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ABSTRACT 27 

We sought to determine how whole-body heating acutely influences radial artery 28 

function, characterized using flow mediated dilation (FMD) and low-flow mediated 29 

constriction (L-FMC), and the mechanistic role of shear rate modification on radial artery 30 

functional characteristics during heating. Eleven young healthy men underwent whole-body 31 

heating (water-perfused suit) sufficient to raise core temperature +1°C. Trials were repeated 32 

with (Heat+WC) and without (Heat) the application of a wrist cuff located distal to the radial 33 

artery examined, known to prevent increases in mean and anterograde shear rate but increase 34 

retrograde shear. Radial artery characteristics were assessed throughout each trial, with FMD 35 

and L-FMC assessed prior to and upon reaching the target core temperature. Heat markedly 36 

increased radial artery mean and anterograde shear rate, along with radial artery diameter and 37 

blood flow (P<0.05). Heat+WC abolished the heat-induced increase mean and anterograde 38 

shear rate (P>0.05), but markedly increased retrograde shear (P<0.05). Concomitantly, 39 

increases in radial artery diameter and blood flow were decreased (Heat+WC vs Heat, 40 

P<0.05). Heat attenuated FMD (8.6±1.2 vs. 2.2±1.4%, P<0.05), whereas no change in FMD 41 

was observed in Heat+WC (7.8±1.2 vs. 10.8±1.2%, P>0.05). In contrast, L-FMC was not 42 

different in either trial (P>0.05). In summary, acute whole-body heating markedly elevates 43 

radial artery shear rate, diameter and blood flow, and diminishes FMD. However, marked 44 

radial artery vasodilation and diminished FMD are absent when these shear rate changes are 45 

prevented. Shear rate modifications underpin the radial artery response to acute whole-body 46 

heat-stress, but further endothelial-dependent vasodilation (FMD) is attenuated likely as the 47 

vasodilatory range limit is approached. 48 

  49 
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New and Noteworthy: 50 

We observed that acute whole-body heating elevates radial artery shear rate, diameter 51 

and blood flow. This results in a diminished flow-meditated dilatation (FMD) but does not 52 

change low-flow mediated constriction (L-FMC). Preventing shear rate changes during 53 

whole-body heating reduces radial artery vasodilation, reverses FMD reductions but has no 54 

affect on L-FMC. These findings indicate that shear rate changes underpin conduit artery 55 

responses to acute whole-body heat-stress, but further endothelial-dependent flow-mediated 56 

vasodilation is attenuated as the vasodilatory range limit is approached.  57 

 58 

ABBREVIATIONS 59 

BP, blood pressure; ECG, electrocardiograph; EDHF, endothelium-derived 60 

hyperpolarizing factors; eNOS, endothelial nitric oxide synthase; FMD, flow mediated 61 

dilatation; Heat, whole body heat stress sufficient to raise core temperature by 1 °C; Heat + 62 

WC, whole body heat stress sufficient to raise core temperature by 1 °C with concurrent 63 

inflation of a cuff placed around the right wrist to 75 mmHg; HR, heart rate; LBNP, lower 64 

body negative pressure; L-FMC, low-flow mediated constriction; MAP, mean arterial 65 

pressure; NO, nitric oxide; SRAUC, shear rate area under the curve; Tpill , temperature pill 66 

telemetry system; Tsk , Mean skin temperature; TVR, Total vessel reactivity;  67 

  68 

Downloaded from journals.physiology.org/journal/jappl at Univ of Liverpool (090.205.118.057) on October 27, 2020.



INTRODUCTION 69 

 Endothelial-dependent processes provide an important mechanism whereby arterial 70 

diameter adapts in response to localized changes in blood flow (5, 20). Conversely, 71 

endothelial dysfunction disrupts vascular homeostasis and is integral to the pathophysiology 72 

of many cardiovascular diseases (22, 51). The flow mediated dilatation (FMD) technique 73 

provides a widely-used, non-invasive method of assessing endothelial function in response to 74 

an acute, marked increase in blood flow shear stress (10). However, it is less widely 75 

recognized that the acute reductions in arterial blood flow shear stress can evoke a low-flow 76 

mediated constriction (L-FMC) (16, 29). L-FMC has promising clinical utility and 77 

compliments the information provided by FMD (17, 18). However, in contrast to FMD, 78 

limited work has explored the mechanisms underlying L-FMC or considered how it is 79 

affected by environmental factors, such as temperature.  80 

Exposure to a hot environment results in pronounced cardiovascular autonomic 81 

adjustments that includes an increase in sympathetic nervous system activity, heart rate, and 82 

cardiac output, along with elevations in conduit artery and skin blood flow (11). Notably, 83 

local forearm heating increases brachial artery diameter, anterograde shear rate and FMD 84 

(44). While studies in animals and in-vitro studies of human endothelial cell cultures have 85 

shown an increased anterograde shear rate upregulates the release of endothelial nitric oxide 86 

synthase (eNOS) and cytochrome-related endothelium-derived hyperpolarizing factors 87 

