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Abstract1 

Maps of regulating urban ecosystem services (UES) aid identification of priority areas for green-blue 

infrastructure investment to improve urban resilience to environmental hazards. Current mapping 

approaches, however may present coarse spatial resolutions and often fail to consider how UES 

flows serve resident demand at the appropriate micro-scale. In addition, prohibitive costs involved in 

collecting primary data to validate UES model parameters to local conditions may enforce the use of 

proxy methods, thereby inferring ambiguity in parameterisation and thus uncertainty in mapping 

outputs. This study examines both issues through the implementation of a novel high-spatial 

resolution approach to map multiple urban regulating ecosystem service (temperature regulation, 

stormwater absorption, and carbon storage) deprivation in Manchester, UK. Poorly performing UES 

areas are defined as the lowest 10% combined ecosystem service indicator values (‘coldspots’) at 

100m grid resolution. Coldspots are compared to population demand levels, disaggregated from 

weighted population estimates, indicating neighbourhoods deprived of UES. Uncertainty in proxy 

method implementation is examined using combinations of uncertain UES parameter settings (n = 

16) within various demand measures (n = 3) to measure changes in relationships between UES, and 

variation in final mapping outputs across the study area. Uncertainty is therefore quantified as an 

interactive process, whereby input parameter uncertainty affects local uncertainty in map outputs, 

due to the varying composition in associated landcover. As explicit sensitivity analysis in current UES 

mapping studies is limited, the study demonstrates how ambiguity in method parameterisation may 

impact both current and future UES map exercises. Complex interactions governing spatial variance 

in map uncertainty may therefore be addressed through identification of consistent areas of interest 

                                                             
Abbreviations in this manuscript: UES = Urban regulating ecosystem services; UGBI = Urban 
green-blue infrastructure; SCS-CN = Soil conservation society curve number method; CN = 
Curve Number 
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(e.g. hot-spots, coldspots) by contrasting outputs realised from different parameterisations. As such, 

the study demonstrates the mapping approach as a novel transferable city-wide visualisation tool, 

using accessible data and methods, to investigate regulating UES deprivation at practical scales of 

green-blue investment required to retrofit existing urban infrastructure. 

 

Keywords: regulating ecosystem services; mapping; deprivation; urban; environmental risk; 

uncertainty analysis  
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1. Introduction 

Regulating urban ecosystem services (UES) of urban green-blue infrastructure (UGBI) benefit 

urban residents by moderating environmental hazards associated with urbanization (Gomez-

Baggethun et al. 2013). As climate change is projected to increase the frequency and severity of 

extreme weather conditions, the localised provision of regulating ecosystem services such as urban 

cooling, atmospheric carbon storage, and stormwater absorption, will become increasingly important 

to safeguard human health and well-being (Kabisch et al. 2016). The spatial mapping of multiple 

regulating UES is therefore useful to identify neighbourhoods where strategic UGBI interventions 

may benefit local resident well-being (Kabisch et al. 2016, Pulighe et al. 2016). However, despite 

increased access to high-spatial resolution geospatial data in recent years, that has enabled 

improvements in UES mapping methods, the practical influence of resulting information products 

within urban planning concerns appears limited (Haase et al. 2014, Woodruff & BenDor 2016). 

Improvements in the effective spatial communication of UES benefits are arguably required to 

support the conservation and enhancement of local UGBI resources. 

A primary challenge for UES analyses is the appropriate spatial representation to represent 

real world UES processes. UES measures amalgamated within census tracts, administrative 

boundaries or land-use/land-cover areas, are beneficial for comparing a wide range UES benefits 

(e.g. economic, social and cultural) to either local demand for such services, such as in 

neighbourhoods containing high-need demographic groups, or within areas of local planning concern 

(Baró et al. 2017, Cabral et al. 2016, Kroll et al. 2012). However, as specific regulating UES benefits 

may occur at the micro-scale (e.g. particulate capture by individual trees, or localised air cooling) 

alternative spatial representations may better represent micro-scale variation in benefit flows to local 

residents (Andrew et al. 2015). For example, an administrative area may consist of a distinct 

residential urbanised area with minimal UGBI cover, adjacent to a large park consisting primarily of 
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UGBI. Due to morphological constraints, the temperature regulation benefits provided by the 

parkland may have limited impact within the residential area (Coseo & Larsen 2014). However, in 

this instance the significant presence of the parkland UGBI results in overestimation of temperature 

regulation benefits when calculating a single service value for the area as a whole (Gomez-

Baggethun et al. 2013). In contrast, UES represented within grid structures provide more appropriate 

measures of spatial variation in continuous regulating UES environmental processes across 

heterogeneous urban environments (Holt et al. 2015, Kremer et al. 2016a, Langemeyer et al. 2020). 

Studies demonstrate the benefits of service demand indicators at fine scale resolution to map overall 

UES values (Baró et al. 2016, Larondelle & Lauf 2016), but remain limited in number, and may rely 

on data relevant to the specific study area. To improve applicability of UES mapping approaches, 

further investigation of adaptable grid based UES benefit to demand indicators across different urban 

areas are thus required. 

In addition, current mapping outputs may implicate an unquantified level of uncertainty, 

through the combination of various methods and assumptions required to assess bundles of UES. 

