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Abstract—Spamming is emerging as a key threat to Internet of 

Things (IoT)-based social media applications. It will pose serious 

security threats to the IoT cyberspace. To this end, artificial 

intelligence-based detection and identification techniques have 

been widely investigated. The literature works on IoT cyberspace 

can be categorized into two categories: 1) behavior pattern-based 

approaches; and 2) semantic pattern-based approaches. However, 

they are unable to effectively handle concealed, complicated, and 

changing spamming activities, especially in the highly uncertain 

environment of the IoT. To address this challenge, in this paper, 

we exploit the collaborative awareness of both patterns, and 

propose a Collaborative neural network-based Spammer 

detection mechanism (Co-Spam) in social media applications. In 

particular, it introduces multi-source information fusion by 

collaboratively encoding long-term behavioral and semantic 

patterns. Hence, a more comprehensive representation of the 

feature space can be captured for further spammer detection. 

Empirically, we implement a series of experiments on two 

real-world datasets under different scenario and parameter 

settings. The efficiency of the proposed Co-Spam is compared 

with five baselines with respect to several evaluation metrics. The 

experimental results indicate that the Co-Spam has an average 

performance improvement of approximately 5% compared to the 

baselines. 

Index Terms—Internet of Things, spammer detection, neural 

network, collaborative awareness 
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I. INTRODUCTION

HE past decade has witnessed the great progress in

artificial intelligence and communication networks. 

Predictably, cyberspace of the Internet of Things (IoT) will 

become an important living space for human beings in the 5G 

era [1]. Accordingly, cyberspace security will be of great 

importance to the economic prosperity and social stability, such 

as the spammer detection. Online spamming is gradually 

becoming a remarkable security threat to the IoT-based social 

media applications [2]. In literature, spammers refer to 

communities that publish tendentious statements in a variety of 

media to satisfy their commercial or political goals [9]. To 

ensure a secure and reliable environment, effective detection or 

identification mechanisms for spammers hold significant 

importance [17]. Nevertheless, precise spammer detection for 

IoT-based social media is usually regarded as a challenging 

task in actual practice for two reasons. First, online spamming 

is highly associated with social networks; thus, contextual 

information such as social relations and even financial relations 

needs to be deeply analyzed as an auxiliary. Second, excellent 

modeling schemes for semantic features play an important role. 

This is because the main purpose of online spamming is to 

create specific directions for public opinion [24]. Considering 

more complicated environment in IoT applications, 

establishing more fine-grained feature spaces will greatly 

influence the effect of spammer detection [34]. 

In fact, in recent years, a considerable number of studies 

have been devoted to spammer detection. Relevant studies can 

be classified into two types: behavioral pattern-based 

approaches [3]-[19] and semantic pattern-based approaches 

[20]-[30]. The former concentrate on the pattern characteristics 

of primary behaviors such as social behaviors, comment 

behaviors, and forwarding behaviors. For example, Cao et al. [6] 

set up two different detection methods for individuals and 

groups respectively. In particular, they proposed to identify 

hidden spammers by leveraging collusive relations between 

spammers and business competition between locations. In 

contrast, the latter emphasize the semantic features of speech 

contents from the perspective of language statistics. For 

instance, Wang et al. [26] proposed a detection framework 

named GSLDA for group spamming detection in product 

review data. The GSLDA first adapts LDA (Latent Dirichlet 

Allocation) algorithm to the product review context to cluster 

similar reviewers, and deviated suspicious groups. However, 
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both types suffer from some limitations or drawbacks. On the 

one hand, the concealment of spamming activities is becoming 

mature over the course of long-term confrontations with 

regulatory mechanisms, resulting in difficulties for recognition. 

For instance, many spammers generally perform normal 

browsing and speaking behaviors like ordinary users. In this 

case, only a small number of spamming operations are involved. 

On the other hand, most semantic pattern-based approaches are 

endowed with a good ability to analyze and understand only 

regular machine speech. Such approaches are not suitable for 

complicated and changeable contents. In summary, global 

insights into multisource information fusion are urgently 

needed to improve the accuracy of spammer identification. 

To address this challenge, this paper manages to capture a 

more comprehensive representation of the feature space. It does 

so by combining behavior patterns and semantic patterns. Such 

an idea of multisource information integration is likely to 

become a more promising solution, especially under IoT 

environment. Although Yuan et al. [31] and Wang et al. [32] 

once dealt with spammer detection problems by simultaneously 

considering semantic and behavioral patterns, they still 

neglected the dynamic characteristics of social activities. In 

particular, their approaches were established based on the 

assumption that social activities at different timestamps are 

mutually independent, and the evolving nature of social 

activities was not considered. 

