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ABSTRACT Most graph-based semi-supervised classification methods do not perform well in hyperspectral
image classification tasks due to their high complexity and other limitations. This paper proposes a
label propagation semi-supervised classification algorithm which uses a few selected important paths to
considerably reduce computational costs. It establishes that the most important paths for label propagation
are minimum cost paths. It proves that minimum cost paths exist in minimum cost trees (MCT), and proposes
amethod based on a variant minimum spanning tree (MST) combined with priority queue to construct MCTs.
The algorithm propagates labels from unlabeled nodes to labeled ones, a unique way different from any other
studies where propagation is in the opposite direction, which brings about several clear advantages. These
include that only one propagation path is required for each unlabeled node, improving both timing and
memory performance. It also helps to solve a problem posed by sparse graphs where some image pixels
cannot be classified, a situation which is especially problematic in large-scale image classification. The
proposed method has the advantages of linear computational complexity, is independent of data dimension,
has fewer parameters and is insensitive to the values of parameters. Moreover, it does not need large numbers
of labelled pixels nor complex training processes. Experiments on hyperspectral images have shown that,
compared with several existing algorithms, the proposed method achieves better performance in less time.
The paper addresses some fundamental issues regarding propagating labels in graph based semi-supervised
classifications. Due to the simplicity and the fast speed of the algorithm, it is also suitable to be integrated
into both state-of-the-art and future hyperspectral image classification frameworks which have a label
propagation stage.

INDEX TERMS Graph-based classification, hyperspectral image, label propagation, semi-supervised
classification.

I. INTRODUCTION

Hyperspectral images (HSIs) have been widely used in earth
observation, such as identification and classification of land
covers. Supervised classification methods (e.g., Bayesian
classifier, support vector machine, neural network) have been
studied and applied extensively for such purposes. In order to
achieve satisfactory accuracy and to improve generalization
performance, large numbers of costly labeled samples are
required in training. In addition, the high dimensional charac-
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teristic of HSIs brings computation difficulties for supervised
classification methods. Thus, methods with properties of
better classification ability and generalization performance,
small labeled sample sets and low computational complexity
independent of data dimension are desired.

Semi-supervised classification methods make use of both
labeled and unlabeled samples in training. Because they use
information derived from unlabeled samples, classification
accuracy can be satisfactory even with a few labeled samples.
When applied to remotely sensed images, these methods
improved classification accuracy compared with supervised
methods [1], [2]. However, most semi-supervised methods
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have high spatial-temporal complexity since they use every
labeled and unlabeled sample in training, thus limiting their
application. Though using a portion of unlabeled samples is
allowed in some methods, such as in LapSVM [3], selecting
useful unlabeled samples becomes a new challenge.

Graph-based semi-supervised classification methods con-
struct graphs from images in order to classify them.
Label propagation is a typical semi-supervised classification
method. It propagates labels from a small set of labeled
data to a much larger set of unlabeled data in a graph.
Graph construction and label inference are two main oper-
ations for this type of methods [4]. For the first operation,
nearest neighbor (e.g. k-nearest neighbor, k-NN) methods
are often used to construct graphs and the resultant graphs
are often sparse. Sparse similarity matrixes derived from
sparse graphs can reduce false connections between nodes,
therefore help to obtain weights that represent actual sim-
ilarity between nodes and prevent propagation of irrelevant
information in graphs. Thus, sparse graphs are beneficial for
decreasing computational costs and improving classification
accuracy [5]. During the second operation, labels propagate
among the nodes that belong to the same class according to
a label inference method. Labels are able to spread to all
the nodes in an undirected fully connected graph. Because
a sparse graph may not be fully connected, especially for
a large-scale image characterized by both a high degree
of spatial aggregation and few neighbors, propagation pro-
cesses may not be able to spread labels to all the nodes.
This issue is seldom addressed by related research such
as [6].

Label inference relies on an object function (also called
energy function) defined on both labeled and unlabeled data.
An energy function is established on two constraints. The first
one restricts the misclassification cost of labeled data to the
minimum. The second one is based on two assumptions of
consistency - cluster assumption and manifold assumption.
Excluding graph construction, the main differences between
various semi-supervised classification methods lie in their
different ways of defining and solving energy functions.
Label inference methods can be divided into several cate-
gories based on the rules that govern how labels spread when
solving a defined energy function. Though various meth-
ods appear different, they all share an identical framework,
possess the property of label propagation, and some equiva-
lence between them has been proved [7]. Another common
property is high computational complexity. Assuming that
k-NN is used to construct graphs, and that classification
costs do not include the time of graph construction, for a
problem with the category number ¢ and the sample size n
(include both labeled and unlabeled samples), the reported
classification complexities of several well-known algorithms
are as follows: Tikhonov Regularization and Manifold Regu-
larization algorithm [8] and Spectral Graph Transducer algo-
rithm [9] have O(n3); Gaussian Random Fields and Harmonic
Functions [11], Local and Global Consistency [7] and LP
(Label Propagation) [12] have O(cn?). Tt is clear that the
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high complexities limit their application in large-scale data
classification.

