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Highlights 

• PCA – hierarchical clustering model was built from fentanyl analogues EI-MS data. 

• Model allows classification of 67 analogues with 91% accuracy. 

• Classification is based on position of modification and moiety introduced.  

• Method can assist structural elucidation of novel analogues.  

 

Abstract 

The emergence of a wide variety of fentanyl analogues has become a problem for the identification 

of seized drug samples. While chemical databases are largely reactive to the emergence of new 

analogues, efforts should focus on the development of predictive models which can discern how 

new analogues differ from the parent drug. Principal component analysis (PCA) was performed 

on mass spectral data from 54 fentanyl analogues. Hierarchical clustering was used to group these 

analogues into meaningful classes. The model was able to classify 67 analogues not previously 

included in the model with high accuracy, based on the nature and position of the chemical 

modification.  
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1. Introduction 

Abuse of the synthetic opioid fentanyl started in the 1980s and has grown ever since into a serious 

threat for public health. [1-4] A marked increase in lethal overdoses linked to fentanyl and its 

analogues has been observed in the last decade. Although it is most prevalent in the United States, 

fentanyl has been reported in fatalities in Canada, Australia and Europe, making it a global issue. 

[5-9] The increase in fentanyl abuse has been associated with the emergence of a large variety of 

fentanyl analogues: between 2013 and 2019, the United Nations Office on Drugs and Crime 

(UNODC) reported more than 75 New Psychoactive Substances with opioid effect (including 

fentanyl analogues) in its Early Warning Advisory and this number keeps growing. [10] 

This quick emergence of synthetic analogues of controlled drugs constitutes a challenge for their 

identification because of the time it takes before extensive chemical characterisation of these 

analogues is disseminated in academic journals or specialised databases. [3, 11] The most 

commonly modified positions of fentanyl are highlighted in Figure 1. Permutations of these 

modifications are easily introduced in novel analogues by changing one or more synthetic 

precursors. While chemical databases of controlled drugs are reactive to the emergence of new 

analogues, proactive solutions should be considered to quickly identify future analogues. Efforts 

should thus focus on the development of predictive models which, when confronted with unknown 

drug analogues not present in a database, can still discern in what ways the analogues differ from 

the parent drug. 

N N

O
Amide

Aniline

Piperidine

Phenethyl chain

α

β

2'3'
4'

32
4

o

m

p
 

Figure 1. Commonly modified positions in fentanyl. 

 



Mass spectrometry data appears to be the ideal technique for this purpose, partly because of its 

widespread use: multiple gas chromatography-mass spectrometry (GC-MS) methods have been 

reported for the detection of fentanyl and its derivatives. [12-15]  GC-MS also allows the 

separation of multicomponent mixtures, which facilitates the detection of fentanyl in mixed 

samples. Moreover, m/z ions are indicative of specific modifications and their position on the 

molecule. How easily characteristic fragments can be identified by an experimenter can be greatly 

impacted by the complexity of mass spectra. Techniques based on dimensionality reduction, such 

as principal component analysis (PCA), are therefore perfectly suited for this type of analysis and 

can highlight unsuspected trends in spectral data. New observations can also be projected onto the 

PCA model to see how they relate to known analogues. [16] 

Multivariate analysis has been used to determine the synthetic route used to manufacture fentanyl 

samples based on an inventory of compounds detected by GC-MS, LC-MS/MS and ICP-MS. [17] 

It has also been used to differentiate fentanyl analogues from other drugs of abuse, based on their 

Raman spectra. [18] Principal component analysis has been used to highlight mass spectral 

differences between synthetic drug analogues, which tend to produce different ion ratios, and in 

one case to discriminate regioisomers of fluorofentanyl. [19-23] Recently, spectral similarity 

mapping was applied to group fentanyl analogue mass spectra based on their match factors. [24] 

Clustering mostly arose based on the number of peaks that shifted (0, 1 or 3) between an analogue 

and fentanyl, an indicator of the position of a structural modification.  

This paper proposes a principal component analysis model which organises data based on the 

presence of specific m/z ions. Coupled with hierarchical clustering, this allows the reliable 

classification of fentanyl analogues based on specific structural modifications. The model was 

built using the mass spectra of 54 analogues available in the SWGDRUG spectral library or 

acquired from in-house standards. Model evaluation was performed using 67 analogues not 

previously included in the model. This demonstrates that PCA allows clustering based not only on 

the structural position of a modification, but also on the moiety introduced. The model can be used 

to classify novel, emerging fentanyl analogues to assist in their structural elucidation. 

