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each group shown. Statistically significant differences found in methylation of CpG site 934 

of the oxytocin receptor using independent t-tests for sperm concentration, count and 

normal/abnormal overall semen parameters. *** represents p < 0.001, ** represents p < 
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Abstract 

 

An ever-growing body of research has reported decreasing trends in male fertility globally. 

In particular a recent meta-regression analysis demonstrated a significant decline in sperm 

count occurring over the past 40 years warranting further investigation. This study sought 

to investigate the role of the neuropeptides, oxytocin and vasopressin on sperm function 

and fertility. 

Neuropeptides have major functions in reproduction that are well documented. They are 

essential for normal function in the hypothalamic-pituitary-gonadal (HPG) axis, influencing 

the activity of the reproductive endocrine system, fecundity and sexual behaviour. Despite 

the involvement of neuropeptides in reproduction, little is known about their effects on 

sperm function and within the follicular fluid, an essential microenvironment where the 

oocyte matures. 

This study used in vitro assays to elucidate concentrations of neuropeptides in follicular 

fluid and semen, investigate their effects on sperm function and to investigate oxytocin 

receptor methylation in sperm. Regression analyses were used to investigate the 

relationship between the neuropeptides and the clinical outcomes in the patient cohorts 

of men and women undergoing assisted reproductive technology (ART). 

This study demonstrated that the neuropeptides vasopressin and oxytocin have a role in 

fertility. It is the first to discover the vasopressin receptor 2 on the acrosome region of 

human sperm and demonstrate a role for vasopressin in sperm motility, hyperactivation, 

calcium response, mitochondrial respiration and glycolysis. In the clinical cohorts of men 

and women undergoing in vitro fertilisation (IVF), increasing concentrations of oxytocin in 

follicular fluid was found to be negatively associated with fertilisation of oocytes in women 

and increasing concentrations of oxytocin in semen was negatively associated with sperm 

count and concentration in men. In sperm, increases in the oxytocin receptor methylation 

at CpG sites 924 and 934 were negatively associated with sperm concentration. The data 

presented in this thesis is highly suggestive of a novel role for vasopressin and oxytocin in 

sperm function, spermatogenesis, fertilisation and potentially indicating epigenetic effects 

for the oxytocin receptor and warrants further investigation. 
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Chapter 1: Introduction 

1.0 Introduction 

 

1.1 Reproduction  

 

Animal reproduction involves cellular, physiological, endocrine and behavioural functions 

in the production of offspring to propagate their genes into the next generation. In 

mammals, successful reproduction is controlled by a complex interplay of hypothalamic-

pituitary-gonadal (HPG) axis, reproductive organs, and the neuroendocrine system. Human 

reproduction is regulated via the hypothalamic-pituitary-gonadal axis. In brief, 

gonadotropin-releasing hormone (GnRH) is secreted; this triggers luteinizing hormone (LH) 

and follicle stimulating hormone (FSH) to be released and increases production of steroid 

hormones by the male and female gonads which in turn act upon the hypothalamus and 

pituitary in a feedback loop (Ebot et al., 2018). 

1.2 Male reproduction 

The hypothalamic-pituitary-testicular axis is responsible for all aspects of male 

reproduction. Sperm are the male gamete, a highly specialised cell, produced via the 

process of spermatogenesis, which occurs in the testes and takes approximately 70 days to 

complete. Spermatogenesis begins at puberty and continues over the course of the male’s 

life (Bronson, 2011). 

1.2.1 Sperm structure 

Sperm have a highly specialised structure, which is vital for their function of delivering the 

paternal genome to the oocyte (Suarez and Pacey, 2006). Sperm are comprised of three 

main sections; the head, midpiece and tail (Figure 2) (Pacey and Williams, 2018). The head 

contains the paternal genome and the acrosome, which contains the essential enzymes 

such as hyaluronidase and acrosin that digest the hyaluronic acid in the corona radiata and 

involved the penetration of the zona pellucida respectively, thus allowing fertilisation to 

occur (Osman et al., 1989; Yoshinaga and Toshimori, 2003). The midpiece primarily 

contains the neck of the sperm and mitochondria for adenosine triphosphate (ATP) 
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production (Piomboni et al., 2012). The neck of the sperm consists of two centrioles; 

proximal and distal, the proximal centriole is also deposited during fertilisation as the 

oocyte does not contain centrioles and the distal centriole is the beginning of the axial 

filament comprised of a 9+2 arrangement of the microtubules, mitochondria are wrapped 

around the axial filament in approximately 10-14 spirals. The axial filament continues into 

the sperm tail and is only surrounded by cytoplasm and cell membrane, the tail propels the 

sperm towards the oocyte using an elliptical cone whipping motion (Figure 1, Figure 3) 

(Sutovsky and Manandhar, 2006). 

 

 

 

 

 

Figure 2. The anatomy of the human sperm. Comprised of 3 sections; head, midpiece and tail. The head contains the 
haploid paternal DNA in the nucleus and the acrosome. The midpiece or ‘neck’ joins the head to the tail and consists of 
the centriole and mitochondria which provide energy for motility and are enveloped around the axial filament which 
protrudes through the entire tail. Adapted from Pacey and Williams, 2018. 

Figure 1. Cross sections of the midpiece and tail of human sperm. The axial filament that runs 
throughout the midpiece and the tail is comprised of a 9+2 doublet arrangement of the microtubules, 
this is surrounded by a fibrous sheath, in the midpiece mitochondria are wrapped around the axial 
filament to provide energy for motility. Adapted from Pacey and Williams, 2018. 
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1.2.2 Spermatogenesis and maturation 

 

In brief, the preoptic nucleus and the arcuate nucleus of the hypothalamus secrete GnRH. 

GnRH travels via the hypopheaseal portal system and binds to the gonadotrophs in the 

anterior pituitary. The gonadotrophs release FSH and LH into the blood stream. LH binds to 

its receptor on the Leydig cells (cells surrounding the seminiferous tubules) triggering a 

signalling cascade which produces specific enzymes which catalyse the conversion of 

cholesterol to testosterone, known as steroidogenesis (Bronson, 2011). The enzymes 

involved in the steroidogenesis of testosterone are catagorized primarily into two classes; 

cytochrome P450 heme-containing proteins and hydroxysteroid dehydrogenases (Payne 

and Hales, 2004). Testosterone is secreted into the blood stream and at high 

concentrations, testosterone will exert a negative feedback on the hypothalamus and the 

anterior pituitary inhibiting LH and FSH production. In the testes the seminiferous tubules 

are composed of Sertoli cells, which are responsible for spermatogenesis. FSH binds to its 

receptor on the Sertoli cells and triggers the production of androgen binding protein (ABP) 

which is involved in the homeostasis of testosterone in the lumen of the seminiferous 

tubules where testosterone is secreted (Holdcraft and Braun, 2004). Spermatogenesis 

relies on both ABP and Testosterone which are regulated through LH and FSH (Ebot et al., 

2018). The Sertoli cells are linked together via tight junctions and adherens junctions – 

these form the blood-testes barrier to ensure that the lumen of the seminiferous tubules 

are an immune privileged site. This is vital as spermatogenesis begins at puberty – after the 

immune system is developed, without this the sperm cells would be recognised as foreign 

Figure 3. The 9 + 2 doublet arrangement of the microtubules in the axial filament. Motility is due to 
the action of the dynein arms against the microtubule doublets, resulting in a rhythmic longitudinal 
motion between the tubules which propels the sperm. Adapted from Pacey and Williams, 2018. 
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bodies and destroyed. The seminiferous tubules consist of 3 main compartments, the basal 

compartment, adluminal compartment and the lumen. The male gamete stem cell known 

as the spermatogonia, is found in the basal compartment of the seminiferous tubules 

(Figure 4) (Ehmcke et al., 2006). The spermatogonia (2n) replicates via mitosis to produce 

2 diploid daughter cells which are either type A or type B (Phillips et al., 2010). Type A cells 

remain as spermatogonia to continue this initial mitosis process to maintain the reservoir 

of stem cells. The type B cells release chemicals that open the tight junctions to allow them 

to pass from the basal compartment to the adluminal compartment and continue the 

process of spermatogenesis. Once in the adluminal compartment the type B cells are 

known as a primary spermatocyte. The primary spermatocyte undergoes meiosis I resulting 

in 2 haploid secondary spermatocytes. The secondary spermatocytes undergo meiosis II 

resulting in 4 haploid cells known as spermatids (round haploid cells) (Wistuba et al., 2007). 

The spermatids undergo spermiogenesis, the cells become flagellated, develop an 

acrosome and the nucleus condenses to produce the specialised sperm cells (Figure 5). The 

Sertoli cells support spermiogenesis and also maintain sperm production equilibrium. If the 

Sertoli cells detect a high concentration of sperm in the seminiferous tubules, they secrete 

inhibin, which exerts a negative feedback on the hypothalamus and anterior pituitary 

inhibiting FSH and LH production and therefore spermatogenesis (Holdcraft and Braun, 

2004). At this stage the sperm are immotile, in order to gain the ability to be motile they 

must undergo additional maturation processes in the epididymis (Moore, 1998). The 

epididymis is a coiled tube comprised of three sections, the caput (head), corpus (body) 

and cauda (tail), which is between the testes and vas deferens. It is responsible for the 

continued maturation, storage and transportation of the sperm cells. For sperm to undergo 

the essential maturation processes in the epididymis it takes around two weeks (Figure 6) 

(Coward and Wells, 2013). The epididymis is very complex, the microenvironment of the 

epididymis is highly concentrated with proteins that interact with the sperm as they pass 

through . These proteins remodel the appearance of the nucleus and acrosome as well as 

changes in overall cholesterol and phospholipids through epididymal transport (Jones et 

al., 2007; Olson et al., 2002). These modifications are essential for fertilisation as prior to 

passing through the epididymis the sperm do not have the capacity to be progressively 

motile  (Cornwall, 2009). 
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Figure 4. The seminiferous tubules. In the testes, the seminiferous tubules are the site of 
spermatogenesis, the tight junctions form the blood-testes barrier, the Leydig cells and Sertoli cells 
maintain spermatogenesis through feedback mechanisms within the HPG axis. 
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Figure 5. Spermatogenesis. The process of differentiation resulting in sperm. Initially the spermatogonia either self-
renew or differentiate into Type B. The Type B cells lead to primary spermatocytes which further differentiate into 
secondary spermatocytes then the round spermatid. The process of differentiation from round spermatid to sperm is 
known as spermiogenesis where cells undergo specialised morphological changes. 

Figure 6. Testicle. Comprised of the seminiferous tubules which are the site of spermatogenesis, the 
epididymis where sperm are further matured, acquire motility and are stored prior to ejaculation and 
the vas deferens, a muscular tube which carries sperm to the ejaculatory ducts. 
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1.2.3 Sperm function, capacitation and the acrosome reaction  

 

In the epididymis capacitation is prevented via the secretion of epididymal proteins such 

as Crisp-1, -glucuronidase and others (Gwatkin et al., 1974; Roberts et al., 2003). The final 

maturation steps for human sperm occur in the female reproductive tract. Sperm must 

undergo capacitation – a process of hyperactivation, which is an essential perquisite for 

sperm to be able to undergo the acrosome reaction, and therefore essential for 

fertilisation. Capacitation is due to a calcium ion influx through the sperm cell membrane, 

increases in cyclic AMP (cAMP), high bicarbonate concentration and soluble adenylate 

cyclase in the seminal fluid. The cAMP activates protein kinase A (PKA), PKA phosphorylates 

serine and threonine residues on many target proteins (Yoshida et al., 2008). During 

capacitation sperm also undergo essential membrane stripping, altering the cholesterol 

content and removing non-essential proteins leaving only modified specific glycoproteins, 

increasing membrane fluidity in preparation for the sperm to undergo acrosome reaction 

upon binding to the oocyte. 

 

1.2.4 Fertilisation 

The journey of the sperm is a complicated process in humans and begins with the sperm 

deposited directly in the female reproductive tract. The sperm then has to make its way to 

the ampulla, region where the oocyte awaits (Carroll, 2018a).  

After the sperm have passed through the cervix and through the uterotubal junction, 

entering the Fallopian tube, it must then bypass the cumulous layer (the cells surrounding 

the oocyte), which is rich in hyaluronic acid (Suarez and Pacey, 2006).  The capacitated 

sperm release hyaluronidase, which breaks the hyaluronic acid connections between the 

cells of the cumulous cells, permitting the entrance of the sperm to reach the oocyte 

(Salicioni et al., 2007). Sperm then binds to zona pellucida receptors, the sperm-binding 

protein 3 (ZP3). Calcium influx triggers the acrosome to fuse and release its contents such 

as acrosin and proteases, which facilitate the passage through the zona pellucida. This 

process is known as acrosome reaction.  

After sperm penetrate the zona pellucida, it enters the perivitelline space where it binds to 

an oocyte-specific receptor, folate receptor-4 (Folr4) also known as Juno  via the sperm-

specific Izumo1 (Bianchi et al., 2014; Inoue, 2017; Inoue et al., 2005). 
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Following sperm-oocyte binding – the sperm’s contents enter the ooplasm, which include 

the paternal genome, the centrioles and various coding and non-coding RNAs (Carroll, 

2018a). The fertilising sperm also activated the oocyte in order to exit its meiotic arrest. 

This sperm activation is achieved by eliciting a series of intracellular calcium oscillations 

(Jones, 2005). These calcium oscillations originate from the point of sperm fusion and 

propagate the oocytes in a wave-like manner (Carroll et al., 2003). In mammals, these 

calcium transients are initiated by the activity of a sperm-specific phospho lipase C (PLC ζ), 

also referred to as the sperm factor (Saunders et al., 2002). These sperm-triggered calcium 

oscillations are essential for the activation of the anaphase promoting factor, which leads 

to the degradation of factors such as cdk1:cyclinB that enables the exit of meiotic arrest  

(Jones, 2005). The male pronucleus and female pronucleus then fuse and form the zygote 

(Sutovsky, 2009). 

Any perturbation of spermatogenesis through disruption of the HPG axis or testicular 

function can result in infertility, which may require assisted reproductive technology to 

increase the changes of parenting a biological child.  

 

1.3 Male factor infertility, treatment and assisted reproductive technology 

 

Male factor infertility affects approximately half of couples with infertility, either in 

combination with female factor or as the sole cause (Keihani et al., 2019). Recent studies 

demonstrated a significant 50-60% decline in sperm count over the past 40 years (Levine 

et al., 2017). There are many causes of male factor infertility such as; infections (including 

sexually transmitted infections, testicular damage/torsion, varicocele, maldescent 

testicles, sexual and ejaculatory dysfunction, endocrinopathies, obstruction and most 

commonly can be idiopathic (Rowe et al., 2000).  

Male factor infertility is primarily diagnosed via semen analysis, where a semen sample is 

assessed against the World Health Organisation’s (2010) reference ranges for semen 

parameters. Any sample that falls below the recommended levels is considered abnormal, 

the World Health Organisation’s (2010) lower reference ranges for semen parameters are 

as follows; semen volume < 1.5 mL, total motility < 40%, progressive motility < 32%, total 

sperm count < 39 x 106 cells, sperm concentration 15 x 106/mL, morphology < 4% normal 
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forms. Alterations to these semen parameters can be low sperm concentration 

(oligozoospermia), low sperm motility (asthenozoospermia), total absence of sperm in the 

sample (azoospermia), low semen volume and abnormal morphological forms (World 

Health Organization, 2010a). 

Infertility can be treated through assisted reproductive technology (ART). ART comprise of 

methods of gamete extraction, in vitro fertilisation, embryo culture and transfer. Briefly, 

sperm is separated from seminal plasma via methods including ‘swim-up’ or density 

gradient separation, oocytes are collected usually via ultrasound-guided transvaginal 

oocyte retrieval. Fertilisation is then achieved through insemination (adding sperm at a 

determined concentration to the oocytes in culture media), or via injecting a single sperm 

in to the ooplasm (IntraCytoplasmic Sperm Injection – ICSI). Fertilised embryos are then 

cultured and monitored for up to 5 /6 days before been selected for embryo transfer  

(Carroll, 2018b).  

One important element of ART is to retrieve a good number of quality oocytes. This is 

achieved by ovarian stimulation. The stimulation protocols directly regulate follicular 

development and therefore number of oocytes that are obtained, many other factors that 

may influence each woman’s response to the stimulation. Genetic factors such as the FSH 

receptor genotype and the oestrogen receptor genotype and genetic factors affecting 

metabolism of the selective oestrogen receptor modulator, clomifene citrate, have been 

shown to have an effect on the response to treatment (Georgiou et al., 1997; Greb et al., 

2005; Rostami-Hodjegan et al., 2004). Antral follicle count has been demonstrated as a 

predictor of how effective gonadotrophin stimulation will be on ovarian response to 

treatment (Hendriks et al., 2005). Furthermore there are several other important 

predictors of cycle outcome such as; anti-Müllerian hormone (AMH), day 3 FSH 

concentration and inhibin B concentration (Keck et al., 2005).  

1.4 Biomarkers for infertility 

Assessment of infertility for both male and female patients include physical, cellular and 

biochemical analysis to increase diagnostic accuracy. However,  approximately 15 - 30% of 

couples will be diagnosed with unexplained infertility (Practice Committee of the American 

Society for Reproductive Medicine, 2006). The development of additional diagnostic tools 

will potentially reveal more concerning the causation of infertility. A biomarker in 
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reproduction could be also be used to differentiate subgroups with potentially different 

causes of infertility and  predict outcome  (Bonassi et al., 2001).  

The neuroendocrine system is integrated with all aspects of reproductive function and 

dysfunction and offers potential avenues for biomarkers in reproduction.   

 

1.5 The neuroendocrine system 

The neuroendocrine system refers to the interaction between the nervous system and the 

endocrine system in maintaining homeostasis and a variety of responses to the organism’s 

surroundings. The neuroendocrine system is comprised of the hypothalamus, the pituitary 

and endocrine organs, these interact with each other to produce physiological responses 

to environmental stimuli (Melmed, 2016).  

The neuroendocrine system can be separated into 3 axis; the hypothalamic-pituitary-

adrenal axis (HPA), the hypothalamic-pituitary-thyroid axis (HPT), the hypothalamic-

pituitary-gonadal axis (HPG) and the hypothalamic – neurohypophysial system (HNS).  

 

1.5.1 Hypothalamic – pituitary – adrenal (HPA) axis 

The HPA axis is primarily involved in stress response though also regulates further 

processes such as immune response, mood, digestion, energy expenditure/storage and 

sexuality. The neuropeptides primarily involved in regulation of the HPA axis are 

vasopressin (AVP) and corticotropin-releasing hormone (CRH). AVP and CRH stimulate the 

release of adrenocorticotropic hormone (ACTH) which regulates the adrenal cortex and 

releases glucocorticoid hormones such as cortisol. The glucocorticoid hormones regulate 

the hypothalamus and pituitary through negative feedback and surpress further release of 

CRH/ACTH (Smith and Vale, 2006). 

1.5.2 Hypothalamic – pituitary – thyroid (HPT) axis 

The HPT axis regulates metabolism. In response to low circulating levels of the thyroid 

hormones Triiodothyronine (T3) and Thyroxine (T4) the hypothalamus releases 

thyrotropin-releasing hormone (TRH), which stimulates the anterior pituitary to release 

thyroid-stimulating hormone (TSH), this in turn stimulates the release of thyroid hormone, 

T3 and T4, release from the thyroid. T3 and T4 have a negative feedback regulatory effect 
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on the hypothalamus and pituitary. The majority of T3 is mainly produced in the periphery 

via organs and tissues such as; the liver, adipose tissue, glia and skeletal muscle by 

deiodination of the T4 that is circulating. This deiodination processes is regulated via many 

hormones such as TSH and vasopressin (Fliers et al., 2014). 

 

1.5.3 Hypothalamic – pituitary – gonadal (HPG) axis  

The HPG axis is comprised of the hypothalamus, pituitary gland and gonads and refers to 

their interactions as a system. The HPG axis regulates reproduction, development, sexual 

dimorphism, aging and has a role in the immune system. In brief, the hypothalamus 

secretes gonadotropin-releasing hormone (GnRH) which stimulates the anterior pituitary 

to secrete luteinising hormone (LH) and follicle stimulating hormone (FSH). LH and FSH 

stimulate the gonads to produce their sex specific hormones, testosterone for males, 

oestrogen and progesterone for females (Ebot et al., 2018).  

GnRH is a small neuropeptide synthesised in the arcuate nucleus of the hypothalamus. The 

activity of GnRH is low throughout childhood and during puberty becomes active and is 

secreted in a pulsatile manner which is essential for sexual maturation and healthy 

reproductive function. GnRH is secreted into the hypophysial portal where it is transported 

to the anterior pituitary. In the anterior pituitary, GnRH binds to its receptor which is a G-

protein coupled receptor of the Gq subtype triggering the PLC, calcium, PKC signalling 

cascade, this stimulated the gonadotropes to release lutieinizing hormone and follicle-

stimulating hormone into the periphery (Strauss III and Barbieri, 2013). Luteinising 

hormone is responsible for supporting the production of androgens and precursors of 

oestradiol in the theca cells of the ovary, ovulation and the formation of the corpus luteum 

in females and regulates the production of testosterone from the Leydig cells in males. 

Follicle stimulating hormone works synergistically with luteinising hormone to regulate the 

reproductive system, it stimulates follicular growth through the stimulation of the 

granulosa cells in females, FSH stimulates the Sertoli cells to maintain spermatogenesis and 

to induce inhibin B secretion in males, FSH also matures primordial germ cells in both sexes 

(Mac E Hadley, 1996). 
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Figure 7. Simplified schematic representation of the hypothalamic-pituitary-
gonadal axis in humans. The positive (blue lines) and negative (red lines) feedback 
loops are demonstrated between the hormones and the glands which secrete them. 
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1.6 An overview of hormones and their receptors 

 

There are two main types of hormones, steroid hormones and peptide hormones. Steroid 

hormones are lipid soluble and therefore their receptors are intracellular, either 

intracytosolic or intranuclear. These steroid receptors are bound with a heat shock protein 

which is displaced when the steroid hormone binds to its receptor, the receptor then binds 

to its target, for example a gene sequence and activates a hormone response element 

triggering protein synthesis or mitosis. Peptide hormones are water-soluble but not lipid 

soluble, they cannot pass through the lipid bilayer of the cell and therefore need a receptor 

on the cell surface membrane, they function through secondary messenger systems via G-

protein coupled receptors (Melmed et al., 2015). 

G-protein coupled receptors (GPCRs) are a protein complex comprised of seven  

transmembrane α-helicases, an extracellular N-terminus and an intracellular C-terminus 

(Holmes et al., 2003). These are heterotrimeric and are bound to 3 subunits, alpha (α), beta 

(β) and gamma (γ) (Hurowitz et al., 2000). 

The Gs receptor in its inactive state exists as a trimer with guanosine diphosphate (GDP) 

bound to the α-subunit. Once the receptor is bound to by its corresponding ligand this 

causes a conformational change, GDP is displaced and guanosine triphosphate (GTP) binds 

(active state) (Iismaa et al., 1995). There are 4 main subfamilies of GPCRs; Gs (stimulatory), 

Gq, Gi (inhibitory), G12,13 (involved in regulation of RhoGTPase family). The signalling 

pathway depends on the receptor type. GPCRs of the Gs subtype stimulate the effector 

protein adenylate cyclase, which in turn stimulates an increase in cyclic adenosine 

monophosphate (cAMP) via the hydrolysis of adenosine triphosphate (ATP), this stimulates 

protein kinase A (PKA) activity, PKA phosphorylates target proteins. GPCRs of the Gq 

subtype stimulate the effector protein phospholipase Cβ (PLCβ), PLCβ hydrolyses 

phosphatidylinositol bisphosphate (PIP2) to diacylcycerol (DAG) and inositol triphosphate 

(IP3) – IP3 increases intracellular calcium (Ca2+) and DAG acts as a secondary messenger 

which activates protein kinase C (PKC) which phosphorylates target proteins. The Gi 

subfamily main function is through the inhibition of adenylate cyclase, thus inhibiting cAMP 

production and PKA activity (Alberts et al., 2002). The Gi stimulates phosphatidylinositol-3-

kinsase (Pl3K) which catalyses the phosphorylation of PIP2 to make phosphatidylinositol 

triphosphate (PIP3) which primarily activates protein kinase B (PKB), it also inhibits 
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adenylate cyclase therefore downregulating cAMP. G12,13 activates some guanine 

neucleotide exchange factors (GEFs) in the Rho family of GTPases, these are members of 

the RAS family of monomeric GTP-binding proteins. GEFs activate Rho family of GTPases 

via the catalysis of removing GDP in exchange for GTP (Rossman et al., 2005). These go on 

to stimulate further effector proteins that are involved in regulation of microtubule 

cytoskeleton, organelle development, gene expression  and various other important cell 

functions (Marks et al., 2017) (Figure 8).  

