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Abstract 16 

The second-order wave run-up on a vertical circular cylinder in front of a long 17 

vertical wall was investigated. A numerical model was developed to simulate the wave 18 

diffraction caused by an arbitrarily shaped structure in the presence of bi-directional 19 

incident waves based on a higher-order boundary element method. By using the 20 

developed model, the wave elevation quadratic transfer function (QTF) in bi-directional 21 

waves, which is defined as the second-order wave run-up caused by two incident waves 22 

of unit amplitude from two directions, can be determined. The developed model was 23 

subsequently used to investigate the wave interaction with a cylinder situated near a 24 

vertical wall. The image principle was applied to transform the original problem into 25 

an equivalent one of wave diffraction caused by two symmetrical cylinders in open seas 26 

exposed to bi-directional incident waves. The second-order wave run-up on the cylinder 27 

can then be determined by using the wave elevation QTF obtained from an analysis of 28 
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the equivalent problem. A detailed numerical analysis was subsequently conducted, and 29 

the characteristics of the nonlinear wave action upon a cylinder in close proximity to a 30 

long wall were explored. 31 

 32 

Key words: 33 

Bi-directional waves; Image principle; QTF; Wave diffraction; Wave run-up 34 

 35 

1. Introduction 36 

The interaction of water waves with a structure piercing the free surface can cause 37 

the water around the structure to rise above the crest of the incoming wave. The free-38 

surface elevation around the structure, also known as the wave run-up, can then be 39 

greatly enhanced. The wave run-up around the foundation or supporting columns of a 40 

structure is of significant importance to the suitable design of the air gap. A sufficient 41 

air gap can mitigate the wave slamming beneath the deck, and therefore avoid the 42 

potential damage caused by the wave impact. 43 

A vertical cylinder is frequently employed as an essential component of many 44 

offshore structures, and various studies related to the wave run-up on vertical cylinders 45 

have been reported. The potential flow theory is widely applied to investigate the 46 

interaction of water waves with large-scale structures. Based on a linear wave theory, 47 

Havelock (1940) initially gave an analytical solution to the wave diffraction caused by 48 

a vertical cylinder extending from the seabed and piercing the water surface for deep-49 

water cases. This solution was then extended to the case of a finite water depth by 50 

MacCamy and Fuchs (1954). When the cylinder is slender with respect to the 51 

wavelength, MacCamy and Fuchs (1954) assumed the scattering parameter to be small 52 

and derived an equation of the wave run-up on the weather side of the cylinder based 53 

on the asymptotic expansion of Bessel functions. To approximate the wave run-up with 54 

a better accuracy, extension of the linear wave theory to the second order was 55 

subsequently carried out by some researchers (Kim and Yue, 1989; Kriebel, 1990; 56 

Eatock Taylor and Chau, 1992; Isaacson and Cheung, 1992; Kim et al., 1997; Bai and 57 
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Teng, 2013; Shao and Faltinsen, 2013). To date, the calculation of the second-order 58 

wave run-up or wave force on a vertical cylinder or cylinder array in open seas has been 59 

conducted by some researchers, such as Chau and Eatock Taylor (1992), Malenica et 60 

al. (1999), Mavrakos and Chatjigeorgiou (2006), and Cong et al. (2015, 2018). Kim and 61 

Yue (1989) suggested that the second-order effect on the wave run-up can be significant, 62 

and the evaluation of the potentially substantial contributions that originate from the 63 

second-order effect is quite needed. By comparing the numerical predictions of the 64 

wave run-up on a large cylinder with the measured data from a laboratory experiment, 65 

Kriebel (1992) noted that the second-order wave theory generally explains a significant 66 

portion of the non-linear wave run-up measured at all angles around the cylinder. In 67 

addition, the numerical predictions based on the second-order wave theory are in much 68 

better agreement with the measured data than those based on the linear wave theory and 69 

can also agree well with the measured data for weakly non-linear incident waves. In 70 

addition to the second-order wave theory, efforts have also been made by researchers 71 

for the development of a fully non-linear theory. A fully non-linear model adopts the 72 

boundary conditions satisfied on instantaneous moving surfaces, and it can be applied 73 

to steep incident waves. The application of a fully non-linear theory in analysing the 74 

wave interaction with a cylinder or cylinder array can be found in the studies by Bai 75 

and Eatock Taylor (2007), Wang and Wu (2010), Zhou et al. (2012), and Bai et al. 76 

(2014). 77 

To provide alternative approaches to the prediction of wave run-up, several semi-78 

empirical equations have been proposed by researchers. Hallermeier (1976) suggested 79 

a velocity stagnation head method for the wave run-up on a vertical cylinder. This 80 

method was developed based on the assumption that the fluid particle at the wave crest 81 

is forced to convert its kinetic energy into potential energy by increasing the distance 82 

of u2/(2g) above the wave crest level, in which u is the velocity of the fluid particle at 83 

the wave crest, and g is the acceleration of gravity. Thus, the wave run-up is expressed 84 

as a summation of the wave crest elevation term and the velocity head term. This 85 

method had been applied as well to structures of other shapes, such as truncated 86 
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cylinders (Niedzwecki and Duggal, 1992), cylinder arrays (Niedzwecki and Huston, 87 

1992), cylinders seated on cone-shaped foundations (De Vos et al., 2007), and slender 88 

piles (Andersen et al., 2011; Kazeminezhad and Etemad-Shahidi, 2015; Bonakdar et 89 

al., 2016). Modifications to the equation had been made by introducing empirical 90 

coefficients that can be calibrated by fitting the measured data. Cao et al. (2017) 91 

evaluated the superiority of one empirical equation over another within a range of wave 92 

conditions and geometric parameters. 93 

So far, extensive studies have been conducted for the wave run-up on structures in 94 

open seas. However, in recent years, various nearshore projects, such as ships and wave 95 

energy converters, have been developed. Investigation of the wave interaction with 96 

structures near a wharf or breakwater has become increasingly important, and this has 97 

attracted the attention of many researchers. Teng et al. (2004) proposed an analytical 98 

method to analyse the wave radiation caused by a moving cylinder close to a vertical 99 

wall. In their work, the wharf was approximated by a fully reflective and infinitely long 100 

vertical wall, and the image principle was used to convert the original problem into an 101 

equivalent one with two symmetrical cylinders moving in the open seas. Other 102 

researchers have adopted the image principle to investigate the wave interaction with 103 

structures in close proximity to vertical walls, such as the wave diffraction caused by a 104 

cylinder close to orthogonal walls (Ning et al., 2005), action of ship waves on a nearby 105 

cylinder situated near a wall (Sun et al., 2007), and wave diffraction due to a truncated 106 

cylinder or cylinder array in front of a wall (Zheng and Zhang, 2015; Chatjigeorgiou, 107 