In this paper, a Collaborative neural network-based 

Spammer detection mechanism (Co-Spam) is proposed to 

solve the problem above. Co-Spam combines both semantic 

and behavioral patterns to solve spammer detection problems. 

In addition, the evolving environments of social activities are 

included. In our work, the speech contents and behavior records 

of users at different timestamps are first viewed as their feature 

sequences. At each timestamp, a bidirectional autoencoder 

(Bi-AE) is developed to model semantic characteristics, and a 

graph convolutional network (GCN) is designed to learn the 

embeddings of behavior patterns. After that, the feature space at 

each timestamp is obtained through a hybrid mapping of the 

two components, and a long short-term memory (LSTM) model 

is introduced to express the evolving characteristics of the 

feature sequence. At last, we implement a series of experiments 

on two real-world datasets. Five typical baselines are selected 

as comparison to assess efficiency of the proposed Co-Spam 

under several common metrics. The main contributions of this 

paper are summarized as follows: 

a) We recognize the limitations of existing spammer

detection methods, especially under the schemes of

IoT-based social media.

b) We manage to construct a fine-grained feature space

combining semantic and behavioral patterns, and we

propose the Co-Spam for IoT-based social media.

c) Based on our simulation results, we find that the Co-Spam

has an average performance improvement of

approximately 5% compared to the baselines.

II. PROBLEM STATEMENT

The primary architecture of the proposed Co-Spam is 

illustrated in Fig. 1. It is assumed that 𝑢𝑖(𝑖 = 1,2,⋯ , |𝑢|)

denotes the set of users in IoT-based social media. Each user is 

assumed to able to perform various online activities inside it. 

Considering the time-varying characteristics in IoT 

environment, long-term activities are separated into a number 

of parts with respect to a total of 𝑇 timestamps whose index 

symbols are denoted as 𝑡(𝑡 = 1,2,⋯ , 𝑇). For user 𝑢𝑖 at the 𝑡-th

timestamp, it is necessary to construct a global feature space 

𝓖𝑖
(𝑡)

 by exploiting the collaborative awareness of semantic

factor 𝑺𝑖
(𝑡)

 and behavior pattern factor 𝒀𝑖
(𝑡)

. Finally, the

long-term evolving characteristics of the global feature space 

are modeled via a recurrent neural network approach to 

calculate the nature of user 𝑢𝑖. In a word, the whole workflow

of the Co-Spam can be viewed as two types of procedures: 

encoding and decoding. At each timestamp, semantic and 

behavioral patterns of a user are respectively encoded into 

abstract feature factors through Bi-AE and GCN. After 

long-term feature factors constitute a sequence, LSTM is 

employed to encode such a pattern sequence. 

At the 𝑡-th timestamp, the textual contents associated with 

user 𝑢𝑖 are denoted as 𝑐𝑖
(𝑡)

. Because the span of each timestamp

does not last very long (one day or even one hour), the textual 

contents within a timestamp are assumed to constitute one 

sentence. Then, a Bi-AE model is formulated to obtain the 

encoding of semantics factor 𝑺𝑖
(𝑡)

. In addition, a series of

behavior patterns correlated to user 𝑢𝑖 constitute a GCN model,

where specific behaviors are regarded as nodes and their 

relations are viewed as edges. Then, a GCN model is developed 

to learn the graph embedding of behavior patterns denoted as 

𝒀𝑖
(𝑡)

. Correspondingly, the global feature space 𝓖𝑖
(𝑡)

 of this

timestamp is formulated by concatenating semantic factor 𝑺𝑖
(𝑡)

and behavior pattern factor 𝒀𝑖
(𝑡)

 together. Generalized to the

whole time domain, an LSTM model is established to model the 

evolving characteristics of the series of activities and, finally, to 

identify the nature of user 𝑢𝑖.

III. METHODOLOGY

This section fully considers characteristics of IoT situations, 

and presents mathematical descriptions of the Co-Spam. It is 

composed of three parts corresponding to three subsections: 

semantic pattern modeling, behavioral pattern modeling and 

prediction. 

Fig. 1. Architecture of the spammer detection mechanism Co-Spam. 



A. Semantic Pattern Modeling

It is necessary to model the semantic patterns of sentences to

consider vectorized expressions from both forward and 

backward directions. Bi-AE is developed to encode semantic 

characteristics at different timestamps, as illustrated in Fig. 2. 

