
How Game Development Technology Can

Assist in Visualisation Challenges:

A Study

NIALL ARNFIELD

2020

1

HOW GAME DEVELOPMENT TECHNOLOGY CAN ASSIST IN VISUALISATION

CHALLENGES.

By

NIALL ARNFIELD

A thesis submitted in of the requirements of Manchester Metropolitan

University for the degree of Master of Science (by Research)

2020

2

Acknowledgements

Throughout the writing of this dissertation, I have received a great deal of support and assistance. I

would first like to thank my supervisor, Dr Anthony Bukowski, for his council during both the KTP project

and this academic undertaking.

Also, I would like to thank my colleagues at REM UK LTD for their support. I would particularly like to

thank my friends and colleagues in the REM design department Paul Peak, Francesca Corteen and Ria

Parkinson for their help during the 30-month KTP project.

Thanks also to my friends and family for their continued support in my academic progression.

3

Abstract

Research has shown that product configuration is becoming an increasingly common aspect of

commercial sales, where previously it would have been an advantage that sets your products apart

from competitors, it’s now becoming normalised as a baseline service offered to customers. Product

configurators are notoriously difficult to develop, often requiring mass amounts of content and data.

Larger businesses with resources to spare can afford to take on the risks associated with developing a

product configurator, but medium and smaller sized businesses often cannot, and so find themselves

at an increasingly larger disadvantage.

This study aims to investigate whether game technology can mitigate or remove some of the

development risks associated with developing a product configurator.

Building on existing work on product configurator development, it asks. Can game technology provide

an advantage over traditional development solutions? And if so, how exactly does it improve on them

Based on a review of the literature on product configurator development, it’s clear that traditional

rendering solutions are fine if the products showcased feature low-levels of customisation. But if

products exceed this customisation threshold, it’s evident that these practices cannot scale and so

bottleneck production, making the investment and risk involved in continuing development too high.

The results indicate that when using game technology, you can automate aspects of production, such

as rendering and storage. The speed difference between traditional rendering solutions and game

technology methods are considerable if implemented correctly.

On this basis, it is recommended that game technology is used in place of traditional rendering solutions

such as Blender, 3DS Max and other 3D rendering packages as the difference in production speed is

immense and the inclusion of automating certain tasks outright removes certain tasks involved in the

production of a product configurator.

4

Contents

1. Introduction .. 8

2. Literature Review .. 10

2.1. REM Project Overview... 10

2.2. Product Configurators ... 11

2.3. Game Technology .. 19

2.4. Traditional Rendering Methods .. 26

3. Hypothesis .. 28

4. Aim ... 28

5. Materials and Methodology ... 29

5.1. REM Products Overview .. 29

5.2. Rendering System Design Overview .. 30

5.3. 3D Modelling ... 33

5.4. UV Mapping... 34

5.5. Textures and Materials ... 35

5.6. Programming Overview In Unreal Engine 4 .. 37

5.7. Instantiating the Render Code System .. 39

5.8. Creating The Material Array System ... 40

5.9. Returning Values From The Material Arrays ... 41

5.10. Storing Product Data ... 42

5.11. Creating Product Instances ... 43

5.12. Creating Product Levels ... 46

5.13. C++ and Custom Blueprint Functionality ... 48

5.14. The Rendering Algorithm .. 49

5.15. Rendering Algorithm Image Storage ... 50

5.16. The Web Configurator ... 52

6. Results .. 59

7. Discussion ... 60

8. References .. 67

9. Appendices ... 73

5

List of Illustrations

Figure 1- Estimated Development Timeline of Proposed Product ConfiguratorError! Bookmark not defined.

Figure 2 - The Tesla Design Studio Car Configurator .. 14

Figure 3 – The Xbox Design Lab Controller Configurator .. 14

Figure 4 - The Porsche Car Configurator ... 15

Figure 5 - The Helmade Motorcycle Helmet Product Configurator .. 16

Figure 6 - The Booz Allen Hamilton Paratrooper VR Training Simulator .. 20

Figure 7 - Ikeas Place AR Application .. 21

Figure 8 - Precision OS's VR Orthopedic Surgery Simulator ... 21

Figure 9 - Walt Disney Animation Studio's VR Short-Film Cycles ... 22

Figure 10 - The BMW Mixed Reality Design Suite .. 23

Figure 11 - The Walmart VR Training Simulator ... 23

Figure 12 - The Unity Game Engine .. 24

Figure 13 - A Real-Time Animation Scene In Unreal Engine 4 .. 25

Figure 14 - Ryze Son of Rome, Rendered in Cryengine .. 25

Figure 15 - An Interior Design Scene Rendered with Blender EeveE .. 26

Figure 16 - The Autodesk 3DS Max 3D Rendering Engine .. 27

Figure 17 - A Drawing Of The Saturn Desk 4x3 Denoted With Its Colour Elements "A" and "B."......................... 29

Figure 18 - An Example Of A Render Code ... 30

Figure 19 - A UV Map Prior To Having The Correct Direction, Scale and Location On The Laminate Applied 34

Figure 20 - A UV Map After Having The Correct Direction, Scale And Location On The Laminate Applied 35

Figure 21 - The Material "Phantom" Diffuse Texture And Normal Map .. 36

Figure 22 - REM Material Structure Example ... 36

Figure 23 - The Blueprint Scripting Hierarchy ... 37

Figure 24 - The Render Code Refresh Blueprint Script ... 39

Figure 25 - The Blueprint Node For Render Code Refresh ... 39

Figure 26 - The Material Structure Called "S_Material" ... 40

Figure 27 - Laminate Materials Array Map ... 40

Figure 28 – Structure Of Both Material Arrays In The Game Instance Blueprint ... 40

Figure 29 - The "Find Laminate Material" Blueprint Script ... 41

Figure 30 - The "Find Laminate Material"and “Find Fabric Material” Blueprint Nodes 41

Figure 31 - The Prepare Product Blueprint Script ... 42

Figure 32 - The Prepare Product Blueprint Node ... 42

Figure 33 - The Event Begin Blueprint Node ... 43

Figure 34 - The Game Instance Reference And Product Instance Variable Being Declared 44

Figure 35 - The Event Begin Functions Inside A Product Instance Blueprint .. 44

Figure 36 - The Event Refresh Current Product Instance And Its Functions ... 45

Figure 37 - The Event “Render Only A” And The Render Custom Depth Functions ... 45

Figure 38 - The Product Studio Prior To Lighting Being Implemented ... 46

Figure 39 - The Product Studio After Lighting Has Been Added And Baked ... 46

Figure 40 - The Product Studio With Camera Control Set Up ... 47

Figure 41 - The Final Outcome Of The Product Studio ... 47

Figure 42 - The C++ Code Used To Create The Custom Request Screenshot Blueprint Node 48

Figure 43 - The Request Screenshot Custom Blueprint Node .. 48

Figure 44 – The Product Directory .. 50

Figure 45 – The View Directory .. 50

Figure 46 – The Colour Element Directory ... 50

Figure 47 – The Image Directory... 51

6

Figure 48 - The Full Directory Pathway For Storing Images .. 51

Figure 49 - A Screenshot Of The REM Product Configurator .. 52

Figure 50 – The Product Orientation Bar .. 53

Figure 51 - An Example Of Product Visualisation Of The Saturn Desk 3x3 ... 53

Figure 52 - The View Variables Being Declared In The Codebase ... 54

Figure 53 - A Diagram Demonstrating The Structure Of The Product Visualizer Image Group 54

Figure 54 - The View Manipulation Component Buttons ... 55

Figure 55 - The Geometry Manipulation Buttons ... 55

Figure 56 - The Colour / Material Choice Button Panels .. 56

Figure 57 – An Example Of One Of The Functions Used In The Configurator To Change Colours........................ 56

Figure 58 - A Diagram Demonstrating The Process Of Image Acquisition .. 57

Figure 59 - The Scripts Imported In The Product Configurator Webpage .. 57

Figure 60 - The Function bringproductin() .. 57

Figure 61 - The constructnewview() Function Used In The Product Configurator Webpage 58

Figure 62 - A Diagram Demonstrating The Structure Of The constructnewview() Function 58

Figure 63 – The Views Held By REM’s Staff On The REM Product Configurator .. 61

Figure 64 – The Views Held By REM’s Staff In Regards To Ease-Of-Use ... 61

Figure 65 – The Views Held By REM’s Staff In Regards To Accessibility ... 62

Figure 66 –The Views Held By REM’s Staff In Regards To The REM Product Configurator Effect On The Future 62

Figure 67 - The Difference In The REM Configurator Traffic Over Time ... 63

Figure 68 – REM’s Website Growth In 2019 ... 63

Figure 69 - The Views Held by REM’s Wholesalers On The REM Product Configurator 64

Figure 70 - The Views Held by REM’s Wholesalers In Regards To Ease-Of-Use ... 64

Figure 71 - The Views Held by REM’s Wholeaslers In Regards To Accessibility.. 65

Figure 72 - The Views Held by REM’s Wholeaslers In Regards To The Future Sale of Products 65

Figure 73 - The Trends In Wholesaler Website Traffic Over Time .. 66

7

List of Tables

Table 1 - Estimated Development Timeline of Proposed Product Configurator .. 11

Table 2 - Character Values For REM Laminate Material Choices .. 31

Table 3 - Character Values For REM Fabric Material Choices ... 31

8

1. INTRODUCTION

The computer games industry is one of the most competitive commercial industries in the world. Part

of the reason for this is that the tools of production are more readily available than analogous

counterparts featured in other industries. Not everyone can gain access to a CNC machine or a 3D

printer, but if they so choose, anyone can gain access to most modern game engines for free. This

newfound access, alongside the ever-increasing availability of the internet, is providing people with the

ability to train themselves on how to utilise game technology like never before. This transition has led

to an era of innovation in games technology that is seemingly only gaining momentum over time. For

instance, Unreal Engine 4 is just one of many computer game engines available for free. Built primarily

to be a game engine; its release was in September 2014. As of January 2020, it is active in the

Architecture, Automotive, Film, Media, Entertainment, News, Medical, Military, Training and Simulation

industries. Its inclusion in industries outside of its origin demonstrates that ample opportunity exists to

exploit the advantages of game technology for use in other endeavours outside of creating computer

games. One of these endeavours is product visualisation.

Product visualisation is the art of showing a customer the product that they want to see. It creates

idealisms of products that would otherwise be visualised by a customer’s imagination. However, a

product is not just the sum of its aesthetic appeal; other values such as price, delivery and customisable

features all play a role in persuasion. A product configurator is a perfect vessel to communicate these

values to a customer, making it a potent tool. This potential has led to the development of many

commercial product configurators, most – if not all, automate some aspect of the customer experience.

Speaking about product personalisation in 2014 Siemens CEO Eric Spiegel said that manufacturing in

the USA was in the middle of a "software revolution" and that in his opinion, it would lead to the "mass

customisation" of products around the globe (Mageean, 2019). His projection has somewhat come to

pass; in 2015 YouGov conducted a poll to find that just one in six American consumers had purchased

a personalised product. In 2019 this increased to one in four American consumers (Made to Order,

2020).

However, there is a problem; not everyone can afford the financial cost or risk associated with

developing a product configurator. Ironically the type of businesses that this becomes most apparent

to are the very businesses that would benefit the most. One of the biggest weaknesses of product

configurator projects (Haug, Hvam and Mortensen, 2012) is the sheer amount of content that needs

creating. Because of this, many projects do not reach a point where they offer any return on

investment. For many small and medium businesses, this potential outcome presents a risk too large

to take on in good conscience.

This weakness is where the focus of this research will centre around, an exploration of how game

technology could potentially mitigate or automate aspects of a product configurators production so

that it minimises the risk of the project not reaching fruition. These themes will be investigated and

tested with a case study - the development of a product configurator for a company called REM. REM

is a furniture manufacturing business based in the UK who specialise in various customisable products.

However, this customisation is coming with a cost. Increasingly REM is finding that their customers

either do not want or lack the ability to accurately imagine what a product will look like in different

colours or variations. Feedback from the customer base indicates that the consensus on product

customisation is overwhelmingly positive. In-fact feedback from their customers and wholesalers

9

indicates that the general opinion held by people when asked is "the more customisation, the better".

Nevertheless, once presented with products that reflect this feedback, wholesalers struggle to sell the

product due to the various customisation rules that the purchase must follow. Due to wholesalers

struggling, customers do not feel enthused about new products due to the overwhelming amount of

choices and considerations that they have to make with limited support.

With this in mind, REM decided that they were going to address this problem using a product

configurator. However, REM as a company does not feature an IT department or any trained staff that

could even conceptually start work on a complex product configurator. This realisation was when REM

reached out to Manchester Metropolitan University for help in the guise of a KTP project. The KTP

project was a 30-month endeavour where the aim was to not only create a product configurator for

REM's products but to attempt to ensure that whatever form the solution took, that it was as hands-

off as possible and could be used by an existing member of staff with minimal training. The pathway on

how this was to be achieved was left completely undefined, the only request by REM was that the

product configurator needed to be available for public use by July 2019 at the latest. The KTP project

started development in January 2017; this is where the case study regarding development begins.

The objective is to develop a product configurator for REM using game technology instead of traditional

rendering solutions. This research will focus specifically on a critical question and its subsequent

implications:

• Can game technology successfully be applied to the development cycle of a product

configurator?

• Does applying said technology improve the productivity or performance of the development

cycle?

• What are the specific aspects of the development cycle that game technology can help?

The key participants in the KTP project are Niall Arnfield (Principle Investigator), Anthony Bukowski

(Academic Supervisor), the design department manager of REM, Paul Peak, and the finance director of

REM, Chris Blakey. The research included in this dissertation took place at REM between January 2017

and July 2019.

The work in this dissertation is structured as follows: Chapter 2 reviews relevant concepts and literature

on what a product configurator and the tasks involved in creating one. Additionally, it explores the

fundamental components of technologies involved in creating a product configurator. Chapter 3

outlines the hypothesis. Chapter 4 establishes the aims of the research. Chapter 5 explores the process

of developing the product configurator for REM, featuring specific examinations of how and why each

element of development was conducted in the way it was. Chapter 6 features the results of the solution

developed in Chapter 5. Chapter 7 explores possible improvements to the developed solution and

outlines research opportunities for the future.