(EDHF) (4, 9, 19, 28), this fails to occur with increases in retrograde shear rate, and instead 88 

there is an augmented release of endothelial derived vasoconstrictor molecules, such as 89 

endothelin-1 (49, 50, 54). Experimental induction of an increase in retrograde arterial shear 90 

rate in the human brachial artery can be achieved by inflation of pneumatic cuff (30-75 91 

mmHg) placed distal to the site of investigation (8, 44, 47), and this maneuver prevents the 92 

brachial artery vasodilation during local heating (36). Acute increases in sympathetic 93 
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vasoconstrictor activity can also increase retrograde shear rate and attenuate FMD (25, 35, 94 

44). Unlike local forearm heating, acute whole-body passive heat stress evokes major 95 

systemic cardiovascular effects along with sympatho-excitation, both of which have the 96 

potential to modify artery blood flow pattern and functional characteristics. However, the 97 

influence of whole-body passive heat stress on radial arterial shear rate and function is 98 

incompletely understood. 99 

In contrast to FMD, the influence of heat stress on L-FMC has not been considered, 100 

and whether L-FMC is modulated by the manipulation of local shear rate either 101 

independently or with concomitant heat stress is unknown. The L-FMC response to heating 102 

cannot be assumed to track that of FMD. While FMD and L-FMC responses complement one 103 

another in  healthy and clinical populations , they are not significantly correlated (16, 17). 104 

Like FMD, L-FMC is at least partly endothelium mediated (5), but unlike FMD, L-FMC is 105 

not altered by pharmacological antagonism of nitric oxide synthase (16). Therefore, non-106 

endothelial factors, such as an increase in sympathetic nerve activity, cannot be discounted as 107 

contributing to L-FMC (14). Thus, during whole-body passive heat stress, both increases in 108 

sympathetic nerve activity and anterograde shear rate could potentially modify L-FMC.  109 

The objectives of this investigation were twofold. First, to characterize the effect of 110 

whole-body passive heat stress on radial artery blood flow pattern, FMD and L-FMC. 111 

Secondly, to determine whether the influence of whole-body passive heat stress on FMD and 112 

L-FMC is mediated by a change in local shear rate. To achieve this, the influence of whole-113 

body passive heat stress (sufficient to raise core temperature +1 °C) on radial artery blood 114 

flow pattern, FMD and L-FMC was investigated. Heating trials were conducted both with 115 

and without the addition of a cuff, inflated to 75 mmHg, placed around the wrist that was 116 

distal to the radial artery being examined. We hypothesized that; 1) whole-body passive heat 117 

stress would augment anterograde shear rate and subsequently increase FMD and L-FMC via 118 
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endothelium mediated mechanisms, and 2) such increases in FMD and L-FMC would be 119 

prevented if increases in anterograde shear rate were prevented, and retrograde shear rate 120 

augmented, during whole-body passive heat stress (i.e., with a wrist cuff).   121 
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METHODS 122 

Ethical Approval. 123 

Ethical Approval for this study was received from the University of Birmingham, 124 

Science Technology Engineering and Mathematics Ethical Review (approval number 125 

ERN_18-0523). All study procedures were undertaken in accordance with the ethical 126 

standards outlined in the Declaration of Helsinki, except for registration in a database. 127 

Written informed consent was obtained from all study participants following a verbal and 128 

written explanation of the study objectives and procedures.  129 

 130 

Participant characteristics. 131 

Thirteen healthy men were recruited. All participants were normotensive, 132 

normothermic (36.2 – 37.6 °C), non-smokers and medication free. Prior to experimental trials 133 

participants were requested to adhere to the following instructions: no food or beverages ≥6 134 

hours, no alcohol or caffeine for ≥12 hours, no polyphenol rich food/beverages for ≥18 hours, 135 

no vigorous exercise for ≥48 hours and no vitamin supplements for ≥72 hours. Eleven 136 

participants completed the experiment, with two participants withdrawing from the study 137 

after first trial due to personal reasons. 138 

 139 

Experimental measures. 140 

Heart rate (HR) was measured using a standard lead II surface electrocardiogram, and 141 

systolic and diastolic blood pressure (BP) obtained non-invasively from left brachial artery 142 

by automated sphygmomanometer (Tango+, SunTech Medical Instruments, Raleigh, NC, 143 

USA). Core (intestinal) temperature was measured using an ingestible temperature pill 144 

telemetry system (Tpill; Jonah™ Core Body Temperature, Respironics, Bend, OR, USA). 145 

Data were transmitted wirelessly to monitoring device (EQ02+ LifeMonitor, Equivital, 146 
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Hidalgo, Cambridge, U.K) and then gathered with embedded application software (eqView 147 

mobile, Equivital, Hidalgo, Cambridge, U.K). Skin temperature was measured by using 148 

thermistors located at four sites (chestsk, bicepssk, thighsk and calfsk) (Squirrel SQ2010 Data 149 

Logger; Grant, Cambridge, UK). 150 

Right radial artery diameter and blood flow velocity were obtained using duplex 151 

