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Blockchain-Based Incentive Energy-Knowledge
Trading in IoT: Joint Power Transfer and AI Design

Xi Lin, Jun Wu, Ali Kashif Bashir, Jianhua Li, Wu Yang, and Md. Jalil Piran

Abstract—Recently, edge artificial intelligence techniques (e.g.,
federated edge learning) are emerged to unleash the potential of
big data from Internet of Things (IoT). By learning knowledge on
local devices, data privacy-preserving and quality of service (QoS)
are guaranteed. Nevertheless, the dilemma between the limited
on-device battery capacities and the high energy demands in
learning is not resolved. When the on-device battery is exhausted,
the edge learning process will have to be interrupted. In this
paper, we propose a novel Wirelessly Powered Edge intelliGence
(WPEG) framework, which aims to achieve a stable, robust,
and sustainable edge intelligence by energy harvesting (EH)
methods. Firstly, we build a permissioned edge blockchain to
secure the peer-to-peer (P2P) energy and knowledge sharing
in our framework. To maximize edge intelligence efficiency,
we then investigate the wirelessly-powered multi-agent edge
learning model and design the optimal edge learning strategy.
Moreover, by constructing a two-stage Stackelberg game, the
underlying energy-knowledge trading incentive mechanisms are
also proposed with the optimal economic incentives and power
transmission strategies. Finally, simulation results show that our
incentive strategies could optimize the utilities of both parties
compared with classic schemes, and our optimal learning design
could realize the optimal learning efficiency.

Index Terms—Edge intelligence, wireless power transfer, per-
missioned blockchain, incentive mechanism, game theory.

I. INTRODUCTION

The emerging artificial intelligence (AI) technology (e.g.,
machine learning) is a promising way to cope with the data
explosion of IoT applications. The knowledge that AI learns
from IoT data could bring many benefits to the QoS of
IoT users [1]. However, the traditional cloud-centric learning
paradigm faces many challenges, such as high maintenance
costs, data privacy risk, and high service delay. According to
[2], over 6 billion smartphones and 50 billion IoT devices
will appear by 2020 with abundant under-utilized computing,
communication, and storage resources. These large-scale smart
devices could address cloud-centric learning challenges. Thus,
on-device federated edge learning (FEL) paradigm was pro-
posed by Google in 2016 [3]. It employs smart edge devices
to perform model training in a distributed and collaborative
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manner, also known as “edge intelligence” or “edge AI” [4].
Only local sub-models (knowledge) rather than raw data will
be uploaded and aggregated in FEL, which ensures local data
privacy-preserving and better resource utilization [5] [6].

On-device FEL has many advantages over cloud-centric
learning, but the learning performance is likely compromised
by insufficient battery energy in traditional battery-powered
edge devices, such as mobile phones, UAV (Unmanned Aerial
Vehicle), and IoT devices. On the one hand, the local model
training will consume limited battery power for the CPU
cycles. On the other hand, edge devices are required to
repeatedly communicate with the sink node (e.g., base station)
to iteratively update the learning model, which also places
severe demands on the battery level. Most previous works [7]
[8] assume that the battery power of edge devices is sufficient
to support the whole learning process, while this is not feasible
in many practical scenarios. In fact, the on-device FEL process
will be interrupted and smart edge devices cannot execute
learning services if the battery is exhausted. So, the current
edge intelligence framework is not stable and robust enough.

To prolong the battery life of smart devices, common
method resorts to computation offloading to MEC (Mobile
Edge Computing) nodes or other D2D (Device-to-Device)
enabled devices [9] [10]. However, this method goes against
the privacy-preserving feature of FEL. That is, this method
could not apply to on-device FEL due to the privacy risks in
learning task offloading. Another straightforward method is to
employ larger batteries or recharging the batteries frequently.
On one hand, increasing the battery capacity of each smart
device is unrealistic, which will raise too much hardware cost
for smart device manufacturers and owners. On the other hand,
recharging device batteries frequently shows one of the most
unfavorable features of smart devices and it is also impossible
in certain situations, such as surveillance intelligent IoT nodes,
where the devices are usually difficult to reach. Besides,
to achieve green communication and computing in 5G and
beyond networks, novel energy supply models need further
research. The emerging energy harvesting (EH) techniques
have the potential to address the above issues well. The
renewable energy from the surrounding environment could be
captured, harvested, and stored (e.g., solar, wind, thermal, and
electromagnetic). Benefit from EH techniques, energy-saving
and sustainable computing and communication applications
could be realized. Thus, by the marriage of EH techniques and
edge intelligence, satisfied and sustained on-device learning
performance is guaranteed.

Wireless power transfer (WPT) is one of the most promising
EH techniques, which employs radio frequency (RF) to offer



controllable energy supply for smart devices [11]. Compared
with other techniques, WPT has higher availability, stability,
and controllability. For wirelessly-powered smart devices, the
received RF signal could be easily converted into stable
direct current to power the batteries of smart devices. In
this paper, we propose a novel Wirelessly Powered Edge
intelliGence framework (WPEG), which integrates WPT to
battery-constrained on-device learning. WPT brings new pos-
sibilities to edge intelligence, while still introduces some new
challenges. 1) Distributed wireless power transfer is hard to
guarantee security due to some selfish and untrusted behaviors
(e.g., free-rider or cheating). 2) WPT improves the energy
efficiency of smart devices, while consumes higher energy in
the absence of an optimal charging policy. 3) WPT nodes could
not actively provide charging services without some suitable
monetization incentives. To resolve the above challenges, in
this paper, we also employ a pemissioned blockchain approach
to establish a secure P2P (Peer-to-Peer) energy trading for edge
intelligence. Moreover, a two-stage Stackelberg game model is
proposed to obtain the optimal transmission power strategies
and incentive strategies. The contributions of our work are
summarized as follows:
• We propose a novel wirelessly-powered edge intelligence

framework (WPEG) to ensure the learning performance
of edge intelligence in a secure and energy-saving man-
ner.

• We establish a pemissioned edge blockchain with a
lightweight consensus protocol BFT-DPoS to secure the
P2P energy and knowledge sharing.

• We build the wirelessly-powered multi-agent edge learn-
ing model, including the energy-aware computing and
communication model.

• We design a Stackelberg game model to simulate the
energy-knowledge trading process and derive the optimal
power strategies and economic incentive strategies.

The remainder of this paper is structured as follows. Section
II gives an overview of the related works. Section III describes
our WPEG framework, including the framework implemen-
tation and edge permissioned blockchain. In Section IV, we
present the system model of our WPEG framework. Section
V formulate and analyse the proposed Stackelberg game for
energy-knowledge trading. In Section V, we conduct simula-
tions to show the advanced performance of our framework.
Finally, Section VII concludes this paper.

