised as well as the fact that the CH₄/O₃ ratio is very model specific⁴ make the impact of surface NO_x emissions on aircraft net NO_x RF relatively more uncertain than the impact of other O₃ precursor emissions. For example, if the new CH₄ RF simplified expression that accounts for short-wave forcing is used²³, reduction in surface NO_x emissions not only decreases the aviation net NO_x RF but also changes its sign from positive to negative. Table 2 gives the recalculated aviation RF numbers from Table 1 using a simplified expression for RF of CH₄ as presented by Etminan et al.²³ The improved understanding of CH4 RF has a significant impact on aviation estimates as it increases the negative CH₄ RF from aviation NO_x emissions by ~20%, which substantially reduces the aircraft net NO_x RFs (Table 2). Moreover, the revision to the CH_4 term provides a perspective that as aviation NO_x emissions are reduced

Emissions			RF, mW m ⁻²					
	Background	Aircraft	sO ₃	CH₄	10 ₃	SWV	Net NO _x	
2006 IPCC AR5	Base	REACT4C	14.8	-8.4	-4.2	-1.3	0.9	
	-30% NO _x		17.7	-11.7	-5.9	-1.8	-1.6	
	-30% CO		14.1	-8.2	-4.1	-1.2	0.5	
	-30%NMVOC		13.9	-8.3	-4.1	-1.2	0.3	
	-30% ALL		16.2	-10.5	-5.2	-1.6	-1.1	
2050	RCP 8.5	Low NO _x High Tech	45.9	-28.7	-14.3	-4.3	-1.4	
	RCP 4.5		43.7	-27.8	-13.9	-4.2	-2.3	
	RCP 2.6		40.6	-26.0	-13.0	-3.9	-2.4	
	RCP 8.5	High NO _x Low Tech	96.3	-62.2	-31.1	-9.3	-6.3	
	RCP 4.5		90.7	-59.9	-29.9	-9.0	-8.1	
	RCP 2.6		83.9	-56.0	-28.0	-8.4	-8.5	

Table 2 The recalculated aircraft NO_x radiative forcing (RF) from Table 1 using a revised simplified expression for the RF of CH_4 as presented by Etminan et al.²³.

Fig. 4 Net NO_x radiative forcing by emission rate, updated CH_4

parameterisation. Aviation net NO_x radiative forcing (RF) (the sum of the short-term positive O₃ RF perturbation and the negative RF terms caused by a reduction in CH₄ lifetime, see Methods), by aviation NO_x emission rate according to a range of background emission scenarios, utilising the updated simplified expression for the calculation of CH₄ forcing of Etminan et al.²³ Aviation net NO_x RF systematically decreases with increasing NO_x emissions from aviation, showing a variation according to the background surface emissions, with high mitigation (RCP 2.6) having a smaller aviation net NO_x RF than, lower mitigation scenarios (RCP 4.5, RCP 8.5) for the same aviation NO_x emission. The pattern of behaviour is in contrast to Fig. 1 because the updated CH₄ forcing expression accounts for the short-wave forcing of CH₄, increasing CH₄ RF estimates by approximately 25%, which in the case of aviation net NO_x impacts greatly increases the negative terms from the reduction in CH₄ lifetime from aviation NO_x, tipping the net NO_x

emissions. Overall uncertainties are indicated by the grey shading, which is one standard deviation (68% confidence interval) from the ensemble of 20 NO_x studies presented in Supplementary Fig. 1.

an *increase in* the global aviation net NO_x RF is shown, and vice versa (Fig. 4 and Table 2). This revised formulation of the CH₄ for RF does not contradict findings presented in this study, in terms of the sensitivity of responses, but turns out to be crucial for quantification of net NO_x RFs and it provides a new perspective on the potential RF impact from future aviation NO_x emissions. Other potential effects from NO_x emissions include the direct enhancement of nitrate aerosol and indirect formation of sulfate aerosol (more efficient conversion of sulfur dioxide to sulfuric acid via increased OH). These aerosol effects are associated with large uncertainties and are addressed in only a few modelling studies^{24,25} and were not considered here. However, the effects of NOx on aerosol abundances are expected to result in negative forcings, such that inclusion of these processes would increase the negative NO_xassociated forcings and be consistent with the findings of this work that emphasizes the role of the negative forcings.