 

 



2.  Material and methods 

2.1 Analytes and gas chromatography-mass spectrometry (GC-MS) data acquisition 

A full list of the fentanyl analogues utilised in this study is provided in Table S1 (see 

Supplementary Information). Mass spectra for compounds 1-7, 20-21, 24-35, 39-43, 52-54, 56-60, 

62-63, 77, 87, 92-99 and 111 were acquired from standards synthesised in-house, in accordance 

with Manchester Metropolitan University’s controlled drug’s license (Ref. No. 423023) 

requirements and agreed procedures. Synthetic procedures were adapted from the literature and 

are reported in the Supplementary Information. [25-27] Spectra were acquired using an Agilent 

7890B GC and a MS5977B mass selective detector (Agilent Technologies, Wokingham, UK). The 

mass spectrometer was operated in the electron ionization mode at 70 eV. Separation was achieved 

with a capillary column (HP-5MS, 30 m length, 0.25 mm i.d., 0.25 μm film thickness) with helium 

as the carrier gas at a constant flow rate of 1.2 mL/min. A 2 μL aliquot of the samples was injected 

with a split ratio of 50:1. The injector and the GC interface temperatures were both maintained at 

280 °C and 290 °C respectively. The following oven temperature programme was used: 50-290 °C 

at 30 °C/min, hold for 8 minutes. The MS source and quadrupole temperatures were set at 230 °C 

and 150 °C respectively. Scan spectra were obtained between 41-550 amu. The remaining EI mass 

spectra were taken from the SWGDRUG spectral library (version 3.7, released June 4th, 2020). 

[28]  

All mass spectra were extracted in .csv format. Only peaks between m/z = 41 and 352 were retained 

and rounded to the nearest mass unit, and the dataset was zero-filled. Relative intensities were 

calculated, with the base peak normalized to an intensity of 1. The resulting dataset was imported 

into R statistical computing software (version 3.6.3). The software implementation that generates 

mass spectral similarity mappings of unknowns against a library of fentanyl analogue spectra (.csv 

format) is provided as Supplementary Information and available on Github 

(https://github.com/Nicolas-Gilbert/Fentanyl-PCA-HC). 

2.2 Principal component analysis (PCA) 

Compounds were separated into nine generic structural classes (see Supplementary Information, 

Table S2). Approximately half the compounds in each class (at least three) were selected randomly 

to build the model. These classes did not inform hierarchical clustering but served to have an even 



representation of possible structural classes. In total, 54 analogues were used to build the model. 

Variables (m/z ions) with a variance below 0.0001 were excluded as an initial clean-up, which 

reduced the dataset to 176 variables. This removed ions absent from all analogues, or ions that 

occurred very strongly in only one (or very few) compounds. Higher variance thresholds were 

tested and led to a loss of valuable information when building the model (i.e. poor separation of 

structural classes). Principal component analysis was performed with mean centering and data 

scaling, using the PCA function from the FactoMineR package (version 2.2). [29] Data 

visualisation was performed using the factoextra package (version 1.0.7). [30] 

 

2.3 Hierarchical clustering 

Hierarchical clustering was performed using the HCPC function from the FactoMineR package. 

This function uses inertia as a measure of inter- and intra-class variability. The ascendant 

hierarchical classification starts with as many classes as there are individuals, then groups classes 

in a way that maximises inter-class inertia (or intervariability). [29, 31] Grouping classes together 

can only lead to a decrease in the inter-class inertia, and the following equation (Eqn. 1) describes 

how the inertia of two classes a and b decreases when they are grouped together:  

Inertia(a) + Inertia(b) = Inertia(a ∪ b) −  mamb
ma+mb

d2(a, b)  Eqn 1. 

where ma and mb are the numbers of individuals in classes a and b and d2(a,b) is the squared 

distance between the centers of gravity of a and b. When a and b are grouped together, inertia is 

decreased by a value proportional to the distance between the two classes, weighted by the number 

of individuals in each class. The HCPC function uses Ward’s method, which aims to make the 

negative term of this equation as small as possible; it groups the two classes that lead to the smallest 

loss of inertia, then the next smallest loss, and so forth until this iterative process builds a full 

dendrogram. [29, 31] In the resulting dendrogram, when two classes are grouped together, the 

height of the branch represents the resulting loss of inertia. The user must specify the number of 

expected classes, but the nature of these classes arises entirely from the proximity of individuals 

in the dendrogram. The gap statistic method developed by Tibshirani et al. was also explored as a 

criterion for determining the number of clusters. [32] Cluster quality was evaluated using the 



silhouette coefficient (Si) method from factoextra, is defined in the following equation (Eqn. 2). 

[31, 33]: 

 Si = (bi−ai)
max(ai,bi)

 Eqn 2. 

For each individual i, the average dissimilarity ai between it and other members of its cluster is 

calculated. Then, the average dissimilarity between i and every other cluster is calculated; the 

smallest of these, i.e. the dissimilarity between i and its neighbour cluster, is noted bi. This 

coefficient can take values between -1 and 1 and measures the quality of clustering for each object. 

A coefficient near 1 means an object clusters almost perfectly, 0 means it lies between two clusters 

and a negative value indicates that an individual is likely in the wrong cluster. 

2.4 Model evaluation 

The spectra of 67 compounds, which were not included when building the model, were used for 

evaluation. These data were imported into R and the same m/z ions were removed as in the initial 

clean-up. Two classification criteria were compared based on their accuracy. Firstly, the centroid 

of each cluster was calculated, and test samples were classified based on the closest centroid. In 

contrast, test samples were also classified into the cluster of the closest individual, or nearest 

neighbour. 

