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Abstract  

Synthetic cannabinoid receptor agonists (SCRAs) elicit many of their psychoactive effects 

via type-1 human cannabinoid (CB1) receptors. Enantiomer pairs of eight tert-leucinate or 

valinate indole- and indazole-3-carboxamide SCRAs were synthesized and their CB1 potency 

and efficacy assessed using an in vitro β-arrestin recruitment assay in a HEK239T stable cell 

system. A chiral high-performance liquid chromatography method with photodiode array 

and/or quadrupole-time of flight mass spectrometry detection (HPLC-PDA and HPLC-PDA-

QToF-MS) was applied to 177 SCRA infused paper samples seized in Scottish prisons 

between 2018 and 2020. In most samples, SCRAs were almost enantiopure (S)-enantiomer 

(>98% of total chromatographic peak area), although in some (n=18), 2 to 16% of the (R)-

enantiomer was detected. (S)-enantiomers are consistently more potent than (R)-enantiomers 
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and often more efficacious. The importance of SCRA-CB1 receptor interactions in the ‘head’ 

or ‘linked group’ moiety is demonstrated, with the conformation of the ‘bulky’ tert-leucinate 

group greatly affecting potency (by up to a factor of 374), significantly greater than the 

difference observed between valinate SCRA enantiomers. (S)-MDMB-4en-PINACA, (S)-4F-

MDMB-BINACA and (S)-5F-MDMB-PICA are currently the most prevalent SCRAs in 

Scottish prisons and all have similar high potency (EC50, 1-5 nM) and efficacy. Infused paper 

samples were compared using estimated intrinsic efficacy at the CB1 receptor (EIECB1) to 

evaluate samples with variable SCRA content. Given their similar potency and efficacy, any 

variation in CB1-receptor mediated psychoactive effects are likely to derive from variation in 

dose, mode of use, pharmacokinetic differences and individual factors affecting the user, 

rather than differences in the specific SCRA present. 

 

1. Introduction 

Synthetic cannabinoid receptor agonists (SCRAs) are a diverse group of new psychoactive 

substances (NPS) that exert at least some of their physiological effects via binding to, and 

activation of, the human cannabinoid receptors, CB1 and CB2. These are Class A G-Protein-

Coupled Receptors (GPCRs)1-6; CB1 receptors are primarily located in the central nervous 

system and mediate the psychotropic effects of cannabinoids and CB2 receptors are mainly 

expressed in the peripheral nervous system, immune system and spleen, and are involved in 

immunosuppression and analgesia4,5. More than 200 SCRAs have been detected on the illicit 

market to date7,8, and SCRA intoxications have been reported to cause a variety of adverse 

effects and have been implicated in drug-related intoxications and deaths worldwide9-11. The 

use of SCRAs, colloquially known as ‘Spice’ or ‘Mamba’, in prisons is well documented 

internationally, particularly in the United Kingdom12-21. To facilitate entry into and use within 

prisons, SCRAs are commonly dissolved in solvents such as acetone and ethanol, infused into 

papers and cards and sent to prisoners via the mail system. The SCRA-infused papers are vaped 

using e-cigarettes, particularly where tobacco smoking bans are in place12,19,21. The specific 

SCRA compounds detected over time have continually evolved in response to national and 

international legislation and availability in source countries. The most prevalent compounds of 

the last five years have generally been the valinate and tert-leucinate indole- and indazole-3-

carboxamide SCRAs12,22,23. The structures of the SCRAs mentioned are provided in Figure 1 

and the bold number in parentheses in the text refers to the numbering provided in this figure. 

SCRA molecules are commonly described as having four constituent parts: a head or linked 

group, a linker, a core and tail (see Figure 1 for an example). These compounds include AB-
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FUBINACA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-

carboxamide[ (1), MDMB-CHMICA [methyl 2-(1-(cyclohexylmethyl)-1H-indole-3-

carboxamido)-3,3-dimethylbutanoate] (2), ADB-FUBINACA [MAB-FUBINACA; methyl (1-

(4-fluorobenzyl)-1H-indazole-3-carbonyl)valinate] (3), MMB-FUBINACA [AMB-

FUBINACA/FUB-AMB; methyl (1-(4-fluorobenzyl)-1H-indazole-3-carbonyl) valinate] (4), 

5F-MDMB-PINACA [5F-ADB; methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-

3,3-dimethyl-butanoate)] (5) and, more recently, 5F-MDMB-PICA [5F-MDMB-2201; methyl 

2-(1-(5-fluoropentyl)-1H-indole-3-carboxamido)-3,3-di-methylbutanoate] (6), 4F-MDMB-

BINACA [Methyl N-([1-(4-fluorobutyl)-1H-indazol-3-yl]carbonyl)-3-methyl-L-valinate] (7) 

and MDMB-4en-PINACA [5-CL-ADB-A; methyl-3,3-dimethyl-2-(1-(pent-4-en-1-yl)-1H-

indazole-3-carboxamido)butanoate] (8).  

 

Due to the use of chiral precursors, valinate- and tert-leucinate-based SCRAs are chiral 

compounds; however, it is generally assumed that the SCRAs present in street and prison 

samples will almost exclusively comprise the (S)-enantiomer. This is due to the availability 

and price of the (S)-enantiomers of the chiral precursor compared to those of the (R)-

enantiomer24,25 and the greater potency of the (S)-enantiomer final product. Since the precursor 

used in the final synthetic step (e.g. valinamide and valine methyl ester, for AB- and MMB-

compounds respectively, and tert-leucinamide and tert-leucine methyl ester for ADB- and 

MDMB-compounds respectively) introduces the chirality into the molecule within the ‘head’-

group (see Figure 1), it is assumed that the final product is enantiopure. However, there is a 

possibility that the precursor is not enantiopure, or enantiopure batches of each enantiomer are 

mixed, resulting in the presence of both enantiomers in the final product. This is important for 

several reasons: Firstly, the spatial configuration and functionalization of a compound is 

imperative with regard to receptor binding and activation. Certain functional groups of the 

SCRA need to interact with specific residues within the orthosteric binding pocket of the 

cannabinoid receptors in order to activate them26. Studying the effects of chirality within the 

head group on receptor activation will therefore further increase understanding of SCRA-CB1 

receptor interactions in this key region. Secondly, the (S)-enantiomers of all compounds tested 

to date have been shown to be significantly more potent and often more efficacious than their 

corresponding (R)-enantiomers23,27,28; therefore, if (R)-enantiomers are present in seized 

samples, they have the potential to lower CB1 activation-related potency and (potentially) 

efficacy. Lastly, any variation, if present, in the enantiopurity of valinate and tert-leucinate 



 

 
This article is protected by copyright. All rights reserved. 

based SCRAs may provide opportunities to distinguish production batches of drugs which may 

be useful for intelligence purposes. 

 

SCRAs are produced with an unknown degree of quality assurance of both precursor materials 

and the finished product, and therefore their enantiopurity and impurity profiles may be subject 

to some degree of batch-to-batch variation. The use of non-chiral impurity profiling has 

previously been applied to illicitly produced drugs including heroin29-31, cocaine31-34, 

MDMA35,36 and fentanyl37. Münster‐Müller et al. describes a novel stable isotope analysis and 

impurity-profiling workflow, using the SCRAs MDMB-CHMICA (2) and Cumyl-5F-PINACA 

[1-(5-fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide] (9), for the 

detection of synthesis precursor/by-product impurities in seized herbal materials and potential 

source attribution38-41. Chiral profiling has been applied previously to illicitly produced drugs 

including amphetamine and methamphetamine for intelligence purposes42-44, although the 

methodology is rarely routinely employed in forensic drug testing laboratories. We suggest that 

chiral profiling could be applied to chiral valinate and tert-leucinate SCRAs in addition to 

stable isotopic and impurity profiling; however, the potential utility of such chiral profiling is 

currently unknown as, to date, there have been no large-scale studies to determine the variation 

of enantiopurity of these SCRAs in seized samples. 