At the 𝑡 -th timestamp, Bi-AE tries to capture semantic 

embedding through the following two formulas: 

�⃗⃗� 𝑖𝑗
(𝑡) = Φ⃗⃗⃗[𝑐𝑖

(𝑡), ℎ⃗ 𝑖,𝑗−1
(𝑡) ] (1) 

�⃗⃗⃖�𝑖𝑗
(𝑡) = Φ⃗⃗⃗⃖[𝑐𝑖

(𝑡), ℎ⃖⃗𝑖,𝑗+1
(𝑡) ] (2) 

where Φ⃗⃗⃗ (∙)  and Φ⃗⃗⃗⃖(∙)  denote the forward and backward 

activation operators for the sequence 𝑐𝑖
(𝑡)

, respectively, and 𝑗 is

the index number of words ranging from 1 to 𝑁𝑖
(𝑡)

. Specifically,

the former models the sequence with 𝑗 changing from 1 to 𝑁𝑖
(𝑡)

,

while the latter models the sequence with 𝑗 changing from 𝑁𝑖
(𝑡)

to 1. �⃗⃗� 𝑖𝑗
(𝑡)

and �⃗⃗⃖�𝑖𝑗
(𝑡)

 denote the forward and backward hidden 

states, respectively, and they are concatenated into a novel 

hidden state vector, 𝒉𝑖𝑗
(𝑡) = [�⃗⃗� 𝑖𝑗

(𝑡), �⃗⃗⃖�𝑖𝑗
(𝑡)].

This work categorizes all words into two types, crucial words 

and background words, as each word is likely to play different 

roles concerning the meaning of a sentence. Clearly, crucial 

words are the main contributors of meanings, and background 

words are the auxiliary parts with regard to sentence integrity.  

Hence, an attention mechanism is introduced to 

automatically extract crucial words from sentences at each 

timestamp. Then, all the selected key words are transferred into 

a central vector: 

𝑪𝑖𝛼
(𝑡) = {𝒉𝑖𝛼

(𝑡)|𝛼 = 1,2,⋯ ,𝜔𝑖
(𝑡)} (3) 

where 𝒉𝑖𝛼
(𝑡)

 is the hidden state of the 𝛼-th crucial word and 𝛼 is 

the index number of crucial words ranging from 1 to 𝜔𝑖
(𝑡)

.

Accordingly, the remaining background words are transferred 

into an edge vector: 

𝑬𝑖𝛽
(𝑡) = {𝒉𝑖𝛽

(𝑡)|𝛽 = 1,2,⋯ , (𝑁𝑖
(𝑡) − 𝜔𝑖

(𝑡))} (4) 

where 𝒉𝑖𝛽
(𝑡)

 is the hidden state of the 𝛽-th background word and 

𝛽 is the index number of background words ranging from 1 to 

(𝑁𝑖
(𝑡) − 𝜔𝑖

(𝑡)). The concatenation of the central vector and edge

vector results in the hidden vector at the 𝑡-th timestamp: 

𝑯𝑖
(𝑡) = 𝑪𝑖𝛼

(𝑡) ⊕ 𝑬𝑖𝛽
(𝑡)

(5) 

To encode the semantic feature space, the attention weight 

for crucial words and background words needs to be deduced. 

The attention weight of crucial words is defined as: 

𝓐𝑖𝐶
(𝑡) = 𝜎1[𝑾𝑖1𝜎2(𝑾𝑖𝐻𝑯𝑖

(𝑡) + 𝑾𝑖𝐶𝑪𝑖𝛼
(𝑡) + 𝒃𝑖1)] (6) 

where 𝑾𝑖1, 𝑾𝑖𝐻 and 𝑾𝑖𝐶  are weight matrices, 𝒃𝑖1 is the bias

parameter, 𝜎1(∙) is the softmax activation function, and 𝜎2(∙) is

the tanh activation function. For user 𝑢𝑖, the enhanced hidden

state vector for crucial words at the 𝑡-th timestamp is deduced 

as: 

𝑺𝑖𝐶
(𝑡) = ∑𝓐𝑖𝐶

(𝑡)𝒉𝑖𝑗
(𝑡)

𝑁𝑖
(𝑡)

𝑗=1

(7) 

Similarly, attention weight for background words is defined as: 

𝓐𝑖𝐸
(𝑡) = 𝜎1[𝑾𝑖2𝜎2(𝑾𝑖ℎ𝑯𝑖

(𝑡) + 𝑾𝑖𝑒𝑬𝑖𝛼
(𝑡) + 𝒃𝑖2)] (8)

where 𝑾𝑖2 , 𝑾𝑖𝐻  and 𝑾𝑖𝐸  are weight matrices and 𝒃𝑖2  is the

bias parameter. The enhanced hidden state vector for 

background words at the 𝑡-th timestamp is deduced as: 

𝑺𝑖𝐸
(𝑡) = ∑𝓐𝑖𝐸

(𝑡)𝒉𝑖𝑗
(𝑡)

𝑁𝑖
(𝑡)

𝑗=1

(9) 

Therefore, the goal of semantic modeling is to learn a 

mapping function 𝑆𝑖
(𝑡)

 that best expresses the semantic

embeddings for user 𝑢𝑖 at the 𝑡-th timestamp:

𝑺𝑖
(𝑡) = 𝜏𝑾𝑖3𝑺𝑖𝐶

(𝑡) + (1 − 𝜏)𝑾𝑖4𝑺𝑖𝐸
(𝑡) (10) 

where 𝑾𝑖3 and 𝑾𝑖4 are weight matrices and 𝜏 is the trade-off

parameter.  