 

3.  Results and discussion 

3.1  Principal component analysis (PCA) 

The model data consisted of 54 observations (compounds) of 176 variables (m/z ions). Because of 

the high number of variables, PCA was used to reduce the number of dimensions to a small number 

of principal components (PCs). Before selecting how many PCs should be retained, the 

information represented by each of the first principal components was examined. 

Figure 2 shows a projection of the model compounds on PCs 1 and 2 as well as the corresponding 

correlation circle. In the latter, m/z ions are coloured based on their squared cosine (cos2) values, 

which correspond to the squared cosine of the angle made between a variable and the PC axis. [16] 

The cos2 value correlates to the projection of a variable on a given PC. Mass ions with a high cos2 



are best represented by a given PC and, ultimately, are most characteristic of compounds projected 

in a given direction. For example, N-benzyl analogues gather in the lower left quadrant (Figure 

2a) and are most strongly characterised by m/z = 82, 91, 172, 173 and 174 (Figure 2b). These are 

piperidine or tropylium (m/z = 91) fragments which arise more strongly in N-benzyl than N-

phenethyl derivatives. [34] The structure of these ions will be further discussed in Section 3.2. 

PC1, on its positive axis, appears strongly characteristic of fluorinated derivatives, especially those 

bearing a propionylamide chain (Figure 2a). It also separates 3-fluoro- and methoxyaniline 

derivatives from the bulk, to a lesser extent. Positive values of PC2 characterises most amide 

derivatives and fluorophenethyl- compounds, while negative values are representative of chloro- 

and fluoro-aniline containing compounds. A combination of PC1 and PC2 separates N-benzyl 

derivatives from the rest of compounds. Projections on PCs 3 to 6 are reported shown in the 

Supplementary Information (see Figures S1 and S2). PC3 characterises chloro-aniline 

compounds, and PC4 is representative of methoxy-aniline compounds. Finally, PC5 serves to 

discriminate 3-fluoro compounds from the bulk. PC6 does not appear to contribute significantly 

to clustering, showing a rather even distribution of compounds along its axis. PCs beyond PC6 

explain decreasing proportions of the total variance and are unlikely to contribute to the model. 

Therefore, the first five PCs were retained, which explain 40.0% of the total variance in the data. 

A Scree plot of the eigenvalues of the first PCs is included in the Supplementary Information 

(Figure S3). The relatively low variance explained by the first PCs may be due to the nature of 

the data, and the overall variability of m/z ions across so many different types of analogues: much 

of the variance may remain in further PCs. A recent study using mass spectral data from synthetic 

phenethylamines and tryptamines obtained similarly low values of variance explained by the first 

PCs. [12] In this case as well, PCs were selected based on their importance in separating structural 

classes, rather than on a variance criterion.  



 

Figure 2. (a) Projection of model fentanyl analogues on principal components PC1 and PC2; (b) 

Correlation circle of m/z values projected on principal components PC1 and PC2, coloured 

according to cos2 values. 
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3.2 Hierarchical clustering 

As described in Section 2.3, a hierarchical clustering dendrogram was built from the PCA data 

(see Figure 3 for an example). Classes generated through hierarchical clustering are defined by 

“cutting” the dendrogram at an appropriate level. Therefore, the number of classes can be defined 

by the experimenter, but the composition of these classes arises solely from the clustering 

algorithm and the inertia criterion described in Section 2.3. 

The hierarchical clustering algorithm in FactoMineR automatically suggested seven classes in this 

case. By working its way from the top of the dendrogram, it calculated the relative gain of inertia 

of each grouping and suggested the grouping with the highest relative gain. In contrast, the gap 

statistic method suggested using eleven clusters. Both resulting dendrograms are shown in the 

Supplementary Information (Figure S4). Looking at Figure S4a (k = 7), clusters 5 and 7, which 

are the most heterogeneous according to their branch height, make little sense. Cluster 5 includes 

fluorophenethyl derivatives (33-35) with non-fluorinated analogues (27-32), while cluster 7 

includes N-benzyl derivatives (1-7) with fluoroaniline analogues (36-40), and each cluster could 

arguably be cut in half. In contrast, the partition obtained from the gap statistic, shown in Figure 

S4b (k = 11), contains too many groups. Clusters 1 and 2 separate two methoxyaniline derivatives 

(para-methoxyacrylfentanyl (47) and para-methoxymethoxyacetylfentanyl (48)) from the rest, 

which does not seem to be a useful distinction. Cluster 8 is composed of methylaniline derivatives 

(8-9, 14), while closely related compounds meta-methylacetylfentanyl (10) and meta-methyl-2-

furanylfentanyl (18) fall in cluster 9. In fact, cluster 9 includes analogues which remain close to 

the center of the PCA space, compounds which could potentially be resolved from the rest of the 

group by subtle differences in their mass spectra, but which explain a low percentage of the 

variance in this dataset. 