These new results (Table 2 and Fig. 4) show that as a generality, the net NO_x RF from aviation decreases with air-traffic growth and corresponding increased aviation NO_x emissions with reduced background emissions. The predicted cleaner background in the future acts with these reduced net NO_x RFs. Therefore, it is worth highlighting that the ongoing efforts in cutting ground-level air pollution serve not only air quality improvements but are also beneficial for reducing the climate impact of aviation NO_x emissions.

Climate change is considered to affect tropospheric chemistry. The modified oxidising capacity is expected to influence methane lifetime such that in a wetter and warmer climate it might either shorten or increase^{26,27} depending on the scenario. Also, on one hand, the increased water vapour might lead to increased O₃ destruction in the tropics, whereas on the other, enhanced stratosphere-troposphere exchange could increase the net O₃ flux to the troposphere^{14,28}. The impact of the physical aspects of climate change on tropospheric composition is complex and is still highly uncertain. The inclusion of an interactive climate in the experiments might affect the results presented in this study. However, it is not expected that the current findings would become irrelevant, since it is the emission scenarios that to a great extent affect the future evolution of tropospheric chemistry^{29,30}. The decreases in surface O₃ precursor emissions over present-day values presented in RCP dataset are consistent with most other future emission scenarios that consider even more extensive air quality legislation, e.g. ECLIPSE (Evaluating the CLimate and Air Quality ImPacts of Short-livEd Pollutants) or SSPs (Shared Socioeconomic Pathways) databases. This is in stark contrast to aviation emissions, for which strong growth is predicted and the global civil fleet may more than double within the next 20 years, from ~21,000 aircraft in 2018 to ~48,000 aircraft in 2037³¹. Whilst there is a possibility for the net NO_x RF to be weakened due to a cleaner background, this is not as simple for an aviation CO₂ RF. CO₂ accumulates in the atmosphere due to its fractional millennial timescale which means that its climate effect is determined by the cumulative emissions over time. As a consequence, the RF in 2018 from aircraft CO₂ emissions is around twice greater than that from aircraft NO_x emissions³². However, what is even more important is the difference in the nature of their responses (Supplementary Fig. 3). At present, the temperature response from a unit emission of aircraft NO_x is the strongest in the year of emission and it diminishes thereafter. Moreover, after around 15 years it changes the sign from positive (warming) to negative (cooling) to disappear after around 60 years. On the contrary, the emission of CO2 leads to a uniform positive (warming) temperature response from increased atmospheric levels of this gas and after a 100 years, the unit emission emitted in the year 1 still provides a significant positive signal (as modelled by the simple climate model, LinClim, see Methods).

There are various measures to reduce fuel demand (and therefore CO₂ emissions) such as market-based measures or stricter aircraft CO₂ emission standards; the latter, as it is associated with trade-off between aviation CO_2 and NO_x might raise some dilemmas. In view of the low impact of reducing aviation NO_x any potential trade-offs with CO_2 should not be risked and also any potential savings in CO₂ should not be forsaken in the pursuit of lower NO_x in terms of climate protection¹⁰. We acknowledge the necessity to reduce aircraft NO_x emissions for local air quality benefits; the source apportionment in any given location is likely to be unique, depending on volume of air traffic and other local sources. However, the aircraft-related emissions of NO_x are of clear importance for many locations. From a climate benefit point of view, we suggest that any vision of more stringent NO_x regulations needs to be revisited, as it might be more worthwhile to concentrate more on CO2 reductions at the cost of NO_x, not vice versa, especially in the light of necessary forthcoming decarbonisation to avoid an³³ increase of 1.5°. Coherent comparative assessments that would consider both climate and air quality impacts are needed. There are just a few studies that try to tackle this issue³⁴⁻³⁶ and none that would consider these aspects under changing background conditions.

The CO_2 emissions still provide the majority of the long-term warming (if not the instantaneous RF) from aviation, and a smaller change in its emission affects the total forcing much more than an equivalent change in NO_x emission. The mitigation of non-CO₂ effects is scientifically uncertain and trading against CO₂ could produce perverse outcomes¹⁰, the climate benefits from any reduction of aviation CO₂ emissions are indisputable.

Methods

Chemistry transport model and emission data. The model for ozone and related chemical tracers, version 3 (MOZART-3) was used for this study. This is a 3D CTM that has been evaluated by Kinnison et al.¹⁶ and used for an extensive range of different applications^{37,38}, including studies dealing with the impact of aircraft NO_x emissions on atmospheric composition^{39,40}.