Both decreasing classification complexity and extending
semi-supervised classification methods for large-scale data
applications have attracted much attention. Delalleu ez al. [13]
constructed a graph from a small subset of samples and
proposed a nonparametric method to predict labels based on
the sample subset. The training complexity of this method
approximates to O(m?n) and the testing complexity is O(mn),
where m represents the size of the sample subset. Liu ef al.
proposed the Anchor Graph Regularization (AGR) algo-
rithm [5]. AGR algorithm clusters data and defines the
clusters’ centers as anchors. It constructs Anchor Graphs
to represent relationships between anchors and data. It then
predicts an anchors’ label according to Laplace manifold
regularization algorithm. Finally, from an anchors’ label and
the Anchor Graph it can obtain labels for all data. The reduced
Laplacian graph decreases the complexity of AGR to O(m’n),
where m represents the number of anchors. Kim and Choi pro-
posed Minimax Label Propagation (MMLP) [6] for scalable
semi-supervised learning. MMLP estimates the distance of a
path connecting two nodes in its label propagation process,
blocks most of the propagation paths and only makes labels
spread along a few important paths. In the best case, the time
complexity of MMLP decreases to O(n). It can be found that
reducing the size of graphs or the number of propagation
paths can effectively lower computational costs, otherwise,
for large-scale datasets, computations may not even be fea-
sible. But the above-mentioned literature were applied to
small-scale datasets (hundreds or thousands samples). For
large-scale datasets (more than hundreds of thousands of
samples), m could still be a large value. Furthermore, the con-
structed sparse graphs bring about the connectivity problem
(or rather the lack of connectivity problem, i.e. a graph is
disconnected or weakly connected). This leads to the case
that labels are not propagated to all nodes, leaving some data
unclassified.

Propagating labels along just a few important paths
between two nodes is an effective way to reduce computa-
tional costs. Cluster assumption indicates that adjacent nodes
and nodes connected through high density areas are likely
to have identical labels, which means that important prop-
agation paths exist among these nodes. Inspired by these
facts, this paper proposes a semi-supervised label propaga-
tion classification method via selected paths (SPLP). The
contributions of this paper are as follows: (1) It establishes
that the important paths for label propagation are the paths
with minimal costs. (2) It proves that minimum cost paths
exist in minimum cost trees (MCT), and proposes a method
based on a variant minimum spanning tree (MST) combin-
ing with priority queue to construct MCTs. The MCTs are
approximate but give linear performance with negligible loss
of optimality. (3) It solves the connectivity problem brought
about by sparse graphs, thus allowing all data to be classified.
(4) It develops a new and unique way for label propagation.
Unlike other label propagation methods, when searching for
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a propagation path, SPLP starts from an unlabeled node and
stops at a labeled node. This unique method of propagation
brings about several clear advantages: a) it has superior spatial
and temporal performance because only one path for each
unlabeled node is computed and saved; in contrast, if labels
propagate from labeled nodes to unlabeled ones, it is nec-
essary to compare the cost of each of the paths from each
labeled sample to the unlabeled sample, i.e. multiple paths
need to be calculated and compared; b) it makes it possible
to re-propagate unclassified samples,by picking one such
sample and building the MCT for it using a larger K value.
In other words, this unique way of propagation is the reason
that (3) is achieved; ¢) empirical results shows that compared
with other studies, it gives rise to fewer unclassified samples
after the first iterative round.

The maximum classification complexity of SPLP is
O(nklogk), where k is the number of neighbors when con-
structing sparse graphs. Because k is very small comparing
with n, SPLP has linear classification performance. More-
over, it is independent of data dimension and can classify
multiclass directly, making it particularly suitable for HSI
classification that is characterized by high dimension, mul-
ticlass, large-scale, and small numbers of labeled samples.

The rest of this article is organized as follows: Section II
provides the details of the proposed method and the solutions
to the key problems. Section III described the experiments
conducted by using SPLP on three well-known HSIs data
sets, and compares and analyses the results against three
competing algorithms. This section also compares SPLP
with some state of the art research in HSI classification.
Finally in Section IV, conclusions are drawn based on the
comparisons.

Il. METHOD

A. LABEL PROPAGATION

In this section, we explain what kind of path will be selected
for label propagation and how to find such a path. Specifi-
cally, unlike other methods, path searching starts from unla-
beled samples rather than labeled ones.