10

2. LITERATURE REVIEW

2.1. REM PROJECT OVERVIEW

Before this research started, REM had already obtained a development overview for creating a product

configurator. It was drafted for REM by a local professional 3D rendering and web development

company in 2016. The project overview proposed that;

• Autodesk 3DS Max would render images of products.

• Product images would be stored in a database, from which the solution would return images.

• The solution would be programmed using HTML5, CSS3, JavaScript, PHP and XCode for iOS.

• Product models would be imported from existing CAD (Computer-aided design) drawings, and

these drawings would not be changed in any way.

• Images would need to be named, sorted and administered over time (a naming convention or

labelling structure was not defined in the development breakdown).

• Once developed, the solution would release on the iOS store in 2018.

The timeline quoted for this project was 20 months, with the admission that most of this time would

be spent rendering product images in Autodesk 3DS Max. It was intended that an image would be

rendered for every single product colour combination, but that some products had too many

combinations to be realistically included, these products were excluded from development. The total

amount of images required using this production methodology would be 282,320. This figure does not

include the products that were too complex to add to the product configurator. The estimated time

given for how long it would take to complete the product renders was 360 days. The estimated staff

requirement was three staff members. Two staff members would be working on product renders, the

third would be working on developing the iOS application and its backend requirements. A visualisation

and table demonstrating the proposed timeline for developing the product configurator are featured

below.

FIGURE 1 – ESTIMATED DEVELOPMENT TIMELINE OF THE PROPOSED PRODUCT CONFIGURATOR

5%

60%

15%

5%

15%

DEVELOPMENT OVERVIEW OF PROPOSED
PRODUCT CONFIGURATOR (PROJECT TIME)

Programming Rendering Images App Development

Image Administration Database Data Entry

11

Task Name Estimated Time (Days)

Programming 30

Rendering Images 360

App Development 90

Image Administration 30

Database Data Entry 90

TABLE 1 - ESTIMATED DEVELOPMENT TIMELINE OF PROPOSED PRODUCT CONFIGURATOR

As detailed above, 60% of the 20-month development timeline was to be spent on rendering images of

products in different colour combinations. 5% of the time was to be spent sorting and storing these

product images so that they could be uploaded to the database in a structured manner. Programming

the database and applications backend structure would take another 5%. 15% of the project was to be

used to upload all the product images to the database manually. Finally, another 15% of the total

project time was to be spent on designing and developing the iOS application, which would, providing

that everything went well, be tentatively released in 2018.

REM eventually decided that this project proposal was not viable for several different reasons. Firstly,

the developers insisted that once the 20-month project development time ended, the project would

transition into a 6-month annual update cycle. REM updates its products every year with both physical

and colour combination changes. The final decision for these changes is made at the end of October in

any given year, so, there exists only a two-month update window for the product configurator update

cycle to happen within, which was far less than the 6-month window the developers wanted. Secondly,

the requirement of three staff members was too much change in REM's employment structure for a

singular project. As mentioned in Chapter 1, one of the biggest dangers of a product configurator

project is that it never reaches a point in development in which it can be utilised to produce revenue,

so the proposal that REM hired three new workers to only give the project a prospective chance at this

return on investment was deemed as too great of a risk to the business. Finally, the focus on developing

the application singularly for iOS led to a debate on whether the application could eventually be

deployed to other platforms (Web, Android, PC), the developers admitted in this instance that they

were unable at that point to correctly advise on whether it would be possible to do so. This was a

decisive negative attribute for the project proposal as one of REM's biggest incentives in undertaking

the project was that eventually, it could hand the product configurator over to its wholesale partners,

with the long-term plan being that they could utilise it in stores across the country. Having the

application limited to iOS meant that there was a genuine chance that a sizeable proportion of these

wholesalers would not be able to utilise it at all. Based on this REM specified some objectives that

needed to be completed for any project proposal to be deemed viable, these were;

• Updating the product configurator with annual changes could take no longer than two-months.

• Once developed, it must be available for its wholesalers to use across the country.

• It must feature every product in every single combination.

• It cannot require three staff members; ideally, it would be developed by one person.

• It must be available to use on PC, tablet and mobile.

• It must be ready for release by July 2019.

12

2.2. PRODUCT CONFIGURATORS

A product configurator is a tool that makes it possible for customers to design or personalise the

products they intend to purchase. They are a visualisation tool which helps showcase all possible

variations available for a given product (Trimit, 2018). For many manufacturing companies, the era of

standardising products with a limited set of options has ended. Due to technological progress, customer

demand and the rising importance to have products or brands stand out, many manufacturing

companies have turned to the development of customisable products. In previous times the cost of

being able to customise a product was very high, high enough that it often created products that were

too expensive for customers to consider buying, or too expensive for a manufacturer to consider

producing. The idea of product configuration was a sound one, but its real-world implementation and

consequences made it problematic. However, now that a new generation of consumers has entered

the market, attitudes have changed, 1 in 10 American consumers now considers product

personalisation a top interest when buying a product and 40% of people who purchase personalised

products are from the millennial generation (Made to Order, 2020).

Interestingly product configuration is now also being used in a defensive manner to combat against

product design plagiarism. Countries with low-cost manufacturing production have perennially

attempted to copy successful product designs from other companies, in the hopes of replicating

customer interest in cheaper versions. Introducing a product configurator that personalises a product

to a user's specification facilitates the customer considering the product to be of their design, so while

some companies may well be able to reproduce the product at lower prices, they are unlikely to be able

to recreate "your" personalised product. Other advantages of implementing a product configurator

include reducing lead times, reducing staff encumberment with enquiries and complaints, automating

price delivery and quotation systems, increasing brand perception, reducing ordering mistakes and

potentially increasing sales.

The cascade effect that this has created in many different industries is evident, once one business has

a product configurator, customers within that consumer base consider it an expected element of the

sales process. So once one business successfully deploys one of these solutions, competitors often

respond with their own. The more this happens, the more pressure is applied to the remaining

businesses who have not yet released their own. Lost potential revenue means that in some cases if a

business waits too long to respond to a competitor's innovation, they can eventually find themselves

unable to do so due to a lower revenue stream.

Many customers now expect to be able to pick the colours of a product, its options and find out its

price, all without speaking to any sales agent or visiting a showroom. For many people, this is because

as prospective customers, they care more about establishing what is inside their budget, rather than

just browsing products irrespective of whether they eventually intend to buy.

But modern-day product configurators are not just limited to being customer only solutions, they have

been found to yield impressive results when they are implemented into other sectors of a business,

several different types of these configuration solutions are;

• Knowledge-based Configurators

• Manufacturing Resource Planning Configurators

• Product Visualisation Configurators

13

• Enterprise Product Configurators

Knowledge-Based Configurators (KBC)

KBC tools are targeted at increasing the productivity of engineers. KBC tools are often used when the

product design is intricate. KBC tools integrate with computer-aided design software (CAD). They can

reduce the number of menial tasks in technically drawing products so that the engineer in question can

focus their time on the more complex or custom aspects of a product.

Manufacturing Resource Planning Configurators

Manufacturing Resource Planning (MRP) configurators aim to provide internal departments, typically

customer service departments the ability to generate an order within a pre-defined set of product rules.

Companies with many stores, local teams or customer sales departments would benefit the most by

reducing the time and cost required to train staff on the specificity of the products that they are selling

or processing. These solutions are often text-based as they exist only internally within a business and

their goal is not to increase sales, but to decrease administration overhead and the chance that an

order entry error occurs.

Product Visualisation Configurators

Product Visualisation Configurators (PVC) are typically used in customer-facing environments to

increase sale conversion rates. These applications provide the user with a visual representation of the

configured product, either in 2D or 3D. They are often featured online but can also be present in retail

stores. Unlike other types of product configurator solutions, PVC applications come with the cost of

having to create the products being sold in 3D, often to a photo-realistic standard. Which, depending

on how many products there are, could prevent many businesses from being able to afford the

development.

Enterprise Product Configurators

An Enterprise Product Configurator is a solution that uses aspects from the three previous types of

configuration tools and attempts to apply them throughout a business. Instead of focusing on one

singular aspect of production or administration, EPC solutions approach the application of such

methods holistically, attempting to bring the benefits of a product configuration system to bear on as

many different areas as possible. Its development happens incrementally, for example, development

could begin with a KBC configuration system, but once this increment was deemed a success,

development would begin on expanding its abilities and features into other sectors of the business, for

instance, adding the ability for it to generate quotes automatically or for it to have the ability to show

visualisations of products to the engineers. These types of product configurators have the highest

potential to improve a business’s outcomes, but they also come at a high cost.

Before development begins on the REM product visualizer configurator, it would be in good practice to

investigate some relevant examples of product configurators that are available for the public to use.

These examples may help provide a design archetype that once realised, could be used in part to design

the REM solution or additionally, it could provide examples of what not to do regarding development

choices and design principles. Below is a selection of pertinent examples of product configurators.

14

Tesla Design Studio

FIGURE 1 - THE TESLA DESIGN STUDIO CAR CONFIGURATOR

The Tesla car configurator is a web-based 2D product configurator that is hosted on the company's

website. It is featured as part of their car ordering process to reduce ambiguity and inform customers

of optional extras. It is delivered in tandem with typical data collection and validation structures that

are expected from any commercial ordering system (Tesla.com, 2020).

Xbox Design Lab

FIGURE 2 - THE XBOX DESIGN LAB CONTROLLER CONFIGURATOR

The Xbox Design Lab is a web-based 2D solution that is hosted on their company website. Its purpose

is to allow customers to customise an Xbox One controller. The view of the controller can be changed,

allowing users to see it from four different angles. These view changes reflect the current set of

selections the user has already made (Microsoft.com, 2018).

15

It is not apparent how this visualiser loads its resources. The potential combinations of images would

be in the billions, so a database of individual images would seem inappropriate. Nevertheless, there are

no technical limitations to why this would not be possible. It is also possible that the visualisation is a

composite of overlapping images. However, there are no indicators of this being true. A composite

image solution would drastically reduce the number of images needed to create the visualisation. This

method would typically create an observable overlap border where the composited images met.

However, this outcome is not perceivable on the renders.

Porsche Car Configurator

FIGURE 3 - THE PORSCHE CAR CONFIGURATOR

The Porsche Car Configurator is both a 2D and a 3D product configurator hosted on their company

website. Its purpose is to create quotes that are sent to local Porsche car centres for sale lead

generation. A user can take a screenshot of the product at any time. Unlike other product configurators,

the background scene is highly customisable, scene environments can be changed, camera perspectives

can be manipulated, animations can be activated, and users can select to view the product from either

an interior or exterior perspective (Porsche.com, 2018).

It does everything that a product configurator should do from a design perspective; it captures data,

provides feedback to the user in the form of cost estimate calculations, has an in-built solution for

sending quotes to sales lead teams, and manages to do all this without compromising on the visual

quality of presenting its products.

16

Indian Motorcycle Configurator

FIGURE 5 - THE INDIAN MOTORCYCLE PRODUCT CONFIGURATOR

The Indian Motorcycle product configurator is a web-based 3D solution. It is featured as part of their

quote process to advertise different aspects of a motorcycle to the customer. The implementation uses

a WebGL based game engine named PlayCanvas (PlayCanvas, 2020) to provide visualisation

(IndianMotorcycle.com, 2018). The advantage of this solution is that it can be viewed in 3D across

different platforms. The only disadvantage for this product configurator is that its core features are

built using third-party solutions. So, its longevity is inextricably tied to the success or failure of that

platform.

Motorcycle Helmet Configurator

FIGURE 4 - THE HELMADE MOTORCYCLE HELMET PRODUCT CONFIGURATOR

The Helmade motorcycle helmet product configurator allows users to customise elements of advertised

products, namely the colours and finishes. This solution has been created using WebGL2 and its

embedded seamlessly into the company's website. The 3D models can be rendered on both desktop

and mobile. The solution also incorporates price generation and a direct-sale capability where the user's

specification is directly added to the basket, ready for purchase (EN, 2020).

17

Based on the examples investigated, it is reasonable to establish some key points and observations

related to the design, development and implementation of a product configurator, which can be used

to help the development of the REM product configurator project. While several different design

methodologies are available, for this project, it is apparent that REM will only require a product

visualisation configurator. There are several reasons for this; primarily the configurator is intended to

be used in customer-facing environments, for instance, wholesaler stores, showrooms and external

sales staff conducting consultations. The only reasonable way for it to achieve all these aims is for it to

be available online; this way, all potential users are having the same experience and are having the

same information presented to them. Updates will be consolidated to just one platform, and

deployment will be streamlined.

The industry examples covered previously provide a guide as to what design elements this solution

should feature. Each example features elements that are consistent through most, if not all product

visualisation configurators, for this project, these elements are defined as:

• Product Orientation

• Product Visualisation

• View Manipulation

• Geometry Manipulation

• Colour / Material Manipulation

• Content and Storage

Product Orientation

Product Orientation is the baseline communication of what the product is, how the product is currently

customised, and what features are available for customisation. The user should not need to know

anything about the product before them using the configurator. If they do not, they should not be at

any real disadvantage to those who do.

Product Visualisation

This is the ability to visually demonstrate a user the current status of the product that they are

customising, and it should update when a user makes a new selection.

View Manipulation

View manipulation is the ability to see the product from a different perspective or angle; it also could

include the ability to view the internal or parts of a product if needed.

Geometry Manipulation

Geometry manipulation is the ability to change physical elements on a product, for instance, adding or

subtracting optional components. 3D rendering on websites must use minimal resources. So geometry

manipulation may only be a good idea when the assets being used are optimised for rendering

performance. Primarily its principle is the same as Colour / Material Manipulation. However, its

technical execution is different, and therefore, not all product configurators may be able to

accommodate this requirement.

18

Colour / Material Manipulation

Colour Manipulation is the ability to change the colour on a given surface or mesh. These are often RGB

colours, but an effort should be made to ensure that the colours represented on screen mimic with

reasonable accuracy those that are applied in the manufacturing process.

Content and Storage

This is the ability to export or push data out of the product configurator once the user has finished their

customisation. The guiding principle is that at a bare minimum the customer should be able to leave

the product configurator with a reference code which they can give back to the manufacturing company

that communicates the specific product that they created using the product configurator.

