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 39 
 40 

ABSTRACT 41 
 42 
Oceanic archipelagos are known to host a variety of endemic plant species. The genetic 43 
diversity and structure of these species are important indicators of their evolutionary 44 
history and can have consequences on the implementation of appropriate conservation 45 
strategies. A comprehensive consideration of the role of their natural history, as well as 46 
the landscape features and the geological history of the islands themselves are required 47 
to adequately understand the geographic patterns inferred from genetic data. Such is the 48 
case for guayabillo (Psidium galapageium), an understudied endemic plant from the 49 
Galapagos Islands with important ecological and economic roles. In this study we 50 
designed and evaluated 13 informative SSR markers and used them to investigate the 51 
genetic diversity, population structure and connectivity of the guayabillo populations 52 
from San Cristobal, Isabela and Santa Cruz islands. A total of 208 guayabillo 53 
individuals were analyzed, revealing a strong population structure between islands and 54 
two distinct genetic lineages for the Santa Cruz population. Overall, the relatively high 55 
genetic diversity of the species could be explained by different biological, demographic 56 
and environmental factors. For guayabillo populations such as the one in San Cristobal, 57 
the history of human disturbance in their habitats might play an important role in 58 
explaining their reduced genetic diversity.  The coexistence of two distinct lineages in 59 
Santa Cruz, with one of them sharing genetic similarities with individuals from San 60 
Cristobal, could be attributed to limited, unidirectional gene flow from the latter island 61 
to the former. Our findings highlight the complex population dynamics that shape the 62 
genetic diversity of species like the guayabillo, and emphasize the importance of a 63 
species’ evolution and natural history when interpreting its population genetics. 64 
 65 
 66 
 67 
 68 
 69 
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1. Introduction 88 
 89 

Oceanic islands are home to unique species which have emerged as a product of 90 
their evolutionary histories being driven by geographical isolation and distinct 91 
topological and climatic conditions. This makes them ideal study cases for evolutionary 92 
and ecological processes (Carlquist, 1974; Emerson, 2002; Shaw and Gillespie, 2016). 93 
Studying these species has been an important step in addressing evolutionary biology 94 
questions about key processes such as adaptation, speciation, radiation, and the link 95 
between evolution and geography (Geist et al., 2014; Rumeu et al., 2016; Shaw and 96 
Gillespie, 2016). Among these, insular endemics are an interesting case of species that 97 
may comprise distinct gene pools compared to their counterparts in mainland 98 
ecosystems (e.g. Helenurm and Ganders, 1985; Wendel and Percival, 1990; Rumeu et 99 
al., 2016). The genetic diversity patterns observed for insular organisms are diverse and 100 
driven by multiple factors, ranging from founder events and genetic bottlenecks that 101 
constrain a species’ gene pool (Mayr, 1954; Hagenblad et al., 2015; Stuessy et al., 2014) 102 
to long adaptive evolutionary processes and gene flow that contribute to the genetic 103 
makeup of different populations (Frankham, 1997; Stuessy et al., 2014). The 104 
geographical features of the islands inhabited by these organisms (e.g. size, age and 105 
habitat heterogeneity) also play major roles in shaping their population structures 106 
(MacArthur and Wilson, 1967; Stuessy et al., 2014). 107 
 108 

The Galapagos Islands are a prime example of oceanic archipelagos; they are 109 
conformed by 13 main islands and more than 100 minor islets of volcanic origin. The 110 
archipelago is located in the Pacific Ocean, ~1000 km off the coast of South America. 111 
Thanks to their tropical location and oceanographic situation, the Galapagos harbor a 112 
great variety of unique species, as well as rich ecosystems which remain relatively 113 
undisturbed compared to other insular systems (Gillespie and Clague, 2009; Jaramillo et 114 
al., 2011). Moreover, the overall young age of the archipelago and the coexistence of 115 
islands of different ages make the Galapagos a fitting setting to observe evolutionary 116 
processes in action (Jaramillo et al., 2011).  117 

 118 
The evolution and conservation of endemic species of the Galapagos have been 119 

extensively studied. However, most research has been focused on animal species (Geist 120 
et al., 2014; Shaw and Gillespie, 2016); few studies have explored the genetic diversity 121 
and population structure of endemic plant species, which are direct consequences of 122 
their evolutionary history and key indicators of their vulnerability and responsiveness to 123 
environmental change (Fridley et al., 2007; Jump et al., 2009; Stuessy et al., 2014). 124 
Moreover, insular endemic species are valuable genetic resources for bioprospection 125 
and plant breeding purposes (e.g. Guezennec et al., 2006; Pailles et al., 2017). 126 
Unfortunately, endemic insular species are intrinsically vulnerable to threats which 127 
include environmental change, disease, invasive species, human perturbation and habitat 128 
loss due to their isolation, relatively small population sizes and restricted distribution 129 
(Whittaker, 1998; Sakai et al., 2001). Thus, it is not surprising that in 2016, 40% of all 130 
recognized endangered species were found in island ecosystems (Island Conservation, 131 
2016). The identification of factors that promote or negatively impact the genetic 132 
diversity of a species and the assessment of its population structure can help establish 133 
conservation areas, prioritize populations for conservation actions, and evaluate such 134 
strategies adequately (Bensted-Smith, 2002; Wallis and Trewick, 2009; Moritz, 2002; 135 
Gitzendanner et al., 2012). 136 

 137 

Jo
urn

al 
Pre-

pro
of



 4

Multiple driving forces have been associated with the evolution and genetic 138 
diversity of endemic species in the Galapagos Islands. For instance, Scalesia affinis 139 
presents a higher genetic diversity in Isabela island compared to Floreana island, 140 
partially explained by the former having a much larger landmass and a broader 141 
altitudinal gradient (Nielsen, 2004). Other factors pertaining to the evolutionary history 142 
of the species, including speciation mechanisms (anagenesis vs. cladogenesis) and other 143 
events such as past hybridization and polyploidization, should also be considered for 144 
interpreting genetic diversity patterns (Soltis and Soltis, 2000; Stuessy et al., 2006; 145 
Stuessy et al., 2014). It has been proposed, for example, that the Galapagos endemic 146 
shrub Galvezia leucantha harbors high levels of genetic diversity in part due to 147 
populations from different islands maintaining some gene flow (Guzmán et al., 2016); 148 
thus, all these populations still conform a single species (as observed in anagenesis; 149 
Stuessy et al., 2014; Takayama et al., 2015). Furthermore, the reproductive biology 150 
(outcrossing vs. selfing vs. clonal reproduction) and dispersal mechanisms of the 151 
species are also relevant factors that explain genetic diversity and structure (Crawford 152 
and Whitney, 2010). Species that inbreed, self-pollinize and/or reproduce clonally tend 153 
to show higher levels of genetic differentiation among populations, especially if they are 154 
weak dispersers (Ellstrand and Elam, 1993; Hamrick and Godt, 1996). For instance, the 155 
low heterozygosity and high between-population differentiation in the Galapagos 156 
endemics Solanum cheesmaniae and Solanum galapagense were partially attributed to 157 
their highly autogamous nature (Rick, 1983; Pailles et al., 2017). On the other hand, it is 158 
thought that gynodioecious dimorphism in Lycium minumum emerged as a mechanism 159 
to promote outcrossing and to maintain genetic diversity; in turn, this dimorphism 160 
would be linked with a tetraploidization event in the evolutionary history of the species 161 
(Sakai et al. 1995; Levin et al., 2015).  162 
 163 

The recent geological history of the Galapagos Islands themselves must be 164 
considered when interpreting and understanding the genetic diversity and structure of an 165 
endemic plant species. Every island of the archipelago emerged progressively due to the 166 
eastward movement of the Nazca Plate over a mantle hotspot (Villagomez et al., 2007; 167 
Geist et al., 2014); thus, the older islands of the archipelago are located to the southeast, 168 
while the newer ones are located to the northwest (Geist et al., 2014). This movement of 169 
the Nazca Plate, in combination with historical changes in the sea level, lead to oceanic 170 
barriers that separated islands that emerged over the same hotspot and were initially 171 
close together (Christie et al., 1992; Geist et al., 2014). In consequence, populations 172 
from different islands are kept separated from each other by considerable stretches of 173 
ocean extending for several kilometers. Moreover, these isolated populations may be 174 
exposed to different environmental conditions and to different demographic events and 175 
genetic processes (e.g. population size changes, selection, genetic drift, mutations, etc.) 176 
(Lombaert et al., 2011; Shirk et al., 2014), establishing distinct patterns of genetic 177 
structure within a species and even triggering speciation (Rumeu et al., 2016; Pailles et 178 
al., 2017). This phenomenon has been observed in Galapagos endemic plants such as S. 179 
cheesmaniae and L. minimum, where a notorious genetic divergence arose between 180 
populations of the older eastern islands and the western younger islands (Levin et al., 181 
2015; Pailles et al., 2017).  182 

 183 
 Guayabillo (Psidium galapageium; Myrtaceae) is one of the 241 endemic plant 184 
species in the Galapagos Islands (Jaramillo et al., 2014). Catalogued as Near threatened 185 
in the Red Book of endemic plants of Ecuador (Kawasaki et al., 2017), it is one of the 186 
few endemic tree-like plants in the archipelago, and hence a significant landscape 187 
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component of the transition zones and Scalesia forests of several islands (San Cristobal, 188 
Santa Cruz, Santiago, southern Isabela, Fernandina, Pinta and Floreana); its distribution 189 
also includes drier lowland and humid highland sites (Porter, 1968; McMullen, 1999). 190 
Guayabillo serves as an anchoring substrate for nutrient-fixing lichen (Dal Forno et al., 191 
2017), and chemical compounds produced by its leaves have been used as a natural 192 
repellent for parasitic and hematophagous insects by birds, including several species of 193 
endemic finches (Cimadom et al., 2016). Its hard and resistant wood is also used by the 194 
islanders for house and boat construction (Wiggins et al., 1971). Nevertheless, as many 195 
of the endemic plants of the Galapagos, guayabillo is threatened by human-induced 196 
disturbances including overexploitation of its wood, habitat loss, and the presence of 197 
invasive species (Wiggins et al., 1971; Adsersen et al., 1988; Frankham, 1995; Tye et 198 
al., 2007; Dal Forno et al., 2017). The direct competition between endemic and invasive 199 
species can cause a reduction and fragmentation in the populations of the former, as 200 
well as a loss of its genetic diversity (Nielsen, 2004; Jaramillo et al., 2011; Stuessy et 201 
al., 2014). For this reason, the introduction of exotic species is of great concern in 202 
insular ecosystems like the Galapagos (Whittaker, 1998; Tye et al., 2007). The common 203 
guava (Psidium guajava), for example, is an invasive species that shares some of the 204 
same ecosystems with guayabillo, raising the potential risk of guava populations 205 
outcompeting or forming interspecific hybrids with its endemic relative (which could 206 
cause genetic erosion) (Torres and Gutiérrez, 2018). Similarly, the Galapagos flora in 207 
general is threatened by destructive introduced grazers such as goats and feral livestock; 208 
these animals have already caused an impact for several endemic species in the islands 209 
such as Calandrina galapagosa, S. affinis and G. leucantha (Nielsen, 2004; Jaramillo et 210 
al., 2011; Guzmán et al., 2016).  211 
 212 