MOZART-3 accounts for advection based on the flux-form semi-Lagrangian scheme⁴¹, shallow and mid-level convection⁴², deep convective routine⁴³, boundary layer exchanges⁴⁴, or wet and dry deposition^{45,46}. MOZART-3 reproduces detailed chemical and physical processes from the troposphere through the stratosphere, including gas-phase, photolytic and heterogeneous reactions. The kinetic and photochemical data are based on the NASA/JPL evaluation⁴⁷.

The model configuration used in this study includes a horizontal resolution of T42 (~ $2.8^{\circ} \times 2.8^{\circ}$) and 60 hybrid layers, from the surface to 0.1 hPa. The transport of chemical compounds is driven by the meteorological fields from the European Centre for Medium Range Weather Forecast (ECMWF), 6-h reanalysis ERA-Interim data for the year 2006⁴⁸. This meteorological conditions were used for all runs, including the 2050 simulations.

The aviation NO_x emissions for the years 2006 and 2050 were determined based on the REACT4C base case dataset (CAEP/8 movements)³⁹ and ICAO-CAEP⁴⁵ aviation emission projections, respectively. Emissions of aircraft NO_x were calculated to be 0.71 Tg(N) year-1 in 2006 and 2.17 Tg(N) year-1 in the 2050 low air-traffic growth and optimistic technology-development scenario and 5.59 Tg(N) year-1 in the 2050 high air-traffic growth and low technology-development scenario. The 2050 aviation scenarios were chosen to represent the highest and lowest projected range of possible aircraft NOx emissions in 2050 from data derived from the ICAO-CAEP trends work⁴⁹. First, three aviation traffic demand forecasts out to 2040 are produced (a low, central and high traffic-demand scenario) these demand scenarios are translated by ICAO-CAEP to fleet scenarios, fuel efficiency scenarios are then superimposed upon the fleet scenarios to produce a range of technology and operational improvement scenarios ranging from a technology freeze, through to low, moderate, advanced and optimistic improvement scenarios. Extrapolation of the fuel burn 2040 results out to 2050 is also undertaken and reported by the ICAO-CAEP. Further to the fuel efficiency and traffic demand assumptions, two separate NOx scenarios were developed by ICAO-CAEP resulting in the derivation of two future 2050 fleetwide NO_x emission indices (EINO_x in terms of grams of NOx per kilogram of fuel burned): a high and a low EINOx. In this study the high and low EINO_x values for the future fleet are applied to the range of estimates of fuel burn in 2050 to calculate a corresponding range of NOx emission estimates in 2050. The range of NO_x estimates in 2050 varies from the low NO_x scenario of 2.17 Tg(N) year⁻¹ (low EINO_x, the low traffic demand with the more efficient optimistic fuel burn scenario, i.e. low fuel burn estimate) and the high NO_x estimate of 5.59 Tg(N) year⁻¹ (high EINO_x, the high traffic demand forecast and the low fuel efficiency scenario, i.e. higher fuel estimate).

The present-day surface (non-aviation) emissions (base) represented year 2005. The anthropogenic and biomass burning emissions were taken from IPCC AR5⁵⁰ and the biogenic emissions were taken from POET⁵¹. Four different cases were investigated: global reduction of surface NO_x emissions (-30% NO_x), global reduction of surface CO emissions (-30% CO), global reduction of NMVOC emissions (-30% NMVOC) and global reduction of ALL these species simultaneously (-30% NO_{x2} CO, NMVOC). All other sources of emissions, including aircraft NO_x emissions were held constant for each experimental case. The 2050 gridded surface emissions (anthropogenic and biomass burning) were determined by Integrated Assessment Models (IAMs) for the three Representative Concentration Pathways⁵² (RCPs): a high mitigation scenario that forecast the smallest impact to climate (RCP 2.6), business-as-usual scenario (RCP 4.5) and high climate impact scenario (RCP 8.5). Concentrations of long-lived chemical species and greenhouse gases were based on the RCP emissions, converted to concentrations by Meinshausen et al.⁵³ Natural emissions (e.g. isoprene, lightning and soil NOx or oceanic emissions of CO) were not specified in these future scenarios; thus, they were not modified here and were kept the same for all the simulations. The parametrisation of NO_x emissions from lightning was defined as a function of the location of convective cloud top heights^{54,55} and their global source were calculated to be $4.7 \text{ Tg}(\text{N}) \text{ year}^{-1}$.

