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Abstract
The effective, efficient and equitable policing of urban areas rests on an appreciation of the quali-
ties and scale of, as well as the factors shaping, demand. It also requires an appreciation of the fac-
tors shaping the resources deployed in their address. To this end, this article probes the extent
to which policing demand (crime, anti-social behaviour, public safety and welfare) and deployment
(front-line resource) are similarly conditioned by the social and physical urban environment, and
by incident complexity. The prospect of exploring policing demand, deployment and their inter-
play is opened through the utilisation of big data and artificial intelligence and their integration
with administrative and open data sources in a generalised method of moments (GMM) multilevel
model. The research finds that policing demand and deployment hold varying and time-sensitive
association with features of the urban environment. Moreover, we find that the complexities
embedded in policing demands serve to shape both the cumulative and marginal resources
expended in their address. Beyond their substantive policy relevance, these findings serve to open
new avenues for urban criminological research centred on the consideration of the interplay
between policing demand and deployment.
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Introduction

The nature of the calls-for-service to police
forces, which constitute one measure of pub-
lic demand for policing, is changing. In addi-
tion to crime and anti-social behaviour
(ASB), increasingly calls-for-service relate to
public safety and welfare (PSW) (Boulton
et al., 2016; Charman, 2018; College of
Policing, 2015; Wuschke et al., 2018). Calls-
for-service classified as relating to crime
include all incidents that may result in a
notifiable offence, whereas those classified
as ASB include incidents relating to unac-
ceptable behaviours that cause alarm or dis-
tress, and those classified as PSW include
incidents relating to civil disputes, concerns
for safety, domestic incidents, missing per-
sons and suspicious circumstances (Home
Office, 2011). An assessment of the calls-for-
service that police forces in England and
Wales responded to in 2016/2017 found that

only 24% were crime related, 12% anti-
social behaviour related, whilst 64% were
non-crime related (inclusive of PSW)
(National Audit Office (NAO), 2018). This
being said, an in-depth study of calls-for-
service across six police force areas found
that in 90% of incidents a crime took place
or held the potential to take place (Her
Majesty’s Inspectorate of Constabulary
(HMIC), 2012: 6). This growth and shift in
demand has been attributed to the austerity
agenda, which has resulted in a substantial
reduction in the non-policing public services
provided by the state (Crawford et al.,
2019), leaving the police as a ‘service of first
resort, rather than last resort’ for dealing
with vulnerable people (Winsor, quoted in
Her Majesty’s Inspectorate of Constabulary
and Fire & Rescue Services (HMICFRS),
2018). Set against this context, there has

 (GMM) 
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been a limited endeavour to account for this
broader palette of demand for police services
(Boulton et al., 2016; Hope et al., 2001;
NAO, 2018), partly attributable to the lack
of reliable data (College of Policing, 2015).
The requirement to advance such a project
is pressing, particularly as the police in
England and Wales have been subject to a
significant reduction in funding (19% in real
terms; NAO, 2018) over the last decade,
resulting in 20,000 fewer police officers
(Home Office, 2019), and reduced capacity
to supply front-line resource in response to
demand. Whilst the modelling of demand
for and supply of policing services has
tended to take place as separate exercises
(Laufs et al., 2020), it is surely the case that
the effective, efficient and equitable policing
of urban areas rests on the interplay between
the demand for and supply of police ser-
vices, while evaluating the extent to which
effectiveness, efficiency and fairness are
achieved. Therefore, due attention should be
paid to the complex social (demographic
and economic), physical and policy factors
underlying both. In this article, we consider
these issues, using calls to the police for
assistance as our measure of demand and
subsequent police resource deployment as
our measure of supply.

There has been longstanding recognition
that crime (at least) concentrates in particu-
lar areas of cities (Sherman et al., 1989;
Weisburd et al., 2012) and at certain
moments in time (Brunsdon et al., 2007;
Newton, 2015). Whilst the criminological
endeavour to explain the where, when, why
and whom of crime has often been fragmen-
ted (Bannister et al., 2019), each strand has
typically considered the social (economic
and demographic profile) and physical char-
acteristics of the city, as well as the volume
and recurrent mobility of its citizenry, to be
important explanatory variables. These
insights provoke the following research
questions: Do recorded policing demands

(as these relate to crime, anti-social beha-
viour and public safety and welfare situa-
tions) exhibit comparable spatial and
temporal clustering? If they do, how are
such policing demands being conditioned by
the urban environment?