II. RELATED WORK

A. Wireless Power Transfer in IoT

Wireless power transfer (WPT) techniques employ radio
frequency (RF) signals as a promising power supplying for
energy-constrained IoT devices. Some researches focus on
the feasibility of applying the WPT solutions to conventional
communication systems. In [12], Lee et al. proposed a new
WIPE protocol, which realizes sustainable communications
between two devices by wireless power splitting. And a joint
data-energy beamforming and SWIPT-based traffic offloading
scheme [13] has been proposed for C-RANs via D2D commu-
nications. Besides, a channel coding-based IoT communication

network with WPT stabilization algorithms has been presented
in [14]. Some other works introduced WPT technologies into
mobile edge computing (MEC) systems. In [15], the authors
studied a multi-user MEC system with WPT functions, and
jointly optimized the computation offloading and transmission
time allocation in the system. And an energy-effective coop-
erative resource allocation policy for the WPT-MEC system
was also proposed in [16] to guarantee the fairness of mobile
users. In addition, Liu et al. in [17] presented a UAV-assisted
WPT-MEC system, and studied the joint optimization of task
offloading, CPU control, and trajectory design. There are
still some existing works considering cache-aided WPT-IoT
networks. In [18], Gautam et al. investigated the relay selection
strategy in a cache-aided SWIPT framework with a dynamic
time switching (TS). And a sleeping mechanism for cache-
aided heterogeneous networks with energy harvesting methods
has been presented in [19].

In general, wirelessly-powered IoT networks have been well
studied, but are limited to wirelessly-powered communica-
tion, computing, and caching in IoT networks. Although the
combination of WPT technologies with the emerging edge AI
technologies could improve the edge learning performance in
IoT, which is ignored by the previous works.

B. Edge Intelligence for IoT
Combined with edge computing, the emerging edge AI has

already become the last mile of artificial intelligence for IoT
[20] [21]. Once appeared, it received a tremendous amount
of interest. In terms of edge AI algorithms, in [22] [23], Li
et al. proposed an Edgent framework, which leverages device-
edge synergy computing to accelerate training and inference of
deep neural network (DNN). And the authors in [24] design a
momentum federated learning (MFL) framework to accelerate
federated learning by momentum gradient descent. In addition,
a sparse ternary compression (STC) framework [25] was
designed for federated learning with non-i.i.d data. Moreover,
in [26], Zhou et al. employed the Lyapunov optimization
theory to design an online cost-efficient federated learning
optimization framework named CEFL under the dynamic
training data arrive. For resource sharing in edge AI, an
efficient and incentive knowledge market was proposed in [27],
which achieves secure and efficient edge knowledge sharing
and exchange for edge AI. In [28] [29], the authors proposed a
privacy-preserved data sharing scheme in industrial IoT (IIoT).
In [30], a secure and robust federated learning scheme with
differential privacy has been proposed for urban informatics.

Some existing works [7] [8] assumed the energy of edge
devices could support the computing-intensive learning task,
which is not realistic. Others [31] [32] adopted the energy
as a constraint condition for task execution, which results in
limitations in learning performance. Compared with existing
works, our WPEG framework not only could achieve a stable,
robust, and sustainable edge learning, but also improve the
efficiency and performance of edge AI.

C. Blockchain for IoT
Blockchain is a feasible tool to establish distributed trust

among IoT devices. In [33], Yang et al. proposed a blockchain-



Fig. 1: The framework of our proposed WPEG.

based decentralized trust management system in vehicular
networks. And a blockchain-based trustworthy computing re-
source trading system in vehicular networks has been dis-
cussed in [34]. For IIoT, Li et al. [35] built a consortium
energy blockchain with a credit-based payment scheme to
realize fast and frequent energy trading. And Zhang et al. [29]
designed an edge-AI and blockchain enabled IIoT framework,
which supports flexible and secure edge service management.
In terms of data security, Xu et al. [36] proposed a novel
blockchain-based trustworthy edge caching scheme for cyber-
physical systems (CPSs). And the authors in [28] incorpo-
rated differential privacy into permissioned blockchain for
privacy-preserved data sharing in IIoT. Some other works
focus on blockchain-based incentive mechanisms, a consor-
tium blockchain-based efficient and incentive Approach for
IoT knowledge sharing has been presented in [27]. And
the authors in [37] investigated the incentive mechanism for
rational miners in edge-computing-enable blockchain systems.
Moreover, a Stackelberg game-based incentive computing re-
source management has been studied in [38] for proof-of-work
(PoW) based public blockchain networks.

Some previous works mainly focused on classic blockchain
consensus protocols (such as PoW [37] [38]), while
lightweight consensus protocols for edge blockchain systems
(such as DPoS) have not been well applied. Besides, previous
works only considered a single type of resource sharing
(such as knowledge [27] or energy [35]), while multi-resource
sharing did not involve.

III. WIRELESSLY-POWERED EDGE INTELLIGENCE
FRAMEWORK

We propose the novel WPEG framework in this section.
First, we introduce the main elements of the WPEG framework
and show how they interact in detail. Then, we provide the
details of the proposed permissioned edge blockchain in our
WPEG framework.

A. The Elements in Our WPEG Framework

We consider our WPEG framework is deployed at the edge
of networks, which includes geo-distributed MEC (Mobile
Edge Computing) nodes, large-scale edge devices and WPT

(Wireless Power Transfer) nodes, as shown in Fig. 1. Each
upstream MEC node is responsible for managing edge devices
and WPT nodes within its coverage. The WPEG framework
mainly contains the following elements.

• WPT nodes: We deploy a certain number of wireless
charging stations as infrastructure in the edge network
environment. These WPT nodes could not only obtain
energy from the traditional power grid, but also have the
ability to harvest renewable energy from the surrounding
environment (e.g., solar and wind) with EH equipment.
The energy stored in WPT nodes will charge edge devices
via wireless channels. We consider two possible transmis-
sion paths: 1) Stationary mode: when edge devices are
close to the static power beacon, then it will start to emit
radio waves to supplement energy; 2) Dynamic mode: the
power beacon is deployed on mobile objects (e.g., drones
and vehicles) and charges edge devices in a dynamic
manner. Our WPEG framework implementation could
employ one or two of the above models for supplement
wireless energy to edge devices.

• Edge devices: Edge devices, such as smart phones, UAVs,
IoT intelligent sensors, and microservers (Raspberry Pi),
are required to provide edge AI services (i.e., federated
edge learning) through local data training. Edge devices
are energy-constrained so that they are difficult to guar-
antee a stable and robust learning performance. Thus they
will obtain the wireless energy from WPT nodes. On the
one hand, they utilize the wireless energy for executing
model training (CPU cycle); On the other hand, they
employ the wireless energy to repeatedly communicate
(transmitter) with the upper MEC node for global learning
model updating.

• MEC nodes: The MEC node first serves as the mediation
between the edge AI service requester and edge devices.
That is, the service requester will publish tasks, design
optimal learning strategy, and reward the contribution of
edge learning through MEC nodes. Besides, the local
MEC node plays the role of aggregator in federated edge
learning, which is responsible for collecting, aggregating,
and updating the trained local sub-models from edge
devices. Moreover, in order to ensure the security features
of the entire framework, an edge permissioned blockchain
will be established between MEC nodes to guarantee
the secure P2P wireless energy sharing and knowledge
(model) sharing.

In Fig. 2, we show that how the elements interact with each
other, and also present how our WPEG framework works. As
shown in Fig. 2, the interactive process is divided into 5 steps:

• Step 1: Edge AI service requesters will publish edge
learning tasks through MEC nodes, and set corresponding
learning parameters (e.g., local/global training accuracy)
and service time limits. Then the MEC node will select
the corresponding edge devices to perform the learning
task according to the service type and resource status of
the local edge devices.