Despite its economic and ecological importance and potential vulnerability as an 213 
island endemic, little is known about guayabillo’s natural history and its population 214 
genetics. In fact, the evolutionary history of this endemic species can serve as an 215 
important case study regarding the genetic diversity of endemic insular species. Until 216 
recently, the idea that island plant species were expected to present depauperated levels 217 
of genetic diversity was widely accepted, (DeJoode and Wendel, 1992; Barrett, 1996; 218 
Frankham, 1997). Although these patterns might still appear in species with narrow 219 
distributions as a consequence of bottlenecks and founder effects (Frankham, 1997; 220 
Garcia-Verdugo et al., 2015), this notion has been recurrently challenged for insular 221 
endemics with broader distributions and non-endemics. Increasingly cumulative 222 
evidence supports the idea that insular species or populations can show equivalent or 223 
even higher genetic diversity levels than their mainland relatives (e.g. Su et al., 2010; 224 
Rosas-Escobar et al. 2011; Desamore et al. 2012; Garcia-Verdugo et al. 2013; Garcia-225 
Verdugo et al., 2015). Thus, considering the fairly broad distribution of guayabillo in 226 
the Galapagos archipelago (McMullen, 1999), a relatively high genetic diversity could 227 
be expected. A reduction of genetic diversity could be attributed to human disturbance 228 
(including invasive species) or abrupt natural events rather than the progressive 229 
evolution of the species (Whittaker, 1998; Geist et al., 2014; Garcia-Verdugo et al., 230 
2015). 231 

 232 
 We present the design and evaluation of homologous SSR primers for P. 233 
galapageium in order to assess the genetic diversity, structure and connectivity of three 234 
populations of this species, in San Cristobal, Isabela and Santa Cruz Islands. The 235 
parameters inferred from the genetic data were used to describe the natural history of 236 
the species in the archipelago. Moreover, our results allowed us to discuss the effects of 237 
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 6

geographical distribution and human action on the expected genetic diversity of the 238 
species, further developing our understanding of the population structure patterns of 239 
endemic insular plants. This enhanced overview of guayabillo’s evolutionary history 240 
and the factors driving it can be used to assess the current status of the guayabillo 241 
populations and to identify potential risks for the species, both relevant steps for the 242 
establishment and evaluation of conservation strategies.  243 
 244 
 245 
2. Material and methods 246 
 247 
2.1. Study sites and sample collection 248 

In order to identify P. galapageium individuals, the morphological description by Porter 249 
(1968) was used. Guayabillo is a small tree or shrub of smooth, pinkish gray bark (Fig. 250 
1a). Its branches are divaricate, its branchlets terete and gray. Its leaves are elliptic to 251 
ovate, equilateral and 1.8-5.5 cm long and 0.9-2.6 cm wide. Flowers are 1-1.5 cm in 252 
diameter, of a whitish color (Fig. 1b). Berries have a 2 cm diameter, they are globose to 253 
subglobose, glabrous, and of a pale yellow to yellow color (Fig. 1c). 254 
 255 
Samples from P. galapageium individuals were collected from three islands: San 256 
Cristobal (seven sampling locations), Santa Cruz (six sampling locations) and Isabela 257 
(six sampling locations; Fig. 1d). For the selection of these sampling locations, sites 258 
were chosen based on previous reports of guayabillo populations, either documented in 259 
the literature or through personal communications with local inhabitants. From this pre-260 
selection we chose sites close to roads or inhabited areas, since more remote locations in 261 
the Galapagos Islands are inaccessible for sampling. 262 
 263 
 264 

 265 
 266 
Fig. 1. a) A guayabillo tree, b) Details of the leaves and flowers of guayabillo. c)  Details of the 267 
leaves and fruits of guayabillo. (Photos: Bryan Reatini, UNC-CH). d) Galapagos Islands map 268 
indicating the sampling sites of this study in Isabela, Santa Cruz and San Cristobal Islands. The 269 
islands where guayabillo is distributed are highlighted in red; note that although guayabillo is 270 
not officially reported as present in Floreana Island (orange label), it is actually distributed over 271 
there as well (Bryan Reatini, pers. comm.) 272 
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 273 

Two to five fresh leaves were taken from each sampled tree and stored in plastic bags, 274 
which were transported to the Galapagos Science Center (San Cristobal Island) for 275 
storage at -20ºC. A total of 208 individuals were sampled, ranging between 4 and 34 276 
samples per location (Table A1). We collected the greatest possible number of 277 
individuals separated by a minimum distance of 100m to minimize the possibility of 278 
sampling genetically identical individuals. 279 
 280 
2.2. Molecular Methods 281 

2.2.1. Primer Design 282 

Guayabillo specific primers for microsatellite regions were developed from a single 283 
genomic DNA extraction using the Galaxy-based bioinformatics pipeline reported by 284 
Griffiths et al. (2016). Sequencing was performed on an Illumina MiSeq platform at the 285 
University of Manchester genomics facility using shotgun 2x250 paired-end sequencing 286 
methodology (Nextera DNA Preparation Kit, Illumina, USA). The sample used 0.33 of 287 
a flow cell and primer design was optimized for use with Platinum Taq DNA 288 
polymerase (Invitrogen, USA) with an optimal Tm of 62ºC (Min 59ºC, Max 62ºC) and a 289 
maximum difference among primer pairs of 3ºC.  290 
 291 
A total of 2 x 1,783,686 raw sequence reads were produced, with none flagged as poor 292 
quality. Sequence length ranged from 50 to 300 bp with a reported GC content of 40%. 293 
After screening, a total of 211 primer pairs were designed to amplify SSR regions with 294 
simple motifs of 2, 3, 4 and 6 base pairs. From this list, a total of 30 loci were selected 295 
as candidates and their respective primers were synthesized; all of them target SSR loci 296 
with trinucleotide, tetranucleotide and hexanucleotide motifs (Table 1). The Tail A 297 
sequence designed and reported by Blacket et al. (2012) was added to all forward 298 
primer sequences. 299 
 300 
2.2.2. DNA Extraction, Amplification and Genotyping 301 
 302 
DNA was extracted from 25mg of leaf tissue using the CTAB method described by 303 
Saghai-Maroof et al. (1984). Isolated DNA purity and concentration were measured 304 
using a Nanodrop 1000 Spectrophotometer (Thermo Scientific, USA) and stored in TE 305 
buffer at -20ºC. 306 
 307 
After testing the 30 candidate primer sets, we selected 15 markers that amplified 308 
successfully and were polymorphic (Table 1). Amplification conditions were 309 
standardized for these 15 SSR primer sets and all samples were amplified under the 310 
following cycling conditions: 15 min at 95°C; 35 cycles of 30 sec at 94°C, 90 sec at the 311 
standardized annealing temperature, 60 sec at 72°C; 5 min at 72°C. PCR products were 312 
labeled with a fluorescent dye incorporated in the universal Tail A primer using a three-313 
primer system (Blacket et al., 2012). Amplification products were genotyped in an ABI 314 
313 Genetic Analyzer (Applied Biosystems) by Macrogen (Seoul, South Korea). The 315 
resulting electropherograms were analyzed using GeneMarker v. 2.4.0 (SoftGenetics 316 
LLC). 317 
 318 

Table 1. 30 microsatellite loci with forward and reverse primer sequences designed for P. galapageium. 319 

Primers Forward Primer 
F Primer 
Position  Reverse Primer 

R Primer 
Position  Motifs(bases) 
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GYB1 GTTAGGGTCGAAACAGTCCTAAACC 101 GTGATGGTCAACAGAGGGAAATAGG 333 AAAAAT(60)  

GYB2 TTTGTCACCCTACATAATTCTTCCC 58 GGAGAGAGCGAGACAAGCATAGG 301 AAAGAG(54) 

GYB3* AAAAGTCAAATAAAGCCGCCTACG 28 AGGTTACTCTAATGCCCTTTCGG 460 AAAT(32) 

GYB4* GTAGGCTTTGAAAATTCTCATCCG 38 CTTATGGAGGCAAATTCGATCAGG 354 TTC(27) 

GYB5* CACAAGTATCGTGCTACCAAATCG 80 GGCGGATATGCAAATATATGATCG 370 TTC(27) 

GYB6* GCTACCTAAGTGTGGAAAGAGAACG 77 GGAAACCACTCGTGAGTATTACAGC 410 ATT(30) 

GYB7* GCAGGCAAGAACAGATAGAGATCG 60 TCTTCTCAACAACCAGATTCTCACC 322 TCC(33) 

GYB8* ATGGCCGGAAGAATCAAATCC 66 CATCTCTCATCTTGTTCCACATCC 347 ATT(39) 

GYB9* GCTCTGTTAATCTGGGCTTTGC 198 CTCCTTCACAAAATTCACACTGACC 442 TTC(30) 

GYB10 ATGAGAGAAGTCAAAGCAAGGAACG 48 ATTCGCTCCCAAACTAATACACACG 311 ATT(39) 

GYB11 AGTGAGAGTGGGTAAAAGTCAGTGC 29 GTGAGAAATTGGGGACTATATGGG 321 TTC(36) 

GYB12 ACTATTGCTGCGACGTTCTTCC 29 ATGTATGCACCCTCTTGTTTTAACG 279 TTC(42) 

GYB13 GATCAACCTGATCCTTGAAGTGG 81 TTATCGGTTAGTGCGTCTGAAAACC 272 ATT(27) 