 

Figure 8. G-protein coupled receptor pathways. Simplified representation of the signalling cascades of Gs, Gi, Gq and 
G12/13 receptors. 

 

1.7 Neuropeptides 

Neuropeptides are a class of short chain polypeptides, which function as modulators in 

neuronal activity in the brain and as hormones in the periphery. Neuropeptides function 

through the neuroendocrine system, which is essential for homeostasis; it regulates growth 

and development, fluid balance, stress response, behaviour, mood, hunger/satiety, thirst, 

mood and reproduction (Melmed et al., 2015). 
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1.7.1 Neuropeptides in reproduction  

 

The neuroendocrine system is intertwined, each axis is not an entirely separate entity. The 

neuropeptides impact each other and are essential for reproduction, the HPG axis regulates 

reproduction and the HPT and HPA axis can also modulate the HPG axis, this is evident in 

pathologies of both these axes. Thyroid disorders are implicated in both male and female 

infertility, dysfunction causes abnormalities in spermatogenesis, disturbances of the 

menstrual cycle and an increased risk of miscarriage (Trokoudes et al., 2006). Adrenal 

disorders affect female and male fertility, these disorders affect GnRH secretion severely 

affecting spermatogenesis and ovulation resulting in conditions such as oligozoospermia 

and aspermia, anovulation and premature ovarian failure  (McNally, 1987; Unuane et al., 

2011). Further, the HPA axis regulates stress response, with emotional stress implicated as 

a factor in infertility.  Catecholamine hormones interact with the HPG axis, resulting in 

infertility, which results in further emotional stress for couples trying to conceive (Schenker 

et al., 1992).  

The neuropeptides can broadly be separated into 8 groups; neurohypophyseal hormones, 

hypophysiotropic hormones, endogenous opioids, melanocortins, tachykinins, vasoactive 

peptides, appetite regulating peptides and miscellaneous (Melmed et al., 2015). The 

neurohypophyseal hormones consist of oxytocin and vasopressin. Oxytocin has a well-

established role in parturition, lactation, maternal-infant bonding, and social bonding 

whereas the primary role of vasopressin is in osmotic homeostasis. Vasopressin is less 

understood in terms of reproduction (Akerlund, 2004; Wathes, 1984). Currently 

vasopressin is thought to be involved in maternal and social behaviour, it has been 

implicated in maternal depression and negative clinical outcomes in women undergoing 

ART (Murgatroyd et al., 2004; Rotzinger et al., 2010; Smeenk et al., 2005; Thiering et al., 

1993). In the male, vasopressin is involved in contractility of the male reproductive tract 

and potentially may impact sperm function (Kwon et al., 2013). The hypophysiotropic 

hormones are hormones that stimulate other endocrine glands, these include direct 

regulators of the neuroendocrine axis, and all are involved in regulating the HPG axis either 

directly or indirectly (i.e through regulation of prolactin) (Dittrich et al., 2011; Gallego et 

al., 2005; Garcia et al., 2007; Hugues et al., 1991). The endogenous opioid peptides primary 

role is in modulating nociception. Some endogenous opioid peptides have been measured 
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in reproductive fluids and has some function in modulating sperm concentration, motility, 

acrosome reaction (Foresta et al., 1986; Sastry et al., 1991; Subirán et al., 2012). These 

endogenous opioid peptides have also been shown control GnRH and progesterone 

secretion and are involved in oocyte maturation (Facchinetti et al., 1986; Lehman et al., 

2010). The melanocortin peptides are melanocyte-stimulating hormone (MSH) and 

corticotropin (ACTH). MSH regulates melanin secretion and is implicated in appetite 

suppression and sexual arousal, it has been found in the ovaries and shown to increase LH 

and FSH secretion (Backholer et al., 2009; Reid et al., 1981; Shaha et al., 1984). ACTH is a 

key mediator of the stress response and has differing effects depending on exposure 

length, acute exposure has a stimulatory effect on reproduction, increasing LH, FSH, sexual 

behaviour and ovulation, however chronic exposure inhibits LH, ovulation, follicular 

maturation with negative impacts on pregnancy (Brann and Mahesh, 1991). The 

tachykinins are a group of peptides that have a variety of effects such as regulating blood 

pressure, immune system, nociception and neurokinin B directly modulates GnRH and LH 

secretion (Latronico, 2009; Navarro, 2013; Rance et al., 2010). Tachykinins have been 

shown to regulate sperm motility, ovarian function and the HPG axis through effects on 

GnRH and LH (Blasco et al., 2020; Pennefather et al., 2006; Roman et al., 2012).  

The vasoactive peptides are regulators of blood pressure and are found in both male and 

female reproductive tissues (Herr et al., 2013; Müller et al., 2004). Vasoactive peptides 

have been shown to regulate the ovulatory cycle, steroidogenesis, spermatogenesis and 

may affect sperm function and fertilisation (Ivanova et al., 2003; Kim et al., 1997; Klipper 

et al., 2004; Leung and Sernia, 2003; Speth et al., 1999; Tsai et al., 2005). Appetite 

regulating peptides are primarily involved in regulating energy balance, some have been 

identified in the reproductive tissues and fluids of both male and females, this group 

includes neuropeptide Y (NPY) which has been established as a key regulator of 

reproduction through modulating GnRH and LH secretion and steroidogenesis (Allen et al., 

2011; Crown et al., 2007; Hanson and Dallman, 1995). Other appetite regulating peptides 

are involved in modulating GnRH and LH also, they are implicated in sexual behaviour, 

uterine function and erection and ejaculation (Cheung et al., 1996; Giacobini and Wray, 

2007; Gottsch et al., 2004; Kozyrev et al., 2012). Within the miscellaneous neuropeptides 

there are known essential regulators of the HPG such as prolactin and kisspeptin which 

directly modulate GnRH and important in healthy reproductive function (Bachelot and 

Binart, 2007; Roa et al., 2011). Other neuropeptides implicated in the regulation of GnRH 
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are; Cocaine and amphetamine regulated transcript (CART), Melanin-concentrating 

hormone (MCH) and Neuromedin S which have a variety of other roles in reward, stress 

and the circadian rhythm (Chiocchio et al., 2001; Folger et al., 2013; True et al., 2013; Vigo 

et al., 2007; Yang et al., 2009).  Orexin, Prolactin-releasing peptide (PrRP) and Neuromedin 

U modulate LH secretion (Backholer et al., 2009; Barreiro et al., 2004; Quan et al., 2003; 

Seal et al., 2000). Neurotensin, Vasoactive intestinal peptide (VIP) and PACAP have more 

local actions within the gonads (Benjamin Davoren and Hsueh, 1985; Fahrenkrug, 2001; 

Goodnough et al., 1979; Hiradate et al., 2014; Reglodi et al., 2012). 

It is clear that neuropeptides play an integral role in all aspects of mammalian reproduction 

and several studies have demonstrated the role of neuropeptides in sperm function and 

fertility. Table 1 summarises the neuropeptides involved or associated with reproduction 

and fertility in both human and animal studies. The interaction between various 

neuropeptides and the HPG axis is outlined in Figure 9.  
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Table 1. Overview of neuropeptides, their general function and current evidence for roles in reproduction. 

 
Neuropeptide General function Expression in 

reproductive tracts or 
tissues 

Effect on fertility Reference 

Neurohypophyseal hormones 
    

 
Vasopressin Water homeostasis/blood 

pressure/social 
behaviour/maternal 

behaviour/penile erection 

Yes in both male and 
female 

Implicated in negative clinical outcomes in women 
undergoing ART, involved in contractility of male 

reproductive tract, may impact sperm function. Implicated 
in maternal depression. 

(Kwon et al., 2013; 
Murgatroyd et al., 
2004; Rotzinger et 
al., 2010; Smeenk 

et al., 2005; 
Thiering et al., 

1993)  
Oxytocin Parturition/sexual 

reproduction/social bonding 
Yes in both male and 

female 
Essential for many aspects of reproduction (Akerlund, 2004; 

Assinder et al., 
2000a; Carmichael 
et al., 1987; Carter, 
1992; Filippi et al., 

2002; Kumaresan et 
al., 1974) 

Hypophysiotropic hormones 
    

 
Thyrotropin-releasing 

hormone (TRH) 
Regulates HPT axis and 

stimulates release of prolactin 
Yes - receptors on oocytes 

also 
Affects prolactin, GnRH and sex steroids, pathology in TRH 

can lead to infertility 
(Aghajanova et al., 

2009; Dittrich et al., 
2011; Williams, 

2011)  
Growth hormone-releasing 

hormone (GHRH) 
Regulates release of growth 

hormone 
Yes receptors Can increase sensitivity of ovaries to gonadotropin 

stimulation 
(Gallego et al., 

2005; Hugues et al., 
1991; Magon et al., 

2011)  
Ghrelin Increases appetite, involved in 

reward pathway and 
sleep/wake cycle 

Yes receptors Modulates HPG axis through inhibition of LH (Garcia et al., 2007; 
Lorenzi et al., 2009; 

Tena-Sempere, 
2007) 
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Gonadotropin-releasing 

hormone (GnRH) 
Regulates reproduction Yes receptors Essential for all aspects of reproduction (Clayton and Catt, 

1981; Herbison, 
2018)  

Corticotropin-releasing 
hormone (CRH) 

Regulates stress response Yes Suggested to regulate timing of parturition and inhibitory 
effects on HPG axis, inhibition of GnRH, LH and steroid 

hormones 

(Kalantaridou et al., 
2010; OLSTER and 

FERIN, 1987)  
Somatostatin Inhibits growth hormone, 

inhibits thyroid stimulating 
hormone and release of 

prolactin and insulin 

Yes in semen and male 
reproductive tissue 

Inhibits GnRH (Bhattarai et al., 
2010; Pekary et al., 
1984; SASAKI and 

YOSHINAGA, 1989)  
Cortistatin Induces slow wave sleep, binds 

to all somatostatin receptors 
Unknown Inhibits prolactin and corticotropin, affects growth 

hormone 
(Ibáñez-Costa et al., 

2017) 
Endogenous opioid peptides 

    

 
B-endorphin Reduces stress, maintains 

homeostasis, associated with 
pain, hunger, thrill, reward and 

sexual behaviour 

Yes May have a role in oocyte maturation, involved in 
acrosome reaction, may modulate sperm concentration 

(El‐Haggar et al., 
2006; Jaschke et al., 

2018; Urizar‐
Arenaza et al., 

2016)  
Enkephalin Modulates nociception Yes in sperm, semen and 

follicular fluid 
Increases sperm motility, increases progesterone secretion 

by granulosa cells 
(Facchinetti et al., 

1986; Foresta et al., 
1986; Sastry et al., 

1991; Subirán et al., 
2012)  

Dynorphin Modulates nociception Unknown Modulates GnRH and LH secretion, inhibitory effects on 
both via progesterone 

(Lehman et al., 
2010)  

Nociceptin Modulates nociception Unknown Inhibits uterine contractions in pregnancy, stimulation of 
receptor decreased female fertility 

(Enright et al., 
2012; Klukovits et 

al., 2010) 
Melanocortin peptides 

    

 Melanocyte-stimulating 
hormone (MSH) 

Increases melanin secretion, 
implicated in appetite 

suppression and sexual arousal 

Yes in ovaries Increase LH and FSH secretion (Backholer et al., 
2009; Reid et al., 

1981; Shaha et al., 
1984)  

Corticotropin (ACTH) Regulates stress response Unknown Acute exposure: stimulates LH and FSH, facilitates sexual 
behaviour and ovulation. Chronic exposure: Inhibits LH, 

(Brann and 
Mahesh, 1991; 



42 
 

follicle development, ovulation, sexual maturation and 
negatively impacts pregnancy. 

Dobson and Smith, 
2000; Li and 

Wagner, 1983) 
Tachykinins (neurokinins) 

    

 
Substance P Regulates vasodilation, 

inflammation and nociception 
Yes in semen, sperm, male 

reproductive tract and 
ovaries 

Increases sperm motility, may modulate ovarian function (Barad et al., 1988; 
Sastry et al., 1991) 

 
Neurokinin A (NKA) (a.k.a. 

Substance K) 
Involved in pain and 

inflammatory response 
Unknown Unknown 

 

 
Neurokinin B (NKB) Modulates GnRH and LH 

secretion 
Receptors in female 

reproductive system and 
in sperm 

Modulates GnRH and LH secretion (Blasco et al., 2020; 
Latronico, 2009; 
Navarro, 2013; 

Rance et al., 2010; 
Roman et al., 2012) 

 Hemokinin-1 (HK1) Involved in immune system Yes in sperm and receptor 
in myometrium 

Increases sperm motility, uterine stimulant (Blasco et al., 2020; 
Pennefather et al., 
2006; Pinto et al., 

2010; Ravina et al., 
2007) 

 Neuropeptide K May regulate sensation and 
may be involved in hypotension 

 Inhibits sexual behaviour, inhibit LH (Debeljuk and 
Lasaga, 1999; 

Dornan et al., 1993; 
Tatemoto et al., 

1985) 
Vasoactive peptides 

    

 
Angiotensin II Regulates vasoconstriction, 

stimulates release of 
aldosterone 

Yes in both May have a role in ovulation, spermatogenesis, sperm 
transport, capacitation, acrosome reaction and 

fertilisation 

(Herr et al., 2013; 
Leung and Sernia, 
2003; Speth et al., 

1999)  
Atrial natriuretic peptide 

(ANP) 
Modulates extracellular fluid 

volume, decreases blood 
pressure 

Yes, female reproductive 
tissues and receptors in 

male reproductive tissues 

Inhibits follicular development, ovulation and 
steroidogenesis. May be involved in spermatogenesis. 

(Ivanova et al., 
2003; Kim et al., 

1997; Müller et al., 
2004; Tsai et al., 

2005) 
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 Endothelin Vasoconstrictor Yes Regulates corpus luteum, involved in gamete transport (Kedzierski and 
Yanagisawa, 2001; 
Klipper et al., 2004; 
Rosselli et al., 1994) 

Appetite regulating peptides 
    

 
Galanin Regulates appetite, implicated 

in nociception, sleep/wake 
cycle, blood pressure, mood 

Yes in both May contract uterus, involved in LH surge (Cheung et al., 
1996; Lerner et al., 
2008; Stjernquist et 

al., 1988)  
Galanin-like peptide (GALP) Regulates appetite, roles in 

sexual behaviour, stress and 
inflammation 

Unknown Involved in LH surge, increases testosterone production, 
involved in modulating sexual behaviour 

(Cheung et al., 
1996; Gottsch et 

al., 2004; Gundlach, 
2002; Kauffman et 
al., 2005; Krasnow 

et al., 2003)  
Glucagon-like peptide (GLP) Implicated in obesity and 

hypoglycemia 
Unknown May stimulate LH, may improve fertility in obese and PCOS 

females, may decrease pulsitivity of testosterone 
(Beak et al., 1998; 

Holst, 2007; 
Jeibmann et al., 

2005; Jensterle et 
al., 2019)  

Cholecystokinin (CCK) Aids digestion of fats and 
proteins and involved in 

appetite suppression 

Unknown May be implicated in reproductive behaviour, may inhibit 
GnRH, involved in GnRH neuron migration during embryo 

development 

(Giacobini and 
Wray, 2007; 

Micevych et al., 
2002; Wierman et 

al., 2011)  
Gastrin releasing peptide Stimulates gastrin in the 

stomach 
Yes in female reproductive 

tissues 
Implicated in erection and ejaculation, may be involved in 

uterine function 
(Budipitojo et al., 
2004; Kozyrev et 

al., 2012; 
Moghimzadeh et 

al., 1983; H. 
Sakamoto et al., 

2008; Tamura et al., 
2017; Whitley et 

al., 1996) 
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Neuropeptide Y (NPY) Feeding behaviour/response to 

blood pressure/regulation of 
appetite/immune response 

Yes in both Modulates GnRH, LH secretion and gonadal steroids (Allen et al., 2011; 
Crown et al., 2007; 

Fitzgerald et al., 
2003; Hanson and 

Dallman, 1995; 
Kanzaki et al., 1996; 
Körner et al., 2011; 

Mcshane et al., 
1992; Terado et al., 

2006; Zhu et al., 
2008)  

Peptide YY (PYY) Feeding behaviour, appetite 
regulation, related to NPY and 
binds to the same Y receptors, 

preferentially Y2 

NPY family - binds to NPY 
receptors 

Implicated in modulation of GnRH (Lin et al., 2007; 
Murphy and Bloom, 

2006; Woods and 
D’Alessio, 2008)  

Pancreatic polypeptide (PPY) Feeding behaviour, appetite 
regulation,  binds to the  Y 

receptors, preferentially Y4 and 
Y5 

NPY family - binds to NPY 
receptors 

Y4 and Y5 receptors implicated in inhibiting reproductive 
function via GnRH suppression 

(Lin et al., 2007; 
Murphy and Bloom, 
2006; Sainsbury et 
al., 2002; Toufexis 

et al., 2002) 
Miscellaneous 

    

 
Cocaine and amphetamine 
regulated transcript (CART) 

Involved in reward, stress and 
inhibits appetite 

Yes in follicles Role in follicular devlopment, may facilitate effect of leptin 
on GnRH, may stimulate GnRH neurons 

(Folger et al., 2013; 
Rondini et al., 2004; 

True et al., 2013)  
Orexin Regulates wakefulness, arousal 

and appetite 
Yes in uterus, ovaries and 

male gonads 
May be involved in stimulating LH via being activated by 

melanocortins, may increase testosterone secretion, may 
suppress genes in Sertoli cells 

(Backholer et al., 
2009; Barreiro et 
al., 2005, 2004; 
Nitkiewicz et al., 

2012)  
Melanin-concentrating 

hormone (MCH) 
Regulates sleep/wake cycle, 
energy balance, mood and 

behaviour 

Unknown Regulation of LH in the presence of oestrogen, regulation 
of GnRH in relation to energy balance 

(Chiocchio et al., 
2001; Naufahu et 

al., 2013; Wu et al., 
2009) 
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Prolactin-releasing peptide 

(PrRP) 
Regulates prolactin Expressed in both male 

and female reproductive 
tracts. 

Increases oxytocin (and vasopressin in females), 
modulates prolactin, LH, FSH and testosterone. 

(Fujii et al., 1999; 
Maruyama et al., 
1999; Seal et al., 

2000)  
Kisspeptins (Metastin) Activates GnRH, directly 

involved in modulating 
reproduction and puberty 

Yes Regulates GnRH secretion, timing of puberty, mediation of 
sex steroids, fertility, modulates sperm function, 

modulates ovarian function 

(Hu et al., 2018; 
Pinto et al., 2012; 
Roa et al., 2011)  

Neuromedin U Contraction of smooth muscle 
cells (in uterus also), regulates 
nociception, bone growth and 

appetite 

Yes Regulates follicugenesis, modulates LH, stimulates uterine 
contractions 

(Brighton et al., 
2004; Minamino et 
al., 1985; Quan et 

al., 2003)  
Neuromedin S Regulates circadian rhythm, 

appetite and the release of 
vasopressin, oxytocin and LH 

Yes in testis Regulates GnRH, LH and oestrogen, stimulates oxytocin 
release, may have a role in spermatogenesis 

(Ma et al., 2017; 
Sakamoto et al., 

2007; T. Sakamoto 
et al., 2008; Vigo et 

al., 2007; Yang et 
al., 2009)  

Neurotensin Regulates LH, prolactin and 
interactions within 

dopaminergic system 

Yes in female reproductive 
tissues 

Stimulates uterine contraction, modulates sperm 
capacitation and acrosome reaction 

(Carraway and 
Leeman, 1973; 
Hiradate et al., 
2014; Reinecke, 

1987; Rodríguez et 
al., 2010; Umezu et 

al., 2016)  
Vasoactive intestinal peptide 

(VIP) 
Increases contractility in heart, 
vasodialator, increases vaginal 

lubrication 

Yes in female reproductive 
tissues 

Regulates oocyte transport, sexual arousal in males and 
females, regulates steroidgenesis in females and males, 

promotes vaginal lubrication 

(Benjamin Davoren 
and Hsueh, 1985; 
Fahrenkrug, 2001; 
Goodnough et al., 
1979; Graf et al., 

1995; Kasson et al., 
1986; Levin, 1991; 
Palle et al., 1989)  

Pituitary adenylate cyclase-
activating polypeptide 

(PACAP) 

Binds to VIP receptors, 
stimulates gastric cells 

Yes in female reproductive 
tissues 

Regulates ovarian function (Reglodi et al., 
2012; Scaldaferri et 

al., 1996; 
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Steenstrup et al., 
1995; Winters and 

Moore Jr, 2011)  
Prolactin Growth 

regulator/Lactation/receptor 
involved in embryo 

implantation 

Yes in both Essential for corpus luteum function, development of 
mammary glands, maternal behaviour, implicated in 
modulating LH, GnRH and some role in the prostate 

(Bachelot and 
Binart, 2007; Heller 
and Jacobs, 1978) 
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Figure 9. The known impacts of neuropeptides on the HPG axis. An arrow represents a stimulatory effect, a line with a blunted end represents an inhibitory 
effect and a line alone represents an effect with either unknown or complex consequences. 
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1.7.2 Neuropeptides effects on sperm 

Although the role of neuropeptides in reproduction is evident as outlined in studies 

presented in Table 1, their role in sperm function is less explored. In the present study a 

number of neuropeptides, which had been investigated in semen or plasma comparatively 

in the samples of fertile and infertile males were further investigated through short meta-

analysis.  

Infertility is defined as “a disease of the reproductive system defined by the failure to 

achieve a clinical pregnancy after 12 months or more of regular unprotected sexual 

intercourse” by the WHO (Zegers-Hochschild et al., 2009). The WHO also has an 

epidemiological definition where it is specified that “women of reproductive age, at risk of 

becoming pregnant, who report trying unsuccessfully for a pregnancy for 2 or more years” 

and other definitions use a 5 year time bracket (Cavallini and Beretta, 2015). Male infertility 

is rarely included as an individual disorder apart from and even so involves a panel of 

examinations of the semen and reproductive tracts in order to diagnose infertility or 

subfertility (World Health Organization, 2010a). With this lack of consensus and limitation 

in the definition of male infertility caution is necessary when interpreting the following data 

as other research groups may use variations in definitions. 

 A meta-analysis is a statistical procedure that integrates the results of several independent 

studies (Haidich, 2010) and in this study a review of the literature for neuropeptides 

available for meta-analysis were leptin, prolactin, β-Endorphin and ghrelin.   

Leptin is a neuropeptide which inhibits appetite and regulates energy balance through its 

impacts on the arcuate nucleus (Ahima et al., 2000). Prolactin is the regulator of lactation 

and growth and is essential in many aspects of reproduction (Bachelot and Binart, 2007; 

Heller and Jacobs, 1978). β-Endorphin is an endogenous opioid primarily involved in 

nociception (Hartwig, 1991). Ghrelin can be considered as an opposite to leptin, it 

stimulates appetite and increases food intake (Wren et al., 2001). Currently, there is no 

consensus in regard to whether these neuropeptides have a positive or negative effect on 

human sperm.  