Doppler ultrasound (Terason uSmart 3300, Teratech Corporation, Burlington, MA, USA) 152 

with the arm supported at heart level. The radial artery was insonated 10 – 15 cm distal to the 153 

medial epicondyle using a multi-frequency linear-array probe (Terason uSmart 15L4) 154 

operating at 4-15 MHz and fixed on an adjustable holder throughout the experiment. B-mode 155 

imaging was used to measure radial artery diameter and pulse-wave mode to obtain radial 156 

artery peak blood velocity. Measurements were made in accordance with recent technical 157 

recommendations (34, 45). FMD studio software was used to record Doppler images as video 158 

files and offline analysis conducted using automated edge detection and wall tracking 159 

algorithms (Cardiovascular Suite Version 3.4.1, FMD Studio, Pisa, Italy).  160 

 161 

Experimental Protocol. 162 

Prior to experimental trials, participants attended a familiarization session during 163 

which study procedures were explained and methods demonstrated. Participants then returned 164 

for three separate experimental trials to investigate the impact of whole-body passive heat 165 

stress on radial artery endothelial function and blood flow pattern. Trials were conducted on 166 

three days separated by at least 24 hours and completed within 14 days. The three 167 

experimental trials were; 1) whole-body passive heat stress sufficient to raise core 168 

temperature by 1 °C (Heat), 2) whole-body passive heat stress sufficient to raise core 169 

temperature by 1 °C with concurrent inflation of a cuff placed around the right wrist to 75 170 

mmHg in order to modify the blood flow pattern of the right radial artery (Heat + WC), and 171 
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3) a Time Control trial with neither whole body heat stress nor wrist cuff inflation. The order 172 

of the Heat and Heat + WC trials was randomized by a coin toss. By necessity the Time 173 

Control trial was always performed last; its duration determined by the average of the Heat 174 

and Heat + WC trials.  175 

All experimental sessions and data collection were conducted at the same time of day 176 

for a given individual. For the Heat and Heat + WC trials, participants came to the laboratory 177 

and swallowed the Tpill with water two hours prior to testing. The Tpill was not provided for 178 

Time Control trial. Experimental sessions commenced with securing skin temperature 179 

thermistors to the participants and then putting on a tube-lined water-perfused suit covering 180 

the entire body surface with the exception of the head and right forearm. Participants then 181 

rested in a supine position on a medical examination table and were instrumented for 182 

collection of the experimental measures outlined above. An inflatable cuff was placed around 183 

the right wrist to modify the blood flow pattern as described above (Heat + WC) and was also 184 

used for the assessment of L-FMC and FMD (described below). The suit was perfused with 185 

water at a thermo-neutral temperature (34°C) for 15 min and temperature and hemodynamics 186 

recorded. An assessment of radial artery function (L-FMC and FMD) was then made, 187 

consisting of a 1 min baseline, followed by 5 min wrist cuff inflation to ≥220 mmHg, and a 3 188 

min post-cuff inflation recovery period (16). In the Heat trial, the temperature of the water 189 

perfusing the suit was then adjusted to 48 °C and applied until core temperature increased by 190 

1°C. In the Heat + WC trial, the wrist cuff was inflated to 75 mmHg to modify radial artery 191 

flow pattern (47), and the whole body heat stress protocol was replicated as in the Heat trial. 192 

Once core temperature was elevated by 1°C (the desired amount) in the Heat and Heat + WC 193 

trials, radial artery function testing (L-FMC and FMD) was repeated. During the Time 194 

Control trial, the temperature of water perfusing the suit was maintained at a thermo-neutral 195 
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temperature (34°C) and pre and post intervention recordings of L-FMC and FMD were made 196 

as in other two trials (Heat and Heat + WC).  197 

 198 

Data analysis 199 

Mean skin temperature (Tsk) was calculated as (38): 200 Tୱ୩(C°) = 0.3 𝑥 (Bicepsୱ୩ C° + Chestୱ୩C°) + 0.2 𝑥 (Thighୱ୩C° +  Calfୱ୩C°) 

 201 

Mean arterial pressure (MAP) was calculated as (39):  202 MAP (mmHg) = Diastolic BP(mmHg) + [0.33 + (HR 𝑥 0.0012)]  𝑥 [Systolic BP(mmHg)− Diastolic BP (mmHg)] 
 203 

Radial artery blood flow was calculated as:  204 Blood Flow (ml/min) = Mean Blood Velocity (cm/s) 𝑥 π 𝑥 radius (cm) 2 𝑥 60 (s/min) 205 

 206 

Radial artery vascular conductance was determined by dividing arterial blood flow (ml/min) 207 

by mean arterial pressure (mmHg). 208 

Radial artery wall shear rate was defined as: 209 

Arterial Wall Shear Rate (SR, sିଵ)  = 4  𝑥 Mean Blood Velocity (cm/s)  Diameter (cm)  