 

Chiral chromatography-based methods are required to determine the variability of 

enantiopurity in valinate and tert-leucinate based SCRAs in drug seizures. The separation of 

SCRA enantiomers by high pressure liquid chromatography (HPLC) using chiral stationary 

phases has been reported previously24,28,44,45. Doi et al. reported the separation and analysis of 

the enantiomers of 5F-AB-PINACA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(5-

fluoropentyl)-1H-indazole-3-carboxamide] (10) and 5F-MMB-PINACA [5F-AMB/5F-AMB-

PINACA; methyl [1-(5-fluoropentyl)-1H-indazole-3-carbonyl]valinate] (11) and analyzed 10 

street samples44. Although the sample size was small, the results indicated that variation in 

SCRA enantiopurity in seized samples may occur. This method was later expanded to include 

the separation of five additional carboxamide SCRA enantiomer pairs; however, this expanded 

method was not applied to seized samples28. Andernach et al.45 reported the analysis of five 

MDMB-CHMICA (2) containing herbal samples, all of which were found to contain only (S)-

MDMB-CHMICA (2), and eight samples containing MDMB-CHMCZCA [methyl N-([9-

(cyclohexylmethyl)-9H-carbazol-3-yl]carbonyl)-3-methyl-L-valinate] (12), in which only one 

sample was found to contain the (R)-enantiomer as a minor component. In our previous study24. 
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we demonstrated the chromatographic separation of AB-FUBINACA (1), MMB-FUBINACA 

(4), 5F-MDMB-PINACA (5) and AB-CHMINACA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-

1-(cyclohexylmethyl)-1H-indazole-3-carboxamide] (13) using Lux® Amylose-1 and i-

Cellulose-5 chiral HPLC columns and reported the enantiospecific analysis of seized herbal 

materials containing MMB-FUBINACA (4) and 5F-MDMB-PINACA (5). 

 

In this study, we undertook pharmacological profiling of a range of valinate and tert-leucinate 

SCRA enantiomer pairs, using an established CB1 receptor -arrestin recruitment-based 

bioassay23,24,46-49 to further understand the structural features that influence SCRA potency and 

efficacy; we expanded the scope of a previously developed chiral HPLC separation method to 

incorporate a wider range of SCRAs, thereby increasing our understanding of the SCRA-

stationary phase interactions24; we applied the chiral profiling method to the largest number of 

SCRA-containing samples tested to date in order to understand the true variability in 

enantiopurity of SCRAs being used on the illicit market; and finally, we combined the 

methodologies presented to evaluate the pharmacological impact of the evolution of SCRAs in 

a continually evolving drugs market in prisons.   

 

2. Materials and Methods 

2.1. Materials 

All solvents used were HPLC grade ( 99.8 % purity) and supplied by either Thermo Fisher 

Scientific, Loughborough, UK or VWR Chemicals, UK. Ultra-high purity water (18 MΩcm-1) 

was obtained using a Milli-Q water purification system (Merck, UK). Reagents necessary for 

the synthesis of the enantiopure reference standards were obtained from Fluorochem Limited, 

Hadfield, UK; Sigma-Aldrich, Gillingham, UK; and Alfa Aesar, Heysham, Lancashire, UK, 

and were used without further purification. D-tert-leucine methyl ester was custom synthesized 

by Carbosynth, UK. Dulbecco’s Modified Eagle’s Medium (GlutaMAX™), Opti-MEM® I 

Reduced Serum Medium, Penicillin-Streptomycin (5 000 U/mL) and amphotericin B (250 

μg/mL) were purchased from Thermo Fisher Scientific, Loughborough, UK. Fetal bovine 

serum (FBS) and poly-d-lysine were supplied by Sigma Aldrich, Overijse, Belgium. The Nano-

Glo® Live Cell reagent, which was used for the readout of the bioassay, was procured from 

Promega, Madison, WI, USA. 
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2.2. Synthesis of SCRA reference standards and characterization by gas chromatography-

mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR)  

Reference standards for (R)- and (S)-MMB-FUBINACA (4) (>98 % purity) and (R)- and (S)-

5F-MDMB-PINACA (5) (99.6 % purity) were obtained via in-house synthesis as detailed 

previously24. Enantiopure reference standards for (R)- and (S)-5F-MDMB-PICA (6), (R)- and 

(S)-4F-MDMB-BINACA (7), (R)- and (S)-MDMB-4en-PINACA (8), (R)- and (S)-5F-MMB-

PINACA (11), (R)- and (S)-MDMB-FUBINACA [N-(1-amino-3,3-dimethyl-1-oxobutan-2-

yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide] (14), (R)- and (S)-MMB-CHMICA 

[AMB-CHMICA; methyl (1-(cyclohexylmethyl)-1H-indole-3-carbonyl)valinate] (15), (R)- 

and (S)-MDMB-4en-PICA [methyl 3,3-dimethyl-2-(1-(pent-4-en-1-yl)-1H-indole-3-

carboxamido)butanoate] (16) and (R)- and (S)-MMB-4en-PICA [AMB-4en-PICA; MMB-022; 

methyl (1-(pent-4-en-1-yl)-1H-indole-3-carbonyl)valinate] (17) were synthesized as part of 

this study and synthetic routes, yields and purities are summarized in Table 1. Further details 

of the synthesis are provided in section 1 of the supplementary information, with the synthesis 

of MDMB-4en-PINACA provided as an example.   

 

All synthesized reference standards were characterized using GC-MS and NMR spectroscopy 

(see section 1 of the supplementary information for characterization data) and checked for 

enantiopurity using a chiral HPLC-photodiode array (PDA) method developed previously and 

developed further in this study. NMR spectroscopy was performed using a JEOL ECS-400 

NMR spectrometer by JEOL, Tokyo, Japan, operating at 400 MHz for 1H-NMR (10 mg/mL in 

CDCl3) and 13C-NMR (20 mg/mL in CDCl3). NMR purity was calculated using the relative 

concentration determination method described by Pauli et al.53 GC-MS analysis was performed 

on an Agilent Technologies 7890B GC system with 5977B MS Detector and 7693 auto sampler 

by Agilent Technologies, Wokingham, UK, using a capillary column (HP5 MS, 30 m, Å ~ 0.25 

mm, i.d. 0.25 μm). Helium was used as a carrier gas at a constant flow rate of 1.0 mL/min. 

Injection temperature: 270 °C, detection temperature: 300 °C. GC oven: 60 ºC; 10 ºC/min to 

300 ºC held for 6 min; transfer line: 295 ºC. Eicosane was used as a retention time marker to 

ensure that the retention times obtained for the GC-MS analysis of synthesized reference 

standards were consistent between analysis runs, which was found to be the case.  For 

compounds (7, 8, 11, 14 & 15), methanol was used as the solvent, and for compounds (6 & 16-

17), ethyl acetate was used as the solvent. 

 

 



 

 
This article is protected by copyright. All rights reserved. 

2.3. Determination of the in vitro biological activity at the cannabinoid receptor 1 (CB1) 

A live cell-based reporter assay, which monitors the in vitro  CB1 activation via its interaction 

with β-arrestin 2 using the NanoLuc Binary Technology, was applied to assess the biological 

activity of the compounds. Details regarding the development of the stable cell line used here 

have been reported elsewhere46,47. The modified human embryonic kidney (HEK) 293T cells 

were routinely maintained at 37 °C, 5 % CO2, under humidified atmosphere in Dulbecco’s 

modified eagle’s medium (GlutaMAX™) supplemented with 10 % heat-inactivated FBS, 100 

IU/mL of penicillin, 100 μg/mL of streptomycin and 0.25 μg/mL of amphotericin B. For 

experiments, cells were plated on poly-D-lysine coated 96-well plates at 5×104 cells/well and 

incubated overnight. Next, the cells were washed twice with Opti-MEM® I Reduced Serum 

Medium to remove any remaining FBS, and 100 μL Opti-MEM® I and 25 µL of the Nano-

Glo® Live Cell reagent were added to each well. Subsequently, the plate was placed into a 

TriStar2 LB 942 multimode microplate reader (Berthold Technologies GmbH & Co., 

Germany). Luminescence was monitored during the equilibration period until the signal 

stabilized (15 min). Next, 10 μL per well of test compounds, present as concentrated (13.5-

fold, as 10 µL was added to generate a final volume of 135 µL) stock solutions in Opti-MEM® 

I, was added. The luminescence was continuously monitored for 120 min. Solvent controls 

were included in all experiments. The results are represented as mean area under the curve 

(AUC) ± standard error of mean (SEM), obtained in a minimum of three independent 

experiments, with duplicates run in every experiment. All results were normalized to the 

Emax of JWH-018 (= 100 %), our reference compound. Curve fitting of concentration-response 

curves via non-linear regression (four-parameter logistic fit) was employed to determine 

EC50 (a measure of potency) and Emax (a measure of efficacy) values, using GraphPad Prism 

software (San Diego, CA, USA). 

 

 

2.4.1 Chromatographic separation of SCRA enantiomers 

The development of the chiral separation method utilized here has been described previously24.  