Take a sample set X = {x; ?:1 C Rd, whose first [ (I < n)
samples are labeled, and the rest are unlabeled. If each sample
belongs to one of the ¢ classes, the aim of semi-supervised
classification is to find the labels for the unlabeled
samples {x;}_, .

Graph based semi-supervised classification methods first
construct an undirected graph G(X, E) for dataset X. k-NN
is usually used for this construction purpose. In the graph,
nodes x; (i.e. spectral information of pixel i) represent data in
the dataset. These nodes are linked by edges E = {(x;, xj)}
only if they are k-NN of each other in the dataset. When K is
small (5-20) sparse graphs are constructed. Sparse similarity
matrixes generated from sparse graphs help to obtain more
accurate weights than from dense graphs due to fewer false
connections between nodes. Using sparse graphs not only
reduces the amount of computation, but also helps to improve
classification accuracy [5]. Weight w on an edge measures
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similarity between the connected nodes. It is obtained by
Gaussian Kernel Function:

Jxi =51

) ey

wij = exp(— )

Here bandwidth parameter o > 0.

Define a c-dimensional real function f; € R® as repre-
senting “‘soft assignments” of each node x; to C classes.
Define a c-dimensional binary vector y; € {0, 1}€ as a “hard
assignment” of a label for node x; to its true class label. If x;
belongs to the pth class (p € (1, - - -, ¢)), then pth dimension
of y; is set to 1, otherwise set to 0. Following [6], define an
objective function E (f) as in (2). Every unlabeled sample
gets its optimal label when E (f) reaches its minimum:

2 .
E()y= Y wili—f]" stfi=yifori=1.....1 ()
(i,))eE
Minimizing (2) is computationally expensive (in the order
of O(cn?)). The next section proposes a selective path based
approach to predict labels.

B. LABEL PROPAGATION VIA SELECTED PATH
Define a set of paths existing between any two nodes x; and
Xj as:

Aj={a = (ap,ai,...,an)|m=>1,V€ € [0,m — 1],

am—1 #Jj (3)
Path a € A;; connects nodes x; and x; via several consecu-
tive edges. If the cost of an edge on the path is c(a;, a;+1) =

wy, 141, define the overall cost of the path as the P-norm of the
edge costs alone the path:

1
/)
le@ll, = {Z c(ay, az+1)”} @)

l

(ag,a¢+1) € E,ap=i,am =J,ai, ..

Define the sum of costs of all the paths from x; to all the
labeled data as:

l
@)=Y " exp (= Flet@ll,)

Jj=1 a€A;;

Then to compute f; for unlabeled nodes i, we have

l
=20 % exp (= le@l, )y

Jj=1 a€Aj;

Here P and T are two important parameters. When P — oo,
the costs of the paths via lower density regions tend to be
larger and via higher density regions tend to be smaller [6].
The decay constant, 0 < T < oo, represents a preference
for paths of smaller total costs. According to the cluster
assumption, when 7 — 0, costs of a small number of paths
can represent the total costs of the paths to all the labeled
samples. Furthermore, according to [6] when 7 — 0 and

P — o0, c(x) — min _ |[c(a)l|,, i.e. the total costs of
Jj=1,...l,acA;

paths starting from x; to all the labeled samples approximates

3
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to the minimum path cost among all such path costs. Thus we
have:

fi— vt = argjzlf_r}lig " lle (@)ll, ®)

Formula (5) shows that the label for x; should be the same
as the label for x;, where x; is the labeled sample which makes
llc (@)]l, minimum. Then the goal of the algorithm is to find
the minimum cost path from the unlabeled sample x; to all the
labeled samples.

When P — oo, for any path a € Ay, according to the
definition of path cost (4), there is:

e (@, — maxc(ar, ai+1) (6)

Equation (6) means that the cost of a path is approximately
equal to the maximum edge cost on this path. Thus for the
efficiency of computation, we use the largest edge cost on a
path to represent the cost of the whole path.

C. FINDING SELECTED PATHS

This section addresses how to find the approximate minimum

cost path defined by (6). It proposes a method of using a vari-

ant minimum spanning tree (MST) combined with priority
queue to construct MCTs.
According to the principle of minimum spanning trees: in

a graph G(X, E), U is a nonempty subset of X and represents

the set of nodes in its MST. There isanode u € U, and v €

X — U is a node outside U. If (u, v) is an edge in G, and

the cost of the edge (&, v) is the minimum cost among the

costs of all the edges directly connected to U, then the next
node to be added to the MST would be v. In other words,
the MST generated from graph G is a set of edges that have
the minimum sum of costs when connecting all the nodes.
Prim algorithm can be used to construct a MST, but it has

a relatively high computational cost. Therefore, this paper

proposes a method of combining priority queue with Prim

algorithm to construct MCTs. By pre-ordering all the nodes
to be added to a tree and placing them in a priority queue,
it speeds up the search procedure, thus reducing time com-
plexity.