Previously, police forces in England and
Wales used an Activity-Based Costing
approach to account for the resources they
committed to particular activities, but this
ceased in 2008 due to the administrative and
methodological (data) challenges it posed
(Wain and Ariel, 2014). Here, we renew
attention to this task. In this context, it is
obviously the case that police deployments
to a call-for-service can result in widely vary-
ing resource consequences and simple counts
of calls-for-service, therefore, will fail to cap-
ture the resources committed in their
address. To attend to this issue, the research
utilises a big data resource, namely Airwave/
GPS data, to analyse deployment patterns
including resource effects. Moreover, and
through the text mining of a further big data
resource, namely the unstructured narratives
that are attached to each call-for-service, we
are able to begin to assess the complexities
embedded in individual calls-for service and
the marginal resource they consume.
Cumulatively, these data enable us to
address a further research question: To what
extent is policing deployment, inclusive of
both cumulative and marginal front-line
policing resource, conditioned by the social
and physical urban environment, and by
individual incident complexity?

Policing demand and deployment,
and big data

Explaining crime in the city

The spatial concentration of crime and anti-
social behaviour (well reflected in policing
demand as measured by calls-for-service),
most prominent at small spatial units of
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analysis (Sherman et al., 1989), is suggestive
of a ‘ . ‘‘tight coupling’’ of crime with the
places where crime occurs’ (Weisburd et al.,
2012: 10). Criminological literatures, inter-
preted through a specific and explicit urban
filter, collectively imply that crime and anti-
social behaviour (and plausibly activities
relating to public safety and welfare, noting
that in the vast majority of such incidents a
crime holds the potential to take place
(HMIC, 2012: 6)), are a complex spatial and
temporal consequence of the social and
physical characteristics of the urban environ-
ment. Specifically, of the interplay between
neighbourhood characteristics, land use fea-
tures and recurrent population flows
(Bannister and O’Sullivan, forthcoming).
Neighbourhood characteristics can serve to
influence the capacity of a community to
inhibit crime and offending through the exer-
cise of informal social control (Sampson,
2006; Shaw and McKay, 1942). A multitude
of factors have been evidenced to influence
informal social control at the neighbourhood
level, in particular the presence/severity of
poverty or deprivation (Higgins et al., 2010;
Hipp, 2007), housing tenure (Livingston
et al., 2014), demographic structure
(Morenoff et al., 2001), family disruption
(Sampson and Groves, 1989), residential sta-
bility (Sampson et al., 1997) and the level of
ethnic diversity (Sampson et al., 1997). More
deprived and segregated neighbourhoods
tend to have worse crime outcomes due to a
combination of negative socialisation, lim-
ited social networks, stigmatisation and lim-
ited access to effective institutions and
resources (Livingston et al., 2014), cumula-
tively serving to inhibit informal social con-
trol and (potentially) attract offenders.

Land use features can influence the type(s)
and volume of crime and anti-social behaviour
that take place in an area (Brantingham and
Brantingham, 1993; Taylor and Gottfredson,

1986; Wo, 2019), through acting as either crime
generators (drawing in population groups) or
crime attractors (drawing in offenders) or both
(Brantingham and Brantingham, 1995). For
example, areas comprised of risky facilities
(Bowers, 2014), such as alcohol outlets, serve
as magnetic places (Boivin and D’Elia, 2017),
attracting pools of potential offenders and
victims.

Recurrent population flows, the space–
time geography (Hägerstraand, 1970; Miller,
2005) of the citizenry, also serve to shape the
scale and mix of motivated offenders, vic-
tims and guardians (Cohen and Felson,
1979) drawn to a given setting in a given
period of time. Such flows are framed by
physical limitations to movement (capability
constraints), the requirement to undertake
mandatory societal roles (e.g. work, educa-
tion) in specific locations and at particular
times (coupling constraints) and the accessi-
bility of specific locations or facilities
(authority constraints). The quantification
and qualification of recurrent population
flows pose a significant challenge, however.
Although multiple approaches have been
explored, including the use of mobile phone
and travel survey data (Haleem et al., 2020;
Lee et al., 2020), such measures have proved
unable to fully capture the dynamism of
urban populations or their varied propensity
to perform the roles of motivated offender,
target (victim) or guardian (Hipp, 2016).
Nevertheless, it remains important to recog-
nise that both the scale and characteristics
of the population present in a given setting
at a given time can influence the volume and
type of crime and anti-social behaviour that
take place. In this regard, it is plausible that
both neighbourhood and land-use character-
istics, when assessed with reference to capa-
bility, coupling and authority constraints,
are indicative of population flows if not their
exact volume.
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Explaining supply in the face of demand:
Determinants of police deployment and
resourcing