2019). Cong et al. (2019, 2020) applied the image principle to investigate the wave 108 

interaction with multiple impermeable or porous cylinders in front of a long vertical 109 

wall and derived simple relationships between the diffracted waves from real and 110 

imaginary cylinders. 111 

Generally, the characteristic nature of a hydrodynamic problem can be better 112 

described by a non-linear analysis. However, to date, a non-linear analysis of the wave 113 

interaction with structures situated near a vertical wall has rarely been reported. Kriebel 114 
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(1992) indicated that the second-order component is an important correction to the 115 

linear wave run-up on a vertical cylinder in open seas. It can be expected that the 116 

second-order component can also contribute considerably to the wave run-up on 117 

structures near a wharf or breakwater. In view of this, the second-order wave theory 118 

was adopted in this study to investigate the wave run-up on a cylinder near a long 119 

vertical wall. The image principle was used to transfer the original problem into an 120 

equivalent one in open seas. The second-order wave run-up on the cylinder can then be 121 

determined by using the wave elevation quadratic transfer function (QTF) obtained 122 

from an analysis of the equivalent problem. Based on a numerical model proposed in 123 

this study, a detailed numerical analysis was conducted. Numerical results revealed that 124 

the wave run-up on a cylinder in front of a vertical wall behaves in an oscillatory manner 125 

around that experienced by a cylinder in open seas. A pronounced wave run-up was 126 

observed around the cylinder as well as on the vertical wall. Around the lee side of the 127 

cylinder and a region on the wall that sheltered by the cylinder, the prediction of the 128 

wave run-up based on a second-order wave theory can largely exceed that based on a 129 

linear wave theory. Even when the wave steepness is small, the second-order wave 130 

elevation component can still make an apparent correction to the wave elevation 131 

distribution in the vicinity of a cylinder situated near a vertical wall. 132 

Following the introduction, the development of the numerical model for the second-133 

order wave diffraction caused by an arbitrarily shaped structure in bi-directional waves 134 

is introduced in detail. Then, the validity of the proposed model is examined in the next 135 

section. Afterwards, the application of the model in the wave interaction with a cylinder 136 

situated near a vertical wall is presented, and a variety of computed results are given 137 

and discussed. Finally, the main conclusions are presented. 138 

 139 

2. Second-order wave diffraction caused by a three-dimensional structure in bi-140 

directional waves 141 

2.1 Mathematical formulation 142 
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The wave diffraction caused by an arbitrarily shaped, three-dimensional structure 143 

fixed in bi-directional incident waves is considered. The incident waves propagate in 144 

water of uniform depth d. Fig. 1 shows a schematic of this problem. A Cartesian 145 

coordinate system oxyz with the oxy plane in the quiescent free surface and z-axis 146 

oriented upward is employed. It is assumed that the fluid is incompressible and the flow 147 

is irrotational. Then, the fluid velocity can be expressed in terms of the velocity 148 

potential, which is governed by Laplace’s equation. By means of a perturbation 149 

procedure for the velocity potential  , we can obtain the following: 150 

      1 22 3 ,O         (1) 151 

in which ε is a small parameter proportional to the wave steepness. Similarly, the wave 152 

elevation Ξ and wave force F can be expressed as follows: 153 

      1 22 3 ,O        (2) 154 

and 155 

      1 22 3 .F F F O      (3) 156 

In Eqs. (1), (2), and (3), the subscripts (1) and (2) represent the first- and second-order 157 

quantities, respectively. 158 

 159 

Fig. 1 Schematic of the problem of wave diffraction caused by a three-dimensional structure in bi-160 

directional incident waves 161 

 162 

In the presence of dual incident waves of the same frequency ω but different headings 163 
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β1 and β2, the total first-order velocity potential can be expressed as  164 

      
2

1(1)

1

,  Re ,i t

j

j

t e   



 
   

 
x x  (4) 165 

where Re[ ] denotes the real part of a complex expression and  1

j  
represents the first-166 

order velocity potential due to the incident waves travelling from the jth direction. 167 

Meanwhile, the second-order velocity potential can be expressed as a summation of a 168 

double-frequency term and a time-independent term. That is, 169 

             
2 2

2 2 22 2

1 1

,  Re .x x x
i t

jl jl

j l

t e   

 

 
   

 
  (5) 170 

In Eq. (5),  2

jl  and  2

jl  represent the double-frequency and the time-independent 171 

terms, respectively, which are related to the interaction between the jth and lth wave 172 

components. The steady term  2

jl  is subsequently neglected, as it does not contribute 173 

to the second-order wave run-up or wave force.  1

j  and 
 2

jl  can be further 174 

decomposed as a summation of the incident potential and the diffraction potential. That 175 

is, 176 

            1 1 1

, , , 1,  2;x x xj j I j D j      (6a) 177 

            2 2 2

, , , ,  1,  2.jl jl I jl D j l    x x x  (6b) 178 

The incident potentials  1

, j I  and  2

, jl I  have been derived in some previous studies, 179 

for instance, Kim (1993) and Mei et al. (2005). The expression for  1

, j I  is given by  180 

    
   cos sin1

, 

cosh
, 1,  2,

cosh
x j jik x yj

j I

iA g k z d
e j

kd

 





    (7) 181 

in which jA  is the amplitude of the jth component of the incident waves, and the 182 

wavenumber k is related to the wave frequency ω through a dispersion relation: 183 

2 tanh .gk kd   The expression for 
 2

, jl I  is then given by 184 

    
     cos cos sin sin2

, 

cosh
,

2 cosh

j l j lik x yj l jl jl

jl I

jl jl

iA A g C k z d
e

D k d

   




 
   
 

 


 x  (8) 185 

where 
jlC  , 

jlD , and 
jlk   are defined by 186 

  2 21 2cos 3tanh ;jl j lC k kd      
 

 (9a) 187 
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  24 tanh ;jl jl jlD gk k d g     (9b) 188 

  2 2cos .jl j lk k       (9c) 189 

As j  approaches 
l , the second-order incident velocity potential given by Eq. (8) 190 

can be reduced to the form of the second-order Stokes waves. 191 

We then turn to the solution of the first- and second-order diffraction potentials, that 192 

is,  1

, j D  and  2

, jl D . The boundary value problem at each order is subsequently 193 

formulated with respect to a fluid domain bounded by the seabed, the body surface, the 194 

still water surface, and a surface located sufficiently far from the body. The boundary 195 

conditions satisfied by  1

, j D  can be written as follows: 196 

 

   1 1

, , 
, on ;

j D j I

bS
n n

  
 

 
 (10a) 197 

 

 
 

1 2
1, 

, , on  = 0;
j D

j D z
z g

 






 (10b) 198 

 

 1

, 
0, on .

j D
z d

z


  


 (10c) 199 

In Eq. (10a), bS  represents the body surface, and n is the normal vector on 
bS  200 

pointing out of the fluid. In addition,  1

, j D  needs to satisfy the Sommerfeld radiation 201 

condition at the far field. 202 

The boundary conditions for  2

, jl D  are given as  203 

 

   2 2

, , 
, on ;

jl D jl I

bS
n n

  
 

 
 (11a) 204 

 

 
     

2 2
2 2, 

, 

4 1
, on  = 0;

jl D

jl D jlQ z
z g g

 



 


x  (11b) 205 

 

 2

, 
0, on .

jl D
z d

z


  


 (11c) 206 

In Eq. (11b),  2

jlQ  is the free-surface forcing term. In the presence of monochromatic 207 

bi-directional incident waves, the expression for  2

jlQ  is given by  208 
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            

        
 

   
 

   

2 1 1 1 1

, , 

12 14 2
1 1 1 1 1 1 1 12

, , , , 2 2 2

1 1
.