Whilst models validated with primary data that represent local ecological and environmental 

conditions are preferred, the costs to collect and process such data for particular UES may prove 

prohibitive for whole city areas (Schröter et al. 2015). In comparison, proxy methods provide a time 

and cost-effective alternative but may result in spurious map outputs due to the direct transfer of 

findings to inappropriate ecological representations (Eigenbrod et al. 2010). Studies may counter this 

issue through approaches tailored to the local urban environment and associated data. However, as 

quality of input data may vary considerably between study areas, such mapping approaches may 

have limited application in other urban areas (Haase et al. 2014). Due in part to a current lack of 

standardisation in methods, UES knowledge transfer between urban areas is limited (Kremer et al. 

2016b). UES mapping approaches applicable to different urban environments thus require 
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understanding of how input data of varying quality may cause ambiguity in the parameterisation of 

component methods, and thus influence final map products (Schulp et al. 2014). Whilst consideration 

of mapping uncertainty is often discussed in UES studies, it is rarely investigated in quantified terms 

(Andrew et al. 2015, Zhao & Sander 2018). 

 In order to advance current methods for mapping UES, this study aims to address the 

aforementioned issues by transforming current UES mapping methods into an accessible high-

spatial resolution regulating UES approach. A case study implementation of the mapping approach 

for Manchester, UK, demonstrates the benefits of the methods applied. Results from this exercise 

provide recommendations for application of the approach in other urban areas, in addition to 

generating knowledge for wider UES mapping research. 
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2. Methods 

2.1 Study Area 

Manchester is a post-industrial city located in the North-west region of England, UK (Figure 

1) covering an approximate area of 115 km2 (UKDS 2017), with an estimated 2016 population of 

541,000 (4,716 people/km2) (MCC 2018). Currently, UGBI covers approximately 49% of the total city 

area, with significant UGBI contained within parklands and other natural resource areas (Dennis et 

al. 2018). In addition, UGBI varies according to residential housing characteristics, with pre-1919 

(46.2% of housing stock; typically terraced housing), and post-1919 residential areas estimated to 

contain on average 11.8% and 37.8% tree cover respectively (Hall et al. 2012). Due to heterogeneity 

in local UGBI resources, residents in the city experience varying regulating UES (Gill et al. 2007); 

therefore, the city provides a useful case study area to develop a regulating UES mapping approach. 
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Figure 1 – Location of Manchester within UK 

2.2 Overview of mapping approach  

Environmental hazards affecting study area residents include pluvial and fluvial flooding and 

heat stress from extreme temperatures, in addition to larger scale environmental risks posed by 

global warming (Carter et al. 2015). Therefore, regulating services chosen for the mapping approach 

include temperature regulation, carbon storage, and stormwater absorption, due to benefits in 

regulating urban environmental risks for current and future climate conditions (Carter et al. 2015). 

Models for UES indicators that are feasible for micro-scale citywide analysis were chosen following 

a review of UES mapping literature (Table 1). The approach uses a regular grid cell structure (100m 

resolution) to provide a measure of UES indicators in relation to UGBI change across the continuous 

urban environment (Holt et al. 2015). Within this approach, disaggregated census population 

estimates represent levels of resident demand for local regulating UES (Baró et al. 2017). 

 

Table 1 – Methods and indicators chosen for UES 

UES 
Description of 

service 
Chosen method* 

Modelled indicator 

measure 

Study area 

validation** 

Temperature 

regulation 

Reduction of 

localised 

temperatures during 

hot weather 

conditions 

Geographically 

weighted regression 

models to estimate the 

influence of local UGBI 

on remotely sensed 

Predicted LST 

(max LST = 0 

service value; min 

LST = 100% 

service value) 

YES 
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Land Surface 

Temperature (LST; °c). 

Carbon 

storage 

Storage of carbon 

within vegetation 

biomass 

Transfer of carbon 

storage values per 

Land-use Land-cover 

categories in UK based 

carbon storage studies 

to Land-cover 

categories within the 

case study. 

Predicted C kg m2 

(max C kg m2 = 

100% service 

value; min C kg m2 

= 0% service value) 

NO 

Stormwater 

absorption 

Reduction of runoff 

and local flooding 

pressures through 

capture of 

precipitation by 

UGBI 

SCS-CN (USDA 1986) 

method to estimate 

runoff reduction 

potential (CN) of 

localised UGBI 

resources. 

Quantified CN (Max 

CN = 0% service 

value; Min CN = 

100% service 

value) 

NO 

* Further description of methods provided within the following sections; ** Model estimates 

validated to independent measures of environmental conditions within the study area. 

 

 Due to the excessive costs of acquiring independent reference data, parameters for carbon 

storage and stormwater absorption models (Table 1), in addition to demand disaggregation methods, 

are not validated to study area conditions, and therefore infer a degree of uncertainty. Following a 
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pragmatic interpretation of the mapping approach, sensitivity analysis was investigated how 

uncertainty in proxy method assumptions may potentially impact UES map outputs in further mapping 

applications. The influence of proxy method choice upon relationships between unique UES, and 

combined UES indicators, in addition to mapping combined UES deprivation (‘Coldspots’) was 

therefore investigated using (n = 16) service model parameter settings within various (n = 3) demand 

measures (Eigenbrod et al. 2010). Combined UES deprivation (Coldspot) areas identified through 

overlap of deprivation areas for each parameter setting, aim to reduce potential mapping uncertainty 

and thus demonstrate the overall benefits of the mapping approach. Figure 2 presents the case 

study workflow, with methods described in the following sections. 
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Figure 2 - Case study workflow 

 

2.3 Urban landcover 

An urban landcover map representing five classes (buildings, non-vegetation (artificial and 

bare Earth surfaces), tree Canopy, non-tree vegetation & water) was generated to provide geo-

referenced ecological map data to estimate UES values (see Table 2 and Figure 3). The data was 

https://doi.org/10.1016/j.ecolind.2020.107058


Published in Ecological Indicators – Accepted 7 Oct 2020 – DOI https://doi.org/10.1016/j.ecolind.2020.107058 
 

13 
 

scaled at 2m pixel resolution (now widely available) to generate land-cover products available in 

similar UES mapping studies (see Derkzen et al. 2015, Kremer et al. 2016a).  