The MCT construction procedure by priority queue and

Prim algorithm is as follows:

(1) Starting from any unlabeled sample x;, add x; to the
MCT set U, add the edges between x; and its k nearest
neighbors x; (x; € X — U) to a priority queue in the order
of their similarity weights w;;.

(2) Pop out the head of the queue and examine its node x,.
If x, ¢ U then add it to U. If x, is an unlabeled sample,
add its edges to the priority queue in the order of their
similarity weights. Repeat (1) and (2). If x, is a labeled
sample, goto (3).

(3) This MCT is constructed. Assign the label of all the
unlabeled samples in the tree with the label of x,.

(4) Ifthere are any unlabeled samples left, pick one randomly
and repeat the steps (1)-(3) to construct another tree until
every unlabeled sample is in a MCT.

Obviously, this algorithm constructs multiple trees with
each of them containing a fraction of the nodes, instead of
a single tree containing all the nodes.

Note that this algorithm actually generates approximate
MCTs. The length of a queue is usually much smaller than the
total number of edges in a graph. Therefore with the progress
of the algorithm, and more and more edges being added in,
it is likely that the edges at the back of the queue could be
gradually discarded due to the limited queue length, mean-
ing potential minimum cost paths could also be discarded.
However, the impact of the loss of optimality is regarded as
negligible by this study because 1) each node has maximum
of k (the number of nearest neighbors) edges. k is normally a
very small number compared with the number of edges in a
graph. If a queue is long enough, the queue might not even
be filled up when the algorithm terminates, meaning there
is no loss of optimality. Even if the queue is filled up and
some edges are discarded, these are the edges with the lowest
priority at the back of a queue, so the impact would be small.
2) this algorithm does not aim to generate a full MCT for a
given graph, rather it terminates when a labeled node is added
into the tree. As the impact of limited queue length mostly
takes effect towards the later stage of computation, it is likely
that such an effect would not have materialized before the
computation terminates.

The rest of this section proves that within a MCT, the only
path from an unlabeled node to a labeled node is the minimum
cost path between the two nodes.

Construct a MCT T starting from any unlabeled node
x; in graph G till a labeled node x; is added. Assume that
the minimum cost path from x; to x; is not in 7T, then
there must exist a path a € Ay, such that |c(a)], <

||c(Tij) » where ||c(T,-j)||p is the cost of path from pxj to
x; in T, and ||c(a)||p = mlaxc(al,al+1), |c(Tij)]|p =

max c(ar, ar+1). Here c(a;, a;4+1) is the cost of connect-
intg adjacent nodes in the path from x; to x; in T after x;
joins T'.

The proof is by contradiction under two different cases:
(1) Assume that the whole minimum cost path is not in the
MCT. (2) Assume that part of the minimum cost path is in the
MCT.

Under the first case: assume in ||c (a)l|,, sample x; con-
nects x;, and x; is not in the MCT. According to the rules
of MST, there is c(a;, ar) > maxc(a;, dr4+1) = ”c(Tij)”p.
Because c(a;, a;) < |c(a)|l,. therefore ||c(a)ll, > ||c(T,-,~);|P.
This contradicts the assumption.

Under the second case: if [c(a)||, connects to a node
Xe+1 in T via a node xi (xx # xj) which is not in 7, then
according to the rules of MST there is c(ak, ak+1) >
maxc (ar, dr41) = ”C(Tij)”p. Because c(ak,ar+1) =<
méixc(ag,ag.H) = [lc(@)ll,, therefore [c(a)l, > ||c(T,-j)||p.
This contradicts the assumption as well.

Therefore, the minimum cost path between an unlabeled
node and a labeled node is in the MCT containing these two
nodes.
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D. THE CONNECTIVITY PROBLEM OF SPARSE GRAPHS
As previously mentioned, sparse graph cannot guarantee
full connectivity. When the number of nearest neighbors is
small, or the data scale is large and data cluster together
(e.g. in large-scale image), it is common to form several
unconnected groups within a sparse similarity matrix, which
blocks label propagation and results in some samples not
being classified. This problem has barely been analyzed and
solved so far.

There are two kinds of connectivity problems. One is
brought by disconnected sparse graph, as shown in Fig. 1.

In Fig. 1, the red and green nodes represent labeled samples
in class 1 and class 2 respectively, and black nodes are unla-
beled samples. Each node in this graph connects to only two
nearest neighbors, resulting in one sparse similarity matrix
becoming three disconnected clusters. The three black nodes
in the middle cluster will not be classified by label propaga-
tion since they are not connected to any labeled samples.