The series of sensitivity experiments were performed in order to have a broad perspective on how aircraft and background emissions might affect net NO_x climate impact. The detailed list of simulations exploited in this study shows Supplementary Table 1.

Radiative forcing calculations. The Edwards-Slingo radiative transfer model⁵⁶ (RTM) was used for the calculation of the forcing associated with aviation NO_x-induced short-term O₃. The monthly O₃ fields from MOZART-3 were converted into mass mixing ratios and interpolated onto RTM vertical and horizontal resolution. The applied RTM is an offline version of the UK Met Office Unified Model

and it calculates the radiative fluxes and heating rates based on the δ -Eddington of the two-stream equations in both, the long-wave (9 bands) and short-wave (6 bands) spectral regions. Cloud treatment is based on averaged International Satellite Cloud Climatology Project (ISCCP) D2 data.⁵⁷ Climatological fields of temperature and specific humidity are based on ERA-Interim data⁴⁸. In terms of the 2050 RF calculations, the concentrations of long-lived species were modified according to specific RCP scenarios.⁵³ and were consistent with MOZART-3 set up.

The CH_4 concentrations change is assumed to be in equilibrium with the OH change due to the aircraft NO_x perturbation from constant emissions⁵⁸. Since CH_4 mixing ratios were prescribed as a lower boundary condition and the simulations were not long enough, the steady-state CH_4 concentration ($[CH_4]_{ss}$) was calculated from the change in its lifetime with respect to reaction with tropospheric OH derived from MOZART-3 simulations as shown in Eq. 1:

$$[CH_4]_{ss} = [CH_4]_{ref} \times (1 + 1.4 \times \Delta \tau_0 / \tau_{ref})$$

$$\tag{1}$$

A factor of 1.4 was used to reflect the CH₄ feedback on its own lifetime^{3,58}. Here $\tau_{\rm ref}$ denotes the lifetime of CH₄ versus reaction with OH in the unperturbed simulation, $\Delta \tau_0$ the change in CH₄ lifetime between the unperturbed simulation and the NO_x-perturbed simulation and [CH₄]_{ref} the CH₄ mixing ratio in the unperturbed simulation.

This steady-state CH_4 aircraft response was further used for the CH_4 RF calculations using, as in IPCC AR5⁵⁹, a simplified expression (Eqs. 2 and 3) originally defined in Myhre et al.⁶⁰

$$\Delta F = 0.036(\sqrt{M} - \sqrt{M_0}) - (f(M, N_0) - f(M_0, N_0))$$
(2)

$$f(M,N) = 0.47 \ln[1 + 2.01 \times 10^{-5} (MN)^{0.75} + 5.31 \times 10^{-15} M(MN)^{1.52}]$$
(3)

where N is $\rm N_2O$ in ppbv, M is $\rm CH_4$ in ppbv and subscript 0 denotes unperturbed concentrations.

Long-term O₃ caused by CH₄ changes was calculated according to IPCC AR5⁵⁹, as 50% of the CH₄ RF. Modified CH₄ also affects SWV and give an additional RF of 15% of CH₄ RF⁶¹.

The recalculated aviation RF estimates presented in Table 2 are based on the same methodology as original values shown in Table 1 and as described above. The only differences comes from the application of the new simplified expression for RF of CH_4^{23} as shown in Eq. 4 that replaces the old expression presented in Eqs. 2 and 3:

$$\Delta F = [a \times \overline{M} + b \times \overline{N} + 0.043] \times (\sqrt{M} - \sqrt{M_0}) \tag{4}$$

where $a = -1.3 \times 10^{-6} \text{ Wm}^{-2} \text{ ppb}^{-1}$, $b = -8.2 \times 10^{-6} \text{ Wm}^{-2} \text{ ppb}^{-1}$, M and N are concentrations of CH₄ and N₂O, respectively, and subscript 0 denotes unperturbed concentrations. For terms within the square brackets, the gas

concentrations are the mean of the unperturbed and perturbed concentrations, e.g. $\overline{M}=0.5 \times (M+M_0).$

The temperature responses from a unit aircraft CO_2 vs NO_x emissions. The time scales of the climate effects of CO_2 and NO_x are very different and these processes of the long-term accumulation vs short-term disappearing, respectively, were explored here. The responses presented on Supplementary Fig. 2 are based on a pulse emission of a 1 Tg(N) year⁻¹ in year 1.