Based on these observations, partitions with k = 7 and 11 clusters inadequately represent the 

structural classes present in the dataset, as outlined in Table S2, and an intermediate partition with 

9 clusters would be best. This partition is called “Classifier 1” and is shown in Figure 3. Figure 4 

shows the same partition in the PCA space, on the PC1-PC2 plane. Although PCs 3-5 are omitted, 

they also contribute to the clustering. A detailed list of the compounds in each cluster is reported 

in Table 1.  

 



 
Figure 3. Classifier 1 dendrogram created from the hierarchical clustering of fentanyl analogues. 

Note: The vertical axis represents the loss of inertia caused by each grouping.  

 
Figure 4. Hierarchical clustering (Classifier 1) shown on the PC1-PC2 plane. Note: PCs 3-5 are 

not shown but also contribute to the clustering.  
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Table 1. Individuals in each cluster of Classifier 1. 

Cluster Fentanyl analogue Abbreviation No  Cluster Fentanyl analogue Abbreviation No 

1a N-Benzyl- 

Isobutyryl N-benzyl- iBuBn 1  

1c Amides 

Acryl- Acryl 28 
N-Benzyl- FentBn 2  Butyryl- Bu 29 

Cyclopropyl-N-benzyl- CyPrBn 3  Propionyl- Fent 30 
para-Fluoro-isobutyryl-N-benzyl- pF-Bn-iBu 4  Cyclopropyl- CyPr 31 

para-Fluoro-N-benzyl- pF-Bn-Fent 5  Isobutyryl- iBu 32 
Phenyl-N-benzyl- PhBn 6  

1d Fluorophenethyl 
(Propionyl) 

3’-Fluoro- 3'-F 33 
para-Fluoro-acetyl-N-benzyl- pF-Bn-Ac 7  4'-Fluoro- 4'-F 34 

1b Inconclusive 

meta-Methyl- mMe 8  2'-Fluoro- 2'-F 35 
ortho-Methyl-acetyl- oMe-Ac 9  

1e Fluoroanilines 

meta-Fluoro-acryl- mF-Acryl 36 

meta-Methyl-acetyl- mMe-Ac 10  meta-Fluoro-
methoxyacetyl- mF-MeOAc 37 

4’-Methyl-acetyl- 4'-Me Ac 11  para-Fluoro-acryl- pF-Acryl 38 
β-Methyl-acetyl- b-Me Ac 12  para-Fluoro-acetyl- pF-Ac 39 

2’-Methyl- 2'-Me 13  para-Fluoro-cyclopropyl- pF-CyPr 40 
para-Methyl-tetrahydrofuranyl- pMe-THF 14  

1f 3-Fluoro- 
3-Fluoro-butyryl- 3F-Bu 41 

Tetrahydrofuranyl- (3-isomer) 3THF 15  3-Fluoro-tetrahydrofuranyl- 3F-THF 42 
β-Methyl- b-Me 16  3-Fluoro- 3F 43 
Heptanoyl- Hept 17  

1g Chloroanilines 
para-Chloro-butyryl- pCl Bu 44 

meta-Methyl-furanyl- mMe-2fur 18  para-Chloro- pCl 45 
((E)-2-Methyl-2-butenoyl)- Tigloyl 19  para-Chloro-cyclopentyl- pCl CyPent 46 

4’-Fluoro-cyclopropyl- 4'-F-CyPr 20  

1h Methoxyanilines 

para-Methoxy-acryl- pMeO-Acryl 47 

Benzoyl- (phenyl) Bz 21  para-Methoxy- 
methoxyacetyl- 

pMeO-
MeOAc 48 

2,2,3,3-Tetramethylcyclopropyl- TMeCyPr 22  para-Methoxy- pMeO 49 
2,2-dimethylpropanoyl- Piv 23  para-Methoxy-valeryl- pMeO-Val 50 

4’-Fluoro-butyryl- 4'-F-Bu 24  ortho-Methoxy-butyryl- oMeO-Bu 51 
Furanyl- 2-fur 25  

1i Fluoroanilines 
(Propionyl) 

meta-Fluoro- m-F 52 
4’-Fluoro-methoxyacetyl- 4'-F-MeOAc 26  ortho-Fluoro- o-F 53 

1c Amides Methoxyacetyl- MeOAc 27  para-Fluoro- p-F 54 



The quality of these clusters was evaluated based on the silhouette coefficient of each individual 

(Figure 5). This coefficient can take values between -1 and 1 and measures the quality of clustering 

for each object. A coefficient near 1 means an object clusters almost perfectly, 0 means it lies 

between two clusters and a negative value indicates that an individual is likely in the wrong cluster. 

The silhouette plot shows that all individuals have a coefficient above 0 and cluster relatively well. 

The least cohesive cluster appears to be cluster 1b. 

 

 

Figure 5. Silhouette coefficients of individuals in Classifier 1. Note: The doted line represents the 

average silhouette coefficient.  