2 2 2

jl j l j I l I

j l
j l j I l I l j j I l I

Q i

i
k

g z z

    

  
       

    

  
     

   

x

 (12) 209 

The far-field behaviour of 
 2

, jl D  in the bi-directional problem is then examined. 210 

Following the work by Molin (1979),  2

, jl D  can be decomposed into a homogeneous 211 

(free waves) solution,  2

, jl H , and a particular (locked waves) solution,  2

, jl P , at a large 212 

distance from the structure. That is, 213 

      2 2 2

, , , .jl D jl H jl P     (13) 214 

On the undisturbed free surface, we can have 215 

 

 
 

2 2
2, 

, 

4
, on  = 0;

jl H

jl H z
z g

 






 (14a) 216 

 

 
     

2 2
2 2, 

, 

4 1
, on  = 0.

jl P

jl P jlQ z
z g g

 



 


x  (14b) 217 

 2

, jl H  satisfies a homogeneous boundary condition at the free surface. At the far field, 218 

an asymptotic expression of 
 2

, jl H  can be derived as  219 

      2 , 3 2

, cosh , ,
H jl i r

jl H

f
z d e O r r

r

       (15) 220 

where κ satisfies 24 tanhg d   , 
2 2r x y  . , H jlf  describes the variation of the 221 

homogeneous solution around the circumferential direction at the far field. The far-field 222 

behaviour of  2

, jl P  is governed by that of the free-surface forcing term  2

jlQ .  2

jlQ  223 

contains quadratic products due to the first-order diffraction potential 
 1

, j D  itself as 224 

well as those due to  1

, j D  and non-diminishing  1

, j I . Using the asymptotic expansion 225 

of the first-order velocity potential for a large argument, it is obtained that the quadratic 226 

products due to 
 1

, j D  itself decay as O(l/r) when r → +∞. Meanwhile, the quadratic 227 

products due to  1

, j D  and  1

, j I  decay as O(l/r1/2) when r → +∞ and dominate the far-228 

field behaviour of  2

jlQ . Then, we can have the following asymptotic form for  2

, jl P : 229 
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       

       

1 cos2 , 

, 

1 cos, 1

cosh 2 2cos

cosh 2 2cos , .   

j

l

ikrP jl

jl P j

ikrP lj

l

f
e k z h

r

f
e k z h O r r

r

 

 

  

 

  
 

    

    
  

       
 

 (16) 230 

In Eq. (16), , P jlf  and , P ljf  are functions depending on the variation of the particular 231 

solution around the circumferential direction at the far field. Eq. (16) satisfies Laplace’s 232 

equation to the leading order as well as the boundary condition on the seabed. Eqs. (13), 233 

(15), and (16) suggest that  2

, jl D  decays as O(l/r1/2) at the far field. Then, a weak 234 

radiation condition can be guaranteed for 
 2

, jl D  in the bi-directional problem. 235 

 236 

2.2  Boundary integral equation method for the diffraction potential 237 

The boundary integral equation method is adopted in the present study to solve the 238 

established boundary value problem, as it explicitly takes advantage of reducing the 239 

dimension of the problem by one order. The oscillating source, which satisfies the linear 240 

free-surface boundary condition, the no-flow condition on the horizontal seabed, and 241 

the Sommerfeld radiation condition at infinity, is used as Green’s function. The use of 242 

the classical Green’s second identity to the diffraction potential and Green’s function 243 

can lead to a Fredholm integral equation of the second kind for  1

, j D  and  2

, jl D . In 244 

addition, by using the method of stationary phase in conjunction with the asymptotic 245 

results in Eqs. (15) and (16), the integral over the far field vanishes. Then, the resulting 246 

boundary integral equation for  1

, j D  and  2

, jl D  can be expressed as  247 

    
       

   1

1 1 , 0

, 0 , 0

,  ;  
,  ;  ;

xx x
x x x x

b b

j I

j D j D

S S

G
ds G ds

n n


  


 

    (17a) 248 

 

   
     

 
   

     

2 20

, 0 , 

2

2, 

0 0

,  ;  2

1
,  ;  2 ,  ;  2 ,

b

b f

jl D jl D

S

jl I

jl

S S

G
ds

n

G ds G Q ds
n g


 


 







 





 

x x
x x

x
x x x x x

 (17b) 249 

where α is a measure of the normalised solid angle and depends on the local shape of 250 

the body surface, x and 0x  are the source and field points, respectively, and 
fS  251 
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represents the entire mean free surface outside the body. 252 

The higher-order boundary element method (Teng and Eatock Taylor, 1995) is used 253 

to solve Eq. (17). The body surface is discretised into a set of curved quadrilateral or 254 

triangular elements. The body surface is smooth, and the variation of the physical 255 

quantities over the body surface is also continuous. Eq. (17) is then transferred to a 256 

system of linear algebraic equations based on isoperimetric-type techniques. The 257 

boundary integral equation for  2

, j D  is similar to that for  2

, jl D  with the addition of a 258 

free-surface integral over 
fS . This integral over 

fS  results from the 259 

nonhomogeneous forcing term on the free surface (see Eq. 11(b)), which oscillates 260 

rapidly and decays slowly in amplitude with an increase in the distance from the body. 261 

To overcome this computational difficulty, the entire free surface is divided into three 262 

regions in this study, and the integral within each region is treated differently. The first 263 

region is a near-field region surrounding the structure. It is bounded by the waterline 264 

and a circular exterior boundary. Within the first region, the free surface is discretised 265 

into planar panels, and the integration is performed numerically by means of a Gaussian 266 

quadrature formula. In the middle region, the velocity potential and Green’s function 267 

are expanded into a Fourier series with respect to the polar angle θ, and the free surface 268 

integral is simplified into a series of radial integrals that can be integrated numerically. 269 