Now that it has been identified that the REM configurator will be a web-based product visualizer, the

next decision to make is what kind of visualisation method it will feature? On review it seems that there

are three available development pathways to take, they are;

• Write a custom 3D application using an open-source API (i.e. WebGL, OpenGL).

• Use a third-part 3D solution like PlayCanvas or PlayCanvas.

• Create a library of 2D images and deploy them on a traditional website (HTML5, CCS3).

Custom 3D Application

Writing a custom 3D application would likely produce the best overall solution for the product visualiser

over time. However, the time and work it would take to get it to that point would be more abundant

than the alternatives.

Third-Party Solution

Using a third-party solution, for instance, PlayCanvas would provide good results in a reasonable

amount of time, but the application's functionality would depend on the functionality provided in the

PlayCanvas or other platforms API development. This would always bottleneck future development and

updates.

Traditional Website using 2D Images

Creating a library of 2D images and implementing them into a traditional web platform has the benefit

of removing any application integration or API issues since it is just a regular webpage. The problems

would occur when developing the product image library and figuring out how to render all these images

in a reasonable amount of time.

19

2.3. GAME TECHNOLOGY

Game technology is a sub-field of game development that focuses on utilising the tools involved in

game development for purposes outside of developing games. This field is very diverse and often

fosters unlikely collaborative projects with partners far removed from the games industry. Games

technology often focuses on facilitating the technical development of a project rather than the creative

outcomes themselves, this emphasis leads to both hardware and software innovations and

developments being created, as one begets the other. From a game technology perspective, its purpose

is not to be the artist, but to provide the artist with the best tools available so that their outcomes,

whatever they may be, can be as successful as possible.

Examples of game technologies successes are often overlooked. As stated previously game technology

only facilitates the development of a project's goals. So, its inclusion is usually mentioned as a

contributory factor rather than an accomplishment in and of itself, but that is not to say that success

stories are being missed, below is a sample of several successful game technology projects in the recent

past.

American Museum of Natural History (AMNH) Augmented Reality Experience

FIGURE 7 - FLY LIKE A PTEROSAUR AT THE AMERICAN MUSEUM OF NATURAL HISTORY

Featured as a limited-time exhibition piece, a motion-based interactive game called "Fly like a

Pterosaur" was opened to the public as part of the exhibit "Pterosaurs: Flight in the Age of Dinosaurs".

The exhibit ran from April 5th, 2014 to January 5th, 2015. This application allowed users to simulate

the environments that Pterosaurs traversed. Its motion tracking was captured by a Kinect sensor (Vice,

2020).

Kinect sensors were a hardware addition released for the Xbox 360 games console on February 1st,

2012, but as demonstrated with this example, found application in many projects that required the

capture of a user's motion (En.wikipedia.org, 2020).

20

Barry Joseph, the associate director of digital learning at AMNH said that the justification for using

games technology in the museum was that; "We wanted to offer something to people that makes them

want to leave their home, come to the museum, and experience something, and it also gives them an

opportunity to not only appreciate but connect with the objects themselves." (Vice, 2020).

Booz Allen Hamilton Paratrooper Training

FIGURE 5 - THE BOOZ ALLEN HAMILTON PARATROOPER VR TRAINING SIMULATOR

Booz Allen Hamilton is a management consulting company that provide custom training solutions to

the defence industries. In recent projects, the company has started to use Unreal Engine 4 to create

these experiences. One of the first projects released with this development pipeline was virtual reality

training on the safety considerations for new Jumpmasters. Jumpmasters are expert paratroopers in

the US airborne unit. With the advent of this VR solution, Booz Allen Hamilton now teaches them how

to safely jump from planes and to manage jump operations before the need for any real-world field

training (Unreal Engine, 2020).

Derald Wise, a virtual reality developer at Booz Allen Hamilton, said that while a key part of the training

is still done in the real world, safety constraints and budgets limit the extent to which live training can

prepare a Jumpmaster for a real mission. Virtual training shines in that it does not have these

constraints, making training repeated and effective (Unreal Engine, 2020).

21

Ikea Furniture Lab Augmented Reality Showroom

FIGURE 6 - IKEAS PLACE AR APPLICATION

Released in September 2017, IKEA's augmented reality iOS application called "Place", allowed anyone

to drop virtual furniture into their own homes and view it through their smartphone camera. This

application was one of the first to utilise ARKit; Apples augmented reality framework API that lets

developers use a smartphones motion sensors and cameras to overlay digital objects on top of the real-

world environment (Reynolds, 2020).

Orthopaedic Surgical Training in Virtual Reality

FIGURE 7 - PRECISION OS'S VR ORTHOPEDIC SURGERY SIMULATOR

Traditionally, surgeons have trained using plastic models and cadavers. However, these materials do

not simulate the actual conditions of surgery accurately enough. To help with this Precision OS has

developed a VR solution that trains orthopaedic surgeons by more accurately simulating the surgical

environment. The goal is to simulate the real environment as closely as possible, enabling students to

22

experience what surgery looks and feels like (Unreal Engine, 2020). The solution utilises Unreal Engine

4 and the HTC Vive VR controller.

The orthopaedic surgeon who devised the idea to create this solution was Dr Danny Goel, in an

interview with Epic he said that unlike other VR solutions, this solution has an extra ethical issue relating

to the accuracy of the simulation, and that; "Misrepresentations and over-optimism of VR are critical

elements when creating something with consequences to actual patients. We are sensitive to both and

are researching all aspects of virtual reality. A second and important element to also consider is the

point about empathy. It is important for the trainees to remember how their practice has implications

to patient lives." (Unreal Engine, 2020).

Walt Disney Animation Studios Cycles Virtual Reality Story Telling

FIGURE 8 - WALT DISNEY ANIMATION STUDIO'S VR SHORT-FILM CYCLES

Premiered in 2018 "Cycles" is an immersive VR short film created by Walt Disney Animation Studios

that use the Unity game engine. Its total production cycle was only 4-months, so to speed up

development, many of the assets used in the simulation were sourced from other rendering projects.

Unfortunately, these assets were not intended to be rendered in real-time, so much work had to be

done to clean up the complexity of these assets and reduce their polygon count before they could be

implemented into Unity and rendered at a frame-rate conducive with a professional VR experience. The

inclusion of VR was not the only game technology used in this project; the film featured an augmented

reality poster which was also created using Unity (Technologies, 2020).

23

BMW Mixed Reality Automotive Design

FIGURE 9 - THE BMW MIXED REALITY DESIGN SUITE

BMW's mixed-reality automotive design suite has been developed so that designers can get a feel for

the car they are working on without waiting for prototypes to be built. Speaking with Epic, BMW remark

that; "One of the big challenges in automotive design is finding the middle ground between crafting

what a new car model would look like in a perfect world and what is possible from a manufacturing and

production standpoint. Using a mixed reality design experience with Unreal Engine, VR, and specialised

cutaway elements of physical car hardware, the team can experiment and make key decisions earlier

in the design process" (Unreal Engine, 2020).

Walmart Virtual Reality Staff Training

FIGURE 10 - THE WALMART VR TRAINING SIMULATOR

24

Walmart has partnered with a company called STRIVR to bring VR training to Walmart's 200 training

facilities located across America. The purpose of the VR training is to place employees in simulations

where a customer problem becomes apparent; this helps employees who use it by conditioning them

to aspects of their job before they even occur.

Speaking about the outcomes of the collaboration, STRIVR said that; "During the pilot, associates using

VR training reported 30% higher employee satisfaction, scored higher on tests 70% of the time, and

logged a 10 to 15% higher rate of knowledge retention than before VR. This pilot was so successful that

Walmart decided to expand the program to all of its nearly 4,700 stores nationwide." (STRIVR, 2020).

As demonstrated with the examples above, the potential applications of game technology are far-

reaching. For this project, product rendering will be done within a game engine. This is not to say the

REM product configurator will be an application created entirely within a game engine. However, at the

very least the task of product rendering will be allocated to a game engine rather than a traditional

rendering suite like Autodesk 3DS Max. Below is a review of the potential game engines that could be

used to produce photo-realistic product renders.

Unity 5

FIGURE 11 - THE UNITY GAME ENGINE

Released in June 2005 Unity is a cross-platform game engine that is programmed using C#. It has been

used to create some of the most successful games of the last decade, games like Hearthstone,

Monument Valley 2 and Ori and the Blind Forest (Unity, 2020).

Unity touts themselves as the engine of choice for the worlds game developers, on their company PR

page they claim that they have recorded a 45% market share with developers worldwide, way ahead of

the next largest market holder, Epics game engine Unreal Engine 4, which holds a 17% market share

(Gamesparks.com, 2020).

25

Unreal Engine 4

FIGURE 12 - A REAL-TIME ANIMATION SCENE IN UNREAL ENGINE 4

Unreal Engine 4 is a popular game engine developed by Epic Games. Many AAA games like Fortnite and

Rocket League use this engine. It features VR and AR capabilities out of the box. It comes with its very

own visual scripting system called Blueprints, which make it easier for artists and hobbyist developers

to program applications with relative ease (ConceptArtEmpire.com, 2020).

Cry Engine

FIGURE 13 - RYZE SON OF ROME, RENDERED IN CRYENGINE

CRYTEK develops the Cry Engine game engine, it was initially released in 2002, but since then has

undergone five incremental engine expansions, making the "new" version Cry Engine 5. It is a cross-

26

platform game engine that features some of the best visual capabilities of any game engine. It is

available for free to any developer (CryEngine.com, 2020).

Blender EEVEE

FIGURE 14 - AN INTERIOR DESIGN SCENE RENDERED WITH BLENDER EEVEE

The EEVEE renderer inside of Blender is a new additional rendering engine implemented into the

Blender application which provides users with the ability to render their scene in real-time as opposed

to raytracing. It can be scripted using Python and interact with Blenders in-built game engine to produce

interactive 3D scenes. One of the biggest changes that EEVEE has provided is access to physically-based

shaders (PBR) in Blender, which makes it one of the first non-game engine rendering solutions to

feature such an implementation.

This decision comes down to two game engines, Unity and Unreal Engine 4. Both have excellent

inclusions of virtual and augmented reality technologies and both feature what would be considered

photo-realistic rendering engines. However, going back to Chapter 2.1, REM has specified that they

wanted the solution to be trainable to someone with minimal effort. So, with that in mind, Unreal

Engine 4 has the advantage. The fact that it features a visual scripting system as a core part of the

engine makes programming and data structures more accessible. So from REM's perspective, it would

be easier to train someone in Blueprint scripting rather than coding traditional C# in Unity. Unity does

have addons and plugins that bolt-on visual scripting functionality, but these features are not officially

supported by Unity. So adopting these additions creates extra dependencies where there need not be

any. In terms of rendering capabilities, there are very few differences between the two-game engines.

With enough work, either engine could produce photo-realistic product renders. Both engines are

available for businesses to use, but Unity comes with a cost, and Unreal Engine 4 does not, albeit a

small difference in the scope of the undertaking of this project, it is a difference, and it is an overhead

that is needlessly encumbering. Cry Engine is a powerful rendering solution, but the documentation

surrounding its use is too complex to hope that REM would be able to train someone who is not already

27

a professional in Cry Engine development. Blenders EEVEE inclusion is an excellent addition to the

platform. However, its programming capabilities are not sophisticated enough to develop a complex

project. On review, Unreal Engine 4 is the game engine that this project will use for creating product

renders.

2.4. TRADITIONAL RENDERING METHODS

Traditional rendering methods refers to a suite of applications that have been predominantly used in

the past to complete certain tasks. In this case, the task being referred to is product rendering. In

previous generations, game engines could not achieve comparable quality with other rendering

solutions available commercially. These solutions are called CPU renderers, as the calculations for

rendering in these applications takes place on the CPU. Game engines predominantly use the GPU to

calculate their renders. So, this is an apt distinction. CPU renderers typically use raytracing to calculate

global illumination, shadows and reflections. Due to the high level of calculations required, this cannot

happen at run-time. So, while these applications are rendering engines; they are not real-time

rendering engines.

FIGURE 15 - THE AUTODESK 3DS MAX 3D RENDERING ENGINE

Traditionally CPU renderers have been used in any task that required computer graphics. The film,

architecture, media and ironically games industries used CPU renderers to generate high-end computer

graphics. It is only in recent history that computer game engines have been capable of competing with

the quality produced from CPU renders. However, now that game engines can compete in some cases,

the decision of which type of renderer to use has become unclear. Given the advent of certain inclusions

in game engines, for instance, animation, real-time weather effects, user interactivity with the scene,

the justification for using a CPU renderer over a game engine must now happen on a case by case basis.

28

3. HYPOTHESIS

The question that this project is asking is; will using game technology in the development of a product

configurator brings with it many advantages that traditional rendering methods lack? Game technology

– more specifically game engines, bring with them a plethora of tools that applications like Autodesk

3DS Max do not feature. This is an inherent part of them being different products. However, the essence

of what will be explored in this project is the exploitation of the advantages that game technology

brings. Advantages are by definition the identification that something about an entity is superior to the

analogous attribute featured in another entity, but the establishment of just how large or small these

advantages are; is far more informative than the identification of the advantage in and of itself.

Game engines can be manipulated and changed dependant on the desired outcomes. Applications like

Autodesk 3DS such as Autodesk 3DS Max and Blender, cannot be changed in any meaningful way, which

means that game engines can be tailored to the tasks involved in creating a product configurator far

better than an off-the-shelf solution. A game engine that has been programmed to render images of

products automatically will be much faster than a traditional rendering solution and will likely be able

to complete tasks that a traditional rendering solution cannot assist with at all. Once exploited, this

advantage will prove decisive in answering the research question posed by this project.

4. AIM

This project aims to develop a product configurator for REM that assists in the sale of their products

and can be implemented seamlessly with their business model. It must follow a set of requirements

that have been established by REM, these requirements are;

• Updating the product configurator with annual changes can take no longer than two-months.

• Once developed, it must be available for REM's wholesalers to use across the country.

• It must feature every product in every single combination.

• One person must develop it.

• It must be available to use on PC, tablet and mobile.