 

The clusters observed in Classifier 1 mostly correspond to structural classes expected in the dataset 

(Table S2), with some exceptions. 2’-Fluoro-, 3’-fluoro- and 4’-fluorofentanyl (33-35; cluster 1d) 

are separated from 4’-fluorinated compounds which bear different amide chains (20, 24, 26; cluster 

1b). The same goes for ortho-fluoro-, meta-fluoro- and para-fluorofentanyl (52-54; cluster 1i) 

which are separate from other fluoroaniline compounds (cluster 1e). Finally, cluster 1b, includes 

compounds from multiple structural classes, classed as “inconclusive” by Classifier 1. 

1a

1b

1c

1d

1e

1f

1g
1h

1i



Clustering can be better understood by considering the m/z ions which are most characteristic of 

the individuals in a cluster (see Table 2). Ions reported in Table 2 show a significantly higher 

intensity in a given cluster than in the whole dataset. The reported p-value shows the probability 

that an m/z ion does not significantly deviate from a normal distribution; in other words, ions with 

a low p-value are more likely to be significantly stronger in a cluster. Ions that have a significantly 

lower mean in a cluster than in the total dataset can also contribute to clustering, but they were 

omitted from Table 2 because they are not indicative of the EI-MS fragments shared by members 

of a class.  

Most characteristic ions tend not to include the amide chain, but rather portions of the molecule 

which are common to all derivatives in a class. For instance, cluster 1a includes N-benzyl 

derivatives (1-7) and is characterised mostly by m/z = 82, 91 and 173, ions which have previously 

been reported to arise strongly in this class of compounds, and not in traditional N-phenethyl 

analogues. Cluster 1b includes ions methylated on the aniline ring (m/z = 160, 203) or the 

phenethyl chain (m/z = 119). As noted before, cluster 1b includes “inconclusive” compounds; it is 

situated close to the center of the PCA space and is the most heterogeneous cluster. Ions 

characteristic of cluster 1b also deviate less strongly from the normal distribution than other 

clusters: the p-value of the most characteristic cluster 1b ion (m/z = 160, p-value = 9.1 x 10-3) is 

many orders of magnitude lower than most other clusters.  

Cluster 1c includes fentanyl (30) and similar amide-chain derivatives. None of the ions strongly 

characteristic of this cluster have previously been reported. The typical ions of m/z = 146 and 189, 

are common to analogues of clusters 1b, 1c and 1d, and thus cluster 1c is differentiated by the 

more specific ions reported in Table 2. The most notable ion associated with cluster 1d is the 

fluorinated tropylium ion at m/z = 109. Some of the other ions, although they have not been 

characterised, must include the propionyl amide chain, to explain why non-propionyl 4’-

fluorinated derivatives fall within cluster 1b, not 1d.  

Two of the most important cluster 1e ions, m/z = 136 and 150, have not been characterised, but 

likely structures, which arise from fragmentation of the piperidine ring, are suggested in Table 2. 

Ions analogous to m/z = 150 were observed in other clusters, with a mass difference consistent 

with the substituent on the aromatic ring (m/z = 132 for cluster 1c; m/z = 166 for cluster 1h, m/z 



= 162 for cluster 1h). The m/z = 275 ion and its 276 isotope are unique to para-fluoro 

cyclopropylfentanyl (40). This seems to be a rare occurrence where an ion from a single compound 

contributes to defining a cluster, and may be a limitation of cluster 1e.  

Cluster 1f, which includes 3-fluorinated derivatives (41-43), is characterised mostly by unknown 

ions. Most common ions of 3-fluorinated compounds also arise in fluoroaniline derivatives 

(clusters 1e and 1i), because of the position of the fluorine atom, which is retained in major EI-MS 

fragments. Therefore, the distinction between these clusters is based on differences detected in 

minor fragments. The ion at m/z = 207 is an exception: it characterises cluster 1f because its 

intensity in 3-fluorinated derivatives is stronger than in other fluorinated compounds.  

Cluster 1g is most strongly characterised by the chlorinated m/z = 223 ion and its 224 and 225 

isotopes. As previously discussed, the m/z = 166 ion is suggested to arise from a fragmentation of 

the piperidine ring. Cluster 1h includes methoxylated derivatives (47-51). It is strongly 

characterised by m/z = 162, as well as m/z = 134 which is consistent with further fragmentation of 

the piperidine ring. The m/z = 108 ion corresponds to a methoxyphenyl cation, while m/z = 176 

and its 177 isotope are the methoxyl equivalent of a known fentanyl fragment. Finally, individuals 

in cluster 1i are differentiated from other fluorinated compounds in clusters 1e and 1f mostly by 

m/z = 263, which includes the propionyl amide chain. Cluster 1i is also characterised by common 

fluorinated fragment m/z = 164.  



Table 2. Description of Classifier 1 clusters by the five most significant m/z ions.  