GYB14* ATCCACTTTCATATCATGCAAGACC 37 TGCACAAATGTATCCTCTTAACTGC 280 ATT(36) 

GYB15 TAAGCCTGGCCTTACTAAAATCACC 76 TATGACTTCGGAGGGACTGTGC 352 AAC(27) 

GYB16 CCTGGTGCAGTACTTTCATTTATAAGC 52 CAATCATCAATTTTCGCTCTTACCC 452 TTC(33) 

GYB17 AGTGAGTTCGTCAAGGCAAGG 74 GAAATTATTGACATGGACCTAACCG 329 ATT(36) 

GYB18* ACTGAGTTTCGATCGAGTCTATGGG 37 AGAGCCCTAAGGACTTAGAGAATGC 341 ATT(30) 

GYB19 ACTGCTCAGCTCGTCTTCACC 24 TTAACAGAGGAGTTGAAGGCAAAGG 259 TGC(27) 

GYB20 GAGGAAGCGATAGTGTATGTTGAGC 61 CACAAAGTCCCTTTGCTTTTGC 383 ATC(33) 

GYB21* CCGATTTCTGGTAAGGAGAGAGG 73 TGTTGTAGTTTGTAGGTCCATGTCG 286 TTC(33) 

GYB22* ATGAAGATCAACCTCTTCCATTGC 150 AGTAATGACTCCGGTCAGTCTTCC 388 TTC(27) 

GYB23* CTTAAATTTTCCGTCTCTCTCTTCG 102 ACAAATCCACGGTAATTGTATGAGC 381 ATT(30) 

GYB24 GTGTTCAGAGACATTCTATCGTTGC 143 ATTCTAGAGCCGTGACTTGTTCTCG 370 TGC(30) 

GYB25* GCCAGCAAATCAAAATTATCCC 103 GGACCGATCAAATCTTCTAAACC 379 ATC(27) 

GYB26 GGGGAATGAGCAAGAGAAAAGG 65 GTCATTCGTGGTAGAAGTTATTCGG 389 TTC(27) 

GYB27* TCTTGATGAACCAAGACCTACTGC 69 CCAAACACAAGATAACGAACTTTCC 330 ATT(36) 

GYB28 GACCAGTGAATAAAAGAGTTTGTGC 50 TTGTTGAAGTGGAAAGAGAGAAACG 313 ATC(36) 

GYB29* TTTGTCGGGACTCTCTAATGGC 103 GAGGTTACGTAGAATTCTTGATGTGC 356 TTC(27) 

GYB30 GGTCAAGCAAAAGAGAGAAATGC 30 TTTCTTGTCTTTCGTGATTCCG 197 TGC(27) 
 *Selected loci for present study 

 
    

 320 

2.3. Statistical analyses 321 

There is limited information regarding the ploidy of P. galapageium. Our observations 322 
from allele scoring suggests that up to four alleles can be found for any given locus in a 323 
single individual (Fig. A1). However, 3 out of the 15 loci analyzed presented two 324 
alleles, this leads us to assume an unbalanced polyploidy which can be an indicator of 325 
allopolyploidy (Singhal et al., 1985). Furthermore, hybridization has often been 326 
observed in the Psidium genus (Landrum, 2017). Given these observations and the 327 
reported polyploidies in several members of the Psidium genus (Tuler et al., 2019), we 328 
treated P. galapageium as an allotetraploid and used the polysat package (Clark and 329 
Jasieniuk, 2011) for R (R Core Development Team, 2015) to assign alleles to different 330 
isoloci (2 isoloci per locus), thereby allowing us to process the data as diploid (Clark 331 
and Schreier, 2017). Isoloci assignment in polysat was performed considering all the 15 332 
amplified SSR loci, leading to a total of 30 potential isoloci.  333 
 334 
Null allele frequencies for each isolocus were calculated through the De Silva method 335 
(De Silva et al., 2005) implemented in polysat. This method requires an estimated 336 
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selfing rate which is unknown in guayabillo (although the frequent occurrence of perfect 337 
flowers in this species suggests its possibility; Porter, 1968). Therefore, we used two 338 
reported selfing rates (0.5 and 0.65) from the closely related P. guajava (Sitther et al., 339 
2014). Monomorphic isoloci (isolocus GYB5_2), isoloci with null allele frequencies 340 
>>0.3 given both selfing rates employed (GYB14_1, GYB14_2, GYB18_1, GYB18_2, 341 
GYB27_2), and loci that were not assigned to isoloci with an acceptable clustering 342 
quality (GYB6, GYB25) were excluded for allele frequency calculations and 343 
downstream analyses that depend on allele frequencies. Thus, from the 15 SSR loci 344 
originally amplified, we used 13 loci (from which we derived 20 informative isoloci) to 345 
describe the population genetics of our data set. 346 
 347 
GenoDive (Meirmans and Van Tienderen, 2004) was used to determine if the analyzed 348 
guayabillo populations deviated from Hardy-Weinberg Equilibrium (HWE). The p-349 
values obtained from the HWE test were corrected using the B-Y correction. 350 
 351 
We used the adegenet package in R (Jombart and Ahmed, 2011) to determine the total 352 
number of alleles for each isoloci.  Private alleles were calculated with the poppr 353 
package (Kamvar et al., 2014), and allelic frequencies were obtained with polysat using 354 
the “simpleFreq” function. Allelic richness corrected through rarefaction for different 355 
sample sizes was performed with the basicStats function from the diveRsity package, 356 
assuming 35 individuals sampled for all populations (Keenan et al., 2013). Significant 357 
differences among the allelic richness of different island populations were assessed with 358 
Kruskal-Wallis and Pairwise Wilcoxon tests. The same polysat package was used to 359 
calculate the observed and expected heterozygosity, PIC, Lynch distances and pairwise 360 
FST between islands and between sampling locations on each island, from matrixes 361 
created after isoloci reassignments. For assessing inbreeding in guayabillo, we 362 
calculated FIS for each population using the calculated Ho and He values. Pairwise FST 363 
between clusters found when we conducted PCoA and STRUCTURE analyses (below) 364 
were also estimated. 365 
 366 
We also performed an analysis of molecular variance (AMOVA) to evaluate the 367 
population differentiation between island populations in GenAlEx (Peakall and Smouse, 368 
2012), encoding all 15 SSR markers as binary data. A Principal Coordinates Analysis 369 
(PCoA) based on Lynch distances was also plotted using ggplot2 (Wickham, 2009).  370 
 371 
We performed an analysis of population structure using the STRUCTURE software 372 
(Pritchard et al., 2000) following the parameters described in Meirmans et al. (2018) for 373 
dealing with polyploid data. We estimated the population structure for both the 374 
complete data set and for each island individually, using the same parameters. We 375 
evaluated between 1 and 10 potential genetic clusters (K) and performed 10 independent 376 
replicates for each K value, consisting of 1x106 MCMC steps with a 1x105-step burn-in 377 
period. The STRUCTURE Harvester software (Earl and von Holdt, 2012) was 378 
employed to evaluate the optimum value of K using the Evanno method (Evanno et al., 379 
2005). We used CLUMPP to estimate individual membership coefficients (Jakobsson 380 
and Rosenberg, 2007), and plotted them using the DISTRUCT software (Rosenberg, 381 
2004). A plot of the relative migration levels between the three island populations was 382 
obtained by applying the Sundqvist et al. (2016) method implemented in the divMigrate 383 
function from the diveRsity package (Keenan et al., 2013). 384 
 385 
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Due to differences in the number of samples obtained from each island, we created 386 
subsamples for Isabela and Santa Cruz to match the San Cristobal sample size. To do 387 
so, we selected 35 individuals from Isabela and 35 from Santa Cruz (we included one 388 
random sample from each location) After this systematic downsampling, we repeated all 389 
the previously described analyses. 390 
 391 
We used the following method in order to assigning and detecting clones: we calculated 392 
genetic distances assuming asexual reproduction under the SMM, as implemented in the 393 
GenoDive software. Missing data and unknown allele dosage were ignored. The genetic 394 
distance threshold used to classify individuals as clones (a distance of 7.0) was 395 
determined using the method suggested by Rogstad et al. (2002); note this threshold 396 
should not be equal to 0 due to the fact that mutations and genotyping errors may make 397 
identical individuals have slightly different genotypes (Meirmans and Van Tienderen, 398 
2004). Specific clones per island were obtained. A test of clonal diversity was 399 
performed using Nei’s corrected genetic distance as summary statistic, using 999 400 
permutations and sorting alleles over individuals within populations. Finally, clonal 401 
diversity statistics were calculated in GenoDive and bootstrap tests were performed to 402 
detect significant differences among shc (sample size-corrected Shannon index values) 403 
in different islands (999 permutations); p-values were corrected using the B-Y method. 404 
Clonal richness (R) was also calculated for each island and overall, as R = (G−1)/(N−1) 405 
where G is the number of genotypes detected under the established genetic distance 406 
threshold, and N is the total number of samples. 407 
 408 
 409 
3. Results 410 
 411 
3.1. Marker information and genetic diversity 412 
 413 

All 208 individuals in our sample set were genotyped and included in our analyses. 414 
All of the original 15 markers amplified deviated from HWE after B-Y correction, 415 
except for locus GYB25 in the Isabela population, and GYB04 in the Santa Cruz 416 
population. The information content for the 13 markers used for data analysis (parsed as 417 
20 isoloci) was measured through their Polymorphic Information Content indices (PIC) 418 
and ranged between 0.006 and 0.808 (only two markers showed PIC values under 0.3), 419 
with low inferred null allele frequencies (with the exception of the excluded isoloci 420 
described in Materials and Methods; Table A2). Various descriptors of genetic diversity 421 
were estimated for the populations of each of the three sampled islands (Table 2), 422 
showing similar patterns between the populations of Isabela and Santa Cruz. Compared 423 
to the Isabela and Santa Cruz populations, the San Cristobal population shows a smaller 424 
number of alleles, of private alleles and both, lower observed and expected 425 
heterozygosities (HO and HE respectively), with a higher FST fixation index. While a 426 
smaller sample size for San Cristobal (N=35, compared to N=86 in Isabela and N=87 in 427 
Santa Cruz) may account for some of these lower observed values, our downsampled 428 
analyses (i.e. reducing the samples from Isabela and Santa Cruz to maintain a constant 429 
sample size for all three; see Materials and Methods and Table A3) show a consistent 430 
reduction in the numbers of alleles (A) and private alleles (PA) for the Santa Cruz and 431 
Isabela populations, and a reduction in the observed heterozygosity for the Isabela 432 
population, but not sufficient to match the San Cristobal population HE estimates; this 433 
supports our finding of a lower genetic diversity on this island. The same trend is 434 
maintained when assessing allelic richness (AR) corrected thought rarefaction among 435 
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the three island populations, with a higher richness in Isabela, followed by Santa Cruz 436 
and finally San Cristobal. The difference in AR was significant between Isabela and the 437 
other two islands, both Santa Cruz (B-Y corrected Pairwise Wilcoxon test, p=0.045) and 438 
San Cristobal (p=0.026); nevertheless, rarefaction-corrected AR did not show 439 
significant differences among Santa Cruz and San Cristobal. Inbreeding coefficients 440 
(FIS) were high for the three island populations (especially Isabela and Santa Cruz) and 441 
overall for the whole dataset. 442 