• It must be ready for release by July 2019.

To create this product configurator, and meet REM's requirements, the project will utilize game

technology with the explicit intention being to automate certain tasks involved in development. These

tasks will be;

• Rendering product images.

• Storing these images in a library.

• Labelling these images.

Once developed, the product configurator will be released to the public. If it produces enhanced

commercial outcomes for REM, and the development of the project can be proven to have taken less

time and resources than its proposed counterpart, then the project will be considered a success.

29

5. MATERIALS AND METHODOLOGY

This chapter will explain the work conducted in the project from the start of development through to

the end; it will include what materials were used and how they were used in development.

5.1. REM PRODUCTS OVERVIEW

REM has 144 products available for sale, only 111 of these products feature elements that are

configurable. 67 products are exclusively laminate-based, 36 are exclusively fabric-based, and 8

products feature both laminate and fabric materials. Every configurable product is available in 20

different material finishes, regardless of whether its laminate, fabric or both. Additionally, each product

comes with up to 3 optional components.

The main selling point of REM products is the colour element system. It is a simple system that allows

customers to mix and match different material finishes on different sections of a product. The areas for

customer choice in this system are denoted using alphabetical characters, for instance, if a product

features two colour elements, it will have a colour element A and a colour element B. Each colour

element refers to a section of the product available for customisation. Below is an example of how this

system is presented to customers.

FIGURE 16 - A DRAWING OF THE "SATURN DESK 4X3" DENOTED WITH ITS COLOUR ELEMENTS "A" AND "B."

Another important aspect of REM products is that the material finishes are all specifically positioned

and have predefined directions, for instance, on the Saturn desk featured in Figure 8, the wood grain

on every panel runs horizontally and not vertically, but there are exceptions to this rule. The decision

making of these specifications is not systematic, its arbitrary, but once a decision is made, it doesn’t

change. Every single Saturn desk features this same specific finish. It is something that customers expect

to be correct, so it needs to be reflected in the product configurator. This means that each panel of

every product will have to be directed, scaled and positioned correctly on its UV map to ensure that it

reflects its real-world counterpart.

30

5.2. RENDERING SYSTEM DESIGN OVERVIEW

Conceptually, the primary ability the rendering system need’s is the ability to render an image of a

product with relatively photo-realistic results. This system would also have access to all the configurable

elements of a product so that they can be modified at run-time. The system would then run a process

which would sequentially run through products available customisation values and render off an image

for each iteration. The rendered image would then be uniquely earmarked and stored in a specific

manner so that a user can retrieve them in an orderly fashion.

When developing a product configurator, one of the biggest problems to tackle is how to accurately

describe a products current configuration in simple terms. The importance of this problem scales with

the scope of choice available in the product range. To address this problem, a theoretical system was

created called “Render Codes”. Render codes are a reference system that assigns character values to a

user’s choices and then concatenates these characters to create a singular string value. This string value

is unique and references a specific product in a specific configuration. An example of a render code can

be found below;

FIGURE 17 - AN EXAMPLE OF A RENDER CODE

The first section of the render code describes the identity of a product. This is denoted using a 3-digit

value, which is called a product’s “Global Index”. Currently, it is generated by indexing the position of

the product in the REM 2018 catalogue, but fundamentally it’s an arbitrary value, it could be based on

anything that sets products apart from one another. The second section of the render code is called

the “Material Hash”, it denotes the current material choices featured on a product. These choices are

represented by using four alphabetical characters that each represent a different material from the

REM 2018 catalogue. As the current amount of material finishes available on REM products is 20, the

alphabetical characters used in this system are “A” through “T”. The index position of each material

hash character represents a colour element and mirrors its position, for instance, the first character of

the material hash represents colour element A, the second character represents colour element B and

so forth. The tables below show the character values used to represent for both fabric and laminate

material choices.

Normal Array Index Value New Custom Index Value Laminate Material

0 A White

1 B Black

2 C Pillow Pink

3 D Sea Breeze

4 E Dove

5 F Aubergine

6 G Titanium

7 H Egyptian Gold

8 I Alu Brosse

9 J Pewter

10 K Cherry Wood

11 L Rustic Oak

12 M Pasadena Pine

31

13 N Rich Praline

14 O Michigan Elm

15 P Bonobo

16 Q Dusk

17 R Dawn

18 S Reed

19 T Flagstone

TABLE 2 - CHARACTER VALUES FOR REM LAMINATE MATERIAL CHOICES

Normal Array Index Value New Custom Index Value Fabric Material

0 A White

1 B Bison

2 C Tailored Clay

3 D Tailored Vanilla

4 E Galaxy

5 F Black

6 G Truffle

7 H Pearl

8 I Aubergine

9 J Saffron

10 K Coco

11 L Tailored Slate

12 M Platin

13 N Tailored Putty

14 O Phantom

15 P Buffalo

16 Q Kirsche

17 R Fern

18 S Tailored Ebony

19 T Pebble

TABLE 3 - CHARACTER VALUES FOR REM FABRIC MATERIAL CHOICES

The third section of a render code represents the choices involved in selecting the optional components

of a product. These choices are denoted by a binary value (0, 1) with “0” representing a “No” choice

and a “1” representing a “Yes” choice.

Conceptually the rendering system would use a render code in two different ways; firstly a user could

input a render code to generate a specific render or view a specific product and secondly once a user

has selected a series of choices in the product configurator, the method of communicating the choices

made back to the user would be in the form of a render code. This way, the data structure of the

rendering system would be streamlined to a single variable. The rendering system algorithm for utilising

a render code would start once a render code has been input. Once the system receives this input, it

would break the render code down into three different sections, mirroring the methodology used to

create it, at this point the algorithm would have values that point to;

• The product which needs to be rendered.

• What materials are featured on this product

32

• Where these materials are applied to the product

• Which additional options are active or not.

The Rendering Algorithm

Stage one of the algorithm would cross-reference each sub-string value against an array or set of

possible outcomes. For instance, to discover which product needs to be rendered; the system would

cross-reference the global index value against a “Product Array” that contained all the instances of

products. Once completed, it would return a product instance which would contain all the mesh data

that was needed to render the product, apply materials and switch components on or off.

Stage two of the algorithm would then cross-reference the material hash section of the render code

against a laminate or fabric-based “Material Array”, this would then return a reference to the material

that’s being applied to the product and the name of said material. Before this material is applied, the

algorithm would check which colour element the character in the substring points to; this would be

established by checking the index of the character in the material hash. Once this is complete, the

system could then apply the correct material to the correct section of the product.

Stage three of the algorithm would pass the component reference to the product instance returned in

stage one of this process. The product instance would then use this Boolean value in an IF statement

to set the visibility of the mesh to either on or off.

Rendering Algorithm Automation

Once the functionality of this algorithm is complete, it could then be expanded into a larger system that

could systematically render off every combination of every product without the need for user

intervention or prompt. The way to achieve this would be to add an extra process to the core algorithm

that would automatically generate render codes and then pass them to the rendering algorithm on a

loop.

Rendering Algorithm Output

The third and final system that would be needed would automatically name, sort and store these

renders in a library in an organized and predictable way. Theoretically rendering off every product in

every combination would produce 100,000’s of images, so it is important that these images are stored

using a simple structure that allows a user to intervene and update an image if there is a problem

without much trouble.

33

5.3. 3D MODELLING

One of the largest tasks of the project was the create 3D models for all of REM’s products. While

technical drawings of these products did exist, they only existed in 2D and not 3D. Exporting these 2D

drawings as 3D models created incomplete and overly complex geometry that could not be used in

further production. As defined by (Lifewire, 2019), a 3D model is a mathematical representation of any

three-dimensional object in a 3D software environment. Unlike a 2D image, 3D models can be viewed

in specialized software suites from any angle and can be scaled, rotated, or freely modified. The process

of creating and shaping a 3D model is known as 3D modelling. A 3D model is constructed from three

different elements, vertices, edges and faces. Each of these elements plays a distinct role in describing

a shape but creates cost when it comes to rendering. (Sciencing, 2019) defines a vertex as a

mathematical word for a corner. Most geometrical shapes, whether two or three dimensional, possess

vertices. For instance, a square has four vertices, which are its four corners. An edge is defined by

(Mathopenref.com, 2019) is any geometric solid that is composed of flat surfaces an edge is a line

segment where two such surfaces meet and a polygon. Faces in 3D modelling refer to any singular 2D

surface of a model, these faces can themselves be many different shapes but normally take the form

of polygons or triangles.

There are two types of 3D modelling methods that are used in commercial production; these types are

distinct from each other due to the way in which they are constructed and modified, they are NURBS

Surface modelling and Polygonal Modelling. A NURBS surface model can be defined as (Lifewire, 2019)

a Non-uniform rational B-spline or NURBS surface is a smooth surface model created using Bezier

curves. To form a NURBS surface, the artist draws two or more curves in 3D space, which can be

manipulated by moving handles called control vertices (CVs) along the X, Y, or Z-axis. Polygonal

Modelling is the most common form of a 3D modelling; they are constructs built of polygons, 4-sided

faces that are organized in a precise and uniform fashion. Both types of these modelling techniques

had to be used in the production of REM’s product models. Hard surface products, like wood desks or

tables, were created using Polygonal Models and fabric-based products like chairs, seating and stools

were created using NURBS Surface modelling, specifically a sub-category of NURBS modelling called

subdivision surface modelling. In total, there were 111 product models that had to be created in this

project.

The first stage of modelling a product began with exporting it from AutoCAD. As previously stated, these

exported assets were far too complex and costly to continue production but did offer a starting point

for re-drawing. Once the exported product mesh was imported into Blender, it would then be manually

re-drawn to reduce the complexity of the models’ topology until it could not be simplified any more.

Doing this would not only reduce the overheads required in rendering but would make UV mapping

much easier later in production.

When the production had reached a stage where all the required elements were present on a product

it was then split into different groups of geometry, for instance – all the chrome or metallic elements

on the products were grouped together. Splitting a model into different geometric groups would

increase the number of draw calls required to render it, in addition, it would also increase the number

of material calls required, but it was a necessity to do this so that the objects created could be

manipulated individually by the rendering solution.

https://www.lifewire.com/turn-2d-image-into-3d-model-2293

34

NURBS products were produced using a different methodology; initial line drawings didn’t exist, so

another starting point needed to be created. A 3D scanner was used to capture topology data using an

infrared depth sensor, while these captures were realistic, they were incomplete and contained holes

in their topology were the camera couldn’t capture, for instance underneath a chair seat or occluded

objects. Once these captures were imported into Blender, subdivision surface modelling was used to

recreate the topology. It’s worth noting that the total cost of the geometry created for NURBS products

far exceeded that of Polygonal products, this is naturally due to the shapes being described with NURBS

products as much more complex than the simple line drawings featured in Polygonal products.

Once the topology had been successfully created for the NURBS product, it followed the same

production methodology as Stage 3 of a Polygonal product. When this was completed, the product was

ready for the next stage of production, which was to create a UV map for it using UV unwrapping.

5.4. UV MAPPING

Once a NURBS or Polygonal mesh had been created, and its geometric elements grouped, the next step

was to unwrap it into a UV map. A UV map is the flat representation of the surface of a 3D model used

to wrap textures easily. The process of creating a UV map is called UV unwrapping (Concept Art Empire,

2020). A UV map had to be created for each element of every single product. The starting point for UV

mapping was that a products geometric groups were UV unwrapped part by part and then laid out in

random order on the UV map. At this point of production, the primary objective was just to get the

panels laid out in 2D, the scale of the panels only became important once all the panels had been first

unwrapped.

FIGURE 18 - A UV MAP PRIOR TO HAVING THE CORRECT DIRECTION, SCALE AND LOCATION ON THE LAMINATE APPLIED

The next stage of development was to ensure that any UV map created was representative of the real-

world attributes that the product had. So panels were measured and adjusted accordingly using the

one-metre material scans as a guide for sizing.

35

FIGURE 19 - A UV MAP AFTER HAVING THE CORRECT DIRECTION, SCALE AND LOCATION ON THE LAMINATE APPLIED

5.5. TEXTURES AND MATERIALS

Now that product geometry had been created and subsequently, UV unwrapped, the next stage in

development was to create the textures and materials that would be applied to these objects. REM had

up until this point, never attempted to create digital versions of its manufacturing materials, so work

needed to be conducted in obtaining initial photography captures. In 2018 REM products featured 20

different laminate and fabric materials, each of these materials has both a colour and a texture property

to it and so these properties needed to be captured using a diffuse texture and a normal map

respectively.

The first step was to take a simple photograph of each material. This was done by creating 1-metre cut-

outs of each material and then sliding them into a custom-built photography booth that was

manufactured for the purposes of this project. The photography booth ensured that light was

distributed evenly over the surface of the material and that the camera was centred and steady. Once

a high-resolution photograph had been captured, the next stage in development was to clip the image

so that it was framed correctly, and then to adjust contrast and brightness settings to make sure that

the diffuse properties were apparent and balanced accordingly.

Diffuse Textures

A diffuse texture is the most common type of texture map. It defines the colour and pattern of an

object. Mapping the diffuse colour is like painting an image on the surface of an object

(Docs.cryengine.com, 2019). Diffuse textures were created by using the images taken in the photo

booth and editing them in Adobe Photoshop, the aim here was to reduce the size of the image as much

as possible while maintaining the quality of the image, the starting size of the images was 22mb, this

was mainly due to the CR2 image format and the resolution of the image being 5760x5760px. Once the

image format was changed to PNG and the resolution was changed to 3000x3000px the size of the

images fell to 5mb or less, which was fine for the purposes of what they were going to be used for.

36

Normal Maps

Normal maps are a special kind of texture that allows surface detail such as bumps, grooves and

scratches to be added to a model (Unity Technologies, 2019). Normal map textures were produced by

taking the diffuse textures and imported them into a free “Normal Map Generator” which is available

for use on any internet browser (Petry, 2020). The textures property of most REM materials is very

slight, so once the values in the normal map generator reflected that the images were exported and

were now ready for importation into Unreal Engine 4.