In this study, the method was evaluated for the separation of an expanded range of SCRA 

enantiomer pairs using the synthesized reference standards. This work was carried out to better 

understand the separation mechanisms involved, and to better understand the best stationary 

and mobile phase combinations to resolve enantiomers of SCRAs currently detected in Scottish 

prisons and to predict the most efficient separation methods for those SCRAs that might emerge 

in future.  
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Chiral separations were performed using an Agilent Infinity II HPLC system with PDA 

detection (HPLC-PDA, 210 nm). Initial isocratic separations of SCRA enantiomer pairs were 

carried out using (A) ultra-high purity water (MilliQ H2O) and (B) acetonitrile (ACN) with a 

mobile phase composition of 45:55, 50:50 or 55:45 A:B and a flow rate of 0.2 mL/min. To 

determine column selectivity, 1 or 5 L of either a 20 or 200 g/mL SCRA racemic mixture in 

50:50 MilliQ H2O and (B) acetonitrile (ACN) was injected onto either a Lux® Amylose-1 (5 

μm, 4.6 × 100 mm) or a Lux® i-Cellulose-5 (5 μm, 4.6 × 100 mm) column (Phenomenex, 

Macclesfield, UK). Agilent Chemstation software (OpenLab CDS Chemstation Edition rev. 

C.01.06) was used to assess the chromatographic data, comparing the retention, resolution and 

peak areas of the enantiomer pairs.  

 

Once the initial method optimization of the HPLC-PDA system was complete, the analytical 

method was transferred to an HPLC-PDA-quadrupole time of flight (QToF)-MS system using 

the same chiral columns. A previous study24 demonstrated that acidification of the mobile 

phase had little effect on enantiomer resolution and so reference standards and seized sample 

extracts (see below) were analyzed using an Acquity ultra pressure liquid chromatography 

(UPLC®) instrument consisting of a binary pump, autosampler (held at 4 °C), vacuum degasser 

and column oven (held at 30 °C), coupled to a Xevo-QToF-MS/MS system (Waters 

Corporation, Milford, MA, USA). Mobile phases were (A) LC-MS grade water with 0.1 % 

formic acid (v/v %) and (B) acetonitrile with 0.1 % formic acid (v/v %) using the same 

chromatographic conditions as the HPLC-PDA method. The QToF was operated in positive 

ionization mode with a source temperature of 120 °C, a desolvation temperature at 500 °C and 

a capillary voltage at 2.25 kV. ToF-MS analysis to determine accurate mass of the SCRA 

pseudo-molecular ion was carried out with a collision energy at 6 V (scan range 100-1000 Da) 

and mass error from the theoretical monoisotopic accurate mass calculated. UV spectra (200–

400 nm) were collected using an Acquity® PDA detector. MS/MS analysis to provide accurate 

product ion data was carried out using collision energies ranging from 6 to 28 V (scan range 

100-500 Da). The instrument is regularly calibrated against sodium formate clusters using a 5 

mM sodium formate solution in 90:10 2-propanol/water and the measured molecular weight 

was within 1.0 ppm of the theoretical value. The calibration was maintained using a lockspray 

mass taken at regular intervals during the scan using a leucine-enkephalin lyophilized peptide 

mixture (Waters Corporation, Milford, MA, USA). 
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2.5. Selection, collection and storage of seized samples 

All seized samples reported in this study were provided by the Scottish Prison Service and were 

either recovered from incoming mail items or during personal and/or cell searches. Most 

samples consisted of pieces of paper and card. The seized samples were securely stored in 

sealed tamperproof polythene evidence bags and all personal information present was removed 

prior to secure transportation to the laboratory. Transport of samples was overseen by staff 

from the Police Scotland Drug Expert Witness unit.  

 

2.6. Qualitative analysis of seized samples by GC-MS and UPLC-PDA-QToF-MS 

Data originating from the non-chiral qualitative and quantitative analysis of samples seized in 

three Scottish prisons between 1st June 2018 and 27th September 2019 have been reported 

previously12. The data is reported in this study for completeness in Table S2b in the 

supplementary information. Sample extracts from the samples prepared for routine qualitative 

analysis were subsequently used in this chiral profiling study. If not analyzed immediately, 

sample extracts were frozen at -20 ºC prior to chiral analysis. Additional samples, seized 

between 28th September 2019 and 12th February 2020 from a single prison (denoted as prison 

1 in the original study12), were analyzed as part of a long-term longitudinal study to monitor 

SCRA market evolution in Scottish prisons and this newly reported qualitative data is provided 

in Table S2b in the supplementary information.  

 

Qualitative analytical methods have been described previously12. In brief, two approximately 

1 cm2 samples were cut from opposite corners of the paper sample and placed in a glass vial. 

To the vial, 0.25 mL methanol was added and the samples sonicated for five minutes. The 

resulting extract was transferred to a 2 mL amber vial fitted with an insert and analyzed using 

a 7820A gas chromatograph coupled to a 5977E mass spectrometer from Agilent Technologies, 

Santa Clara, CA, USA. Injection mode: 1 L sample injection using a 20:1 split, injection port 

temperature: 200 ºC, carrier gas: He, flow: 1 mL/min. Column: HP-5MS, 0.33 m, 0.2 mm x 

25 m from Agilent Technologies, Santa Clara, CA, USA. GC oven: 80 ºC held for 3 min; 40 

ºC/min to 300 ºC held for 3.5 min; transfer line: 295 ºC. The mass spectrometer operated in 

electron ionization (EI) mode. Ionization conditions: 70 eV in full scan mode (50–550 Da), ion 

source: 230 ºC, quadrupole: 150 ºC. SCRAs present in the paper sample extracts were identified 

by (i) comparing their retention time to reference standards of known origin analyzed under 

the same conditions within 24 hours of the test sample; (ii) by comparing mass spectra between 



 

 
This article is protected by copyright. All rights reserved. 

the test sample and a reference standard of known origin; and (iii) by comparison of the spectra 

obtained during the analysis of the sample extract to NIST14, SWGDRUG (v3.5), and Cayman 

Chemical (versions v04262019 and v09112019) mass spectral libraries with a minimum 

acceptable reverse match (R-match) value of 850.  

 

The SCRA identifications from the GC-MS analysis were further confirmed by orthogonal 

analysis using UPLC®-PDA-QToF-MS. Aliquots of the extracts used for GC-MS analysis were 

diluted 10- or 100-fold in 50:50 MilliQ H2O:ACN prior to analysis, based upon the GC-MS 

instrument response for the original extract. When carrying out qualitative SCRA screening 

using the method described above, highly concentrated SCRA extracts are often produced. The 

production of such concentrated extracts allows examination of the SCRA impurity profile as 

part of a separate study, not reported here. Highly concentrated SCRA extracts can cause 

overloading of the GC column resulting in broad and distorted peaks for the parent SCRAs. If 

such overloading is observed in the qualitative GC-MS analysis, samples are diluted 100-fold 

with 50:50 MilliQ H2O:ACN. If such a high peak area response is not observed on the GC-MS, 

the sample is diluted 10-fold in 50:50 MilliQ H2O:ACN. Extract dilution can then be adjusted 

as required following initial analysis. UPLC-PDA-QToF-MS analysis was performed using an 

Acquity UPLC instrument with a binary pump, autosampler held at 4 ºC, vacuum degasser 

and column oven held at 30 ºC coupled to a Xevo QToF-MS from Waters Corporation, Milford, 

MA, USA. Mobile phases used were (A) LC-MS grade water with 0.1 % formic acid (v/v %) 

and (B) ACN with 0.1 % formic acid (v/v %). The gradient used was 50:50 A:B from 0.0-4.0 

min, 25:75 A:B from 4.0-5.0 min, 5:95 A:B from 5.0-5.99 min and 50:50 A:B from 6.0-7.0 

min. Flow rate was 0.5 mL/min and 1 L of sample was injected onto an ethylene bridged 

hybrid (BEH) C18 50  2.1 mm, 1.7 m particle size column (Waters Corporation, Milford, 

MA, USA). The QToF was operated in positive ionization mode with a source temperature of 

120 ºC, a desolvation temperature at 500 ºC and a capillary voltage at 2.25 kV. ToF-MS 

analysis (scan range 100-1000 Da) for the high-resolution determination of molecular mass 

was carried out with a collision energy at 6 V. Mass error of the measured accurate mass from 

theoretical monoisotopic mass was required to be <10 ppm and the UV spectra were compared 

with reference standards of known origin. Parent ion fragmentation spectra were obtained using 

MS/MS data acquisition (scan range 100-500 Da) using collision energies between 10 and 30 

V for further structural confirmation. 
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2.7. Chiral profiling of seized sample extracts 

Depending on the GC-MS peak area response observed during the original qualitative GC-MS 

analysis, sample extracts were diluted 10- to 100-fold in 50:50 MilliQ H2O/ACN and injected 

using sequential injection volumes of 1 and 5 L to ensure that, if present, the minor (R)-

enantiomer of each SCRA was detectable. Further extract dilution adjustments were made to 

ensure, where possible, a peak height response of greater than 150 absorbance units for the 

predominant (S)-enantiomer.  Enantiomer ratios were determined using the relative peak areas 

(at 210 nm) of the chromatographically resolved enantiomers. Example HPLC-PDA 

chromatograms for the chiral separation of enantiomer pairs in diluted seized sample extracts 

are provided in section 3 of the supplementary information. Where chiral HPLC-PDA 

screening indicated the presence of a SCRA (R)-enantiomer >2 % of the peak area of the (S)-

enantiomer, confirmatory chiral analysis was carried out using the chiral HPLC-PDA-QToF-

MS method described earlier. As with the HPLC-PDA screening method, enantiomer ratios 

were determined using the relative peak areas of the chromatographically resolved 

enantiomers. Due to its wide linear range, the PDA detector response at 210 nm was used, 

rather than the TOF-MS or MS/MS response. It was previously found that the calculation of 

the enantiomer ratio using the MS/MS response led to an over-estimation of the contribution 

of the minor (R)-enantiomer24. The ToF-MS and MS/MS data provided confirmation of 

enantiomer identification in addition to retention time matching to a racemic reference 

standard. 