 443 
 444 

Table 2. Genetic diversity information of the analyzed Psidium galapageium populations from 445 
Isabela, Santa Cruz and San Cristobal islands: Number of individuals genotyped from each 446 
island (N), number of alleles found (A), number of private alleles (PA), rarefaction-corrected 447 
allelic richness (AR), observed heterozygosity (HO), expected heterozygosity/gene diversity 448 
(HE), FST global value for each island population, and inbreeding coefficient (FIS). Overall 449 
results along the three islands are also shown. 450 
 451 

Island N A* PA* ARs HO
 a HE 

a FST FIS 
Isabela 86 142 (89) 77 (35) 12.29 0.147 0.570 -0.173 0.742 
Santa Cruz 87 105 (67) 26 (8) 9.97 0.157 0.426 0.085 0.631 

San Cristobal 35 70 (60) 5 (1) 8.20 0.119 0.275 0.286 0.567 

Overall 208 174 - 10.15 0.141 0.482 0.230 0.708 
* Values between brackets are the number of alleles or private alleles with a frequency >0.05 within the 
corresponding island population. 
aIndicates average across all the SSR loci analyzed. 
sStandardized through rarefation for N=35 

 452 
3.2. Genetic differentiation of guayabillo populations 453 
 454 

The genetic differentiation between islands, evaluated through pairwise FST genetic 455 
distances, shows a greater divergence between the San Cristobal and Santa Cruz 456 
populations, while Isabela remains equally divergent from both (Table 3). This pattern 457 
is observed with both the full and reduced data with normalized sample sizes (Table 458 
A4). Furthermore, the clustering of individuals based on Lynch genetic distances shows 459 
that the individuals from Santa Cruz are represented by two groups: a first group clearly 460 
separated from all the rest of individuals (henceforth referred to as Santa Cruz 1; Fig. 2, 461 
Fig. A2), and a second group clustering closely with individuals from Isabela and San 462 
Cristobal (henceforth referred to as Santa Cruz 2; Fig. 2, Fig. A2). This second group 463 
includes individuals from three different locations on Santa Cruz: Granillo Rojo, 464 
Garrapatero and Bellavista (Fig. A3). It should be noted, however, that the degree of 465 
population differentiation between islands appears to be limited: an AMOVA reveals 466 
that the majority of the genetic variation (72%) occurs within populations, and 28% of 467 
the variation occurs between Isabela, San Cristobal and Santa Cruz (Table 4). 468 

 469 
 470 

Table 3. Pairwise and global FST values between the Psidium galapageium populations from the 471 
three islands. 472 
 473 

 Isabela Santa Cruz 
Santa Cruz 0.164 - 
San Cristobal 0.178 0.218 
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Global 0.230 
 474 
 475 

Table 4. Analysis of molecular variance (AMOVA) between the three island populations of 476 
Psidium galapageium. 477 
 478 

Source DF SS MS Est. Var. % 
Among Pops 2 691.79 345.90 5.12 28% 
Within Pops 205 2653.82 12.945 12.95 72% 

Total 207 3345.62 - 18.06 100% 
 479 
 480 

 481 
Fig. 2. PCoA based on the Lynch distances found between the Psidium galapageium individuals 482 
sampled in the three islands: Isabela, San Cristobal and Santa Cruz. For Santa Cruz, both 483 
genetic clusters are indicated (Santa Cruz 1 and Santa Cruz 2). 484 

 485 
 486 
3.3. Population structure 487 
 488 

To explore the population structure under an admixture model, the assignment 489 
coefficients for all individuals were estimated for different numbers of putative lineages, 490 
revealing higher similarities between individuals from Isabela and San Cristobal, in 491 
concordance with the clustering by genetic distances. The individuals from Santa Cruz 492 
display a greater contribution from a separate genetic stock, with some individuals 493 
showing similarities to the Isabela and San Cristobal populations (Fig. 3a). An 494 
evaluation of the optimum number of clusters that fit the data suggests that three 495 
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putative lineages are observable in our data (K=3; ΔK=289.55), which highlight a closer 496 
resemblance between the genetic composition of the Santa Cruz outliers and the San 497 
Cristobal population (Fig. 3b). Overall, the three genetic lineages are determined by 498 
island, as would be expected given the physical separation and isolation between these 499 
populations. A similar analysis with the downsampled data (Fig. A4) reveals no 500 
observable differences when compared to the full data set. 501 

 502 

 503 
Fig. 3. Results of the Bayesian analysis of population structure (Software STRUCTURE) under the 504 
Admixture model. The results are indicated for a) K=2 (ΔK=134.51), and b) K=3 which is the 505 
optimum K value (ΔK=289.55). These values of K correspond to the clusters or lineages 506 
(represented by different colors) in which are grouped the Psidium galapageium individuals sampled 507 
in Isabela, Santa Cruz and San Cristobal islands. The Santa Cruz sampling sites of Granillo Rojo, 508 
Garrapatero and Bellavista (which mostly harbor individuals from the Santa Cruz 2 cluster) are 509 
marked as well. 510 

 511 
We noted that the groupings observed through Bayesian inference in STRUCUTRE 512 

and the clusters observed in the PCoA were equivalent, reliably defining the main 513 
genetic groups in the guayabillo populations of the three islands. Pairwise FST values 514 
were calculated among these genetic groups, considering each island population 515 
individually, and including the Santa Cruz 1 and Santa Cruz 2 groups as separated 516 
entities as well. Here, the highest genetic differentiation was detected among the Santa 517 
Cruz 1 population and the populations of the other two islands: Isabela and San 518 
Cristobal. Furthermore, an important genetic differentiation was observed between the 519 
two Santa Cruz groups, comparable even to the values found among populations from 520 
different islands (Table A5). 521 

 522 
Bayesian population structure analyses were conducted for each island. When 523 

analyzing the Isabela and Santa Cruz populations, no distinguishable population 524 
structure within each island was observed, suggesting widespread gene flow and an 525 
ancient shared history within each island (Figs. A5 and A6, respectively). The optimum 526 
K value (K=2; Fig. A6a) shows two lineages in Santa Cruz island, matching the Santa 527 
Cruz 1 and Santa Cruz 2 groups found in the PCoA (Fig. 2); however, this pattern is less 528 
clear at higher K values (Fig A6 b-d). Finally, a more distinguishable structure is 529 
observed in San Cristobal at K=2 and above, with individuals from any given sampling 530 
location tending to share their genetic background (Fig. A7). 531 
 532 

Although limited, some migration could exist between the guayabillo populations 533 
from different islands. The relative migration analysis showed that most of the gene 534 
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flow is directed towards Santa Cruz from both Isabela and San Cristobal. Outgoing 535 
migration from Santa Cruz and among Isabela and San Cristobal appears less prevalent, 536 
representing approximately half or less of that observed towards Santa Cruz (Fig. 4). 537 
 538 

 539 
 540 
Fig. 4. Relative migration among the guayabillo populations from Isabela (ISA), Santa Cruz 541 
(SCZ) and San Cristobal (SCY) islands.   542 
 543 
3.4. Clonal assignments and clonal diversity in guayabillo 544 

 545 
A total of 201 different unique multilocus genotypes were identified in our 546 

dataset, and 11 of the 208 analyzed guayabillo individuals (5.28%) were identified as 547 
clones of another individual; a lower number of unique genotypes was obtained when 548 
considering the effective number of genotypes, nonetheless they are still considerable 549 
when taking into account the total number of individuals analyzed. Clonal richness and 550 
sch values over the three populations were relatively high in general terms. 551 
Nevertheless, the San Cristobal population had the highest number of individuals 552 
sharing the same multilocus genotype (with up to five individuals having the same 553 
genotype in one case); individuals assigned to the same clone in San Cristobal belonged 554 
to different sampling locations. On the other hand, only two individuals with the same 555 
genotype were found in Isabela, as well as in Santa Cruz (coexisting in the same 556 
sampling location in both cases). Similarly, the Isabela and Santa Cruz populations 557 
showed higher clonal richness and shc values than San Cristobal (Table 5); these 558 
differences in shc were significant (Isabela vs. San Cristobal: p=0.003; Santa Cruz vs. 559 
San Cristobal: p=0.003). 560 
 561 

Table 5. Clonal diversity statistics for the three studied island populations, and overall values: 562 
Number of individuals genotyped (N), number of clones or unique genotypes detected under the 563 
established genetic distance threshold (G), clonal richness (R) and Shannon diversity index for 564 
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genotypes, corrected for sample size (shc). Calculations were performed twice: using the SSR 565 
genotyping directly without allele dosage correction for polyploids, and then using the genotypes 566 
corrected for allele dosage in polyploids. 567 