Fig. 2: The interaction of elements in our WPEG framework.

• Step 2: Due to the limited energy of edge devices, it is
difficult to complete the whole learning task. In order
to obtain training model (knowledge) from edge devices,
the edge AI service requester needs to incentivize local
WPT nodes to power edge devices, so that edge device
can ensure the stable and robust learning process. We
believe that WPT nodes are selfish and will not provide
charging services for free. Thus this process requires edge
AI service requesters to provide appropriate economic
incentives for WPT owners through the MEC node. The
details about economic incentives are given in Section V.

• Step 3: WPT nodes will charge edge devices under the
economic incentives. In order to avoid wasting energy
during this process, it is necessary to obtain the optimal
power transmission strategy according to energy demands
in the edge learning process. At the same time, it also
needs to solve the security problems in P2P wireless en-
ergy sharing (e.g., free riding). The details about optimal
power transmission strategy are given in Section V.

• Step 4 and Step 5: Under the predetermined time limit
and learning accuracy requirements, edge devices will
adopt the received energy from WPT nodes to implement
federal edge learning, and upload the trained sub-models
(knowledge) to the MEC server for aggregation. Then
the MEC node will update the global model and deliver
it back to all the edge devices. Step 4 and Step 5 are
performed in a periodic manner. Eventually, the MEC
node feeds the trained global model back to the edge AI
service requester.

It should be noted that the service requesters also need to
give corresponding rewards to edge devices, which can be
considered as knowledge service trading. The corresponding
reward mainly depends on the data contribution of edge de-
vices in the learning process, which has been discussed in our

previous works [27]. In the following text, we believe that edge
devices have already decided the optimal data contribution d∗i ,
and the service requester has designed the optimal knowledge
service pricing strategy.

B. Permissioned Blockchain in Our WPEG Framework
As shown in Fig. 3, there are two trading modes in our

framework, i.e., wireless energy trading and knowledge service
trading. And the process of both energy and knowledge sharing
will carry out in a Peer-to-Peer (P2P) manner. We believe that
all parties in the trading process are untrusted individuals. Thus
our framework will face many security attacks. For example,
the free-rider, greedy and cheating energy (or knowledge)
sharing phenomenon will happen in our framework. That is,
on the one hand, some untrusted edge devices will deny the
reception of wireless energy, which will cause great energy
consumption of WPT nodes; on the other hand, the service
requester may deny the acquired knowledge services, which
damages the profit of edge devices. Besides, the traditional
centralized trading management system also faces the single
point of failure, distributed denial of service (DDoS) and
Sybil attacks, which will greatly affect the security and system
efficiency of our framework.

The emerging blockchain technology has become a promis-
ing distributed solution for implementing secure P2P trading.
It does not rely on any centralized entity and has gained
wide attention from academia and industry for its anonymi-
ty, security, and traceability. Motivated by this, we adopt
blockchain technologies to defend against the security threats
in our framework. Specifically, we build an edge permissioned
(consortium) blockchain as a distributed energy/knowledge
trading management platform, which could also encourage
both parties to participate in our framework under a security
guarantee. Unlike the previous work [35] [39], we employ
a more lightweight and efficient consensus protocol BFT-
DPoS (Byzantine Fault Tolerance-Delegated Proof of Stake)
in resource-constrained edge environment, which is popular
in EOS project. The proposed edge permissioned blockchain
based on the BFT-DPoS consensus protocol works as the
following phases:

Phase 1. Market initialization: Each entity (e.g., edge
devices, WPT nodes, and MEC nodes) will first be authorized
by TA (Trust Authority) to becomes a legitimate participant
in the trading market. That is, TA will verify the service
capabilities of each entity, and only entities that meet the
service requirements can join our market. Besides, each au-
thorized entity i will obtain corresponding asymmetric keys
{PKk

i , SK
k
i } and certificates {Certki } from TA. Moreover,

each participant will have a wallet account {Walletki } to
manage their cryptocurrency.

Phase 2. Miner group formation: The local MEC node is
responsible for recording and managing local transaction data
as shown in Fig. 3. And MEC nodes also act as miners of the
blockchain to complete the consensus process. The MEC node
applies for being a miner by submitting a deposit (stakes) to
the blockchain system. If the MEC node performs malicious
operations in the subsequent consensus process, this deposit
will be cleared.



Fig. 3: The permissioned blockchain in our proposed WPEG.

Phase 3. Delegated miner selection: Each other entity (i.e.,
WPT nodes and edge devices) has its own stakes, thus they
could vote for the miners and select their delegates. The top-k
miners of the miner group with high stakes could be selected
as the delegates of our blockchain , where k is an odd integer
(e.g., k = 21 in EOS project). These delegates are responsible
for the generation, management and mutual verification of
transaction blocks in our blockchain. And the selection of
delegates will be conducted in a periodic manner.

Phase 4. BFT consensus process: In order to clearly illus-
trate the consensus process, we still take the EOS project as an
example. In the traditional DPoS consensus process, a delegate
is randomly selected as the leader to generate a transaction
block. We assume the block generation time is 3 seconds
in EOS project, thus it will take 45 seconds to confirm the
transaction in this block. Because the transaction confirmation
requires more than 2/3 delegates (i.e., 14 delegates) to verify.
Only when other delegates generate new blocks, the confir-
mation of the entire previous blockchain is completed. So it
will take 45 seconds to confirm the transaction in the DPoS
protocol. To further improve performance, we introduced the
BFT mechanism in the consensus process. The selected leader
still broadcasts the new block, but other delegates immediately
verify the block after receiving this block, and return the
results with the verified signature to the leader. From the
perspective of the current leader, it produces a new block
and broadcast it to the whole network, and then received
confirmation from other delegates. If 2/3 delegates have the
consistent results. The transaction in this block is irreversible.
The transaction confirmation time is greatly shortened, from
45 seconds to about 3 seconds. After all the delegates complete
the block consensus process, the blockchain system will give
corresponding cryptocurrency rewards to their wallet.

The energy/knowledge trading is shown in Fig. 3, which
is presented as follows: energy/knowledge traders first obtain
{PKk

i , SK
k
i }, {Certki }, and {Walletki } via market initial-

ization. Authorized traders with legal certificates can access
the local MEC transaction server to initiate a transaction.

The local MEC server could match the supply and demand
side of the resource. After wirelessly power transfer (or
knowledge sharing), the energy/knowledge buyer needs to pay
for corresponding rewards (i.e., energy coins or knowledge
coins). Specifically, a new transaction will be generated by
traders and recorded by the local MEC server for audit. All
the MEC servers will establish a permissioned edge blockchain
for cross-auditing and mutual verification, which adopts the
lightweight BFT-DPoS protocol for cross-domain consensus.

IV. SYSTEM MODEL

In this section, we model the wirelessly-powered multi-
agent learning process and formulate the utility function
of both parties. In our proposed WPEG framework, we
consider there exists M edge devices and N WPT nodes,
which are represented as M = {1, 2, ..., i, ...,M} and N =
{1, 2, ..., j, ..., N}. All the edge devices are equipped with EH
components and completely powered by the collected wireless
energy from WPT nodes. Federated learning mainly contains
two parts: local training and global updating. For each local
training, it can be subdivided into the computing (training)
process and the communication (uploading) process.