 

2.8 Calculation of Estimated Intrinsic Efficacy at the CB1 receptor (EIECB1) for SCRAs in 

infused papers 

Estimated Intrinsic Efficacy at the CB1 receptor (EIECB1) was calculated using Equation (1) 

and (2). The calculation utilizes the experimentally derived SCRA efficacy (Emax) values (Table 

2) relative to the efficacy of the positive control SCRA (JWH-018) which is set to an efficacy 

of 100% and run with each bioassay experiment. The efficacy data related to the test SCRA 

and JWH-018 must be taken from the same bioassay experiment to be valid.  

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦𝐶𝐵1 =
[𝐸𝑚𝑎𝑥𝑆𝐶𝑅𝐴,𝐶𝐵1]

100
  𝑥     𝐶𝑜𝑛𝑐𝑆𝐶𝑅𝐴                                  (1) 

 

When the samples are subjected to chiral analysis and the enantiomer ratio is determined, the 

following equation can be used, to incorporate this information. 
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𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦𝐶𝐵1 =

[𝐸𝑚𝑎𝑥𝑆𝐶𝑅𝐴,𝐶𝐵1 𝑥 𝑃(𝑆)]+ [𝐸𝑚𝑎𝑥𝑆𝐶𝑅𝐴,𝐶𝐵1 𝑥 𝑃(𝑅)]

100
  𝑥  𝐶𝑜𝑛𝑐𝑆𝐶𝑅𝐴    (2)  

 

The Emax values are in percent, P(S) and P(R) are the proportions of (S)- and (R)-enantiomers 

present and ConcSCRA is the concentration of the SCRA in mg/cm2 paper. Where a sample 

contains a mixture of SCRAs, the calculation can be repeated for each SCRA present and the 

results added together to create a ‘mixture’ EIECB1. The results of the calculation for each 

applicable sample can be found in the supplementary information (Table S2b). Using this 

method, samples containing multiple SCRAs can be compared in terms of their CB1-mediated 

effects, by calculating a total EIECB1 value based on all SCRAs present. 

 

3. Results and Discussion 

3.1. Synthesis of the reference standards 

To synthesize the sixteen enantiopure carboxamide-type SCRA reference standards, either the 

method published by Banister et al.50,51 or an adaptation thereof was used, with a shortened 

scheme shown in Table 1 and further detail provided in section 1 of the supplementary 

information. This is a three-step reaction, starting from methyl 1H-indazole-3-carboxylate for 

SCRAs with an indazole or from indole for SCRAs with an indole core, respectively. The first 

step is an alkylation with an alkyl halide, followed by the addition of a trifluoroacetyl group in 

the case of an indole core. Next is the hydroxylation of the methyl ester group for the indazole 

compounds and trifluoroacetyl group for the indole compounds. The final step is an amidation 

using either (D-) or (L-) tert-leucine methyl ester or valine methyl ester. The hydroxylation 

step was problematic for compounds with an indole core with the use of the hydroxylation 

method published by Banister et al, yielding no product. As an alternative approach, the starting 

material was dissolved in 20 % sodium hydroxide in water and heated to reflux for 18 h. This 

was an adaptation of a method reported by Corbett52 where in a similar compound, the 

trifluoroacetyl group attached to an indole core was hydrolyzed. This method gave satisfactory 

yields of 82.3-87.9 % and 81.1-87.3 % for 5F-MDMB-PICA (6) and MMB-CHMICA (15), 

respectively. The enantiomers of MDMB-4en-PICA (16) and MMB-4en-PICA (17) were also 

prepared using this method, but a lower yield was obtained, due to an isomer impurity which 

was likely formed from a by-product from the first step which was not sufficiently removed. 

Further clean-up was required, resulting in a lower yield. The yields and purities of all the 
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synthesized compounds are provided in Table 1. Enantiomer purity of all synthesized reference 

standards was assessed as being >99.5% using the chiral HPLC-PDA method described 

previously. 

 

3.2 In vitro biological activity at CB1-based receptor bioassay 

CB1 receptors detect extracellular signals through ligand binding and the formation of 

stabilized ligand-receptor complexes, and transmit these signals across the plasma membrane 

via receptor conformational changes to evoke a range of cellular responses54-56. Like all 

GPCRs, CB1 receptors span the plasma membrane of a cell from the extracellular (EC) face to 

the intracellular (IC) face and comprise seven transmembrane helices (TM). The orthosteric 

binding site/pocket is on the EC face and there is a G-protein and -arrestin binding region on 

the IC face. SCRA binding and receptor activation on the EC domain will induce 

conformational changes in the SCRA-receptor complex (signal transduction) and these 

conformational changes will initiate and modulate a variety of downstream signaling pathways 

which can be measured proximally (as in the in vitro -arrestin recruitment assay used in this 

study) or alternatively by measuring secondary messengers23. GPCRs are known to share 

common conserved activation mechanisms involving internal hydrogen bonding network 

rearrangement mediated by structurally conserved water molecules and a well-defined re-

orientation of the side-chain conformation of residues within the TM helices54-57. Many of these 

residues are thought to act as molecular switches (‘toggle switches’ or ‘microswitches’) and 

are believed to undergo positional changes upon ligand binding. Current knowledge related to 

CB receptors has been reviewed recently6 and two Cryo-EM structures of CB1-full agonist-Gi 

protein bound complexes have been solved with MDMB-FUBINACA (14)58 and AM84159, 

greatly increasing understanding of CB1-agonist interactions. Krishna Kumar et al. 58 recently 

solved a CB1-(S)-MDMB-FUBINACA-Gi receptor-ligand complex in its active state and  

Schoeder et al.60 have carried out a series of CB1 molecular docking calculations with a wide 

range of SCRA analogues.  

 

The in vitro CB1 activity data obtained in this study is summarized in Table 2 and provided 

graphically in section 4 of the supplementary information. Table 2 also includes our previously 

published data on four related valinate and tert-leucinate-3-indazole-carboxamide SCRA 

enantiomer pairs24. Where previously published data on the same compound tested using the 

same bioassay under similar conditions is available, this data has also been provided for 
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comparison23,24,48,49,61. Consistency and comparability between the SCRAs analyzed in 

different studies is demonstrated as in most cases the confidence intervals of the potency and 

efficacy values overlap. As expected, all investigated compounds were able to bind to and 

activate CB1 receptors, with (S)-enantiomers being consistently more potent than (R)-

enantiomers. (S)-MDMB-FUBINACA (14) was the most potent compound tested in this study, 

with CB1 activity in the sub-nanomolar range (EC50 = 0.245 nM), confirming previous studies 

indicating that the relative position of the functional groups and the rigid ‘C’-shape 

configuration of the (S)-enantiomer of this compound results in high potency58,60. This rigid 

‘C’-shape is also seen in high CB1 potency -carboline PEGACLONE-type SCRAs where the 

linker group is effectively fused to the core group e.g. Cumyl-PEGACLONE, (EC50 = 0.09-

0.23 nM)49,62 and 5F-Cumyl-PEGACLONE (EC50 = 0.58 nM)62. (S)-MMB-4en-PICA (17) was 

the least potent of the (S)-enantiomers studied here (EC50 = 149 nM) and (R)-MMB-4en-PICA 

(17) was the least potent compound of all those tested (EC50 = 481 nM). 