To compile, analyse and present the available data Review Manager (RevMan 5.3) was 

used. RevMan 5.3 is software developed by Cochrane, which can be used to support 

systematic reviews and meta-analysis. The data in the meta-analysis in this study were 

presented as forest plots (Haidich, 2010). There are two important factors in forest plots, 
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the heterogeneity which determines the variation that is not due to chance between the 

included studies which assesses their suitability to be assessed together where a non-

significant p-value indicates no heterogeneity. The I2 statistic is representative of total 

variability where above 50% is high heterogeneity, 25-50% is moderate and below 25% 

there is little to no heterogeneity. The p-value of the overall effect determines the 

significance of all the included studies.  

In the studies included in the meta-analysis the neuropeptides were all measured in either 

the serum or the semen of both fertile and infertile men.  

The concentration of the neuropeptides for fertile men were compared to infertile men 

across multiple studies. The meta-analysis showed that leptin concentration is significantly 

lower in normozoospermic males, β-Endorphin concentration was significantly higher in 

normozoospermic males, ghrelin concentration was significantly lower in 

normozoospermic males, however, the variability in the studies investigating ghrelin was 

extreme and therefore the validity of the meta-analysis is questionable. Studies 

investigating prolactin concentration were highly variable and therefore overall prolactin 

concentration showed no significant difference between fertile and infertile males. 

Due to the limited nature of the studies available, low heterogeneity was not able to be 

ensured in the meta-analyses. The overall paucity of data available in the literature 

regarding the role of neuropeptides and sperm function warrants further research.  
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Figure 10. Meta-analysis for 5 studies investigating leptin (ng/mL) concentration and semen parameters. 
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Table 2. Characteristics and overview of studies included in Leptin meta-analysis. 

Study Author Country N Method Summary Positive/Negative effect on 
fertility 

Leptin exists in tubuli seminiferi and in seminal 
plasma 

(Glander et 
al., 2002) 

Germany 64 RIA No relationship between leptin 
concentrations and semen parameters. 

None *converted to 
SD 

Effect of leptin on motility, capacitation and 
acrosome reaction of human spermatozoa 

(Li et al., 
2009) 

China 24 ELISA No significant effect on sperm motility, 
capacitation or acrosome reaction. 

None *converted to 
SD 

The leptin concentrations in seminal plasma of 
men and its relationship to semen parameters 

(Jorsaraei et 
al., 2010) 

Iran 40 ELISA Significant negative correlation between 
semen leptin concentration and sperm 

motility. 

Negative 
 

Sperm motility inversely correlates with seminal 
leptin levels in idiopathic asthenozoospermia 

(Guo et al., 
2014) 

China 156 ELISA Significant negative correlation between 
semen leptin concentration and sperm 

motility and serum testosterone. 

Negative 
 

Obesity is associated with increased seminal 
insulin and leptin alongside reduced fertility 

parameters in a controlled male cohort 

(Leisegang et 
al., 2014) 

South Africa 42 ELISA No correlation between semen leptin 
concentration and sperm motility or 

vitality. 

None 
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Figure 11. Meta-analysis for 7 studies investigating prolactin (ng/mL) concentration and semen parameters. 
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Table 3. Characteristics and overview of studies included in Prolactin meta-analysis. 

Study Author Country N Method Summary Positive/Negative effect on fertility 

Correlations between 
seminal 

radioimmunoreactive 
prolactin, sperm count, and 

sperm motility in 
prevasectomy and infertility 

clinic patients 

(Smith et al., 
1979) 

USA 93 RIA Strong positive correlation 
between semen prolactin 

and sperm motility and 
sperm count in all patients. 

Positive *converted to SD 

Serum prolactin in male 
infertility 

(Rjosk and 
SCHILL, 1979) 

Germany 103 RIA No correlation between 
serum prolactin and sperm 
motility or concentration. 

No significant difference in 
serum prolactin was found 

between normozoospermia, 
asthenozoospermia, 
oligozoospermia and 

azoospermia was found. 

None *converted to ng/mL 
*serum 

measurements used 

Seminal prolactin and its 
relationship to sperm 

motility in men 

(Gonzales et 
al., 1989) 

Peru 56 RIA Seminal prolactin levels 
positively correlated with 

motility and negatively with 
sperm concentration. 

Serum prolactin was higher 
in azoospermia. 

Unknown *converted to SD 

Prolactin in seminal plasma 
of infertile men 

(Segal et al., 
1978) 

Israel 120 RIA No relationship found 
between sperm count, 
motility and serum or 

seminal prolactin levels. 
Excessively high serum and 
seminal plasma prolactin 

levels found in a few of the 
men in the infertile groups. 
Prolactin in seminal plasma 

None *converted to SD 
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was 2 to 3 times higher than 
in serum. 

Fructose and hormone levels 
in semen: their correlations 

with sperm counts and 
motility 

(Biswas et al., 
1978) 

UK 129 RIA Significantly higher levels of 
prolactin was found in 

seminal plasma of 
normozoospermic 

compared to sub/infertile 
groups. Prolactin was found 

to have a significantly 
positive correlation with 
sperm concentration but 

not motility. 

Positive 
 

The effect of ghrelin On sex 
hormones in infertiled men 

(Hamed et 
al., 2016) 

 

Iraq 70 ELISA serum measurements Significantly higher serum 
prolactin in infertile 

patients. 

Negative *serum 
measurements 

Serum and seminal plasma 
ghrelin levels in men with 

normospermia and 
dyspermia 

(Panidis et 
al., 2008) 

Greece 98 Immunochemiluminescence No difference found 
between fertile and infertile 

males serum levels of 
prolactin. 

None *serum 
measurements 
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Table 4. Characteristics and overview of studies included in β-Endorphin meta-analysis. 

Study Author Country N Method Summary Positive/Negative effect on 
fertility 

β-Endorphin in normozoospermic and 
pathologic human semen 

(Singer et al., 
1985) 

Israel 43 RIA Significantly higher β-Endorphin in 
normozoospermic patients. Semen levels 

were significantly higher than serum 
levels. 

Positive *converted to SD 

Presence of immunoreactive β-
Endorphin and calcitonin in human 

seminal plasma, and their relation to 
sperm physiology 

(Davidson et 
al., 1989) 

USA 74 RIA No significant difference in seminal 
plasma β-endorphin levels in fertile and 

infertile males.  β-endorphin levels had no 
relationship with semen parameters. 

None *converted to SD 

Beta‐endorphin in serum and seminal 
plasma in infertile men 

(El‐Haggar et 
al., 2006) 

Egypt 100 ELISA Semen levels had positive correlation with 
sperm concentration 

Positive *converted to 
mean and SD 

from range and 
percentiles 

Figure 12. Meta-analysis for 3 studies investigating β-Endorphin (pg/mL) concentration and semen parameters. 
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Table 5. Characteristics and overview of studies included in Ghrelin meta-analysis. 

Study Author Country N Method Summary Positive/Negative effect on 
fertility 

The effect of ghrelin On sex hormones 
in infertiled men 

(Hamed et 
al., 2016) 

Iraq 70 ELISA serum 
measurements 

Significantly lower ghrelin in serum of control 
participants. 

Negative 
 

Serum and seminal plasma ghrelin 
levels in men with normospermia and 

dyspermia 

(Panidis et 
al., 2008) 

Greece 98 ELISA No difference found between fertile and infertile 
males semen levels of ghrelin, negatively 

correlated with semen volume. 

None *converted to 
ng/mL 

Detection of obestatin in seminal 
plasma and its relationship with 
ghrelin and semen parameters 

(Moretti et 
al., 2011) 

Italy 112 RIA Higher levels of ghrelin in semen than in serum. None *converted to 
ng/mL 

 

  

Figure 13. Meta-analysis for 3 studies investigating ghrelin (ng/mL) concentration and semen parameters. 
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Table 6 vasopressin, oxytocin and their effects on fertility 

Study Author Year Species Country Neuropeptide N Method Summary Positive/Negative 
effect on fertility 

Vasopressin 
effectively supresses 
male fertility 

Kwon, W. et 
al 

2013 Mouse Korea Vasopressin  6 repeats In vitro assay Vasopressin has a dose dependant 
decrease on mouse sperm motility 

Negative 

Fertility in female 
chickens as affected 
by the injection of 
oxytocin and arginine 
vasopressin near the 
time of insemination 

Hughes, B. 
and Parker, J.  

1971 Chicken USA Vasopressin/Oxytocin 15 
Chickens 

Intravenous 
injection 

Intravenous injections of vasopressin 
given immediately after insemination 
significantly reduced fertility. 
Intravenous injections of oxytocin 
significantly reduced fertility 
immediately after insemination and 
30 minutes post insemination. 

Negative 

Oxytocin and 
vasopressin stimulate 
anion secretion by 
human and porcine 
vas deferens epithelia  

Hagedorn, T. 
et al 

2007 in vitro 
human/porcine 
cell culture 

USA Vasopressin/Oxytocin 3-5 
repeats 

Cell culture and 
RT-PCR 

Oxytocin and vasopressin modulate 
ion transport across vas deferens 
epithelia by independent 
mechanisms. VP and OXT therefore 
have the potential to acutely change 
the environment in which sperm are 
exposed to. 

Unknown 

The in vitro effects of 
oxytocin and 
vasopressin on 
spontaneous 
contractility of the 
mouse cauda 
epididymis  

Hib, J. 1974 Mouse Uruguay Vasopressin/Oxytocin 20 mice ex vivo  OXT and VP caused an increase in the 
frequency and amplitude of 
contractions of the mouse cauda 
epididymis. VP caused an incremental 
rise in the baseline tension. 

Unknown 

Effect of vasopressin 
on fertility of male 
rats 

Ratnasooriya, 
W. and 
Jayakody, J. 

2004 Rat Sri Lanka Vasopressin 18 rats Vaso-epididymal 
injection 

Daily injections of vasopressin into the 
cauda epididymis of rats for 7 
consecutive days resulted in 
oligospermic ejaculates. Sexual 
behaviour was unaffected.  

Negative 
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Proteomic 
approaches for 
profiling negative 
fertility markers in 
inferior boar 
spermatozoa 

Kwon, W. et 
al 

2015 Boar Korea Proteomics analysis 3 repeats Proteomics , 2-
DE and MS 

20 proteins showed differential 
expression levels in small and large 
litter size groups, 19 of which showed 
decreased expression in large litter 
size. Glutathione S-transferase Mu3 
and glutathione peroxidase 4 were 
related to the glutathione metabolic 
pathway and vasopressin receptor 2 
was linked to vasopressin receptor 
2/STAT and these were differentially 
expressed in small and large litter 
sizes. 

Negative 

Urinary vasopressin 
in male infertility 

Puri, S. and 
Puri, V. 

1984 Human India Vasopressin 10 men Extracted using 
zinc ferrocyanide 
absorption 

A highly statistically significant 
negative correlation was observed 
between urinary vasopressin 
concentration and sperm motility and 
sperm count. 

Negative 

Some effects of 
vasopressin on sexual 
behaviour and 
seminal characteristic 
in intact and 
castrated rabbits 

Kihlstrom, J. 
and Agmo, A. 

1973 Rabbit Sweden Vasopressin Unknown Intravenous 
injection 

Rabbits were intravenously injected 
with different doses of vasopressin, a 
low dose had no effect on behaviour 
or semen parameters. Doses of 40 or 
200 mu. Significantly increased semen 
volume and sperm content in the 
ejaculates. 

Positive 

[Patent] Method of 
reducing mammalian 
fertility and drugs 
therefor 

Cheesman, D. 1976 Rats USA Vasotocin 
  

0.5-5 ug vasotocin per kilogram of 
body weight was suggested to 
suppress the preovulatory phase in 
females therefore suppressing 
ovulation and fertility. Suggested as a 
method to reduce fertility in males via 
reducing LH secretion by using 
vasotocin. 

Negative 
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Variations in plasma 
concentrations of 
vasoprssin during the 
menstrual cycle  

Forsling, M. 
et al 

1980 Human Sweden Vasopressin 8 women RIA Plasma concentrations of vasopressin 
significantly increased on day 16-18 of 
the menstrual cycle in a cohort of 
health women 

Unknown 

Arginine vasopressin 
and oxytocin in the 
porcine corpus 
luteum 

Choy, V. and 
Watkins, W. 

1988 Pig New 
Zealand 

Vasopressin/Oxytocin 176 
corpus 
lutea 
from 18 
sows 

Acetic acid 
extraction, HPLC 
and RIA 

Mid cycle corpus lutea showed 
presence of arginine vasopressin like 
material but not lysine vasopressin 
like material when investigated with 
HPLC. Oxytocin content was 
unchanged during luteal phase but 
declined at the end of the cycle. AVP 
remained unchanged during luteal 
phase but significantly increased 
towards the end of the cycle. 

Unknown 

[Review] Effects of 
psychological stress 
on male fertility 

Nargund, V. 2015 Human UK Vasopressin/Multiple None - review Vasopressin is released with 
corticotropin releasing hormone 
under psychological stress, triggering 
signalling pathways that negatively 
affect fertility and spermatogenesis in 
males 

Negative 

Vasopressin: another 
pregnancy protein in 
human seminal 
plasma 

Brotherton, J.  1990 Human Germany Vasopressin 20 
semen, 
19 
amniotic 
fluid 

Ethanol/nitrogen 
extraction & RIA 

Vasopressin was found in seminal 
plasma of human males at similar 
concentrations to plasma levels. 
Vasopressin was found in trace 
amounts in half of the samples of 
amniotic fluid. 

Unknown 

A comparison of 
plasma vasopressin 
and oxytocin 
concentrations 
during the the 
oesterous cycle of the 
ewe 

Wathes, D. et 
al 

1991 Sheep UK Vasopressin/Oxytocin 5 ewes Petroleum ether 
extraction and 
RIA 

Oxytocin concentrations increased 
during the early luteal phase and 
reached plateau then declined either 
preceding or at ovulation. Vasopressin 
showed significant dependence on 
the day of the cycle with 
concentrations lowest at oestrus and 
minor peaks on day 4 and 8-9. 

None 



60 
 

Vasopressin concentrations were 
significantly higher in the morning 
than in the afternoon and would rise 
again in the evening. Minor variations 
postulated to have no effect on 
reproduction at the concentrations 
found. 
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There are several studies in the literature highlighting the role of vasopressin and oxytocin 

in mammalian reproduction, including many aspects of human reproduction as 

summarised in Table 6.  However, as integral as these neuropeptides are in reproductive 

physiology, there are still many gaps in the knowledge. The research presented in this thesis 

set out to further explore the role of vasopressin and oxytocin has in human reproduction 

and fertility, and in particular sperm function.  

 

 

Overall aim:  

 

The aim of this research was to investigate how vasopressin and oxytocin function as in 

relation to sperm physiology and fertility. 

To identify any associations between oxytocin, vasopressin and TNFα in follicular fluid and 

clinical outcomes, and to investigate any correlation with seminal plasma vasopressin and 

oxytocin with clinical outcomes. To establish presence of the vasopressin receptors in 

human sperm and explore the effect of vasopressin through treatments with agonists in 

vitro. To identify the role of methylation status in oxytocin receptor CpG sites 924 and 934  

in human sperm function in clinical sperm samples.
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Chapter 2: Methods and Materials 

2.0 Methods and materials 

2.1 List of materials, equipment and software used 

Reagents Supplier Catalogue # 

[Arg8] Vasopressin acetate salt Sigma V9879 

[deamino-Cys1, D-Arg8]-Vasopressin acetate salt hydrate Sigma V1005-1MG 
10 ml, premixed 4x Laemmli protein sample buffer for SDS-
PAGE Bio-Rad 

1610747 

2-Mercaptoethanol Sigma M7154 

5x DNA Loading Buffer Blue Bioline BIO-37045 

8-bromo-cAMP Abcam ab141448 

Acrylamide/Bis 30% solution Bio-Rad 161-0158 

Agarose Fisher scientific M-12198 

Agarose, low gelling temperature  Sigma-Aldrich Co. Ltd 
 
A9045-25G 

Alexa fluor® 488 F(ab') 2 goat anti-mouse IgG, IgM (H+L) 
Thermo Fisher 
Scientific A-10684 

Alexa fluor® 488 goat anti-rabbit IgG (H+L) Invitrogen A-11008 

AllPrep DNA/RNA Mini Kit Qiagen 80204 

AmershamTM Protran® Western blotting membranes, 
nitrocellulose AmershamTM GE10600001 

Ammonium persulphate Sigma A3678 

Anti-alpha Tubulin antibody  Abcam ab7750 

Anti-Aquaporin 2 antibody abcam ab62628 

Anti-AVPR V2 antibody Abcam Ab188748 

Anti-goat HRP Sigma A5420 

Anti-oxytocin receptor Abcam ab87312 

Anti-oxytocin receptor Abcam ab115664 

Anti-Phosphotyrosine antibody Abcam ab10321 

Anti-prolactin receptor Abcam ab2773 

Aquaporin 2 Polyclonal antibody Invitrogen PA5-78809 

Aquaporin 2 Polyclonal antibody Invitrogen PA5-22865 

Aquaporin 2 Polyclonal Antibody 
Thermo Fisher 
Scientific  PA5-22865 

Arg8-Vasopressin ELISA Kit Abcam ab205928 

AVPR1A antibody (7HCLC), ABfinityTM Rabbit Oligoclonal 
ThermoFisher 
Scientific 711640 

Benzoanase Nuclease Sigma E1014-5KU 

Bovine serum albumin Sigma A2153 

Bromophenol blue Sigma B8026 

Calcium Ionophore A23187  Sigma C7522 - 5MG 

CELLview™ Cell Culture Dish, one compartment 
 
Greiner Bio-One Ltd 627 861 

Chloroform Sigma C7559 

DAPI Sigma D9542 
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deamino-Cys1, D-Arg8]-Vasopressin acetate salt hydrate Sigma V1005-5MG 

Dimethyl Sulfoxide Fisher Scientific  67-68-5 

DPBS 1X Corning 21-031-CVR 

Dulbecco's Modified Eagle's Medium - high glucose Sigma D1145 

EBSS CUSTOM MADE MEDIA,100ml GENEFLOW LTD  K1-0522   

Epitect Bisulfite Kit (48) Qiagen 59104 

Ethanol Sigma 51976 

EZ-ECL Biological industries 20-500-120 

Falcon™ 15mL Conical Centrifuge Tubes Fisher scien 10263041 

Fluo-4, AM, cell permeant thermofisher F14217  

Foetal bovine serum Sigma F0804 

Gibco™ Fetal Bovine Serum Fisher Scientific UK 11550356 

glass square coverslip  Fisherbrand™ 12363138 

Glycerol Sigma G5516 

Glycine Sigma G8898 

Goat anti-rabbit HRP Bio-Rad 170-6515 

GoTaq® 2-step RT-qPCR system Promega A6010 

GoTaq® Probe 2-Step RT-qPCR System Promega  A6110  

Halt protease and phosphotase inhibitor cocktail Fisher Scientific 16085973 

Hydrochloric acid Sigma H1758 

HyperLadderTM 25bp Bioline BIO-33057 

HyperLadderTM 50bp Bioline BIO-33054 

ImmEdge Hydrophobic Barrier Pen (PAP pen) Vector H-4000 

Invitrogen™ SYBR™ Gold Nucleic Acid Gel Stain Fisher Scientific UK 10358492 

ISOLATE II Genomic DNA Kit Bioline BIO-52066 

Isopropanol Sigma I9516 

Lectin from Pisum sativum Sigma L0770-2MG 

L-Glutamine Sigma G5792 

MagicMarkTM XP western protein standard Life technologies LC5603 

Marvel dried milk powder Sainsbury's 2051857 

Methanol Sigma 494437 

Microplates for Fluorescence-based Assays Thermo Scientific  M33089 

Monoclonal Anti-β-Tubulin antibody produced in mouse Sigma T4026 

M-PER™ Mammalian Protein Extraction Reagent Fisher Scientific UK 11885095 

MyTaqTM DNA Polymerase Bioline BIO-21105 

MyTaq™ DNA Polymerase Bioline BIO-21105 

N,N,N',N'-Tetramethylethylenediamine Sigma T9281 

Normal goat serum Vector S-1000 

Nuclease free water (10 x 50 mL) thermofisher AM9906 

OPC 31260 hydrochloride  Sigma O1266-10MG 

Oxytocin acetate salt hydrate Sigma O6379-1MG 

Oxytocin ELISA Kit Abcam ab133050 

Penicillin-Streptomycin Sigma P4333 

Phosphate Buffered Saline Oxoid BR0014G 

Phospho(Ser/Thr) PKA substrate antibody Cell signalling 9621S 

Phosphotase inhibitor cocktail set III Millipore 524627 

Pierce® BCA protein assay kit Pierce 23225 

Pluronic® F-127 Sigma  P2443 

Poly-D-Lysine solution, 1.0 mg/mL sigma  A-003-E 

Ponceau S Sigma P3504 

https://www.fishersci.co.uk/shop/products/fetal-bovine-serum-qualified-heat-inactivated-e-u-approved-south-america-origin-1/11550356
https://www.fishersci.co.uk/shop/products/borosilicate-glass-no-1-5-coverslip-1/12363138
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Precision plus proteinTM standards Bio-Rad 161-0376 

Precision plus standard dual colour  Bio-Rad 1610374 

Precut 7 x 8.4 cm Immun-Blot PVDF Membrane Bio-Rad 1620174 

Primers Invitrogen A15612 

Protease inhibitor cocktail Sigma P8340 

Proteinase K (10 ml) Qiagen 19133 

Puresperm BioTipp PBS-100 

Puresperm 100 BioTipp PS 100-100 

PyroMark PCR Kit (200) Qiagen 978703 

RIPA Lysis buffer Fisher Scientific 10230544 

RQ1 RNase-Free DNase  Promega M6101 

Sodium bicarbonate Sigma S3817 

Sodium chloride Sigma S3014 

Sodium deoxycholate Sigma S1827 

Sodium dodecyl sulphate Sigma L3771 

Sperm freezing medium Origio 10670010A 

Sperm preparation medium with Phenol Red Origio 10705060A 

SR144528  Sigma SML1899-5MG 

SuperFrost™ Microscope Slides Fisher Scientific  12372098 

SupraSperm® System Origio 10922060A 

Taq DNA Polymerase (250 U)  Qiagen 201203 

TGX FastCastTM Acrylamide kit, 10% Bio-Rad 161-0173 

TNFα ELISA Kit Sigma RAB0476 

Tris base Fisher scientific BP152-1 

TritonTM X-100 Sigma T8787 

Triton™ X-100 (Electrophoresis), Fisher Scientific  9002-93-1 

TRIzol® Reagent 
Ambion life 
technologies 15596018 

Trypsin Sigma T2600000 

Tween® 20 Sigma P9416 

Vectashield® mounting medium for fluorescence with DAPI Vector H-1200 
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Equipment/Materials Supplier 

0.2mL PCR Tube, Flat Cap Star Labs 

3-16PK centrifuge Sigma 

Autoflow Direct Heat CO2 Incubator – Cell culture incubator NUAIRE 

Axio Imager Z1 – Fluorescence microscope Zeiss 

Biological Safety Cabinets – Class II safety cabinet NUAIRE 

CASA counting chamber 20 micron Cell Vision 

Cell culture plates and flasks  
Nunc by Fisher 
Scientific 

ChemiDocTM Touch Imaging System – Western blot and agarose gel 
imaging system Bio-Rad 

Confocal Leica 

DFC 365 FX – Fluorescent microscope Leica 

Dri-Block® DB-2D – Heat block Techne 

Eppendorf thermal cycler Eppendorf 

Eppendorf tubes Starlabs 

Falcon Tubes Sarstedt 

Glassware 
Thermofisher 
Scientific 

Microplates Grenia 

Mini-PROTEAN® Comb, 10 well Bio-Rad 

Mini-PROTEAN® Tetra System Bio-Rad 

Mini-PROTEAN® Tetra Vertical Electrophoresis Cell Bio-Rad 

Mini-Rocker Shaker Grant-Bio 

NanoDropTM OneC Microvolume UV-Vis Spectrophotometer 
Thermofisher 
Scientific 

Olympus CX41 – Phase contrast microscope (CASA) Olympus 

Pipette tips Starlabs 

Pipettes Gilson 

Plasticware 
Sarstedt/Fisher 
Scientific 

PowerPac Basic Bio-Rad 
PowerPacTM Basic Power Supply - power supply for gel tanks and transfer 
system Bio-Rad 

PyroMark Q24 System Qiagen 

Sample collection pots Sterilin UK 

Specimen pots BioTipp 

Sub-Cell® GT Cell – Agarose gel electrophoresis tank Bio-Rad 

Superfrost® Plus Glass Slides Thermo-Fisher 

SureCycler 8800 – Thermal cycler Agilent Technologies 

SYNERGY HT Microplate Reader BioTek® 

Thermo-Shaker Peqlab 

Tomy Capsulefuge PMC-860 - Micro centrifuge ProLabMas 

Trans-Blot® SD Semi-Dry Transfer System – Western blot transfer system Bio-Rad 

Vortexer SLS Lab Basics 

Whatman® gel blotting papers Whatman® 
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Software 

AxioVision version 4.8.2.0 

Bio-Rad Image LabTM software 

Gen 5 version 2.05.5 BioTek® 

GraphPad Prism7 

IBM SPSS Statistics 25 

ImageJ 1.52i 

Leica LAS X Suite microscope imaging software 

Matlab R2018a 

MetaMorph® 

Microsoft® Excel® 2016 version MSO (16.0.4738.1000) 
Microsoft® PowerPoint 2016 version MSO 
(16.0.4738.1000) 

Microsoft® Word 2016 version MSO (16.0.4738.1000) 

RevMan 5.3 

SAMi® Pro Creative Diagnostics 1.0 

Wave 2.6 Software Agilent 

ZEN 2 Blue Edition 
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2.2 Sperm sample procurement, assessment and storage 

 

Semen samples were produced by masturbation after 2-5 days of abstinence from healthy 

males aged 18+. Donors were provided with a participant information sheet, which 

contained details of the study, two copies of the consent form, one for their own reference 

and a medical screening questionnaire upon initial consent (see appendix). Full faculty 

ethical approval (EthOS Reference Number: 0381; REC approval: Reference number: 

12/SC/0649, Study number: SE1617126). Semen samples were either produced on site in a 

designated room or at the participant’s home. Samples produced from home had to be 

brought to the laboratory within an hour of production. 