Anterograde and retrograde shear rate were calculated using anterograde and retrograde 210 

blood velocities, respectively.  211 

Core temperature (Heat and Heat + WC only), skin temperature, HR, BP and radial 212 

artery characteristics were obtained prior to the start of intervention, and then every 5 min 213 

during the intervention (Heat, Heat + WC, Time Control trials). In order to make between 214 

trial comparisons of the temporal response pattern for temperature and cardiovascular 215 

variables, values were selected that corresponded to 25%, 50%, 75% and 100% of total trial 216 
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duration. A 20 s average was used to provide radial artery measure for a given participant 217 

each time point. 218 

For radial artery function testing, L-FMC was defined as the change from average 219 

baseline diameter to the average diameter of the last 30 s of wrist cuff occlusion, while FMD 220 

was taken as the change from the average baseline diameter to the maximal post cuff 221 

occlusion diameter (16). L-FMC and FMD responses are presented as relative (%) and 222 

absolute (mm) change (45). Total vessel reactivity (TVR) was calculated as the change from 223 

the average diameter of the last 30 s of wrist cuff occlusion to the maximal diameter post cuff 224 

deflation divided by the average baseline diameter (37) and is presented as a relative (%) 225 

change. TVR was used to assess the vascular reactivity range (6). The time-to-peak diameter 226 

and shear rate area under the curve (SRAUC), calculated as an integral, were determined from 227 

cuff deflation until maximum artery dilation. A ratio of L-FMC against change in mean shear 228 

rate (difference between baseline shear rate and shear rate during last 30 s of cuff occlusion; 229 

L-FMC-to-Δ mean SR ratio, au) and FMD against SRAUC (FMD-to-SRAUC ratio, au) were 230 

calculated and the values multiplied by 1000 (26, 34). Recent guidelines suggest considering 231 

whether allometric scaling is necessary when evaluating FMD (3). Accordingly, baseline and 232 

nadir / peak diameters were natural log-transformed for slope and upper bound 95% 233 

confidence intervals (CI). Further allometric scaling for baseline diameters was not 234 

performed as the slope of the relationship between log(peak diameters) and log(baseline 235 

diameters) did not deviate significantly from 1 (i.e., all slopes > 0.86 and all upper bound 236 

95% CI < 1.42).  237 

 238 

Statistical Analysis. 239 

All statistical analyses were conducted using Statistical Package for Social Sciences 240 

(SPSS, version 21.0). One-way repeated measures analysis of variance (ANOVA) was used 241 
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to test for differences in total trial durations (Heat, Heat +WC, Time Control). Two-way 242 

repeated measures ANOVA was used to test for differences in core and skin temperature, 243 

cardiovascular responses, radial artery characteristics and blood flow pattern with respect to 244 

time (baseline, 25%, 50%, 75% and 100% of intervention duration), trial (Heat, Heat + WC, 245 

Time Control), and their interaction. Two-way repeated measures ANOVA was also used to 246 

investigate main effects of time (Pre vs. Post intervention), trial (Heat, Heat + WC, Time 247 

Control) and their interaction, for radial artery function (e.g., L-FMC and FMD). An analysis 248 

of covariance (ANCOVA), with SRAUC as covariate, was used to statistically assess the FMD 249 

response for the shear rate stimulus (SRAUC-corrected-FMD%) (48). Significant main effects and 250 

interactions were investigated post hoc using Students t-tests with Bonferroni adjustment. P < 251 

0.05 was recognized as being statistically significant. Data are presented as mean (SD) unless 252 

stated. 253 

  254 
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RESULTS 255 

Core and mean skin temperature. 256 

Total duration was not different between the Heat (78.6 ± 9.5 min) and Heat + WC 257 

(76.3 ± 12.2 min) and Time Control (77.5 ± 9.1) trials (P = 0.554). Core temperature 258 

increased progressively from baseline during Heat and Heat + WC trials, with both being 259 

different from baseline after 50%, 75% and 100% of intervention duration, respectively (all P 260 

< 0.05) and this increase in core temperature was similar between heat trials (P = 0.922; 261 

Figure 1). Mean skin temperature also increased from baseline during the Heat (32.8 ± 0.68 262 

°C) and Heat + WC (32.7 ± 0.83 °C) trials (P < 0.05 vs. baseline and Time Control trial after 263 

25% of intervention duration and beyond), but was not different between the Heat and Heat + 264 

WC trials (Heat vs. Heat + WC: baseline; after 25%, 50%, 75% and 100% of intervention 265 

duration, P = 1.00; P = 0.089; P = 0.620; P = 1.00; P = 0.166, respectively). Mean skin 266 

temperature during Time Control trial remained between 32 and 34°C throughout the trial 267 

(Time Control after 25%, 50%, 75% and 100% of intervention duration vs. baseline: P = 268 

1.00; P = 0.994; P = 0.955; P = 0.994, respectively). 269 

 270 

HR and BP. 271 

 HR progressively increased from baseline during both whole-body passive heat stress 272 

trials (Heat and Heat + WC, P < 0.05 vs. baseline and Time Control at 25% intervention 273 

duration and beyond; Figure 2). Systolic BP also increased during the Heat and Heat + WC 274 

trials (P < 0.05), and diastolic BP fell slightly during the heating trials.  275 

 276 

Radial artery characteristics. 277 

Mean and anterograde shear rate increased progressively and robustly throughout the 278 

Heat trial (P < 0.05 vs. baseline and Time Control at 25% intervention duration and beyond; 279 
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Figure 3), while retrograde shear rate decreased slightly from baseline values and was 280 

significantly different to Time Control  at 75% and 100% intervention duration (P < 0.05 vs. 281 

Time Control). In the Heat + WC trial, increases in mean and anterograde shear rate were 282 

abolished (P < 0.05 vs. Heat), while increases in retrograde shear rate were pronounced (P < 283 