B. Behavior Pattern Modeling

This subsection proposes to encode the behavior pattern

features of users through GCN. As is shown in Fig. 3, behavior 

pattern types are viewed as nodes and the relations among them 

are regarded as edges. Given that the initial contents of these 

nodes are mostly unsuitable for direct calculation, they are 

Fig. 2. Flowchart of the Bi-AE process at each timestamp. 

TABLE I 

EXAMPLES OF STRUCTURED ATTRIBUTES 

Behavior Pattern Names Encoded Formats 

Vector of Social Relations [1,0,⋯ ,0] 

Personal Tags [0,1,⋯ ,0] 

User Level [0,0,⋯ ,1] 

Fig. 3. Flowchart of the GCN process at each timestamp. 



expected to be mapped into vectorized numerical data. Data 

categories are generally structured data, and their contents can 

be encoded into feature vectors via one-hot encoding. 

Examples of some attributes are shown in TABLE I. 

In addition, there are some attributes whose data structures 

are initially numerical, namely, the registration time and 

number of speeches. The contents of these attributes are 

directly transferred into vectors without extra operations. 

Because the dimensions of different attributes are usually 

diverse, the attribute with the most dimensions is selected as 

uniformity, which is assumed to be 𝒟. Then, the dimensions of 

other attributes are extended to 𝒟 by adding a certain number 

of zeros. 

For user 𝑢𝑖 , his or her behavior pattern vector at the 𝑡-th

timestamp can be represented as the following format: 

𝓟𝑖
(𝑡) = {𝑞𝑖1

(𝑡), 𝑞𝑖2
(𝑡), ⋯ , 𝑞𝑖𝑧

(𝑡)} (11) 

where 𝑧 is the actual number of behavior patterns. The GCN 

manages to learn the graph embedding of the 𝛾-th behavior 

pattern: 

𝓑𝑖𝛾
(𝑡) = ∑ ∑ 𝓡𝑖𝛾

(𝑡)(𝛾, 𝜂)

𝑧

𝜂=1
𝜂≠𝛾

𝑸𝑖
𝜂→𝛾

𝑞𝑖𝛾
(𝑡) + 𝒆𝑖𝛾

(𝑡)

𝑧

𝛾=1
(12) 

where 𝓡𝑖𝛾
(𝑡)(𝛾, 𝜂) is the adjacency matrix at the 𝑡-th timestamp,

𝑸𝑖
𝜂→𝛾

 is the set of transition matrices into the 𝛾-th behavior

pattern, and 𝒆𝑖𝛾
(𝑡)

is the bias vector. Among them, 𝓡𝑖𝛾
(𝑡)(𝛾, 𝜂) is

defined as: 

𝛿𝑖
(𝑡)(𝛾, 𝜂) =

𝜓(�̃�𝑖𝛾
(𝑡) ∩ �̃�𝑖𝜂

(𝑡)) 𝜓(�̃�𝑖𝜂
(𝑡))⁄

∑ 𝜓 (�̃�𝑖𝛾
(𝑡) ∩ �̃�𝑖𝜉

(𝑡)
) 𝜓 (�̃�𝑖𝛾

(𝑡)
)⁄𝜉

(13) 

𝓡𝑖
(𝑡)(𝛾, 𝜂) = {𝛿𝑖

(𝑡)(𝛾, 𝜂) 𝛾 ≠ 𝜂

0 else
 (14)

where 𝜓(∙) is the counting operator and 𝜉 is the index number 

of a behavior pattern different from 𝛾  and 𝜂 . 𝜓(�̃�𝑖𝛾
(𝑡))  and

𝜓(�̃�𝑖𝜂
(𝑡))  denote the change frequency of the 𝛾 -th and 𝜂 -th

behavior patterns during the timestamp, respectively. Similarly, 

𝜓(�̃�𝑖𝛾
(𝑡) ∩ �̃�𝑖𝜂

(𝑡)) denotes the cooccurrence frequency of the 𝛾-th

and 𝜂 -th behavior patterns, and 𝜓(�̃�𝑖𝛾
(𝑡) ∩ �̃�𝑖𝜉

(𝑡)
)  denotes the

cooccurrence frequency of the 𝛾-th and 𝜉-th behavior patterns 

during the timestamp. 