This paper proposes a method of re-propagation to solve
this problem: after one round of propagation, it uses KD
tree nearest neighbor searching algorithm [14] to extend
the searching area to reach the nearest neighbors for those
unclassified nodes. In this round the number of neighbors
is twice the number in the previous round. Although the
number of neighbors is increased, the algorithm only searches
for the neighbors of some specific data within the whole
data set, hence it does not increase computational complexity
much. If there are still unreached nodes, repeat the above
procedure until all the nodes are reached. Note that this
approach of re-propagating labels by using larger K values
is only possible because SPLP propagates from unlabeled
nodes.

Another connectivity problem is brought by weak con-
nectivity in sparse graphs: sparse matrixes constructed from
k-NN could be asymmetric. This means that node x; is one
of the k nearest neighbors of node x;, but x; is not one of the
k nearest neighbors of x;. In the corresponding sparse graph
there exists a path from x; to x;, but there is no path from
x; to xj. Such a graph is called a weakly connected graph.
Existing algorithms cannot classify those weakly connected
nodes.

Though increasing the number of nearest neighbors in
sparse graphs may solve the weak connectivity problem,
the authors found that small increments cannot guarantee to
solve the problem, but will increase the time complexity of
the overall classification algorithm. Another solution is to
change connections to be symmetric. This solution redefines
the weights, making the similarity matrix symmetrical:

wijs i wij = wji
wij = ywy, if wij > 0and w;; =0 (7)
Wii, lf Wij = 0 and Wji > 0
After this weight redefinition, labels can propagate in any
direction, and all nodes can be reached in weakly connected
sparse graphs.

VOLUME 8, 2020

:7’.7.\7'

FIGURE 1. Illustration of the problem caused by disconnected graphs.

E. COMPUTATIONAL COMPLEXITY ANALYSIS OF SPLP
The algorithm mainly has three parts: 1) constructing a graph
and calculating a similarity matrix; 2) constructing MCTs to
propagate labels; 3) re-propagating labels for those unlabeled
samples from the previous propagations.

The first part uses FLANN algorithm [14] to construct
sparse nearest neighbor graphs. Its time complexity is
O(ldnlogn), where [ is the number of trees, and d is the
number of data dimensions.

In the process of constructing MCTs, the algorithm uses
priority queues to sort data. The complexity for initially build-
ing a priority queue of length n, is O(n,). The complexity
of popping one sample from a priority queue is O(/). The
maximum complexity of re-sorting the queue after adding
another sample’s edges is O(n, log n,). The maximum com-
plexity of adding one node to the MCT by marking it as
in the MCT set is O(1). Therefore the maximum time com-
plexity of constructing a MCT is O(n;n, logn,), where n; is
the number of nodes in a MCT. The m[?ximum time com-

plexity of constructing all MCTSs is O(}_ ny(iynga) log ng),

where p is the number of MCT trees. Vﬁllen the same queue
length is used for all trees, it becomes O(nn,logn,). For
graphs constructed by kNN, it is convenient to have n, take
the value of k, i.e. the length of priority queues is taken
as the number of the nearest neighbors, the complexity is
O(nk logk).

In the third part, assume the number of data that need to be
re-propagated is m. Because FLANN algorithm only needs
to calculate KD trees when first constructing a graph, thus
the graph constructed in part 1) is reused for this step. The
time complexity of constructing new MCTs is O(mk; log k1)
(k1 is the number of the nearest neighbors for re-propagating).
Because 7 is much greater than m and k1, the complexity of
the third part has O(mk; log k1) < O(nk log k).

In summary, the time complexities of the three parts of
SPLP are O(ldnlog n), O(nk log k) and O(mk; log k1) respec-
tively. Thus, if ignoring the graph construction part which is
common to most published algorithms, the complexity of the
classification part of SPLP is O(nk logk). As k is usually a
constant and is far smaller than #, it can be said that the time
complexity of SPLP is linear.

Ill. EXPERIMENTAL RESULTS AND ANALYSIS

This section shows the performance of the semi-supervised
SPLP classifier on three common and challenging hyperspec-
tral image datasets, and compares it with three competing
methods: LP, AGR and MMLP. The algorithm is imple-
mented by MATLAB and C++ on a computer equipped with
an Intel Xeon E5S504 Processor (2.0 GHz) and 8G memory.
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FIGURE 2. Indian Pines. (a) Original image. (b) Ground truth.

A. HYPERSPECTRAL DATA

The first dataset was obtained by the Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) sensor over the
Indian Pines region in Northwestern Indiana in 1992. The
hyperspectral imagery has a spatial size of 144 * 144 pixels
with 20m spatial resolution. 24 spectral bands among the
total 224 spectral bands were removed due to noise and water
absorption phenomena. The rest of the bands were used in
classification. There are 16 mutually exclusive classes. The
image and the reference land cover are shown in Fig. 2.