In order to observe the temperature response from a unit emissions of aircraft NO_x the methodology presented by Aamas et al.⁶² have been applied and Absolute Global Temperature change Potentials (AGTP) have been calculated based on steady-state CTM/RTM results (base case). The forcing for NO_x is assumed to be a result of a pulse that lasts for 1 year followed by an exponential decay of the resulting forcing from the end of the year 1 onwards. The NO_x effect is the sum of the short-term O₃ effect, CH₄ (with SWV) effect and CH₄-induced O₃ effect, and there is a perturbation from the forcing for t < 1 (this determines the temperature response of the emissions that occur in the first year) and from the forcing for $t \ge 1$ (this determines the temperature response of atmospheric perturbation lasting past one year). Thus, the total AGTP_{NOx} (provided that the time horizon (*H*) is >1) is the sum of AGTP^K_{NOx}(H) and AGTP^{K21}_{NOx}(H):

a. For perturbation from RF occurring t < 1

$$AGTP_{NOx}^{t<1}(H) = \Delta F_{NOx}^{SS} \sum_{j=1}^{2} \left\{ c_j \left[\exp\left(\frac{1-H}{d_j}\right) - \exp\left(-\frac{H}{d_j}\right) \right] + \frac{c_j \tau}{\tau - d_j} \left[\exp\left(-\frac{H}{d_j}\right) - \exp\left(\frac{1-H}{d_j}\right) \exp\left(-\frac{1}{\tau}\right) \right] \right\}$$
(5)

b. For perturbation from RF occurring $t \ge 1$

$$\operatorname{AGTP}_{\operatorname{NOx}}^{t\geq 1}(H) = \Delta F_{\operatorname{NOx}}^{\operatorname{SS}}\left[1 - \exp\left(-\frac{1}{\tau}\right)\right] \sum_{j=1}^{2} \frac{c_j \tau}{\tau - d_j} \left[\exp\left(\frac{1-H}{\tau}\right) - \exp\left(\frac{1-H}{d_j}\right)\right]$$

$$\tag{6}$$

The superscript SS indicates steady-state, τ is the lifetime and it is the shortlived lifetime (τ_s) for short-term O₃ (here it is 0.267) whilst the primary-mode lifetime (τ_{pm}) characterises CH₄ and CH₄-induced O₃ (for the MOZART-3's base case it is 12.02 year). The c_j are the components of climate sensitivity and d_j are the corresponding time scales and these values are taken from Boucher and Reddy⁶³. In order to observe the temperature response from a unit emission of aircraft CO_2 a simple climate model (SCM), LinClim was utilised. LinClim is a linear climate response model that has been customised specifically to aviation^{10,64,65}. It uses a single impulse response function that is calibrated against more sophisticated parent model. Aviation fuel data are used to calculate CO_2 emissions that is then applied in the linear response function from Hasselmann et al.⁶⁶ in order to derive CO_2 concentrations. The carbon cycle in LinClim is based on the Maier-Reimer and Hasselmann⁶⁷ model and the CO_2 RF is calculated using the function applied in IPCC AR4⁶⁸. The temperature response formulation is based on the method presented by Hasselmann et al.⁶⁹ The calculated temperature response is also dependent on the climate sensitivity parameter and the lifetime of the temperature perturbation that are tuned to LinClim's parent General Circulation Model (GCM), here it is ECHAM4.

Here the LinClim was used to calculate the temperature response from a pulse/ unit emission of aviation CO₂ over the long time period. The background scenario chosen was represented by RCP 8.5^{53} as its global emissions are the closest to the current levels of CO₂ in the atmosphere. The amount of aircraft NO_x that is produced from the fuel burned is described by the emission index (EINO_x). The current EINO_x is $15.14 \text{ g}(NO_2)/\text{kg}(\text{fuel})^{49}$ and it has been applied here. Knowing that for every 1 kg of fuel used, 3.16 kg of CO₂ is emitted, the 1 Tg of emitted N is equivalent to 217 Tg fuel and therefore, 686 Tg of emitted CO₂. This emission was released as a pulse in the year 1 and the consequent CO₂ temperature response was observed for the following 100 years.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

All data discussed in the manuscript and Supplementary Information are presented in Source Data. All data generated for this study (2006 and 2050 CTM and RTM simulations) are available on request from the corresponding author. Source data are provided with this paper.