 568 
 569 

 570 
Finally, we found low statistical support for the hypothesis that the observed 571 

clonal diversity is explained by random mating in the three populations (Isabela: 572 
p=0.007; Santa Cruz: p=0.001; San Cristobal: p=0.001). This suggests that the observed 573 
clonal diversity patterns are not due to sexual reproduction; therefore, the occurrence of 574 
the same multilocus genotype in more than one individual is explained more likely by 575 
clonal or asexual reproduction rather than by sexual reproduction among related 576 
individuals. 577 
 578 
 579 
4. Discussion 580 
 581 
4.1. Genetic diversity in guayabillo and its contributing factors 582 
 583 
With an overall HE of 0.482, guayabillo showed a relatively high genetic diversity for a 584 
species endemic to an insular ecosystem (Table 2), as seen in other widespread insular 585 
plant species, such as the Galapagos endemic Gossypium darwinii (Wendel and Percy, 586 
1990), the Hawaiian endemic Metrosideros polymorpha (Crawford et al., 2008), and 587 
Periploca laevigata from the Canary and some Mediterranean Islands (García-Verdugo 588 
et al., 2015). Care should be taken when comparing diversity levels among different 589 
species due to the numerous factors influencing them and the distinct molecular 590 
techniques used for analysis (Fernandez‐Mazuecos et al., 2014; García-Verdugo et al., 591 
2015; Guzmán et al., 2016). Even so, all the previously mentioned studies, along with 592 
many others (see García-Verdugo et al., 2015), set a trend in which insular plant 593 
species, including several endemics, show a relatively high genetic diversity, contrary to 594 
what is expected considering founder effects and genetic drift over small founding 595 
populations (Frankham, 1997; Whittaker and Fernández-Palacios, 2007). A widespread 596 
distribution, such as guayabillo’s (occupying different islands and different vegetation 597 
zones within the Galapagos archipelago; McMullen, 1999; Valdebenito, 2018), could be 598 
a very important factor that contributes to this relatively high diversity level. A 599 
widespread distribution usually leads to populations with bigger effective sizes, which 600 
in turn tend to harbor more genetic variability while being more resilient to genetic drift 601 
(MacArthur and Wilson, 1967; Frankham, 1996; García-Verdugo et al., 2015; Costanzi 602 
and Steiffeten, 2019). Nevertheless, in the Galapagos there are endangered species with 603 
more restricted distributions such as Galvezia leucantha (Guzmán et al., 2016) and 604 
Calandrina galapagosa (Jaramillo et al., 2011), that still possess a relatively high 605 
genetic diversity. Then, other factors such as the relative absence of herbivores and 606 
competitors (Stuessy et al., 2014; García-Verdugo et al., 2015; but see Whittaker, 1998 607 
and Nielsen, 2004 concerning introduced species), along with the tropical location and 608 

Island N G (eff)* R shc 

Isabela 86 85 (84.0) 0.988 3.564 
Santa Cruz 87 86 (85.0) 0.988 3.574 
San Cristobal 35 30 (21.5)   0.853 2.111 
Overall 208 201 (190.5) 0.966 3.083 
*Values between brackets correspond to the effective number of  
genotypes (G). 
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wide variety of climatic patterns and vegetation zones in the Galapagos (Kricher, 2006; 609 
Jaramillo et al., 2011), could also contribute to the maintenance of the genetic diversity 610 
of Galapagos’ endemic plants regardless of their distribution range.  611 
 612 

The physical characteristics of each island where guayabillo is found could be 613 
associated to its relatively high genetic diversity as well (Stuessy et al., 2014). Larger 614 
islands with broader altitudinal ranges host greater habitat heterogeneity (MacArthur 615 
and Wilson, 1967; Buckley, 1985; Geist et al., 2014), which in turn can favor genetic 616 
variability in a wide-distributed species as it adapts to new niches (MacArthur and 617 
Wilson, 1967; Stuessy et al., 2006; Chapman et al., 2013). In fact, morphological 618 
variation among guayabillo populations along the altitudinal gradient where the species 619 
is distributed has been observed (Valdebenito, 2018). Large island surface areas also 620 
translate into a greater capacity to host bigger populations with more genetic diversity 621 
(MacArthur and Wilson, 1967; Frankham, 1997; Costanzi and Steiffeten, 2019). In this 622 
regard, high levels of genetic diversity in the Hawaiian silverswords (Witter and Carr, 623 
1988) and in G. darwinii (Wendel and Percy, 1990) were explained in part by their large 624 
population sizes. A similar scenario might be suggested for guayabillo, since the highest 625 
genetic diversity was found in Isabela island (Table 2; Table A3), which is the largest 626 
and most elevated island in the Galapagos archipelago (even if we only consider the 627 
southern part of the island where guayabillo is found)  (Instituto Geofisico, n/d; Charles 628 
Darwin Foundation, 2012; Geist et al., 2014). Although our sampling covered a narrow 629 
range of the total altitudinal range (109-386 m.a.s.l.), this pattern is still observed. On 630 
the other hand, the San Cristobal population presented the lowest genetic diversity 631 
among our sampling sites (Table 2; Table A3), coinciding with the island’s smaller size 632 
and narrower altitudinal range (Latorre, 1991; Charles Darwin Foundation, 2012); our 633 
guayabillo samples cover approximately half of this range (71-310 m.a.s.l.). Finally, 634 
Santa Cruz, where we obtained an intermediate HE but not a higher AR than San 635 
Cristobal, constitutes an intermediate altitudinal and land mass range between Isabela 636 
and San Cristobal (Grenier, 2007; Charles Darwin Foundation, 2012). These general 637 
trends are not surprising and have also been observed in the Galapagos endemics S. 638 
affinis (Nielsen, 2004) and G. darwinii (Wendel and Percy, 1990), which showed 639 
greater genetic variation in Isabela compared to smaller and lower islands as Santa 640 
Cruz, Floreana (both species) and San Cristobal (G. darwinii only). A greater 641 
abundance and genetic diversity have also been reported for the endemic tomatoes S. 642 
cheesmaniae and S. galapagense in western islands like Isabela, something that was 643 
also tentatively attributed to the unusually high precipitation for this part of the 644 
archipelago (Rick and Fobes, 1975; Pailles et al., 2017). Knowing that plant richness is 645 
positively linked with precipitation in the tropics (Gentry, 1982), this could also explain 646 
the greater diversity observed in the Isabela guayabillo population, as well as in the case 647 
of other endemic plants. Thus, despite being one of the youngest islands in the 648 
Galapagos (Geist et al., 2014), Isabela would present certain conditions that favor 649 
diversity in endemic plant species, though other factors should also be considered when 650 
interpreting these genetic diversity patterns. 651 
 652 
 The limited available evidence suggests a complex evolutionary history for the 653 
guayabillo which may also partially explain the genetic diversity patterns observed in 654 
the species. Firstly, guayabillo could be a polyploid species, as suggested by our 655 
genotyping, where up to four different alleles were observed for several loci (Fig. A1). 656 
Furthermore, morphological studies point to guayabillo being very phenotypically 657 
similar to the hybrids between two mainland close relatives: Psidium oligospermum and 658 
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P. schenckianum (Landrum, 2017); Landrum (2017) also hypothesized that the hybrids 659 
of these two species were able to spread all over tropical America following the 660 
hybridization event, opening the possibility that they may have reached the Galapagos. 661 
With these antecedents, the Galapagos guayabillo could tentatively be an allopolyploid, 662 
with P. oligospermum and P. schenckianum as putative parental species, a hypothesis 663 
that could be confirmed through phylogenetic analyses of the P. oligospermum 664 
complex. In any case, hybridization is quite frequent in the Psidium genus (Machado-665 
Marques et al., 2016; Landrum, 2017), and this potential allopolyploidy in guayabillo 666 
could also be one of the reasons behind its relatively high genetic diversity. 667 
Allopolyploids show a tendency towards higher heterozygosity and genetic variability 668 
levels compared to diploids as they draw from the gene pools of two separate species, 669 
which might be the case if guayabillo is in fact an allopolyploid (Soltis and Soltis, 2000; 670 
Chen and Ni, 2006). Moreover, previous hybridization and allopolyploidy have been 671 
tightly associated with the success of the colonization of oceanic islands by plants 672 
(Barrier et al., 1999; Wendel and Cronn, 2003; Madlung, 2013). These ideas could also 673 
be supported by the high genetic diversity found in the widespread tetraploid G. 674 
darwinii, for example (Wendel and Percy, 1990). However, polyploidy is not a requisite 675 
or a guarantee for high genetic diversity levels. For instance, the Galapagos endemic 676 
Opuntia cacti are hexaploid and still display low genetic diversity levels (Helsen et al., 677 
2009). Likewise, there are diploid insular plant species that show moderate to high 678 
levels of genetic diversity (e.g. Crawford et al., 2008; Takayama et al., 2013; Takayama 679 
et al., 2015). Therefore, polyploidy is not the only aspect of evolutionary history that 680 
should be addressed for interpreting the genetic diversity observed in guayabillo. 681 
 682 