A. Preliminaries of Federated Learning
In federated learning, each edge device i (∀i ∈ M)

owns a local personal dataset Di. And the size of data
samples in Di is denoted as di. Each data sample contain-
s an input-output pair {xk, yk}

di
k=1, where the input xk is

a sample vector with various features, and the output yk
is the label value of the input features from users’ mo-
bile application. The loss function of federated learning is
defined as fk(xk, yk,ω). Some example loss functions are
fk(xk, yk,ω) = 0.5||yk − ωT xk||2 for linear regression and
fk(xk, yk,ω) = 0.5λ||ω||2 + 0.5 max {0; 1− ykωT xk}2 for
squared-SVM. For each edge device with dataset Di, the local
average loss function is

Li(ω) =
1

|Di|
∑k=di

k=1
fk(xk, yk,ω) (1)



Thus, the loss function minimization problem of global learn-
ing process could be described as follows:

min
ω∗
Lgobal(ω) =

|Di|
∑
i∈M Li(ω)∑
i∈M |Di|

(2)

1) Local training: Each edge device i solves the local loss
function minimization problem with a local accuracy δi (0 ≤
δi ≤ 1) as follows:

ω
(n)
i = arg minLi(ωi|ω

(n−1)
i ,∇L(n−1)(ωi)) (3)

Where ||∇Li(ω(n)
i )|| ≤ δi||∇Li(ω(n−1)

i )|| at the nth model
update. When δi = 0, it shows the local problem has been
solved optimally, while δi = 1 means no progress at all in the
local training [5] [40]. Each edge device then uploads weights
ω

(n)
i and gradients ∇Li(n) to the MEC node for aggregating

the global model.

2) Global updating: The MEC node collects and aggregates
the uploading sub-models from edge devices as:

ω(n+1) =
1

M

∑
i∈M

ω
(n)
i ,∇L(n+1) =

1

M

∑
i∈M
∇Li(n) (4)

Then the MEC node will send the global model back to
all the edge devices. The interactive learning process will
be carried out in an iterative manner. Until ||∇L(ω(n))|| ≤
α||∇L(ω(n−1))|| is realized, the global iteration will stop.
Where α ∈ [0, 1] represents the global model accuracy. Due
to the convex objective Li and Lglobal, the local iterations is
general upper bounded to O(log(1/δi)), which is applicable
for a wide range of iterative algorithms (e.g., gradient or s-
tochastic descent) [5] [40]. Besides, the global iterations could
be calculated asO(log(1/α))/(1− δi), which is very intuitive.
When global accuracy α is bigger (lower accuracy), the
federated learning systems need to runs less global iterations.
And when local accuracy δi is bigger (lower accuracy), the
federated learning systems need to runs more global iterations.

B. Wirelessly-Powered Computing Model for Learning

In our WPEG, we assume each WPT node j (j ∈ N ) will
provide controllable and constant RF energy transfers for each
edge device i (i ∈M). And the transmission power is shown
as θ = (θ1, θ2, ..., θj , ..., θN ). We believe that the MEC node
could schedule spectrum resources well, i.e., the RF energy
transmission and sub-models uploading will work in different
frequency bands, thus the signal interference by edge devices
could be ignored. The amount of energy harvested by edge
devices only depends on the transmission power θ and the
channel power gain hji (∀j ∈ N , i ∈ M). We employ a
typical linear energy harvesting model like previous works
[41]. Therefore, the harvested energy by edge device i from
WPT nodes could be shown as:

E = κiT
∑

j∈N
hjiθj = ΘiT, ∀i ∈M (5)

Where E and T represents energy consumption and trans-
mission time, respectively. And κi ∈ [0, 1] shows the energy
harvesting efficiency.

We assume each edge device i will contribute the CPU
computing resource fi ∈ [0, fmax

i ] in the local training
process. And the number of CPU cycles for edge device
i to train one sample of local data is ci. Thus, the local
computing time T cmpi is equal to O(log(1/δi))cidi/fi. And
the energy consumption of local training Ecmpi is equal to
O(log(1/δi))µicidif

2
i , where the µi is the effective capaci-

tance coefficient of edge device i. We consider that all the
computing energy will be supplied by the RF energy from
WPT nodes, thus we can get:

Ecmpi (fi) = ΘiT
cmp
i (fi), ∀i ∈M (6)

By substitute T cmpi and Ecmpi into Eq. (6), we could obtain
the computing resource scheduling strategy fi as:

fi(Θi) = min[ 3

√
κi
µi

∑
j∈N

hjiθj , f
max
i ], ∀i ∈M (7)

That is, in the EH-enable training process, edge devices
need to adjust own computing resources to meet the energy
constraints. It can be achieved by changing the voltage of com-
puting chipset with DVFS (Dynamic Voltage and Frequency
Scaling) techniques. Moreover, we could derive the T cmpi and
Ecmpi in local training process as follow:

T cmpi (Θi) = O(log(
1

δi
))cidi 3

√
µi

κi
∑
j∈N hjiθj

(8)

Ecmpi (Θi) = O(log(
1

δi
))cidi 3

√
µiκ2i (

∑
j∈N

hjiθj)2 (9)

C. Wirelessly-Powered Communication Model for Learning

After completing the local training, each edge device then
uploads sub-models to the MEC node via the wireless uplink.
Similarly, the required energy for communication is complete-
ly provided by the RF energy. Based on Eq. (5), the uplink
transmit power of edge device i is Pi = Ecomi /T comi = Θi.
Thus the data rate (bit/s) of edge device i is shown as:

ri = Blog2(1 +
PiHi

N0B
) = Blog2(1 +

κiHi

N0B

∑
j∈N

hjiθj) (10)

Where B represents the bandwidth, Hi shows the wireless
channel gain between edge device i and the MEC node, and
N0 denotes the noise power spectrum density.

We assume the data size of both local weights ω(n)
i and

local gradients ∇Li(n) is ρi. Thus the communication time
T comi and communication energy consumption Ecomi could
be described as follows:

T comi = ρi/ri =
ρi

Blog2(1 + κiHi
N0B

∑
j∈N hjiθj)

(11)

Ecomi = PiT
com
i =

ρiκi
∑
j∈N hjiθj

Blog2(1 + κiHi
N0B

∑
j∈N hjiθj)

(12)

It should be noted that when the global model is fed back
from the MEC node to edge devices, we ignore the downlink
communication time and energy consumption. This is because
the downlink rate from the MEC node to edge devices is higher



TABLE I: Main Terms Referred in Our Framework

Symbol Explanations
M Edge device set to execute learning tasks
N WPT node set to charge edge devices
ci The CPU cycles number required for one

sample data training for edge device i
di The data size of local personal dataset of

edge device i
δi The local sub-model trained accuracy of

edge device i
hji The channel power gain between WPT node

j and edge device i
aj ,bj ,ej The energy cost factors of the WPT node j.
θj The transmission power of the WPT node j
Rj The economic reward for the WPT node j
T comi The communication time of edge device i
T cmpi The computing time of edge device i
Ecomi The energy consumption of edge device i in

communication process
Ecmpi The energy consumption of device i in com-

puting process
UMEC The utility function of the MEC node
UWPT
j The utility function of the WPT node j

than uplink rate from edge devices to BS. Meanwhile, the
MEC node is not subject to energy restrictions.