0.05 vs. baseline and Heat). In the Time Control trial, radial artery mean, anterograde and 284 

retrograde shear rates remained unchanged from baseline (P > 0.05). 285 

During the Heat trial, radial artery diameter, velocity, blood flow and vascular 286 

conductance all increased progressively and markedly (P < 0.05 vs. baseline and Heat + WC 287 

at all intervention durations; Table 1 and Figure 4). In contrast, these radial artery 288 

characteristics remained close to baseline values throughout the Heat + WC and Time 289 

Control trials; the exceptions being Heat + WC radial artery diameter which increased 290 

slightly at 50% and 75% of intervention duration, and Time Control vascular conductance 291 

which fell slightly at 100% of intervention duration (both P < 0.05 vs. Baseline). At baseline, 292 

radial artery blood flow, velocity and vascular conductance were slightly but significantly 293 

elevated in the Time Control trial compared to the Heat trial (P < 0.05). 294 

 295 

Radial artery function responses. 296 

Table 1 provides radial artery characteristics before and after intervention in the Time 297 

Control, Heat and Heat + WC trials. At baseline, FMD, L-FMC and TVR % were not 298 

different between the Heat, Heat + WC and Time Control trials (FMD % between trials at the 299 

baseline, all P=1.00; L-FMC % between trials at the baseline, all P=1.00; TVR % at the 300 

baseline, Heat vs. Heat +WC P=0.511, Heat vs. Time Control P=1.00, Heat+WC vs. Time 301 

Control P=0.764 , Figure 5.). Following whole body heating (Post) in the Heat trial, FMD % 302 

was significantly decreased (P < 0.05 vs. Pre and Heat + WC, Figure 5), while FMD % was 303 

unchanged in either the Heat + WC or the Time Control trials (Heat + WC vs. Pre, P = 0.176; 304 
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Time Control vs. Pre, P = 0.464). No between trial differences in L-FMC % were observed 305 

either at baseline or following intervention in the Heat, Heat + WC and Time Control trials (P 306 

> 0.05, Figure 5.). Following intervention in the Heat + WC trial, TVR% was increased (Pre 307 

vs Post, P < 0.05 vs. baseline and Time Control).   308 
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DISCUSSION 309 

The objectives of this investigation were to characterize the effect of whole-body 310 

passive heat stress on radial artery blood flow pattern and functional characteristics (i.e., 311 

FMD and L-FMC), and to determine whether the influence of whole-body passive heat stress 312 

on FMD and L-FMC is mediated by a change in local shear rate (as induced via inflation of 313 

pneumatic cuff (75 mmHg) placed distal to the site of investigation). We observed that 314 

whole-body heating (i.e., Heat trial), sufficient to raise core temperature by +1 °C, markedly 315 

and progressively increased radial artery mean and anterograde shear rate, along with radial 316 

artery diameter, velocity and blood flow. Contrary to our hypothesis, whole-body passive 317 

heat stress attenuated FMD, whereas L-FMC was unchanged. As expected, the addition of a 318 

cuff, inflated to 75 mmHg around the wrist distal to the radial artery being examined (i.e., 319 

Heat + WC trial), abolished the heat-induced increase mean and anterograde shear rate, but 320 

markedly increased retrograde shear. Associated with this, no changes in either radial artery 321 

blood velocity, diameter, blood flow or vascular conductance were observed. Moreover, 322 

neither FMD nor L-FMC were different following Heat + WC. Collectively, these findings 323 

suggest that whole-body passive heat stress (+1 °C core temperature) acutely elevates radial 324 

artery mean and anterograde shear rate, leading to radial artery vasodilatation and diminished 325 

FMD, but unchanged L-FMC. However, when whole-body heating induced increases in 326 

radial artery mean and anterograde shear rate are prevented, and instead retrograde shear is 327 

increased, both radial artery vasodilation and the diminished FMD are prevented. 328 

In healthy adults brachial artery FMD has been shown to be enhanced following 329 

whole-body passive heat therapy (60 minutes sessions for 8 weeks) (7). Moreover, regular 330 

whole-body heating for 3-4 weeks improves endothelial function, maximal O2 uptake (33), 331 

circulating NO metabolite concentrations and reduces oxidative stress markers in chronic 332 

heart failure patients (15). While a single session of whole-body heating offers protection 333 
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from ischemia-reperfusion associated reductions in endothelial function (7). Local heating 334 

(42 °C) is known to evoke cutaneous vasodilation, increase limb blood flow and shear stress 335 

without producing major systemic cardiovascular effects (19). Moreover, local unilateral 336 

limb heating prevents physical inactivity (43) and hyperglycemia (21) induced reductions in 337 