To date, scant scholarly attention has been
afforded to the assessment of the patterning
and drivers of the supply of reactive poli-
cing, that is, the deployment of front-line
resources. The current UK Government
police funding allocation formula is founded
on a cumulative assessment of the factors
driving demand at police-force level and
assumptions about consequent responses.
Yet, and in part as a consequence of
Activity-Based Costing ceasing in 2008, the
funding formula has been determined as
outdated and unfit for purpose (House of
Commons Home Affairs Committee, 2015).
In its stead, a simplified funding model has
been proposed, based on an assessment of
the factors that correlate strongly with ‘long
term patterns of crime and overall policing
demand’ (House of Commons Home Affairs
Committee, 2015: 6). Five key factors are
incorporated in this model, which have reso-
nance with the neighbourhood or social
characteristics (households with no adults
employed; ‘hard-pressed’ population;1 coun-
cil tax band D equivalent properties),2 land-
use or physical characteristics (licensed bar
density) and recurrent population flows
(population size) of the city (Home Office,
2015). The revised formula has yet to be
implemented, as the model attracted sub-
stantial criticism from police forces during a
consultation period (House of Commons
Home Affairs Committee, 2017) for its
alleged failure to fully encompass the factors
shaping demand and the situational factors
or complexities that impact on the resources
consumed in addressing that demand. These
are issues that remain to be investigated.

If the supply of reactive policing, that is,
the deployment of front-line resources,
matches or is proportionate to the patterns
of overall demand, then we should expect it

to be similarly tempered by the same urban
characteristics. Constrained by limited
resources, police forces determine whether
and how quickly to deploy to a call-for-
service based on an initial assessment of its
severity, that is, the threat, harm and risk
that the incident poses to the public or to
property (NPCC Performance Management
Coordination Committee, 2017). The higher
the assessment of incident severity, which
may vary according to its nature, the more
likely and quicker the deployment response.
In contrast, those calls-for-service assessed
to be of low severity tend to be resolved
through a telephone call or via a referral to
another organisation and to be actioned over
a longer time period. Calls-for-service may
vary not only in their severity, but also in
their complexity (College of Policing, 2015).
Situational factors relating to the present or
previous circumstances or vulnerabilities of
the individuals involved, as well as to the
nature of the incident itself, impact upon the
time required to resolve it. Typically, the
more complex an incident, the greater
resource required in its address (College of
Policing, 2020).

Aside from neighbourhood social charac-
teristics, which can be understood as area-
based measures of vulnerability, two specifi-
cally personal attributes in the form of the
mental health status and/or recent alcohol
consumption activity of incident participants
are known to contribute to incident com-
plexity. Moreover, individuals with mental
health disorders are more likely to have con-
tact with the police, as either a victim or an
offender (McManus et al., 2016). For exam-
ple, it has been estimated that between 2%
and 20% of suspects passing through police
stations have a mental health disorder
(Bradley, 2009). Likewise, the Crime Survey
of England and Wales (CSEW) reports that
over half of violent incidents involving adults
were perceived to be alcohol related (Flatley,
2015). Similarly, a study in the North East of
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England found that 93% of officers per-
ceived that alcohol played a large contribu-
tory role in domestic abuse, whilst 60% of
officers stated that alcohol-related crime and
disorder took up at least half of their time
(Balance – The North East Alcohol Office,
2013).

Summarising the above, both theoretical
considerations and prior empirical analysis
lead us to expect that patterns of police
deployment and resource commitment to
calls-for-service are conditioned by the same
factors underpinning the demand for these
services, but these patterns will also be
affected by the personal characteristics and
circumstances of participants within inci-
dents further mediated by the total resources
made available to the police for the purpose
of dispensing their responsibilities.

The role of big data in the measurement
of demand for and supply of police
services

Police forces are ‘data-rich’ organisations,
capturing real-time information that can be
exploited via big data methods to deliver
and/or confirm efficient, effective and equita-
ble service delivery in an age of austerity,
broadening demands and a heightened call
for public accountability (Murphy et al.,
2017). In these terms, routinely captured
data on operational IT systems present new
opportunities to quantify and qualify reac-
tive policing deployment. Two particular
data sources are noteworthy. Firstly, and in
line with advances in mobile technologies,
police forces now routinely use Geographical
Positioning Satellites (GPS) (Walker and
Archbold, 2018). Police officers now leave a
passive and precise spatial and temporal
footprint through digital radios and patrol
vehicles, providing real-time volunteered

geographic information (Goodchild, 2007).
GPS data have begun to be used to under-
stand the consequences of police deploy-
ment, such as the relationship between the
‘dosage’ of police patrols and the level of
crime and disorder (Ariel et al., 2016). Thus,
GPS data allow quantification (scale and
duration) of the policing resources deployed
to incidents, enabling an assessment of the
complexities embodied in incidents as mea-
sured by the front-line resources they com-
mand. Secondly, police forces record the
narrative of an incident in a text log.
Assessment of these data, via the utilisation
of text-mining algorithms, has begun to show
promise in providing detail of the qualities of
incidents and the characteristics of those peo-
ple involved (Haleem et al., 2019). Below, we
combine these data to partially rectify the
limitations of previous research in the field.