 

In vitro CB1 activation studies using a range of bioassays have consistently shown that 

compounds with a tert-leucine methyl ester head group (MDMB-compounds) are more potent 

than their valine methyl ester analogues (MMB-compounds)23,24,50,51,59. In our data, this is 

confirmed by comparison of (S)-MDMB-FUBINACA (14) with (S)-MMB-FUBINACA (4), 

(S)-5F-MDMB-PINACA (5) with (S)-5F-MMB-PINACA (11) and (S)-MDMB-4en-PICA (16) 

with (S)-MMB-4en-PICA (17), and the same comparisons between the equivalent (R)-

enantiomers in this study (Table 2). Upon SCRA binding, positional changes of the EC faces 

of TM1 and TM2 have been shown to reduce the volume of the orthosteric ligand-binding 

site55,56,58,59. As a result, the Phe2003.36 amino acid residue on TM3 rotates away from residue 

Trp3566.48 on TM6 (the interaction between these two amino acid residues is commonly 

referred to as the “toggle twin switch”), allowing  interactions between the Phe2003.36 

residue and the indazole core of MDMB-FUBINACA (14), stabilizing the active state-

conformation of the receptor. As the Trp3566.48 residue is displaced it causes a positional 

change in the IC end of TM6 in the G-protein binding region, influencing downstream 

signaling. The methyl ester moiety of MDMB-FUBINACA (14) is reported to interact with the 

His1782.65 residue on TM2 and the amide linker with a strongly bound water residue in this 

region (interactions between His1782.65, Ser3837.39 and the bound water molecule have been 

postulated)52,53,55,56. Less information is available on the interaction of the other end of the head 

group (tert-butyl or dimethyl moieties) with CB1 receptor binding pocket residues. 



 

 
This article is protected by copyright. All rights reserved. 

 

Our CB1 activity data for tert-leucine methyl ester (MDMB-type) and valine methyl ester 

(MMB-type) SCRA enantiomer pairs, as measured by the in vitro -arrestin recruitment assay 

(Table 2 and Figure S4), supports the view that the size and spatial configuration of this part 

of the SCRA and its interaction with CB1 receptor residues within the binding pocket has a 

significant effect on compound potency. The difference in potency between MMB-type 

enantiomer pairs (R/S EC50 ratio 3.23-11.6) is significantly lower than the difference in potency 

of the tert-leucine methyl ester MDMB-type enantiomer pairs (R/S EC50 ratio 74.8-374). This 

difference may be due to the relative bulk of the tert-butyl moiety and its relative inflexibility 

in interacting with important receptor residues within the CB1 orthosteric binding pocket. 

Changes in the orientation of the tert-butyl moiety of the MDMB-type SCRAs due to chirality 

is therefore suggested to have a much greater effect on MDMB-type SCRA-CB1 residue 

interactions. The MMB-type SCRAs are likely to have more flexibility within the binding 

pocket in this region and are therefore able to maintain, at least to some extent, the required 

receptor residue interactions when the conformation changes from (S) to (R).  

 

The aromatic core of the SCRA molecules included in this study is likely to be involved in  

interactions with the Phe2003.36 residue, as seen for the agonists MDMB-FUBINACA (14)58 

and AM84159. In line with previous studies using the same bioassay23, a cAMP assay60, and 

the FLIPR® membrane potential assay 50,51,63 (secondary messenger assays), the potency of the 

indazoles studied (‘INACA’ compounds) here are similar to their corresponding indole 

analogues (‘ICA’ compounds). This is exemplified by comparison of the EC50 value of (S)-5F-

MDMB-PINACA (5) (1.78 nM, from our previous study) with that of the (S)-5F-MDMB-PICA 

(6) (2.13 nM, this study) and the EC50 values of (S)-MDMB-4en-PINACA (8) and (S)-MDMB-

4en-PICA (16) (1.11 and 3.70 nM respectively, both this study).  

 

To study the combinational effects of these structural variants (head/core groups), Figure 2a 

compares the SCRA analogues (S)-MDMB-4en-PINACA (8), (S)-MDMB-4en-PICA (16) and 

(S)-MMB-4en-PICA (17), and demonstrates that (S)-MMB-4en-PICA is the least potent of 

these (EC50, 149 nM) due to the presence of both the isopropyl (MMB) moiety on the head 

group and a potential additive effect of an indole (I) core. (R)-MMB-4en-PICA was the least 

potent of all the SCRAs tested in the study, demonstrating the even greater effect of chirality 

in reducing the potency (EC50, 481 nM). In terms of efficacy, with the exception of MMB-
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CHMICA (15) and 5F-MMB-PINACA (11), all (S)-enantiomers were more efficacious than 

their corresponding (R)-enantiomers, as noted in our previous study24. MMB-CHMICA (15) 

and 5F-MMB-PINACA (11) have the same maximal response (efficacy) for both enantiomers. 

This may occur as a result of the -arrestin recruitment assay reaching its maximal receptor 

reserve64,65 meaning that the assay cannot differentiate them, which in turn indicates that these 

compounds are particularly efficacious. The receptor reserve effect is, however, more 

commonly observed in CB1 assays measuring secondary messengers (e.g. cAMP, FLIPR, etc.) 

than in assays measuring more proximal signaling pathways, such as -arrestin recruitment or 

G-protein activation23. Therefore, this finding requires further investigation. 

 

The assay data for the (S)-enantiomers of the currently most prevalent SCRAs in Scottish 

prisons (5F-MDMB-PICA (6), 4F-MDMB-BINACA (7) and MDMB-4en-PINACA (8)) are 

compared in Figure 2b, demonstrating that, as highly potent and efficacious CB1 agonists, they 

are all likely to have similar CB1-mediated effects if consumed in the same manner (e.g. 

vaping) by the same user at the same concentration and if they have similar pharmacokinetic 

properties. This assessment does not, however, account for any effects of these substances 

which are not mediated via the CB1 receptor. 

 

3.3. Chiral separation of valinate and tert-leucinate indole- and indazole-3-carboxamide 

SCRA enantiomers 

We previously described the development of a method for the separation of the enantiomers of 

AB-FUBINACA (1), MMB-FUBINACA (4), 5F-MDMB-PINACA (5) and AB-CHMINACA 

(13) using Lux® Amylose-1 and Lux® i-Cellulose-5 chiral HPLC columns24. The selectivity of 

the same chiral columns for the eight additional SCRA enantiomer pairs synthesized in this 

study was investigated. Chromatograms showing the optimum separation of each enantiomer 

pair are provided in section 3 of the supplementary information.  Enantiomers of the tert-

leucine methyl ester compounds (MDMBs) with indazole cores, 4F-MDMB-BINACA (7), 

MDMB-4en-PINACA (8) and MDMB-FUBINACA (14)  

were all resolved at 50:50 and 55:45 MilliQ H2O:ACN on the Lux® Amylose-1 column and all 

but 4F-MDMB-FUBINACA were resolved at 45:55 MilliQ H2O:ACN with MDMB-

FUBINACA enantiomers demonstrating the greatest retention (Figure S5a). As noted 

previously24, 5F-MDMB-PINACA (5) enantiomers, like 4F-MDMB-BINACA (7) 
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enantiomers, were resolved at both 50:50 and 55:45 MilliQ H2O:ACN and the chromatograms 

are provided in the supplementary information for reference (Figure S5a).  

 

The tert-leucine methyl ester (MDMB-type) indole-3-carboxamides, 5F-MDMB-PICA (6) and 

MDMB-4en-PICA (16) (Figure S5b), were close to being resolved on the Lux® Amylose-1 

column, but only at 55:45 MilliQ H2O:ACN, indicating the role of the core moiety in the chiral 

separation mechanism.  

 

Of the valine methyl ester SCRAs, the enantiomers of MMB-FUBINACA (4), with an indazole 

core and a fluorobenzyl tail, were resolved on the Lux® Amylose-1 column at 50:50 and 55:45 

H2O:ACN (Figure S5c) as reported previously24. Enantiomers of 5F-MMB-PINACA (11), a 

valine methyl ester SCRA with an indazole core and a terminal fluorine, was not fully resolved 

at 55:45 H2O:ACN (Figure S5c). The enantiomers of the remaining valine methyl ester SCRAs 

with indole cores included in this study, MMB-CHMICA (15) and MMB-4en-PICA (17), were 

not resolved on the Lux® Amylose-1 column. The Lux® i-Cellulose-5 column resolved the 

enantiomers of MMB-CHMICA (15) and MMB-4en-PICA (17) at 55:45 H2O:ACN, although 

the elution order was reversed, with the (S)-enantiomer eluting before the (R)-enantiomer 

(Figure S5d). The resolution of the other SCRAs was not improved from that achieved with 

the Lux® Amylose-1 column and the elution order did not change (data not shown).   