Semen samples were assessed in accordance with the WHO laboratory manual for the 

examination and processing of human semen 5th edition (2010) guidelines. Semen was 

liquefied at 37°C for 30 minutes in a direct heat 5% CO2 incubator. This was followed by 

measurement of semen volume, sperm concentration and sperm motility.  

Sperm motility, kinematics and concentration were measured and analysed using SAMi 

(Procreative Diagnostics) computer assisted sperm analysis (CASA) system, where 5 µl of 

the semen was pipetted onto a counting chamber slide (Cell Vision 20 micron depth) (Figure 

14).  

To measure sperm motility - the slide was places onto a 37°C heated stage on the 

microscope (Olympus CX41), the SAMi software records 60 frame one-second videos of the 

sample and categorises the selected sperm into 4 grades for motility. A – fast progressive 

(faster than 25 microns per second and linear movement), B – slow progressive (slower 

than 25 microns per second and linear movement), C – non-progressive (twitching, moving 

in very small circles), D – immotile (no movement at all). SAMi provides these grade outputs 

as a percentage of the sample and the number of cells, also concentration in million/ml and 

velocity in microns/second. 

Figure 14. Schematic of CASA slide. 
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Sperm kinematics were assessed using the coordinates of the paths generated in the CASA, 

a MATLAB script was used to assess the straight line path (VSL µm/s), the curvilinear path 

(VCL µm/s) and the linearity of the sperm path (LIN %) LIN = VSL/VCL x100. 

Sperm concentration was also measured via haemocytometer. A wet preparation (10 µL 

semen on a glass slide with a 24 mm x 24 mm coverslip) and a 40X objective were used to 

initially count sperm in the field of view. Once sperm in the field of view were counted this 

was used to decide which dilution was appropriate for an accurate calculation of sperm 

concentration using the following. 

Sperm per 400x 

field 

Dilution Semen (µL) Diluent (µL) 

2-15 1:2 12.5 12.5 

16-100 1:5 12.5 50 

> 100 1:20 12.5 237.5 

 

The dilutions were made in duplicate using 4% formaldehyde. Using a standard 

haemocytometer 10 µL of each dilution were placed in each chamber (Figure 15).   

Full row of the grid were counted until over 200 sperm were counted. This was done for 

each chamber, if the difference between counts was greater than 10% the chambers were 

recounted, if the difference was still greater than 10% the dilutions were remade and 

recounted. The concentration was calculated as follows. 

Dilution  Correction factor 

1:2 ÷ 10 

1:5 ÷ 4 

Figure 15. Schematic Haemocytometer. 
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1:20 ÷ 1 

 

Concentration = (
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑟𝑚 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑
) ÷ correction factor 

Clinical samples of semen (80) and follicular fluid (52) were obtained from consenting 

patients undergoing assisted conception treatment at the Department of Reproductive 

Medicine, St Mary’s Hospital Manchester. All samples were pseudonymised prior to 

collection.Follicular fluid samples were separated into 500 µL aliquots upon acquisition, 

snap frozen in liquid nitrogen and stored at -80°C. All semen samples were processed via 

density gradient, used in in vitro assays and/or RNA, DNA or protein was extracted 

depending on the assay. 

2.3 Sperm isolation – density gradient 

Density centrifugation was used to select a population, motile and mature sperm with 

intact DNA for motility experiments (Le Lannou and Blanchard, 1988; Sakkas et al., 2000). 

Sperm cells were separated from seminal plasma post liquefaction. The density gradient 

(PureSperm® 100 Nidacon) was initially diluted using the 100% stock and PureSperm® 

Buffer to create 80% and 40% solutions. The density gradient was prepared by carefully 

layering 2 mL of 80% phase followed by 2 mL of a 40% phase and 1 mL of semen into a 15 

mL falcon tube and centrifuged at 300 x g for 20 minutes (Figure 16). The supernatant was 

discarded and the pellet was resuspended in 3 mL of PureSperm® Buffer and centrifuged 

at 300 x g for 5 minutes, the supernatant was discarded, this step was repeated. The pellet 

was resuspended in 1 mL of PureSperm® Buffer and the washed sample was assessed by 

CASA. 

  

  

Figure 16. Falcon tube containing 80%, 40% density gradient layers and semen layer. 
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2.4 Cell culture and in vitro assays 

 

All cell lines used were cultured using Class II safety cabinets and direct heat 5% CO2 

incubators at 37°C. All somatic cells were cultured using standard cell culture media: 

Dulbecco’s modified eagle’s medium (DMEM), 10% foetal bovine serum (FBS) with 1% L-

glutamine and 1% penicillin-streptomycin. Standard cell culture technique was used to 

grow cells in either 6 well plates, T25 flasks or T75 flasks. Any in vitro assays for somatic cell 

lines were performed using standard cell culture media (Jones, 1998). Somatic cells were 

frozen using 10% dimethyl sulfoxide (DMSO) in standard cell culture media in 2 mL 

cryovials, placed in Mr. Frosty freezing container at -80°C overnight before transferring to 

liquid nitrogen for long-term storage.  

For in vitro assays sperm were incubated using a sperm specific buffered Earle’s balanced 

salt solution.  

For incubation with neuropeptides various concentrations of neuropeptide agonists (10 

pM, 10 nM, 10 µM or appropriate volume of vehicle for control) were added to 10 million 

sperm in 1 mL of media and incubated for 60 minutes in a 37°C 5% CO2 direct heat 

incubator. Motility was measured via CASA post incubation and samples were used for 

protein extraction directly after for use in western blotting. 

2.4.1 Capacitation 

 

Sperm were incubated for 3 hours in Earle’s balanced salt solution with 3% bovine serum 

albumin (BSA) in a 37°C direct heat 5% CO2 incubator as previously described (Castillo et 

al., 2019). 

 

2.5 Immunocytochemistry  

For sperm, the sample (10 µL) was smeared onto a glass slide using the feathering 

technique and left to air dry. To fix the sample the slide was immersed in ice-cold methanol 

or 4% formaldehyde for 10 minutes and air dried. The slide was either used directly for 

immunocytochemistry or stored at -20°C until required. 
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Slides that were used from storage in -20°C were left to thaw at room temperature and 

placed in a humidity chamber for prior to staining. The perimeter or necessary section of 

the slide was drawn around using a hydrophobic PAP pen and were rehydrated in 

phosphate buffered saline (PBS) for 10 minutes. Slides were permeabilised in 0.1% PBS-

Tween (v/v) for a further 10 minutes. Blocking buffer (PBS-Tween 0.1% with 10% goat 

serum) was added to the slides and slides were then replaced into the humidity chamber 

and covered with the lid and incubated for 1 hour at room temperature. The anti-

vasopressin receptor 2 primary antibody (Anti-AVPR V2 - ab188748) was diluted (1:500) in 

blocking buffer and 200 µl was added to the slides or 200 µl of blocking buffer alone for no 

primary control. Slides were incubated at 4°C overnight. This was followed by washing the 

slides three times in 0.1% PBS-Tween for five minutes. Slides were then incubated with 

Alexa fluor® 488 goat anti-rabbit IgG secondary antibody (Invitrogen, A-11008) at a 1:500 

dilution in PBS-Tween for 1 hour at room temperature. Slides were washed three times 

with PBS-Tween. VECTASHIELD® mounting medium with DAPI was added to each slide then 

covered with coverslips and sealed with an enamel sealant (Kricka, 2001). Appropriate 

controls were used to ensure there was no cross reaction with antibodies. Slides were 

incubated for 30 minutes at room temperature prior to imaging with a fluorescent 

microscope (Zeiss Axio Imager Z1/Leica DFC 365 FX). 

2.6 Protein extraction and quantification (sperm, somatic cells) 

Radioimmunoprecipitation assay (RIPA) (50 mM Tris base adjusted to pH 8 (0.607g), 150 

mM sodium chloride (NaCl) (0.292g), 0.5% Sodium deoxycholate (0.5g), 0.1% sodium 

dodecyl sulphate (SDS) (0.1g), 1% Triton X-100 in 100 mL distilled water (dH2O) lysis buffer 

was used for protein extraction from somatic cells (Six and Kasel, 1978). Suspension cells 

were pelleted prior to addition of lysis buffer, for adherent cells lysis buffer was added 

directly to flask or plate. Per 10 million cells, 1 mL of RIPA with 1:100 (v/v) protease inhibitor 

cocktail and 1:100 (v/v) phosphotase inhibitor cocktail was used. Cells were resuspended 

several times to ensure homogenisation and vortexed for 5 minutes. Protein samples were 

stored in -20°C. 

 

Sperm protein extraction was performed using a modified protocol adapted from Lefievre 

et al., (2002).  The sperm pellet following density gradient centrifugation was resuspended 

in 1 mL PBS, centrifuged at 300 x g for five minutes and the supernatant discarded, this was 
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repeated. The sperm pellet was resuspended in 300 µL solubilisation buffer (2% sodium 

dodecyl sulphate, 10% glycerol, 1.4% dithiothreitol, 62.5 mM Tris-HCL, pH 6.8 with 

phosphatase and protease inhibitor cocktail at 1:100). The lysate was vortexed for five 

minutes until the pellet was thoroughly solubilised. Lysate was boiled using a dry heat block 

at 100°C for 5 minutes. The sperm lysate was centrifuged at 15000 x g for 15 minutes at 

4°C. The supernatant (protein) was transferred to a fresh Eppendorf tube and the pellet 

was discarded. The lysate was diluted with 100% ethanol at 1:9 (lysate : ethanol) ratio and 

incubated at -80°C for 2 hours minimum. Post incubation the lysate was centrifuged at 

15000 x g for 30 minutes at 4°C. The ethanol was removed via decanting and the pellet was 

left to dry for 5 – 10 minutes at room temperature. Once all the ethanol had evaporated 

the protein pellet was resuspended in 2% SDS and stored at -20°C for use in downstream 

applications. 

All proteins were quantified using the bicinchonic acid assay (BCA) (Pierce™ BCA protein 

assay kit), which is a colourmetric assay that determines total protein concentration via 

comparison of colour changes in the known standards and the unknown samples. Protein 

standards were made using the manufacturers recommendations. Two reagents were 

provided in the kit, reagent A was mixed with reagent B at 50:1 (v/v) (A:B), known as the 

working reagent. In a flat bottom 96 well plate 10 µL of standard or sample was pipetted 

into each well and 200 µL of the working reagent was added to each well containing 

standard or sample. The 96 well plate was incubated at 37°C for 30 minutes and then 

measured using a microplate reader at 562 nm absorbance. A standard curve was plotted 

using Microsoft® Excel software and equation from curve was used to quantify unknown 

proteins using y=mx+c. 

2.7 Dot blot 

Protein samples were loaded onto a nitrocellulose membrane by pipetting 2 µL as evenly 

spaced “spots” and left to air dry for 15 minutes. The membrane was blocked using 5% BSA 

in TBS-Tween (Tris buffered saline with Tween; 20 mM Tris, pH 7.5, 150 mM NaCl, 0.1% 

tween) (5% bovine serum albumin in 0.1% TBS-T v/v) for 1 hour at room temperature under 

agitation. The blocking buffer was discarded, and Anti-Aquaporin 2 antibody (ab62628) was 

added to the membrane, diluted in blocking buffer (1:1000). The membrane was incubated 

at 4°C overnight under constant agitation.  
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The following day the primary antibody was removed, and the membrane was washed 

three times in 0.1% TBS-Tween for 5 minutes. The horseradish peroxidase (HRP) conjugated 

secondary antibody was diluted in blocking buffer at 1:1000 and was added to the 

membrane. The membrane was incubated at room temperature for 1 hour under agitation. 

The solution was discarded, and the membrane was washed three times in 0.1% TBS-Tween 

for five minutes. Electrochemiluminescence (ECL) solution was used to develop the 

membrane, ECL solution A and B were mixed at 1:1 to create the working solution. The 

membrane was placed on the imaging tray with the protein side up. ECL was added to the 

membrane, enough to cover the surface and left to develop at room temperature for 1 

minute (Stott, 2000). The ECL was drained off the membrane prior to imaging with 

chemiluminescence on the ChemiDocTM Touch Gel and Western Blot Imaging System.  

 

2.8 Western blotting 

 

Gel casting glass plates (1 mm) were assembled on the casting stand according to 

manufacturer’s instruction. The Bio-Rad TGX™ FastCast™ Acrylamide Kit was used to make 

10% acrylamide gels for SDS-PAGE. For two 10% acrylamide gels 3 ml of Resolver A, 3 mL 

resolver B, 30 µL ammonium persulfate (APS), 3 µL tetramethylethylenediamine (TEMED) 

were combined in a falcon tube. In a separate falcon tube 1 mL of Stacker A, 1 mL of stacker 

B, 10 µL APS and 2 µL TEMED were combined. The resolver solution was pipetted into the 

glass plates until around 1 cm below the top of the plate. The stacker solution was pipetted 

on top of the resolver solution in the glass plates until it reached the rim and a 10 well comb 

was inserted. The gels were left to polymerise for 30 minutes prior to electrophoresis. 

When the gels had polymerised they were removed from the casting stand and placed into 

a gel tank. The gel tank was filled with electrophoresis buffer until the marker on the tank 

(25 mM tris, 190 mM glycine, 0.1% SDS) and the well combs removed. The protein samples 

were diluted in 4X laemmli buffer (8% SDS, 40% glycerol, 0.008% bromophenol blue, 0.25 

M Tris-HCL, pH 6.8) with 5% β-mercaptoethanol. The protein samples were denatured at 

100°C for five minutes using a dry heat block.  The standard concentration of protein loaded 

was 25 µg per well unless otherwise stated as well as a protein ladder. A power pack was 
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connected to the gel tank and ran at 120V until the dye front reached the bottom of the 

gel. 

Once the gel had finished running the glass plates were opened and the stacking gel was 

removed and discarded. A container with transfer buffer (25 mM tris, 190 mM glycine, 20% 

methanol) was used to soak 8 pieces of blotting paper per gel, and the nitrocellulose 

membrane for 5 minutes. A ‘sandwich’ was assembled on the semi-dry transfer system, 4 

pieces of blotting paper, the nitrocellulose membrane, the acrylamide gel and finally 

another 4 pieces of blotting paper. Each time a layer was added a roller was used to remove 

any air bubbles. The lid was carefully placed on top and the system was connected to the 

power pack and ran at 10V(400 mA) for 1 hour.  

When the transfer was complete the membrane was washed for 1 minute in Tris buffered 

saline with Tween (TBS-Tween) (20 mM Tris, pH 7.5, 150 mM NaCl, 0.1% tween) and the 

rest of the ‘sandwich’ was discarded. The membrane was incubated for 1 hour at room 

temperature in blocking buffer (5% bovine serum albumin in 0.1% TBS-T v/v) under 

agitation. The blocking buffer was discarded and the primary Anti-Aquaporin 2 antibody 

(ab62628) was added to the membrane, which was diluted in blocking buffer at 1:1000. 

The membrane was incubated at 4°C overnight under constant agitation.  

The following day the primary antibody was removed and the membrane was washed three 

times in 0.1% TBS-Tween for 5 minutes. Horseradish peroxidase (HRP) conjugated 

secondary antibody was diluted in blocking buffer at 1:1000 unless and added to the 

membrane. The membrane was incubated at room temperature for 1 hour under agitation. 

The secondary antibody was discarded and the membrane was washed three times in 0.1% 

TBS-Tween for five minutes. Electrochemiluminescence (ECL) solution was used to develop 

the membrane, ECL solution A and B were mixed at 1:1 to create the working solution. The 

membrane was placed on the imaging tray with the protein side up. ECL was added to the 

membrane, enough to cover the surface and left to develop at room temperature for 1 

minutes. The ECL was drained off the membrane prior to imaging with chemiluminescence 

on the ChemiDocTM Touch Gel and Western Blot Imaging System.  

Membranes were washed three times with 0.1% TBS-Tween for five minutes and incubated 

with an appropriate loading control antibody using the same process as described above 

(Mahmood and Yang, 2012). 
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2.9 DNA extraction 

For sperm DNA extraction the Isolate II Genomic DNA Kit (Bioline) was used with a few 

modifications to the manufacturer’s protocol. Per each extraction 20 million sperm cells 

were used. The pellet was resuspended in 360 µL Lysis Buffer GL, 50 µL Proteinase K 

solution (1 mg/mL), 3.8 µL RNase A (10 mg/mL) and 50 µL DTT (5mM) and incubated at 56 

°C under agitation for 3 hours. The sample was vortexed and 400 µL of Lysis Buffer G3 was 

added, vortexed vigorously and incubated at 70 °C for 10 minutes under agitation. The 

sample was vortexed and 420 µL of absolute ethanol was added and vortexed vigorously. 

An Isolate II Genomic DNA spin column was placed into a 2 mL collection tube. A maximum 

of 500 µL of the sample was loaded into the spin column, centrifuged for 1 minute at 11000 

x g and flow through was discarded. This step was repeated until the full volume of sample 

had passed through the spin column then 500 µL of Wash Buffer GW1 was added to the 

spin column and centrifuged for 1 minute at 11000 x g. The flow through was discarded 

and 600 µL of Wash Buffer GW2 was added to the spin column and centrifuged for 1 minute 

at 11000 x g. The flow through was discarded and the spin column was centrifuged for 1 

minute at 11000 x g then left to air dry for 1 minute at room temperature to remove any 

residual ethanol. The spin column was placed in a 1.5 mL microcentrifuge tube and 100 µL 

of pre-heated Elution Buffer G (70 °C) was added onto the centre of the silica membrane. 

The spin column was incubated at room temperature for 1 minute then centrifuged for 1 

minute at 11000 x g. The DNA concentration and purity of the extract was determined using 

NanoDrop. All DNA was stored at -20°C. 

2.9.1 Bisulphite conversion of DNA 

The Epitect® Bisulphite kit (Qiagen) was used for all bisulphite conversion of DNA. The 

buffers in the kit were prepared to manufacturer’s instructions prior to use. The DNA to be 

converted was thawed and 250 ng was used in each reaction (volume variable), the 

Bisulphite Mix was reconstituted using 800 µL per each aliquot and vortexed thoroughly. 

Each bisulphite reaction was prepared in 0.2 mL microcentrifuge tubes as shown in Table 

7.  
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Table 7. Bisulphite reaction components. 

Component Volume (per reaction) 

DNA solution (250 ng) Dependant on concentration 

RNase-free water Dependant on volume of DNA (use water 

to make up to 20 µL) 

Bisulphite mix 85 µL 

DNA protect buffer 35 µL 

 

The tubes were mixed thoroughly until the solution had turned from blue to green which 

signified correct pH and adequate mixing. The tubes were then placed in the thermal cycler 

(Agilent) and incubated with the settings in Table 8. 

Table 8. Thermal cycler conditions for bisulphite conversion. 

 Temperature °C Time 

Denaturation 95°C 5 minutes 

Incubation 60°C 25 minutes 

Denaturation 95°C 5 minutes 

Incubation 60°C 85 minutes 

Denaturation 95°C 5 minutes 

Incubation 60°C 175 minutes 

Hold 20°C - 

 

Once the conversion was complete the reactions were transferred to 1.5 mL Eppendorf 

tubes and 560 µL of fresh buffer BL containing 10 µg/mL carrier RNA was added to each 

reaction and vortexed. Each reaction was then transferred to an EpiTect spin column and 

collection tube and centrifuged for 1 minute at maximum speed. The flow through was 

discarded and 500 µL buffer BW was added to each spin column and centrifuged for 1 
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minute at maximum speed. The flow through was discarded and 500 µL buffer BD was 

added to each spin column and incubated for 15 minutes at room temperature. After 

incubation the tubes were centrifuged for 1 minute at maximum speed. The flow through 

was discarded and 500 µL buffer BW was added to each reaction and centrifuged at 

maximum speed for 1 minute. The flow through was discarded and the previous step was 

repeated once more. The spin columns were placed in new collection tubes and centrifuged 

for 1 minute at maximum speed. The spin columns were then placed in 1.5 mL Eppendorf 

and incubated for 5 minutes at 56°C with the lids open. The spin columns were placed in 

new 1.5 mL Eppendorf tubes and 20 µL buffer EB was added to the centre of the membrane 

in each spin column. The spin columns were centrifuged at 15000 x g and converted DNA 

was stored in -20°C until use. 

2.10 PCR  

All primers used were designed using the Primer3 Plus software by NCBI for use with BLAST. 

Not all primers were able to span an exon-exon junction therefore; RNA was treated with 

RQ1 RNase-free DNase (Promega) prior to reverse transcription. The digestion reactions 

were set up in 200 µL microcentrifuge tubes using 1 unit of RQ1 RNase-free DNase per 

microgram of RNA, for less than 1 microgram of RNA 1 unit of DNase was also used. The 

reaction was to the manufacturers recommendations as follows: 

RNA (in water or TE buffer) 1-8 µg 

RQ1 RNase-free DNase 10X reaction 

buffer 

1 µL 

RQ1 RNase-free DNase  1 u per µg of RNA 

Nuclease-free water to a final volume of 10 µL 

 

The reactions were incubated at 37°C for 30 minutes. Following this 1 µL of RQ1 DNase stop 

solution was added to each reaction and incubated at 65°C for 10 minutes using a dry heat 

block. The DNase treated RNA was then used directly for reverse transcription. Any treated 

RNA that was not used was stored at -80°C. 

Reverse transcription was performed using the GoTaq® 2-step RT-qPCR system (Promega). 