Code availability

The modelling data have been post-processed using IDL 8.5.1, and all the scripts are available on request from the corresponding author.

Received: 9 October 2019; Accepted: 10 December 2020; Published online: 25 January 2021

References

- IPCC. Aviation and the global atmosphere. In *Intergovernmental Panel on Climate Change Special Report* (eds. Penner, J. E. et al.) (Cambridge University Press, Cambridge, UK, 1999).
- Lee, D. S. et al. Aviation and global climate change in the 21st century. Atmos. Environ. 43, 3520–3537 (2009).
- Holmes, C. D., Tang, Q. & Prather, M. J. Uncertainties in climate assessment for the case of aviation NO. Proc. Natl Acad. Sci. 108, 10997–11002 (2011).
- Myhre, G. et al. Radiative forcing due to changes in ozone and methane caused by the transport sector. *Atmos. Environ.* 45, 387–394 (2011).
- Fry, M. et al. The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing. J. Geophys. Res. 117, D07306 (2012).
- Holmes, C. D., Prather, M. J. & Vinken, G. C. M. The climate impact of ship NO_x emissions: an improved estimate accounting for plume chemistry. *Atmos. Chem. Phys.* 14, 6801–6812 (2014).
- Sehra, A. K. & Whiltlow, W. Propulsion and power for 21st century aviation. Prog. Aerosp. Sci. 40, 199–235 (2004).
- Faber, J. et al. Lower NO_x at higher altitudes. Policies to reduce the climate impact of aviation NOx emission. CE-Delft: Delft, The Netherlands (2008).
 CAED ICAED Environmental Proceed 2010 (ICAED Mental Course).
- CAEP. ICAO Environmental Report 2010 (ICAO, Montreal, Canada, 2010).
 Freeman, S., Lee, D. S., Lim, L. L., Skowron, A. & De Leoń, R. R. Trading off
- Freeman, S., Lee, D. S., Lini, L. L., Skowron, A. & De Leon, K. K. Frading on aircraft fuel burn and NO_x emissions for optimal climate policy. *Environ. Sci. Technol.* 52, 2498–2505 (2018).
- Hodnebrog, Ø. et al. Future impact of traffic emissions on atmospheric ozone and OH based on two scenarios. *Atmos. Chem. Phys.* 12, 12211–12225 (2012).
- Shine, K., Berntsen, T., Fuglestvedt, J. & Sausen, R. Scientific issues in the design of metrics for inclusion of oxides of nitrogen in global climate agreements. *Proc. Natl Acad. Sci.* 102, 15768–15773 (2005).
- Unger, N., Shindell, D. T., Koch, D. M. & Streets, D. G. Cross influences of ozone and sulfate precursor emissions changes on air quality and climate. *Proc. Natl Acad. Sci.* 103, 4377–4380 (2006).