 

The chiral selector requires a three-point interaction with the SCRA for optimum separation 

efficiency. For the Lux® Amylose-1 stationary phase, selectivity is optimized for those SCRAs 

with a bulky tert-butyl moiety on the head group (MDMB-type SCRAs), an indazole core and 

increased electronegativity/-electron density in the tail group (e.g. fluorobenzyl group > 

alkene > terminal fluorine). For the Lux® i-Cellulose-5 column, selectivity is optimized for 

SCRAs with a less bulky isopropyl head group (MMB-type compounds) and the elution order 

is reversed for SCRAs with the MMB-type head group and an indole core. 

 

3.4. Qualitative analysis of prison-sourced infused paper samples  

Sample information and analytical data for the SCRA infused papers included in this study are 

provided in Table S2b of the supplementary information. Non-chiral data related to samples 

seized in three Scottish prisons between 1st June 2018 and 27th September 2019 has been 

reported previously12 and qualitative and quantitative analytical data is included here for 
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reference. Infused papers and cards seized between 28th September 2019 and 12th February 

2020 from a single Scottish prison (prison 1) are reported in this study for the first time. These 

samples originated from the analysis of 86 separate seizures, comprising 98 individual 

paper/card samples (within a single seizure, there were often multiple paper/card samples; 

samples with similar visual characteristics, e.g. paper/card type, ink/handwriting style, etc. 

were treated as single samples and sampled accordingly). Of the 86 new seizures examined, 45 

were found to include papers and cards infused with SCRAs (63 individual paper samples, data 

provided in Table S2b), 38 seizures contained no controlled drug and trace levels of non-SCRA 

controlled drugs were found on 3 paper samples (cocaine, amphetamine and ketamine/2-

fluorodeschloroketamine; data not shown). The previously observed market evolution from 5F-

MDMB-PINACA (5) to 5F-MDMB-PICA (6) and 4F-MDMB-BINACA (7), then to 4F-

MDMB-BINACA (7) and MDMB-4en-PINACA (8) between June 2018 and 22nd September 

201912 continued between 28th September 2019 and 12th February 2020. During this period, in 

prison 1, MDMB-4en-PINACA (8) was the most detected SCRA, either alone or in mixtures 

with 4F-MDMB-BINACA (7), 5F-MDMB-PICA (6) or both. A comparison of the previously 

reported and newly reported data from prison 1 over the two time periods is summarized 

graphically in section 6 of the supplementary information. 

 

3.5. Chiral profiling of seized samples containing SCRAs 

From 1 June 2018 to 12 February 2020, 177 SCRA seized paper samples originating from 126 

seizures from three Scottish prisons were analyzed by chiral HPLC-PDA. Chiral profiling was 

carried out on available paper sample extracts shown by qualitative analysis to contain MMB-

FUBINACA (4) (n=5), 5F-MDMB-PINACA (5) (n=40), 5F-MDMB-PICA (6) (n=58), 4F-

MDMB-BINACA (7) (n=60) and MDMB-4en-PINACA (8) (n=47), bearing in mind that some 

infused paper extracts contained multiple SCRAs. The percentage of (R)- and (S)-enantiomers 

detected is provided in the supplementary information (Table S2b) and for those samples where 

the seizure date was available (n=159), is shown in Figure 3. The majority of the SCRAs 

analyzed in this study from seized infused papers were, for all intents and purposes, present in 

an enantiopure form (>98 % (S)-enantiomer), consistent with data from previous studies44,45,66 

. The (S)-tert-leucine methyl ester chiral precursor of the MDMB-type SCRAs in this study is 

widely available and produced efficiently on an industrial scale with a high degree of reported 

enantiopurity (>99 %)25. However, in 18 of the 210 (8.6 %) individual SCRA enantiomer pair 

analyses of the samples carried out, the proportion of the (R)-enantiomer was higher than 2 % 

of the total enantiomer pair peak area. Of these, 11 samples contained 4F-MDMB-BINACA 
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(7), 5 contained MMB-FUBINACA (4) and 2 contained 5F-MDMB-PINACA (5). Of the 4F-

MDMB-BINACA (7) containing samples, proportions of the (R)-enantiomer ranged from 2.2 

to 16.2 %. Example chiral chromatograms from seized samples containing higher proportions 

of (R)-4F-MDMB BINACA (7) are provided in Figure 4a and 4b. Figure 4a shows the HPLC-

PDA chromatogram for sample FL19/0129 in 50:50 MilliQ H2O:ACN; the green 

chromatogram relates to a 1L injection and the blue chromatogram relates to a 5 L injection. 

Figure 4b shows an overlay of two samples, which both contain 4F-MDMB-BINACA. The 

green chromatogram depicts the same sample as in Figure 4a, which contains 11.9 % (R)-

enantiomer. The blue chromatogram depicts sample FL19/0215-G, which also contains 4F-

MDMB-BINACA, but only 0.4 % (R)-enantiomer is present. This shows the enantiomeric 

variability in seized samples. Chromatograms and spectra showing the comparison of a seized 

sample extract with an (R)-enantiomer higher than 2 % of the (S)-enantiomer with a racemic 

4F-MDMB-BINACA (7) reference standard is provided in section 3a-b of the supplementary 

information, along with further examples of chiral analysis results (supplementary information 

section 3c-f).  

 

The reason for this enantiomeric variability uncommon, but potentially significant variation in 

enantiopurity may be the utilization of different batches of precursor material with varying 

enantiopurity in the synthesis. One possibility for this variation in enantiopurity is that the 

enantiomeric starting material was not pure, or that a mix of the (R)- and (S)-enantiomers was 

used. Variation in enantiopurity of SCRAs in seized samples has been reported previously, 

notably by Doi et al.44 who analyzed 11 seized herbal samples containing 5F-AB-PINACA 

(10) and 5F-MMB-PINACA (11). Of the 11 samples tested, 9 were enantiopure, containing 

only the (S)-enantiomer, however, two samples contained 13.7 and 10.2 % of the (R)-

enantiomer respectively. Taken together, this data indicates that there is some meaningful 

variation in the enantiopurity of SCRAs in seized samples, which could potentially be used for 

batch profiling purposes, especially when the presence of the (R)-enantiomer to any extent is 

so unexpected.   

 

3.6. Pharmacological evaluation of SCRA-infused papers seized in Scottish prisons 

To the best of our knowledge, users of SCRAs in prisons are unaware of the specific 

compounds present in the infused papers they are vaping, have no indication of the potency 

compared to previous compounds they have been exposed to and have no way of knowing the 
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concentration of drug present or the ‘appropriate’ dosage unit (area of paper used in the e-

cigarette) to obtain a desired effect. Norman et al.12 showed that SCRA concentrations vary 

between infused papers (<0.05-1.17 mg/cm2), with lower concentrations likely to be present 

due to cross contamination of SCRA-infused papers and non-infused papers in sample bags, 

and concentrations were found to vary considerably across infused sheets of paper, depending 

on how they are prepared.  

 

Previously, we proposed a method of calculating the estimated intrinsic potency (EIPCB1) to 

compare the potential CB1-mediated harms of seized samples. This methodology used the 

potency of each SCRA (EC50) at CB1 relative to the potency of a reference compound (in this 

case, JWH-018), the concentration of the SCRA present and its enantiopurity24. To calculate 

the EIPCB1 for this set of SCRA-infused papers, we would need to combine the potency data 

from two studies (this study and Antonides et al. 24). However, as also seen in other 

studies46,48,49, there can be an intrinsic variability in the EC50 value obtained for the reference 

(i.e. JWH-018). In this case, despite the EC50 values for JWH-018 being of the same order of 

magnitude (Table 1: 14.2 vs. 45.1 nM; Figure 2b), the difference between both obtained values 

would have a profound impact when using them as a comparator in the previously proposed 

EIP calculation. The use of (relative) efficacy data (Emax) to calculate the estimated intrinsic 

efficacy at the CB1 receptor (EIECB1) might prove to be more robust for the proposed 

calculations, as the Emax of the reference compound will always be set at 100 %, and therefore, 

the data of distinct studies will be compatible and more easily comparable. Another reason to 

opt for using Emax values was derived from recent insights into opioid signaling, where in vitro 

efficacy was found to better correlate with in vivo (side) effects, the efficacy being inversely 

correlated with the therapeutic window67-70. The equations for calculating the EIECB1 values 

are provided in the methods section (section 2.8). 

 

Data for 112 samples from three Scottish prisons sampled between June 2018 and September 

2019, for which both concentration data (from a previous study12) and chiral profiling data 

(from this study) are available, were used to calculate EIECB1 values (see Table S2b in the 

supplementary information).  

 

Where qualitative analysis (which uses 2 x 1 cm2 paper sample area) detected a particular 

SCRA, but the qualitative method (which uses a 3 mm diameter punched paper sample) gave 

a result below the limit of quantitation (LOQ), a value equal to half of the LOQ was used for 
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the calculation. LOQs ranged from 0.05-0.09 mg/cm2 paper, calculated as previously 

described12. 