In the outermost region, the integral is transformed to another form together with some 270 

residuals. By using the asymptotic expansions of Hankel functions, the new integral is 271 

further reduced to one whose integrand is represented by the summation of polynomials 272 

of various orders, and the integration of each term of the polynomials can be calculated 273 

analytically. This numerical algorithm has been successfully applied in the analysis of 274 

second-order unidirectional problems, e.g. by Eatock and Chau (1992), Sun et al. (2010), 275 

and Cong et al. (2012). The application of this method has been extended to cases of 276 

bi-directional waves in the present study. 277 

 278 

2.3 Expression for the wave force and wave elevation QTFs 279 

The fluid pressure can be determined based on Bernoulli’s equation after obtaining 280 
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the solution of the velocity potential. The hydrodynamic wave force acting on a body 281 

can then be calculated by integrating the pressure over the body surface. The complete 282 

formulation of the second-order wave force on a stationary body has been presented by, 283 

for instance, Ogilvie (1983) and Chen (2007). In the presence of monochromatic 284 

incident waves, the second-order wave force 
 2

F  can be expressed as the sum of a 285 

time oscillatory term and a mean term. That is, 286 

      2 2 22 2Re ,i t

me    
 

F f f  (18) 287 

where  2
f  and  2

mf  represent the double-frequency and time-independent terms, 288 

respectively.  2
f  and  2

mf  are both proportional to the products of the incident wave 289 

amplitude. Thus,  2
f  and  2

mf  can be further written as follows: 290 

        
2 2 2 2

2 2

, 

1 1 1 1

; ,j l jl m j l jl m

j l j l

A A A A

   

  f f f f  (19) 291 

in which 292 

            
2

2 1 1 1 1

2

3

2 ;
4 4 1

n
f n n

b b w

jl jl j l j l j l

S S

i ds ds dl A A
g n

  
     



 
     
  

   (20a) 293 

          
2

1 1 1 1

, 2

3

Re .
4 4 1

n
f n

b w

jl m j l j l j l

S

ds dl A A
g n

  
   

  



  
      
    

   (20b) 294 

In Eqs. (19) and (20), f jl  and , jl mf  are the double-frequency and the mean drift wave 295 

force due to the action of two incident waves of unit amplitude with headings j  and 296 

l , respectively. Conventionally, f jl
 and , jl mf  are defined as the double-frequency 297 

and the mean drift wave force QTF, respectively. In the presence of monochromatic bi-298 

directional incident waves, the following symmetry relation is satisfied by the wave 299 

force QTF: 300 

 
, , ; .jl lj jl m lj m f f f f  (21) 301 

Meanwhile, after getting the velocity potential, the wave elevation can also be 302 

immediately obtained. The first- and second-order wave elevations, that is,  1
  and 303 

 2
 , have the following forms: 304 

    1 1
Re ;i te    

 
 (22a) 305 
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      2 2 22 2Re ,i t

me      
 

 (22b) 306 

where  1
  is the amplitude of the linear wave elevation,  2

  is the amplitude of the 307 

double-frequency wave elevation,  2

m  and is the time-independent wave elevation. 308 

Under the action of monochromatic bi-directional incident waves,  1
  can be 309 

determined according to the following expression: 310 

    
2

1 1

1 0

.j

j z

i

g


 

 

   (23) 311 

Meanwhile,  2
  and  2

m  can be expressed as follows: 312 

        
2 2 2 2

2 2

, 

1 1 1 1

; ,j l jl m j l jl m

j l j l

A A A A   

   

    (24) 313 

in which 314 

            
2

2 1 1 1 1

0

2 1
;

4 2
jl jl j l j l j l

z

i v
A A

g g g


     



 
     
 

 (25a) 315 

 
         

2
1 1 1 1

, 

0

1
Re .

4 2
jl m j l j l j l

z

v
A A

g g
    

  



  
      

   

 (25b) 316 

In Eq. (25), v is the deep-water wavenumber and is defined as 2 g ; 
jl  and 

, jl m  317 

represent the double-frequency and the time-independent wave elevations due to the 318 

action of two incident waves of unit amplitude with headings 
j  and 

l , respectively. 319 

Conventionally, jl  and 
, jl m  are defined as the double-frequency and time-320 

independent wave elevation QTF, respectively. In the presence of monochromatic bi-321 

directional incident waves, the following symmetry relation is obtained: 322 

 
, , ; .jl lj jl m lj m      (26) 323 

 324 

3. Convergence test and validation 325 

To verify the reliability of the present results, the convergence of such results with 326 

respect to the mesh discretisation is examined. A pair of vertical cylinders of radius a 327 

in water of depth 4a is first taken as an example. The centres of the cylinders are located 328 

at (±2.5a, 0) on the quiescent free surface. In addition, the wave headings 
j  and 

l  329 

are equal to π/4 and 0, respectively. A numerical calculation is carried out to evaluate 330 
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the double-frequency wave force on the x- and y-directions on the upstream cylinder 331 

(whose centre is located at (−2.5a, 0) on the quiescent free surface). In the calculation, 332 

two geometric symmetry planes are adopted to facilitate the computation. Two 333 

discretisations are employed to test the convergence of the results. In the first case, 1538 334 

quadrilateral elements are used in each quadrant (520 elements on the body surface and 335 

1018 elements in the near-field water plane area with an exterior radius of 9a). In the 336 

second case, 3329 quadrilateral elements are used in each quadrant (1140 elements on 337 

the body surface and 2189 elements in the near-field water plane area with an exterior 338 

radius equal to 12a). The mesh discretisations in the two test cases are depicted in Fig. 339 

2. In Fig. 3, the wave force QTF on the upstream cylinder is plotted as a function of va. 340 

For comparison, the results reported by Vazquez (1995) are also presented in Fig. 3. 341 

Considering the effect of the wave directionality, Vazquez (1995) developed a 342 

numerical model to predict the second-order wave force on a pair of cylinders based on 343 

an indirect method (Lighthill, 1979; Molin, 1979). The indirect method has been proved 344 

to be efficient in calculating the wave force. However, because no solution is obtained 345 

for the diffraction potential, it is not possible to obtain solutions of the wave elevation 346 

by using the indirect method. From Fig. 3, it is found that the present results are in good 347 

agreement with those of the study by Vazquez (1995). In addition, even though the 348 

mesh in the first case is much coarser than that in the second case, the two test cases 349 

provide almost the same results, which indicates that convergence is achieved. 350 

   351 

Fig. 2 Mesh discretisation on the body surface and near-field free surface in a quarter area: (a) first 352 

test case and (b) second test case 353 
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       354 

Fig. 3 Comparison of the dimensionless double-frequency wave force QTF on the upstream cylinder 355 

of a pair of vertical cylinders with βj = π/4 and βl = 0: (a) fjl, x and (b) fjl, y 356 

 357 

We then consider the wave interaction with four identical vertical cylinders, which 358 

are with radius a and centred at the corners of a square with a side length of 4a. The 359 

centres of the cylinders are located at (±2a, ±2a) on the quiescent free surface, and the 360 

cylinders are numbered anticlockwise with cylinder 1 located in the first quadrant. A 361 

local coordinate system is defined at each cylinder with the origin at the centre of the 362 

cylinder, and the local axis is parallel to the axis of the global coordinate system. 363 

Unidirectional incident waves with βj = βl = π/4 and Aj = Al = A are considered. The 364 

water depth d is equal to 3a. This set-up is the same as that in the study by Malenica et 365 

al. (1999), in which a semi-analytical solution to the second-order wave diffraction 366 

caused by an array of vertical cylinders was developed. The present results of the wave 367 

elevation QTF are then compared with the semi-analytical results. In the calculation, 368 

1906 quadrilateral elements are used in each quadrant (800 elements on the body 369 

surface and 1106 elements in the near-field water plane area with an outer radius of 9a). 370 