For the 𝛾-th behavior pattern, we follow [33] to divide the 

transition matrix into two transition factors with respect to two 

directions: input factor 𝓠𝑖𝛾
(𝐼𝑛)

 and output factor 𝓠𝑖𝛾
(𝑂𝑢𝑡)

. For a

directed edge from the 𝛾 -th to 𝜂 -th behavior pattern, the 

relation state is essentially transmitted from 𝓠𝑖𝛾
(𝑂𝑢𝑡)

to 𝓠𝑖𝜂
(𝐼𝑛)

, 

which is represented as: 

𝑸𝑖
𝛾→𝜂

= 𝓠𝑖𝛾
(𝑂𝑢𝑡)𝓠𝑖𝜂

(𝐼𝑛)
(15) 

Thus, the learning goal in Eq. (12) can be rewritten as: 

𝓑𝑖𝛾
(𝑡) = ∑ ∑ 𝓡𝑖𝛾

(𝑡)(𝛾, 𝜂)

𝑧

𝜂=1
𝜂≠𝛾

𝓠𝑖𝛾
(𝑂𝑢𝑡)𝓠𝑖𝜂

(𝐼𝑛)
𝑐𝑖𝛾
(𝑡) + 𝒆𝑖𝛾

(𝑡)

𝑧

𝛾=1
(16) 

The graph embedding vector of behavior patterns is 

supposed to be transferred into the convolutional layer and full 

connection layer of the GCN to generate encoding results. 

Convolutional operation maps the embedding vectors into a 

high-order feature, which is described as: 

𝓧𝑖
(𝑡) = 𝜎3 [∑(𝑾𝑖4 ⊗ 𝓑𝑖𝛾

(𝑡) + 𝒃𝑖𝒳)

𝑧

𝛾=1

] (17) 

where 𝜎3(∙)  is the ReLU activation function, ⊗  is the

convolution operator, 𝑾𝑖4 is the weight parameter, and 𝒃𝑖2 is

the bias vector. The full connection layer manages to map 𝓧𝑖
(𝑡)

into a deeper vectorized format, which is represented as: 

𝒀𝑖
(𝑡) = 𝜎3{𝑾𝑖6𝜎3[𝑾𝑖5 ⊗ 𝓧𝑖

(𝑡) + 𝒃𝑖𝑌] + 𝒃𝑖𝑌
′ } (18) 

where 𝑾𝑖5  and 𝑾𝑖6  are weight matrices and 𝑏𝑖𝑌  and 𝑏𝑖𝑌
′  are 

bias vectors. 

C. Prediction

The global embedding of the feature space at the 𝑡 -th

timestamp is supposed to be established by combining encoded 

semantic feature factor 𝑺𝑖
(𝑡)

 with behavior pattern feature factor

𝒀𝑖
(𝑡)

, which can be expressed as:

𝓖𝑖
(𝑡) = 𝜎3{𝓨1

T𝑺𝑖
(𝑡) ⊕ 𝓨2

T𝒀𝑖
(𝑡)} (19) 

where 𝓨1  and 𝓨2  are two mapping matrices that match the

dimensions of those two factors and ⊕  denotes the 

concatenation operation. Thus far, the collaborative feature 

matrices of user 𝑢𝑖  at different timestamps constitute a

time-series feature sequence. This subsection manages to 

model the time-varying evolution of collaborative feature 

embedding 𝓖𝑖
(𝑡)

 with the utilization of the LSTM, whose

architecture is shown in Fig. 4. At each timestamp, it takes both 

the collaborative feature embedding 𝓖𝑖
(𝑡)

 and the status output

from previous timestamp 𝓞𝑖
(𝑡−1)

 as inputs. Status encoding is

output after the processing of three main components: the 

forget gate, input gate and output gate. 

The control factor of the forget gate at the 𝑡-th timestamp is 

computed as: 

𝒇𝑖
(𝑡) = 𝜎4{𝑾𝑖𝑓[𝓞𝑖

(𝑡−1)
, 𝓖𝑖

(𝑡)] + 𝒃𝑖𝑓} (20) 

where 𝑾𝑖𝑓  and 𝒃𝑖𝑓  are the weight matrix and bias matrix,

𝓞𝑖
(𝑡−1)

 is the encoding output of the previous timestamp, and

𝜎4(∙) is the sigmoid activation function:

Fig. 4. Flowchart of the LSTM process at each timestamp. 