Data and analytical strategy

The research study area is that of Greater
Manchester (GM), a large metropolitan
region located in the North West of
England. GM consists of 10 local authorities
with a population of 2.5 million (Office for
National Statistics (ONS), 2019).
Manchester city centre is the dominant
employment, retail and leisure centre in the
region, though there are multiple other
town/city centres. This study utilises the
Lower Layer Super Output Area (LSOA)
geography, which is part of the UK Census
geography and for which a standard set of
socio-demographic and land use data sets
are regularly published. There are 1673
LSOAs across GM, with each containing
approximately 1600 persons (ONS, 2019).
LSOAs differ in geographical size, varying
between 0.05 and 25.68 km2 with a median
of 0.39 km2, depending on residential popu-
lation density.
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Dependent variables

The research utilises data sets provided by
Greater Manchester Police (October 2016 –
September 2017), specifically calls-for-service
and Airwave/GPS data, to create measures
of policing demand and deployment. A call-
for-service is created by the public (a 999 or
111 call), another agency (e.g. the ambulance
service) or the police, and is classified in line
with national standards for incident record-
ing (Home Office, 2011). Each incident has a
unique date, time, location (geocoded) stamp
and response grade. The response grade
serves to denote the policing judgement of
the severity of the incident, that is, the deci-
sion whether to deploy front-line resource to
that incident or to seek an alternative means
of resolution such as a telephone call. The
research only uses incidents classified as
crime, anti-social behaviour (ASB) and pub-
lic safety and welfare (PSW). GPS data col-
lected by means of digital Airwave radios
capture police officer resources deployed to
incidents, undertaking routine patrols or
investigative duties, as well as the duration
of these activities. These data also possess
fine-grained spatial (geocoded) and temporal
(timestamp to seconds) characteristics.

Using the above data, four continuous
dependent variables were generated: D1, a
count of all calls-for-service or incidents clas-
sified as being crime, ASB or PSW; D2, a
count of all incidents deployed to following
an assessment of their severity (threat, harm
and risk), but excluding those incidents to
which deployment time was less than one
minute; D3, a count of the cumulative time
of officer deployment to an incident, recog-
nising that an incident may have multiple
officers deployed to it (this task is made pos-
sible by the GPS data, which record a unique
incident reference number and the officers
deployed to it); and D4, the marginal or var-
iance around the mean resource deployed to
an incident.

Independent variables

The research uses data sourced from the
2011 census (ONS, 2019), as well as
Ordnance Survey Points of Interest� (POI)
data, to generate a range of social and physi-
cal variables reflective of the urban environ-
ment. Census data are used to generate
measures of family structure, age structure,
ethnicity, income deprivation, population
turnover, tenure mix, housing type and pop-
ulation (residential and workplace) for each
LSOA. CACI ‘ACORN’ (A Classification
of Residential Neighbourhoods) data are
used to generate a measure of hard-pressed
neighbourhoods, in line with the proposed
funding formula, for each LSOA. POI data
are used to determine the land use (work,
education, shopping, recreation and leisure)
of non-residential LSOAs, in line with the
approach adopted by Lee et al. (2020).
Utilising Shannon’s dissimilarity index
(Shannon, 1948), these data are combined
with a count of residential properties to cal-
culate a mixed land-use variable, a measure
of the abundance or evenness of land-use
types across space (Dong et al., 2018). Town
centre loci (capturing 52 LSOAs) were iden-
tified using the Ministry of Housing
Communities and Local Government (2004)
data set and used to calculate the distance
between each residential LSOA centroid and
a city/town centre in the GM area (mono-
centric and polycentric variables). Finally,
police incident logs were used to assess the
presence of a mental health and/or an alcohol
consumption qualifier in any given incident.

Analytical strategy

The analytical strategy comprised three
phases, the first being data processing. The
Airwave/GPS data were transformed to
enable calculation of police personnel
deployment. The sheer scale of the GPS data
(270 GB) made conventional processing
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methods impossible. Therefore, we used
Hadoop clusters to maintain, manage and
process the data (Yuan et al., 2015). Hadoop
clusters enable big data to be managed via a
distributed file system, which facilitates pro-
cessing across clusters of computers using
simple data models, significantly accelerating
data processing time. Thereafter, the data
were processed to create dependent vari-
ables, as defined in the preceding section, at
LSOA level across GM. The dependent vari-
ables were then partitioned into specific time
bins, reflecting the daily patterns of policing
demand, according to the time at which the
incident was first recorded, namely: T1,
night-time (00.00–05.59); T2, morning
(06.00–11.59); T3, afternoon (12.00–17.59);
and T4, evening (18.00–23.59).