D. Utility Function Formulation

In our WPEG, we consider that WPT nodes are conditional
volunteers. That is, power transmission can only be carried
out if the corresponding economic incentives are obtained.
We assume service requesters will publish federated learning
tasks through the MEC node, and give WPT nodes economic
rewards. The rewards for unit power transmission of WPT
nodes are defined as R = (R1, R2, ..., Rj , ..., RN ). Thus,
we could formulate the utility function of WPT nodes and
the MEC node (service requesters). The main symbols and
explanations in WPEG framework are shown in TABLE 1.

1) Utility function of WPT nodes: On the one hand, WPT
nodes could obtain rewards from the MEC node, on the other
hand, they still need to pay the corresponding energy costs
to the energy supplier. In our paper, we employ the typical
quadratic function model to represent the energy cost of WPT
nodes [42]. Therefore, the utility function of WPT nodes is
described as follows:

UWPT
j (Rj , θj) = Rjθj − (ajθ

2
j + bjθj + ej),∀j ∈ N (13)

Where aj , bj , ej are the energy cost factors of the WPT node
j (∀j ∈ N ). Besides, aj , bj are positive constants for each
WPT node j, and ej = 0.

2) Utility function of the MEC node: In order to obtain
a trained AI model (i.e., knowledge) from edge devices, the
MEC node needs to give economic incentives to WPT nodes
for charging. While the profit of the MEC node lies in the

quality of the local AI training service. We assume that the
MEC node will pre-set a deadline Tmax

i for completing AI
training sub-tasks for each edge device i. The quality of the
local AI training service of edge device i could be defined as:

ϕi(Θi) = Tmax
i − T learni (Θi), ∀i ∈M (14)

Where T learni (Θi) = T cmpi (Θi) + T comi (Θi) represents the
total time for local training. Besides, to realize the proportional
fairness among edge devices, we utilize typical logarithm
utility functions [34] to capture the satisfaction degree of
ϕi(Θi), i.e., Si(Θi) = ξi ln(1 + ϕi(Θi)). The satisfaction
degree Si(Θi) of the local AI service is considered as the
obtain profit of the MEC node. Therefore, the utility of the
MEC node is denoted as the total profits minus the incentive
costs, which is shown as:

UMEC(R,θ) =
∑
i∈M

ξi ln(1 + ϕi(Θi))−
∑
j∈N

Rjθj (15)

V. STACKELBERG GAME FORMULATION AND ANALYSIS

In our WPEG, we need to obtain the optimal power
transmission and economic rewards to joint maximize the
utility of both WPT nodes and the MEC node. To solve the
joint optimization problems, we model the interaction between
WPT nodes and the MEC node as a two-stage Stackelberg
game. This two-stage game could be considered as energy-
knowledge trading. That is, to obtain knowledge derived from
the local data of edge devices, the MEC node needs to
purchase energy from WPT nodes. At stage I, the MEC node
acts as a leader in the upper game who sets economic reward
strategies for each WPT node. At stage II, WPT nodes can
be considered as followers in the sub-game who determine
their power transmission strategies according to the given
economic rewards. In general, we formulate our Stackelberg
game model G = {SMEC

i∈M , SWPT
j∈N ;UMEC

i∈M ,UWPT
j∈N } as shown

in the following:

• SWPT
j∈N shows the strategy space of WPT nodes. The

power transmission strategies of WPT nodes are θ =
(θ1, θ2, ..., θj , ..., θN ) (∀j ∈ N ). Thus, we obtain that
SWPT
j∈N = {θj |0 ≤ θj ≤ θmax

j ;∀j ∈ N}. The trans-
mission power θj should be non-negative and not to
exceed the maximum transmission power θmax

j . Sim-
ilarly, SMEC

i∈M denotes the incentive strategy space of
the MEC node. The strategy space could be defined as
SMEC
i∈M = {Rj |Rmin

j ≤ Rj ≤ Rmax
j ;∀i ∈M, j ∈ N}.

• UWPT
j∈N (Rj , θj) is the utility function of the followers

(i.e., WPT nodes), and UMEC
i∈M (R,θ) is the utility function

of the leader (i.e., the MEC node).

According to the above, at stage I, the objective optimization
problem P1 of the upper game for the MEC node could be
described as follows:



max
(θ,R)

UMEC =
∑
i∈M

ξi ln[Tmax
i − ρi

Blog2(1+
κiHi
N0B

∑
hjiθj)

−O(log( 1
δi

)) 3

√
µic3id

3
i

κi
∑
hjiθj

+ 1]−
∑
j∈N

Rjθj

s.t. Rmin
j ≤ Rj ≤ Rmax

j , ∀j ∈ N

θmin
j ≤ θj ≤ θmax

j , ∀j ∈ N

0 < δi < 1 , ∀i ∈M
In addition, at stage II, the objective optimization problem

P2 of the sub-game for WPT nodes could be formulated as:

max
(θj ,Rj)

UWPT
j = Rjθj − (ajθ

2
j + bjθj + ej)

s.t. Rmin
j ≤ Rj ≤ Rmax

j , ∀j ∈ N

θmin
j ≤ θj ≤ θmax

j , ∀j ∈ N

0 < δi < 1 , ∀i ∈M
It should be noted that the edge network status is dynamic,

and some important information (e.g., channel conditions) will
change with time. Thus, the Stackelberg game will perform
periodic operations. After one period, the power transmission
strategy and economic incentive strategy will be re-designed.
We assume that WPT nodes will send channel conditions and
energy cost factors to the MEC node, and edge devices will
send the relevant learning parameters to the MEC node. So
that the MEC node has complete information to derive the
optimal strategy. And the scenario of asymmetric information
is our future work.

A. Sub-Game of WPT Nodes

We apply the backward induction method to solve the
joint problems (i.e., P1 and P2). So we first analyse the
power transmission sub-game of WPT nodes. The sub-game
could be considered as a non-cooperative game between WPT
nodes, and WPT nodes could dynamically adjusts the power
transmission strategies to optimize the self-revenue.

Definition 1 (NE): In sub-game, the power transmission
strategies θ∗ = (θ∗1 , θ

∗
2 , ..., θ

∗
j , ..., θ

∗
N ) of WPT nodes is the

Nash equilibrium (NE), if and only if UWPT
j (R∗j , θj ,Θ−j) ≤

UWPT
j (R∗j , θ

∗
j ,Θ−j), where Θ−j is the power transmission

strategy set of WPT nodes excluding θj .
Theorem 1: A unique Nash equilibrium exists in sub-game.

And the optimal transmission power θj of WPT node j∗ is:

θ∗j =
Rj − bj

2aj
, ∀j ∈ N (16)

Proof: We find the first and second derivative of the utility
function UWPT

j with respect to θj as the following:

∂UWPT
j

∂θj
= Rj − 2ajθj − bj ,∀j ∈ N (17)

∂2UWPT
j

∂2θj
= −2aj < 0, ∀j ∈ N (18)

UWPT
j is a strictly concave function about θj . And due to the

boundedness of θj , P2 should be a strict convex optimization

problem. Thus, a unique Nash equilibrium exists in sub-game.
By solving ∂UWPT

j

/
∂θj = 0, we could obtain Eq. (16).