- Kawase, H., Nagashima, T., Sudo, K. & Nozawa, T. Future changes in tropospheric ozone under representative concentration pathways (RCPs). *Geophys. Res. Lett.* 38, L05801 (2011).
- Turnock, S. T. et al. The impact of future emission policies on tropospheric ozone using a parameterised approach. *Atmos. Chem. Phys.* 18, 8953–8978 (2018).
- Kinnison, D. E. et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. *J. Geophys. Res.* 112, D20302 (2007).
- Skowron, A., Lee, D. S. & De Leon, R. R. The assessment of the impact of aviation NO_x on ozone and other radiative forcing responses – the importance of representing cruise altitudes accurately. *Atmos. Environ.* 74, 159–168 (2013).
- Olsen, S. C. et al. Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane. *Geophys. Res. Lett.* 40, 6004–6009 (2013).
- Unger, N., Zhao, Y. & Dang, H. Mid-21st century chemical forcing of climate by the civil aviation sector. *Geophys. Res. Lett.* 40, 641–645 (2013).
- Khodayari, A., Olsen, S. C. & Wuebbles, D. J. Evaluation of aviation NO_xinduced radiative forcings for 2005 and 2050. *Atmos. Environ.* **91**, 95–103 (2014).
- Brasseur, G. P. et al. Impact of aviation on climate: FAA's Aviation Climate Change Research Initiative (ACCRI) Phase II. B. Am. Meteorol. Soc. 97, 561–583 (2016).
- 22. Akimoto, H. et al. SLCP co-control approach in East Asia: tropospheric ozone reduction strategy by simultaneous reduction of NOx/NMVOC and methane. *Atmos. Environ.* **122**, 588–595 (2015).
- Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. *Geophys. Res. Lett.* 43, 12614–12623 (2016).
- Unger, N. Global climate impact of civil aviation for standard and desulfurized jet fuel. *Geophys. Res. Lett.* 38, 1–6 (2011).
- 25. Pitari, G. D. et al. Impact of coupled NO_x/aerosol aircraft emissions on ozone photochemistry and radiative forcing. *Atmosphere* **6**, 751–782 (2015).
- Zheng, G., Morgenstern, O., Braesicke, P. & Pyle, J. A. Impact of stratospheric ozone recovery on tropospheric ozone and its budget. *Geophys. Res. Lett.* 37, L09805 (2010).
- Voulgarakis, A. et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. *Atmos. Chem. Phys.* 13, 2563–2587 (2013).
- Young, P. J. et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). *Atmos. Chem. Phys.* 13, 2063–2090 (2013).
- Johnson, C. E., Collins, W. J., Stevenson, D. S. & Derwent, R. G. Relatives roles of climate and emissions changes on future tropospheric oxidant concentrations. J. Geophys. Res. 104(D15), 18631–18645 (1999).
- Liao, H., Chen, W. T. & Seinfeld, J. H. Role of climate change in global predictions of future tropospheric ozone and aerosols. *J. Geophys. Res.* 111, D12304 (2006).
- 31. Airbus, 2018. Global Market Forecast 2018-2037 (Airbus, France, 2018).
- Lee, D. S. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. *Atmos. Environ.* 244, 117834 (2021).
- IPCC, 2018. Global warming of 1.5 °C. In An IPCC Special Report (eds. Masson-Delmotte, V. et al.) (Cambridge University Press, UK, 2018).
- Dorbian, C. S., Wolfe, P. J. & Waitz, I. A. Estimating the climate and air quality benefits of aviation fuel and emissions reductions. *Atmos. Environ.* 45, 2750–2759 (2011).
- Mahashabde, A. et al. Assessing the environmental impacts of aircraft noise and emissions. Prog. Aerosp. Sci. 47, 15–52 (2011).
- Grobler, C. et al. Marginal climate and air quality costs of aviation emissions. Environ. Res. Lett. 14, 114031 (2019).
- Liu, Y. et al. Atmospheric tracers during the 2003–2004 stratospheric warming event and impact of ozone intrusions in the troposphere. *Atmos. Chem. Phys.* 9, 2157–2170 (2009).
- Wuebbles, D. J. et al. Three-dimensional model evaluation of the ozone depletion potentials for n-propyl bromide, trichloroethylene and perchloroethylene. *Atmos. Chem. Phys.* **11**, 2371–238 (2011).
- Søvde, O. A. et al. Aircraft emissions mitigation by changing route altitude: a multi-model estimate of aircraft NO_x emission impact on O3 photochemistry. *Atmos. Environ.* 95, 468–479 (2014).
- Skowron, A., Lee, D. S. & De León, R. R. Variation of radiative forcings and global warming potentials from regional aviation NO_x emissions. *Atmos. Environ.* 104, 69–78 (2015).
- Lin, S. J. & Rood, R. B. A fast flux form semi-Lagrangian transport scheme on the sphere. *Monthly Weather Rev.* 124, 2046–2070 (1996).
- Hack, J. J. Parameterization of moist convection in the NCAR community climate model (CCM2). J. Geophys. Res. 99, 5551–5568 (1999).