The following reactions were combined on ice using manufacturer’s recommendations: 
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RNA template (up to 5 µg per reaction) 1 – 5 µL 

Oligo(dT)15 Primer (0.5 µg/µl) 1 µL 

Random Primers (0.5 µg/µl) 1 µL 

Nuclease-free water To a final volume of 10 µL 

 

Using Agilent’s SureCycler 8800 thermal cycler the reactions were incubated at 70°C for 5 

minutes, then at 4°C for 5 minutes and briefly centrifuged to return contents to the bottom 

of the tubes. A reverse transcription mix was prepared per reaction to manufacturer’s 

recommendations: 

Nuclease-free water 1.5 µL 

GoScriptTM 5X reaction buffer 4 µL 

MgCl2 2 µL 

PCR nucleotide mix 1 µL 

Recombinant RNasin® ribonuclease 

inhibitor 

0.5 µL 

GoScriptTM reverse transcriptase 1 µL 

Final volume 10 µL 

 

The 10 µL of reverse transcription reaction mix was added to each 10 µL RNA reaction tube 

from the previous step to a final volume of 20 µL. To synthesise the cDNA Agilent’s 

SureCycler 8800 thermal cycler was used, the reactions were incubated at 25°C for 5 

minutes, 42°C for 1 hour, and finally 70°C for 15 minutes. All cDNA was either used 

immediately for PCR or stored at -20°C until required. 

All custom primers and cDNA were checked and optimised via endpoint PCR prior to use in 

quantitative PCR (qPCR) using the HotStarTaq® PCR kit (Qiagen).  
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Using manufacturer’s recommendations, the reactions were set up as follows (per 1 

reaction): 

10X PCR buffer 2 µL 

dNTP mix (10 mM) 0.4 µL 

Primer Mix (forward and reverse) 4 µL 

HotStarTaq DNA polymerase 0.1 µL 

Template (either water or cDNA) < 1 µg/100 µL reaction (usually 1 µL) 

Nuclease-free water To a final volume of 20 µL 

 

The cycle was performed using Agilent’s SureCycler 8800 thermal cycler. The reactions 

were incubated at 95°C for 15 minutes then denatured at 94°C for 1 minute, annealed on 

a gradient of 55°C - 65°C for 1 minute and extended 72°C for 1 minute, the previous 3 steps 

were cycled 30 times (unless otherwise stated), after the reactions were incubated at 72°C 

for 10 minutes. PCR product was used immediately for agarose gel electrophoresis or 

stored at -20°C for later. 

All agarose gels were 2% agarose (w/v) in 1X Tris Borate EDTA (TBE) buffer (0.89 M tris 

base, 0.89 M boric acid, 0.02 M EDTA). The agarose/TBE mixture was heated in a microwave 

for approximately 1-2 minutes until the agarose had dissolved fully. Midori green 

(GENEFLOW) was used for the DNA intercalating agent and was added to the agarose gel 

prior to casting. The agarose gel mixture was poured into the gel casts (comprised of a 

cassette and a comb) while still hot and was left at room temperature for 30 minutes to 

solidify. Once the gels had solidified, the gel combs were carefully removed. The gels were 

placed into a horizontal electrophoresis tank and covered with 1X TBE buffer. The 

appropriate volume of 5X DNA loading buffer blue (Bioline) was added to each PCR product 

reaction. The samples were loaded on the gel alongside HyperladderTM 25bp or 50bp 

depending on the expected amplicon size of the primers and the gel was ran until the dye 

front reached the end of the gel, usually at 80V for 1 hour. The gels were imaged using 

“GelGreen” setting on ChemiDocTM Touch Gel and Western Blot Imaging System. 
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2.11 Pyrosequencing 

All pyrosequencing primers were designed using PyroMark Assay Design software. The 

region of interest was chosen using UCSC Genome Browser and input into the PyroMark 

Assay Design software which designed appropriate primers. 

PCR was performed using the relevant bisulphite converted DNA (conversion protocol: 

methods 2.10.1) and relevant PCR product was used downstream in the pyrosequencing. 

Prior to beginning the heat block was set to 85°C and the cartridge to be used was washed 

with warm water by pushing it through each segment.  

The troughs in the PyroMark Q24 vacuum work station were filled with approximately 50 

mL of the appropriate solutions; 1 – 70% ethanol, 2 – Denaturation solution (0.2 M Sodium 

hydroxide), 3 – Wash buffer (10 mM Tris-Acetate, pH 7.6), 4 – Distilled water, 5 – Distilled 

water (Figure 17). 
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The reagents were left to equilibrate to room temperature prior to use. A master mix was 

made as demonstrated in Table 9 and 70 µL was aliquoted per well in the plate. 

Table 9. Pyrosequencing master mix. 

  

 

 

 

 

 

 Per reaction 

Sepharose beads 1 µL 

Binding buffer 40 µL 

Nuclease free water 29 µL 

1 

2 

3 

4 

5 

Vacuum  
rest 

Figure 17. Schematic of the PyroMark Q24 Vacuum Workstation. 
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The PCR product (10 µL) was added to the master mix to a total of 80 µL. The plate was 

sealed and placed onto a plate shaker for a minimum of 10 minutes. The sequencing primer 

was diluted to 0.3 µM (2 µL of 100 µM primer stock in 648 µL annealing buffer) and 

vortexed thoroughly. The primer solution was aliquoted (25 µL) into each well of the 

PyroMark Q24 Plate and this was then placed in the correct slot in the Workstation (below 

trough number 4). Once the 10 minutes shaking were complete the handheld vacuum was 

turned on and used to aspirate the samples from the plate for approximately 15 seconds 

until there was no liquid left, immediately the vacuum was placed in the 70% ethanol 

(Trough 1, Figure 17) and left to aspirate for 5 seconds, then moved to the denaturation 

buffer (Trough 2, Figure 17) for a further 5 seconds, then finally to the wash buffer (Trough 

3, Figure 17) for 10 seconds. While still on the vacuum was inverted to remove surplus wash 

buffer. To deposit the samples the still turned on vacuum was carefully held above the 

PyroMark Q24 plate in position, then turned off before being placed into the PyroMark Q24 

plate. The vacuum was shaken from side to side for 10 seconds to allow the samples to 

deposit into the wells and placed in trough 4 (Figure 17) to wash. The PyroMark Q24 plate 

was heated to 80 degrees for 2 minutes and loaded immediately into the pyrosequencer. 

The cartridge was loaded with the appropriate amount of sequencing reagents which is 

calculated by the PyroMark Q24 Advanced software during set up, then inserted into the 

pyrosequencer, the appropriate sequence was loaded and ran.  
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2.12 Acrosome reaction assay 

 

Prior to staining all sperm were obtained and separated from the seminal plasma using 

density gradient centrifugation as described in sections 2.3 and used at a concentration of 

10 million/mL. A slide of pre-treated sperm (10 µL) was prepared using the feathering 

method per sample. Sperm were capacitated using a modified Earle’s balanced salt solution 

media and 3% (w/v) bovine serum albumin (BSA) for 3 hours at 37°C in a direct heat 5% CO2 

incubator. Once capacitated the sperm were further treated with the following; a vehicle 

(DMSO), 10 µM progesterone, 10 µM calcium ionophore A23187, 10 µM vasopressin, 10 

µM desmopressin for 1 hour. The treated sperm were washed with modified Earle’s 

balanced salt solution media three times prior to further use to remove traces of BSA. 

2.12.1 FITC PSA 

Slides of all the treatments were made in duplicate using the feathering method and air-

dried or sperm were fixed in 4% paraformaldehyde (PFA), smeared and left to air dry. Slides 

that were air dried alone were fixed using ice-cold methanol for 10 minutes. The slides 

were stained in a humidity chamber, the fluorescein isothiocyanate-pisum sativum 

agglutinin (FITC-PSA) stain was used at a 2 µM final concentration in PBS. The FITC-PSA stain 

was added to the slides, the slides were covered with the lid and incubated at 4°C for 1 

hour (World Health Organization, 2010a). Slides were washed under gently running dH2O 

for 5 minutes each to ensure adequate removal of unbound stain. The slides were mounted 

with 1 drop of VECTASHIELD® with 4′,6-diamidino-2-phenylindole (DAPI) mounting medium 

and covered with a glass coverslip. The perimeter of the coverslip and slide were sealed 

using an enamel sealant and incubated for a further 30 minutes before imaging with a 

fluorescent microscope (Zeiss Axio Imager Z1/Leica DFC 365 FX). Sperm that showed a 

complete staining of the acrosome were classed as not acrosome reacted, sperm that 

showed staining as linear across the middle of the head were classed as acrosome reacted. 

Images were analysed post acquisitionally. 
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2.12.2 Scanning electron microscopy (SEM) 

Silicon wafers were cut into 1 cm x 1 cm and placed into the wells of a 48 well plate. The 

wafers were coated in poly-d-lysine (1 mg/mL) for 10 minutes, the poly-d-lysine was 

aspirated and the wafers were washed with dH2O three times, covered and left to dry in a 

heated drying cabinet. The samples were placed onto the silicon wafers (50 µL) and left to 

adhere for 10 minutes. The supernatant was aspirated and discarded and the wafers were 

washed with PBS three times for 5 minutes. The samples were fixed onto the wafers in 4% 

paraformaldehyde (PFA) in PBS overnight at 4°C. The wafers were then washed 3 times 

with dH2O before being dehydrated in an ethanol gradient (20%, 40%, 60%, 80% and 100%) 

for 30 minutes at each dilution, twice at 100%. The wafers were dried overnight in a 

vacuum-assisted desiccator and then mounted onto 12.5 mm diameter aluminium SEM 

specimen stubs (Agar Scientific) using 12 mm carbon tabs (Agar Scientific). The samples 

were sputter coated using gold and imaged via scanning electron microscopy using Supra 

40VP and SmartSEM software (Carl Zeiss Ltd, Germany). 
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2.13 Calcium assay 

 

Calcium assays were performed on consenting donors’ sperm. Prior to assay all sperm were 

obtained and separated from the seminal plasma using density gradient centrifugation as 

described in sections 2.3 and used at a concentration of 10 million/mL. The calcium 

indicator Fluo-4 AM (ex/em of Ca2 bound form: 494/506) was used to measure calcium in 

sperm following the addition of agonists. Post density gradient and washing the sperm 

were incubated in a calcium free media (Dulbecco's PBS, no calcium, no magnesium) with 

0.2% (w/v) pluronic F-127 and 4 µM Fluo-4 AM for 45 minutes in the dark at 37°C in a direct 

heat 5% CO2 incubator. The sperm were centrifuged at 300G for 5 minutes and the 

supernatant was discarded, they were resuspended in a modified Earle’s balanced salt 

solution and the centrifugation step was repeated. Sperm were resuspended in a modified 

Earle’s balanced salt solution at 10 million/mL. Sperm calcium changes were measured 

either via microplate and live cell imaging.  

2.13.1 Microplate fluorescence assay  

 

The fluo-4 AM loaded sperm were aliquoted (100 µL) into a microplate or fluorescence-

based assays, 96-well (ThermoFisher scientific) which was precoated with poly-D-lysine 

(Sigma-Aldrich). BioTek® SYNERGY HT Microplate Reader was used to measure changes in 

sperm calcium at 488 nm using a kinetic assay sequence over the period of 10 minutes and 

45 seconds (unless otherwise stated). The background fluorescence was measured over 45 

seconds prior to the addition of agonists or a vehicle control of DMSO (10 µM calcium 

ionophore A23187, 10 µM vasopressin, 10 µM desmopressin (dDAVP) and 10 µM oxytocin) 

all were performed in duplicate. 

2.13.2 Live cell calcium imaging 

 

Live cell calcium imaging was performed in collaboration with the University of 

Birmingham. Sperm samples were acquired from consented males at Birmingham 

Women’s Hospital (HFEA Centre 0119), under NRES REC Reference: 18/EM/0223. Semen 

samples were liquefied at 37°C for 30 minutes in a direct heat 5% CO2 incubator and sperm 

were separated from seminal plasma using the swim-up technique as described in the WHO 
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2010 manual for semen analysis, in brief, 1 mL of semen was placed beneath 2 mL of 

supplemented earle’s balanced salt solution with 3% BSA and incubated at an angle of 

approximately 45° at 37°C for 30 minutes in a direct heat 5% CO2 incubator, the layer of 

media was then removed and this fraction contained the sperm to be used downstream. 

Sperm were diluted to 6 million/mL and capacitated for 6 hours prior to experiment. Sperm 

were loaded with calcium indicator as follows; 150 µL sperm with 10 µM calcium green 

1AM (Thermofisher, C3011MP) for 30 minutes in 37°C in a direct heat 5% CO2 incubator. 

The calcium indicator loaded sperm were placed in a RC-20 imaging chamber (Warner 

instruments) on a glass cover slip treated with 0.1% poly-L-lysine and incubated for a 

further 30 minutes in 37°C in a direct heat 5% CO2 incubator in order to adhere to the 

coverslip. The sperm were imaged in time-lapse with the image taken every 3 seconds for 

a duration of 8 minutes in total, initial 4 minutes were a control period with just media flow 

over the cells, the following 2 minutes were treatment with either 10 µM vasopressin or 10 

µM dDAVP, the final 2 minutes were treatment with 500 nM progesterone. A peristaltic 

pump was used to perfuse treatments across the surface of the coverslip in the chamber 

and another removed the treatments simultaneously. MetaMorph® software was used for 

analysis of time-lapse data, the region of interest were drawn around each sperm cell and 

the average fluorescence intensity values per frame were exported to excel for statistical 

analysis. 

 

2.14 Enzyme linked immunosorbent assay (ELISA)  

ELISA were performed to measure the levels of vasopressin, oxytocin and TNFα in human 

samples following the manufactures protocols.  

To measure vasopressin levels in semen and follicular fluid, the Arg8-Vasopressin ELISA Kit 

(ab205928) was used. All reagents and standards were prepared as instructed in the assay 

protocol. Briefly; standard of vasopressin were prepared from stock solution providing a 

rage from 4.1 pg/mL to 1,000 pg/mL in to Assay Buffer. Before use, all material and reagents 

were equilibrated to room temperature. Semen and follicular fluid were diluted in 1:3 in 

Assay Buffer.  All samples and standards and controls were assayed in duplicate.  The plate 

was set up as per manufacture’s protocol, with 100 µL of Assay Buffer added to the control 

wells (non-specific binging and blank) - 100 µL  of the standards were added to the 

appropriately labelled wells, 100 µL samples were added to the appropriate wells and 50 
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µL Vasopressin Biotin Conjugate was added to each well (except the blank wells). This was 

followed by adding Vasopressin polyclonal rabbit Antibody to all the wells (except the non-

specific binding and blank). The plate was then tapped gently to mix, sealed and incubated 

at 4°C for 18-24 hours.  

The plate was washed with wash solution (400 µL) X 3 times. After removing all the wash 

solution, 200 µL of SA-HRP was added to each well (except the blank wells). The plate was 

sealed and incubated at room temperature on a plate shaker for 30 minutes (~500 rpm), 

after which, it was washed as above.  After incubation a stop solution was added to every 

well and the absorbance (optical density) was measured immediately at 405 nm, using 

BioTek® SYNERGY HT Microplate Reader.  

For measurements of oxytocin in semen and follicular fluid Oxytocin ELISA Kit (ab133050) 

was used using the manufactures protocol. Standard of oxytocin were prepared from stock 

solution providing a rage from 15.6 pg/mL to 1,000 pg/mL in to diluent. As above, all 

reagents and materials were equilibrated at room temperature. Samples of semen and 

follicular fluid were diluted 1:3 in assay buffer before use.  

The assay procedure was carried out as per protocol instructions, and similar the 

vasopressin ELISA. All standards and samples were assayed in duplicate. The Oxytocin-

alkaline phosphatase conjugate and Oxytocin antibody provided by the kit were used.  

As per the vasopressin ELISA - the absorbance (optical density) was measured immediately 

at 405 nm, using BioTek® SYNERGY HT Microplate Reader.  

For measurements of TNFα in follicular fluid, the Human Tumor Necrosis Factor α ELISA Kit 

(SIGMA -RAB0476) was used. The assay was preformed using the manufacture’s protocol. 

Standards were prepared from stock solution providing a rage from 24.58 pg/mL to 6,000 

pg/mL in to Assay Diluent. 100 µL of each standard and sample was added into appropriate 

wells. The plate was covered and incubated incubate for 2.5 hours at room temperature at 

4 °C with gentle shaking. After discarding the solutions, each well was washed 4x with Wash 

Solution. 100 µL of 1x prepared Biotinylated Detection Antibody was then added to each 

well and incubated for 1 hour at room temperature with gentle shaking, after which the 

solution was discharged and the wells washed with Wash Solution. 100 µL of prepared HRP-

Streptavidin was added solution to each well and incubated for 45 minutes at room 

temperature with gentle shaking. After discarding the solution and washing as above 100 
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µL of ELISA Colorimetric TMB Reagent was added to each well and incubated for 30 minutes 

at room temperature in the dark with gentle shaking. This was followed by adding 50 µL of 

Stop Solution to each well and read at 450 nm immediately using BioTek® SYNERGY HT 

Microplate Reader. 

2.15 Seahorse XFp metabolic analysis 

The cell mito stress test starter kit (Agilent 103708-100) along with the seahorse XFp 

FluxPak (Agilent 103022-100) were used to determine sperm oxygen consumption rate 

(OCR) and extracellular acidification rate (ECAR). The OCR and ECAR allow for the 

determination of further parameters of mitochondrial and non-mitochondrial respiration 

through the use of three compounds to modulate the function of the electron transport 

chain.  

Oligomycin which inhibits the complex V (ATP synthase), the inhibition of complex V 

decreases the OCR levels and is related to ATP production within the cell. Carbonyl cyanide-

4 trifluoromethoxy pheylhydrazone (FCCP), an uncoupling agent which functions via the 

collapse of the proton gradient across the mitochondrial matrix and the intermembrane 

space thus interferes with the membrane potential of the mitochondria allowing electrons 

to pass freely and fully restores the electron transport chain, this stimulates an increase in 

OCR which is used to calculate spare respiratory capacity that is indicative of how able the 

cell is to respond to increased demand for energy or stress. Rotenone and antimycin A 

(rot/AA) which are complex I and complex III inhibitors respectively these entirely inhibit 

mitochondrial respiration which allows for the determination of non-mitochondrial 

dependant respiration, the respiratory processes that are not performed by mitochondria 

(Figure 18).  
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Sperm were separated from the seminal plasma and washed as per section 2.3. The mini 

plate was pre-coated with poly-d-lysine prior to use. Sperm were used at a concentration 

of 200,000 cells per well. The assay was optimised using the titrations recommended by 

the user handbook, the optimal working concentrations of each compound were 

determined and were as follows; oligomycin – 1.5 µM, FCCP – 1 µM and 

rotenone/antimycin A – 0.5 µM. 

The day prior to running the cell mito stress test assay there were several preparation 

steps; the Agilent Seahorse XFp Analyzer was turned on and left overnight to warm up as a 

minimum of 5 hours is required, the miniplates to be used were coated with poly-d-lysine 

(0.1 mg/mL) and the sensor cartridge was hydrated in the Agilent Seahorse XF calibrant 

solution overnight in a non-CO2 incubator at 37°C. 

On the day of the cell mito stress test the assay medium was prepared as follows; DMEM 

(without phenol red) was supplemented with 1 mM pyruvate, 2 mM glutamine and 10 mM 

glucose. As all reagents were purchased from Agilent and the recommended 

concentrations were used the pH of the medium was already correct at 7.4. The assay 

medium was warmed up in a 37°C waterbath prior to use. After the sperm were washed 

they were resuspended in the seahorse assay medium at 20 million/mL, 100 µL of sperm 

suspension was added to each well of the miniplate and each well was topped up with 80 

µL of assay medium to a final volume of 180 µL per well. The miniplate loaded with sperm 

Figure 18. Seahorse schematic. Demonstration of parameter calculations from oxygen consumption rate results. 
Adapted from Agilent. 
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(except for two wells that were used for background adjustments) was degassed in a non-

CO2 incubator at 37°C for 1 hour prior to running the assay.  

During the degassing step of the miniplate the stock compounds were prepared with assay 

medium as follows; oligomycin in 280 µL of assay medium (45 µM), FCCP 288 µL of assay 

medium (50 µM), Rotenone/Antimycin A in 216 µL of assay medium (25 µM). These stock 

solutions were used to make 300 µL of the appropriate working solutions as follows; 

oligomycin stock 100 µL in 200 µL of assay medium (15 µM), FCCP stock 60 µL in 240 µL 

assay medium (10 µM), rotenone/antimycin A stock 60 µL in 240 µL assay medium. The test 

compounds vasopressin and dDAVP were prepared to a stock of 100 µM in assay medium, 

a vehicle control (DMSO) proportional to that used to dilute compounds was also prepared. 

The modified assay was used therefore 25 µL of each compound was loaded into each port 

of the sensor cartridge as follows; port A – test compound, port B – oligomycin, port C – 

FCCP and port D – rotenone/antimycin A. Care was taken not to introduce air bubbles into 

the ports while loading. The modified 4-port  assay was selected on the XFp analyzer and 

the sensor cartridge was placed into the instrument for calibration. Once calibrated the 

degassed miniplate containing sperm was loaded into the XFp analyser and the assay was 

left to run.  

Once the assay was over the miniplate was further utilised for normalisation to the protein 

content of the sperm that had adhered. All assay medium was aspirated and discarded and 

the sperm protein was extracted as described 2.6 and the protein was interpolated using a 

BCA assay as described in 2.6. 

Data was analysed using the Seahorse Wave software v2.6 and Microsoft Excel 2016. 

2.16 Statistical analysis and software used 

 

Microsoft word 2016, Microsoft Excel 2016, Microsoft PowerPoint 2016, Image J, SAMi,  

Matlab, script was designed by Joshua Brothers. All statistical analysis was performed using 

IBM SPSS version 25. Seahorse Wave desktop v2.6. Statistical modelling was performed 

after descriptive analysis of outcome variables. The number of oocytes and number 

fertilised were count data which were skewed and therefore negative binomial logistic 

regressions were performed to analyse any relationship between the variables and 

concentration of neuropeptide concentrations measured. The choice between freeze all 
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embryos and embryo transfer and clinical pregnancy were both binary variables and 

therefore binary logistic regressions were used to investigate any relationship between the 

variables and neuropeptides measured. Semen parameters were all transformed for use in 

linear regressions with the neuropeptides measured and the oxytocin receptor 

methylation. In vitro assays with vasopressin and dDAVP were statistically analysed using 

either one way or repeated measures analysis of variance. 
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Chapter 3 – Investigating neuropeptide 

levels in follicular fluid and seminal plasma, 

and clinical outcomes 

3.0 Investigating neuropeptide levels in follicular fluid and seminal 

plasma and clinical outcomes 

3.1 Introduction 

Infertility affects approximately 1 in 7 couples in the United Kingdom and is defined as the 

inability to conceive within 12 months of unprotected regular intercourse (World Health 

Organization, 2009). There are multiple causes to both male and female infertility, and 

several risk factors, such as; age, BMI, smoking, alcohol, stress and environmental factors 

such as occupational hazards (Tomova and Carroll, 2018). Although stress is a contributing 

factor to infertility, infertility itself has also been shown to have detrimental effects on 

mental health via psychological stress with studies highlighting the negative impact this can 

on fertility treatment itself (Boivin and Schmidt, 2005; Peterson et al., 2007). 

Stress is mediated primarily via the HPA axis, once activated, the paraventricular nucleus 

in the hypothalamus releases corticotropin-releasing hormone and vasopressin. This 

stimulates the release of adrenocorticotropic hormone, which induces the production and 

release of cortisol, adrenal androgens and aldosterone into the bloodstream. The HPA axis 

functions through a negative feedback where cortisol inhibits further release of 

corticotropin-releasing hormone and adrenocorticotropic hormone (Stephens and Wand, 

2012). Glucocorticoids, such as cortisol, have been previously shown to impact the HPG 

axis via the direct inhibition of GnRH and indirectly through negatively impacting the 

Kisspeptin  (KISS1) neurons (Takumi et al., 2012; Ubuka et al., 2009). Gluticocorticoids have 

been shown to have an effect on ovarian function, including oocytes, granulosa cells and 

luteal cells (Joseph and Whirledge, 2017; Zhang et al., 2016). 

  



93 
 

3.1.1 Ovulation and oogenesis 

 

Ovulation and oogenesis are regulated by the HPG axis. In the hypothalamus, the pre-optic 

nucleus and the arcuate nucleus produce GnRH, this stimulates the gonadotropes in the 

anterior pituitary. Once stimulated the gonadotropes secrete LH and FSH from the anterior 

pituitary into the bloodstream, which stimulate the ovarian steroidogenesis (Gilloteaux and 

Coey, 2018). 