The second dataset was obtained by the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor during a flight
campaign over the University of Pavia. 103 bands were used
after water absorption bands were removed from the original
115 bands. The size and the spatial resolution of the image
are 610*340 and 1.3m respectively. Fig. 3 shows the image
and the 9 reference land cover classes.

The third dataset was collected by AVIRIS over Salinas
Valley, Southern California, in 1998. The area contains a spa-
tial size of 512 * 217 pixels and spatial resolution of 3.7m. 204
spectral bands were left after discarding 20 water absorption
bands. There are 16 classes of the land covers. The image and
the reference land cover map are shown in Fig. 4. The number
of the labeled samples of the images and other details can be
obtained from literature [15].

B. CLASSIFICATION RESULTS AND ANALYSIS

The results of SPLP are compared to that of LP, AGR and
MMLP. In the experiment, according to (1), the weight of an
edge is defined as: w(i,j) = exp(—pfllx;i — xj||2), in which
B =28, I. B, is the mean value of the squares of the distances
between each sample and its 10th neighbor. k in k-NN is
assigned to 20. The influence of k is tested and analyzed in
the experiment. The parameter S (represents the number of
neighbor anchors of each sample) in AGR is set to 3. The
number of anchors in AGR is set to 40 times of the number
of categories.

For each hyperspectral image, the experiment randomly
selects 5%, 10%, 15% and 20% of the labeled samples from
each category as training samples. The rest are unlabeled
samples. Training samples are the same for all the methods.
The classification results evaluated by overall accuracy (OA)
and Kappa coefficient (KC) are shown in Tables 1, 2 and 3.
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FIGURE 4. Salinas. (a) Original image. (b) Ground truth.
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TABLE 1. Classification results of OA and KC of Indian Pines.

Labeled samples per class

5% 10% 15% 20%

OA(%) 71.23 74.67 76.11 79.35

LP
KC 0.68  0.73 076  0.79
OA(%) 5632 5942 6256  64.05
AGR

KC 054 059 064  0.68
OA(%)  69.16 7233 7293 7640

MMLP
KC 0.66  0.71 074  0.79
OA(%) 7135 7537 7761  81.58

SPLP
KC 067 073 075 0.81

The classification time of each method (using 20% of the
labeled samples) is listed in table 4. The differences in run-
ning time caused by the different numbers of labeled samples
are less than 0.1 second for SPLP and MMLP, and less than
0.5 second for AGR and LP. Fig. 5 to 7 show the classification
results.
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TABLE 2. Classification results of OA and KC of Pavia University.

Labeled samples per class

5% 10% 15% 20%

OA(%) 83.51 85.64 87.64 88.29

LP
KC 0.79 0.80 0.83 0.85
OA(%) 6391  66.66 6899  69.15

AGR
KC 0.58 0.63 0.67 0.69
OA(%) 8226 8372 8465 8545

MMLP
KC 0.78 0.81 0.83 0.85
OA(%) 8508 8654  87.67  88.78

SPLP
KC 0.80 0.83 0.86 0.87

TABLE 3. Classification results of OA and KC coefficient of Salinas.

Labeled samples per class

5% 10% 15% 20%

OA(%)  88.81 89.60 9024  91.23

LP KC 0.87 0.88 0.90 0.91
OA(%)  84.79 85.18 8536 8591

AGR KC 0.84 0.85 0.86 0.87
OA(%) 87.56  88.04  88.79 89.78

MMLP KC 0.87 0.88 0.90 0.90

OA(%) 89.28 89.93 9125 92.16

SPLP KC 0.88 0.89 0.90 0.92

TABLE 4. Classification time (second) of the three images (using 20% of
the labeled samples).

LP AGR MMLP SPLP
Indian Pines 3.40 9.98 1.23 1.25
Pavia 63.21 46.23 4.26 4.33
University
Salinas 109.43  39.87 6.72 7.40

From the results we can see that SPLP has the highest
values for both OA and KC, which indicates that SPLP has
the best classification performance. LP also does well since
labels are spread through every possible path. The results of
MMLP are inferior to that of SPLP and LP. Taking Indian
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() MMLP (d) SPLP

FIGURE 5. Classification results of Indian Pines. (using 20% of the
labeled samples).

(a) LP (b) AGR (c) MMLP (d) SPLP

FIGURE 6. Classification results of Pavia University. (using 20% of the
labeled samples).

FIGURE 7. Classification results of Salinas. (using 20% of the labeled
samples).

Pines as an example, there are 310, 299, 276 and 207 pix-
els that are not classified in MMLP when 5%, 10%, 15%
and 20% labeled samples are used. In particular, the KC
values of MMLP turn to be superficially higher since the
data that are not classified decrease the denominator in
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TABLE 5. Impacts on the results by different k in k-NN (Pavia University,
using 20% of the labeled samples) ® No. of unclassified data. @ No. of
unclassified data after the first propagation round.