The comparison is shown in Fig. 4. It is apparent that there is good agreement between 371 

the present results and the semi-analytical results, which further confirms the validity 372 

of the present model. 373 
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 374 

Fig. 4 Comparison of the dimensionless double-frequency wave elevation QTF on a four-cylinder 375 

structure with βj = βl = π/4 and ka = 0.468: (a) cylinder 1, (b) cylinder 2, and (c) cylinder 3 376 

 377 

4. Investigation of wave run-up on a cylinder in front of a vertical wall 378 

The wave diffraction caused by a vertical circular cylinder of radius a piercing 379 

through the free surface in front of a long vertical wall is considered (see Fig. 5). The 380 

amplitude and angular frequency of the incident waves are A and ω, respectively. In 381 

addition, the distance between the wall and centre of the cylinder is R. The impermeable 382 

vertical wall extends from the seabed to the free surface and is assumed to be infinitely 383 

long and fully reflective. Then, following Teng et al. (2004), the problem described in 384 

Fig. 5 can be transformed into an equivalent problem in open seas (see Fig. 6). 385 

 386 

Fig. 5 Schematic of a cylinder situated near a vertical wall: (a) side view and (b) plan view 387 

 388 

The illustration of the equivalent problem in open seas and the definition of the 389 

Cartesian coordinate system oxyz in an imaginary system are depicted in Fig. 6. As 390 

shown, the quiescent free surface is on the oxy plane, and the z-axis points upward. The 391 
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original vertical wall is on the oyz plane, and (0, 0) is defined as the center of the wall 392 

on the free surface. In Fig. 6, the left and right cylinders are the real and imaginary 393 

cylinders, respectively. Their centres are at (−R, 0) and (R, 0), respectively, on the 394 

quiescent free surface. The two cylinders are subjected to two trains of monochromatic 395 

incident waves of amplitude A and angular frequency ω travelling from the directions 396 

of β and π – β relative to the positive x-axis, respectively. In addition, in the subsequent 397 

calculations, a water depth of d = 3a is adopted. 398 

 399 

Fig. 6 Schematic of two symmetrical vertical cylinders in an imaginary system: (a) side view and 400 

(b) plan view 401 

 402 

4.1 Wave run-up at specific points 403 

To better elucidate the effect of the vertical wall on the wave elevation around the 404 

structure, also known as wave run-up, three points on a real cylinder, namely P1, P2, 405 

and P3, are introduced as the feature points (see Fig. 5). P1, P2, and P3 are all on the free 406 

surface and with the coordinates (−R + a, 0), (−R, −a), and (−R − a, 0), respectively, in 407 

the imaginary system. 408 

After applying the image principle, the original problem exhibited in Fig. 5 under a 409 

single incident wave with a heading β is converted to that shown in Fig. 6 under dual 410 

incident waves with headings β and π − β in open seas. When the incident wave 411 

headings are β and π – β, QTFs corresponding to wave heading combinations of (β, β), 412 
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(π − β, β), (β, π − β), and (π − β, π − β) are required for the calculation of the second-413 

order wave elevation. The double-frequency and the time-independent wave elevation 414 

QTFs at P1, P2, and P3 with R = 2.5a and β = 0 are presented in Table 1. Analogous 415 

results to those in Table 1, but with R = 3a and β = π/4, are provided in Table 2. Because 416 

the wave elevation QTF satisfies the symmetry relation given by Eq. (26), the results 417 

in these tables are only presented for combinations of (β, β), (π − β, β), and (π − β, π − 418 

β). The effects of the distance between the wall and the cylinder as well as the wave 419 

heading are clearly observed by noting that there exist obvious differences between the 420 

wave elevation QTFs listed in Tables 1 and 2. It is also found that at each wave 421 

frequency, the contribution from the QTF corresponding to the combinations of (β, β), 422 

(π − β, β), or (π − β, π − β) to the wave elevation can be equally important. Acceptable 423 

results cannot be achieved by neglecting any of them. 424 

 425 

Table 1 Dimensionless double-frequency and time-independent wave elevation QTF, 426 

   2 2

jl A kA  and    2 2

, jl m A kA , at P1, P2 and P3 for different wave frequencies with R = 2.5a 427 

and β = 0. The values shown for each heading combination are: first row, P1; second-row, P2; third 428 

row, P3. 429 

(a) Double-frequency wave elevation QTF 430 

ka 

(βj, βl) 
0.6 0.9 1.2 1.5 1.8 

(β, β) 

3.525 

3.107 

0.549 

2.487 

1.192 

1.070 

1.445 

1.931 

0.814 

0.892 

1.229 

0.623 

0.433 

1.409 

0.740 

(π − β, β) 

3.619 

2.565 

1.667 

0.622 

0.433 

1.080 

1.008 

0.759 

0.570 

0.121 

0.136 

0.568 

0.543 

0.699 

0.371 

(π − β, π − β) 

3.543 

2.556 

2.360 

2.171 

1.052 

1.241 

1.893 

0.921 

1.184 

1.068 

1.166 

0.435 

1.443 

0.402 

0.421 

 431 

(b) Time-independent wave elevation QTF 432 

ka 

(βj, βl) 
0.6 0.9 1.2 1.5 1.8 
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(β, β) 

 0.205 

−1.227 

 0.762 

 0.105 

 0.006 

 0.565 

 0.481 

−0.630 

 0.807 

 0.296 

 0.392 

 0.744 

 0.031 

−0.316 

 0.928 

(π − β, β) 

 0.284 

−1.335 

 0.248 

−0.199 

−0.002 

 0.086 

−0.564 

 0.935 

−0.332 

−0.420 

 0.004 

 0.295 

−0.131 

 0.740 

−0.111 

(π − β, π − β) 

 0.559 

−0.719 

 0.222 

 0.630 

−0.340 

 0.185 

 0.757 

−0.094 

 0.173 

 0.614 

 0.029 

 0.118 

 0.557 

−0.009 

 0.096 

 433 

Table 2 Dimensionless double-frequency and time-independent wave elevation QTF, 434 

   2 2

jl A kA  and    2 2

, jl m A kA , at P1, P2 and P3 for different wave frequencies with R = 3a 435 

and β = π/4. The values shown for each heading combination are: first row, P1; second-row, P2; third 436 

row, P3. 437 

(a) Double-frequency wave elevation QTF 438 

ka 

(βj, βl) 
0.6 0.9 1.2 1.5 1.8 

(β, β) 

1.089 

1.046 

0.623 

2.370 

0.523 

0.645 

1.909 

0.659 

0.608 

1.601 

0.657 

0.503 

1.103 

1.199 

0.924 

(π − β, β) 

1.531 

1.051 

1.394 

1.253 

0.366 

1.196 

1.135 

0.559 

1.000 

0.484 

0.424 

1.018 

0.842 

0.656 

0.615 

(π − β, π − β) 