FIGURE 20 - THE MATERIAL "PHANTOM" DIFFUSE TEXTURE AND NORMAL MAP

Creating REM Materials in Unreal Engine 4

Now that both diffuse textures and normal maps have been created, the next stage is to create the

materials that will be applied to meshes. The first step is to create the directory structure so that

materials can be stored and returned in an orderly fashion. In the “Content” directory a folder called

“Materials” is created, inside this folder, two more folders are created called “Laminate” and “Fabric”,

these are the folders that the individual material directories will be created in. Once complete all the

diffuse and normal textures created in previous stages can be imported into their own respective

directories. The final materials were created by using the basic material asset in Unreal Engine 4. These

materials take in the values “Base Colour” and “Normal”, with base colour being the node that the

diffuse texture is plugged in to, and the normal node being were the normal map is plugged in to. Once

this is complete, the material is ready to use.

FIGURE 21 - REM MATERIAL STRUCTURE EXAMPLE

37

5.6. PROGRAMMING OVERVIEW IN UNREAL ENGINE 4

Programming in Unreal Engine 4 can take two different forms, C++ or Blueprints. This application will

use blueprints, but several of the blueprint nodes used will be custom and will have been created using

C++. A requirement of blueprint programming is that the applications data structure is bound within a

predefined blueprint script hierarchy. There are two different levels of access within the hierarchy -

global and local. Local blueprints only exist within the confines of the current level, for instance, objects

within a level, player characters, NPC’s and events. Global blueprints remain persistent throughout the

applications session regardless of the level that is currently active. The diagram below represents the

blueprint hierarchy’s structure.

FIGURE 22 - THE BLUEPRINT SCRIPTING HIERARCHY

While both programming languages are featured in the rendering algorithms codebase, they are used

to achieve different aims and objectives. C++ was used to modify Unreal Engine 4’s source code to allow

for different functions or classes to be created. In some cases, C++ was used to create custom blueprint

nodes that contain functionality not featured in the standard blueprint toolkit. The application of

blueprints specifically revolved around instantiating and modifying product instances.

Blueprint types can be understood more traditionally as another form of a programming class. The type

of blueprint determines the scope and functionality that can be utilized using that type of blueprint.

The standard toolkit of blueprint types that can be used in Unreal Engine 4 is unable to be modified. So,

38

if extra functionality is needed, or a new type of blueprint class needs to be defined – this happens by

modifying the source code of Unreal Engine 4 using C++. Below is an explanation of the types and

functionality of blueprints used in this project.

Game Instance

The game instance is a global access blueprint. This means that the data contained in this blueprint can

be called on from anywhere else in the application's codebase. It’s persistent – meaning that once it’s

loaded into memory at the application's initialization, it cannot be changed for another game instance.

The global scope of this blueprint, alongside its persistency, means that most of the variables, arrays

and data are placed inside this Blueprint.

Game Mode

The game mode blueprint is another type of global access blueprint, it’s where gameplay values should

be stored, for instance, scores, achievements, health etc. The niche functionality of a game mode

blueprint is that it can be swapped out for another game mode at run-time. This allows gameplay

specific structures to be defined inside their own specific game mode blueprints and then, if needed,

be swapped around at run-time. An example of this would be a game that combined multiple game

types, for instance, a game that at its core was a 2D platformer, but also featured first-person shooter

elements at some points could utilize a game mode blueprint for the 2D platformer aspects of the

game, and then switch to a first-person shooter game mode blueprint when required. This allows for

easy and effective object-orientation shifts between different types of gameplay at run-time.

Player Controller

The player controller blueprint is a global access blueprint that focuses on the user’s interactions in the

game. Inside this blueprint, you would place all your functions to define player specific capabilities in

the software, for instance – jumping, run speed, crouching, what happens on button presses etc.

Structures

Structure blueprints are used to define data objects to assist with object-oriented programming.

Actors

Actor blueprints are quite simply assets in a game that can be interacted with or modified at run-time.

An actor blueprint allows you to define how these entities behave and the conditions required for their

behaviour.

39

5.7. INSTANTIATING THE RENDER CODE SYSTEM

As discussed in Chapter 5.2, one of the core features of the rendering application revolves around the

use of a reference system called render codes that would efficiently communicate all the information

needed to render a product correctly. This system is implemented solely in the game instance blueprint,

a global level script that can be accessed from anywhere else in the application. The first step in

instantiation is to create the string variables needed for the render code system, these variables are;

• Current Render Code (String)

• Global Index (String)

• Material Hash (String)

• Component Values (String)

Once these values have been created, the next step is to create a function that will break down a render

code input into its three elements. This is also done in the game instance blueprint so that the function

can be called from anywhere else in the application. The functions name is “Render Code Refresh”.

Below is the blueprint script;

FIGURE 23 - THE RENDER CODE REFRESH BLUEPRINT SCRIPT

FIGURE 24 - THE BLUEPRINT NODE FOR RENDER CODE REFRESH

The function uses the “Get Substring” node to return values from the input string. The only other values

that need to be declared before run-time is the starting index of the return in the input string and the

length of the sub-string being returned. Once the string has been broken down into its separate values,

these values are then returned so that they can be used elsewhere in the application. For the purposes

of development, the string input will be manually entered until the rendering algorithm is complete.

Once the rendering algorithm is complete, the next stage of development will be to automate the input

of render codes.

40

5.8. CREATING THE MATERIAL ARRAY SYSTEM

REM materials will be a persistent element of the product configurator, and so they need to be stored

in the game instance blueprint. As mentioned previously in Chapter 5.2, these arrays need to feature a

character index rather than a numeric index. The array contains two aspects, a custom object that

defines what a material structure is, and a map that links a character value to a material structure.

Material structures are defined by two variables, a “Material Name” and a Material Instance” reference.

The material name is simply its generic name, and the material instance reference is the directory

location of one of the materials created in Chapter 5.5 the name of this new object is “S_Material”.

FIGURE 25 - THE MATERIAL STRUCTURE CALLED "S_MATERIAL"

Once material structures have been defined, the next stage is to create the data map, a data map is a

custom array that allows two different types of data to be linked. In this case, a string value is mapped

to a material structure value. Once created, the next step is to fill the arrays with their respective

content, using the tables in Chapter 5.2 as a guide.

Figure 26 - Laminate materials Array map

FIGURE 27 – STRUCTURE OF BOTH MATERIAL ARRAYS IN THE GAME INSTANCE BLUEPRINT

41

5.9. RETURNING VALUES FROM THE MATERIAL ARRAYS

Now that the material arrays have been populated with the material instances created in Chapter 5.5

the next stage of development is to create the functionality required to return a value from one of

these arrays using the render code refresh function created in Chapter 5.8 alongside a new function

called the “Find Material” function, two versions of this function exist, one for returning laminate

materials, the other for returning fabric materials. These functions needed to be independent of one

another due to some products, as outlined in Chapter 5.1, having both laminate and fabric elements.

The first stage in development is to create a new set of string variables, these values are;

• Render Code A (String)

• Render Code B (String)

• Render Code C (String)

• Render Code D (String)

These variables will hold the separate values broken down from the material hash variable as outlined

in Chapter 5.2 Once all the variable values have been set, they are then cross-referenced against the

“Laminate Materials” array created in Chapter 5.9 to return a material instance value.

FIGURE 28 - THE "FIND LAMINATE MATERIAL" BLUEPRINT SCRIPT

FIGURE 29 - THE "FIND LAMINATE MATERIAL"AND “FIND FABRIC MATERIAL” BLUEPRINT NODES

42

5.10. STORING PRODUCT DATA

Now that product instances exist, data that are intrinsic to each individual product must be stored inside

a blueprint, the data that would be most useful to store would be;

• Global Index

• The colour elements that are featured on the product

All this data can be stored in the game instance blueprint using a function called “Prepare Product”,

this function is called on the initiation of the application and is not editable at run-time. The first step

in creating this function was to create the variables that it uses. These variables were created in the

game instance blueprint. Specifically, the variables are;

• Global Index (String)

• Has Element A? (Boolean)

• Has Element B? (Boolean)

• Has Element C? (Boolean)

• Has Element D? (Boolean)

A product name was not included due to the nature of only one variable being needed that uniquely

identifies products, so it was a redundancy in the data structure.

FIGURE 30 - THE PREPARE PRODUCT BLUEPRINT SCRIPT

FIGURE 31 - THE PREPARE PRODUCT BLUEPRINT NODE

The global index value, as mentioned in Chapter 5.2, is the unique identifier for a product. The other

four Boolean values represent if the product features a colour element type. The knowledge of whether

a product features a colour element or not will become useful later in development when the rendering

algorithm is being created. Knowing whether a product has a colour element or not allows the rendering

algorithm to continue or exit at the appropriate point.

43

5.11. CREATING PRODUCT INSTANCES

Now that all the different functions and assets have been created for products. Work can now be

conducted on bringing all these features together in a product instance blueprint. The example used in

this explanation is the Suflo 3x3 Desk, but the same work is replicated for all product instances outside

of setting the individual values that each product possesses. Firstly, an actor blueprint is created, these

blueprints are local level scripts but can be manipulated at run-time, unlike the game instance blueprint

or other global level blueprints. Once created the actor blueprint is named “P_Suflo3x3”.

Once the actor blueprint for the product has been created the next stage is to add the 3D models

created for the Suflo Desk 3x3 in Chapter 5.3 these models have already been imported into Unreal

Engine 4, so the only task left is to add them to the product instance blueprint using a static mesh

component. A static mesh component is essentially a container for any 3D model that you wish to use

in a blueprint. Once you add a static mesh component to a blueprint, you can give it a name and then

select which 3D model you want it to display from the content directory. Since all the model groupings

have already been defined in Chapter 5.2, a static mesh component needs to be added for each model

group, for simple continuity purposes these components were given the same name as the model

groups had in Blender.

The next stage of developing product instance blueprints focused on creating access to the data stored

in the game instance blueprint, this was done by creating a game instance blueprint reference. A value

was also creating in the game instance blueprint, which parameterized the value of a product instance.

Since there is only one product instance per level, once the level starts the product instance inside of

the level sets itself as the current product instance in use, this is so that the rendering algorithm can

easily identify which actor in the level is the product instance. These declarations all happen when the

application starts; in blueprints, this event is known as the event “BeginPlay”. Once complete the final

function to add to this event is the function created in Chapter 5.10 “Prepare Product”, once created

the function is populated with the corrects values for the Suflo Desk 3x3.

FIGURE 32 - THE EVENT BEGIN BLUEPRINT NODE

44

FIGURE 33 - THE GAME INSTANCE REFERENCE AND PRODUCT INSTANCE VARIABLE BEING DECLARED

FIGURE 34 - THE EVENT BEGIN FUNCTIONS INSIDE A PRODUCT INSTANCE BLUEPRINT

The main functionality of a product instance blueprint is its ability to reconstruct itself, whether that be

the materials that it features or the mesh components that its displaying, to do this a custom event

must be created that will trigger this to happen. An event is created called “Refresh Current Product

Instance”, this event can only be called by the player in the “Player Controller” blueprint. The player

controller blueprint is a global level blueprint which typically contains all the events and functions linked

to a player’s actions in a game, for instance, movement, keystrokes and controller input. The rendering

algorithm will be initiated by a keystroke, and so the event that triggers product instance blueprints to

update themselves must come from the same blueprint.

The first function to link to the refresh current product instance event is the “Render Code Refresh”

function created in Chapter 5.7 as previously explained this function processes the current render code

so that other functions can utilize it. Since the Suflo Desk 3x3 is a laminate-based product, the next

function that needs to be added is the “Find Laminate Material” function. This function will return

materials from the material arrays created in Chapter 5.8 based on the outputs of the previous function.

The final functions to add are the “Set Material” blueprints nodes that will apply the materials returned

by the previous function to a user-defined selected of static mesh components. Due to this product

featuring three colour elements, there will need to be three set material blueprint nodes. Each one of

these blueprint nodes will deal with the material changes on a singular colour element. The static mesh

components that are used by these blueprint nodes have already been created and declared at the

start of this chapter, and so all that needs to be done is to structure this blueprint graph accordingly.

45

FIGURE 35 - THE EVENT REFRESH CURRENT PRODUCT INSTANCE AND ITS FUNCTIONS

The final functionality the product instance blueprint needs is the ability to toggle the visibility of the

static mesh components involved in a specific colour element at run-time. This will allow the rendering

algorithm to render images for each colour element individually. To do this another set of custom

events were created in the player controller blueprint. Specifically, these events were;

• Render Only A (Event)

• Render Only B (Event)

• Render Only C (Event)

• Render Only D (Event)

One of each of these events was created inside the product instance blueprint, and the static mesh

components associated with the colour element were linked to a “Set Render Custom Depth” blueprint

node. This blueprint node can toggle the render depth value on any static mesh component on or off,

doing so toggles the visibility of the static mesh component on or off.

FIGURE 36 - THE EVENT RENDER ONLY A AND THE RENDER CUSTOM DEPTH FUNCTIONS

The last element to add to a product instance blueprint is adding a value to the game instance simply

called “Element” this value is used to track which colour element the product instance blueprint is

currently displaying, allowing for the rendering algorithm to more easily switch between events. From

here products instances are able to construct different product specifications; currently, only a single

specification can be done at run-time, but this isn’t a limitation in the system, the only component that

needs to be added for dynamic product specifications at run-time is the addition of a system that sends

new render codes to the product instance for processing.

46

5.12. CREATING PRODUCT LEVELS

The next stage of development is to create the scenes that the product instances exist in. Scenes in

Unreal Engine 4 are known as levels. The aim of the levels used in this project is to be digital versions

of a product studio, a photography setup used to take high-quality pictures of commercial products. To

achieve this, a photography scoop mesh is created with a floor so that a product instance can be placed

on it. Once the studio meshes were in place, the next stage was to place a product instance on the floor.

This location was always the same for every product due to the nature of the same studio scoop being

used in every level.

FIGURE 37 - THE PRODUCT STUDIO PRIOR TO LIGHTING BEING IMPLEMENTED

The next step is to create the levels lighting, all lighting used in this project is static, meaning that it is

calculated prior to run-time. The specific placements of lights were arbitrary, and once a good level of

lighting was achieved, they were generally left alone. Once complete lighting was baked.