Table 2 – Data, methods and class descriptions used to generate the urban landcover map 

Process Reference data Methods 
Classes from 

methods* 

1 

Mastermap topography 

layer (May 2017 version; 

Edina Digimap 2017) 

Land parcel and surface feature 

extents represented as polygon areas; 

attribute data used to categorise initial 

class area where possible 

All classes 

2 
Tree audit data 

(CityOfTrees 2011) 

Represents canopy extents (> 1.5m) of 

trees and woodland; provides masking 

feature to re-classify all landcover 

classes as trees 

Tree canopy 

3 

True-colour aerial imagery 

(12.5cm resolution; 

collected June 2009 – 

2015; Getmapping 2017) 

Classified into a vegetation mask using 

a threshold with image band data; used 

to assign non-classified pixels as either 

non-tree vegetation or non-vegetation 

appropriate 

Non-tree 

vegetation; 

Non-

vegetation 

* Buildings = permanent building structures; Non-vegetation = Artificial and Bare Earth; Water = 

Water bodies and channels; Tree Canopy = tree canopy extents; Non-tree vegetation – 

vegetation not considered as trees, such as shrubs and grasses. 
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Figure 3 – Example of mapped urban land cover for central Manchester 

 

2.4 Temperature regulation 

Land surface temperature (LST) represents the temperature of ground surface layers and is 

a governing indicator of thermal energy transfer for above ground ambient air warming (Oke 1988), 

with excessive LST empirically associated with negative health outcomes (Harlan et al. 2014, Laaidi 

et al. 2011). In comparison to measured ambient air temperatures, which may require significant 

expense in implementing citywide in-situ monitoring networks (Muller et al. 2013), remotely sensed 
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LST data is available for entire urban areas, enabling statistical models for temperature regulation 

indicators. A LST surface was generated using the mono-window method (Wang et al. 2015) using 

cloud-free imagery (17 July 2017; 30m resolution) from the Landsat-8 Operational Land Imager 

sensor (USGS 2017). Daytime conditions were warm, with a maximum temperature of 23°C (average 

16°C) recorded at the nearby Manchester International Airport weather station (Weather 

Underground 2017). As spatial patterns of LST in relation to the urban morphology are expected to 

remain relatively consistent for warmer climate conditions (Oke 1988) the LST surface generated 

was considered a reasonable representation of excessive heatwave conditions. Geographically 

weighted regression was implemented (in ArcMap version 10.3 by ESRI) using ordinary least 

squares regression (equation 1) to statistically infer the causal relationship of UGBI (proportion of 

UGBI per cell = pUGBI) upon LST as it varies according to localised change in urban morphology. 

Predicted mean LST per cell (pLST) provided the measure for estimating temperature regulating 

indicators.  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑎𝑎 + 𝑏𝑏 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  [1] 

 

2.5 Carbon storage 

Due to the prohibitive cost of collecting primary data to estimate biomass of local UGBI 

resources (e.g. vegetation matter and tree characteristics for allometric models) (Derkzen et al. 2015, 

Holt et al. 2015) above-ground carbon storage was calculated based upon findings in UK-based 

empirical carbon storage studies (See Table 3). Descriptions of carbon storage landcover/land-use 

categories were matched to case study landcover classes to calculate above ground carbon storage 

per square metre (C kg m-1) for the associated landcover area. Due to realistic difficulties in 

interpreting some landcover classes to landcover/land-use descriptions in empirical study, four 
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different parameter settings were devised to examine the impact on final UES values (Table 3). The 

UES indicator measure is the total carbon stored per cell. 

 

Table 3 – Carbon storage values for four parameter settings 

Setting 

Land-

cover 

class 

Carbon Storage 

categorisation 
Carbon Storage 

(kg C m-2) 

Justification for Carbon Density 

Method 

1A 

Non-Tree 
Herbaceous 

Vegetation 
0.15 

Herbaceous vegetation only; Non-

tree assumed to represent short 

grasses 

Tree 

Canopy 
Tree 28.46 

Assumed to represent tall trees (> 

5m height)  

2A 

Non-Tree 

Mean: 

Herbaceous 

Vegetation, Shrub 

5.19 

Assumed to represent a mixture of 

grasses and low shrubs 

Tree 

Canopy 

Mean: Tree, Tall 

Shrub 
21.33 

Assumed to represent a mixture of 

tall shrubs and trees  

3B Non-Tree Sport and Leisure 0.68 

Sports and leisure land use 

assumed to represent a mixture of 

vegetation types  
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Tree 

Canopy 

Mixed forest 
3.28 Mixed forest only 

4B 

Non-Tree 
Green Urban 

Areas 
0.09 

Green urban areas only (grassy 

areas) 

Tree 

Canopy 
Broad-leaf Forest 3.80 Broadleaf forest only 

A category values obtained from Davies et al. (2011) – study provides a quantified survey and 

extrapolation analysis of carbon storage according to vegetation categories in Leicester, UK; B 

category values obtained from Cruickshank et al. (1998) - study provides a national inventory of 

carbon storage per land-cover land-use classes in Northern Ireland based upon field-based 

studies. 