Lemma 1: The optimal transmission power R∗j of WPT
node j satisfies bj ≤ R∗j ≤ 2ajθ

max
j + bj .

Proof: According to the definition of transmission power,
we could have θ∗j ≥ 0 . Thus, θ∗j = (R∗j − bj)

/
2aj ≥ 0 and

R∗j ≥ bj based on the Eq. (16). The lower bound of R∗j is bj .
We also have θj ≤ θmax

j . If θ∗j = (R∗j − bj)
/

2aj ≤ θmax
j , we

could obtain R∗j ≤ 2ajθ
max
j + bj . If θ∗j = (Rj − bj)/2aj ≥

θmax
j , thus Rj ≥ 2ajθ

max
j +bj and θ∗j = θmax

j . By substituting
θ∗j into the upper game. UMEC could be considered as a de-
creasing function about Rj . Thus, we have Rj = 2ajθ

max
j +bj .

In general, θ∗j ≤ θmax
j and Rj ≤ 2ajθ

max
j + bj . The upper

bound of R∗j is 2ajθ
max
j + bj . The proof is now completed.

The optimal utility of WPT nodes could also be obtained as:

UWPT∗
j =

(Rj − bj)2

4aj
− ej , ∀j ∈ N

s.t. bj ≤ Rj ≤ 2ajθ
max
j + bj (19)

B. Upper-Game of the MEC Node

Definition 2 (SE): In upper-game, the economic in-
centive strategies R∗ = (R∗1, R

∗
2, ..., R

∗
j , ..., R

∗
N ) of the

MEC node is the Stackelberg equilibrium (SE), if and
only if UWPT

j (R∗j , θj ,Θ−j) ≤ UWPT
j (R∗j , θ

∗
j ,Θ−j) and

UMEC(R,θ∗) ≤ UMEC(R∗,θ∗).
Theorem 2: There exists a unique Stackelberg equilibrium

between the leader and followers in our proposed game.
Proof: We will first substitute Eq. (16) into P2. P2 in the

upper game could be rewritten as follows:

max
(R)

UMEC =
∑
ξi ln[Tmax

i − ρi

Blog2(1+
κiHi

2ajN0B

∑
hji(Rj−bj))

−O(log( 1
δi

)) 3

√
2ajµic3id

3
i

κi
∑
hji(Rj−bj) + 1]

−
∑
Rj(Rj − bj)/2aj

s.t. bj ≤ Rj ≤ bj + 2ajθ
max
j , ∀j ∈ N

θmin
j ≤ θj ≤ θmax

j , ∀j ∈ N

0 < δi < 1 , ∀i ∈M

In the above P2, we could easily observe that each term
in the second summation is a quadratic function with respect
to R (i.e., convex function). So we only need to investigate
the first summation of the utility function UMEC . In the
first summation, each term represents the satisfaction degree
Si(R) = ξi ln(1+ϕi(R)). We now find the first derivative and
the second derivative of Si(R) with regard to R:

∂Si
∂Rm

= ξi
1

1 + ϕi(R)

∂ϕi(R)

∂Rm
(20)

∂2Si
∂2Rm

=
−ξi

(1 + ϕi)
2

∂ϕi
∂Rm

∂ϕi
∂Rm

+
ξi

1 + ϕi

∂ϕ2
i

∂2Rm
(21)

∂2Si
∂Rm∂Rn

=
−ξi

(1 + ϕi)
2

∂ϕi
∂Rm

∂ϕi
∂Rn

+
ξi

1 + ϕi

∂ϕ2
i

∂Rm∂Rn
(22)



Hi = −[
ξi

(1 + ϕi(R))
2X

2
i +

ξi
1 + ϕi(R)

Yi]


h1ih1i h1ih2i · · · h1ihNi
h2ih1i h2ih2i · · · h2ihNi

...
...

. . .
...

hNih1i hNih2i · · · hNihNi


N×N

, ∀i ∈M (23)

∂ϕi(R)

∂Rm
= hmi[

3

√
2(O(log(1/δi)))

3
ajµic3i d

3
i

27κi(
∑
hji(Rj − bj))4

+
ρiκiHi ln 2

2ajN0B2(1 + SNRi)ln
2(1 + SNRi)

] = hmiXi (24)

∂2ϕi(R)

∂Rm∂Rm
= −hmihmi[

4

9
3

√
2(O(log(1/δi)))

3
ajµic3i d

3
i

κi(
∑
j hji(Rj − b))7

+
ρiκ

2
iH

2
i (ln(1 + SNRi) + 2) ln 2

4a2jN
2
0B

3(1 + SNRi)
2
ln3(1 + SNRi)

] = −hmihmiYi (25)

∂2ϕi(R)

∂Rm∂Rn
= −hmihni[

4

9
3

√
2(O(log(1/δi)))

3
ajµic3i d

3
i

κi(
∑
j hji(Rj − b))7

+
ρiκ

2
iH

2
i (ln(1 + SNRi) + 2) ln 2

4a2jN
2
0B

3(1 + SNRi)
2
ln3(1 + SNRi)

] = −hmihniYi (26)

Where Rm, Rn ∈ R and Rm 6= Rn. In addition, we
derive the first derivative and the second derivative of ϕi(R)
with regard to R, which is shown at the top of next page.
To simplify, we utilize SNRi = κiHi

2ajN0B

∑
hji(Rj − bj) to

present the Signal-Noise Ratio during communication. By
substituting Eq. (24)-(26) into Eq. (20)-(22), we have:

∂2Si
∂2Rm

=
−ξi

(1 + ϕi)
2h

2
miX

2
i +

−ξi
1 + ϕi

h2miYi (27)

∂2Si
∂Rm∂Rn

=
−ξi

(1 + ϕi)
2hmihniX

2
i +

−ξi
1 + ϕi

hmihniYi (28)

Where Xi > 0 and Yi > 0, ∀i ∈ M. Thus, we could
get the Hessian matrix Hi of Si(R) through Eq. (27) (28),
which is shown as Eq. (23). −Hi is considered as a real
symmetric matrix, which should be proved as a positive
definite matrix, based on theorems in [43]. And we could
prove Hi is a strict negative definite matrix, which shows
the existence and uniqueness of the optimal strategy R∗ =
(R∗1, R

∗
2, ..., R

∗
j , ..., R

∗
N ). Moreover, it also denotes that P2 is

a convex optimization problem. The proof is now completed.
To find the unique Nash equilibrium (NE) and Stackelberg

equilibrium (SE) in our game, we design a low complexity
gradient-based searching algorithm as Algorithm 1.