K 20 40 60 80

©) 199 31 15 7

MMLP OA (%) 8545 8577 86.17  86.66

Time (s) 426 475 532 5.68
@ 104 11 0 0

SPLP OA (%) 88.78 8878 8879  88.79

Time (s) 433 4.88 5.46 5.89

KC expression. In terms of accuracy, the worst performer is
AGR. The classification results of AGR are influenced by an
important parameter—the number of anchors, which is often
not the best when chosen manually.

The data to be classified are the unlabeled data in each
image. The ascending order of data size is: Indian Pines,
Pavia University and Salinas. From the results, we can see
that the classification time increases as the size of the datasets
increase. The computational complexities of MMLP and
SPLP are approximately linear to data size, which confirms
the analysis in section /1. E. SPLP has slightly longer run times
than MMLP does because it goes through re-propagation
iterations in order to classify all pixels. In AGR, the number
of anchors increases with the increase of the number of
categories and the size of images, thus AGR costs much more
time than MMLP and SPLP. For LP, the classification time
increases rapidly as the data size increases, showing that it
has the highest complexity due to labels propagating along
every possible path.

k-NN is used to construct graphs. k value will affect the
connectivity of sparse graphs. A small k value will help
to reduce classification time but may increase the number
of data not being classified. Large k values may solve the
problem, but will increase classification time. Table 5 lists the
classification results and time, and the number of data that
are not classified for different k values in Pavia University.
It can be seen that SPLP solves the problems encountered,
thus a small k value is enough. It also shows that when
labels propagate from unlabeled nodes to labeled ones, the
number of unclassified data is significantly reduced after the
first propagation round. Furthermore, the re-propagation step
makes the algorithm almost insensitive to the value of param-
eter k, which is a good property as it allows to conveniently
choose a small k value. In contrast, MMLP still has data that
are not classified even when a large k value is set.

The proposed SPLP chooses important paths for label
propagation to reduce time complexity. The time complexity
of SPLP is approximately linear to the size of data. It is
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substantially faster than LP and AGR. It is also more robust
since it is not affected by algorithmic parameters used by
LP and AGR. Compared with MMLP algorithm, SPLP is
more accurate and clarifies that propagation paths are the
minimum cost paths, so that each unlabeled node only needs
one propagation path and each node is labeled only once.
In contrast, MMLP relies on propagation via multiple paths.
Although it quickly cuts off those unimportant propagation
paths to reduce the amount of propagation, it still has higher
memory costs because multiple paths need to be saved for
each unlabeled node. In summary, SPLP algorithm is superior
in terms of defining and searching for important paths. It has
better memory performance. In addition, SPLP solves the
problem of some data not being classified due to weakly
connected or disconnected graphs, thus further improving
classification performance.

C. WIDER COMPARISONS

In Section III.B, the experimental results of SPLP are com-
pared with three directly related algorithms, namely LP, AGR
and MMLP. This section compares SPLP with some impor-
tant state-of-the-art (SOTA) works in the wider area of clas-
sification of hyperspectral images. Almost all of the articles
cited in this section used at least one of the datasets used by
this research. Due to the differences in experiment environ-
ment and settings, and the difference in how the parameters
were set up, results from these literatures are not directly
comparable with each other and with SPLP. Whenever appro-
priate, OA figures are quoted to indicate classification accu-
racies and to provide an overall picture of the current state of
research.

One of the current state-of-the-art methods of HSI clas-
sification focuses on extracting more effective features
using various deep learning networks. In [16] (MHRNN as
the acronym for the algorithm) 3D CNNs are applied on
multi-scale local image patches to extract the multi-scale
local spectral-spatial features. This is followed by con-
structing multi-scale 1D sequences in eight directions on
the 3D local feature domain, then multi-scale hierarchical
recurrent neural networks (MHRNNS) are used to learn the
spectral-spatial features at different domains. The research
reported high OA and AA accuracies for Pavia University
and Salinas data sets, in the range of over 98% using 1% of
training samples. The authors commented that their method
takes more time to run compared with other deep learning
based HSI classification methods, but no run time was pre-
sented in the paper. In [17] (CAG) and [18] (SAGP), improve-
ments to the traditional attention mechanisms were made
by using cross-attention mechanism and graph convolution
integrating algorithms. [18] further adopted a bidirectional
independent recurrent neural network to extract features.
Reference [17] reported OA accuracy for Indian Pines data
set as 77% using 5% of training samples. In contrast, SPLP
achieves 71.35% OA accuracy for India Pines using 5% of
labeled samples. The run time in [17] for the above men-
tioned experiment is 1.16s on a computer equipped with an
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additional NVIDA GTX10170 GPU to accelerate the com-
putation. In contrast, SPLT’s run time is around1.25s on a
modest personal computer without GPU. Reference [18] uses
completely different datasets so the results are not compara-
ble. From the results, one can see that although SPLP only
uses original spectral features and does not rely on com-
plicated training processes, its accuracy is comparable with
some of the state-of-the-art deep learning based approaches.
In terms of run time, SPLP is far more superior, because
deep learning based approaches need to take advantages of
accelerations hardware (such as GPUs) to be on par with
SPLP.