FIGURE 38 - THE PRODUCT STUDIO AFTER LIGHTING HAS BEEN ADDED AND BAKED

47

Once the studio was set up, the product instance was placed, and lighting was baked, the next stage

was to add cameras to the level. Due to product instances, all being in the same location cameras were

anchored to this location using a simple vector arm. The distance between the product and camera was

dependant on the size of the product, but other than that the focal length, aperture and aspect ratio

were all the same throughout all product levels.

FIGURE 39 - THE PRODUCT STUDIO WITH CAMERA CONTROL SET UP

The final element to add to the product levels was the post-processing volume; these volumes add

effects such as anti-aliasing and depth of field to the level. The effects used in all the products levels

were as follows;

• Ambient Occlusion

• Screen Percentage

• Screen Space Reflections

FIGURE 40 - THE FINAL OUTCOME OF THE PRODUCT STUDIO

48

5.13. C++ AND CUSTOM BLUEPRINT FUNCTIONALITY

While the functionality provided by Unreal Engine 4’s standard blueprint and C++ libraries is high, the

novelty of the rendering algorithm requires that some simple custom functionality be created. To do

this, the open-source C++ source-code must be edited to create a custom blueprint function that will

develop aspects of the engine that already exist. In Unreal Engine 4, certain tasks can be completed via

an engine console. This console allows the user to toggle aspects of the engine on or off, gain access to

the GPU profiler and various other abilities. One of those abilities is the request screenshot command.

This command takes a screenshot of the current screen at a resolution multiplier of the user’s choice.

This is the function that will be used to form the basis of the custom screenshot blueprint node.

The functionality that this blueprint node must have is the ability to take a screenshot of the current

screen at the displayed resolution. Once this is done, it will then earmark the image with a label that

the user can define and then save the image to a directory that the user also defines. These two tasks

are separate but can be done at the same time. Below is the C++ code used to create this functionality.

#include "MyBlueprintFunctionLibrary.h"
#include "Engine.h"

void UMyBlueprintFunctionLibrary::RequestScreenshot(const FString & InFilename, bool
bInShowUI, bool bAddFilenameSuffix)
{
 GEngine->AddOnScreenDebugMessage(-1, 5.0f, FColor::Yellow, TEXT("Requesting
screenshot")); // display message on window (to check that you are actually calling
the lines below)
 //FString fileName("C:/Users/niall/Desktop/RenderStudioscreenshot.png");
 FScreenshotRequest::RequestScreenshot(InFilename, false, false);
}

FIGURE 41 - THE C++ CODE USED TO CREATE THE CUSTOM REQUEST SCREENSHOT BLUEPRINT NODE

The functions name is “Request Screenshot”, it uses the standard request screenshot console

command normally used in the engine but modifies it so that the default pathway is now a variable

that needs to be input via a string value and the command can be triggered by an in-game event.

FIGURE 42 - THE REQUEST SCREENSHOT CUSTOM BLUEPRINT NODE

The request screenshot blueprint node is a fundamental necessity for the development of the rendering

algorithm, as every time an image is needed, this function will be called. As discussed in Chapter 5.2,

one of the goals of the rendering algorithm was to have it automatically save images in a systematic

and predictable fashion. Now that this function exposes the directory value as a variable that is

determined by the user, this objective can now be achieved.

49

5.14. THE RENDERING ALGORITHM

The rendering algorithm is the core component of the rendering solution. It uses all the elements

created in previous chapters to systematically cycle through a products potential combinations and

render an image for each one. The rendering algorithm was created using the player controller

blueprint. This was due to the player controller blueprint being reserved for actions that involved player

interactions and the trigger for the rendering algorithm to start would be a key press by the user,

specifically the spacebar. As explored in previous chapters the rendering system already has the ability

to identify and execute a product's specification, but this can only be done by manually inputting the

render code into the “Render Code Refresh” blueprint node displayed in Figure 27, which is featured in

the product instance blueprint. The only new functionality that the rendering algorithm creates is the

ability to cycle through a series of render codes which will be sent over to the product instance for

processing during run-time.

The rendering algorithm can be explained in stages, below is a breakdown of the stages involved;

1. The user manually starts the application button by pressing the play button in the editor.

2. The user presses the spacebar key to start the process.

3. The “Render Only A” event featured in Chapter 5.11 is triggered in the product instance script.

4. A render code is sent to the product instance, starting with material A on colour element A.

5. Once executed, the “Request Screenshot” script featured in Chapter 5.13 is called.

6. An image is rendered with the name being based on the global index value input in Figure 26.

7. The image is then saved to a pre-defined directory (covered in Chapter 5.15)

8. The loop then increments and sends another render code for the next material; in this example,

the next render loop increment would be material B on colour element A (XXX-BXXX-XXX).

9. Once the loop reaches material T, it then checks if there is another colour element featured on

the product, this information is provided by the “Prepare Product” script featured in Figure 26

– if there is, then the event “Render Only B” in the product instance script is triggered.

10. This loop continues until it reaches material T on colour element D or the returned value for

step 9 is false.

The render codes featured in this process are pulled from a pre-defined array. It’s a simple string array

that features 80 different render codes. The first value is XXX-AXXX-XXX; the second value is XXX-BXXX-

XXX, and so on. The “X” values in the string indicate void values. So, the first 20 values of this array

feature the same structure as the example given, moving through alphabetical character until it reaches

“T”. Once it reaches XXX-TXXX-XXX the next value in the array is XXX-XAXX-XXX, this value indicates that

its rendering material A on colour element B. This same incremental structure is used for all 80 values

finishing with render code XXX-XXXT-XXX and using the product instance blueprint created in Chapter

5.11 will create renders of every single product combination for any given product.

Once a rendering cycle is complete, the user can then set the active camera in the product level to the

second camera for view 2 rendering and then starts the rendering algorithm again. Originally the

rendering algorithm was set to automatically change cameras and continue rendering as part of the

rendering cycle, but once the application started being used, users remarked that this created some

redundancy when they needed to re-render images for a product.

50

5.15. RENDERING ALGORITHM IMAGE STORAGE

As the rendering algorithm loops, all images are sorted and deposited systematically into a logical,

predictable folder system. Below is an explanation as to how these folders are sorted and what their

contents are;

Level 1 – The REM Rendering Directory

The master directory that holds the entire library is named “REM Rendering” and is automatically

created on the user’s desktop directory.

Level 2 – The Product Directory

This directory contains all the product folders – all being denoted by their name.

FIGURE 43 - THE PRODUCT DIRECTORY

Level 3 – The View Directory

This directory contains a folder for each product view, denoted as “View 1, and View 2”.

FIGURE 44 - THE VIEW DIRECTORY

Level 4 – The Colour Element Directory

This directory contains the colour element folders all denoted as their respective characters.

FIGURE 45 - THE COLOUR ELEMENT DIRECTORY

51

Level 5 – The Image Directory

This directory contains the actual product renders for that particular product, at that particular

viewpoint, on that particular colour element.

FIGURE 46 - THE IMAGE DIRECTORY

FIGURE 47 - THE FULL DIRECTORY PATHWAY FOR STORING IMAGES

52

5.16. THE WEB CONFIGURATOR

FIGURE 48 - A SCREENSHOT OF THE REM PRODUCT CONFIGURATOR

53

The rendering algorithm can now create all the product images needed for a product configurator. The

next stage of project development is to create the webpage which will use these images. As previously

discussed, the target outcome of this project is a web-based product, visualisation configurator. REM’s

company website was developed using a platform called Wix, and so they requested that this project

also use Wix for the development of this webpage. Wix is a cloud-based web development platform

that uses a custom JavaScript API called Corvid, it doesn’t provide as much development latitude as

traditional web-stack languages but does provide a toolkit capable of developing simple event-based

webpages (Wix, 2020).

The webpage will run dynamically, meaning that it loads the resources and data for each product only

once the webpage has been initiated. To achieve this, a brief loading phase will be implemented on

webpage initiation, which will provide enough time for the webpage to download the starting resources

that it needs to initialize. The benefit of creating a dynamic webpage over a static version is that only a

single webpage will need to be developed rather than a webpage for each product being added to the

product configurator. As reviewed in Chapter 2.2, there are six design elements that typically composite

a product configurator application, these design elements have been used as guidelines for the design

of this webpage.

Product Orientation

FIGURE 49 – THE PRODUCT ORIENTATION BAR

Product orientation is the communication of which product the customer is currently modifying. Part

of the intended outcomes of a product configurator is for it to reduce ambiguity and reduce selection

errors, this makes the communication of the current active product and the edited components a

foundational element of the webpage.

Product Visualisation

FIGURE 50 - AN EXAMPLE OF PRODUCT VISUALISATION OF THE SATURN DESK 3X3

54

The core component of any product visualisation configurator is the product visualizer. Its purpose is

to clearly show what the product currently looks like given its current specification. As discussed in

Chapter 2.2, the visualizer used in this webpage will use a stack of images to present the product

visualisation. This group of images are all laid on top of one another accurately enough so that it creates

the illusion of the group being a single image. A diagram indicating the structure and order of the image

stack can be found below.

FIGURE 51 - THE VIEW VARIABLES BEING DECLARED IN THE CODEBASE

FIGURE 52 - A DIAGRAM DEMONSTRATING THE STRUCTURE OF THE PRODUCT VISUALIZER IMAGE GROUP

The dimensions of the product visualizer component are 960x540px; this is a specific size so that the

product visualiser can be viewed in landscape orientation on a tablet device without any image clipping

or scrolling being required. The resolution of the images used in the product visualizer is 1920x1080px,

and all images are saved as PNG files so that the alpha channel (transparency) of the images is

preserved. Any image used in the visualizer is downloaded on a user’s selection, at runtime from a

dedicated Wix database with a secure connection.

55

View Manipulation

FIGURE 53 - THE VIEW MANIPULATION COMPONENT BUTTONS

The view manipulation component is very simple; its purpose is to allow the user to view the same

product from two different angles. All that is needed to do this are two buttons that each represents a

viewing angle. Once a button is selected is triggers an event that forces the product visualizer

component to refresh the images being used.

Geometry Manipulation

FIGURE 54 - THE GEOMETRY MANIPULATION BUTTONS

Since this webpage uses 2D images and not 3D models, the literal definition of what geometry

manipulation does not apply. In this webpage, when a user selects to add or remove an optional

component, an image is downloaded and is placed on top of the product visualizer image group which

demonstrates what the component looks like. Unfortunately, the inclusion of this feature could not be

carried into the product configurators release. REM decided that models used for rendering optional

components were not reflective of their real-world counterparts, and with optional components being

changed frequently, they felt that visualising one of these components would create more problems

than it would solve.

56

Colour Manipulation

FIGURE 55 - THE COLOUR / MATERIAL CHOICE BUTTON PANELS

Colour manipulation is the simple ability to change colours on an object. As discussed, in Chapter 5.1,

the REM colour element system defines the sections of products that are available for colour

modification. Within each colour element, there are a pre-defined set of colours choices that the user

can select from. The colour manipulation component reflects this structure. Embedding a button for

each colour choice within a group defined by the colour element value.

FIGURE 56 - AN EXAMPLE OF ONE OF THE FUNCTIONS USED TO CHANGE COLOURS IN THE PRODUCT CONFIGURATOR

Each colour choice button within these groups has its own function in the codebase. When pressed the

function triggers and a request is made to the database to return the image associated with that colour

choice alongside its counterpart for view 2. Both of these images are set to values that indicate which

part of the product visualizer image group they are. Once the images have been downloaded the

functioned constructNewView() is called, which will refresh the product visualiser's image group, using

these newly downloaded images. Once constructNewView() has executed the visualiser's image group

will reflect the choice that the user made.

57

FIGURE 57 - A DIAGRAM DEMONSTRATING THE PROCESS OF IMAGE ACQUISITION

Content and Storage

All data and images used in the product configurator are stored in a database within the Wix

platform. The product configurator webpage connects to this database on initialisation so that it can

download elements from it at run-time on request. At run-time, the database is set to read-only.

Miscellaneous

FIGURE 58 - THE SCRIPTS IMPORTED IN THE PRODUCT CONFIGURATOR WEBPAGE

The very first thing the webpage does is import several Wix scripts. The wixWindow script tracks events

that happen on the webpage so that they can be sent to 3rd party analytic packages. The {session} script

provides the ability to save data locally on the browser. The wixLocation script allows the webpage to

identify the geographic location the webpage is being used in.

FIGURE 59 - THE FUNCTION BRINGPRODUCTIN()

58

The “bringProductIn()” function triggers when the webpage initializes. Its purpose is to set the starting

view of the product before a user interacts with the webpage. To do this, it downloads images from the

database. All starting images are set to the colour white to provide a blank starting point for the user.

FIGURE 60 - THE CONSTRUCTNEWVIEW() FUNCTION USED IN THE PRODUCT CONFIGURATOR WEBPAGE

The function constructNewView() is responsible for the active content displayed in the product

visualizers image group. When called, depending on the current view selected, it overwrites the active

image group content with the content parameterized to the variables declared in Figure 55.

FIGURE 61 - A DIAGRAM DEMONSTRATING THE STRUCTURE OF THE CONSTRUCTNEWVIEW() FUNCTION

59

6. RESULTS

This project aimed to see how much benefit there was to using game technology in place of traditional

rendering methods involved in creating a product configurator. As outlined in Chapter 2.1 the aspects

of development that this project attempted to streamline where;

Programming Back End

In the original proposal, the estimated time required to complete the back-end programming of the

database and application structure was estimated to be 30 days. While this specific task did not happen,

its counterpart - the game engine rendering solution discussed in Chapter 5 took 43 days to program.

Rendering Images

One year was set aside in the original proposal for rendering product images, and it was specified that

there would be an image rendered for every single colour combination, leading to a total of 282,320

images being needed. Due to this project developing the product configurator differently, it only

needed to produce 4840 images. The total time required to render these images was 310 seconds. The

rendering algorithm outlined in Chapter 5.14 renders 15 images per second.

Hypothetically if this project was to render 282,320 images, it could do so in 301 minutes.

Configurator Development

In the original proposal, 90 days were set aside to develop the iOS product configurator application. In

total, this project spent 39 days developing the REM product configurator.

Image Administration

Thirty days was initially set aside for administering images. This project completely removed the need

for any image administration to take place; all images produced were automatically earmarked and

stored in an organised directory.