Cluster m/z Mean in 
cluster 

Overall 
mean a p-value b Suspected 

fragment 

1a 

82 0.816 0.133 1.1E-12 N

 
91 1.000 0.302 6.0E-12 

 

173 0.168 0.026 8.6E-12 
HN N

 
174 0.070 0.011 8.6E-12 m/z = 173 

isotope 

92 0.089 0.039 7.5E-08 m/z = 91 
isotope 

1b 

160 0.179 0.077 9.1E-03 
NH

 

203 0.086 0.033 1.2E-02 
N NH

 
204 0.018 0.009 1.8E-02 m/z = 203 

isotope 

119 0.035 0.025 3.3E-02 
 

117 0.037 0.030 3.8E-02 – 

1c 

104 0.177 0.081 4.5E-06 – 
159 0.027 0.009 4.5E-06 – 

132 0.167 0.076 7.7E-06 
NHC3H4

 
147 0.087 0.031 8.6E-06 m/z = 146 

isotope 
98 0.067 0.023 1.1E-05 – 

1d 

109 0.197 0.022 6.0E-11 
F  

101 0.043 0.005 1.5E-09 – 
93 0.529 0.096 7.8E-08 – 
66 0.040 0.011 7.4E-07 – 
103 0.216 0.078 2.4E-06 – 

1e 

150 0.069 0.018 1.5E-04 
NH

F

C3H4

 
206 0.070 0.009 5.2E-04 – 

136 0.048 0.015 1.5E-03 

NH

F

C2H2

 

275 0.200 0.019 1.8E-03 
N N

O

F  
276 0.036 0.004 1.8E-03 m/z = 275 

isotope 



Table 2. Description of Classifier 1 clusters by the five most significant m/z ions. (cont.) 

Cluster m/z Mean in 
cluster 

Overall 
mean a p-value b Suspected 

fragment 

1f 

114 0.060 0.004 3.7E-13 – 
186 0.248 0.034 5.8E-12 – 

207 0.498 0.081 1.5E-06 
N NH

F
 

185 0.035 0.010 1.0E-05 – 
71 0.395 0.044 1.6E-05 – 

1g 

225 0.122 0.007 4.0E-13 m/z = 223 
isotope 

223 0.381 0.022 4.1E-13 
N NH

Cl  
224 0.056 0.003 5.4E-13 m/z =  223 

isotope 
127 0.121 0.007 1.5E-12 – 

166 0.065 0.004 3.9E-12 
Cl

NHC3H4

 

1h 

162 0.078 0.010 2.8E-11 
OMe

NHC3H4

 

134 0.094 0.020 7.2E-11 
OMe

N

 

108 0.100 0.011 1.3E-10 OMe 
isotope 

176 0.676 0.073 3.2E-10 
NH

OMe 
177 0.106 0.014 8.6E-10 m/z = 176 

isotope 

1i 

111 0.567 0.046 3.1E-12 – 
167 0.066 0.005 5.0E-12 – 

263 1.000 0.075 4.3E-10 
N N

O

F 

164 0.668 0.071 6.2E-10 
NH

F 
112 0.039 0.004 8.0E-10 – 

a Average value for the total dataset; b Probability that a variable follows a standard normal 

distribution. 

  



Cluster 1b poses a problem for the accurate classification of unknown compounds, because it 

includes analogues from multiple different structural classes. However, further dividing the 

dendrogram does not lead to more relevant classes (as shown in Figure S4b). A potential solution 

to this problem is to construct a second PCA model, with only compounds from cluster 1b. Any 

unknown compound grouped with cluster 1b could then be fed into this second model and properly 

classified through an iterative process. The resulting dendrogram of Classifier 2 is shown in Figure 

6. A PCA was performed on compounds from cluster 1b and the first four PCs were retained 

(51.2% of total variance). Four clusters clearly arose from the hierarchical clustering and Table 3 

reports the individual compounds which contribute to each cluster. As opposed to the first 

classifier, this one allows the proper grouping of fluorophenethyl- (cluster 2a) and methylaniline 

(cluster 2d) analogues. Cluster 2c includes compounds with aromatic amides which, because of 

the increased stability of their amide and acylium ions, produce significantly different mass spectra 

from other amides. Cluster 2b groups two types of compounds. Firstly, aliphatic amides which are 

uncaptured by Classifier 1 [i.e. 3-tetrahydrofuranyl- (15);  heptanoyl- (17) and 2,2-

dimethylpropanoylfentanyl (pivaloylfentanyl, 23)]. Cluster 2b also includes compounds bearing 

methyl substituents on their phenethyl- tails, either on the aromatic ring or on the ethyl linker, 

which are difficult to identify because the resulting fragment ions are not significantly different, 

in mass or intensity, from those of other analogues. [35] 

  



 

Figure 6. Classifier 2 dendrogram created from the hierarchical clustering of fentanyl analogues. 

Note: The vertical axis represents the loss of inertia caused by each grouping.  

Table 3. Individuals in each cluster of Classifier 2.  