 

2.6 Stormwater absorption 

Combined overland-underground catchment scale models enable estimation of stormwater 

absorption rates of UGBI types through validation of modelled catchment outputs to measured 

channel outflows (Salvadore et al. 2015). Such methods are computationally expensive for urban 

districts overlapped by numerous catchment areas, requiring significant data and expertise to 

implement the required models. In comparison, the Soil Conservation Society curve number (SCS-

CN) method (USDA 1986) is a pragmatic alternative widely used in other UES mapping studies (Gill 

et al. 2007, Kremer et al. 2016a, Tratalos et al. 2007). SCS-CN works as a one-dimensional 

numerical model that computes the amount of rainfall converted to surface runoff for a given surface 

area (represented by curve number values) during a rainfall event (USDA 1986). However, unless 
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independently validated, SCS-CN is a proxy model with curve number values assigned directly 

between SCS-CN and mapped landcover categories. In the same manner as carbon storage, 

parameter uncertainty may occur through the interpretation process (see Section 2.7) for some 

landcover classes, therefore four stormwater absorption parameter settings were used to investigate 

this issue (Table 4). Curve numbers (CN) for landcover pixels were assigned by integrating landcover 

data and underlying soil type (Cranfield University 2018), with stormwater absorption indicators 

calculated from the areal curve number average per analysis cell. 

 

Table 4 – Curve Number values according to soil groups and chosen Soil Conservation 

Society (SCS) landcovers per parameter setting 

Study area 

Landcover 

Parameter 

settings 
SCS Landcover  

Curve Number (CN) per 

Hydrological Soil Type 

B C D 

BUILDINGS 1, 2, 3, 4 Paved, roofs, etc. 98 98 98 

NON-VEGETATION 

1, 3 Paved, roofs, etc.1 98 98 98 

2, 4 
Streets and Roads: 

Paved; open ditches2 
89 92 93 

NON-TREE 

VEGETATION 
1, 2 

Pasture: good 

condition3 
61 74 80 
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3, 4 Brush: good cover4 48 65 73 

TREE CANOPY 1, 2, 3, 4 Wood: good cover 55 70 77 

WATER 1, 2, 3, 4 Water 25 25 25 

1 - Wholly impervious surfaces i.e. Roofs, Asphalt and concrete roads; 2 – Wholly impervious 

and pervious non-natural surfaces; 3 - Grassland not protected from grazing such as mown 

grass typical of lawns, playing fields etc. and rough grassland; 4 - Low-standing vegetation such 

as bushes, weeds and grass 

 

2.7 Regulating Ecosystem Service demand  

Methods for population disaggregation vary depending upon available resources (Stevens et 

al. 2015, Zandbergen & Ignizio 2010) therefore two disaggregation methods were used to assess 

choice of method upon final UES mapping outputs. The first method involves areal upscaling of 

population estimates within census areas to the areal extents of human habitation represented by 

building footprint area (termed BLDPOP here) (O’Brien & Cheshire 2016). This method is financially 

cost-effective as building footprint areas from the OS are accessible for research in the UK (Edina 

digimap 2017). However, as no distinction is made between building type (e.g. residential, 

commercial-industrial), population density is extrapolated across non-residential building areas (Jia 

et al. 2014, O’Brien & Cheshire 2016). In contrast, the RESPOP method uses residential address 

points from the OS AddressBase Plus product (OS 2018) to weight population towards residential 

housing (Bhaduri et al. 2007, Zandbergen 2011). However, this method is less accessible due to 

costs of the associated data. Using both methods, annual population estimates (current estimates 

available for 2016) for the UK at the Lower Super Output Area (LSOA) level (UKDS 2017) were 
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disaggregated to generate the relative demand indicators (see Appendix 1 for population 

disaggregation workflows). 

 

2.8 Sensitivity analysis – UES relationships and deprivation 

Three methods were used to examine the effect of parameter uncertainty upon UES mapping 

outputs. First, correlation analysis estimates how chosen service parameters and demand methods 

interact to alter relationships between individual UES (Holt et al. 2015). UES indicator scores were 

calculated for all parameter settings (n = 16; 1 Temperature regulation x 4 Carbon storage x 4 

Stormwater absorption settings) within No demand (all cells), BLDPOP and RESPOP cells. This analysis 

considered how the mapping approach may perform under differing data assumptions, and also 

assesses the impact of parameter uncertainty upon UES indicators for models commonly employed 

in other UES mapping studies. 