Database Data Entry

In the original proposal, the estimated time required to upload all the images into a database was 90

days. This project spent 71 days manually uploading all the product images to the Wix database.

Task Proposal Time (Days) Project Time (Days)

Programming Back End 30 43

Rendering Product Images 360 <1

Configurator Development 90 39

Image Administration 30 0

Database Data Entry 90 71

While this project did take more time to develop the back-end solution than the proposed counterpart,

in total, this project saved 452 days of development time over. The bulk of this gain comes from the

increased rendering production.

60

As previously discussed, REM had a set of requirements for the project that needed to be met. They

were;

• Updating the product configurator with annual changes can take no longer than two-months.

• Once developed, it must be available for REM's wholesalers to use across the country.

• It must feature every product in every single colour combination.

• One person must develop it.

• It must be available to use on PC, tablet and mobile.

• It must be ready for release by July 2019.

Given the speed at which the rendering algorithm produces images, rendering a full set of product

images can happen well within the two-month development window that REM dictated. The only other

requirement that needs to be factored in is the 3D modelling of new products being added to the REM

collection in the annual update. A large part of the viability involved in the two-month update window

depends on the amount of changes REM decides to make to its catalogue. Technically, this project can

easily update the assets used in the REM product configurator well within the two-month update

window.

The project is easily available for REM's wholesalers to use. Any person with an internet connection and

device that features mobile browsing can use the REM product configurator. It is already available on

PC's, tablets and mobiles. The solution does not feature every product, due to time constraints, some

products were unable to be developed, but every product that is featured comes with its full-colour

combinations available. The project was indeed developed by a single person and was released on the

1st of April 2019.

Since release, the product configurator has improved sales for several of REM's wholesalers, with one,

in particular, seeing large increases in sales. In the first 6-months post-release, it has been identified

that on the websites where the REM product configurator has been implemented, there has been a

fourfold increase in customer traffic. The growth of the solution as of December 2019 is going well,

since release, every month, it has grown by over 20%, month on month. At the beginning of the release,

this growth was in part due to an increase in the number of websites that it had been implemented on.

However, this specific growth stopped in September 2019, and even still, the platform is growing.

The implementation of the product configurator project with REM's current business model has been

seamless. Due to the simplicity of the solutions webpage implementation, developers need only add a

single line of code to a webpage to instantiate it on their websites. The ease of implementation has

meant that it has been adopted by many of REM's wholesalers that use the internet for their sales. As

of December 2019, the product configurator is now also being used in showrooms across the UK,

predominantly on tablet devices. Customers who are browsing REM products have also started to bring

with them print-outs of products they have assembled using the product configurator to stores and

showrooms across the UK. Its adoption has been a massive benefit to REM as the need to train sales

staff on the complexities of REM products is now far more diminished. The accessibility of REM products

for customers and wholesalers alike has been increased to the point where annual training seminars

conducted by REM at great expense may no longer be needed, and the physical material books that are

sent to customers for them to view are also possibly obsolete. A selection of website address for several

REM product configurator examples is in Appendix 1.

61

REM Satisfaction Post Launch

Once the REM product configurator became available in April 2019, REM sent out an internal

questionnaire to its office staff to complete anonymously, there were 23 questionnaires submitted.

This was an informal collection of opinion and sentiment in the company’s staff, it provides an insight

into the perceived success of the project at large with the audience that would be the most educated

on the industry, company and customer base. The questionnaire included several multiple-choice

questions and the results were as follows;

FIGURE 62 – A GRAPH TO DEMONSTRATE THE VIEWS HELD BY REM’S STAFF ON THE REM PRODUCT CONFIGURATOR

FIGURE 63 – A GRAPH TO DEMONSTRATE THE VIEWS HELD BY REM’S STAFF IN REGARDS TO EASE-OF-USE

How would you score your past and current experience
with the REM product configurator?

Terrible Bad Okay Good Excellent

How does the REM product configurator score on ease-of-
use?

Terrible Bad Okay Good Excellent

62

FIGURE 64 – A GRAPH TO DEMONSTRATE THE VIEWS HELD BY REM’S STAFF IN REGARDS TO ACCESSIBILITY

FIGURE 65 – A GRAPH TO DEMONSTRATE THE VIEWS HELD BY REM’S STAFF IN REGARDS TO THE OVERALL CONTRIBUTION OF THE REM

PRODUCT CONFIGURATOR TO REM’S BUSINESS FUTURE

The overall sentiment held by REM staff was positive, most staff members felt that the project was an

important addition to the company’s commercial ventures. Based on the results of the questionnaire it

became apparent that the project was being used in different ways than was intended, these

unforeseen positive outcomes have caused REM to review potential blind spots in its commercial

strategy at large. The majority of project use was focused on showing customers products in different

colour combinations as intended. All the questionnaires submitted in this study can be found in

Appendix 2

How would you score the REM product configurator on
accessibility?

Terrible Bad Okay Good Excellent

How important will the REM product configurator be to the
future viability of REM’s business model?

Useless Unimportant Okay Important Crucial

63

REM Performance Post Launch

FIGURE 66 - THE DIFFERENCE IN REM'S CONFIGURATOR TRAFFIC OVER TIME

As the graph above demonstrates the traffic coming into the REM product configurator has shown

somewhat steady month on month growth, with the only two exceptions being the expected industry

downturn of the Christmas period and the recent coronavirus lockdown. As of June 2020, the project

is being used by 6.75 times more people then when launched originally. Which means, there has been

a multiplicative increase in the number of people who visit and use the product pages of REM’s

wholesaler websites who have implemented the REM product configurator. The increase in traffic led

to the REM website being placed two ranks higher on googles search results, which in turn has helped

the company’s main website grow its traffic organically for the first time since 2011. The graph below

demonstrates this growth since the release of the project.

FIGURE 67 – REM’S WEBSITE GROWTH IN 2019

275 295
467

683
782

975

1224
1080

761

1319 1359

750 719

1492

1857

0
200
400
600
800

1000
1200
1400
1600
1800
2000

REM Product Configurator Traffic Between April 2019 and
June 2020

REM Linear (REM)

6543 6381 6113 6006

6899 6932 7123 7361 7593 7863
8412 8445

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 Sep-19 Oct-19 Nov-19 Dec-19

REM Website Traffic Between January 2019 and December
2019

REM Linear (REM)

64

Wholesaler Satisfaction Post Launch

6-months after the launch of the project REM reached out to its top ten wholesalers and asked them

to fill out a questionnaire in regard to their thoughts on how successful the project had been so far. For

the purposes of confidentiality, the names of the companies have been removed and replaced with an

index. Like the previous questionnaire this was done internally and informally by REM – but the data

does provide insight into how these companies viewed the performance of the project. The results

were as follows;

FIGURE 68 - THE VIEWS HELD BY REM’S WHOLESALERS ON THE REM PRODUCT CONFIGURATOR

FIGURE 69 - THE VIEWS HELD BY REM’S WHOLESALERS IN REGARDS TO EASE-OF-USE

How would you score your past and current experience
with the REM product configurator?

Terrible Bad Okay Good Excellent

How does the REM product configurator score on ease-of-
use?

Terrible Bad Okay Good Excellent

65

FIGURE 70 - THE VIEWS HELD BY REM’S WHOLEASLERS IN REGARDS TO ACCESSIBILITY

FIGURE 71 - THE VIEWS HELD BY REM’S WHOLEASLERS IN REGARDS TO THE FUTURE SALE OF PRODUCTS

The sentiment held by REM’s wholesalers towards the outcomes of the project was largely positive.

The fact that most wholesalers thought that the project would help them sell more REM products in

the future was seen as a crucial victory for the project overall, since at the start of the project one of

the biggest hurdles identified would be the quandary of convincing wholesalers to try new sales

techniques that involved digital solutions. Several wholesalers that typically sold other brands of

products started to sell increased amounts of REM products in response to the projects release – which

again was an unforeseen outcome - as its wasn’t expected that these actors would embrace such a

solution. All the questionnaires submitted in this study can be found in Appendix 3.

How would you score the REM product configurator on
accessibility?

Terrible Bad Okay Good Excellent

How important will the REM product configurator be to
your future sales of REM products?

Useless Unimportant Okay Important Crucial

66

Wholesaler Performance Post Launch

FIGURE 72 - THE TRENDS IN WHOLESALER WEBSITE TRAFFIC OVER TIME

Unfortunately, data from all of REM’s wholesalers could not be included due to confidentiality terms.

But three wholesalers were fine with their data being studied so long as the names of the companies

were redacted. As you can see from the above graph, much like the REM website traffic graph there

has been a steady increase in the amount of visitor’s overtime with the aforementioned downturns

considered. For the first time in a little under a decade has led to measurable growth in the amount of

commercial interest in REM and its products.

While this study cannot reveal particular revenue values for any company related to this project. It can

be said that the project has had a positive impact on the commercial outcomes of most companies that

have implemented and actively used it. Interestingly, while all of REM’s top ten wholesalers did

implement it in some way, the companies that used it on their websites and showrooms saw the largest

increases in customer quotes and visitors. The wholesaler that found the most use for the project was

an online only wholesaler that took orders directly online. This company only had several staff

members, no showrooms and no travelling sales team but had a professional website. They included

the project as part of the ordering process for customers and have found substantial success in doing

so.

This would hint at an audience difference between REM’s wholesalers, previously it was thought that a

customer would float between different wholesalers looking for the best price. But based on the

findings of this project it would now be apt to speculate that each wholesaler has a different type of

customer that they attract, and that the REM product configurator has weighted outcomes based on

the type of customer that interacts with it. Simply put, there seems to be indications that customers

who are more experienced and relaxed with web technology and online sales use the project more than

customers who prefer the usual way of ordering products, which would be done in a showroom with a

sales representative. This is not to say that the project doesn’t help in these environments, but it seems

to help more in the explicitly online sphere rather than the real world. But more analysis needs to be

conducted on this topic to reach a solid conclusion.

0

100

200

300

400

500

600

700

Wholesaler Website Traffic Between April 2019 and June
2020

[Wholesaler 1] [Wholesaler 2] [Wholesaler 3]

Linear ([Wholesaler 1]) Linear ([Wholesaler 2]) Linear ([Wholesaler 3])

67

7. DISCUSSION

The critical findings found during this research project are;

• Game technology can successfully be implemented to help develop certain aspects of product

configurator production.

• The inclusion of game technology in these projects can result in a massive increase in the

productivity of certain developmental tasks.

• The task types that game technology can assist with the most include rendering, content

management and data entry.

• The creation of a 2D product configurator application is more viable than initially considered,

providing that a solution like the one demonstrated in this research is used in production.

In line with the hypothesis outlined in Chapter 3, game technology can be applied to certain

development tasks involved in creating a product configurator. Game technology cannot be applied to

all aspects of developing this type of application, but in the areas where it can, it will provide massive

increases in development speed, making tasks that previously took up the majority of development

time, now take up the least. It was somewhat expected that applying game technology would provide

some level of increased productivity; any form of automation does typically do this; what is unexpected

is the level of improvement it made. Even more, the solution shown in this research is scalable, meaning

that it will provide even more considerable benefits to projects that require even more rendering. In

Chapter 2.3 one of the product configurators reviewed was the Xbox Design Lab, a product configurator

with vast amounts of variable scope, it was observed that it was not entirely clear how the resources

used in the product visualiser were created on such a scale. At this stage, it would be apt to say at the

very least, that the Xbox Design Lab could use a solution like the one developed in this research.

The speed increase demonstrated when rendering product images is massive. Instead of it taking 360

days to render, as proposed in REM's original product configurator development overview, the same

task, albeit with a slightly different methodology, produces the same desired outcomes in a fraction of

the time. However, this is not the only improvement made to the viability of development, the necessity

to hire two new employees to work full time on rendering product images is removed, and the

organisational element of sorting and storing these images is automatically completed. REM's original

request of having a single person develop the project has now become viable, and the requirement

that the two-month annual update cycle is maintained has also been successful.

There is no reason why this solution is limited to only applying to REM products. As covered in Chapter

2.2, the product configuration field features many different types of products, ranging from simple

shapes like a desk up to complex photorealistic car models. From a technical standpoint, the

fundamentals of this solution are not dependant on the type of product featured, and so there is no

reason why this solution could not be used or featured as part of the development for another product

configurator even if it is to assist in the singular task of rendering product images.

The implications of this project are interesting; product configurators are a niche section of commercial

product marketing. Some companies choose to develop product configurators, and others choose not

to, but all commercial businesses must produce marketing materials for their products. With several

simple changes, this project could be used for producing vast amounts of product imagery. This imagery

could be used in any commercial channel that features images, such as social media platforms, leaflets,

68

catalogues, newsletters, websites, product pages, user manuals and more. Feasibility, the rendering

algorithms production capabilities could supplant the need for traditional rendering solutions in every

circumstance where product renders are required. Given the capabilities of game engines, it would be

possible even to render video or animations of products very easily.

The solution does come with limitations, for it to work elsewhere, a future developer would have to

use the same data structure as outlined in Chapter 5. Also, 3D models would have to be developed

using the specification outlined in Chapter 5.3 So, there are costs for using a solution like this, but the

costs of these conformities are but a fraction of the total cost it would take to use traditional rendering

software to complete the same task. The solution demonstrated in this research has achieved good

results, but some extra work could be conducted on increasing its performance, even more, these

changes include;

Automatic Alpha Deletion

One of the biggest tasks that result from rendering images like this is that the alpha channel of a

screenshot remains intact, and so it must be manually deleted by someone before it can be added to

the configurator database. Unreal Engine 4 can already automatically delete alpha channels of

screenshots but can only do so with a screenshot taken from the editor and not from the run-time

version of the application. The developers of Unreal Engine 4 addressed the issue, and it is now in the

process of being rectified. Once rectified, the inclusion of several additional lines of code in the custom

C++ blueprint function created in Chapter 5.13 will result with the solution being able to cull all white

pixels from a screenshot taken at run-time before it is committed to memory. Thereby creating an

image with a transparent background.

Automatic Compression

Image compression is the second manual task that's needed to be completed once a product image has

been rendered. This task is not technically necessary, as it does not change the viability of the solution.