 

The concentrations of the individual SCRAs (<0.05-1.17 mg/cm2 paper) detected in these 112 

samples are described in Figure 5a and Figure 5b summarizes the calculated EIECB1 values. 

This provides a comparison of the intrinsic efficacy of samples containing different SCRAs or 

mixtures of SCRAs in the same sample. As shown by the data in Figure 5b, it is likely that all 

samples would give rise to similar CB1-mediated effects, due to their similar concentration 

ranges and similar high efficacy, if the dose (the amount of infused paper used and the 

concentration of SCRAs present) was kept constant and their pharmacokinetic properties were 

similar. 

 

Variability of the CB1-mediated effects experienced by a user may therefore be more 

influenced by the (unpredictable) dose taken, the mode of use and individual physiological 

factors, rather than the differences in the SCRA compounds present on the paper. The presence 

of multiple SCRAs in the same infused paper sample, at least in the mixtures observed in this 

study, does not give rise to higher sample estimated intrinsic efficacy. 

 

The presence of a relatively small proportion of the (R)-enantiomer of a highly potent SCRA 

compound (e.g. with EC50 = 0.1-10 nM) is likely to have little to no impact on the 

pharmacological effects of vaping SCRA-infused papers. For example, sample FL19/0129, 

seized in prison 3 (see Table S2b in the supplementary information for further details), contains 

0.47 mg/cm2 4F-MDMB-BINACA (7), of which 11.9 % is the (R)-enantiomer. This would 

theoretically cause a relative reduction of 6 % in estimated intrinsic efficacy at the CB1 receptor 

compared to a sample containing only the (S)-enantiomer. This is likely to be of little 

toxicological or pharmacological significance due to the high intrinsic potency of the (S)-

enantiomer. In samples that contain SCRA mixtures, the influence of the presence of the (R)-

enantiomer of one of the compounds will have even less of an influence. For example, sample 

FL19/0207-2 contains 0.47 mg/cm2 of 5F-MDMB-PICA (6), which is essentially enantiopure 

(99.5 % (S)-enantiomer), and 0.11 mg/cm2 of 4F-MDMB-BINACA (7), with 16.2 % of the 

(R)-enantiomer present. In this case the presence of the (R)-enantiomer theoretically reduces 

the overall total efficacy of the sample by only 1.4 %, with little or no toxicological or 

pharmacological significance. 
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Previously published data12, and the more recent data present in this study, have demonstrated 

that SCRA compounds present in infused papers in Scottish prisons have changed over time. 

They are likely to continue to evolve in the future due to the availability and prevalence of 

particular SCRAs on the wider illicit drugs market. Understanding this evolving SCRA market 

in a wider context helps to maintain and future-proof screening methods used to detect SCRAs 

in incoming mail and limit and disrupt supply into prisons. Additionally, it can also enable 

prediction of the potential for harm from emerging drug threats, allowing a pre-emptive 

evaluation of potential risk to prisoners and prison staff based on the available information on 

their pharmacology. Of the most prevalent compounds currently detected in Scottish prisons, 

5F-MDMB-PICA (6) and 4F-MDMB-BINACA (7), but not MDMB-4en-PINACA (8), are 

scheduled for international control in November 202071. 5F-MDMB-PINACA (5) was 

controlled by the People’s Republic of China in September 2019, leading to its effective 

disappearance from Scottish prisons a few months later12. Based on past experience, if such 

control is replicated in source/producer jurisdictions, these SCRAs are likely to disappear 

rapidly from the Scottish prison market, to be replaced with other, less well-studied emerging 

SCRAs. For example, new valinate and tert-leucinate indazole-3-carboxamide compounds 

continue to be detected. 4F-MDMB-BICA [methyl 2-(([1-(4-fluorobutyl)-1H-indol-3-

yl]carbonyl)amino)-3,3-dimethylbutanoate], the indole analogue of 4F-MDMB-BINACA (7); 

5F-EMB-PICA [ethyl 2-([1-(5-fluoropentyl)indole-3-carbonyl]amino)-3-methyl-butanoate], 

an analogue of 5F-MDMB-PICA (6); and MMB-4en-PICA (17), included in this study as an 

emerging compound, have been seized and reported to early warning systems in the United 

States72-74  and Europe75,76. 5F-EMB-PICA and 4F-MDMB-BICA have been detected in 

Scottish prisons for the first time in May 202077. Using the available CB1 receptor structure-

activity relationship (SAR) data for this class of SCRAs, we can begin to pre-emptively 

evaluate/predict the relative potential for CB1-mediated harms of emerging compounds. This 

approach should be supported using in silico tools and utilizing the available ground-truth in 

vitro datasets to predict the pharmacological profiles of emerging and yet to emerge SCRA 

compounds.  

 

4. Conclusions 

Sixteen enantiopure SCRA reference standards (eight enantiomer pairs) were synthesized. The 

potency of each enantiomer was determined using an established CB1 activity-based bioassay. 

For all enantiomer pairs, the (S)-enantiomer was more potent (EC50, 0.245-149 nM) than the 

(R)-enantiomer (EC50, 76.4-1076 nM).  The study provides additional information on the likely 
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interaction such SCRAs have with the orthosteric binding site of the CB1 receptor and has 

further illustrated the importance of the size and spatial orientation of the ‘head’ group of these 

compounds in determining their potency and efficacy. The difference in potency, as determined 

by an in vitro bioassay, between enantiomers is greatest when the bulky tert-butyl moiety is 

present (MDMB-type SCRAs). Using an expanded chiral chromatography method, this study 

identified some variation in enantiopurity in a small number of samples with up to 16.2 % of 

the (R)-enantiomer of 4F-MDMB-BINACA (7) being detected in one sample. This indicates 

the potential for chiral profiling to be included as a supplementary batch profiling technique to 

be applied in future to seized and test purchased SCRAs. Combining analytical and 

pharmacological data, the concept of estimated intrinsic efficacy (EIECB1) was applied to 

SCRA-infused papers seized in Scottish prisons allowing some comparison of the likely CB1-

mediated effects between samples containing different SCRA compounds, and in some cases 

mixtures of SCRA compounds. This approach indicated that whilst the individual SCRAs 

detected in Scottish prisons may evolve over time, all compounds detected recently have 

similar high potency and efficacy, and are likely to cause similar CB1-mediated effects. 

Increased harms may therefore be predicted if the dose of the SCRAs increased (prisoners 

taking larger paper samples for vaping) or the concentrations present increased or even higher 

potency SCRAs emerged without a concurrent decrease in concentration. Increased knowledge 

of CB1 receptor-related SARs for SCRAs, together with an understanding of the concentrations 

of SCRAs present in infused papers alone or in mixtures, allows pre-emptive evaluation of the 

potential harms of newly emerging compounds in custodial settings. 
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Table 1 Enantiospecific synthesis of 16 indazole- or indole-3-carboxamide synthetic 

cannabinoids. Compound numbering relates to that provided in Figure 1. The reagents are N-

(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC·HCl), 1-

hydroxybenzotriazole hydrate (HOBt), diisopropyl amine (DIPEA) and the solvent is 

dimethyl sulfoxide (DMSO). The mixture was stirred at room temperature (r.t.) for 18 h. 

 

 

Reagents and conditions: a) appropriate amino acid, EDC·HCl, HOBt, DIPEA, DMSO, r.t., 18 h. 

Compound R1 X R2 R3 [amino acid] Yield Purity 

(6) (R&S) 5F-MDMB-PICA 5-Fluoropentyl CH CH(CH3)3 OCH3 [tert-Leucine methyl ester] 89.4 % & 87.9 % >98.7 % 

(7) (R&S) 4F-MDMB-BINACA 4-Fluorobutyl N CH(CH3)3 OCH3 [tert-Leucine methyl ester] 94.2 % & 91 % >99.7 % 

(8) (R&S) MDMB-4en-PINACA 4-pentene N CH(CH3)3 OCH3 [tert-Leucine methyl ester] 93.5 % & 88.0 % >99.7 % 

(11) (R&S) 5F-MMB-PINACA 5-Fluoropentyl N CH(CH3)2 OCH3 [Valine methyl ester] 88.1 % & 84.4 % >99.9 % 

(14) (R&S) MMB-CHMICA Cyclohexylmethyl CH CH(CH3)2 OCH3 [Valine methyl ester] 81.1 % & 87.3 % >99.6 % 

(15) (R&S) MDMB-FUBINACA 4-Fluorobenzyl N CH(CH3)3 OCH3 [tert-Leucine methyl ester] 84.7 % & 82.2 % >99.9 % 

(16) (R&S) MDMB-4en-PICA 4-pentene CH CH(CH3)3 OCH3 [tert-Leucine methyl ester] 29.0 % &23.6 % >99.7 % 

(17) (R&S) MMB-4en-PICA 4-pentene CH CH(CH3)2 OCH3 [tert-Leucine methyl ester] 38.3 % & 35.8 % >99.7 % 
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Table 2 EC50 and Emax (relative to JWH-018, the reference) values at CB1 as a measure of 

potency and efficacy, respectively, of valinate and tert-leucinate indole- and indazole-3-

carboxamide enantiomer pairs in this and previous studies. Numbers in bold parenthesis refer 

to compound numbering provided in Figure 1. 