Second, a manual parameter combination comparison approach investigated the degree 

parameter uncertainty influences spatial variation in combined UES indicators, defined as percentiles 

of summed ranks for individual UES (see Table 1). Assuming a uniform probability distribution 

function (PDF) for each uncertain parameter, n = 9 unique parameter values were calculated from 

equal intervals within permitted input parameter range (see Table 5). Parameter values were thus 

altered one by one, in pairs, triples and all parameters together considering all possible parameter 

interactions for each combination. Mid parameter range values represented the default position for 

non-altered parameters where applicable. Combined UES indicators per cell were calculated for all 

parameter interactions, with the range in combined cell UES indicator values defining the level of 

variation, or uncertainty per parameter combination. This ‘brute-force’ method was undertaken over 

a simulation based global sensitivity approach for example, as combined UES indicators require 
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individual UES indicators for all cells calculated from a uniform set of parameter inputs (Lilburne & 

Tarantola 2009). This analysis enabled consideration of a) spatial variation in uncertainty across all 

cells in the study area, b) whether uncertainty increases due to different orders of uncertain 

parameters, and c) considered the influence of relative magnitudes in parameter uncertainty upon 

potential mapping outputs. 

 

Table 5 – Probability distribution functions for uncertain parameters 

Uncertain carbon 

storage parameter (kg C 

m2) 

Key* 
PDF parameter range values 

(Minimum | Maximum | Default) 

Non-tree vegetation A 0.09 | 5.19 | 2.64 

Tree canopy B 3.28 | 28.46 | 15.87 

Uncertain stormwater 

absorption parameter 

(CN) 

 Soil type 

 B C D 

Non-vegetation C 89 | 98 | 93.5 92 | 98 | 95 93 | 98 | 95.5 

Non-tree vegetation D 48 | 61 | 54.5 65 | 74 | 69.5 73 | 80 | 76.5 

* - Identifier for input parameter within parameter combinations; varied parameters notated within 

brackets e.g. {A, B} represents combined interaction between parameters A and B 
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Finally, a method to counter potential uncertainty in outputs was assessed by comparing 

identified ‘coldspot’ areas at both the neighbourhood (grid cell) and administrative district resolution, 

to simulate an urban planning exercise to map environmental deprivation at various spatial scales. 

Coldspots are defined in this study as the lowest 10% of cells using combined UES indicators, and 

therefore reverse the hotspot concept described in other bundle ecosystem service studies 

(Anderson et al. 2009, Schulp et al. 2014). Coldspots are then amalgamated to identify the 20% most 

UES deprived administrative ward areas (Holt et al. 2015) according to the ratio of Coldspot to 

demand area. Wards were used in this instance, as socio-economic statistics produced at the 

administrative level therefore enable comparison of relative deprivation levels at the scope of local 

governance (Baró et al. 2017). As per correlation analysis, this was conducted for all parameter 

settings across all demand cell weightings. 
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3. Results 

Geographically weighted regression resulted in a model with R2 = 0.65 and AIC = 42952, 

comparing favourably to the ordinary least squares model (R2 = 0.45 and AIC = 47871). GWR defined 

temperature regulation indicators therefore remain strongly associated with pUGBI (r = 0.88, p < 

0.001), and are therefore positively associated with UGBI benefits for other services. Uncertainty in 

proxy UES model parameterisation therefore alters these relationships in varying magnitudes 

according to the relative demand weighting method (Figures 4 & 5). Mapped indicators for all UES 

parameter settings and demand methods are provided in Appendix 2. 

 

 

Figure 4 – Correlation (r) values between temperature regulation indicators to carbon storage (A.) 

and stormwater absorption (B.) indicators for all parameter settings and all demand weighting 

methods. All r values significant at p < 0.001 level. 
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Figure 5 – Correlation values (r) between Carbon storage and Stormwater absorption indicators 

between all parameter settings for No demand (A.), BLDPOP (B.) and RESPOP (C.) weighted cells. 

All r values significant at p < 0.001 level.  

  

Correlation values between temperature regulation and carbon storage indicators increases 

from no demand cells (mean r = 0.56), to the disaggregation methods (mean r = 0.63 and 0.61 for 

BLDPOP and RESPOP respectively). This trend is however reversed for correlations between 

temperature regulation and stormwater absorption indicators, with stronger correlation values for no 

demand cells (mean r = 0.83) in comparison to demand weighted cells (mean r = 0.79 and 0.78 for 

BLDPOP and RESPOP cells respectively). Weighting demand towards building and residential areas in 

effect removes cells largely covered by water (e.g. cells within reservoirs, water channels) with 

maximum water coverage per cell varying from 100% for no demand cells, to just 69% and 42.7% 

for BLDPOP and RESPOP cells respectively. As water is beneficial for stormwater absorption and 

temperature regulation services but has no estimated carbon storage benefits (see Table 5), the 

removal of such cells alters relationships between individual UES.  
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 Whilst patterns in relative correlation values between settings remain stable, irrespective of 

demand method (Figure 4 & 5), ranges in correlation values (Table 6) vary between demand 

weighted cells with different landcover proportions. For example, no demand-weighted cells provide 

the largest range in correlation values and the highest mean UGBI cover (46.4%), contrasting with 

BLDPOP cells, with lowest UGBI coverage (37.4%), and range in correlation values. Correlation 

differences are small but indicate that variation in relationships between individual UES is 

constrained somewhat by spatial variation in cell landcover proportions. UGBI proportions per cell 

are therefore influential, due to the direct association between UGBI landcovers and the majority of 

uncertain parameters. 