Ovulation is split into three phases; follicular phase (days 1-14), ovulatory phase (days 14-

15), luteal phase (days 15-28).  

3.1.1.1 Follicular phase  

At birth, the female has all the oogonia (diploid stem cells) required for her reproductive 

life. During prepubescent childhood oogonia are converted to primordial follicles, which 

are diploid and arrested in prophase of meiosis 1. Once the female reaches puberty, 

localised androgens stimulate the primordial follicles into primary follicles. Surrounding the 

primary follicles is a single layer of granulosa cells. FSH stimulates the conversion of the 

primary follicle to the early secondary follicle, the granulosa cells proliferate to several 

layers and secrete an acidophilic glycoprotein layer that becomes the zona pellucida 

encapsulating the oocyte (Raven, 2013). LH binds to the LH receptor on the thecal cells that 

lie adjacent to the granulosa cell layer in the follicle. The binding of LH to its receptor initiate 

an intracellular cascade converting cholesterol into androgens. The granulosa cells become 

responsive to FSH stimulates the conversion of these androgens into oestrogen using 

aromatase enzymes. In the late secondary follicle (diploid) LH continues to stimulate the 

thecal cells to produce androgens and FSH continues to stimulate the granulosa cells to 

proliferate and secrete small volumes of follicular fluid rich in hyaluronic acid. FSH and LH 

continue to stimulate the late secondary follicle that matures further to the Graffian follicle 

(secondary oocyte, haploid, arrested in metaphase II). The volume of follicular fluid 

increases forming the antrum. Oestrogen has a negative feedback mechanism, high levels 

in the blood inhibit the hypothalamus from secreting GnRH and the pituitary from secreting 

FSH and LH. There are two oestrogen peaks in the follicular phase, mid follicular phase it 

has inhibitory effect, while at the end of follicular phase oestrogen causes a surge of GnRH 

from the hypothalamus and a surge of LH from the anterior pituitary. The inhibin B from 
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the Graffian follicle inhibits the anterior pituitary from releasing FSH  (Gilloteaux and Coey, 

2018). 

 

 

3.1.1.2 Ovulatory phase  

Around day 14 of the menstrual cycle and a day after the LH surge, the follicle bulges from 

the ovary, the theca externa cells tighten around the Graffian follicle, proteases cause 

degradation of the membrane and pressure from the follicular fluid causes the follicle wall 

to rupture. The oocyte-cumulous complex is expelled with the follicular fluid into the 

abdominal cavity and is captured by the fimbriae cilia cells of the fallopian tube (Gilloteaux 

and Coey, 2018). 

3.1.1.3 Luteal phase  

Post ovulation (days 15 – 28) the remainder of the follicle fills with blood and is invaded by 

connective cells; LH stimulates the ruptured follicle to become the corpus luteum and 

stimulates the production of progesterone. If no fertilisation occurs within 12 hours of 

ovulation the oocyte-cumulous complex dies in the fallopian tube and the corpus luteum 

undergoes degradation becomes fibrous known as the corpus albicans, where local 

macrophages slowly remove this leaving scar tissue. If fertilisation does occur the corpus 

luteum provides hormonal support to the embryo and is degraded into a corpus albicans 

post-pregnancy.  

During follicular maturation, follicular fluid is produced during the formation of the 

follicular antrum. Follicular fluid forms a substantial portion of the volume (can be above 

95% in human) of the follicle at maturity (Graafian follicle) and provides an essential 

Figure 19. Follicular development in oogenesis. 
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microenvironment for the oocyte development and maturation (Rodgers et al., 2001). The 

composition of the follicular fluid is affected by the secretory process of the theca interna 

cells (responsible for androgen and progesterone secretion) and the granulosa cell layer 

(responsible for oestradiol secretion) (Ambekar et al., 2013; Edwards, 1974). It is has been 

suggested that follicular fluid is produced by the granulosa cells, which produce hyaluronan 

and versican (a large chondroitin sulfate proteoglycan) generating an osmotic gradient, 

which accumulates fluid from the thecal vasculature (Cavender and Murdoch, 1988). Some 

molecules may cross-link for retention in the follicular fluid the aquaporins in the granulosa 

cells may be involved in further transport of water into the follicle  (Gosden et al., 1988; 

Rodgers and Irving-Rodgers, 2010; Skowronski et al., 2009).  

Follicular fluid is aspirated from the follicle during oocyte retrieval as a routine procedure 

in Assisted Reproductive Technology (ART), and is readily available as an optimal source of 

non-invasive biochemical predictors of oocyte quality (Piñero‐Sagredo et al., 2010; Yell, 

2018). The constituents of follicular fluid are complex and attempts to identify them 

through proteomics and metabolomics have revealed an extensive list including; 

hormones, sugars, growth factors of the transforming growth factor-beta (TGF beta) 

superfamily, further growth factors and interleukins, proteins/peptides and amino acids, 

prostinoids, reactive oxygen species (ROS), anti-apoptotic factors and many more 

(Ambekar et al., 2013; Zamah et al., 2015). There have been no clear established prediction 

marker or combination of markers in follicular fluid for the best oocytes to be utilized in 

ART (Revelli et al., 2009). Follicular fluid has also been found to have chemoattractant 

properties towards sperm and triggers the acrosome reaction in vitro, implying a role in 

fertilisation (Suarez et al., 1986; Wang et al., 2001).  

Follicular fluid also contains neuropeptides and a small number of studies have explored 

the levels the vasopressin and oxytocin. Schaffer et al (1984) found the presence of 

oxytocin and vasopressin in human follicular fluid using radioimmuno assays and showed 

the levels of both have been found to be 30-fold greater than levels in serum (Schaeffer et 

al., 1984). Such high levels are suggestive of a paracrine role of these hormones in the 

regulation of ovarian or fallopian tube functions. However, there is a lack of investigation 

into the effects of oxytocin and vasopressin in the human follicular fluid and clinical 

outcomes.  
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In ART, controlled ovarian stimulation protocols are used to obtain multiple mature oocytes 

from a treatment cycle and thus increasing chances of pregnancy (Pacchiarotti et al., 2016). 

The two stimulation protocols used in this cohort of patient were the antagonist protocol 

and the long down regulation. The long down-regulation stimulation protocol uses a GnRH 

agonist which is started in the mid-luteal phase to suppress the production of endogenous 

FSH and to inhibit dominant follicle selection thus allowing for multiple follicles to develop 

simultaneously, once suppression is confirmed via ultrasound and serum oestradiol 

concentration (10-14 days of agonist treatment) then gonadotrophin is administered. The 

antagonist protocol uses a GnRH antagonist post gonadotrophin administration has begun 

to prevent endogenous ovulation via the immediate suppression of endogenous 

gonadotrophins and allowing for multiple follicles to develop (Al-Inany and Aboulghar, 

2002). These both use a gonadotrophin to stimulate the ovary and trigger growth of 

multiple dominant follicles. Both protocols end with a final oocyte maturation trigger of 

human chorionic gonadotrophin (hCG) and oocytes are collected 3 days after (Tsampras 

and Fitzgerald, 2018). 

hCG is also know to stimulate the production of Tumor necrosis factor α (TNFα) in cultured 

granulosa cells (in combination with colony stimulating factor-1 (CSF)).  It has been 

proposed that hCG may act by inducing CSF receptors with the CSF then responsible for the 

TNFα increase (Zolti et al., 1990).  

TNFα is a prominent cytokine involved with the acute phase reaction in systemic 

inflammatory response. TNFα is a pyrogen, able to induce apoptosis and has an intense 

response in the cell stress related JNK pathway. It stimulates the HPA axis and increases 

corticotropin-releasing hormone, and is associated with multiple human diseases such as 

cancer, Alzheimer’s and depression (Dowlati et al., 2010; Liu, 2003; Locksley et al., 2001; 

Swardfager et al., 2010).  

TNFα is synthesised throughout the female reproductive tract and studies have detected 

TNFα in the follicular fluid of several species including, humans (Hunt, 1993). Oocytes, 

granulosa cells, thecal cells, luteal cells, endothelial cells, and macrophages are sources of 

TNFα. Follicular development, ovulation, and luteal regression are the processes regulating 

expression of ovarian TNFα. In small developing follicles, TNFα suppresses the 

responsiveness of the ovary to gonadotropins, whereas in preovulatory follicles, TNF 

stimulates steroidogenesis (Davis et al., 2003). 
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TNF-α influences ovarian steriodogenesis, by modulating receptor function of 

gonadotropins and by modifying ovarian folliculogenesis (Adashi et al., 1989). TNFα has 

also been shown to be significantly higher with corresponding lower concentrations of 

oestradiol in the follicular fluid of women with immunological factor infertility when 

compared women with tubal factor infertility. In this study the women with immunological 

factor infertility had lower rates of fertilisation (Cianci et al., 1996). Furthermore, a recent 

study has demonstrated that vasopressin modulates the effects of TNFα in human aortic 

endothelial cells, acting through OXTR. In this manner, vasopressin may have anti-

inflammatory effects (Yang et al., 2019). In porcine corpus luteum oxytocin stimulates 

oestradiol production and inhibits progesterone, TNFα was shown to have inhibitory 

effects on both progesterone and oestradiol and TNFα in the presence of oxytocin persisted 

to have inhibitory effects on both (Pitzel et al., 1993).  

The present study sought to investigate any relationship between TNFα, vasopressin and 

oxytocin in follicular fluid in women undergoing ART. 

3.1.2 Seminal fluid 

Seminal fluid is the fluid that is mixed with sperm in the ejaculate and is composed of fluids 

produced in the seminal vesicles, bulbourethral glands and the prostate. Seminal vesicles 

produce 60-70% of seminal fluid, containing fructose for energy for sperm and other 

constituents including prostaglandins and coagulase. The bulbourethral glands secretions 

primarily enter the urethra during arousal as lubrication for the penis for entry into the 

vagina. The prostate gland secretions contributes approximately 30% of the ejaculate 

volume. Seminal fluid is comprised of prostaglandins, amino acids, potassium, fructose, 

citric acid, enzymes, phosphorylcholine, zinc and amino acids (Sulaiman and Coey, 2018). 

Prostate gland accounts for around 30% of seminal fluid, provides citrate (energy source), 

fribrinolysin, prostate specific antigen. 

The main function of seminal fluid is to facilitate transportation of the sperm from the testis 

to the female reproductive tract, and buffer the sperm from the acidic conditions of the 

vagina. However, seminal plasma may have other functions It has been implicated in the 

health of offspring in mouse studies, where it was demonstrated that the absence of 

seminal fluid at conception caused the offspring to have increased fat accumulation, 

hypertension and metabolism alterations. It is suggested that seminal fluid regulates the 
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female reproductive tract environment and the inflammatory events involved to ensure 

optimal support for a developing embryo (Bromfield, 2014). 

In addition to several components present in semen – there are a number of neuropeptides 

that may have functional roles in sperm activity. Oxytocin and vasopressin are synthesised 

in the hypothalamus and secreted from the posterior pituitary. Furthermore, the receptors 

for both neuropeptide are expressed throughout the male and female reproductive tracts. 

Oxytocin’s involvement in reproduction is well documented and is commonly associated 

with sperm transfer, pregnancy, birth, lactation, maternal behaviour and bonding (Anthony 

W Norman and Helen L Henry, 2015). Vasopressin regulates water/salt balance and blood 

pressure, but is also involved in human social behaviour, maternal aggression and stress 

response through stimulating the release of adrenocorticotropic hormone (ACTH) which in 

turn stimulates the release of cortisol (Caldwell and Young III, 2006; Gibbs, 1986; 

Robertson, 1977). Vasopressin has been associated with depression in both humans and 

animal models and maternal depression has been implicated in negative clinical outcomes 

in women undergoing fertility treatments (Murgatroyd et al., 2004; Rotzinger et al., 2010; 

Smeenk et al., 2005; Thiering et al., 1993). Vasopressin has been previously detected in 

human semen at levels similar to those in plasma (~1.84 pg/mL) (Brotherton, 1990). 

Oxytocin has also been detected in human semen (~1.28 – 1.72 pg/mL). However, no 

statistically significant correlation was detected between oxytocin concentration and 

sperm morphology, motility and count. These early studies were carried out in the 1990’s 

and very few subsequent studies have been conducted, in particular the relationship of 

seminal plasma levels of vasopressin and oxytocin semen parameters and clinical outcomes 

(Goverde et al., 1998). In 2015, a study investigated males with and without varicocele and 

found higher concentrations of oxytocin (61.1 – 85.5 pg/mL) and negative correlations with 

sperm count and motility, and positive correlation with abnormal sperm morphology. This 

suggests that oxytocin may have a negative impact on sperm quality (Mostafa et al., 2015). 

Hypothesis: 

Clinical outcomes in females will be associated with levels of vasopressin, oxytocin and 

TNFα in follicular fluid in women undergoing ART and semen parameters in males will be 

associated with levels of vasopressin and oxytocin in seminal plasma of men undergoing 

ART. 
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Aims: The overall aim of this research is to explore any association between oxytocin, 

vasopressin and TNFα in follicular fluid and clinical outcomes, and to investigate any 

correlation with seminal plasma vasopressin and oxytocin with clinical outcomes. These 

aims will be achieved via the following objectives:  

1. Measure oxytocin, vasopressin and TNF levels in human follicular fluid samples 

from women undergoing fertility treatments both in vitro fertilisation (IVF) and 

intracytoplasmic sperm injection (ICSI) using enzyme-linked immunosorbent assay 

(ELISA), and investigate any associations between the levels of both neuropeptides, 

TNF and the clinical outcomes, biometrics, and stimulation treatment. 

2. Measure the levels of oxytocin and vasopressin in seminal plasma and investigate 

any association of sperm parameters and clinical outcomes.  
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3.2 Methods 

All samples used were obtained from consenting donors undergoing ART at Saint Mary’s 

Hospital, Manchester, United Kingdom.  

This work was approved under local faculty ethical approval (EthOS Reference Number: 

038) and REC approval [Reference number: 12/SC/0649] in collaboration with Department 

of Reproductive Medicine, St. Mary’s Hospital, Manchester University NHS Foundation 

Trust.  

 

Caution must be observed with any small clinical study, the limitations of studying any 

outcome from IVF are the very many confounders. These include but are not limited to: 

female age/egg quality, all laboratory processes, training and ability of laboratory staff, 

ability of clinician at embryo transfer, stimulation protocol and all male factors have a 

bearing on outcome. Male factors are only a small component (Tomlinson et al., 2013). 

 

3.2.1 Follicular fluid 

Follicular fluid samples (n=52) were obtained from consented patients undergoing assisted 

conception treatment at St Mary’s Hospital, Manchester. The samples were measured for 

TNFα, oxytocin and vasopressin using ELISAs. The parameters available for modelling were 

as follows; levels of TNFα (pg/mL), oxytocin (pg/mL) and vasopressin (pg/mL) present in the 

follicular fluid, age, treatment undergone (referred to as IVF/ICSI), the stimulation protocol, 

the gonadotrophin drug used, the gonadotrophin dose, the number of oocytes collected 

during egg collection after stimulation treatment (hereafter referred to as “number of 

oocytes”), the number of oocytes that were mixed with the partner sperm (hereafter 

referred to as “number mixed with sperm”), the number of oocytes that normally fertilised 

after mixing with sperm (hereafter referred to as “number fertilised”), the number of 

embryos replaced into the female (here after referred to as “number replaced”), the day 

of embryo transfer, the number of embryos frozen and the cycle outcome (freeze all, 

pregnant, not pregnant).  

 

The data obtained were modelled in IBM SPSS Statistics version 25. Unadjusted and fully 

adjusted regression models were created for each outcome variable separately in order to 

obtain meaningful analysis. To reduce over fitting, the regression models, all outcome 
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variables, predictor variables and confounders were chosen a priori and each predictor was 

modelled with each outcome separately. All relevant confounders were included whether 

they were statistically significant or not. However, sample size was a limitation and further 

investigation would increase the validity of the regression models (Table 10).  

 

Table 10. Outcome variables, predictor variables and covariates used in the modelling follicular fluid data. 

Outcome Variables Predictor Variables Confounders/Covariates 

Number of oocytes TNFα (pg/mL) Age 

Number fertilised Oxytocin (pg/mL) IVF or ICSI 

Freeze all or embryo transfer 

Pregnant or not pregnant 

 

Vasopressin (pg/mL) Stimulation protocol 

Gonadotrophin used 

Gonadotrophin dose 

Number replaced 

 

3.2.2 Semen 

Semen samples (n = 80) were obtained from men undergoing assisted conception 

treatment at St Mary’s Hospital, Manchester. The samples were measured for oxytocin and 

vasopressin using ELISAs (section 2.14). The parameters available for modelling were as 

follows; progressive motility, total motility, concentration, count, volume, oxytocin 

concentration, vasopressin concentration, age or normal/abnormal semen parameters 

using WHO reference ranges. 

The data obtained were modelled in IBM SPSS Statistics version 25. The data was explored 

using descriptive statistics and appropriate further tests were chosen based on the 

distribution of the outcome variables. Initial relationships between semen parameters and 

predictor variables were investigated using partial correlations. Regression models were 

created for each outcome variable separately in order to obtain meaningful analysis. The 

semen parameters were appropriately transformed where possible in order to perform 

univariate regressions. To reduce over fitting, the regression models, all outcome variables, 

predictor variables and confounders were chosen a priori and each predictor was modelled 

with each outcome separately. All relevant confounders were included whether they were 
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statistically significant or not. However, the models were limited due to the only 

confounder available to use was age (Table 11). 

 

Table 11. Outcome variables, predictor variables and covariates used in the modelling of seminal plasm data. 

 

3.3 Results 

3.3.1 Follicular fluid concentrations of neuropeptides, TNFα and their relationships 

with clinical parameters 

3.3.1.1 Follicular fluid data descriptives  

Standard descriptive analysis was used to explore the data and identify the correct type of 

model to use for each outcome variable. In order to model the data binary logistic 

regressions were used for the binary outcomes (attempt pregnant or freeze all and 

pregnant or not pregnant) and after investigating the distribution of oocytes obtained and 

the number of oocytes fertilised both of which were positively skewed and therefore a 

negative binomial regression was used for both of these outcomes. Reference categories 

for binary variables were chosen as either what is expected as ‘normal’ (i.e. not pregnant 

as the women are already not pregnant) or if there was no expected normal then whichever 

variable dominated the data was the reference category (i.e. for stimulation protocol 

antagonist was the reference category as long down regulation consisted of only 5 

patients). 

Outcome Variables Predictor Variables Confounders/Covariates 

Progressive motility (%) Oxytocin (pg/mL) Age 

Total motility (%) Vasopressin (pg/mL)  

Concentration (million/mL) 

Count (million) 

Volume (mL) 

Normal/Abnormal semen 

parameters 
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Overall concentrations of TNFα and oxytocin in follicular fluid showed a large variation 

whereas vasopressin concentrations in follicular fluid appeared to be tightly regulated 

(Table 12). 

Table 12. Descriptive statistics for predictor variables in the full cohort. 

  N Mean Median Std Dev 
InterQ 
Range Min Max 

TNFα pg/mL 28 177.78 46.39 394.71 119.72 0.36 1783.15 

Oxytocin pg/mL 36 694.21 559.23 452.18 242.06 285.26 2442.17 

Vasopressin pg/mL 36 3079.87 3081.97 7.97 10.86 3055.56 3091.08 

 

The descriptive statistics for each binary outcome variable demonstrated the differences 

in means, median, standard deviation, interquartile range (InterQ Range), min and max 

values for all the predictor variables (Table 13, Table 14, Table 15). 

 

 

Table 13. Descriptive statistics for TNFα concentration in follicular fluid and all binary variables. 

  TNFa pg/mL 

  N Mean Median 
Std 
Dev 

InterQ 
Range Min Max 

IVF 13 304.95 52.71 556.28 297.31 0.36 1783.15 
ICSI 15 67.56 32.31 84.76 78.35 1.83 311.98 

Long down regulation 
(Stimulation protocol) 3 429.39 52.71 675.66 

- 
26.04 1209.42 

Antagonist (Stimulation 
protocol) 25 147.58 46.02 358.27 114.87 0.36 1783.15 

Menopur (gonadotrophin 
drug used) 16 229.79 27.51 508.32 139.02 0.36 1783.15 
Bemfola (gonadotrophin 
drug used) 12 108.42 52.53 144.47 86.03 4.38 486.16 

Freeze all embryos 8 64.91 50.85 45.05 80.37 14.64 142.51 
Embryo transfer 19 171.00 28.99 409.95 152.15 0.36 1783.15 

Not pregnant 8 295.83 54.01 610.58 271.48 0.36 1783.15 
Pregnant 11 80.22 28.99 141.48 39.60 4.38 486.16 
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Table 14. Descriptive statistics for oxytocin concentration in follicular fluid and all binary variables. 

  Oxytocin pg/mL 

  N Mean Median 
Std 
Dev 

InterQ 
Range Min Max 

IVF 16 711.63 605.66 504.57 291.60 285.26 2442.17 
ICSI 20 680.28 544.05 418.57 221.91 357.42 2264.92 

Long down regulation 
(Stimulation protocol) 4 536.79 559.23 167.39 305.80 311.85 716.84 
Antagonist (Stimulation 
protocol) 32 713.89 571.95 473.86 250.30 285.26 2442.17 

Menopur (gonadotrophin 
drug used) 24 586.42 559.23 198.20 249.97 285.26 1196.40 
Bemfola (gonadotrophin 
drug used) 12 909.80 625.31 701.71 546.09 398.03 2442.17 

Freeze all embryos 12 844.63 576.95 727.80 435.83 285.26 2442.17 
Embryo transfer 23 614.75 555.11 203.68 225.25 357.42 1196.40 

Not pregnant 9 596.23 588.78 135.72 232.79 357.42 753.46 
Pregnant 14 626.65 544.05 241.82 230.51 398.03 1196.40 

 

 

 

 

 

 

Table 15. Descriptive statistics for vasopressin concentration in follicular fluid and all binary variables. 

  Vasopressin pg/mL 

  N Mean Median 
Std 
Dev 

InterQ 
Range Min Max 

IVF 16 3079.62 3080.62 6.85 10.57 3064.60 3091.08 
ICSI 20 3080.08 3082.55 8.93 11.53 3055.56 3090.70 

Long down regulation 
(Stimulation protocol) 4 3078.16 3078.17 7.14 13.43 3070.75 3085.54 
Antagonist (Stimulation 
protocol) 32 3080.09 3081.97 8.14 9.53 3055.56 3091.08 

Menopur (gonadotrophin drug 
used) 24 3080.76 3081.39 6.11 10.72 3070.55 3091.08 
Bemfola (gonadotrophin drug 
used) 12 3078.09 3083.03 10.89 18.26 3055.56 3088.79 

Freeze all embryos 12 3082.82 3083.61 4.68 6.13 3074.09 3091.08 
Embryo transfer 23 3078.21 3077.99 9.05 11.84 3055.56 3090.70 

Not pregnant 9 3079.81 3077.61 5.69 9.98 3073.50 3089.37 
Pregnant 14 3077.18 3080.32 10.76 16.52 3055.56 3090.70 
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The number of oocytes and the number of oocytes fertilised were both positively skewed 

and therefore it was necessary to use a negative binomial regression for these count data 

(Figure 20, Figure 21). 

 

 

Figure 20. Frequency distribution of the number of oocytes obtained. The distribution demonstrates a positive skew of 
the data. 



106 
 

 

The Pearson correlation was used to investigate any collinearity between the predictor 

variables in order to ensure their effects on the outcome variables are unique to each 

predictor variable. No statistically significant correlation was found between any of the 

predictor variables (Table 16). 

Table 16. Pearson’s correlation matrix for predictor variables. 

    TNFα Oxytocin Vasopressin 

TNFα Pearson Correlation 1 0.037 -0.096 

 p-value  0.859 0.641 
Oxytocin Pearson Correlation 0.037 1 0.016 

 p-value 0.859  0.928 
Vasopressin Pearson Correlation -0.096 0.016 1 

 p-value 0.641 0.928   

 

The model chosen for number of oocytes was a negative binomial logistic regression. The 

model chosen for number fertilised was a negative binomial logistic regression with 

number mixed with sperm as the offset. The model chosen for the cycle outcome was a 

positive binomial logistic regression. 