0.781 

1.221 

1.741 

2.013 

1.216 

1.837 

1.908 

0.493 

1.541 

0.783 

1.339 

1.286 

1.128 

0.937 

0.965 

 439 

(b) Time-independent wave elevation QTF 440 

ka 

(βj, βl) 
0.6 0.9 1.2 1.5 1.8 

(β, β) 

−0.507 

−0.049 

 0.083 

−0.432 

 0.373 

 0.196 

−0.274 

 0.187 

 0.472 

−0.427 

 0.642 

 0.178 

−0.161 

−0.253 

 0.374 

(π − β, β) 

 0.271 

−0.625 

 0.399 

 0.078 

−0.809 

−0.045 

 0.148 

 0.329 

 0.016 

 0.292 

 1.250 

 0.121 

 0.367 

−0.031 

−0.023 

(π − β, π − β) 

−0.184 

 0.095 

−0.548 

 0.255 

 0.309 

−0.438 

 0.163 

 0.291 

−0.376 

 0.369 

 0.315 

−0.280 

 0.772 

 0.298 

−0.272 

 441 
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Based on the QTF results, the second-order wave run-up at P1, P2, and P3 can then be 442 

determined. The variation of the wave run-up at P1, P2, and P3 with respect to ka is 443 

shown in Figs. 7–12. In order to achieve a better understanding, the results of the linear 444 

wave run-up are also presented in the figures. In addition, in these figures, the results 445 

referred to as ‘UW’ correspond to those of a single cylinder in open seas. 446 

The effect of the distance between the wall and the cylinder on the wave run-up at 447 

P1, P2, and P3 is illustrated in Figs. 7–9. In the calculations, β is fixed at 0, and R is 448 

varied as R = 2a, 2.5a, and 3a. From Figs. 7–9, strong evidence of the pronounced effect 449 

of the vertical wall on the wave diffraction process is observed. In Fig. 7, the linear 450 

wave run-up amplitude on a cylinder situated near a vertical wall oscillates around that 451 

experienced by a cylinder in open seas. Obvious amplification of the linear wave run-452 

up can be observed due to the influence of the vertical wall. When R = 2a, a linear wave 453 

run-up that exceeds 3 times the incident wave amplitude can be observed at P1 (see Fig. 454 

7(a)). It is also noted that, at each location, the oscillation of the wave run-up with ka 455 

becomes more frequent as R increases. In addition, for a fixed distance between the 456 

wall and cylinder, such oscillation gradually becomes more frequent from P1 to P2 and 457 

P3. 458 

 459 

Fig. 7 Dimensionless linear wave run-up amplitudes,
 1

A , at (a) P1, (b) P2, and (c) P3 for different 460 

distances between the wall and cylinder 461 

 462 

Fig. 8 presents the variation of the time-independent wave run-up at P1, P2, and P3 463 

with respect to ka for different values of R. The time-independent wave run-up is 464 

obtained directly from the first-order quantities. When β = 0, owing to the symmetry of 465 
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the structure, the fluid particles at P1 and P3 move only in the vertical direction. Then, 466 

at P1 and P3, the time-independent wave run-up is proportional to the square of the 467 

linear wave run-up. Therefore, the variation of the wave run-up in Figs. 8(a) and 8(c) 468 

is similar to that in Figs. 7(a) and 7(c). Moreover, the frequencies of the obvious peaks 469 

and troughs in Figs. 8(a) and 8(c) coincide with those in Figs. 7(a) and 7(c). At P2, the 470 

fluid particle moves not only in the vertical direction but also in the horizontal plane. 471 

This can lead to discrepancies between the frequencies of the peaks and troughs in Fig. 472 

8(b) and those in Fig. 7(b). 473 

 474 

Fig. 8 Dimensionless time-independent wave run-up,    2 2

m kA , at (a) P1, (b) P2, and (c) P3 for 475 

different distances between the wall and cylinder 476 

 477 

The variation of the double-frequency wave run-up amplitude at P1, P2, and P3 with 478 

respect to ka is shown in Fig. 9 for different values of R. The double-frequency wave 479 

run-up on a cylinder situated near a vertical wall also oscillates around that experienced 480 

by a vertical cylinder in open seas. Such oscillation becomes more frequent as the 481 

cylinder gets far away from the wall. The effect of the vertical wall on the double-482 

frequency wave run-up is generally more significant than that on the linear wave run-483 

up. Owing to the influence of the vertical wall, a greatly amplified double-frequency 484 

wave run-up can be observed in the low-frequency region. At P1, an obvious peak with 485 

a value of 17.174 can be observed at ka = 0.48 when R = 3a. This suggests that when 486 

the wave steepness is 0.06, the double-frequency wave run-up at P1 can reach 1.030 487 

times the incident wave amplitude when R = 3a and ka = 0.48. As the wave steepness 488 

increases further to 0.1, it grows to 1.717 times the incident wave amplitude. Meanwhile, 489 
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the corresponding linear wave run-up amplitude is 2.150 times the incident wave 490 

amplitude. Despite being a correction term, the second-order wave run-up, which is 491 

proportional to the square of the wave steepness, becomes progressively important as 492 

the wave steepness increases. The above observation typically demonstrates the 493 

significance of the second-order effect in the hydrodynamic analysis. 494 

 495 

Fig. 9 Dimensionless double-frequency wave run-up amplitudes,    2 2kA , at (a) P1, (b) P2, and 496 

(c) P3 for different distances between the wall and cylinder 497 

 498 

The wave heading can also affect the wave run-up on the cylinder, as illustrated in 499 

Figs. 10–12. In the calculations, the distance between the wall and cylinder was fixed 500 

at R = 3a, and the wave heading was increased from 0 to π/4 with an interval of π/12. 501 

As shown in Fig. 10, as the wave heading increases, the oscillation of the linear wave 502 

run-up with ka becomes less frequent. As the propagation direction of the incident 503 

waves deviates from the positive x-direction, at P1, P2, and P3, the motion of the fluid 504 

particle in the horizontal plane can be enhanced. Therefore, the trend of the time-505 

independent wave run-up gradually differs from that of the linear wave run-up as β 506 

increases (see Fig. 11). In Fig. 12, the variation of the double-frequency wave run-up 507 

with respect to ka exhibits remarkable oscillations. At P1 (see Fig. 12(a)), each curve is 508 

characterised by an obvious peak around ka = 0.48. The change in the wave heading 509 

does not obviously affect the frequency of the obvious peak, while the peak value 510 

decreases gradually as β increases. At P2 and P3 (see Figs. 12(b) and 12(c)), the 511 

appearance of two obvious peaks in the low-frequency region is noticeable, and the 512 

peak value decreases monotonically as β increases. An exception can be found at the 513 

second peak at P2, where the case of β = π/12 indicates the largest peak value among 514 
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different wave headings. 515 