 

Table 6 – Summary statistics for correlations between UES  

Demand 

cells 

Temp. regulation to 

Carbon storage 

Temp. regulation to 

Stormwater 

absorption 

Carbon storage to 

Stormwater 

absorption 

Mean (r) 
Max.(r) – 

Min.(r) 
Mean (r) 

Max.(r) – 

Min.(r) 
Mean (r) 

Max.(r) – 

Min.(r) 

No 

demand 
0.56 0.18 0.83 0.06 0.58 0.25 

BLDPOP  0.63 0.13 0.79 0.04 0.73 0.23 

RESPOP 0.61 0.13 0.78 0.05 0.74 0.24 
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For combined UES indicators, uncertainty (range in combined UES indicators per cell) 

generally increases according to the number of interactions between uncertain parameters (Figure 

6) which influence uncertainty individually by varying magnitudes. As evident, median and maximum 

combined UES indicator range values for single parameter combinations ({A}, {B}, {C}, {D}) are 

considerably lower than interacting variations between all parameters ({A,B,C,D}). However, this is 

not a consistent pattern when travelling from lower to higher order combinations. For example within 

No Demand cells, parameter variation in tree canopy carbon storage ({B}) values result in more 

uncertain outputs than parameter combinations {A,C}, {A,D} and {C,D}. The relative importance of 

single uncertain parameters therefore varies (1st = {B}, 2nd = {A}, 3rd = {D}, 4th = {C}), with carbon 

storage parameters B and then A interacting to produce greater uncertainty for 2nd and 3rd order 

parameter combinations. This relationship is associated with the ratio of PDF parameter values 

against the total range (between no service to maximum service values) of permissible parameter 

values for each service. For example, permissible parameter ranges are 28.46 for carbon storage 

(minimum = 0 C kg m2, maximum = 28.46 C kg m2) and 73 for stormwater absorption (minimum CN 

= 98, maximum CN = 25). Dividing PDF ranges by the permissible range for the appropriate service, 

provides the ratio, or magnitude of uncertain parameter value range ({B} = 0.88, {A} = 0.18, {D} = 

0.13 (average for soil types), {C} = 0.09 (average for soil types)) which concurs with the relative order 

of individual parameter influence. Variation in uncertainty between parameter combinations is 

relatively consistent between demand measures, as median combined ranges exhibit minor 

differences, whilst increased variation in maximum combined UES indicator ranges has minimal 

impact upon the order of uncertainty between parameter combinations.  
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Figure 6 – Median (dashed) and Maximum (solid) range in combined UES indicators for all 

parameter combinations for all demand weightings 
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Variation in parameter driven uncertainty between individual cells (Figure 6) is thus influenced 

by variation in cell landcover proportions. Figure 7 displays landcover proportions, averaged for all 

cells by unique combined UES indicator range values for each parameter combination (ordered by 

least [1] to most [15] uncertainty in combined UES values) for No demand cells. A general pattern 

emerges across all parameter combinations, whereby a single landcover proportion becomes 

increasingly dominant for cells with relatively higher levels of uncertainty. Tree canopy dominates 

parameter combination {D}, non-vegetation dominates parameter cobmination {C} and {C,D}, whilst 

for all subsequent combinations non-tree vegetation increasingly dominates. Interestingly, the 

patterns for single parameter combinations {D} and {B} are not associated directly to the respective 

non-tree vegetation and tree canopy uncertain parameters. This may be explained by the 

dependency of combined UES indicators between cells, as variation in UES parameter values 

produce a dependency upon the relative ranking index of other cells. Whilst individual cell landcover 

proportions vary for unique combined UES values, overall patterns indicate that this is not a random 

spatial process. The figure therefore evidences where high levels of uncertainty in combined UES 

indicators may occur within the study area. 

https://doi.org/10.1016/j.ecolind.2020.107058


Published in Ecological Indicators – Accepted 7 Oct 2020 – DOI https://doi.org/10.1016/j.ecolind.2020.107058 
 

29 
 

 

Figure 7 – Average landcover proportions (%) for combined UES indicator range values per 

parameter combination; designated in order of importance (1 = least importance) within ‘[ ]’ 

brackets 
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Parameter uncertainty therefore has some impact upon the identification of coldspots (Figure 

8). For all cells identified as a coldspot in any parameter setting, over 78% were consistently identified 

as a final coldspot through overlaying outputs across parameter settings. This percentage differs by 

0.8% across all demand weighting methods, indicating relative congruence between UES parameter 

settings irrespective of varying analysis cell area. Maximum difference in coldspot identification 

between parameter settings, as a percentage of total coldspot area, is 8.3%, 9.3% and 9.5% for No 

demand, BLDPOP and RESPOP cells respectively. Based upon the proxy values used in this study, 

choice of a particular parameter setting results in a near 10% discrepancy in available coldspot area 

when compared to maps generated using alternative parameters. 