Another state-of-the-art method used by many researchers
to reduce complexity centers around the idea of superpixel
or subspaces. It is typically used in conjunction with other
multiple steps to improve classification accuracy. In [19]
(MSSR), the authors used multi-scale superpixels to explore
the spatial information of HSIs. It then uses joint sparse rep-
resentation classification (JSRC) to classify the multi-scale
superpixels. This is followed by a majority voting to fuse
the labels of superpixels at different scale and to obtain the
final classification result. The best OA classification accuracy
achieved by [19] for India Pines dataset when 10% of labels
were sued as training set is 98%. This is much higher than
SPLP’s 75.37% when 10% of samples are labeled. The exper-
iments in [19] are conducted on an Inter® Xeon® CPU E5-
2603 V3 @1.60 GHZ and 96 GB of RAM. For the India Pines
result mentioned, it took 67.4s, much higher than SPLP’s run
time (in the region of 1.25s). This is despite the fact that
the computer used in [19] has a much higher performance
CPU (according to various CPU benchmark websites such
www.cpubenchmark.net) and a much larger memory (96GB
vs 8GB). In [20] (SuWLP), entropy rate segmentation (ERS)
was used to oversegment an image to form superpixels. It then
designed a new similarity measure to estimate the similarity
between two superpixels. Training samples also have to be
expended based on superpixel distributions. A weighted label
propagation was used to propagate labels at the superpixel
level. Finally the labels on superpixels are mapped back to the
original pixels. The experiments in [20] focused on a very low
number of label samples: only 3 labeled samples per class.
It achieved OA accuracies of 69.17%, 70.29% and 89.09% for
India Pines, Pavia University and Salinas respectively. There
was no run time reported in this paper. In [21], the random
subspace method is used to partition the feature space into
multiple subspaces, then multiple label propagation models
are constructed on subspaces. Pseudo-labels were obtained
after fusion decisions of the multiple labels. Extreme learn-
ing machines are trained on both labels and pseudo-labels.
For their experiments, different numbers of labeled samples,
ranging from 3 per class, to 200 per class, were chosen. For
3 labeled samples per class, [21] achieved OA accuracies of
79.62%, 85.54%, and 89.54% for India Pines, Pavia Univer-
sity and Salinas respectively; for 25 labeled samples for class,
the figures are 92.9%, 95.93% and 96.44%. The results for
other numbers of labeled samples are incomplete, but seem to
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have the trend of diminishing returns when the sample sizes
increase. No run time is reported in the paper.

In summary, the current trend of semi-supervised HSI
classification incorporates multiple steps and techniques to
achieve high classification accuracy and use very small num-
bers of labeled samples. Many also resort to complicated
parameter analysis and trials to achieve the best results. The
reported run times are in general very high, and some need
to employ hardware accelerations to be viable in terms of run
time.

IV. CONCLUSION
Although SOTA is discussed in the previous section to pro-
vide an overall picture of the current state of the research,
competing for higher classification accuracies and smaller
sample sizes is not the research aim of this article. It becomes
apparent from the comparisons in section /I.C that a simple
and straightforward method such as SPLP is unlikely to
beat current SOTA. Instead this research intents to address
some fundamental questions regarding propagating labels in
graph based semi-supervised classifications, i.e. which are
the important paths for propagation? how to propagate the
labels (e.g. algorithms and direction of propagation)? and
how to solve the problems that some data can never be classi-
fied because they are not reachable in the previous studies. All
the questions are answered in this paper. All the experiments
conducted here only use the original spectral information, and
still it achieved high accuracy. SPLP can classify multiclass
directly and is independent of data dimensions. Rigorous run
time complexity analysis shows that it is linear to data size,
therefore is extremely fast. It also has low spatial complexity
not only because each unlabeled node needs only one prop-
agation path, but also because these paths can be quickly
cut off when a label is found. SPLP almost does not rely
on parameters, making it very easy to use and be integrated
with other techniques. Last but not the least, it is capable of
reaching all the nodes to achieve a complete classification.
The above mentioned properties mean that SPLP can be
readily integrated into state-of-the-art and future HSI clas-
sification frameworks which has a label propagation stage.
In fact, the research team is working on integrating feature
extractions and adjacent matrix graph learning with SPLP to
further improve the performance of HSI classification.
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