𝜎4(𝑥) =
1

1 + 𝑒−𝑥
(21) 

The cell state factor of the input gate at the timestamp is 

computed as: 

𝓥𝑖
(𝑡) = 𝜎4{𝑾𝑖𝒱[𝓞𝑖

(𝑡−1)
, 𝓖𝑖

(𝑡)] + 𝒃𝑖𝒱} (22) 

�̃�𝑖
(𝑡) = 𝜎2{𝑾𝑖𝒵[𝓞𝑖

(𝑡−1)
, 𝓖𝑖

(𝑡)] + 𝒃𝑖𝒵} (23) 

𝓩𝑖
(𝑡) = 𝒇𝑖

(𝑡)𝓩𝑖
(𝑡−1)

+ 𝓥𝑖
(𝑡)�̃�𝑖

(𝑡) (24) 

where 𝑾𝑖𝒱  and 𝑾𝑖𝒵  are weight matrices and 𝒃𝑖𝒱  and 𝒃𝑖𝒵  are

bias parameters. 

The control factor of the output gate at the 𝑡-th timestamp is 

computed as: 

𝓞𝑖
(𝑡) = 𝜎4{𝑾𝑖𝒪[𝓞𝑖

(𝑡−1)
, 𝓖𝑖

(𝑡)] + 𝒃𝑖𝒪} ∙ 𝜎2[𝓩𝑖
(𝑡)] (25)

where 𝑾𝑖𝒪 and 𝒃𝑖𝒪 are the weight matrix and bias parameter,

respectively. Output matrix 𝓞𝑖
(𝑇)

 is the final output of the

LSTM for user 𝑢𝑖 at the last timestamp 𝑇.

For spammer detection as a binary classification scheme, a 

sigmoid function-based attentive expression is introduced here 

to predict the nature of users: 

𝓕𝑖 = 𝜎4{𝑾𝑖ℱ𝜎3[𝓞𝑖
(𝑇)

] + 𝒃𝑖ℱ} (26) 

where 𝑾𝑖ℱ  and 𝒃𝑖ℱ  are the weight matrix and bias vector,

respectively. The values of ℱ𝑖 are located in the range of (0,1),

and Shannon entropy is adopted here to set up the following 

optimization objective: 

ℒ =
1

|𝑢|
∑[𝜆‖ℱ𝑖 − ℱ̂𝑖‖

2
+ (1 − 𝜆)‖Θ‖2]

|𝑢|

𝑖=1

(27) 

where |𝑢|  is the number of users, ℱ̂𝑖  is the nature of the

observed user, and Θ  is the set of parameters that can be 

searched through the following iterative procedure: 

Θ(𝑙+1) = Θ(𝑙) − 2𝜆(ℱ𝑖 − ℱ̂𝑖)
𝜕ℱ𝑖

𝜕Θ(𝑙)
− 2(1 − 𝜆)Θ(𝑙) (28) 

IV. EXPERIMENTS AND ANALYSIS

A. Datasets

Twitter and Sina Weibo, two universally acknowledged 

social network data sources, are utilized in this research for 

experimental evaluation, given that there are no datasets of 

IoT-based social media that are publicly available and related 

data are still hard to acquire due to the imperfect functions of 

applications. Two datasets with respect to these two platforms 

are briefly described as follows: 

Twitter1—This dataset was collected by Yang et al. [35] and 

crawled from the Twitter website with the aid of the official 

API. The dataset contains 11000 labeled users as well as their 

records of tweets and behaviors, with 1000 being marked as 

spammers. In addition, the dataset includes metadata such as 

personal profiles, authentication statuses, social relationships, 

identity information and locations. 

Weibo2—We utilized the Weibo API to collect the metadata 

and activity records of 6072 relatively active users in June 2019. 

Five graduate students were assigned to label all of these Weibo 

users according to artificial experience. For inconsistent 

labeling, the label endorsed by the majority was selected as the 

final label. In total, 1158 users were marked as spammers. In 

addition, this dataset involves metadata such as social 

relationships, blog contents, personal profiles and identity 

1 http://faculty.cse.tamu.edu/guofei/research_release.html 
2 This dataset will be released publicly after related programs are completed. 

TABLE III 

LISTS OF BEHAVIOR PATTERNS 

Behavior Types Behavior Pattern Names 

Personal 

Behaviors 

Authentication Status 

Personal Profile 

Registration Time 

User Level 

Personal Tags 

Interactive 

Behaviors 

Vector of Social Relations 

Number of Speeches 

Originality of Speeches 

Sequential Relevance of Speeches 

Frequency of Comments 

Frequency of Obtained Comments 

Forwarding Frequency 

Forwarded Frequency 

TABLE IV 

BASELINES 

Metrics Expressions 

LDA+K-means 

Topic model LDA is used to extract the semantic 

features of users. In addition, spammers can be 

detected through a K-means clustering 

algorithm. [26] 

Bi-AE+LR 

The semantic features of users are represented by 

Bi-AE, as described in Section III.A. In addition, 

spammers are detected by logistic regression 

(LR). 

SVM 

Behavior pattern features are extracted and 

encoded as Co-Spam. In addition, spammers are 

detected by a support vector machine (SVM). 