Unstructured text incident narratives
were processed using an automated deep-
learning-based text-mining approach to
identify the presence or not of alcohol and/
or a mental health qualifier at an incident;
these are coded as a binary representing their
presence (1) or absence (0). Specifically, we
developed a Convolutional Neural Network
(CNN)-based deep learning methodology
capable of flagging incident text narratives
with an affirmative reference to mental ill
health and/or alcohol, whilst ignoring a neg-
ative reference to the same (Haleem et al.,
2019). The CNN was designed with refer-
ence to a training data set in which incidents
were classified manually by an experienced
police officer and civilian researchers, with
the final classification based on mutual con-
sensus. The second phase of the analytical
strategy involved an assessment of the spa-
tial association between demand types, and
across demand (D1) and deployment (D2–
D4) measures in the periods T1–T4. This
entailed both descriptive and correlation
analysis as well as an evaluation of the spa-
tial autocorrelation of demand (incident

counts) and deployment, for which we used
a Global Moran’s I test (Moran, 1950).

The third phase of the analytical strategy
centred on the assessment of whether poli-
cing demand (D1) and deployment (D2–D4)
are similarly conditioned by the social and
physical urban environment, and by incident
complexity. To this end, a two-level random
intercept model accounting for the nested
random effects of the spatial unit of analysis
is deployed. It encompasses both time-
variant (level 1) incident complexity quali-
fiers and time-invariant (level 2) social and
physical urban environment indicators (level
2). As a first step, a multilevel model with-
out a random intercept was deployed in
order to identify significant independent
variables and to test for the multicollinearity
of time-invariant indicators. This reference
model specification can be expressed as
follows:

log Yitð Þ=b0 +b1tQit + eit

Where, Yit represents the dependent variables
(D1, D2, D3 or D4) for each area i in a par-
ticular time period (T1–T4) over the course
of the day. Q represents the fixed effects of
the time-variant incident complexity quali-
fiers (alcohol and mental ill health). e is the
residual error term. The random intercept b0

represents a latent variable, the base level of
the variance in policing demand across spa-
tial units. This model is then expanded as
follows:

b0 = g00 + g01X1i + g02X2i + � � � + g0kXki

+m0i

Where, k is the number of time-invariant
indicators X by each regression coefficient
g01 to g0k with an overall regression intercept
g00. The unexplained random effect m0 refers
to the random error component, which
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allows for different levels of intercept with
the spatial unit. These two components can
then be incorporated from the random inter-
cept model as a fixed component of the mul-
tilevel model.

The analysis addresses the issue of poten-
tial endogeneity in the social and physical
urban environment indicators by assessing
the extent to which explanatory variables are
correlated with the error term in the multile-
vel model. By adopting this approach, the %
income deprived population is determined,
via the Hausman test, to serve as an internal
instrumental variable (IV) regression estima-
tor for level 2 regressors. Here, we follow the
approach of Kim and Frees (2007) who pro-
pose adoption of a Generalised Method of
Moments (GMM) estimation in multilevel
modelling as an extension of instrumental
variable estimators. This can be formally
specified as:

log Yitð Þ= Zitb0 +b1tQit + eit

Where, Z denotes the instrumental variable
estimators for area i at a given time t, in
terms of the percentage of income-deprived
population. By employing a GMM estima-
tion to address endogeneity, both the
between and within variations of the exogen-
ous variables are assessed, but only the
within variation of the variables is assumed
to be endogenous (Kim and Frees, 2007). In
other words, this approach acts to set the
one or multiple regressors assumed as endo-
genous and to return updated parameters
from random effects thereafter. This
research used REndo (Gui et al., 2020) in R
software to fit the model and demonstrate
the bias in the random effects estimator.

Results

During the period October 2016 to
September 2017, GMP received 872,347
calls-for-service, of which 580,054 (66.5%)
were classified as ASB (n = 97,581; 11.2%),

crime (n = 246,648; 28.3%) or PSW
(235,825; 27.0 %). Table 1 presents the over-
all count of incidents (D1), and both the
number and proportion of these that poli-
cing resources were deployed to (D2). In
overview, less than half of all incidents
(n = 276,436; 47.7%) were determined as
being of sufficient severity to merit front-line
officer deployment to them (i.e. they held a
corresponding GPS deployment record). Of
these, the text-mining approach identified
that 14.1% held an alcohol marker and
19.3% a mental ill health marker. The vol-
ume of (ASB, crime and PSW) incidents var-
ied by time of day, with the largest
proportion occurring during the afternoon
(T3 = 33.9%) and evening (T4 = 33%).
On closer inspection, examining the hourly
distribution of incidents, crime and PSW rise
sharply at 07:00 and then steadily increase
until 16:00. Thereafter, the level of PSW pla-
teaus until 00:00, prior to falling sharply,
whereas the level of crime falls slowly prior
to dropping off from 19:00. ASB steadily
rises until 18:00, and plateaus until 20:00
before falling away. For modelling purposes
(D2–D4), we utilise 276,436 (47.7%) inci-
dents with a cumulative deployment time of
greater than one minute, which exhibit a
mean deployment time of 163 minutes and a
median deployment time of 83 minutes.