FMD. Given this, we hypothesized that acutely applied whole-body passive heat stress would 338 

cause an enhanced FMD secondary to an augmented anterograde shear rate and upregulated 339 

release of endothelial NO synthase and EDHF (4, 12, 19, 28). This was only partly correct, in 340 

that anterograde shear was increased during whole-body passive heat stress, but rather than 341 

observing an increase in FMD, a decrease was found.  342 

A poor FMD response under normothermic conditions is associated with increased 343 

future cardiovascular risk (40, 41, 55) and indicative of endothelial dysfunction. Thus, the 344 

reduced FMD during acute whole-body passive heat stress might be interpreted as a reduction 345 

in endothelial function. However, it is more likely that the reduction in FMD during acute 346 

whole-body passive heat stress was mediated by thermoregulatory-related radial artery 347 

vasodilation, which reduced the capacity for subsequent vasodilation during the radial FMD 348 

test. Indeed, the peak diameter observed during FMD prior to Heat (i.e., Pre, 2.79 mm) was 349 

lower than that observed at baseline following heating (i.e., Post, 3.30 mm; Table 1). 350 

Moreover, the SRAUC was diminished during the FMD following whole body heating (Heat 351 

trial; SRAUC 16.4 vs. 7.50 x103 s-1 for Pre vs. Post, respectively), and when FMD was 352 

corrected for this attenuated SRAUC, no difference in FMD was noted. An alternative 353 

explanation is that an elevated sympathetic vasoconstrictor tone resulting from acute whole-354 

body heat stress reduced the FMD response in the current study. Some acutely applied 355 

sympatho-excitatory maneuvers have been shown to attenuate FMD (25). Indeed, reductions 356 

in FMD following strenuous dynamic exercise are reportedly prevented by alpha-adrenergic 357 

blockade suggestive of a sympathetically mediated reduction in FMD (2). Although chronic 358 
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whole-body passive heat stress has been shown to decrease circulating norepinephrine 359 

concentrations in heart failure patients (33), the extent and direction of any acute sympatho-360 

excitatory adaptive changes here remains unclear.  361 

The inflation of a cuff (to 75 mmHg) distal to the artery being examined is an 362 

established method of manipulating shear rate (47). In the present study, wrist cuff inflation 363 

abolished the heat-induced increase in mean and anterograde shear rate, but markedly 364 

increased retrograde shear (i.e., Heat + WC trial). Associated with this, and in stark contrast 365 

to the Heat trial, no increases in either radial artery diameter, velocity, blood flow or vascular 366 

conductance were observed. It should be noted that the wrist cuff was positioned distal to the 367 

portion of the radial artery being interrogated and therefore did not directly occlude flow to 368 

where the vessel was being imaged. Further, it seems unlikely that the wrist cuff inflation to 369 

75 mmHg, which is lower than mean BP and much lower than systolic BP, was sufficient to 370 

reduce downstream radial artery blood flow into the hand; yet this possibility cannot be 371 

completed excluded (27). Nonetheless, such an effect should not have severely compromised 372 

hand circulation as no participants reported altered sensation in the hands. Notably, while 373 

Heat diminished FMD, it was preserved during Heat + WC likely as a consequence of the 374 

greater SRAUC during the FMD. This provides further support for the contention that the 375 

attention in FMD for the Heat trial was mediated by the reduction in shear stimulus and not a 376 

true change in endothelial vasodilator function. Heat and Heat + WC trials were well matched 377 

in so far as the evoked increases in core temperature, blood pressure and heart rate were not 378 

different, suggesting that a non-specific systemic factor was not involved. The between trial 379 

difference in FMD is likely explained by the wrist cuff preventing an increase in radial artery 380 

mean and anterograde shear rate, and thus no radial artery vasodilatation occurring. 381 

Therefore, with the radial artery at a baseline level in the Heat + WC trial, the FMD response 382 

was normal, despite core temperature being raised.  383 
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We hypothesized that whole-body passive heat stress would augment L-FMC, 384 

whereas it remained unchanged. Among the various suggested mechanisms underlying L-385 

FMC is an endothelial contribution (13). Indeed, L-FMC is attenuated by inhibition of 386 

endothelial derived hyperpolarizing factors, prostaglandins (16) and the endothelin receptor 387 

antagonist BQ-123 (40). Notably, FMD was diminished with whole-body passive heat stress 388 

and it is well established that FMD is at least in part determined by endothelial dependent 389 

mechanisms. Given this, one might have expected L-FMC to change similarly, but despite 390 

the augmented baseline diameter this was not the case. A sympathetic mechanism has also 391 

been postulated to contribute to L-FMC, and whole-body passive heat stress is well known to 392 

increase sympathetic activity. Inflation of a wrist cuff (i.e., Heat + WC trial) had no influence 393 

on L-FMC. This further supports the concept that manipulating shear rate, such that increases 394 

in anterograde shear rate are prevented and retrograde shear rate augmented, has a minimal 395 

effect on L-FMC. Elliott et al., (14) observed an augmented L-FMC following dynamic 396 

exercise and among the potential mechanisms suggested was an increase in sympathetic 397 

nerve activity. It might have been reasonable to expect that with the prevailing vasodilation, 398 

meaning more scope for vasoconstriction, along the increase in retrograde shear to attenuate 399 

endothelial function, a more pronounced L-FMC would have been exhibited. Further, it could 400 

also have been expected that the increased retrograde shear during Heat + WC would have 401 

worsened endothelial function (47) and attenuated L-FMC. However, this was also not 402 

observed.  403 

 404 

Experimental Considerations 405 

Herein we assessed the radial artery and studies are required to verify these findings 406 

in other conduit vessels (e.g., coronary arteries). While the relationship between the brachial 407 

artery FMD and acetylcholine infusion responses with bradykinin, acetylcholine, adenosine 408 