CNN 

Behavior pattern features are encoded as 

Co-Spam. In addition, spammers are detected by 

a convolutional neural network (CNN). 

NMF 

The features of semantic behavior patterns and 

semantics are encoded. Spammers are detected 

by nonnegative matrix factorization (NMF). [15] 

TABLE II 

EVALUATION METRICS 

Metrics Expressions 

Precision 
𝜓(𝑇𝑃)

𝜓(𝑇𝑃) + 𝜓(𝐹𝑃)

Recall 
𝜓(𝑇𝑃)

𝜓(𝑇𝑃) + 𝜓(𝐹𝑁)

Accuracy 
𝜓(𝑇𝑃) + 𝜓(𝑇𝑁)

𝜓(𝑇𝑃) + 𝜓(𝐹𝑃) + 𝜓(𝑇𝑁) + 𝜓(𝐹𝑁)

F-Score
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

AUC 
∑ 𝐾(𝑖)𝑖∈𝑝𝑜𝑠𝑖 − 𝜓(𝑃𝑂𝑆)[𝜓(𝑃𝑂𝑆) + 1] 2⁄

𝜓(𝑃𝑂𝑆)𝜓(𝑁𝐸𝐺)



information. 

Every tweet or blog of each user, as well as the behaviors 

occurring close to it, is viewed as a record of his or her activity 

associated with one timestamp. To virtualize the scenarios of 

this research, the behavior attributes are expanded and listed in 

TABLE III. 

B. Experimental Settings

Spammer detection is a binary classification process in

which spammers and normal users are labeled 1 and 0, 

respectively. To measure the classification performance of 

detection methods, four conceptions are introduced. True 

positive (TP) and false positive (FP) are defined as samples that 

are correctly and incorrectly predicted to be positive, 

respectively. Similarly, true negative (TN) and false negative 

(FN) are defined as samples that are correctly and incorrectly 

predicted to be negative, respectively. Thus, the expressions of 

the five evaluation metrics utilized in our experiments are 

mathematically defined in TABLE II. Among them, 𝑃𝑂𝑆 and 

𝑁𝐸𝐺 denote positive and negative samples, 𝜓(∙) denotes the 

counting operation, and 𝐾(∙)  denotes the returning index 

number. 

Five typical classification methods, which are described in 

TABLE IV, are selected as baselines to be compared with the 

proposed Co-Spam. To assess effect of collaborative awareness 

of semantic pattern and behavioral pattern, the two factors are 

TABLE V 

PRECISION AND RECALL RESULTS UNDER DIFFERENT PROPORTIONS OF TRAINING DATA 

Metrics Algorithms 
Twitter Dataset Weibo Dataset 

50% Training 60% Training 70% Training 50% Training 60% Training 70% Training 

Precision 

LDA+ K-means 0.8610 0.8736 0.8948 0.8420 0.8299 0.8742 

Bi-AE+LR 0.8805 0.8860 0.9059 0.8485 0.8444 0.8945 

SVM 0.8988 0.8932 0.9186 0.8763 0.8580 0.8856 

CNN 0.9306 0.9033 0.9315 0.8676 0.8676 0.8838 

NMF 0.9165 0.9249 0.9235 0.8759 0.8714 0.9048 

Co-Spam 0.9248 0.9348 0.9432 0.8871 0.8830 0.9210 

Recall 

LDA+ K-means 0.8340 0.8650 0.8800 0.8345 0.8899 0.8802 

Bi-AE+LR 0.8580 0.8767 0.9100 0.8500 0.8826 0.8877 

SVM 0.8600 0.8850 0.9042 0.8724 0.9072 0.8815 

CNN 0.8820 0.9167 0.9143 0.8655 0.9058 0.8975 

NMF 0.8960 0.9117 0.9242 0.8810 0.9130 0.9086 

Co-Spam 0.9120 0.9367 0.9443 0.8913 0.9406 0.9443 

(a) 50% for training (b) 60% for training (c) 70% for training

Fig. 5. Joint relations between precision and recall based on the Twitter dataset with respect to three sizes of training data. 

(a) 50% for training (b) 60% for training (c) 70% for training

Fig. 6. Joint relations between precision and recall based on the Weibo dataset with respect to three sizes of training data. 



fully considered while selecting baselines. The first two 

methods are semantic pattern-based detection approaches, 

while the intermediate two methods are behavioral 

pattern-based detection approaches. The last one took both of 

two factors into consideration, but neglected long-term 

characteristics. 