The spatial clustering of demand types,
across demand and deployment measures, in
different time periods for ASB, crime and
PSW calls-for-service hold a strong spatial
correlation as we progress from an incident
count (D1: crime and ASB, rho = 0.876;
crime and PSW, rho = 0.883; and ASB and
PSW, rho = 0.842) via deployed-to inci-
dents (D2: crime and ASB, rho = 0.869;
crime and PSW, rho = 0.904; and ASB and
PSW, rho = 0.847) to cumulative deploy-
ment time (D3: crime and ASB, rho = 0.786;
crime and PSW, rho = 0.822; and ASB and
PSW, rho = 0.784). The spatial correlation
between the mean deployment time to ASB,
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crime and PSW incidents shows little relation
(D4: crime and ASB, rho = 0.188; crime and
PSW, rho = 0.183; and ASB and PSW,
rho = 0.127). The temporal (hourly) correla-
tions between demand types and across the
measures of demand and deployment (D1–4)
exhibit significant variation across the day.
For example, examining count (D1) data, the
correlation between crime and PSW rises
from 06:00 (rho = 0.219) and peaks at 18:00
(rho = 0.678) prior to falling through the
night to 06:00. The correlations between ASB
and crime, and ASB and PSW, though lower,
follow a similar patterning. Once again, D4
exhibits lower correlations and no distinct
diurnal patterning. Further, there is evidence
of positive, though moderate, spatial autocor-
relation of demand (crime, ASB and PSW) as
assessed via a global Moran’s I test of incident
counts (D1, Z = 0.293), deployed-to inci-
dents (D2, Z = 0.255), cumulative resources
deployed to incidents (D3, Z = 0.282) and
the mean deployment time to incidents (D4,
Z = 0.139). Town and city centres comprise
the dominant focal points of both demand
(D1) and deployment (D2, D3), which is sug-
gestive of their similar framing by the social
and physical characteristics of the city. In con-
trast, town and city centres hold limited
expression in the patterning of mean deploy-
ment time (D4).

Policing demand and deployment, and the
city

Turning now to the regression analysis.
Table 2 presents our evidence of how vari-
ous features of the social and physical urban
environment are associated with demand
and deployment (D1–D4) in each time
period (T1–T4). It displays, for each model
and time period, the coefficient estimates
and significance of each of the covariates. It
is evident that the measures of demand (D1)
and deployment (D2, D3) hold strong
and significant association with factorsT
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representative of the social and physical
characteristics of the city, but that these
associations vary across different periods of
the day (T1–T4).

Examining the count of incidents (D1),
neighbourhood-based socio-economic and
demographic factors (i.e. % hard-pressed
population, % social renting and % lone
parents as positive coefficients, and % aged
over 65 as a negative coefficient), representa-
tive of the collective vulnerability of a resi-
dential population to crime, hold substantive
effect. Land use-based factors, (i.e. land-use
mix, bar density, business premises, recrea-
tional premises, educational premises and
distance to monocentric and polycentric cen-
tres), and physical factors of the urban envi-
ronment that can be understood to act as
crime generators and population attractors,
also hold substantive effect. Amongst both
social and physical factors, there exists varia-
tion in their influence over the course of the
day (T1–T4). Thus, % lone parents is partic-
ularly influential in T4, land use mix in T3
and T4 and bar density in T1 and T4.
Further, some factors (i.e. bar density and
business premises) exhibit both significant
positive and negative effects depending on
the time period under investigation.

Comparing and contrasting the influence
of the social and physical features of the
urban environment on the count of incidents
(D1), our benchmark model, with their influ-
ence on the count of deployed-to incidents
(D2), there are several noteworthy observa-
tions to make. Firstly, where similarities exist
between D1, D2 and D3, they are suggestive
of deployment to incidents and the cumula-
tive time deployed to incidents being propor-
tionate to the volume of demand generated
by these factors. Secondly, and this being
said, some substantive differences exist.
These are particularly evident when specific
time periods are taken into consideration.

Thus, whereas % aged over 65 and % lone
parents are significant neighbourhood-based
socio-economic and demographic factors in
D1 T4 (18:00 to 23.59), they are no longer
significant in D2 T4. Similarly, features of
the physical urban environment lose signifi-
cance in D2, such as business premises (in T3
and T4), educational premises (in T2 and
T3) and service premises (in T3). In other
words, though influencing the volume of
demand, these variables appear to hold lim-
ited influence on deployment in these time
periods. Finally, distance to town and city
centres (i.e. polycentric centres) in T1–T3
loses significance for D2, whereas it becomes
significant and negative in T4. This finding is
suggestive of deployment being focused in
and around town and city centres, and the
night-time economy, in T4.