Downloaded from journals.physiology.org/journal/jappl at Univ of Liverpool (090.205.118.057) on October 27, 2020.



and dobutamine infusion responses of the coronary vessels has been determined (31, 32, 41, 409 

42), to the best of our knowledge such an investigation has not been carried out for any other 410 

peripheral conduit vessels. While some previously published investigations have examined 411 

the radial artery (e.g., (13, 14, 16, 52)), human studies of peripheral vascular function more 412 

commonly examine the brachial artery. Similar blood flow and shear patterns would be 413 

expected in both the radial and brachial arteries during passive whole-body heat stress (46). A 414 

notable difference between the brachial and radial arteries relates to the propensity to observe 415 

an L-FMC response, with this being more commonly seen in the radial artery (52).  416 

Radial artery function was only assessed at a single time point following the whole-417 

body passive heat stress intervention. As such we were unable to ascertain the time-course of 418 

the vascular response, and specifically determine how long the whole-body heat stress related 419 

decrement in FMD persisted for in the post-heat period, and if/when a conversion to an 420 

augmented FMD response occurred. It is a limitation that only health young men were 421 

studied. There are important sex-differences and ovarian hormone effects on vascular 422 

function (24). Unfortunately, resource and logistical issues meant that we were unable to 423 

study young women at a standard phase of their menstrual cycle (e.g., early follicular phase) 424 

for the three separate experimental sessions that our study design necessitated, potentially 425 

over several months. Additional studies are required to ascertain whether sex-differences are 426 

present in our findings, and the extent to which they similarly manifest in patient populations 427 

in whom underlying impairments in vascular function are reported (e.g., healthy ageing, 428 

hypertension).  429 

The use of a wrist cuff inflation to 75 mmHg is an established method to alter shear 430 

rate patterns, particularity during experimental conditions in which shear stress is elevated 431 

(e.g. (8)). Despite its utility, this model of shear rate manipulation simultaneously decreases 432 

anterograde and increases retrograde shear rates, respectively. As such, we are unable to state 433 
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definitively whether the FMD response following Heat + WC is mediated by attenuated mean 434 

and anterograde shear, or is it driven by the large increase in retrograde shear, or a 435 

combination of both. The wrist cuff and associated changes in shear pattern lead to a 436 

diminished blood flow response to whole-body heating. However, blood flow was not 437 

significantly reduced below baseline or time control values. We assume that forearm 438 

metabolic rate was not different between trials and as such do not expect differences in 439 

downstream tissue oxygen to have occurred and contributed to the vascular responses 440 

observed. We cannot discount the possibility that wrist cuff inflation may have evoked 441 

venous distension and a reflex increase in vasoconstrictor sympathetic nerve activity (23, 30). 442 

The inclusion of assessments of sympathetic nerve activity (1) or blood based biomarkers of 443 

vascular function (53) would have provided additional mechanistic insight and strengthened 444 

this study.  445 

 446 

Conclusions 447 

Collectively, these findings suggest that whole-body passive heat stress acutely 448 

elevates radial artery mean and anterograde shear rate, leading to a vasodilatation of the 449 

radial artery and a diminished FMD, but not L-FMC. Preventing these shear rate induced 450 

changes reduces radial artery vasodilation and the acutely diminished FMD. Therefore, shear 451 

rate modifications appear to underpin the conduit artery response to acute whole-body heat-452 

stress, but further endothelial-dependent flow-mediated vasodilation is attenuated as the 453 

vasodilatory range limit is approached.  454 

 455 
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TABLES 456 

Table 1. Radial artery characteristics before (Pre) and after (Post) the Time Control, Heat and eat + WC trials. 457 