 

 

Figure 8 – Number of parameter settings that coldspot cells are identified by demand method 
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As demonstrated in Figure 9, the reduction in the number of demand cells necessarily 

reduces the total study area percentage identified as a final coldspot from 8.9%, 7% and 5.6% for 

No demand, BLDPOP and RESPOP cells respectively. Coldspot clusters are iteratively removed due to 

this process, which in turn alters the prevalence of deprivation across the study area. The impact of 

this process is also evident at coarser spatial scales, as altering demand method also results in 

subtle changes in the identification of deprived ward areas (Figure 10). Whilst five out of seven wards 

are consistently identified as the 20% most UES deprived areas, altering demand measure causes 

some variation in final map outputs at this spatial scale. 
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Figure 9 – Overlap of parameter setting coldspots per demand method 
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Figure 10 - Top 20% UES deprived wards per demand method 

Overall, Figure 11 demonstrates the resolution of final map products of UES deprivation within 

the context of both the built environment and administrative ward landscape. It is therefore possible 

to envisage the type and scale of UGBI investments pragmatically implementable within local 

neighbourhoods. For example, coldspot areas mainly fall within residential terraced housing areas 

that overlap administrative ward districts in some areas, in turn providing visual evidence of where 

ward councils could act collectively to direct local garden greening strategies (Baker et al. 2018).  
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Figure 11 - Visualization of UES coldspots (RESPOP demand cells) in relation to urban 

morphology 
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4. Discussion 

This study presents a novel mapping approach to indicate priority locations to reduce resident 

exposure to climate related hazards. The approach is therefore transferable to other urban areas 

using accessible geospatial data and methods, with accompanying sensitivity analysis to indicate 

the impact upon mapping outputs due to pragmatic considerations required of investigators in 

different urban areas. Given that UES analysis methods are often opaque (e.g. expert based, black 

box software) or rely on data specific for an urban area (Haas & Ban 2017, Langemeyer et al. 2020) 

efforts to improve provide basic and adaptable framework to consider UES knowledge transfer 

between urban areas (Haase et al. 2014, Luederitz et al. 2015). In particular this approach provides 

additional support to an environmental/ecological scale representation of UES indicators, especially 

service benefits under consideration flow continuously across heterogeneous urban landscapes 

(Baró et al. 2016, Langemeyer et al. 2020). 

 Spatial resolution in regulating UES in this study are thus important to represent UES benefits 

within the spatial extent of small-scale urban greening solutions (e.g. street tree planting, sustainable 

urban drainage systems, green walls and roofs) required to effectively retrofit existing urban 

infrastructure (Carter et al. 2015, Voskamp et al. 2015). Whilst the approach provides limited 

information on the type of beneficial UGBI resources for each location, it currently indicates UES 

deprivation at scales where improved in-situ monitoring exercises may be feasibly implemented to 

investigate appropriate local UGBI investment strategies (e.g. Massoudieh et al. 2017, Skelhorn. et 

al. 2014). For both demand (e.g. mid-year population estimates) and service estimation (e.g. aerial 

imagery, national mapping products) the relevant geospatial data is typically updated at frequent 

intervals, as such there is potential to adapt the mapping approach to monitor UES change (Haas & 

Ban 2017, Cabral et al. 2016). Service and demand values updated within the fixed analysis grid 

structure may therefore enable consistent re-examination of UES dynamics according to continual 
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change in the urban biophysical, socio-economic, and administrative landscape (Dobbs et al. 2018, 

Schwarz et al. 2011). 

In addition to aiding transferability of this approach, novel incorporation of sensitivity analysis 

provides beneficial insights for further UES research. For example, UES deprivation maps in this 

approach are highly sensitive to associated demand weightings, that may result in skewed views of 

UES service/demand dynamics if not considered, such as UES deprivation mapped to no population 

areas such as airport runways, large car parks etc. The findings thus serve to raise further awareness 

as to the benefits of including demand measures in wider UES research, particularly where UES 

flows exhibit high levels of spatial dependency at the micro-scale (Baró et al. 2016, Larondelle & 

Lauf 2016). The various quality of UES deprivation maps in turn provide a general indication as to 

whether data for a particular demand method, using this or a similar approach, is worth the 

investment in resources to meet a desired level of analysis in further case studies.  

In addition, as proxy models remain a popular choice in UES mapping approaches, sensitivity 

analysis indicates that increasing relative magnitudes in proxy parameter uncertainty may reflect 

uncertainty in mapping outputs when applied linearly to landcover area estimates. This is evidently 

a spatially dependent process that becomes increasingly complex as additional sources of landcover 

associated uncertainty are compounded within aggregated UES indicators. Variation in map 

uncertainty across the study area therefore varies widely and may apply to other approaches that 

use similar methods in proxy to landcover extrapolation (Zhao & Sander 2018). Due to 

interdependencies in landcover proportions per cell, associated uncertainty is difficult to model using 

standard statistical techniques. Therefore, overlapping findings, obtained from different interactions 

in uncertain inputs, can provide an easy to implement consensus view of combined UES indicators 

(Eigenbrod et al. 2010, Schröter & Remme 2016), and should be implemented to examine parameter 

uncertainty due to aforementioned complexities in spatial uncertainty estimation. 
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Despite benefits to sensitivity analysis, some limitations in proxy based UES methods remain, 

as the lack of independent validation to primary data results limits understanding of remaining 

uncertainty within current mapping outputs (Eigenbrod et al. 2010, Zhao & Sander 2018). Efforts to 

address this issue may therefore begin with improvements in the thematic resolution of landcover 

data from use of ancillary information in the classification process (e.g. multi-spectral imagery, 

LiDAR; Baker et al. 2018, Dennis et al. 2018). For example, stratification of non-tree vegetation into 

grass and bush categories, and tree canopies according to canopy height, can support extrapolation 

of independent field sample carbon storage estimates of local vegetation types for these categories 

(Davies et al. 2011, Raciti et al. 2014). Improved landcover data could also be incorporated with 

topographical elevation and underground drainage data to support both advanced hydraulic 

modelling of UGBI flooding reduction within urbanised catchments (Sjöman et al. 2013), in addition 

to high resolution climate models to assess UGBI impacts upon localised temperatures under various 

heatwave scenarios (Skelhorn et al. 2014). 