The mechanism of speciation may also be important to explain the genetic 683 
diversity in insular plant populations (Stuessy et al., 2014; Takayama et al., 2015).  684 
Cladogenesis, for instance, generates several daughter species, each one with low levels 685 
of genetic diversity as observed in the endemic Opuntia cacti from different islands in 686 
the Galapagos archipelago (Helsen et al., 2009). On the other hand, guayabillo has not 687 
been reported to split into separate species in different islands (Porter, 1968; McMullen, 688 
1999); this is also supported by our genetic data. Even though we observed a genetic 689 
structure between different islands and a limited inter-island gene flow (Fig. 3), we do 690 
not have evidence to claim the populations from Isabela, Santa Cruz and San Cristobal 691 
are distinct species. Firstly, the pairwise FST values among island populations, though 692 
high, are not high enough to reach that conclusion (Table 3; Table A5). Secondly, we 693 
would have expected a higher percentage of the total diversity explained by diversity 694 
among islands if they were different species (Table 4). Finally, most of the individuals, 695 
including samples from distinct islands, are clustered together in the PCoA (with the 696 
only exception of the Santa Cruz 1 group; Fig. 2). In consequence, the history of 697 
guayabillo aligns with the speciation mechanism of anagenesis, where different 698 
processes such as mutation accumulation, recombination, and local adaptation would 699 
have created more and new genetic diversity which was kept in a single species (Stuessy 700 
et al., 2006; Takayama et al., 2015; Stuessy et al., 2014). Other species in the Galapagos 701 
also continue to be a single species despite having populations separated in different 702 
islands; G. leucantha for example, keeps a moderate-low genetic differentiation even 703 
among islands, leading to a high genetic and morphological diversity within this species 704 
as a whole (Guzmán et al., 2016).  705 
 706 
 The reproductive biology of the species is also important to understand the 707 
genetic diversity patterns (Stuessy et al., 2014), yet it is poorly understood for 708 
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guayabillo (Valdebenito, 2018). Complementary research on outcrossing-selfing rates, 709 
pollinization, seed dispersal and germination rates is required to determinate the effect 710 
of these factors on the genetic diversity of guayabillo. However, our genetic data could 711 
shed some light on these topics. To begin with, we found low HO values compared to 712 
HE, as well as high FIS values in all the three islands (Table 2), which suggests that 713 
inbreeding and/or selfing (guayabillo has bisexual flowers and selfing is concurrent in 714 
the Psidium genus) in all guayabillo populations could be prevalent (Wright, 1951; 715 
Loeschcke et al., 1994; Frankham, 1998; Sitther et al., 2014). Guayabillo is also known 716 
to reproduce through root suckers which may lead to clones (Aldaz, 2008); however, we 717 
made sure to sample physically distant individuals to avoid the collection of this type of 718 
clones. No direct studies have been performed to test other kinds of clonal reproduction 719 
in guayabillo such as apomixis. In any case, our results do show a couple of individuals 720 
from distant locations sharing the same multilocus genotype. These cases appear to be 721 
sporadic, and most of the sampled individuals represent unique genotypes (Table 5). 722 
Similarly, guayabillo presents higher clonal diversity levels than other plants which are 723 
actually known to reproduce clonally such as Ziziphus celata (Gitzendanner et al., 2012) 724 
and Trillium recurvatum (Mandel et al., 2019). Finally, indirect evidence of outcrossing 725 
in guayabillo was obtained through the observation of flowers being visited by the 726 
Galapagos carpenter bee Xylocopa darwinii (Valdebenito, 2018), also an important 727 
pollinator for several other endemic plants of the Galapagos (see Jaramillo et al., 2014; 728 
Guzmán et al., 2016). Likewise, the higher within-island diversity compared to the 729 
between-island diversity (Table 4) aligns with what would be expected for a cross-730 
pollinating plant species, despite the non-negligible 28% of among-island diversity. 731 
Thus, in light of previous descriptions of the ecology of the species (Aldaz, 2008; 732 
Valdebenito, 2018), our genetic data suggests that guayabillo might combine different 733 
reproductive mechanisms including selfing, outcrossing, and clonal reproduction in a 734 
lower extent; the common guava, a close relative of the guayabillo, shows similar 735 
reproductive mechanisms (Urquía et al., 2019). This combination could also explain the 736 
relatively high genetic diversity we found in guayabillo, as well as its success in 737 
colonizing the Galapagos archipelago. Clonal reproduction and selfing would have 738 
aided in the fast spread of the species over the islands during the first stages of the 739 
colonization, while the increasing population sizes solidified the endurance of high-740 
fitness genotypes (Pluess and Stöcklin, 2004; Silvertown, 2008). In fact, self-741 
compatibility would be the general rule for insular plants as it is essential for the 742 
establishment in new islands (Baker, 1955; Chamorro et al. 2012). However, this kind 743 
of reproduction is known to reduce genetic diversity and drive inbreeding depression 744 
(and its associated consequences such as disease susceptibility and low mate 745 
availability; Kwak and Bekker, 2006, Honnay and Jacquemyn, 2008), as seen in the 746 
highly autogamous endemic tomatoes S. cheesmaniae and S. galapagense (Rick, 1983; 747 
Pailles et al., 2017). Hence, thanks to its potential capacity for combining asexual 748 
reproduction and outcrossing, guayabillo would have also been able to maintain its 749 
genetic diversity and a wide variety of clones and genotypes, retaining the species’ 750 
adaptive potential while keeping the advantages of clonal spread (Ward et al., 2008). 751 
This hybrid system would be beneficial in fluctuating and unpredictable environments, 752 
characteristics that recall the nature of the Galapagos Islands (Bengtsson, 2000; 753 
Silvertown, 2008; Capotondi et al., 2015). Thus, it is not surprising that other plants in 754 
the Galapagos such as C. galapagosa also hold considerable levels of genetic diversity, 755 
perhaps through outcrossing (Jaramillo et al., 2011), while Lycium minumum developed 756 
sexual dimorphism to equilibrate self-compatibility and outcrossing (Levin et al., 2015). 757 
 758 
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 A case could also be made regarding the effects of human disturbance in the 759 
genetic diversity of the species, particularly for the San Cristobal population. The three 760 
studied islands host permanent human populations that in some cases use guayabillo as 761 
a source of wood. Moreover, these islands also sustain agricultural areas in their 762 
highlands, where local-scale cultivation and animal husbandry activities are developed. 763 
However, San Cristobal contains the largest agricultural area relative to its size, 764 
occupying the majority of its humid highlands (Rivas-Torres et al., 2018), and one of 765 
the oldest permanent settlements in the archipelago established during the second half 766 
of the XIX century (Latorre, 1997; Lundh, 2004). These events could have affected the 767 
guayabillo populations disproportionately when compared to the other islands. Santa 768 
Cruz was colonized more recently by humans, producing a milder historical disturbance 769 
(Kricher, 2006; PNG, 2016), although it currently hosts a larger human population 770 
(INEC, 2016). On the other hand, Isabela sustains the smallest agricultural area in 771 
proportion to island size (Rivas-Torres et al., 2018) and the smallest human population 772 
(INEC, 2016). Besides the direct impact on effective population size and genetic 773 
diversity decrease (Stuessy et al., 2014) as may be the case for San Cristobal, another 774 
direct effect of these anthropogenic activities is the fragmentation of habitats. 775 
Fragmentation can lead to genetic drift (Frankham et al., 2010), endogamy, and 776 
inbreeding depression (Wright, 1951; Frankham, 1998; Nielsen, 2004), and could 777 
partially explain the higher within-island FST value observed for the San Cristobal 778 
population (Table 2). Fragmented and decimated populations also experience a fast 779 
fixation of alleles, and populations within fragments risk differentiating to the point of 780 
sexual incompatibility (Gitzendanner et al., 2012). It is also noteworthy that the San 781 
Cristobal population presented a lower clonal diversity and a higher proportion of 782 
individuals sharing the same genotype compared to the other two islands (Table 5). This 783 
could be a consequence of the depauperated genetic diversity in this population, leading 784 
to less alleles and therefore, less possible genotypes (Jaramillo et al., 2011). S. affinis 785 
might represent a similar scenario to guayabillo in San Cristobal: habitat loss and 786 
intensive grazing by donkeys and goats has reduced the Floreana and Santa Cruz S. 787 
affinis populations leading to a genetic diversity decrease (Nielsen, 2004). Likewise, 788 
habitat loss and aggressive herbivory from introduced animals has fragmented and 789 
decimated the populations of C. galapagosa (Jaramillo et al., 2011) and G. leucantha 790 
(Guzmán et al., 2016).  791 
 792 

Since sampling can be unfeasible in some of the smaller and more remote 793 
islands, this study could have excluded a segment of the guayabillo genetic diversity. 794 
The assessment of these unsampled populations remains to be performed in order to get 795 
a complete picture of the diversity and evolutionary history of the species across the 796 
entire archipelago. However, our sampling covers the islands with the biggest surface 797 
areas and that represent a considerable portion of the species distribution, illustrated by 798 
the fact that the surface area of the sampled islands exceeds the combined area of all the 799 
non-sampled islands were guayabillo populations have been reported. We are therefore 800 
confident that our results are representative of a major component of the genetic 801 
diversity of the species, and wouldn’t expect major changes in the diversity patterns 802 
observed if the smaller populations were included. Furthermore, the populations 803 
included in this study have direct contact with human settlements, and are hence 804 
interesting for conservation purposes. Regarding this latter point, our findings present a 805 
positive outlook for guayabillo in general. The relatively high levels of genetic diversity 806 
found in this species suggest that these populations show some potential resilience to 807 
environmental perturbations (Reusch et al., 2005; Jump et al., 2009). An increased 808 
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adaptive potential would certainly be an asset for the species in face of threats such 809 
climate change and habitat alteration associated to human activities (Adsersen et al., 810 
1988; Whittaker, 1998; Tye et al., 2007; Dal Forno et al,, 2017); however, the 811 
survivability of any species is not determined exclusively by its genetic adaptive 812 
potential, and other factors must be better studied to understand the conservation status 813 
of guayabillo in the archipelago. For instance, the interactions between guayabillo and 814 
multiple invasive plant species in the Galapagos, particularly those found in the 815 
highlands and transitional forests such as blackberries and Cuban cedars (Cedrela 816 
odorata) (Sakai et al., 2001; Tye et al., 2007), remain unknown. A particular emphasis 817 
should be placed on the invasive common guava due to its close relatedness to 818 
guayabillo and the fact that they share similar distributions, life history traits, pollinators 819 
and dispersers (Blake et al., 2012; Valdebenito, 2018). The high frequency of 820 
hybridization events in the Psidium genus (Landrum, 2017) should also be considered, 821 
as this combination of factors might facilitate the generation of (currently unreported) 822 
interspecific hybrids (Torres and Gutiérrez, 2018). This phenomenon can lead to genetic 823 
erosion, outbreeding depression, and genetic swamping in the guayabillo (López-824 
Caamal et al., 2014; Ellstrand and Rieseberg, 2016; Chafin et al., 2019) while enriching 825 
the currently low genetic diversity of the guava populations of the Galapagos, further 826 
enhancing its invasive potential (Urquía et al., 2019). Such a case has already been 827 
reported in an insular Psidium endemic, P. socorrense, where hybridization with an 828 
introduced close relative took place in a particular zone of Socorro Island (López-829 
Caamal et al., 2014). 830 
 831 
4.2. Population structure and connectivity between islands 832 
 833 