However, its inclusion does improve the end-user experience of the product configurator by making

images download faster. Smaller sized images will make the product configurator seem more

responsive and use less data for mobile users. Unreal Engine 4's native file format for images is TGA,

which traditionally is one of the larger file formats for images as it supports 32-bit colour. An

improvement could be made where this default file format could be changed to 8-bit PNG which would

provide moderate reductions in image memory size while maintaining the same resolution.

Automatic Uploading (No Database Needed)

Automatic uploading would be a more experimental feature, but the inclusion of a database with the

product configurator is the projects most cumbersome element. Ideally, it would be better if there was

no database at all. The solution to this is quite simple. In the product configurator source code, its

currently programmed to download images from its Wix database. Instead, it could be programmed so

that it would pull images from a static IP address. Having a static IP would slow download speeds slightly

as the Wix database is a secure connection, and a static IP would not be. Nevertheless, the labour

reduction in manually uploading images to the database, which is quite a time-consuming task, would

be eliminated.

69

Increase in Resolution

Currently the product configurator uses 1920x1080px images presented in a content widget that's

960x540px in size. This resolution results in some good image sampling and sharpening but creates a

problem with the anti-aliasing on the edges of the image. The image quality can be advanced by

increasing the resolution of the images used. The way to do this is straightforward, Unreal Engine 4's

"FULLSCREEN" console command uses the resolution of the active monitor. This project used a

1920x1080px monitor, and therefore the images reflect this resolution. If the project were displayed

on a 3820x2160px monitor, the resolution of images captured by the rendering algorithm would

quadruple – meaning that the anti-aliasing effect would be much less noticeable. Higher resolutions

would increase the memory size of each image, so due diligence is required in its implementation, but

this inclusion could be mitigated by including these higher resolution images in a "high quality" mode

feature on the product configurator.

Better GPU Profiling

Unfortunately, there was no time in this project to include the GPU profiling feature in Unreal Engine

4. There are many further improvements to rendering performance that could be made by utilising the

GPU profiler. Firstly, the draw call count of each product could potentially be lowered, as stated in

Chapter 5.3 model groups were created for each colour element but were not created for all the

miscellaneous objects on a product like its buttons, lights, handles, feet and logo. There is no reason

why these meshes could not be grouped into a single mesh with several UV channels. This consolidation

would reduce the number of draw calls required to draw the scene and therefore would increase the

rendering threads performance, how much by is unclear, this would need to be determined through

investigation.

Digital Material Improvements

As discussed in Chapter 5.5, the resolution of photography captures used 3000x3000px. These captures

could be reduced to a lower resolution provided that the end-users did not notice the decrease in visual

quality. However, since the product renders are natively at 1920x1080px and then downsampled to

960x540px, there is good reason to suspect that lowering the resolution of the photography captures

would not be noticeable by the end-user. By reducing the resolution, there would be a marked decrease

in the texture cache required to run the rendering algorithm. Alternatively, if the goal was to reduce

the texture cache required to run the rendering algorithm, and it could not come at the cost of any

assets resolution being decreased, normal maps could be removed from the materials, their effect on

the product renders has turned out to be negligible at best. It is very likely that if normal maps were

removed, end-users would not be able to notice any difference in visual outcomes.

Raytracing

During the timeline of this project, certain technological innovations happened that could not be

included. One of these innovations is NVIDIA's RTX raytracing feature. RTX raytracing is already available

in Unreal Engine 4, but only when using series 2060 RTX GPU's or above. This project used an NVIDIA

GTX 1080 Ti and so, this feature was not available. If the GPU was updated to a more recent model,

raytracing could be used to calculate all the lighting, reflections and shadows in the product levels.

Raytracing would likely add to the rendering cost of the scene overall but would increase the rendering

70

quality abundantly. The biggest benefactors of this inclusion would be elements such as reflections and

ambient occlusion, much extra work had to be conducted on these aspects due to several products,

and this added to the overall development time of the project. If raytracing were used, work would not

have to be conducted on these aspects of development. Additionally, real-time raytracing would

eliminate the need to bake static lighting in levels before rendering, saving an abundant amount of

development time overall.

Front-end Content Management

One of the most significant improvements that could be made to the project is the inclusion of a front-

end content management system, including this, would mean someone with no experience in using

Unreal Engine 4 could update and edit the capabilities and content used by the rendering algorithm. All

that would be required would be a user interface that would expose certain variables to the user for

modification. These variables would be;

• String value and texture value of a material structure

• The ability to add or remove materials in the material arrays

• The ability to create a new product level or delete obsolete ones

• The ability to create a new product instance or delete an obsolete one

The way this could be included is using the UMG blueprint system, UMG blueprints are like actor

blueprints with the only difference being that a UMG blueprint is a 2D scene element rather than a 3D

scene element. This inclusion would likely take large amounts of development time, but if added

successfully, would make updating the rendering algorithm much easier.

This project has touched on the theme that there are differences between 2D and 3D product

configurators that are more than technical deviations. However, it would be helpful to identify whether

or not choosing a 3D product configurator over a 2D version creates any differences in outcomes from

a commercial perspective. The entire reason product configurator development exists is to create

solutions that benefit the sale of certain products. However, it is not yet apparent which type of product

configurator customers prefer. The tacit assumption seems to be that because 3D product

configurators are more challenging to create from a technical standpoint, they must produce enhanced

outcomes over their 2D counterparts. A starting point to establishing this research would be to create

both types of product configurator for the same products. Once development was complete, it would

release the 2D version to the consumer base and collect data on performance. After a set period, the

2D version would be replaced by its 3D counterpart, and then an analysis would be run to identify

whether or not there are any differences in commercial outcomes.

In conclusion, game technology can be used to assist in the development of product configurators. Its

inclusion brings with it a plethora of advantages that traditional development methods lack. However,

utilising game technology like this does not outright remove the risk associated with developing a

product configurator; it can only help reduce it. Product configurator projects are massive undertakings

that are not to be taken lightly. REM successfully released its product configurator within the set release

window, and this tool has created many positive commercial outcomes for the business. The

development of the solution created in this project will now be continued by REM as the company looks

to the future.

71

8. REFERENCES

Concept Art Empire. (2019). What is Unreal Engine? [online] Available at:

https://conceptartempire.com/what-is-unreal-engine/ [Accessed 7 Jan. 2019].

Concept Art Empire. (2019). What is UV Mapping & Unwrapping? [online] Available at:

https://conceptartempire.com/uv-mapping-unwrapping/ [Accessed 3 Jan. 2019].

CRYENGINE. (2020). CRYENGINE | The complete solution for next-generation game development by

Crytek. [online] Available at: https://www.cryengine.com/# [Accessed 7 Jan. 2020].

Docs.cryengine.com. (2019). Diffuse Maps - CRYENGINE 3 Manual - Documentation. [online] Available

at: https://docs.cryengine.com/display/SDKDOC2/Diffuse+Maps [Accessed 7 Sep. 2019].

EN. (2018). Helmade SK-6 Crown. [online] Available at: https://www.helmade.com/en/helmet-design-

mk-art-arai-sk-6-crown-2361.html [Accessed 17 Jul. 2018].

En.wikipedia.org. (2020). Kinect. [online] Available at: https://en.wikipedia.org/wiki/Kinect [Accessed 5

Jan. 2020].

Gamesparks.com. (2019). Unity Game Engine Review |. [online] Available at:

https://www.gamesparks.com/blog/unity-game-engine-review/ [Accessed 6 Aug. 2019].

Haug, Hvam and Mortensen. (2012). Definition and evaluation of product configurator development

strategies. 63rd ed. Computers in Industry, pp. Pages 471-481.

Indianmotorcycle.com. (2018). Build Colour Indian Challenger Limited | Indian Motorcycle. [online]

Available at: https://www.indianmotorcycle.com/en-us/challenger-limited/build-color/ [Accessed 7 Jul.

2018].

Lifewire. (2019). 3D Modelling Process Defined. [online] Available at: https://www.lifewire.com/what-

is-3d-modeling-2164 [Accessed 7 Jan. 2019].

Made to Order. (2019). [eBook] YouGov. Available at: http://campaign.yougov.com/rs/060-QFD-

941/images/Made%20to%20Order%20%E2%80%93%20Personalization%20report.pdf?utm_medium

=Email&utm_source=Download&utm_campaign=US_2018_Personalization_Whitepaper&mkt_tok=ey

JpIjoiTm1ZM056RTVNVFk1WmpFeSIsInQiOiJnVkNqN3VrT1RlR3Fidnd1Ynd1NktEOCsrKzhoTTN0WlNiU

09jQlBcLzlsSjN1akdtUUxtMDdGa1RQMjRxTHhYS1IzTnZXXC9aV1dZSkM4Zm1ZRFFHZ0tlSlNyZ0Y0YmVv

NmExcldKaHRsaVpMXC8zdEN1anlYRzNXOE5HMm4zS0dpNCJ9 [Accessed 3 Dec. 2019].

Mageean, L. (2019). Customisation Comes of Age. [online] WhichPLM. Available at:

https://www.whichplm.com/customization-comes-of-age/ [Accessed 17 Aug. 2019]

Mathopenref.com. (2018). Definition of the math word edge. [online] Available at:

https://www.mathopenref.com/edge.html [Accessed 7 Nov. 2018].

Microsoft.com. (2018). Xbox Design Lab. [online] Available at: https://www.microsoft.com/en-

gb/store/configure/xbox-design-

lab/900WZDF9XJVG?selectedskus=900WZDF9XJVG:69FL,941H3FP99RM3:0WVN,8ST76B99KP7D:C8T5

72

,90T6CGN08P38:3L99,90K4SGTLSKML:LZXC,9102F5Z9J68L:HS8S,936X3M90WS2S:6NSF,90SX28477R3

L:BN9B [Accessed 28 Jul. 2018].

Petry, C. (2018). NormalMap-Online. [online] Cpetry.github.io. Available at:

https://cpetry.github.io/NormalMap-Online/ [Accessed 27 Jan. 2018].

PlayCanvas.com. (2019). PlayCanvas - The Web-First Game Engine. [online] Available at:

https://playcanvas.com/ [Accessed 19 Mar. 2019].

Porsche Cars Great Britain - Dr Ing. h.c. F. Porsche AG - Porsche Great Britain. (2019). Porsche Car

Configurator - Porsche Great Britain. [online] Available at:

https://www.porsche.com/uk/modelstart/all/?modelrange=911 [Accessed 5 Jul. 2019].

Reynolds, M. (2019). How IKEA's future-living lab created an augmented reality hit. [online]

Wired.co.uk. Available at: https://www.wired.co.uk/article/ikea-place-augmented-reality-app-space-

10 [Accessed 7 Dec. 2019].

Strivr. (2020). How Walmart embraces Immersive Learning | Strivr testimonial. [online] Available at:

https://www.strivr.com/resources/customers/walmart/ [Accessed 6 Jan. 2020].

Technologies, U. (2020). Cycles | Unity. [online] Unity. Available at:

https://unity.com/madewith/cycles#project [Accessed 6 Jan. 2020].

Technologies, U. (2019). Unity - Unity. [online] Unity. Available at: https://unity.com/ [Accessed 7 Jul.

2019].

Technologies, U. (2019). Unity - Manual: Normal map (Bump mapping). [online] Docs.unity3d.com.

Available at: https://docs.unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html

[Accessed 1 Dec. 2019].

Tesla.com. (2018). Design Your Model S | Tesla. [online] Available at:

https://www.tesla.com/en_GB/models/design#battery [Accessed 7 Dec. 2018].

Trimit.com. (2019). What is a Product Configurator? [online] Available at:

https://www.trimit.com/en/blog/what-is-a-product-configurator.html [Accessed 30 Jan. 2019].

Unreal Engine. (2019). Booz Allen Hamilton harnesses UE4 for mission-critical training and simulation.

[online] Available at: https://www.unrealengine.com/en-US/spotlights/booz-allen-hamilton-

harnesses-ue4-for-mission-critical-training-and-simulation [Accessed 5 Dec. 2019].

Unreal Engine. (2019). Precision OS delivers accredited curriculum for orthopaedic surgical training in

VR. [online] Available at: https://www.unrealengine.com/en-US/spotlights/precision-os-delivers-

accredited-curriculum-for-orthopedic-surgical-training-in-vr [Accessed 17 Dec. 2019].

Unreal Engine. (2019). BMW Brings Mixed Reality to Automotive Design with Unreal Engine. [online]

Available at: https://www.unrealengine.com/en-US/spotlights/bmw-brings-mixed-reality-to-

automotive-design-with-unreal-engine [Accessed 15 Nov. 2019].

73

Vice. (2016). How Games Are Changing the Museum Experience. [online] Available at:

https://www.vice.com/en_us/article/yp3wwj/how-games-are-changing-the-museum-experience

[Accessed 7 Jan. 2020].

9. APPENDICES

9.1. APPENDIX 1

Product Configurator Web Address

Saturn Desk 3x3 https://www.remuksalons.co.uk/rem-configurator/saturn-desk-3x3

Glow Island https://www.remuksalons.co.uk/rem-configurator/glow-island

Magnum Chair https://www.remuksalons.co.uk/rem-configurator/magnum-chair

Centenary Wall https://www.remuksalons.co.uk/rem-configurator/centenary-wall

Montana Unit https://www.remuksalons.co.uk/rem-configurator/montana-unit

https://www.remuksalons.co.uk/rem-configurator/saturn-desk-3x3
https://www.remuksalons.co.uk/rem-configurator/glow-island
https://www.remuksalons.co.uk/rem-configurator/magnum-chair
https://www.remuksalons.co.uk/rem-configurator/centenary-wall
https://www.remuksalons.co.uk/rem-configurator/montana-unit

74

9.2. APPENDIX 2

Questionnaire Image

#1

75

#2

76

#3

77

#4

78

#5

79

#6

80

#7

81

#8

82

#9

83

#10

84

#11

85

#12

86

#13

87

#14

88

#15

89

#16

90

#17

91

#18

92

#19

93

#20

94

#21

95

#22

96

#23

97

9.3. APPENDIX 3

Questionnaire Image

#1

98

#2

99

#3

100

#4

101

#5

102

#6

103

#7

104

#8

105

#9

106

#10