Progressing to model D3, the count of
cumulative time deployed to incidents, it is
striking that the coefficient estimates relating
to neighbourhoods with a higher percentage
of hard-pressed populations and social rent-
ing rise markedly in comparison with D2.
This is indicative of a greater proportion of
front-line resources being required to meet
deployed-to incidents in these areas, of the
vulnerability of these populations and/or of
the complexities of the incidents themselves.
Again, there are marked differences across
the course of the day. It is noteworthy, for
example, that neighbourhoods with a higher
percentage of social renting hold a greater
influence on both deployment to incidents
and cumulative time deployed to incidents
during the afternoon (T3, 12:00–17:59) than
they do on demand in this period. Of the
physical features of the urban environment,
bar density and land-use mix hold a stronger
influence on cumulative time deployed to
incidents than they do on deployed-to inci-
dents per se. Once more, these findings are
suggestive of the complexities embedded in
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these incidents, requiring greater resources
to resolve. Finally, the type of premises has
a lesser or insignificant effect, as does dis-
tance from city and town centres (mono-
centric and polycentric centres), which is
now only significant in T3.

In D4, the marginal or mean variance of
resources deployed to incidents, a remark-
ably distinct picture emerges. Here, very few
of the social characteristics of the urban
environment, i.e. % income deprived (T1
and T4), % hard-pressed population (T3),
% lone parents (T1) and % aged over 65,
retain significance, though their influence is
less robust. Of the physical characteristics of
the urban environment, educational, service
and recreational premises have a significant
negative effect, but only in T4. Land-use
mix and distance from polycentric town and
city centres have a significant and positive
effect, but only in T1. In sharp contrast to
D1–D3 (where the low count of incidents
with these markers and their uneven spatial
patterning lead to significant and substantial
negative associations), measures of individ-
ual incident complexity, namely the presence
of alcohol and mental ill health markers,
hold significant and strong positive associa-
tions with the mean resource deployed to
incidents in T2–T4.

Discussion

Interpreting findings

Our research findings both confirm and
extend existing literatures on policing
demand (HMIC, 2012) and the spatial and
temporal patterning of crime (Weisburd
et al., 2012). Using calls-for-service data, the
results corroborate the view that the volume
of non-crime (ASB and PSW) demand
exceeds that of crime demand in GM.
Further, and following the integration of
these variables into a single demand mea-
sure, based on their strong spatial and tem-
poral correlation, significant evidence of the

clustering of demand emerged. Having
established that policing demand exhibits
distinct spatial and temporal patterning, we
then explored the extent to which it is condi-
tioned by the social and physical urban envi-
ronment. In line with existing criminological
literatures, we found clear positive (and neg-
ative) associations between a spectrum of
neighbourhood social characteristics, physi-
cal land-use characteristics and the spatial
and temporal patterning of policing demand.

Of these factors, neighbourhood social
characteristics indicative of deprivation (%
hard-pressed population, % social renting),
and both family (% lone parents) and demo-
graphic (% aged over 65) structure, appear
to heighten the demand for policing service
and/or reduce the capacity of communities
to exercise informal social control or collec-
tive efficacy (Sampson, 2006). Similarly,
land-use mix, particular types of premises
and city centre areas, understood as shaping
the timing and volume of population flows,
and thereby bringing together a pool of
motivated offenders and victims (Cohen and
Felson, 1979), stand out as demonstrating
the greatest (positive and negative) associa-
tions with the spatial patterning of demand
across different periods of the day. Whilst
the literatures informing our independent
variable selection and interpretation of the
results were developed in an endeavour to
explain the spatial and temporal patterning
of crime and ASB, it is noteworthy, given
that the volume of PSW calls-for-service
exceeds that for crime and ASB, that they
serve to substantively account for this
broader measure of policing demand. In
stating this, it is important to recognise that
the majority of calls-for-service hold the
potential to result in a crime (HMIC, 2012).
In overview, the results confirm, at least to
an extent, that the factors embedded in UK
police funding formulas (Home Office,
2015) are reflective of the generators of poli-
cing demand.
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Our research breaks new ground in asses-
sing whether policing deployment is simi-
larly conditioned by the social and physical
urban environment. This task is vital given
that the police are allocated resources based
on an assessment of the factors driving
demand. The analysis was enabled through
the utilisation of Airwave GPS data that
allow the identification of deployed-to calls-
for-service (D2), and the calculation of both
the cumulative (D3) and marginal (D4)
resources deployed to these incidents. We
find similarity and distinction between the
factors associated with demand (D1; our
baseline model), policing deployment (D2)
and the cumulative front-line policing
resource deployed to incidents (D3).

Whilst the social characteristics of the
urban environment, understood as measures
of neighbourhood vulnerability, retain sig-
nificance (T1–T3) in the model of deploy-
ment (D2), their influence clearly weakens in
comparison with the model of demand (D1).
Moreover, and in T4, only the % of hard-
pressed population retains significance.
These findings imply that the spatial and
temporal patterning of policing deployment
is not closely reflected in the volume of
demand associated with the social character-
istics of the urban environment, particularly
in the evening. However, the social charac-
teristics of the urban environment evidence
stronger association when the cumulative
resource deployed to incidents (D3) is con-
sidered. In other words, those incidents
deployed to in vulnerable neighbourhoods
require greater front-line resource to man-
age, implying that they encompass greater
complexity (threat, harm and/or risk).