C. Optimal Learning Parameter Design

Benefit from the optimal transmission power θ∗ from WPT
nodes, a stable and robust federated edge learning process
can be guaranteed in our framework. But the global learning
efficiency is still related to learning accuracy α (global) and δi
(local). To maximize the learning efficiency of our framework,
we now study how to design the optimal parameters. We
assume that all edge devices have the same local accuracy
δi = δ, ∀i ∈ M. Thus global federated learning time T total

in our framework could be expressed as:

T total =
O(log(1/α))

1− δ
·max{T learni (δ,θ∗)} (29)

Algorithm 1 Optimal Incentive Reward and Power Transmis-
sion Algorithm

1: Input: aj , bj and ej , ∀j ∈ N ; ci, di, δi, fmax
i , ∀i ∈M;

2: Output: R∗, θ∗, UMEC∗, UWPT∗
j , ∀j ∈ N ;

3: Initialization: Maximum iteration number t̂, step size σ;
4: for Each WPT node j ∈ N do
5: Calculate Rmin

j and Rmax
j according to Rmin

j =bj ,
and Rmax

j =bj + 2ajθ
max
j ;

6: end for
7: Select initial input R0 = (R0

1, R
0
2, ..., R

0
j , ..., R

0
N ), where

R0
j ∈ [Rmin

j , Rmax
j ], ∀j ∈ N , and t = 0;

8: while t < t̂ do
9: for Each WPT node j ∈ N do

10: Calculate θj according to Eq. (16):
θ∗j = (Rj − bj)/2aj ;

11: end for
12: Update incentive rewards according to:

R(t+ 1) = R(t)− σ∇UMEC( R(t),θ∗(R(t)));
13: t := t+ 1;
14: end while
15: Calculate R∗, θ∗, UMEC∗, UWPT∗

j (∀j ∈ N ) according
to Eq. (13) (15) (16);

Let t = arg max{T learni (δ,θ∗)}, t ∈ M and
O(log(1/δ)) = β log(1/δ), β > 0. Thus we could formulate
the optimization problem P3, which is shown as follows.

min
δ

T total =
O(log(1/α))

1− δ
[T comt + log(

1

δ
)Zt(θ

∗)]

s.t. 0 < α < 1; 0 < δ < 1 (30)

Where T comt (θ∗) is the communication time of the edge

device t, and Zt(θ∗) = β 3

√
µtc3td

3
t

κt
∑
hjtθ∗j

, ∀j ∈ N .

Theorem 3: Under the optimal transmission power strategy
θ∗, P3 is a the convex problem and there exists a unique local
training accuracy δ∗ in our framework.

Lemma 2: log(1/δ) > 0.5(1− δ)(3− δ), δ ∈ (0, 1)



Proof: Let G(δ) = 0.5(1 − δ)(3 − δ) − log(1/δ), the first
derivative of G(δ) with regard to δ is:

∂G(δ)

∂δ
= δ +

1

δ
− 2 > 0, δ ∈ (0, 1) (31)

Thus, G(δ) < G(1) = 0, δ ∈ (0, 1). The proof is completed.
Let A =O(log(1/α)) > 0, α ∈ (0, 1), we now find the first
and the second derivative of T total(δ) as:

∂T total

∂δ
=
A[T comt + Zt log(1/δ)]

(1− δ)2
− AZt
δ(1− δ)

(32)

∂2T total

∂2δ
=
A[T comt + Zt log(1/δ)]

0.5(1− δ)3
− AZt(3δ − 1)

δ2(1− δ)2
(33)

According to Lemma 2, we could have:

∂2T total

∂2δ
>
A[T comt + 0.5Zt(1− δ)(3− δ)]

0.5(1− δ)3
− AZt(3δ − 1)

δ2(1− δ)2

=
2AT comt

(1− δ)3
+
AβZt(1− δ)

δ2
> 0, δ ∈ (0, 1) (34)

Therefore, P3 is a strict convex optimization problem. The
proof is now completed. We could calculate the optimal δ∗ via
classic one-dimensional convex optimization search method
with convex optimization tools (e.g., cvxopt).

TABLE II: System Parameters in WPEG Framework

System parameters Value setting
Number of edge devices M M = [5, 100]

Number of WPT nodes N N = [5, 50]

The transmission bandwidth of all the
edge devices B

B = 1 MHz

The noise power spectrum density N0 -174 dBm/Hz

Channel power gain hij and Hi 32.44+20 lg(d)

Data size of local weights/gradients ρi ρi = 1 MB

The CPU cycles number for one sam-
ple data training ci

[10, 30]
cycles/bit

Data size of local personal dataset di [25, 35] MB

The local sub-model trained accuracy
δi of edge devices

δi ∈ (0, 1)

The transmission energy cost factors of
WPT nodes aj and bj

[0.6, 0.2]

The maximum transmission power
θmax
j of WPT nodes

θmax
j = [2, 3] W

The energy harvesting efficiency κi κi = [0.1, 0.9]

VI. SIMULATION AND DISCUSSION

In this section, we conduct simulation experiments of our
WPEG framework. Our experimental results mainly divide
into three parts: 1) we compare our proposed optimal e-
conomic incentive strategy and power transmission strategy

with several classic schemes in terms of the utility of the
MEC node and the utility of WPT nodes, respectively; 2) we
also study the influence of the number of edge devices, the
number of WPT nodes, the energy harvesting efficiency on the
performance of our framework; 3) we investigate the impact
of learning parameter design on the performance of global
learning efficiency in our framework. We conduct the federated
learning simulation based on [5]. Some of the important
simulation parameters settings are from [5], which are listed in
Table II. Our simulation is conducted on Python 3.7 (numpy
1.18 and cvxopt 1.1) which based on the hardware of the 3.20
GHz I7 Intel processor and 16 GB RAM.

A. Experiment Setup in Our WPEG

1) Federated edge learning parameters: For each edge
devices i (i ∈ M), we set the training size di of each device
as a uniform distribution in 25− 35 MB, CPU cycle number
of one sample training ci is a uniformly distributed in 10−30
cycles/bit, the maximum computing resources of each device
fmax
i is uniformly distributed in 3.0− 4.0 GHz. Furthermore,

the data size of local weights and local gradients ρi is 1 MB.
2) Wireless power transfer parameters: we simulate a

200m×200m square area with M edge devices and N WPT
nodes. The number of edge devices M is ranging from 5
to 100 and the number of WPT nodes N is ranging from
5 to 50. The MEC node is located at the center of the square
area. Edge devices and WPT nodes are randomly distributed.
Both of their horizontal and vertical coordinates follow the
uniform distribution ranging from −100m to 100m. We
also model the channel gain hji and Hi as the path loss
model, i.e., 32.44 + 20 log10(d), where d (meters) presents
the distance in free space. The transmission bandwidth B of
all the edge devices is set as 1 MHz and the noise power
spectrum density N0 is denoted as -174 dBm/Hz. The energy
harvesting efficiency is set as κi = [0.1, 0.9], respectively.
And the energy cost factors of WPT nodes are aj = 0.6W−2,
and bj = 0.2W−1. The maximum transmission power θmax

j is
a uniformly distributed in 2.0− 3.0 W.