The observed patterns of genetic diversity do not necessarily match the 834 
population structures in different islands. Santa Cruz is the only island where two 835 
clearly separated genetic clusters were found (Figs. 2, 3, A2 and A4), while the 836 
populations in Isabela and San Cristobal behave as a single panmictic population. One 837 
of these Santa Cruz clusters, Santa Cruz 2, was exclusively made up of individuals from 838 
sampling sites within the transition zone (Granillo Rojo), the dry lowlands 839 
(Garrapatero) and some individuals from the Bellavista site (which is closely located to 840 
Garrapatero). On the other hand, Santa Cruz 1 predominantly included individuals from 841 
the humid highlands and the agricultural zone (Figs. 3, A3 and A6). These clusters may 842 
correspond to two different guayabillo ecotypes, a more generalist ecotype (Santa Cruz 843 
1) and a dry climate ecotype (Santa Cruz 2) adapted to the transition zones and the 844 
lowlands. Interestingly, Valdebenito (2018) observed morphological differences among 845 
guayabillo individuals from the highlands and the lowlands in San Cristobal, 846 
(monopodial trees in the highlands, smaller shrubs in the lowlands); more significantly, 847 
lowland individuals would flower earlier, which could represent a temporal 848 
reproductive barrier between them and highland individuals. Although we did not 849 
identify different genetic groups in San Cristobal as we would have expected from 850 
previous observations, it highlights the possibility of two ecotypes in Santa Cruz; 851 
phenological and morphological studies of guayabillo in this island are currently being 852 
carried out (Valdebenito, pers. comm.), and they would certainly elucidate our 853 
hypothesis. This would entail a degree of genetic differentiation (observed as a high 854 
proportion of within-population variability in the AMOVA; Table 4) and adaptation to 855 
different climatic and ecological niches, phenomena which cannot be further explored 856 
with our current data. More in-depth research into the population genetics and ecology 857 
of the species in this island is essential to determine whether the concept of an ecotype 858 
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might apply to this scenario. The emergence of different ecotypes and even parapatric 859 
speciation along environmental gradients have been previously reported in plants, such 860 
as the two sister species of the genus Senecio distributed along different altitudes at 861 
Mount Etna in Italy which may have arisen through these mechanisms (Chapman et al., 862 
2013; Chapman et al., 2016). 863 
 864 

It is also interesting to point out the genetic similarities observed in the PCoA 865 
between Santa Cruz 2 and the individuals from San Cristobal and Isabela (Figs. 2, A2 866 
and A3). This could be interpreted as a link between Santa Cruz 2 and the populations 867 
on the other islands, particularly in San Cristobal (see Fig 3b). Under this scenario, the 868 
Santa Cruz 1 lineage would have naturally diverged from the other populations on 869 
different islands (Table A5), while the Santa Cruz 2 represents a more recent 870 
introduction. Given this possibility, Santa Cruz 2 (or its ancestors) could have adapted 871 
to the drier habitats before reaching Santa Cruz, helping it to settle into its current 872 
distribution (it would be expected that, upon arriving to a new island, plants would first 873 
encounter the more arid habitats in the lowlands near the coast; Kricher, 2006; Rivas-874 
Torres et al., 2018). If this genetic connectivity between Santa Cruz 2 and the other 875 
islands is not spurious, the previously described population structure would be better 876 
explained by this rationale rather than a local adaptation to different environments, or 877 
through a combination of both scenarios. Note that Santa Cruz 1 appears surprisingly 878 
distinct, even compared to other individuals of Santa Cruz (Figs. 2 and A2; Table A5). 879 
Before, we supported the unification of guayabillo as a single species (Section 4.1), and 880 
this seems to be true even for this separated group, since it still maintains some (limited) 881 
gene flow with the rest of the Santa Cruz populations as seen in the STRUCTURE 882 
analysis (Fig. 3) and the pairwise FST values (Table A5). Nevertheless, the 883 
differentiation among the Santa Cruz 1 and Santa Cruz 2 groups is equivalent to the 884 
differentiation seen among different islands, and likewise, Santa Cruz 1 is the genetic 885 
group with the highest inter-island differentiation seen in guayabillo (Table A5). 886 
Therefore, this leads to either a strong (potentially early) divergence of the Santa Cruz 1 887 
group from the rest of the species, or the possibility of two different colonization events 888 
of the ancestral guayabillo into the archipelago as an alternative hypothesis. The latter 889 
has been proposed for another Galapagos endemic, Croton scouleri, which also displays 890 
a notable genetic and morphological variability (Rumeu et al., 2016). In fact, multiple 891 
colonization events could be relatively common, since native plant species from oceanic 892 
islands are usually associated with high dispersion abilities, an important trait to 893 
overcome the sea barrier on repeated occasions (Rosas-Escobar et al. 2011; García-894 
Verdugo et al. 2013). The current data we have for guayabillo is limited, and these 895 
hypotheses remain speculative; certainly. a broader sampling range across the 896 
archipelago and the use of more powerful molecular markers are necessary to solve the 897 
ancestry relations among different populations and lineages from different islands. 898 
 899 
 The degree of gene flow between islands is a key factor in explaining the 900 
previously described population structure. On a broader scale, there’s a clear genetic 901 
differentiation between the populations of the three islands, made evident by the high 902 
pairwise FST values observed (Table 3, Table A4) and by individuals clearly clustering 903 
according to their island of origin (Figs. 2, 3b, A2 and A4b). Furthermore, a good 904 
proportion of the alleles found in each guayabillo population were private alleles (Table 905 
2), highlighting the independent evolutionary histories on each island. Selfing, 906 
inbreeding and clonal reproduction (to a lesser extent) in each island population would 907 
have led to the fast fixation of distinct alleles that, together with new mutations, could 908 
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contribute to the current genetic structure and population differentiation (Rick, 1983; 909 
Hamrick and Godt, 1996). Moreover, this degree of differentiation suggests a limited 910 
gene flow between islands, similar to other endemic species such as S. affinis and the 911 
Opuntia cacti (Nielsen, 2004; Helsen et al., 2009). The oceanic waters that separate the 912 
islands are evidently an important barrier for inter-island gene flow in guayabillo and 913 
other endemic plants of the Galapagos, especially considering that its fruits and seeds 914 
are unlikely to be frequently dispersed through long distances over the ocean (Porter, 915 
1968; Porter, 1976; Ward and Brookfield, 1992; McMullen, 1999). In addition, none of 916 
the known animal dispersers of guayabillo seeds -Giant Tortoises and possibly, small 917 
passerine birds (Blake et al., 2012; Guerrero and Tye, 2009; Heleno et al., 2013)- would 918 
frequently cross large expanses of ocean among islands (Petren et al., 2005; Gerlach et 919 
al., 2006; Smith, 2009). Nevertheless, we cannot exclude the possibility of occasional 920 
gene flow between guayabillo populations on different islands, potentially mediated by 921 
human beings transporting seeds or propagative material between islands as a trading 922 
activity (Wiggins et al., 1971), or by widespread and generalist pollinators like X. 923 
darwini which are also strong flyers that can be easily carried over the ocean by the 924 
wind (McMullen, 1990; Smith, 2009; Traveset et al., 2013; Valdebenito, 2018). In fact, 925 
our migration analysis shows that most of the limited inter-island migration is directed 926 
towards Santa Cruz, in the center of the archipelago (Fig. 4), matching the confluence of 927 
sea currents and winds acting upon the Galapagos (Merlen, 2014). Note also that this 928 
gene flow to Santa Cruz may also explain the presence of the Santa Cruz 2 group and its 929 
close relationship with the populations of the other two islands (Figs. 2 and 3). Despite 930 
the notoriety of the oceanic barrier, other plants as L. minimum (where a significant 931 
population structure among islands was also found; Levin et al., 2015) or G. leucantha 932 
(Guzmán et al., 2016) are also able to hold some inter-island gene flow, which has been 933 
attributed respectively to the action of bird dispersers and the long-range pollination by 934 
X. darwinii.  935 
 936 
 In other endemic plant species of the Galapagos, including S. cheesmaniae 937 
(Pailles et al., 2017), L. minimum (Levin et al., 2015) and G. darwinii (Wendel and 938 
Percy, 1990), a clear genetic structure pattern separating populations of the western and 939 
eastern islands was observed. Such pattern apparently follows the progression rule, 940 
separating populations from older and younger islands and suggesting an east-west 941 
migration (from old to young islands) following the movement of the archipelago with 942 
the Nazca plate (Geist et al., 2014; Merlen, 2014; Levin et al., 2015; Pailles et al., 943 
2017). However, the natural history of guayabillo appears more complicated than that. 944 
Putting aside the possibility of a second introduction of guayabillo into Santa Cruz, we 945 
would expect a greater genetic similarity between closer islands (both temporally and 946 
geographically), a pattern that doesn’t hold true given the closer relation between the 947 
populations from Isabela and San Cristobal compared to the Santa Cruz individuals 948 
(Figs. 2 and 3a; Geist et al., 2014). The lack of an evident clustering of individuals from 949 
older and younger islands appears to refute the progression rule for guayabillo in the 950 
sampled islands. Note however that the compact spatial clustering of the archipelago in 951 
two-dimensional space (Geist et al., 2014; Shaw and Gillespie, 2016) make this 952 
observation not surprising. The ancestors of guayabillo, as several other endemic 953 
species, have not necessarily moved progressively from older to younger islands, 954 
instead moving through one or more of thousands of alternative pathways for spreading 955 
over the archipelago beginning from a single island (Geist et al., 2014). Hence, a 956 
movement of the guayabillo from Isabela to San Cristobal or vice-versa, is perfectly 957 
possible. The majority of the Galapagos endemic species, especially the most vagile 958 
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organisms, did not follow the progression rule during their colonization (Shaw and 959 
Gillespie, 2016), including the endemic Opuntia cacti (where individuals from Isabela 960 
were contained in the same clade as the individuals of the oldest islands, Española and 961 
San Cristobal; Helsen et al., 2009) and several animals such as giant tortoises (Caccone 962 
et al., 2002), Darwin finches (Grant and Grant, 2008), land iguanas (Gentile et al., 963 
2009), and various insect taxa (Schmitz et al., 2007; Sequeira et al., 2008). There are 964 
many other possibilities behind the biogeographic history of guayabillo, a task that 965 
could be better addressed through phylogenetic analyses using appropriate markers, and 966 
with the inclusion of samples from all the islands where guayabillo is distributed. 967 
 968 
 969 
5. Conclusions 970 
 971 

Our current data highlights some of the key questions that can be postulated about 972 
the history, evolution and future prospects of the guayabillo in the Galapagos Islands. 973 
Its relatively high genetic diversity could suggest an ancient history and extensive 974 
opportunities to differentiate through isolation from neighboring islands or through 975 
adaptation to new microclimates and niches. Several aspects would be promoting this 976 
genetic variability in guayabillo, including its widespread distribution in the 977 
archipelago, potential allopolyploid origin followed by anagenesis, and its capacity of 978 
holding outcrossing together with selfing and clonal reproduction; bigger and higher 979 
islands with less human impact as Isabela, also would be capable of harboring more 980 
genetic diversity on them. The relatively well-defined population structure we found in 981 
guayabillo between different islands, may also be reflecting the effects of reproductive 982 
mechanisms and oceanic barriers on the spread of this species, shedding some light into 983 
the main drivers of its range and mobility. However, finer details like a weak yet 984 
discernible differentiation process within Santa Cruz raise multiple hypotheses about 985 
the adaptive processes or potential gene flow between islands. It is likely that a 986 
combination of factors drives the population dynamics of guayabillo in the Galapagos, 987 
and the relatively recent human presence may play a more important role in its future.  988 
 989 