3.3.1.2 Follicular fluid regression model results 

In order to investigate any association between vasopressin, oxytocin and TNFα and the 

outcome variables regression modelling was used. 

Figure 21. Frequency distribution of the number of oocytes fertilised. The distribution demonstrates a positive skew of 
the data. 
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The data was modelled per 10 pg/mL increase of TNFα, vasopressin and oxytocin.  

Rate ratio, also referred to as Exp (B), is representative of the probability that an event will 

occur if all other factors in the model remain constant. The unadjusted models represent 

the individual predictor variables overall main effects on the outcome variable, the 

adjusted models represent the effects that each predictor variable has on the outcome 

when all of them are taken into consideration. Any warnings were taken into consideration 

when finalising the fully adjusted model, in some cases the stimulation protocol was not 

possible to include as there was only an N of 5 in the long down regulation protocol in the 

overall cohort, thus causing interference with the step-halving of the regression, both the 

warning and the variable, which has caused this to occur are marked with **. A mean 

centred interaction variable was created for the gonadotrophin used and the dose of 

gonadotrophin used, as these two variables are directly linked it was important to establish 

whether their interaction significantly impacted upon the regression models, this variable 

was only included where statistically relevant. 

3.3.1.2.1 Follicular fluid  - number of oocytes negative binomial logistic regression 

A negative binomial logistic regression was used to investigate any relationship between 

the predictor variables and the number of oocytes obtained. The interaction variable was 

not significant in the unadjusted model and therefore not included in subsequent 

regression models. A warning was issued (marked with **) in association with the 

stimulation protocol variable in the unadjusted model (Table 17)1 In the unadjusted model 

only the dose of gonadotrophin drug used was found to be significant showing that with a 

10 unit increase in dose there was a probability that the number of oocytes obtained would 

decrease by a factor of 0.974 (Table 17). The stimulation protocol did not cause any issues 

in the fully adjusted models (Table 18, Table 19, Table 20).  
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Table 17. Unadjusted negative binomial logistic regression for number of oocytes including all variables. 

Unadjusted model 

   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.928 0.996 0.922 1.077 
Long down regulation (Stimulation protocol)** 0.177 0.508 0.19 1.358 
Antagonist (Stimulation protocol)** . 1 . . 
Menopur (gonadotrophin drug used) 0.393 0.772 0.426 1.399 
Bemfola (gonadotrophin drug used) . 1 . . 
Gonadotrophin drug dose (per 10 units) 0.03 0.974 0.951 0.997 
Interaction variable 0.059 0.997 0.994 1 
Vasopressin (per 10 pg increase) 0.664 1.097 0.723 1.664 
Oxytocin (per 10 pg increase) 0.437 1.003 0.995 1.01 
TNFα (per 10 pg increase) 0.356 0.995 0.986 1.005 

 

The fully adjusted negative binomial logistic regression model including all available 

confounders showed no significant association between vasopressin concentration in 

follicular fluid and number of oocytes obtained (Table 18). 

Table 18. Fully adjusted negative binomial logistic regression for vasopressin concentration in follicular fluid and 
number of oocytes. 

Fully adjusted model vasopressin 

   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.841 1.011 0.911 1.121 

Long down regulation (Stimulation protocol) 0.446 0.636 0.198 2.038 

Antagonist (Stimulation protocol) . 1 . . 

Menopur (gonadotrophin drug used) 0.972 1.016 0.426 2.421 

Bemfola (gonadotrophin drug used) . 1 . . 

Gonadotrophin drug dose (per 10 units) 0.294 0.981 0.948 1.016 

Vasopressin (per 10 pg increase) 0.813 1.06 0.655 1.714 

 

The fully adjusted negative binomial logistic regression model including all available 

confounders showed no significant association between oxytocin concentration in follicular 

fluid and number of oocytes obtained (Table 19). 
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Table 19. Fully adjusted negative binomial logistic regression for oxytocin concentration in follicular fluid and number 
of oocytes. 

Fully adjusted model oxytocin 

   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.92 1.005 0.91 1.111 

Long down regulation (Stimulation protocol) 0.428 0.629 0.2 1.976 

Antagonist (Stimulation protocol) . 1 . . 

Menopur (gonadotrophin drug used) 0.85 1.088 0.454 2.611 

Bemfola (gonadotrophin drug used) . 1 . . 

Gonadotrophin drug dose (per 10 units) 0.256 0.981 0.949 1.014 

Oxytocin (per 10 pg increase) 0.708 1.002 0.993 1.01 

 

The fully adjusted negative binomial logistic regression model including all available 

confounders showed no significant association between TNFα concentration in follicular 

fluid and number of oocytes obtained (Table 20). 

 

Table 20. Fully adjusted negative binomial logistic regression for TNFα concentration in follicular fluid and number of 
oocytes. 

Fully adjusted model TNFα 

   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.904 0.992 0.877 1.123 

Long down regulation (Stimulation protocol) 0.472 0.605 0.154 2.38 

Antagonist (Stimulation protocol) . 1 . . 

Menopur (gonadotrophin drug used) 0.922 1.055 0.365 3.052 

Bemfola (gonadotrophin drug used) . 1 . . 

Gonadotrophin drug dose (per 10 units) 0.123 0.97 0.934 1.008 

TNFα (per 10 pg increase) 0.213 0.993 0.983 1.004 
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3.3.1.2.2 Follicular fluid: number of oocytes fertilised negative binomial logistic regression 

A negative binomial logistic regression was used to investigate any relationship between 

the predictor variables and the number of oocytes fertilised. All models were offset with 

the number of oocytes mixed with sperm to adjust for the potential number of oocytes 

fertilised. In the unadjusted model the following variables showed significant associations 

with the number of oocytes fertilised; choosing ICSI over IVF showed an extremely 

significant increase in association with fertilisation, the long-down regulation stimulation 

protocol showed an extremely significant increase  in association with fertilisation, 

Menopur over Bemfola as the gonadotrophin used showed a statistically significant 

increase in association with fertilisation, with every 10 unit increase in the gonadotrophin 

drug used showed a statistically significant increase in association with fertilisation, the 

interaction variable was highly significant therefore included in all fully adjusted models 

and oxytocin concentration in follicular fluid was statistically significant and showed 

decrease in number of eggs fertilised per 10 pg increase in concentration in follicular fluid 

by a factor of 0.95. No statistically significant association was found between number of 

oocytes fertilised and age, vasopressin concentration in follicular fluid or TNFα 

concentration in follicular fluid (Table 21). 

 

Table 21. Unadjusted negative binomial logistic regression for number of oocytes fertilised including all variables 

Unadjusted model 

   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.223 1.064 0.963 1.176 

ICSI 0 16.582 7.354 37.389 

IVF . 1 . . 

Long down regulation (Stimulation protocol) 0.014 7.701 1.499 39.568 

Antagonist (Stimulation protocol) . 1 . . 

Menopur (gonadotrophin drug used) 0.004 3.671 1.513 8.904 

Bemfola (gonadotrophin drug used) . 1 . . 

Gonadotrophin drug dose (per 10 units) 0 1.134 1.097 1.171 

Interaction variable  0 1.015 1.011 1.019 

Vasopressin (per 10 pg increase) 0.804 1.105 0.504 2.423 

Oxytocin (per 10 pg increase) 0 0.95 0.941 0.959 

TNFα (per 10 pg increase) 0.075 0.989 0.977 1.001 

 

The fully adjusted negative binomial logistic regression model including all available 

confounders showed no significant association between vasopressin concentration in 

follicular fluid and number of oocytes fertilised (Table 22). 
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Table 22. Fully adjusted negative binomial logistic regression for vasopressin concentration in follicular fluid and 
number of oocytes fertilised. 

Fully adjusted model vasopressin 
   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0 0.773 0.693 0.861 
ICSI 0 635.327 168.296 2398.399 
IVF . 1 . . 
Long down regulation (Stimulation protocol) 0.099 0.195 0.028 1.357 
Antagonist (Stimulation protocol) . 1 . . 
Menopur (gonadotrophin drug used) 0.201 2.288 0.643 8.141 
Bemfola (gonadotrophin drug used) . 1 . . 
Gonadotrophin drug dose (per 10 units) 0 1.273 1.12 1.446 
Interaction variable 0 0.968 0.952 0.985 
Vasopressin (per 10 pg increase) 0.256 0.669 0.335 1.338 

 

The fully adjusted negative binomial logistic regression model including all available 

confounders showed a significant negative association between oxytocin concentration in 

follicular fluid per 10 pg increase and a 3% decrease in number of oocytes fertilised (Table 

23). 

Table 23. Fully adjusted negative binomial logistic regression for oxytocin concentration in follicular fluid and number 
of oocytes fertilised. 

Fully adjusted model oxytocin 
   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.026 0.884 0.792 0.985 
ICSI 0 277.326 69.728 1102.996 

IVF . 1 . . 
Long down regulation (Stimulation protocol) 0.343 0.401 0.06 2.655 

Antagonist (Stimulation protocol) . 1 . . 
Menopur (gonadotrophin drug used) 0.56 1.456 0.411 5.155 

Bemfola (gonadotrophin drug used) . 1 . . 
Gonadotrophin drug dose (per 10 units) 0 1.222 1.107 1.349 

Interaction variable  0 0.974 0.961 0.988 
Oxytocin (per 10 pg increase) 0 0.968 0.957 0.98 

 

The fully adjusted negative binomial logistic regression model including all available 

confounders showed no significant association between TNFα concentration in follicular 

fluid and number of oocytes fertilised (Table 24). 
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Table 24. Fully adjusted negative binomial logistic regression for TNFα concentration in follicular fluid and number of 
oocytes fertilised. 

Fully adjusted model TNFα 
   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.138 0.897 0.778 1.035 

ICSI 0 18.389 3.96 85.404 
IVF . 1 . . 
Long down regulation (Stimulation protocol) 0.73 1.426 0.191 10.669 
Antagonist (Stimulation protocol) . 1 . . 

Menopur (gonadotrophin drug used) 0.689 0.721 0.145 3.581 
Bemfola (gonadotrophin drug used) . 1 . . 
Gonadotrophin drug dose (per 10 units) 0.19 1.094 0.957 1.25 
Interaction variable  0.843 0.998 0.983 1.015 

TNFα (per 10 pg increase) 0.255 1.012 0.991 1.033 
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3.3.1.2.3 Follicular fluid binary logistic regression embryo transfer or freeze all embryos 

A binary logistic regression was used to investigate any relationship between the predictor 

variables and whether embryos were transferred or the embryos were frozen. The 

interaction variable was not significant in the unadjusted model and therefore not included 

in subsequent regression models.  A warning was issued (marked with **) in association 

with the stimulation protocol variable, the gonadotrophin used variable and the 

gonadotrophin drug dose variable in the unadjusted model (Table 25)Error! Bookmark not defined.. 

Despite the issues in the unadjusted model these variables were not problematic in the 

fully adjusted models and therefore remained included. The only significant variable in the 

unadjusted model was the gonadotrophin drug dose, which caused a statistically significant 

6% decrease in likelihood that embryos would be frozen per 10 unit dose increase (Table 

25). 

 

Table 25. Unadjusted binary logistic regression for embryo transfer or freeze all embryos including all variables. 

Unadjusted model 

   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.769 1.024 0.876 1.196 
ICSI 0.663 1.222 0.496 3.014 
IVF . 1.000 . . 
Long down regulation (Stimulation protocol)** 0.755 0.689 0.066 7.192 
Antagonist (Stimulation protocol) . 1.000 . . 
Menopur (gonadotrophin drug used)** 0.880 0.909 0.265 3.118 
Bemfola (gonadotrophin drug used) . 1.000 . . 
Gonadotrophin drug dose (per 10 units)** 0.044 0.943 0.890 0.998 
Interaction variable  0.116 0.994 0.988 1.001 
Vasopressin (per 10 pg increase) 0.118 2.456 0.795 7.584 
Oxytocin (per 10 pg increase) 0.199 1.011 0.994 1.029 
TNFα (per 10 pg increase) 0.550 0.980 0.916 1.048 

 

The fully adjusted binary logistic regression model including all available confounders 

showed no significant association between vasopressin concentration in follicular fluid and 

whether embryos were transferred or if the embryos were frozen (Table 26). 
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Table 26. Fully adjusted binary logistic regression for vasopressin and embryo transfer or freeze all embryos. 

Full adjusted model vasopressin 
   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.058 1.280 0.992 1.652 
ICSI 0.027 0.095 0.012 0.764 
IVF . 1.000 . . 
Long down regulation (Stimulation protocol) 0.915 1.260 0.018 89.263 
Antagonist (Stimulation protocol) . 1.000 . . 
Menopur (gonadotrophin drug used) 0.669 1.581 0.194 12.922 
Bemfola (gonadotrophin drug used) . 1.000 . . 
Gonadotrophin drug dose (per 10 units) 0.239 0.937 0.841 1.044 
Vasopressin (per 10 pg increase) 0.084 3.787 0.837 17.133 

 

The fully adjusted binary logistic regression model including all available confounders 

showed no significant association between oxytocin concentration in follicular fluid and 

whether embryos were transferred or if the embryos were frozen (Table 27). 

Table 27. Fully adjusted binary logistic regression for oxytocin and embryo transfer or freeze all embryos. 

Full adjusted model oxytocin 
   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.176 1.177 0.929 1.490 
ICSI 0.038 0.134 0.020 0.897 
IVF . 1.000 . . 
Long down regulation (Stimulation protocol) 0.288 3.169 0.377 26.615 
Antagonist (Stimulation protocol) . 1.000 . . 
Menopur (gonadotrophin drug used) 0.097 0.926 0.845 1.014 
Bemfola (gonadotrophin drug used) 0.994 1.013 0.043 23.608 
Gonadotrophin drug dose (per 10 units) . 1.000 . . 
Oxytocin (per 10 pg increase) 0.360 1.010 0.989 1.030 

 

The fully adjusted binary logistic regression model including all available confounders 

showed no significant association between TNFα concentration in follicular fluid and 

whether embryos were transferred or if the embryos were frozen (Table 28). 
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Table 28. Fully adjusted binary logistic regression for TNFα and embryo transfer or freeze all embryos. 

Full adjusted model TNFα 

   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.626 0.887 0.547 1.438 
ICSI 0.067 0.054 0.002 1.228 

IVF . 1.000 . . 

Long down regulation (Stimulation protocol) 0.604 0.359 0.007 17.245 

Antagonist (Stimulation protocol) . 1.000 . . 
Menopur (gonadotrophin drug used) 0.033 0.832 0.703 0.985 

Bemfola (gonadotrophin drug used) 0.639 4.611 0.008 2713.452 

Gonadotrophin drug dose (per 10 units) . 1.000 . . 

TNFα (per 10 pg increase) 0.260 0.934 0.829 1.052 

 

 

3.3.1.2.4 Follicular fluid binary logistic regression pregnant or not pregnant 

A binary logistic regression was used to investigate any relationship between the predictor 

variables and whether pregnancy was achieved or not. The interaction variable was not 

significant in the unadjusted model and therefore not included in subsequent regression 

models. In the unadjusted model none of the variables showed any statistically significant 

relationship with whether pregnancy was achieved or not (Table 29). The number of 

embryos replaced was included as this has been long established in literature to directly 

affect the pregnancy rate therefore this was accounted for statistically (Edwards and 

Steptoe, 1983; Wramsby et al., 1987).  

 

Table 29. Unadjusted binary logistic regression for pregnancy achieved or not pregnant including all variables. 

Unadjusted model 

   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.706 0.967 0.811 1.152 
ICSI 0.966 1.032 0.247 4.303 
IVF . 1 . . 
Long down regulation (Stimulation protocol) 0.773 1.444 0.118 17.671 
Antagonist (Stimulation protocol) . 1 . . 
Menopur (gonadotrophin drug used) 0.494 0.6 0.139 2.595 
Bemfola (gonadotrophin drug used) . 1 . . 
Number embryos replaced 0.881 0.909 0.261 3.163 
Gonadotrophin drug dose (per 10 units) 0.437 0.977 0.923 1.035 
Interaction variable  0.571 0.998 0.991 1.005 
Vasopressin (per 10 pg increase) 0.492 0.704 0.259 1.913 
Oxytocin (per 10 pg increase) 0.722 1.008 0.965 1.053 
TNFα (per 10 pg increase) 0.37 0.982 0.944 1.022 
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The fully adjusted binary logistic regression model including all available confounders 

showed no significant association between vasopressin concentration in follicular fluid and 

whether pregnancy was achieved or not (Table 30). 

Table 30. Fully adjusted binary logistic regression for vasopressin and pregnancy achieved or not pregnant. 

Full adjusted model Vasopressin 
   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.832 0.974 0.760 1.247 
ICSI 0.779 1.321 0.189 9.254 
IVF . 1.000 . . 
Number embryos replaced 0.865 0.857 0.145 5.077 
Menopur (gonadotrophin drug used) 0.433 0.431 0.053 3.535 
Bemfola (gonadotrophin drug used) . 1.000 . . 
Gonadotrophin drug dose (per 10 units) 0.954 0.998 0.922 1.080 
Long down regulation (Stimulation protocol) 0.747 0.545 0.014 21.709 
Antagonist (Stimulation protocol) . 1.000 . . 
Vasopressin (per 10 pg increase) 0.514 0.663 0.193 2.277 

 

The fully adjusted binary logistic regression model including all available confounders 

showed no significant association between oxytocin concentration in follicular fluid and 

whether pregnancy was achieved or not (Table 31). 

Table 31. Fully adjusted binary logistic regression for oxytocin and pregnancy achieved or not pregnant. 

Full adjusted model Oxytocin 
   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.804 0.965 0.728 1.279 
ICSI 0.797 1.297 0.178 9.419 
IVF . 1.000 . . 
Number embryos replaced 0.731 0.726 0.117 4.503 
Menopur (gonadotrophin drug used) 0.350 0.359 0.042 3.074 
Bemfola (gonadotrophin drug used) . 1.000 . . 
Gonadotrophin drug dose (per 10 units) 0.955 1.002 0.926 1.084 
Long down regulation (Stimulation protocol) 0.830 0.674 0.019 24.440 
Antagonist (Stimulation protocol) . 1.000 . . 
Oxytocin (per 10 pg increase) 0.626 1.014 0.960 1.070 

 

The stimulation protocol was unable to be fitted into the fully adjusted binary logistic 

regression for TNFα, this was down to the long down regulation group only having 5 

patients in total and caused issues with accuracy of the model. The fully adjusted binary 

logistic regression model including all available confounders showed no significant 
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association between TNFα concentration in follicular fluid and whether pregnancy was 

achieved or not (Table 32). 

Table 32. Fully adjusted binary logistic regression for TNFα and pregnancy achieved or not pregnant. 

Full Adjusted model TNFα 
   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.466 0.866 0.589 1.274 
ICSI 0.335 0.232 0.012 4.511 
IVF . 1.000 . . 
Number embryos replaced 0.217 0.179 0.012 2.741 
Menopur (gonadotrophin drug used) 0.416 0.294 0.015 5.593 
Bemfola (gonadotrophin drug used) . 1.000 . . 
Gonadotrophin drug dose (per 10 units) 0.998 1.000 0.880 1.135 
TNFα (per 10 pg increase) 0.395 0.959 0.872 1.055 
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3.3.2 Semen concentrations of neuropeptides and clinical parameters 

3.3.2.1 Semen data descriptives 

The Shapiro-Wilk test for normality was used to initially investigate whether the continuous 

outcome variables (count, concentration, volume, progressive motility and total motility) 

were normally distributed. As all the variables were statistically significant this indicated 

they were not normally distributed and were further investigated using frequency 

histograms (Table 33). 

Table 33. Shapiro-Wilk tests for normality for the continuous outcome variables. 

 

 

 

 

The frequency histograms of the semen parameters show the distribution of the 

continuous outcome variables. Count, concentration and volume all show abnormal 

distribution with positive skew, whereas progressive motility and total motility show 

abnormal distribution with negative skew. The data was either square root transformed to 

correct the positive skew or log gamma transformed to correct the negative skew prior to 

use in linear regressions (Figure 22).   

  Shapiro-Wilk   
  Statistic df Sig. 

Count 0.822 73 0 
Concentration 0.92 73 0 
Progressive Motility 0.933 73 0.001 
Total Motility 0.905 73 0 
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The table of descriptives for the binary variable of normal or abnormal semen parameters, 

defined by using WHO reference ranges, show the n, mean, median, standard deviation 

(Std Dev), interquartile range (interQ range), minimum and maximum concentration of 

vasopressin or oxytocin in semen per group (Table 34). 

Table 34. Descriptives for normal or abnormal semen parameters and oxytocin or vasopressin concentration in seminal 
plasma. 

    N Mean Median Std Dev 
InterQ 
Range Min Max 

Oxytocin Normal 28 952.07 843.76 532.94 337.63 496.55 2963.38 

 Abnormal 37 1074.96 911.53 573.88 372.05 513.99 3100.24 

Vasopressin Normal 29 1085.32 1016.76 477.63 762.18 143.35 2019.99 

  Abnormal 40 1204.80 1124.73 551.64 719.03 192.86 2827.24 

 

The Pearson correlation was used to investigate any collinearity between the predictor 

variables in order to ensure their effects on the outcome variables are unique to each 

predictor variable. No statistically significant correlation was found between any of the 

predictor variables (Table 35). 

A B 

C D 

E 

Figure 22. Distribution histograms of semen parameters. A – sperm count (million), B – sperm 
concentration (million/mL), C – semen volume (mL), D – progressive motility (%), E – total motility 
(%). 
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Table 35. Pearson’s correlation matrix for predictor variables. 

  Vasopressin pg/mL Oxytocin pg/mL 
  r p-value r p-value 

Vasopressin pg/mL 1  0.122 0.327 
Oxytocin pg/mL 0.122 0.327 1   

 

3.3.2.2 Semen parameters partial correlations 

Partial correlations were performed on the appropriately transformed outcome variables 

using age as a confounding factor. The r value represents the direction and strength of the 

correlation. The only statistically significant correlation was between oxytocin 

concentration in semen and sperm count (r = -0.311, p = 0.022). There were no further 

statistically significant correlations between oxytocin concentration in semen and 

concentration, volume, progressive motility, total motility or normal/abnormal semen 

parameters. There were no statistically significant correlations between concentrations of 

vasopressin in semen and any of the semen parameters investigated (Table 36).  

Table 36. Values for partial correlation between vasopressin and oxytocin concentration in semen and transformed 
semen parameters. 

  Vasopressin pg/mL Oxytocin pg/mL 

  r p-value r p-value 

Concentration (SQRT Transformed) 0.095 0.496 -0.18 0.192 

Volume (SQRT Transformed) -0.219 0.111 -0.201 0.145 

Count (SQRT Transformed) -0.047 0.738 -0.311 0.022 

Progressive motility (Log gamma Transformed) 0.018 0.895 -0.091 0.512 

Total motility (Log gamma Transformed) -0.008 0.952 -0.064 0.648 

Normal or abnormal 0.109 0.432 0.218 0.114 

 

3.3.2.3 Semen parameters univariate regressions 

In order to thoroughly investigate any potential relationship between the concentrations 

of oxytocin and vasopressin in semen and semen parameters univariate regressions were 

used. The only confounder available was age. Variables were transformed appropriately 

either using square root transformation to correct for the positive skew or log gamma 

transformations to correct for negative skew and be normally distributed prior to use in 

univariate regressions. Standardised β values are the relative change in the outcome 

variables (semen parameters) due to the change in the predictor variables 

(oxytocin/vasopressin concentration in semen).  

Oxytocin concentration in semen had a statistically significant negative relationship with 

sperm count and sperm concentration but no statistically significant relationship with 
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volume, progressive motility or total motility in both the unadjusted and fully adjusted 

models (Table 37, Table 38). 

Table 37. Unadjusted univariate regression values for transformed semen parameters and oxytocin concentration in 
semen. 