 516 

Fig. 10 Dimensionless linear wave elevation amplitudes, 
 1

A , at (a) P1, (b) P2, and (c) P3 for 517 

different incident wave headings 518 

 519 

Fig. 11 Dimensionless time-independent wave elevations,    2 2

m kA , at (a) P1, (b) P2, and (c) P3 520 

for different incident wave headings  521 

 522 

Fig. 12 Dimensionless double-frequency wave elevation amplitudes, 
   2 2kA , at (a) P1, (b) P2, 523 

and (c) P3 for different incident wave headings  524 

 525 

4.2 Wave run-up distribution around a cylinder 526 

The effect of a vertical wall on the wave run-up distribution around a cylinder is 527 

investigated. Fig. 13 depicts the effect of the distance between the wall and cylinder on 528 

the wave run-up distribution with β = 0 and ka = 0.48. Fig. 13(a) shows the variation of 529 

the linear wave run-up with respect to θ, in which  1tan /y x R     . In Fig. (13a), 530 

obvious peaks are observed around the weather side (θ = π) and the lee side (θ = 0 or 531 
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2π), respectively. Moreover, obvious troughs, which move gradually to the lee side as 532 

R increases, are observed between them. It is also found that the presence of the vertical 533 

wall can amplify the linear wave run-up around the lee side. In Fig. 13(b), the variation 534 

of the time-independent wave run-up on the cylinder is similar to that in Fig. 13(a), and 535 

the presence of the vertical wall clearly reinforces the negative time-independent wave 536 

run-up on the cylinder. In Fig. 13(c), the double-frequency wave run-up varies rapidly 537 

on the cylinder. In addition, it is interesting to find that regardless of the value of R, the 538 

presence of the vertical wall can amplify the double-frequency wave run-up at almost 539 

all locations on the cylinder. 540 

 541 

Fig. 13 Wave run-up on a cylinder situated near a wall at ka = 0.48 for different distances between 542 

the wall and cylinder: (a) 
 1

A , (b)    2 2

m kA , and (c) 
   2 2kA  543 

 544 

The variation of the wave run-up around a cylinder for different wave headings is 545 

presented in Fig. 14 with R = 3a and ka = 0.48. When β > 0, the distribution of the wave 546 

run-up around the cylinder is no longer symmetrical about the x-axis. As shown in Fig. 547 

14(a), the wave heading has a negligible effect on the wave run-up amplitude around θ 548 

= 0 (or 2π), while that around θ = π continues to decrease as β increases. Moreover, in 549 

Fig. 14(a), the obvious troughs move gradually to the weather side as β increases. As 550 

indicated in Fig. 14(b), the time-independent wave run-up around the cylinder decays 551 

gradually in magnitude as β increases. Furthermore, from Fig. 14(c), it is also found 552 

that an increase in β can lead to a decrease in the peak wave run-up on the cylinder.  553 
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 554 

Fig. 14 Wave run-up on a cylinder situated near a wall at ka = 0.48 for different incident wave 555 

headings: (a) 
 1

A , (b)    2 2

m kA , and (c) 
   2 2kA  556 

 557 

Analogous results to those in Figs. 13 and 14 but with ka = 0.86 are shown in Figs. 558 

15 and 16. The variation of the linear and the time-independent wave run-up with ka = 559 

0.86 is different from that ka = 0.48, as an obvious trough is formed gradually at the 560 

weather side as R increases. It is also found that the double-frequency wave run-up with 561 

ka = 0.86 varies more rapidly around the cylinder than that with ka = 0.48. Even though 562 

the distribution of the wave run-up with ka = 0.86 is different from that with ka = 0.48, 563 

the effect of the vertical wall on the wave run-up is still evident at this wave frequency. 564 

 565 

Fig. 15 Wave run-up on a cylinder situated near a wall at ka = 0.86 for different distances between 566 

the wall and cylinder: (a) 
 1

A , (b)    2 2

m kA , and (c) 
   2 2kA  567 

 568 

Fig. 16 Wave run-up on a cylinder situated near a wall at ka = 0.86 for different incident wave 569 

headings: (a) 
 1

A , (b)    2 2

m kA , and (c)    2 2kA  570 
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 571 

4.3 Wave elevation distribution in the vicinity of a cylinder 572 

The distribution of the overall wave elevation in the vicinity of a cylinder is then 573 

investigated. Based on the contributions from the first- and the second-order terms, the 574 

overall wave elevation to the second-order accuracy with respect to the wave steepness 575 

can be calculated according to Eq. (2). Then, the maximum and minimum overall wave 576 

elevations at a specific location, which are denoted by ζs and ζt hereinafter, can be 577 

obtained through an analysis of the wave elevation time history in a wave period. If 578 

only the first-order accuracy with respect to the wave steepness is considered, it is clear 579 

that ζs is equal to the amplitude of the linear wave elevation, and ζt is opposite to ζs. 580 

In the subsequent calculations, a cylinder with a dimensional radius of a = 1 m is 581 

considered, and the incident waves of ka = 0.48 and kA = 0.1 are used. The calculations 582 

of the wave elevation to the first- and second-order accuracies with respect to the wave 583 

steepness are both conducted, and the results shown in this section are all dimensional. 584 

We first consider the situation where the cylinder is removed from the fluid domain. 585 

Then, the wave elevation is contributed by the incident waves as well as those reflected 586 

from the vertical wall. The distributions of ζs and ζt near a vertical wall in the absence 587 

of a cylinder are presented in Figs. 17 and 18 for β = 0. Because the incident waves are 588 

fully reflected from the vertical wall without transmission, a standing wave motion is 589 

observed on the wall (x = 0). If the linear wave theory is adopted, the wave elevation 590 

amplitude on the wall is 0.417 m, which is twice the incident wave amplitude. After 591 

including the second-order wave elevation component, the wave peak gets steeper, 592 

while the wave trough gets flatter, and the maximum and minimum wave elevations on 593 

the wall become 0.491 m and −0.342 m, respectively. 594 
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 595 

Fig. 17 Distribution of 
S  near a wall without a cylinder at ka = 0.48 with a = 1 m, R = 3a, d = 3a, 596 

β = 0, and kA = 0.1 to the (a) first-order accuracy and (b) second-order accuracy 597 

598 
Fig. 18 Distribution of 

t  near a wall without a cylinder at ka = 0.48 with a = 1 m, R = 3a, d = 3a, 599 

β = 0, and kA = 0.1 to the (a) first-order accuracy and (b) second-order accuracy 600 

 601 

We then consider the wave elevation distribution in the presence of a cylinder. In 602 

Figs. 19 and 20, the distributions of ζs and ζt in the vicinity of a cylinder situated near a 603 

vertical wall are presented for β = 0 with R = 2a. As shown in these figures, the presence 604 

of the cylinder can obviously disturb the wave field. Pronounced wave run-up can be 605 

observed on the cylinder as well as on the wall. When R = 2a, the maximum wave run-606 

up on the vertical wall appears at the centre of the wall, that is, (0, 0). In addition, on 607 

the vertical cylinder, the wave run-up at the lee side is more significant than that at the 608 

weather side, and the maximum wave run-up is attained at (−a, 0). If the linear wave 609 

theory is adopted, the wave run-up amplitudes at (0, 0) and (−a, 0) are 0.635 m and 610 