Our results provide, for the first time, an insight into the population genetics of 990 
guayabillo while emphasizing the importance of using genetic tools to better understand 991 
the natural history of a species. Likewise, this genetic data can be informative for the 992 
implementation of conservation strategies. For instance, our data suggests that the San 993 
Cristobal population could be the most vulnerable among the ones analyzed in this 994 
study, prioritizing the implementation of management actions in this island. The 995 
possible fragmentation issue and its lower clonal diversity could be one of the biggest 996 
concerns in this case, since this may lead to more diversity loss due to genetic drift, and 997 
mate incompatibility among subpopulations (Scobie and Wilcock, 2009; Gitzendanner 998 
et al., 2012). Thus, multi-genotype populations should be promoted and established in 999 
this island, for example by translocating or outcrossing individuals from different 1000 
fragments or by allowing corridors in the farming zone of San Cristobal to favor gene 1001 
flow (Gitzendanner et al., 2012). The Isabela population on the other hand, thanks in 1002 
part due to the lower human impact and big dimensions of the island, appears to harbor 1003 
the highest genetic variability in the studied islands, making it a potential germplasm 1004 
reservoir for the species. It must be also considered also that the populations of each 1005 
island represent unique gene pools, and in particular Santa Cruz, counts on two very 1006 
different genetic lineages (potentially different ecotypes). These genetic clusters need to 1007 
be considered independently for conservation purposes and for ex-situ collections and 1008 
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potential breeding programs (Gitzendanner et al., 2012; Jaramillo et al., 2011; Guzmán 1009 
et al., 2016). Note that maximizing genetic diversity is essential for restoring 1010 
endangered plant species, as has already been observed with in the successful recovery 1011 
of C. galapagosa in San Cristobal Island (Jaramillo et al., 2011). Finally, a holistic 1012 
conservation approach is necessary in the Galapagos, not only to protect the guayabillo 1013 
but all its flora and fauna (Atkinson et al., 2008; Carrion et al., 2011; DPNG, 2016). 1014 
Finally, as basic biology questions (such as the ploidy of the species) are answered and 1015 
new tools (such as genomic analysis pipelines) are developed, the current state of this 1016 
endemic plant may be better understood for its adequate conservation.  1017 

 1018 
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Appendix A. Supplementary data  

Understanding the genetic diversity of the guayabillo (Psidium galapageium), an 
endemic plant of the Galapagos Islands 

 
 

Table A1. Sampling sites with its coordinates and altitude, and number of individuals collected there. 

Island 
 

Sampling Site Coordinates 
Altitude 
(masl) 

Number of 
individuals Total 

Isabela 

1 Ricardo García  0° 51.308'S    91° 00.023'W 148 15 

86 

2 San Joaquín  0° 49.130'S    91° 01.304'W 379 18 
3 El Basurero  0° 52.359'S    91° 00.137'W 125 8 
4 Finca Morocho  0° 51.040'S    90° 59.442'W 139 20 
5 El Mango  0° 53.135'S    91° 00.430'W 127 6 
6 Cerro Grande  0° 49.506'S    91° 00.215'W 258 19 

Santa 
Cruz 

1 Granillo Rojo  0° 36.931'S    90° 22.048'W   574 14 

87 

2 Salasaca  0° 37.916'S    90° 26.188'W 382 5 
3 Camote  0° 38.279'S    90° 17.448'W 442 9 
4 Garrapatero  0° 40.367'S    90° 14.460'W 132 12 
5 Bellavista  0° 41.558'S    90° 19.037'W 164 34 
6 El Chato  0° 41.907'S    90° 24.118'W 228 13 

San 
Cristobal 

1 Galapaguera  0° 54.893'S    89° 26.106'W 109 5 

35 

2 Camino a Opuntias  0° 56.120'S    89° 32.819'W 124 5 
3 Perimetral  0° 55.917'S    89° 32.923'W 150 4 
4 Cerro Verde  0° 54.416'S    89° 26.513'W 206 5 
5 Las Goteras  0° 53.058'S    89° 26.135'W 311 5 
6 Cerro Gato  0° 55.452'S    89° 28.172'W 161 5 
7 Centro de Reciclaje  0° 54.724'S    89° 34.794'W 138 6 

 Total 208 
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Table A2. Null allele frequencies (using both, a 0.5 and a 0.65 rate of selfing) and PICs 
for the two isoloci of each analyzed SSR locus. 
 

  
Null allele freq. 

(SELFING RATE=0.5) 

Null allele freq. 
(SELFING 

RATE=0.65) 
PIC 

Locus 
Isolocus 

1 Isolocus 2 
Isolocus 

1 Isolocus 2 Isolocus 1 
Isolocus 

2 
GYB3 0.313 0.317 0.312 0.312 0.751 0.718 
GYB4 0.225 0.175 0.229 0.174 0.411 0.545 
GYB5 0.134 0.301** 0.146 0.281** 0.006 0.434** 
GYB7 0.263 0.261 0.257 0.253 0.494 0.466 
GYB8 0.286 0.197 0.271 0.194 0.726 0.623 
GYB9 0.070 0.180 0.071 0.171 0.674 0.753 
GYB14 0.337* 0.347* 0.325* 0.334* 0.646* 0.653* 
GYB18 0.388* 0.372* 0.383* 0.367* 0.678* 0.749* 
GYB21 0.279 0.306 0.264 0.293 0.708 0.620 
GYB22 0.224 0.194 0.218 0.196 0.358 0.502 
GYB23 0.183 0.234 0.187 0.227 0.150 0.613 
GYB27 0.192 0.346* 0.189 0.333* 0.651 0.500* 
GYB29 0.173 0.314 0.175 0.301 0.384 0.701 
*Null allele frequency >>0.3 for both selfing rates, discarded from further analyses 
**Discarded due to monomorphism.  
 
 
 
Table A3. Genetic diversity information of the analyzed Psidium galapageium 
populations from Isabela, Santa Cruz and San Cristobal islands, after systematic 
downsampling in the Isabela and Santa Cruz samples: Number of individuals genotyped 
from each island (N), number of alleles found (A), number of private alleles (PA), mean 
allelic richness after rarefaction (AR), observed heterozygosity (HO), expected 
heterozygosity/gene diversity (HE) and FST global value for each island population. 
Overall results along the three islands are also shown. 
 

Island N A* PA* HO
 a HE 

a 

Isabela 35 118 (97) 52 (38) 0.122 0.588 
Santa Cruz 35 84 (59) 17 (9) 0.156 0.412 

San Cristobal 35 70 (60) 12 (5) 0.119 0.283 
Overall 105 161 - 0.141 0.465 

 
* Values between brackets are the number of alleles or private alleles with a frequency >0.05 within the 
corresponding island population. 
aindicates average across the 15 SSRs analyzed. 
sstandardized for N=35 
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Table A4. Pairwise and global FST values between the Psidium galapageium 
populations from the three islands, after systematic downsampling in the Isabela and 
Santa Cruz samples. 
 

 Isabela Santa Cruz 
Santa Cruz 0.209 - 
San Cristobal 0.212 0.328 
Global 0.319 

 
 
 
 
Table A5. Pairwise and global FST values between the Psidium galapageium clusters 
defined from the STRUCTURE software and PCoA groupings. 
 

 Isabela 
Santa Cruz 

1 
Santa Cruz  

2 
Santa Cruz 1 0.228 -  

Santa Cruz 2 0.132 0.166 - 

San Cristobal 0.180 0.290 0.222 

Global 0.314 
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Fig. A1. Electropherograms obtained from the SSR amplification of three guayabillo 
samples showing up to four different alleles in a single individual, depicting potential 
polyploidy. A. Locus GYB25 amplified from sample YCG6 (Isabela). B. Locus GYB23 
amplified from sample CGa3 (San Cristobal). C. Locus GYB09 amplified from sample 
YGE2 (Santa Cruz). 
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Fig. A2. PCoA based on the Lynch distances (after systematic downsampling in the 
Isabela and Santa Cruz samples) found between the Psidium galapageium individuals 
sampled in the three islands: Isabela, San Cristobal and Santa Cruz. For Santa Cruz, 
both genetic clusters are indicated (Santa Cruz 1 and Santa Cruz 2). 
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Fig. A3.  PCoA based on the Lynch distances found between the Psidium galapageium 
individuals sampled in the three islands. Here, the different subpopulations of Santa 
Cruz are represented in different colors to show how some individuals (from Granillo 
Rojo, Garrapatero and Bellavista locations) are grouped with the individuals from 
Isabela and San Cristobal rather than with the other individuals from Santa Cruz. 
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Fig. A4. Results of the Bayesian analysis of population structure (Software STRUCTURE) 
under the Admixture model, after systematic downsampling in the Isabela and Santa Cruz 
samples. The results are indicated for a) K=2, and b) K = 3 which is the optimum K value 
(ΔK = 250.69). These values of K correspond to the clusters or lineages (represented by 
different colors) in which are grouped the Psidium galapageium individuals sampled in 
Isabela, Santa Cruz and San Cristobal islands. 
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Fig. A5. Population structure Bayesian analysis results, among localities in Isabela 
Island (Admixture model). a) K=2, b) K=3, c) K=4, d) K=5. The optimum K value in 
this case was K=2 (ΔK=1195.71). 
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Fig. A6. Population structure Bayesian analysis results, among localities in Santa Cruz 
Island (Admixture model). a) K=2, b) K=3, c) K=4, d) K=5. The optimum K value in 
this case was K=2 (ΔK=1177.14). 
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Fig. A7. Population structure Bayesian analysis results, among localities in San 
Cristobal Island (Admixture model). a) K=2, b) K=3, c) K=4, d) K=5. The optimum K 
value in this case was K=2 (ΔK= 533.70). 
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Highlights 
 

• Genetic diversity of Psidium galapageium, an endemic species of the Galapagos. 
• The highest genetic diversity was found in the biggest, least disturbed island. 
• Polyploidy, anagenesis and reproductive mechanisms could affect genetic diversity. 
• The ocean could be an important barrier for inter-island gene flow in this species. 
• Development of SSR markers specific for Psidium galapageium. 
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