Cluster Fentanyl analogue Abbreviation No 

1 Fluorophenethyl- 
4’-Fluoro-methoxyacetyl- 4'-F-MeOAc 26 

4’-Fluoro-cyclopropyl- 4'-F-CyPr 20 
4’-Fluoro-butyryl- 4'-F-Bu 24 

2 Methylphenethyl- 
& Amides 

4’-Methyl-acetyl- 4'-Me Ac 11 
Heptanoyl- Hept 17 

β-Methyl-acetyl- b-Me Ac 12 
Tetrahydrofuranyl- (3-isomer) 3THF 15 

2’-Methyl- 2'-Me 13 
2,2-dimethylpropanoyl- Piv 23 

β-Methyl- b-Me 16 

3 Aromatic amides 
Benzoyl- (Phenyl) Bz 21 

Furanyl- 2-fur 25 
meta-Methyl-furanyl- mMe-2fur 18 

4 Methylanilines 

meta-Methyl-acetyl- mMe-Ac 10 
para-Methyl-tetrahydrofuranyl- pMe-THF 14 

ortho-Methyl-acetyl- oMe-Ac 9 
meta-Methyl- mMe 8 

 



The most characteristic m/z ions of each Classifier 2 cluster are reported in Table 4. Cluster 2a is 

characterised by a fluorophenethyl cation (m/z = 123) and a fluorinated tropylium fragment (m/z 

= 109), both characteristic of fentanyl analogues bearing a fluorine on their phenethyl chain. 

Cluster 2b includes m/z = 146, a typical fentanyl fragment, as well as a methylphenethyl cation 

(m/z = 119).  

The ions reported for cluster 2c do not appear to be common to all three compounds. In this case, 

it proved more relevant to examine ions with a lower average than the overall dataset. This is 

because all three compounds have an acylium ion as their base peak, due to the increased stability 

of their aromatic amide chain (m/z = 95 for 2-furanylfentanyl (25) and meta-methylfuranylfentanyl 

(18); m/z = 105 for benzoylfentanyl (21)). This decreases the relative intensity of common 

fragment ions when compared to other analogues. As shown in Table 4, m/z = 146 and its 147 

isotope, one of the major fragments of fentanyl (30), is lower in cluster 2c than in the whole dataset. 

This explains how aromatic compounds with different fragment ions can still cluster together. 

Finally, cluster 2d is characterised by m/z = 160 and 203 fragments, which are expected for 

methylaniline compounds. 

 

  



Table 4. Description of Classifier 2 clusters by the five most significant m/z values. 

Cluster m/z Mean in 
cluster 

Overall 
meana p-valueb Suspected 

fragment 

2a 

123 0.174 0.031 6.8E-05  
122 0.073 0.013 8.7E-05 – 
121 0.032 0.007 1.0E-04 – 

109 0.079 0.015 1.1E-04 
 

101 0.026 0.006 1.4E-04 – 

2b 

131 0.049 0.040 2.9E-03 – 

146 0.481 0.298 8.5E-03 
 

119 0.059 0.037 3.0E-02  
188 0.124 0.061 3.8E-02 – 

147 0.054 0.038 3.9E-02 m/z = 146 
isotope 

2c 

95 0.669 0.138 1.8E-03  
98 0.056 0.018 3.6E-03 – 
184 0.034 0.012 1.7E-02 – 

294 0.022 0.004 2.4E-02 m/z = 293 
isotope 

293 0.103 0.019 2.4E-02 

 

146 
0.028 0.298 3.2E-02  

131 0.028 0.040 2.8E-02 – 

147 0.005 0.038 2.0E-02 
m/z = 146 

isotope 

132 
0.039 0.087 8.3E-04  

2d 

160 0.791 0.197 1.2E-04 
 

161 0.103 0.027 1.8E-04 m/z = 160 
isotope 

145 0.074 0.026 2.2E-04 – 
144 0.082 0.032 4.9E-04 – 

203 0.387 0.096 6.0E-04 
 

a Average value for the total dataset; b Probability that a variable follows a standard normal 

distribution. 

F

F

NH

O
O

N N

O

NH

NHC3H4

NH

N NH



3.3 Model evaluation 

An in-silico evaluation of the proposed model was performed using the remaining 67 fentanyl 

analogues. A given test point is projected in the PCA space, and the distance between this point 

and every cluster is calculated. A test sample can be matched to the specific cluster with the nearest 

centroid, or to the cluster of its nearest neighbour. These two match criteria were compared in 

terms of accuracy, as reported in Table 5. The nearest neighbour method, which correctly 

classified 61 of the 67 test compounds, was more accurate overall (91.0% accuracy).  

 

Table 5. Comparison of the centroid and nearest neighbour classification criteria. a Compounds 

classed in cluster 2 excluded. 

 Centroid method Nearest neighbour method 

Classifier 1 matchesa 37 / 43 37 / 39 

Classifier 2 matches 19 / 24 24 / 28 

Total matches 56 / 67 61 / 67 

Overall accuracy 83.6% 91.0% 

 

The detailed results obtained using the nearest neighbour method are reported in the 

Supplementary Information (Table S3). Expected clusters, based on an individual’s structural 

class, are also reported in Table S3 as a match criterion. 

Overall, Classifier 1 reliably identified a variety of N-benzyl derivatives (cluster 1a), most aliphatic 

amides (cluster 1c), fluoroaniline derivatives (cluster 1e), chloroaniline derivatives (cluster 1g). It 

also properly classified 3-fluoro-isobutyrylfentanyl (114) in cluster 1f and para-methoxy-

butyrylfentanyl (120) in cluster 1h, though these classes only had a limited number of compounds 

to test. Interestingly, fluoroaniline compounds bearing an aromatic amide chain (111-112) were 

classed in cluster 1e rather than 1b, meaning that the acylium ion contributed less to clustering 

than in other classes.  