ARTICLE

- Zhang, G. J. & McFarlane, N. A. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. *Atmosphere-Ocean* 33, 407–446 (1995).
- 44. Holstag, A. & Boville, B. A. Local versus nonlocal boundary-layer diffusion in a global climate model. *J. Clim.* **6**, 1825–1842 (1993).
- 45. Brasseur, G. P. et al. European scientific assessment of the atmospheric effects of aircraft emissions. *Atmos. Environ.* **32**, 2329–2418 (1998).
- Müller, J.-F. Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases. *J. Geophys. Res.* 97, 3787–3804 (1992).
- 47. Sander, S. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies – Evaluation Number 15. Technical report, National Aeronautics and Space Administration (NASA) (Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA, 2006).
- Dee, D. P. et al. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
- ICAO CAEP Environmental Report 2016; Montreal, Canada, 2016. Available at https://www.icao.int/environmental-protection/Pages/env2016.aspx. Accessed date 18 Feb 2018.
- Lamarque, J.-F. et al. Historical (1850 2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. *Atmos. Chem. Phys.* 10, 7017–7039 (2010).
- Granier, C. et al. POET, a database of surface emissions of ozone precursors, 2005. Available at http://eccad.sedoo.fr/eccad_extract_interface/JSF. Accessed date 10 Dec 2010.
- 52. van Vuuren, D. P. et al. The representative concentration pathways: an overview. *Clim. Change* **109**, 5–31 (2011).
- Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. *Clim. Change* 109, 213–241 (2011).
- Price, C., Penner, J. & Prather, M. NO_x from lightning, part 1: global distribution based on lightning physics. *J. Geophys. Res.* **102**(D5), 5929–5941 (1997).
- Pickering, K. E., Wang, Y., Tao, W.-K., Price, C. & Müeller, J.-F. Vertical distributions of lightning NO_x for use in regional and global chemical transport models. *J. Geophys. Res.* 103(D23), 31203–31216 (1998).
- Edwards, J. M. & Slingo, A. Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc. 122, 689–719 (1996).
- Rossow, W. B. & Schiffer, R. A. Advances in understanding clouds from ISCCP. B. Am. Meteorol. Soc. 80, 2261–2288 (1999).
- Fuglestvedt, J. S. et al. Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane; global 3D model studies. *Atmos. Environ.* 33, 961–977 (1999).
- Myhre, G. et al. Anthropogenic and natural radiative forcing. Climate change 2013: The physical science basis. *Contribution of working Group I to the Fifth Assessment report of the Intergovernmental Panel on Climate Change* (Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2013).
- Myhre, G., Highwood, E. J., Shine, K. P. & Stordal, F. New estimates of radiative forcing due to well mixed greenhouse gases. *Geophys. Res. Lett.* 25, 2715–2718 (1998).
- Myhre, G. et al. Radiative forcing due to stratospheric water vapour from CH4 oxidation. *Geophys. Res. Lett.* 34, L01807 (2007).
- Aamaas, B., Peters, G. P. & Fuglestvedt, J. S. Simple emission metrics for climate impacts. *Earth Syst. Dynam.* 4, 145–170 (2013).
- Boucher, O. & Reddy, M. S. Climate trade-off between black carbon and carbon dioxide emissions. *Energy Policy* 36, 193–200 (2008).
- 64. Lim, L., Lee, D. S., Sausen, R. & Ponater, M. Quantifying the effects of aviation on radiative forcing and temperature with a climate response model. In Proc. Int. Conference on Transport, Atmosphere and Climate (TAC) 202–208 (Office for Official Publications of the European Communities, Luxembourg, 2007).

- Khodayari, A. et al. Intercomparison of the capabilities of simplified climate models to project the effects of aviation CO₂ on climate. *Atmos. Environ.* 75, 321–328 (2013).
- Hasselmann, K., Hasselmann, S., Giering, R., Ocana, V. & von Storch, H. Sensitivity study of optimal CO₂ emission paths using a simplified structural integrated assessment model (SIAM). *Clim. Change* 37, 345–386 (1997).
- Maier-Reimer, E. & Hasselmann, K. Transport and storage of CO₂ in the ocean – an inorganic ocean-circulation carbon cycle model. *Clim. Dyn.* 2, 63–90 (1987).
- Solomon, S. et al. Climate change 2007 The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the IPCC (eds Solomon, S. et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007).
- Hasselmann, K., Sausen, R., Maier-Reimer, E. & Voss, R. On the cold start problem in transit simulations with coupled atmosphere- ocean models. *Clim. Dyn.* 9, 53–61 (1993).

Acknowledgements

This work was supported by the United Kingdom Department for Transport and the European Union's Horizon 2020 Research and Innovation Action ACACIA under grant agreement No 875036.

Author contributions

D.S.L. conceived of the research, A.S. led the study, R.R.L., L.L.L. and B.O. provided input data, A.S. performed the model simulations and generated all the figures and tables, A.S. and D.S.L. interpreted the results and drafted the manuscript with support from all authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-20771-3.

Correspondence and requests for materials should be addressed to A.S.

Peer review information *Nature Communications* thanks François Garnier, Donald Wuebbles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2021