0.619 m, respectively. After including the second-order wave elevation component, the 611 
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maximum wave elevations at the two locations increase to 0.775 m and 0.740 m, 612 

respectively, and the minimum wave elevations become −0.550 m and −0.513 m, 613 

respectively. Analogous results to those in Figs. 19 and 20, but with R = 3a are shown 614 

in Figs. 21 and 22. The change of the location of the cylinder can affect the relative 615 

phase between the waves around the cylinder and those reflected from the wall, and 616 

then exert an obvious influence on the wave elevation distribution around the cylinder. 617 

As the distance between the wall and the cylinder increases from R = 2a to R = 3a, the 618 

wave run-up at the weather side of the cylinder becomes reinforced, while that at the 619 

lee side is reduced. When R = 3a, the maximum wave elevations on the vertical wall 620 

and the cylinder are attained at (0, 0) and (−2a, 0), respectively. If the linear wave theory 621 

is adopted, the wave elevation amplitudes at (0, 0) and (−2a, 0) are 0.541 m and 0.448 622 

m, respectively. The effect of the second-order wave elevation component is apparent 623 

at the two locations. After including the second-order component, the maximum wave 624 

elevations at the two locations increase to 0.941 m and 0.483 m, respectively. 625 

Meanwhile, the minimum wave elevations at the two locations become −0.450 m and 626 

−0.783 m, respectively. To further emphasise the second-order effect, the time history 627 

of the overall wave elevation at (0, 0) and (−2a, 0) is illustrated in Fig. 23 for β = 0 with 628 

R = 3a. At (0, 0), the first-order and second-order double-frequency wave elevations 629 

attain their peaks at almost the same time, while at (−2a, 0), they attain their troughs 630 

almost simultaneously. Therefore, the maximum and minimum wave elevations at (0, 631 

0) and (−2a, 0) can be obviously amplified, respectively, by including the second-order 632 

component, and the prediction based on the second-order wave theory largely exceed 633 

that based on the linear wave theory in magnitude at the two locations. 634 
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 635 

Fig. 19 Distribution of 
s  around a cylinder situated near a wall at ka = 0.48 with a = 1 m, R = 2a, 636 

d = 3a, β = 0, and kA = 0.1 to the (a) first-order accuracy and (b) second-order accuracy 637 

 638 

Fig. 20 Distribution of t  around a cylinder situated near a wall at ka = 0.48 with a = 1 m, R = 2a, 639 

d = 3a, β = 0, and kA = 0.1 to the (a) first-order accuracy and (b) second-order accuracy 640 

 641 
Fig. 21 Distribution of 

s  around a cylinder situated near a wall at ka = 0.48 with a = 1 m, R = 3a, 642 

d = 3a, β = 0, and kA = 0.1 to the (a) first-order accuracy and (b) second-order accuracy 643 
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 644 

Fig. 22 Distribution of t  around a cylinder situated near a wall at ka = 0.48 with a = 1 m, R = 3a, 645 

d = 3a, β = 0, and kA = 0.1 to the (a) first-order accuracy and (b) second-order accuracy 646 

 647 

Fig. 23 Time history of the overall wave elevation at specific locations on a cylinder at ka = 0.48 648 

with a = 1 m, R = 3a, d = 3a, β = 0, and kA = 0.1 at (a) (0, 0) and (b) (−2a, 0) 649 

 650 

The distributions of ζs and ζt in the vicinity of a cylinder situated near a vertical wall 651 

are presented in Figs. 24 and 25 for β = π/4 with R = 3a. A change in the wave heading 652 

can clearly affect the wave elevation distribution as well as the locations where the 653 

maximum and minimum wave elevations appear. Fig. 26 shows the time history of the 654 

overall wave elevations at (0, 0.4a) and (−2.022a, −0.208a), respectively. At the former 655 

location, the maximum wave elevation is 0.503 m if the linear wave theory is adopted. 656 

If the second-order wave theory is adopted, it increases to 0.722 m. At the latter location, 657 

the minimum wave elevation can reach −0.639 m and −0.441 m, respectively, with and 658 

without the second-order effect. Above observations suggest that under oblique wave 659 

incidence, the corrections to the linear wave elevation due to the second-order effect 660 

are still obvious. 661 
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 662 

Fig. 24 Distribution of 
s  around a cylinder situated near a wall at ka = 0.48 with a = 1 m, R = 3a, 663 

d = 3a, β = π/4, and kA = 0.1 to the (a) first-order accuracy and (b) second-order accuracy 664 

665 

Fig. 25 Distribution of 
t  around a cylinder situated near a wall at ka = 0.48 with a = 1 m, R = 3a, 666 

d = 3a, β = π/4, and kA = 0.1 to the (a) first-order accuracy and (b) second-order accuracy 667 

 668 

Fig. 26 Time history of the overall wave elevation at specific locations at ka = 0.48 with a = 1 m, R 669 

= 3a, d = 3a, β = π/4, and kA = 0.1 at (a) (0, 0.4a) and (b) (−2.022a, −0.208a) 670 

 671 

5. Conclusion 672 

In this study, a numerical model was proposed to evaluate the second-order wave 673 

run-up on a cylinder in front of a vertical wall. Based on the developed model, a detailed 674 
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numerical analysis was conducted, and the effect of the vertical wall on the wave run-675 

up on the cylinder was examined. The main conclusions of this study are summarised 676 

as follows.  677 

1) The validity of the present solution was examined through a comparison with 678 

published data. The comparison confirms a favourable consistency between the results 679 

based on different methods. 680 

2) There is a remarkable difference between the phenomenon of wave diffraction 681 

caused by a cylinder situated in front of a vertical wall and that in open seas. The first-682 

order and second-order wave run-up on a cylinder near a vertical wall behave in an 683 

oscillatory manner around that experienced by a cylinder in open seas. Such oscillations 684 

gradually become less frequent as the cylinder gets closer to the wall. The effect of the 685 

vertical wall on the double-frequency wave run-up is generally more significant than 686 

that on the linear wave run-up. Owing to the influence of the vertical wall, a greatly 687 

amplified second-order wave run-up on the cylinder can be observed in the low-688 

frequency region. 689 

3) With the presence of the vertical wall, the wave field is obviously disturbed, and 690 

a pronounced wave run-up can be observed on the cylinder and on the vertical wall. 691 

The second-order effect can significantly enhance the wave elevation. Under normal 692 

wave incidence (β = 0), at the lee side of the cylinder and the centre of the vertical wall, 693 

the wave run-up based on the second-order wave theory can greatly exceed that based 694 

on the linear wave theory. Even when the wave steepness is small, the second-order 695 

wave elevation component can still make an apparent correction to the wave elevation 696 

distribution in the vicinity of the cylinder near the vertical wall. 697 

The pronounced wave run-up should be accompanied by a large force on the structure. 698 

In addition to the wave run-up, an evaluation of the wave force is also a key element in 699 

the design of offshore structures, and an investigation of the wave force on structures 700 

situated near a wharf or breakwater is also of significant importance. This provides an 701 

interesting research topic for our future work. 702 

 703 
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