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Statement of Need

In social and behavioural sciences, longitudinal clustering is widely used for identifying groups
of individual trends that correspond to certain developmental processes over time. Whilst
popular clustering techniques, such as k-means, are suited for identifying spherical clusters
(Curman et al., 2015; Genolini & Falissard, 2011), there has been little attempt to mod-
ify such methods to identify alternative forms of cluster, such as those that represent linear
growth over time (i.e. directionally-homogeneous clusters). To address this shortcoming, we
introduce Anchored k-medoids, a package referred to as Ak-medoids, which implements a
medoid-based expectation maximisation (MEM) procedure within a classical k-means cluster-
ing framework. The package includes functions to assist in the manipulation of longitudinal
data sets prior to the clustering procedure, and the visualisation of solutions post-procedure.
The potential application areas of Ak-medoids include criminology, transport, epidemiology
and brain imaging.

Design and implementation

Previous studies have taken advantage of the various functional characteristics of longitudinal
data in order to extract theoretically or empirically interesting clusters of subjects. Examples
include using the Fourier basis (Tarpey & Kinateder, 2003) or the coefficients of the B-spline
derivative estimates (De Boor, 1978; Schumaker, 2007) which anchor clustering routines to
better capture a presumed developmental process. Here, we develop an Anchored k-medoids
(Akmedoids) clustering package, which employs the ordinary least square (OLS) trend lines of
subjects, and a bespoke expectation-maximisation procedure, specifically to capture long-term
linear growth. In criminology, identifying such slow-changing trends helps to unravel place-
based characteristics that drive crime-related events, such as street gun and homicide, across a
geographical space (Griffiths & Chavez, 2004). To date, explorations of these trends have de-
ployed existing techniques, namely k-means (Andresen et al., 2017; Curman et al., 2015) and
group-based trajectory modelling (Bannister et al., 2017; Chavez & Griffiths, 2009; Weisburd
et al., 2004), which are suited for spherical clusters (Genolini & Falissard, 2011). The sensi-
tivity of such techniques to short-term fluctuations and outliers in longitudinal datasets makes
it more difficult to extract clusters based on the underlying long-term trends. Akmdeoids
is tailored for such a scenario. The main clustering function in the Akmedoids package
implements a medoid-based expectation maximisation (MEM) procedure by integrating cer-
tain key modifications into the classical k-means routine. First, it approximates longitudinal
trajectories using OLS regression and second, anchors the initialisation process with medoid
observations. It then deploys the medoid observations as new anchors for each iteration of the
expectation-maximisation procedure (Celeux & Govaert, 1992), until convergence. In a similar
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fashion to classical k-means, the routine relies on distance-based similarity between vectors
of observations and is scale invariant. This implementation ensures that the impact of short-
term fluctuations and outliers are minimised. The final groupings are augmented with the raw
trajectories, and visualised, in order to provide a clearer delineation of the long-term linear
trends of subject trajectories. Given an l number of iterations, the computational complexity
of the clustering routine is the same as that of a classical k-means algorithm, i.e. O(lkn),
where k is the specified number of clusters and n, the number of individual trajectories. The
optimal number of clusters for a given data may be determined using the average silhouette
(Rousseeuw, 1987) or the Calinski and Harabasz criterion (Calinski & Harabasz, 1974). A full
demonstration is provided in the package vignette of how to deploy Akmedoids to examine
long-term relative exposure to crime in R (Team, 2020). We encourage the use of the package
outside of criminology.

Clustering and cluster representations

The main clustering function of akmedoids is akclustr. The function captures direction-
ally homogeneous clusters within any given longitudinal dataset using the procedure detailed
above. For crime inequality studies, the package includes the props function for converting
the absolute (or rate) measures of individual trajectories into a relative measure over time.
The package includes the print_akstats and plot_akstats functions to generate the
properties of clusters and visualize the clusters, respectively. In particular, the plot_akstats
function draws from the ggplot2 library (Wickham, 2016) in order to visualize the resulting
clusters in either a line or an areal-stacked graph format.
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