B. Comparison Analysis with Other Learning Strategies

We compare our optimal learning strategy (i.e., the power
transmission strategy and economic incentive strategy) with
two different classic strategies, including random federated
edge learning (RFEL) scheme and uniform federated edge
learning (UFEL) scheme in terms of the utility of both parties
in our framework.
• Random federated edge learning (UFEL) scheme: 1)

The MEC node randomly provides economic incentives
Rrj to WPT nodes from [Rmin

j , Rmax
j ] (∀j ∈ N ) based

on Eq. (19), and WPT nodes power edge devices with
the optimal power transmission strategy θ∗j according
to Eq. (16); 2) The MEC node rewards WPT nodes
with the optimal economic incentive strategy R∗j , while
WPT nodes randomly determine the power transmission
strategy from (0, θmax

j ] (∀j ∈ N ).
• Uniform federated edge learning (UELS) scheme: 1) The

MEC node uniformly select economic incentives Ruj to
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Fig. 4: (a) MEC node utility vs edge device number; (b) WPT node utility vs edge device number; (c) MEC node utility vs WPT
node number; (d) WPT node utility vs WPT node number; (e) Transmission power vs WPT node number; (f) Transmission
power vs energy harvesting efficiency

WPT nodes as Ruj = Rmin
j +γ(Rmax

j −Rmin
j ) (∀j ∈ N ),

where γ = 0.4, 0.6, 0.8, respectively, and WPT nodes
charge edge devices with the optimal power transmission
strategy θ∗j ; 2) The MEC node grants WPT nodes with
the optimal economic incentive strategy R∗j , while WPT
nodes uniformly adopt the power transmission strategy
as θuj = θmin

j + ε(θmax
j − θmin

j ) (∀j ∈ N ), where ε =
0.2, 0.4, 0.6, respectively.

We evaluate the performance of the above three learning
strategies in terms of the utility of the MEC node and the
average utility of WPT nodes, respectively, which are shown
in Fig. 4. (a)-(d).

Specifically, Fig. 4. (a) (c) evaluate the economic pricing
strategy. As shown in Fig. 4. (a), with the increase of edge
learning devices, the utility of the MEC node has increased
significantly. Because more devices bring more valuable data
in federated learning, which improves the learning satisfaction
of federated learning. Meanwhile, in terms of the average
utility of the MEC node, compared with the RFEL and
UFEL schemes, our optimal economic incentive strategy has
increased by 32.38%, 14.42%, 41.37%, and 110.19%, re-
spectively. Fig. 4. (c) evaluates the utility of MEC nodes as
the number of WPT nodes changes. In our optimal strategy,
the utility of the MEC node is relatively stable. This shows
that simply increasing the number of WPT nodes could not
improve the learning satisfaction of the MEC node. In this
case, our optimal economic incentive strategy is improved by

42.35%, 16.70%, 46.94%, and 128.80% compared with the
RFEL and UFEL schemes.

Fig. 4. (b) (d) investigate the power transmission strategy.
As the number of edge devices increases, the utility of WPT
nodes gradually increases as shown in Fig. 4. (b). This is
because more edge devices require more energy to support
the federated learning task. It will make MEC nodes trade
more energy, which increases the utility of all WPT nodes.
Besides, compared with the RFEL and UFEL schemes, our
optimal power transmission strategy has increased 82.67%,
2.86%, 20.77%, and 81.28%, respectively. While the average
utility of WPT nodes decreases when WPT nodes become
more as shown in Fig. 4, (d). This is because when edge
devices are fixed, the total energy required for learning is
relatively fixed. When the number of WPT nodes increases,
the average energy trading amount is lower. Thus, the aver-
age utility of WPT nodes is reduced. Similarly, our optimal
power transmission strategy also improved by 91.55%, 3.52%,
21.43%, and 77.42% compared with the other two schemes.

C. Impact of Energy Harvesting Efficiency on Our Framework

In Fig. 4. (e) (f), we study the impact of energy harvesting
efficiency κi on our learning system. As shown in Fig. 4. (e)
(f), as the energy harvesting efficiency increases, the average
power transmission of WPT nodes will decrease. Because
when the energy conversion efficiency of edge devices is
greater, WPT nodes only need to transmit less energy to



(a) (b) (c)

Fig. 5: (a) Energy consumption vs local dataset size; (b) local learning time vs local training accuracy; (c) Global learning
time vs local training accuracy

meet the learning energy demands of edge devices. For WPT
nodes, this also means the energy resource saving. At the same
time, when the number of WPT nodes increases, the average
transmission power of WPT nodes will further decrease. On
the one hand, this is because the energy acquisition methods
of edge devices are more decentralized and diversified, which
reduces the transmission power of the single WPT node. On
the other hand, in a limited spatial range, the denser WPT node
deployment also means the average spatial distance between
edge devices and WPT nodes is reduced. It will improve the
energy channel gain and energy transmission efficiency, thus
the transmission power of WPT nodes is reduced. When the
number of edge devices is fixed and the number of WPT
nodes is sufficient, the WPT nodes will charge edge devices
according to the lowest power transmission strategy θmin

j .
Meanwhile, as shown in Fig. 4. (f), when the number of

edge devices decreases, the average power transmission of W-
PT nodes will also decrease accordingly. This is because when
the number of edge devices is small, the energy requirement
for learning is low. If the transmission power is too large and
exceeds the energy demand of edge devices, edge devices can
only adopt the largest computing resources fmax

i to learn, extra
energy will be wasted. In this case, it is no longer energy
resources that limits learning performance, but the computing
resources of edge devices.

D. Impact of Learning Parameters Design on Global Learning
Performance

In Fig. 5, we analyze the impact of learning parameter
design on global learning performance in terms of learning
energy consumption and learning time. As shown in Fig. 5.
(a), as the local learning data size increases, the total learning
energy consumption of edge devices will increase. Because
when the local data size is larger, more local training is
required, resulting in more energy consumption. However, the
contribution of more data also means that edge devices will
receive more rewards. We then show the relationship between
local training accuracy and global learning time in Fig. 5. (b)
(c). The global learning time, i.e., the total system efficiency,
depends on global training accuracy α, local training accuracy

δ, and the longest training time in each local iteration Tmax
i .

We let O(log(1/α))=$ log(1/α), and make α=0.2 and $=1
without loss of generality. As shown in Fig. 5. (b), when
the local accuracy δ increases, although the maximum time
for local learning will be reduced, the corresponding local
learning performance is reduced, resulting in an increase in
the number of global iteration cycles. As shown in Fig. 5.
(c), the local training accuracy and the global learning time
are convexly related, that is, there is a unique trade-off to
balance the local training accuracy and the global learning
time. And we can easily obtain the optimal local accuracy
δ∗. In actual applications, we will adopt the optimal learning
parameter design to maximize the efficiency of the system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel robust-efficient W-
PEG framework and investigated a joint optimization of power
transfer, learning design, and user incentives for maximizing
system efficiency and multi-user profits. In the framework, we
have first employed a permissioned edge blockchain to manage
the P2P energy and knowledge sharing process in a secure and
efficient manner. Besides, we have studied wirelessly-powered
computing and communication models in edge AI, and char-
acterized how wireless power transfer affects the latency and
energy consumption of edge AI. Based on this, we have de-
signed an energy-knowledge trading Stackelberg-game model
to obtain the optimal power transmission and user incentives
for our framework. Furthermore, the trade-off between the
learning parameter and the global system efficiency has been
studied and the uniqueness of the optimal learning parameter
design has been proved. Numerical results have demonstrated
that the game-based energy-knowledge incentive strategies
could optimize the utilities of both parties in our framework,
and attract WPT nodes charging edge devices to ensure robust-
efficient edge learning process. In addition, numerical results
also have proved our optimal learning parameter design could
achieve the optimal global learning efficiency. In future works,
we will further consider user mobility with more effective
incentives and resource allocation in our WPEG framework,
which will enhance better network stability.
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