  

SCRA 

 

CB1 EC50 (nM) 

(± 95% CI) 

(R)/(S) 
Potency  

Ratio 

Emax (%) 

(± 95% CI) 

Data 

Source 

CB1 EC50 (nM) 

(± 95% CI) 

[reference] 

Emax (%) 

(± 95% CI) 

[reference] 

 JWH-018 14.2 (7.61-27.9) - 100 (90.1-112) 

This 
Study 

- - 

(6) 
(S)-5F-MDMB-PICA 2.13 (0.685-5.61) 

105 
289 (259-325) 3.26 (2.07-5.15)48 331 (311-351)48 

(R)-5F-MDMB-PICA 224 (102-781) 121 (97.5-167) - - 

(7) 
(S)-4F-MDMB-BINACA 2.87 (1.10-7.71) 

374 
255 (222-289) 1.74 (1.22-2.49)49 253.6 (237-270)49* 

(R)-4F-MDMB-BINACA 1076 (497-2328) 128 (106-154) - - 

(8) 
(S)-MDMB-4en-PINACA 1.11 (0.54-2.26) 

206 
226 (203-253) 2.47 (1.19-5.27)61 239 (212-270)61 

(R)-MDMB-4en-PINACA 229 (141-397) 197 (176-220) - - 

(11) 
(S)-5F-MMB-PINACA 7.99 (4.22-13.0) 

11.6 
202 (185-221) 15.1 (10.2-23.9)23 259 (238-287)23 

(R)-5F-MMB-PINACA 93.0 (63.1-126) 193 (178-210) - - 

(14) 
(S)-MDMB-FUBINACA 0.245 (0.0786-0.667) 

364 
248 (218-282) 0.36 (0.17-0.69)23 241 (221-263)23 

(R)-MDMB-FUBINACA 89.2 (40.5-178) 127 (106-151) - - 

(15) 
(S)-MMB-CHMICA 9.51 (5.11-19.5) 

8.03 
254 (225-299) - - 

(R)-MMB-CHMICA 76.4 (39.8-140) 253 (225-281) - - 

(16) 
(S)-MDMB-4en-PICA 3.70 (2.21-6.13) 

74.8 
289 (259-325) 11.5 (5.12-33.2)61 302 (256-391)61 

(R)-MDMB-4en-PICA 277 (154-494) 49.8 (44.0-55.9) - - 

(17) 
(S)-MMB-4en-PICA 149 (80.9-290) 

3.23 
172 (154-191) 125 (64.6-332)61 191 (163-237)61 

(R)-MMB-4en-PICA 481 (183-1161) 76.4 (39.8-140) - - 

 JWH-018 45.1 (32.4-62.9) - 103 (97.1-109) 

24 

- - 

(1) 
(S)-AB-FUBINACA 12.9 (10.1-18.1) 

115 
283 (265-302) 15.6 (10.4-23.2)48 324 (302-346)48 

(R)-AB-FUBINACA 1480 (977-4770) 90.2 (78.6-127) - - 

(4) (S)-MMB-FUBINACA 9.11 (6.07-14.1) 
6.12 

267 (247-293) - - 

 (R)-MMB-FUBINACA 55.8 (39.3-78.1) 154 (144-164) - - 

(5) 

(S)-5F-MDMB-PINACA 1.78 (0.72-4.11) 

73.1 

331 (293-406) 0.84 (0.52-1.24)23 

0.18 (0.13-0.27)49 

319 (291-354)23 

250 (236-264)49* 

(R)-5F-MDMB-PINACA 131 (98.6-174) 180 (170-190) - - 

(13) 
(S)-AB-CHMINACA 6.16 (4.49-8.55) 

51.8 
324 (307-344) 3.45 (1.96-6.14)23 391 (358-435)23 

(R)-AB-CHMINACA 319 (242-420) 113 (107-119) - - 

*: Emax in the referenced paper was calculated in reference to CP55940. For comparability, these numbers were 

recalculated in reference to JWH-018.  
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Figure 1: Structures of AB-FUBINACA (1), MDMB-CHMICA (2), ADB-FUBINACA (3), 

MMB-FUBINACA (4), 5F-MDMB-PINACA (5), 5F-MDMB-PICA (6), 4F-MDMB-BINACA 

(7), MDMB-4en-PINACA (8), Cumyl-5F-PINACA (9), 5F-AB-PINACA (10), 5F-MMB-

PINACA (11), MDMB-CHMZCA (12), AB-CHMINACA (13), MDMB-FUBINACA (14), 

MMB-CHMICA (15), MDMB-4en-PICA (16) and MMB-4en-PICA (17). Chiral centers are 

identified with an asterisk on the structure and compounds with stars after the name were 

synthesized during this study. The compounds are grouped together based on their structural 

class, as is indicated by the boxes. Compounds that were synthesized as part of this study and 

our previous study24 are colored black whereas compounds that are mentioned in the text, but 

were not synthesized are colored grey. 
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Figure 2: Concentration-dependent interaction of CB1 with βarr2 upon stimulation with (a) 

(S)-enantiomers of SCRAs with alkene-type tails and the (b) most prevalent SCRAs currently 

detected in Scottish prisons. AUC, area under the curve (luminescence over time). Data are 

given as mean receptor activation ± SEM (n = 3), normalized to the Emax of JWH-018 (= 100 

%). Numbers in parenthesis refer to compound numbering provided in Figure 1. 
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Figure 3: Chiral profiling data (% (R)-enantiomer detected) for SCRAs in infused paper 

samples seized in Scottish prisons between June 2018 and February 2020. Number of 

detections: MMB-FUBINACA (4), n = 5; 5F-MDMB-PINACA (5), n= 36 (4 detections not 

included due to missing seizure dates); 5F-MDMB-PICA (6), n = 42 (13 detections not included 

due to missing seizure dates); 4F-MDMB-BINACA (7), n = 57 (4 detections not included due 

to missing seizure dates); MDMB-4en-PINACA, n = 45 (4 detections not included due to 

missing seizure dates). Numbers in parenthesis refer to compound numbering provided in 

Figure 1. 
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Figure 4: (a) Overlaid HPLC-PDA chromatogram for sample FL19/0224-2 (1 L (green) and 

5 L (blue) injections; (b) Overlaid HPLC-PDA chromatograms for 1L injections of samples 

FL19/0224-2 (green) and FL19/0215-G (blue). Peak Identification – 1: (R)-4F-MDMB-

BINACA (7), 2: (S)-4F-MDMB-BINACA (7), 3: (S)-5F-MDMB-PICA (6), 4: (S)-MDMB-4en-

PINACA (8). Numbers in parenthesis refer to compound numbering provided in Figure 1. 
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Figure 5: (a) Summary of SCRA concentrations detected in infused papers seized in Scottish 

prisons June 2018-September 2019 for samples where chiral profiling data is also available; 

(b) Summary of estimated intrinsic CB1-mediated potency (EIECB1) data for infused papers 

seized in Scottish prisons June 2018-September 2019. Numbers in parenthesis refer to 

compound numbering provided in Figure 1. 
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The pharmacology of a group of 16 enantiopure carboxamide-type SCRAs is examined and a chiral 

chromatography method to analyse a large group of seized prison samples is applied. The potency, 

efficacy, concentration and enantiopurity of the individual SCRAs all contribute to the overall potency 

and efficacy of seized samples.  

 

 

 

Example from DTA on next page 

 

 

 

 
 

 
Shape Matters: The Application of Activity-Based In Vitro Bioassays and Chiral Profiling to the Pharmacological 

Evaluation of Synthetic Cannabinoid Receptor Agonists in Drug-Infused Papers Seized in Prisons 
Lysbeth H. Antonides1, Annelies Cannaert2, Caitlyn Norman1, Niamh Nic Daeid1, Oliver B. Sutcliffe3, Christophe P. Stove2*, Craig 

McKenzie1* 

 

 

 

 

 

 

 

 



 

 
This article is protected by copyright. All rights reserved. 

 
 

 

 