Misclassifications made by Classifier 1 involved aromatic amides 2,3-benzodioxolefentanyl (108) 

and para-chloro-2-furanylfentanyl (109), wrongly classed in cluster 1e. Compound 108 shows a 



base peak at m/z = 149, associated with its acylium ion, accompanied with a 13C isotope at m/z = 

150 (8.7% relative intensity). Coincidentally, a peak at m/z = 150 with a similar intensity occurs 

in most fluoroaniline derivatives and happens to be strongly characteristic of compounds in cluster 

1e (see Table 2), which can explain the misclassification. The main reason for the misclassification 

of 109 lies in the fact that it projects very low on PC3 as opposed to other chloroaniline derivatives, 

which are mostly characterised by strong m/z = 223, 224 and 225 ions. In 109, the relative intensity 

of these fragments is significantly decreased because of the strong m/z = 95 acylium ion (base 

peak). 

Compounds in cluster 1b were screened against Classifier 2, which properly identified 

methylaniline (cluster 2d) and 4’-fluoro (cluster 2a) derivatives. As cluster 2b includes 

methylphenethyl- and non-aromatic amide derivatives, test individuals in cluster 2b were 

tentatively classified into one of these two classes based on their nearest neighbour. This led to the 

proper sub-classification of 8 compounds (65-68, 82-84, 88) originally included in cluster 2b, and 

the misclassification of 4-ANPP (64), α-Methyl-butyrylfentanyl (85) and α-Methyl-fentanyl (86). 

4-ANPP (64) does not bear an amide chain, but it might have been expected to cluster in either 1c 

or 2b, considering it shares major m/z ions with fentanyl. Although Classifer 2 had limitations, 

this could be solved by including more derivatives from each class in the model, which was not 

possible with the current dataset. 

As noted previously, aromatic amides tend to cluster together in the classifier 2 model. Aromatic 

amides tested were thus classed in cluster 2c, regardless of other modifications to their structure 

(chlorinated, methoxylated and methylated analogues). Again, this could be remediated by adding 

aromatic compounds representative of each class of derivatives to the model. In fact, an initial 

exploration using all aromatic compounds available in the full dataset shows that they can cluster 

based on their secondary modification (see Figure 7). The partition is not perfect, with 

furanylfentanyl (25) clustering on its own, but could be improved by including more examples of 

this class of derivatives.  

Additionally, compounds 5-6, 21, 25, 28-32, 34, 40, 58 and 62, which were synthesised and 

analysed in-house, were also available on the SWGDRUG library. The SWGDRUG spectra were 

analysed with the model to evaluate the possible variability when the same compounds are injected 

on different instruments (see Table S3). Of the 13 compounds tested, 9 were classed in exactly the 



same cluster. Four amide derivatives (28-29, 31-32) were classed in cluster 1b, due to differences 

in peak intensities on the different instruments. When analysed with Classifier 2, however, all four 

compounds were classed in the “amides” cluster (cluster 2b). This indicates that the use of both 

classifiers mitigates the effect of intra-injection variability. 

Although this model allows the classification of fentanyl analogues, it does not allow the 

discrimination of regioisomers, which produce the same mass ions (e.g. ortho-, meta- and para- 

compounds). However, separation of fluorofentanyl regioisomers has been achieved by Bonetti 

using PCA followed by linear discriminant analysis on multiple injections of the same compounds. 

[21] Potentially, the model presented in this paper, could be applied in conjunction with Bonetti’s 

approach.  The present model could “triage” unknown fentalogues, to identify their “class” and 

subsequently Bonetti’s model could be applied in conjunction to confirm/validate the class and 

subsequently determine the position of a substituent. 

 

 

Figure 7. Dendrogram created from the hierarchical clustering of aromatic amide analogues. 

Note: The vertical axis represents the loss of inertia caused by each grouping. 

 



 

 

4.  Conclusion 

In conclusion, a principal component analysis (PCA) and hierarchical clustering model was used 

to classify fentanyl analogues with high accuracy. The model can be used to aid the structural 

elucidation of novel fentanyl analogues encountered in forensic casework. It can automatically 

identify the structural class of unknown fentanyl derivatives based on their EI-MS spectra. The 

model is more precise than previously described spectral mapping models, because the PCA forms 

clusters based on the intensity of specific fragments rather than shifts in spectral peaks. [24] For 

instance, all ortho-, meta- and para-fluorinated compounds project close to each other in the PCA 

space, because fluorination of the aniline ring of fentanyl leads to very specific fragments shared 

by these analogues. Rather than only detect a modification of the aniline ring, the classifier was 

thus able to detect what modification was introduced. This model works reliably with compounds 

that are two modifications away from fentanyl, because it was constructed using many examples 

of these types of compounds. One drawback is that the model relies on the availability of enough 

spectra of representative analogues for classes to arise. 
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