The land-use characteristics of the urban
environment, understood as time-sensitive
population attractors and crime generators
(Haleem et al., 2020; Lee et al., 2020), also
exhibit varying influence and significance
across D1–D3. It is particularly noteworthy
that the influence of land-use mix and bar

density appears to lessen, moving between
demand (D1) and deployment (D2), but to
then increase when the cumulative deploy-
ment of front-line policing resource is con-
sidered (D3). This is particularly so in T1,
the early hours of the morning, a period
associated with the night-time economy
(Haleem et al., 2020). In a similar vein,
therefore, whilst deployment holds more
limited association than demand with the
land-use characteristics of the urban envi-
ronment, those incidents deployed to in
these areas consume greater front-line
deployed resource, implying that they
encompass greater complexity (threat, harm
and/or risk). Beyond this key finding, a
number of more subtle insights can be
drawn from the analysis of land-use charac-
teristics. For example, educational premises
are seen to increase demand in T1–T3, yet
they are not a significant determinant of
deployment or of cumulative front-line
resources deployed to incidents. Here, it is
plausible that, acting in a risk-averse man-
ner, educational establishments move to
report all incidents to the police but that the
majority are deemed to be of insufficient
severity to merit deployment or that they are
resolved by other means.

In overview, this interpretation of the
interplay between demand, deployment and
the cumulative front-line resource deployed
to incidents points to the need for deeper
assessment of incident complexity. Our
research begins to address this by showing
how alcohol and mental ill health markers,
identified through the text mining of incident
narratives (logs), serve to shape the marginal
or mean variance in resources deployed to
incidents (D4). Both these factors are found
to be significant and strong, particularly in
T4. In other words, incidents involving alco-
hol and/or mental ill health take consider-
ably longer to resolve by front-line policing.
It is in this period that the night-time econ-
omy begins to hold sway, and that concern
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about vulnerable population groups is heigh-
tened (or that they become more visible).

Developing the research agenda

Given the novelty and scope of our research,
proceeding from and linking the analysis of
policing demand to that of deployment, our
analysis is far from exhaustive and supports
a call for further work in which big data is
set to loom large. A number of considera-
tions help shape the nature and form of a
new research agenda. Firstly, deployment
decisions no doubt reflect efforts to attain a
range of institutional and personal manage-
rial objectives on the part of police forces
and officers in addition to satisfying
demand, and this needs to be taken into
account. Secondly, and relatedly, the decision
to deploy to an incident is likely constrained
by the varied capacity and capability of poli-
cing resource, across space and through time.
Moreover, across (crime, ASB, PSW) and
within incident categories, not all demands are
equal. In these terms, deployment is always
prioritised based on the assessment of the
threat, harm and risk to the public (NPCC
Performance Management Coordination
Committee, 2017). Examining individual
demand categories, and the types of incident
they capture, may generate quite distinct spa-
tial and temporal associations with features of
the social and physical urban environment.
Relatedly, the front-line resources required to
meet these demands will reflect far more
diverse measures of complexity than those
captured by this research. Finally, the cumula-
tive front-line resource deployed to incidents
may only capture a fraction of the policing
resource required to meet demand in that it
does not take account of ‘back-office’ or inves-
tigative resources. In the round, we contend
our findings serve to open and validate these
new lines of enquiry, while demonstrating

ways in which big data and big data meth-
odologies might usefully be employed in the
process. This agenda holds promise for the
advance of effective, efficient and equitable
delivery of policing across diverse urban envir-
onments, and the application of big data in
the pursuit of enhanced urban well-being.

Conclusion

The demands placed upon police forces,
whilst varied in nature and scale, exhibit
strong spatial and temporal correlations.
They cluster in particular spaces and at cer-
tain periods of the day. These patterns can
be explained as arising from the complex
interplay of the social and physical charac-
teristics of the city, as well as their influence
on the recurrent mobility of its citizenry.
Yet, the policing of these demands, shaped
by its requirement to be efficient, effective
and equitable, also requires analysis
(HMICFRS, 2018). As a novel investiga-
tion of policing deployment, including the
front-line resources expended in responding
to calls-for-service, this research made use
of both big data (Airwave/GPS and
unstructured text narratives) and artificial
intelligence analytical techniques. Through
their integration with administrative and
open data sources, as well as the utilisation
of more established quantitative methodol-
ogies, the research found policing deploy-
ment to be conditioned by demand but
also, at least in part, by the individual com-
plexities embedded in calls-for-service,
including the nature of those incidents and
the characteristics of those involved. The
results highlight that a promising new
approach is available for the identification
and assessment of the value for money and
legitimacy of policing in urban areas and
that big data stands to make a significant
contribution in its implementation.
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