Models validated to local environmental conditions have been employed successfully to 

examine UGBI benefits at various scales of analysis. However, the associated resource investments 

(e.g. software, primary data) required are typically prohibitive for entire urban areas when multiple 

UES are concerned (Kremer et al. 2016b). Where use of proxy methods is unavoidable, uncertainty 

may be further addressed through UGBI and landcover categorisations designed for appropriate 

UES indicator transfer from suitably chosen proxies (Andrew et al. 2015, Derkzen et al. 2015). In 

relation to regression techniques for temperature regulation, improved landcover categorisation and 

use of additional variables such as landscape metrics, tree/building shading, and elevation for 

example, may also improve the accuracy of validated temperature regulation UES estimates (Chen 

et al. 2014, Kong et al. 2014). Demand indicators may be further updated to accommodate localised 

exposure to environmental hazards (i.e. exposure to extreme temperatures, pluvial/fluvial flooding 
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risks) in addition to vulnerability factors within the local population (i.e. age, mobility, economic 

situation) (Jenerette et al. 2016, Kaźmierczak & Cavan 2011). In addition, as service benefits may 

flow outside single cell areas (i.e. runoff from neighbouring areas could flow into, and thus increase 

flooding risks for cell residents) the regular analysis grid structure should prove useful to investigate 

service to demand dynamics at various spatial scales of benefit transfer (Baró et al. 2016). 

 Future research may therefore consider validation of uncertainty in popular UES proxy 

methods using samples of primary data, and/or models validated by primary data at sample locations 

(Eigenbrod et al. 2010). In addition, extensions to sensitivity should be considered in future studies 

for other sources of uncertainty such as landcover misclassification errors (Convertino et al. 2013), 

importance weighting of individual UES according to stakeholder needs (Kremer et al. 2016a), in 

addition to parameterisation uncertainties for additional UES models within the mapping approach. 

Whilst parameter comparison enabled consideration of spatially dependent interactions between all 

uncertain parameter combinations, this method will become less computationally feasible when 

considering additional sources of uncertainty. Variance based global sensitivity analysis have been 

successfully applied to examine complex interactions between multiple sources of uncertainty in 

spatial models (Convertino et al. 2013, Lilburne & Tarantola 2009) and may therefore provide a 

pragmatic solution in this respect. Further examination of this, and other sensitivity/uncertainty 

analyses is therefore required to improve standardisation of uncertainty estimation for various UES 

indicator metrics/prioritisation measures (Hou et al. 2013, Schröter & Remme 2016), and is ultimately 

required to improve communication of the overall usability of UES maps to end users. The case study 

here therefore explicitly considered realistic pragmatic difficulties in current citywide UES mapping 

exercises with the intention to guide further research efforts towards this goal.  
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5. Conclusion 

The mapping approach presented in this study, presents a transferable methodology to 

investigate how current regulating UES fulfils service demand amongst the local urban population. 

This approach ultimately provides a trade-off between coarse-scale UES mapping studies where 

demand from Landuse/Landcover categorisations, or within municipal districts are explicitly 

considered (Baró et al. 2017, Haas & Ban 2017) to gridded approaches employed at the 

ecological/environmental scale (Dobbs et al. 2018, Kremer et al. 2016a). As financial resources for 

UGBI improvement may be constrained, UES deprivation analysis in the mapping approach usefully 

indicates areas of greatest concern for potential UGBI investment.  

Sensitivity analysis in this study proved vital to demonstrate the wide-ranging issues in proxy 

model implementation for UES mapping studies in general. Explicit examination of uncertainty in 

proxy methods is useful not only to guide application of the mapping approach for different urban 

areas, but usefully conveys the overall usability of the mapping outputs for further planning purposes 

(Haase et al. 2014, Luederitz et al. 2015). Such efforts are thus beneficial to assess and re-appraise 

issues in current UES mapping methods, to aid the development of consistent and standardised 

approaches for mapping UES (Seppelt et al. 2011).  

In the wider context, the development of UES mapping approaches is useful for highlighting 

the applicability of urban UES mapping data for urban planning purposes. It is hoped that this raises 

awareness and encourages investment in improved environmental modelling software, smart-city 

monitoring networks (e.g. local temperatures, pollution levels) and mapping data (e.g. high spatial-

resolution imagery, three-dimensional data) to better facilitate validated UES analysis, and thus 

improve provision of regulating UES in urban areas (Schröter et al. 2014, Zhao & Sander 2018). This 
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improvement will greatly assist efforts to improve our towns and cities resilience to environmental 

hazards now and in uncertain future climate conditions.  
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Appendix 1: Population disaggregation workflows 

 
BLDPOP weighting workflow 

 
RESPOP weighting workflow 

 

Notes: 

Output areas and Lower Super Output areas represent statistical spatial measurement areas in the 

2011 UK census (Retrieved from UK Data Service, https://www.ukdataservice.ac.uk/, accessed 

2017). Output areas represent resident population groupings averaging 309 people. Lower Super 

Output areas contain multiple Output areas with average of 1500 people. 2016 LSOA mid-year 

population estimates from the UK Office of National Statistics (ONS) are for Lower super output 

areas (Retrieved from ONS, 
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