 
Time Control Heat  Heat + WC P values 

Pre Post Pre Post Pre Post Trial Time Interaction 
Baseline     
Diameter (mm) 2.66 (0.35) 2.63 (0.34) 2.57 (0.31) 3.30 (0.43)*†‡ 2.53 (0.35) 2.79 (0.36)* <0.001 <0.001 <0.001 
Velocity (cm/s) 15.17 (6.9) 7.53 (6.6)* 8.07 (6.2)‡ 39.48 (7.8)*†‡ 9.48 (7.72) 11.59 (6.5) <0.001 <0.05 <0.001 
Blood flow (ml/min) 54.04 (33.0) 26.18 (23.7)* 25.6 (20.3)‡ 204.17 (54.2)*†‡ 31.32 (31.2) 45.60 (32.7) <0.001 <0.001 <0.001 
Mean shear rate (s-1) 227.2 (98.0) 113.3 (96.9)* 130.3 (102.1)‡ 485.3 (105.2)*†‡ 147.5 (112.4) 165.2 (88.4) <0.001 0.022 <0.001 
L-FMC     
Nadir Diameter (mm) 2.55 (0.34) 2.55 (0.34) 2.45 (0.27) 3.08 (0.41)*†‡ 2.47 (0.36) 2.65 (0.31) <0.001 <0.001 <0.001 
Δ Diameter (mm) -0.11 (0.06) -0.08 (0.06) -0.12 (0.09) -0.22 (0.27) -0.06 (0.08) -0.15 (0.12) 0.174 0.195 0.162 
Mean shear rate (s-1) 22.8 (6.2) 26.2(7.5) 21.4 (11.0) 74.0 (30.6)*†‡ 23.5 (8.2) 109.2 (59.9)*‡ <0.001 <0.001 0.001 
Δ Mean shear rate (s-1) 204.4 (103.0) 87.1 (90.4)* 108.9 (104.5)‡ 411.2 (93.6)*†‡ 123.9 (111.1) 56.0 (57.2) <0.001 0.229 <0.001 
L-FMC-to-Δ mean SR ratio (au) -0.029(0.038) -0.064(0.082) -0.110 (0.234) -0.020 (0.025) -0.004 (0.092) -0.209 (0.348) 0.548 0.231 0.075 
FMD     
Peak Diameter (mm) 2.88 (0.41) 2.79 (0.40) 2.79 (.35) 3.37 (0.46)*†‡ 2.73 (0.40)‡ 3.10 (0.40)*‡ <0.001 <0.001 <0.001 
Δ Diameter (mm) 0.21 (0.14) 0.17 (0.12) 0.22 (0.11) 0.07 (0.15)*† 0.20 (0.14) 0.30 (0.11) 0.038 0.334 <0.05 
Time to peak diameter (s) 80.72 (32.68) 77.18 (46.95) 90.36 (41.62) 97.72 (152.58) 76.54 (42.49) 118.6 (39.66) 0.326 0.097 0.265 
SRAUC (x103 s-1) 19.33 (6.7) 16.58 (5.7) 16.4 (6.56) 7.50 (7.0)†‡ 17.8 (8.5) 29.57 (11.6)*‡ <0.001 0.507 <0.05 
FMD-to-SRAUC ratio (au) 0.40 (0.26) 0.62 (0.97) 0.63 (0.46) 0.66 (1.24) 0.46 (0.27) 0.42 (0.19) 0.641 0.689 0.819 
SRAUC-corrected-FMD (%) 7.696 (4.60) 6.526 (4.60) 8.73 (4.60) 3.156 (5.25) 7.856 (4.60) 9.712 (5.42) 0.224 0.154 0.066 

 458 
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Values are means (SD). L-FMC, low-flow mediated constriction; FMD, flow mediated dilatation; SRAUC, shear rate area under curve. P values 459 

represent 2-way repeated ANOVA results (Trial; Time Control, Heat and Heat + WC: Time; Pre and Post: Interaction, Trial x Time). P value for 460 

SRAUC-corrected-FMD (%) represent ANCOVA results. * P < 0.05 vs. Pre; † P < 0.05 vs. Heat + WC; ‡ P < 0.05 vs. Time Control. 461 

 462 

  463 
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FIGURE LEGENDS 464 

Figure 1. Core and skin temperatures.  465 

Whole-body passive heat stress (Heat) and whole-body heat stress with wrist cuff (Heat + 466 

WC) evoked similar increases in core and skin temperature. Skin temperature was not 467 

changed from baseline in the Time Control trial. Values are mean ± SE. * P < 0.05 vs. 468 

baseline (BL); ‡ P < 0.05 vs. Time Control.  469 

 470 

Figure 2. Cardiovascular responses. 471 

Heart rate (HR), systolic blood pressure (systolic BP), diastolic blood pressure (Diastolic 472 

BP), mean arterial pressure (MAP) responses were similar in the whole-body passive heat 473 

stress (Heat) and whole-body heat stress with wrist cuff (Heat + WC) trials. Values are mean 474 

± SE. * P < 0.05 vs. baseline (BL); † P < 0.05 vs. Heat + WC; ‡ P < 0.05 vs. Time Control.  475 

 476 

Figure 3. Radial artery blood flow pattern. 477 

Mean, anterograde and retrograde shear rate during the whole-body passive heat stress 478 

(Heat), whole-body heat stress with wrist cuff (Heat + WC) and Time Control trials. Values 479 

are the mean ± SE. * P < 0.05 vs. baseline (BL); † P < 0.05 vs. Heat + WC; ‡ P < 0.05 vs. 480 

Time Control.  481 

 482 

Figure 4. Radial artery characteristics 483 

Radial artery blood flow, diameter, velocity and vascular conductance during whole-body 484 

passive heat stress (Heat), whole-body heat stress with wrist cuff (Heat + WC) and Time 485 

Control trials. Values are the mean ± SE. * P < 0.05 vs. baseline (BL); † P < 0.05 vs. Heat + 486 

WC; ‡ P < 0.05 vs. Time Control.  487 

 488 
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Figure 5. Radial artery function 489 

Radial artery flow mediated dilatation (FMD), low-flow mediated constriction (L-FMC), and 490 

total vascular range (TVR) during the whole-body passive heat stress (Heat), whole-body 491 

heat stress with wrist cuff (Heat + WC) and Time Control trials. Values are the mean ± SE. * 492 

P < 0.05 vs. baseline (BL); † P < 0.05 vs. Heat + WC; ‡ P < 0.05 vs. Time Control.  493 

 494 

 495 

 496 
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