The development environment of the experiments involves a 

deep learning workstation with a 28-core CPU and 256 GB of 

memory. The proposed Co-Spam is implemented with the aid 

of TensorFlow. In one sentence, topic words and background 

words are sampled through the proportion of 60% and 40%, 

respectively. Initially, the batch size of Co-Spam was set to 200, 

and the SGD learning rate was set to 0.01, where the trade-off 

parameters 𝜏 of Eq. (10) and 𝜆 of Eq. (27) were set to 0.5. The 

ratio of training data was initially set to 70% and was changed 

multiple times during the experiments. 

C. Results and Analysis

TABLE V lists the experimental results based on two

datasets under different proportions of training data with 

respect to two metrics: precision and recall. It can be intuitively 

observed that the proposed Co-Spam always performs better 

than the baselines with different proportions of training data, 

50%, 60% and 70%. Fig. 5 and Fig. 6 demonstrate the joint 

relations between precision and recall based on two datasets 

through six scatter diagrams, in which a larger distance 

between a scatter and the origin indicates better performance of 

such a method. This group of experiments is able to effectively 

reflect the advantages of collaborative awareness between 

semantic and behavior patterns because the relatively global 

(a) Results based on the Twitter dataset (b) Results based on the Weibo dataset

Fig. 7. F-score results based on two datasets with respect to four sizes of training data. 

(a) Results based on the Twitter dataset (b) Results based on the Weibo dataset

Fig. 8. Accuracy results based on two datasets with respect to four sizes of training data. 

(a) Results based on the Twitter dataset (b) Results based on the Weibo dataset

Fig. 9. AUC results on two datasets with respect to four training sizes. 



view certainly provides a considerable improvement of 

detection precision. It is also noticed that Co-Spam failed to 

obtain the best performance on Twitter when training size is 

50%. As the training size is small, the Co-Spam may not be 

well trained yet. This fact is likely to bring some uncertainty. 

Fig. 7 and Fig. 8 illustrate the F-score results and accuracy 

results, respectively, based on two datasets with respect to four 

proportions of training data, in which the proportion of 80% is 

further taken into consideration. Two aspects of this 

phenomenon can be deduced from these figures. First, most 

methods obtain relatively ideal results when the proportion of 

training data is set to 70%, and they perform better than when 

the proportion of training data is set to 80%. Second, the 

proposed Co-Spam always performs dramatically better than 

the baselines, regardless of the proportion of training data. The 

above results can be attributed to the fact that the Co-Spam 

method collaboratively exploits the characteristics of semantic 

and behavior patterns. Such a comprehensive insight promotes 

the depth of the feature space and will certainly improve the 

results compared with general spammer detection methods. 

The two subfigures in Fig. 9 show the AUC results of the 

Co-Spam and baselines obtained based on two datasets with 

respect to three sizes of training data: 50%, 60% and 70%. This 

group of experimental results reflects the relatively stable 

performance with the changing tendency of the Co-Spam and 

baselines. Overall, behavior-based methods perform better than 

semantic-based methods but worse than methods jointly driven 

by both semantic and behavior patterns. Compared with the 

NMF method based on both types of factors, the proposed 

Co-Spam still shows better performance. This group of 

experimental results evaluated the excellent performance of the 

proposed Co-Spam again. In addition to the collaborative 

awareness of semantic and behavior patterns, it also takes the 

evolving nature of social activities into account, which is the 

main reason the results above were obtained. 

In summary, the proposed Co-Spam is able to obtain an 

improvement of approximately 5% compared with existing 

mainstream spammer detection approaches. It is undeniable 

that time complexity of Co-Spam is quite large, because its 

model has a large number of parameters. Therefore, price of 

good detection precision is the time complexity. 

V. CONCLUSIONS

The past decade has witnessed great progress in the IoT, 

which has become an essential component in future smart cities. 

However, the emergence of spamming problems in IoT-based 

social media applications is posing increasingly serious 

security threats to IoT cyberspace. To that end, effective 

spammer detection methods have been a major concern in 

academia. Existing research can be divided into two types: 

semantic pattern-based approaches and behavior pattern-based 

approaches. However, all such approaches suffer from some 

drawbacks or limitations to some extent. To tackle this 

challenge, this paper leverages the collaborative awareness of 

these two factors and proposes a novel spammer detection 

mechanism named Co-Spam for future IoT applications. First, 

the speech contents and behavior records of a user at different 

timestamps are viewed as feature sequences. Then, a 

collaborative neural network architecture composed of three 

neural network models, a Bi-AE, a GCN and the LSTM, is 

developed to identify the nature of the user. Finally, a series of 

experiments are conducted to verify the efficiency of the 

proposed Co-Spam. At the same time, running time of the 

Co-Spam is longer than general baselines. This is because a 

huge amount of parameters are introduced to construct more 

fine-grained feature space. The obtainment of relative ideal 

detection precision is taken high computational complexity as 

price. This is one major direction in the future researches. 
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