  Unadjusted oxytocin (pg/mL) 

   CI (95%) 
  p-value Standardised β  Lower Upper 

SQRT count 0.006 -0.332 -0.004 -0.001 
SQRT concentration 0.027 -0.268 -0.003 0 
SQRT volume 0.089 -0.203 0 0 
Log gamma progressive motility 0.164 -0.167 -0.041 0.007 
Log gamma total motility 0.162 -0.168 -0.041 0.007 

 

Table 38. Fully adjusted univariate regression values for transformed semen parameters and oxytocin concentration in 
semen. 

  Fully adjusted oxytocin (pg/mL) 

   CI (95%) 
  p-value Standardised β  Lower Upper 

SQRT count 0.004 -0.373 -0.005 -0.001 
SQRT concentration 0.024 -0.293 -0.003 0 
SQRT volume 0.069 -0.229 0 0 
Log gamma progressive motility 0.103 -0.207 -0.048 0.005 
Log gamma total motility 0.107 -0.204 -0.048 0.005 

 

Vasopressin concentration in semen had no statistically significant relationship with any of 

the semen parameters in both the unadjusted and fully adjusted models (Table 39, Table 

40). 

Table 39. Unadjusted univariate regression values for transformed semen parameters and vasopressin concentration 
in semen. 

  Unadjusted vasopressin (pg/mL) 

   CI (95%) 
  p-value Standardised β  Lower Upper 

SQRT count 0.599 -0.066 -0.003 0.002 
SQRT concentration 0.686 0.051 -0.001 0.002 
SQRT volume 0.122 -0.188 0 0 
Log gamma progressive motility 0.771 -0.035 -0.031 0.023 
Log gamma total motility 0.6 -0.064 -0.034 0.02 
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Table 40. Fully adjusted univariate regression values for transformed semen parameters and vasopressin concentration 
in semen. 

  Fully adjusted vasopressin (pg/mL) 

   CI (95%) 
  p-value Standardised β Lower Upper 

SQRT count 0.477 -0.072 -0.324 0.154 
SQRT concentration 0.821 0.03 -0.001 0.002 
SQRT volume 0.206 -0.161 0 0 
Log gamma progressive motility 0.962 -0.006 -0.028 0.026 
Log gamma total motility 0.462 0.094 -1.69 3.68 
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3.3.2.4 Normal or abnormal semen parameters binary logistic regression 

The data was modelled per 10 pg/mL increase of vasopressin and oxytocin. Rate ratio also 

referred to as Exp (B) is representative of the probability that an event will occur if all other 

factors in the model remain constant. The unadjusted models represent the individual 

predictor variables overall main effects on the outcome variable, the adjusted models 

represent the effects that each predictor variable has on the outcome when all of them are 

taken into consideration. 

In order to investigate whether there is any relationship between normal or abnormal 

semen parameters a binary logistic regression was used (assessed as normal if all WHO 

reference ranges were met and abnormal is any of the WHO reference ranges were not 

met).  

In the unadjusted binary logistic regression neither oxytocin concentration nor vasopressin 

concentration in semen had any statistically significant relationship with normal or 

abnormal semen parameters (Table 41). 

Table 41. Unadjusted binary logistic regression for normal or abnormal semen parameters and oxytocin concentration 
and vasopressin concentration in semen. 

 Unadjusted model normal/abnormal 

   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.66 0.977 0.882 1.083 
Vasopressin (per 10 pg increase) 0.348 1.005 0.995 1.014 
Oxytocin (per 10 pg increase) 0.384 1.004 0.995 1.014 

 

Oxytocin concentration in semen had no statistically significant relationship with normal or 

abnormal semen parameters (Table 42). 

Table 42. Fully adjusted binary logistic regression for normal or abnormal semen parameters and oxytocin 
concentration in semen. 

 Full adjusted model oxytocin 

   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.556 0.966 0.862 1.083 

Oxytocin (per 10 pg increase) 0.151 1.011 0.996 1.025 

 

Vasopressin concentration in semen had no statistically significant relationship with normal 

or abnormal semen parameters (Table 43). 
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Table 43. Fully adjusted binary logistic regression for normal or abnormal semen parameters and vasopressin 
concentration in semen 

 Full adjusted model vasopressin 

   95% CI 

 Sig. Exp(B) Lower Upper 

Age 0.677 0.978 0.882 1.085 

Vasopressin (per 10 pg increase) 0.353 1.005 0.995 1.014 
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3.4 Discussion 

The concentrations of vasopressin, oxytocin and TNFα were measured in follicular fluid and 

vasopressin, oxytocin was measured in semen samples obtained from consenting patients 

undergoing ART treatment. The associations between these molecules and several clinical 

outcomes for both males and females undergoing ART were investigated using a variety of 

regression models. 

The follicular fluid concentrations of TNFα (0.36 – 1783.15 pg/mL) and oxytocin (285.26 – 

2442.17 pg/mL) ranged greatly whereas vasopressin (3055.56 – 3091.08 pg/mL) 

concentrations were very consistent, this may be suggestive that vasopressin is tightly 

regulated.  

TNFα has been previously detected in human follicular fluid at similar levels to the lower 

range found in this study 0.36 pg/mL to 7.8 pg/mL and was positively associated with poor 

quality oocytes and found that it may be involved in stimulating prostaglandin production 

and the proliferation of follicular cells (Lee et al., 2000; Wang et al., 1992). However, there 

has been reported that TNFα is not associated with success of IVF  (Mendoza et al., 2002). 

These levels previously found are similar to lower boundary in the present study, which is 

the first study to demonstrate a high variability in TNFα concentrations in follicular fluid, 

where no associations were found between TNFα concentrations and the clinical outcomes 

measured; number of oocytes, number fertilised, the choice between freeze all and 

embryo transfer and clinical pregnancy. TNFα has been demonstrated to interact with 

other cytokines such as; the proinflammatory interleukins 1, 6 and 8 as well as colony-

stimulating factors (CSFs), interferons (IFNs) and transforming growth factor beta (TGF-β). 

TNFα is a known stimulator of many cytokines and in combination may have differing 

effects; either synergistic or antagonistic (Neta et al., 1992). The cytokines are implicated 

in many aspects of female reproduction from regulating ovulation to potential effects on 

pregnancy outcomes (Bedaiwy et al., 2007; Büscher et al., 1999; Gaafar et al., 2014; 

Mendoza et al., 2002). Ideally, measurements of TNFα would coincide with measurements 

of the cytokines it interacts with to gain insight into the role it may play in female 

reproduction and the mechanisms involved in this. 
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Previously, vasopressin has been shown to modulate the effect of TNFα within human 

aortic endothelial cells through the oxytocin receptor, where vasopressin caused shedding 

of the tumour necrosis factor receptor 1 (TNFR1) through a calcium influx into the cells. 

However, no relationship was found between the levels of vasopressin, oxytocin or TNFα 

within the human follicular fluid, the interaction may have been a unique observation 

within human aortic endothelial cells, which so far have only been found to express the 

oxytocin receptor and not any vasopressin receptors, oxytocin receptor has an affinity for 

vasopressin due to the similarity of the nonapeptides at high enough concentrations 

(Thibonnier et al., 1999; Yang et al., 2019).  

In previous studies, oxytocin was found in human follicular fluid from the pre-ovulatory 

follicles at concentrations of 12.85 pg/mL at higher levels than in immature follicles (5.54 

pg/mL) (Tjugum et al., 1986). In tissue extracts of human ovaries acquired through 

surgeries, oxytocin was found at 1.4 - 60 ng/g in the preovulatory follicles. It was suggested 

that oxytocin may function as a luteolytic agent (degradation of the corpus luteum where 

pregnancy does not occur) (Khan-Dawood and Dawood, 1983). Further studies showed a 

concentration of 299 pg/mL of oxytocin in human follicular fluid, 30 times greater than the 

plasma concentrations (Schaeffer et al., 1984). The oxytocin concentrations detected in this 

study were similar to those reported in previous studies at the lower boundary and ranged 

to far greater than previously reported. 

Vasopressin has previously been detected at 131 pg/mL in human follicular fluid, 30 times 

higher than in plasma (Schaeffer et al., 1984). Other studies have disputed that vasopressin 

was found at levels either lower or equal to plasma levels within human follicular fluid at a 

mean concentration of 5.8 – 9.6 pg/mL (Verges et al., 1986). The vasopressin levels found 

in this study are far greater than those reported in previous literature, however the studies 

investigating vasopressin levels in human follicular fluid are few in number and nearly 30 

years ago. The consistent levels of vasopressin throughout all follicular fluid samples may 

be related to the regulation of aquaporin-2 and the osmotic gradient in the follicular 

antrum. Vasopressin regulates the water channels aquaporin-2 and aquaporin-3 which 

allow influx of water into the cell and out of the cell respectively (Knepper, 1997). Many of 

the aquaporins have previously been demonstrated to be present in the uterus and 

fallopian tubes of humans (Hildenbrand et al., 2006; Mints et al., 2007; Mobasheri et al., 

2005). Aquaporin-2 mRNA in granulosa cells has been found to be 35-fold higher in the 
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early ovulatory phase than the pre-ovulatory phase, with aquaporin-2 mRNA levels 

remaining upregulated during ovulation (Thoroddsen et al., 2011).  

In follicular fluid, while controlling for all available confounding factors, the only  

statistically significant result was a negative association between oxytocin and number of 

oocytes fertilised (RR – 0.968 [0.957, 0.98], p – 0.000). Oxytocin was not associated with 

the number of oocytes obtained, whether embryos were transferred or frozen, or 

pregnancy outcome. TNFα and vasopressin were not associated with any of the outcomes 

analysed. 

Most previous studies have investigated the effects of oxytocin and vasopressin within 

animal studies or tissue extracts of ovaries of women undergoing surgery. In cow and sheep 

models the oxytocin concentration in the periphery and the ovary are concordant with 

activity of the corpus luteum throughout the oestrous cycle, there is an increase in the early 

luteal phase and a decline at luteolysis. Maximum levels of circulating oxytocin and 

vasopressin have been found at ovulation. Within cow, sheep and goat studies oxytocin 

was shown decline post ovulation and to be lower in pregnancy. Both vasopressin and 

oxytocin have been implicated in influencing secretion of gonadotropin (Wathes, 1984). 

The follicular fluid used in this study is pooled from multiple follicles within the same 

woman, there may have been immature and mature follicles aspirated and there have been 

previous studies detecting differences in the constituents in the follicular fluids of 

immature and mature follicles (Spitzer et al., 1996; Tjugum et al., 1986). 

In semen, while controlling for all available confounding factors, it was found that oxytocin 

was negatively associated with sperm count (standardised β: - 0.332 [-0.004, -0.001], p – 

0.004) and concentration (standardised β: -0.293 [-0.003, 0], p – 0.000). Oxytocin was not 

associated with volume, progressive motility, total motility or overall normal/abnormal 

semen parameters. Semen vasopressin concentration was not associated with any of the 

outcomes analysed. Previous studies has mainly investigated levels of vasopressin in the 

testes or male reproductive tract within animal models, demonstrating potential 

involvement in motility and contractions of the epididymis, vas deferens and seminiferous 

tubules (Wathes, 1984). 
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Previously, plasma levels of oxytocin was found to have no correlation with sperm motility, 

count and morphology (Ogawa et al., 1980). In more recent studies, plasma oxytocin had 

been correlated with negative impacts on sperm (reduced motility, count and increased 

abnormal morphology) and a lower concentration of oxytocin was found in fertile men than 

men with idiopathic oligozoospermia, idiopathic asthenozoospermia and obstructive 

azoospermia which may suggest that an increase in oxytocin negatively impacts human 

sperm (Lui et al., 2010; Mostafa et al., 2015). Oxytocin in the testis potentially has an 

autocrine/paracrine role on steroid metabolism, previously shown to have a role in the 

contractility of seminiferous tubules (Ivell et al., 1997). Any modulation in steroid 

metabolism or contractility of the seminiferous tubules may have further implications in 

spermatogenesis and male fertility. 

 

3.5 Conclusion 

In this study only oxytocin concentration demonstrated any significance and was found to 

have a significant negative association with number of oocytes fertilised, sperm count and 

sperm concentration in men and women undergoing ART. Oxytocin was not associated 

with the number of oocytes obtained, whether embryos were transferred or frozen, 

pregnancy outcome, volume, progressive motility, total motility or overall 

normal/abnormal semen parameters. Neither TNFα nor vasopressin had any statistically 

significant association with any of the clinical parameters and outcomes. 
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Chapter 4 – The role of vasopressin in human 

sperm function  

4.0 Vasopressin and Human sperm 

 

4.1 Introduction 

 

Arginine Vasopressin (AVP) (in humans) or vasopressin is a small neuropeptide (Cys-Tyr-

Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2), which is nine amino acids in length differing by only two 

from oxytocin (OXT). Vasopressin is synthesised by the supraoptic nucleus (SON), and also 

in the paraventricular nucleus (PVN) in the hypothalamus of the brain and is stored and 

secreted by the posterior pituitary (Garrahy and Thompson, 2019). 

The primary function of vasopressin in humans is as an antidiuretic and is key to salt/water 

balance and regulating blood pressure and there is evidence that vasopressin plays a role 

in animal and human sexual behaviour, maternal aggression, pair bonding and social 

behaviour (Knafo et al., 2008). The general role of vasopressin/oxytocin family of peptides 

and its analogues in sexual behaviours is conserved through phylogeny (Reaume and 

Sokolowski, 2011).  

Vasopressin is a derivative from the preprohormone prepropressophysin (also comprised 

of a copeptin and neurophysin II), the preprohormone is cleaved into the prohormone in 

the Golgi apparatus and is then stored in secretory vesicles until necessary  (Acher et al., 

2002; Cuzzo and Lappin, 2019). The prohormone is cleaved into vasopressin before 

reaching the posterior pituitary where it is released from. Vasopressin is the primary 

regulator for osmotic homeostasis within the body, in a hyperosmotic state the 

osmoreceptors within the neurons in the hypothalamus respond swiftly to even slight 

blood osmolarity changes and secrete vasopressin. Vasopressin then acts in the kidney by 

binding to the principle cells within the nephron and triggering a cell signalling cascade 
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through the vasopressin receptor 2, increasing cyclic AMP, activating protein kinase A 

which phosphorylated target proteins resulting in the translocation of aquaporin-2 

channels to the cell surface membrane allowing the passive movement of water into the 

cell due to the osmotic gradient within the cell (high intracellular concentration of salt and 

urea) (Boone and Deen, 2008; Davies, 1972). 

In hypovolemia (reduced fluid volume of the blood) the baroreceptors are stimulated and 

trigger the vagus nerve to stimulate the release of vasopressin which promotes the kidneys 

to reabsorb water and at high enough concentrations vasopressin will also stimulate 

vasoconstriction via the vasopressin receptor 1a in vascular smooth muscle, stimulating the 

phospholipase C signalling cascade, produces IP3 and DAG, causing a release of calcium 

from intracellular stores, DAG and calcium stimulate PKC and this phosphorylates target 

proteins. Vasopressin can also be stimulated by pain, nicotine, nausea, hypoglycaemia and 

angiotensin II and is inhibited by alcohol (Boone and Deen, 2008; Schrier and Bichet, 1981).  

Vasopressin receptors are found throughout the human male and female reproductive 

tracts. Vasopressin has 3 different receptors, vasopressin receptor 1a (AVPR1a) (Gq), 

vasopressin receptor 1b (AVPR1b) (Gq) and vasopressin receptor 2 (AVPR2) (Gs) as 

described in Figure 8.  

The AVPR1a receptor is primarily localised in brain, liver, kidney and throughout peripheral 

vasculature, this receptor is responsible for vasoconstriction, platelet aggregation and 

release of factor VIII as well as gluconeogenesis in the liver (Tiwari and Ecelbarger, 2018). 

Study in humans found correlation between receptor expression and extra-pair mating in 

females but not males (Zietsch et al., 2015). Cerebrospinal fluid vasopressin levels in 

humans correlated with a history of aggression (Coccaro et al., 1998). 

AVPR1b is also involved in homeostasis in the regulation of blood osmolality, mediates 

corticotropin secretion and is localised primarily to the anterior pituitary (Stewart et al., 

2008). The AVPR1b receptor has been shown to be involved in behaviour in animal studies; 

a mouse knockout model showed reduced aggression and the use of a AVPR1b specific 

agonist in hamsters also showed reduced aggression (Blanchard et al., 2005; Wersinger et 

al., 2002). In humans there is also evidence for AVPR1bs involvement in behaviour, a single 

nucleotide polymorphism of this receptor has been implicated in depression within humans 

(Van West et al., 2004). 
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AVPR2 is primarily responsible for free water reabsorption in the renal medullar via 

translocation of AQP2 channels to the cell surface membrane, AQP2 allows for water influx 

into the cell and therefore AVPR2 is responsible for concentrating the urine, disfunction in 

this receptor or AQP2 causes nephrogenic diabetes insipidus (Bichet, 2006). In vascular 

endothelium AVPR2 stimulation causes release of von Willebrand factor and factor VIII 

(Jackson, 2018).  

In multiple species including humans, vasopressin has been found to be present in the 

suprachiasmatic nuclei (SCN), which is responsible for control of circadian rhythms, and a 

daily rhythm of vasopressin synthesis and neurones expressing vasopressin in the SCN are 

present in these multiple species (Kalsbeek et al., 2010). This suggests that vasopressin is 

important in regulating the HPG axis as the circadian rhythm is involved in many aspects of 

reproduction such as regulating pulsatile activity of LH, vasopressin has been shown to have 

a direct stimulatory effect on the LH surge (Palm et al., 2001). 

The vasopressin receptor 1a/oxytocin receptor antagonist (atosiban) has been 

demonstrated to improve pregnancy rates in IVF patients with recurrent failures, this is 

suggested to be due to inhibiting contractile activity in the uterus post embryo transfer 

(Pierzynski, 2011). 

Vasopressin has been detected in seminal plasma at various levels, between those similar 

to plasma and in the previous chapter at higher levels (Brotherton, 1990). Vasopressin has 

been found to stimulate contractile activity in the seminiferous tubules (Harris and 

Nicholson, 1998) and it’s receptors have been found to be expressed in testis (Assinder et 

al., 2000b; Kasson et al., 1985). Studies in several mammals demonstrated an influence in 

male reproduction; an increase in seminal volume (rabbit), a high urine concentration of 

vasopressin was correlated with a decrease in sperm count and decreased motility (human) 

and decreased motility in mouse sperm (Kihlström and Ågmo, 1974; Puri and Puri, 1985; 

Śliwa, 1994). In a 2013 study, the vasopressin receptor 2 was found in mouse sperm and 

incubation with dDAVP was found to inhibit sperm motility, increase calcium 

concentration, decrease intracellular pH and decrease PKA phosphorylation (Kwon et al., 

2012). The effects of vasopressin on human sperm have not been effectively elucidated to 

date. 
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Hypothesis (experimental): Sperm function is modulated by vasopressin and its 

downstream signalling cascade. 

Aim: 

- To investigate the presence of vasopressin receptors on human sperm. 

- To investigate the effect of vasopressin on human sperm through treatments with 

agonists in a set of in vitro experiments. 

To investigate the role of vasopressin in human sperm function the following objectives will 

be performed: 

- Investigate presence of vasopressin receptors on human sperm using 

immunocytochemistry. 

- Incubate human sperm with vasopressin and dDAVP in vitro and assess sperm 

motility and kinematics using CASA and MATLAB. 

- Investigate regulation of phosphotyrosine (and pPKA) after vasopressin and dDAVP 

treatment. 

- Explore the presence of AQP2 channels on sperm via immunocytochemistry and 

western blot.  

- Investigate a vasopressin-induced calcium response in sperm using a Fluorescence 

Assays and live cell imaging. 

- Investigate the role of vasopressin and dDAVP on the acrosome reaction using FITC-

PSA and SEM 
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4.2 Methods 

Consenting donors (18 +) were recruited under faculty approved ethics (Faculty Ethics 

approval: SE1617126). Semen samples were separated from seminal plasma as described 

in section 2.3. Immunolocalisation of the vasopressin receptor 2 was investigated with 

immunofluorescent staining (section 2.5), motility and sperm kinematics were measured 

using CASA (section 2.2). To analyse any calcium response in sperm treated with 

vasopressin was measured via fluorescence microplate reader and live cell imaging, 

acrosome reaction was investigated by both FITC-PSA immunofluorescent staining and 

scanning electron microscopy, oxygen consumption rate and extracellular acidification rate 

were measured using Seahorse analysis, the presence of AQP2 channels was investigated 

using dot blots and western blot analysis (see methods, section 2.8).  Anti-Phosphotyrosine 

antibody [PY20] (Abcam, ab10321) was used to investigate capacitation in sperm treated 

with vasopressin and dDAVP through western blot analysis (methods, section 2.8)  
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4.3 Results 

 

4.3.1 Immunolocalisation of vasopressin receptor 2 on human sperm 

 

Human sperm were separated from seminal plasma, fixed and examined by 

immunofluorescence using anti-AVPR2 antibody (see Methods section 2.5). Sperm had 

intense AVPR2 labelling on the acrosomal region (Figure 23, A (insert)). There was no 

unspecific labelling (Figure 23, B and C). 
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Figure 23. Immunolocalisation of the vasopressin receptor 2 in human sperm cells. Vasopressin receptor 2 (green) 
localised on the acrosome of human sperm (A, inset). IGG control on human sperm (B). No primary control on human 
sperm (C). Nuclear labelling with DAPI in all (blue). Phase contrast micrographs of each image (Ai, Bi, Ci). Representative 
of n = 10. 630 x. 
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4.3.2 Sperm motility and kinematics 

Sperm motility and kinematics are important parameters in determining function in vitro. 

The motility and way that sperm swim are indicative of normal function, sperm that are 

immotile or unable to swim linearly will be unlikely  to fertilise an oocyte (Wallach et al., 

1992). 

Human sperm were isolated from the seminal plasma using density gradient centrifugation. 

Sperm were resuspended to 10 million/mL and incubated with serial dilutions of 

vasopressin and dDAVP for 1 hour (10 pM, 10 nM and 10 µM). Sperm motility was assessed 

using CASA. Sperm kinematics were assessed using the coordinates of the paths generated 

in the CASA, a MATLAB script was used to assess the straight line path (VSL µm/s), the 

curvilinear path (VCL µm/s) and the linearity of the sperm path (LIN %) LIN = VSL/VCL x100.  

 

 

4.3.2.1 Sperm motility 

Sperm motility is an important part of semen analysis and is sperm motility is essential for 

reproduction (Donnelly et al., 1998).  Progressive sperm motility is used as an indicator for 

sperm health and below 32% progressively motile sperm in a sample is considered 

abnormal (asthenozoospermia). In order to calculate progressive motility grade A and 

grade B sperm were combined (World Health Organization, 2010a). To eliminate the 

Figure 24. Terminology for variables measured in CASA. Adapted from WHO (2010) 

Curvilinear path (VCL) 

Straight line path (VSL) 
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baseline variation between participants prior to statistical analysis, the data were 

normalised to each participant’s baseline (vehicle control). The distribution of the motility 

data was analysed using the Shapiro-Wilk test in GraphPad Prism and was found to be 

normally distributed and therefore was analysed using a one-way ANOVA and Dunnett’s 

test as a post-hoc analysis for multiple comparisons.  

Overall differences between groups was observed at F (7, 52) = 2.34, p = 0.037. The post-

hoc analysis showed a statistically significant increase in progressive motility in the 10 µM 

vasopressin treatment group at p = 0.019 when compared to vehicle control. No other 

treatment groups showed statistically significant differences in progressive motility when 

compared to the vehicle control (Figure 25, Table 44).  
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Figure 25. Percentage difference progressive motility after 1 hour 
incubation with serial dilutions of vasopressin and dDAVP. Each 
participants data was normalised to their control and analysed using a two 
tailed T-Test. Statistically significant differences were found at 10 pM, 10 
nM and 10 µM dDAVP. * indicates p < 0.05. n = 10. 
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Table 44. Delta progressive motility following 1 hour incubation with vasopressin or dDAVP. One-Way ANOVA for 
overall differences and Dunnett’s multiple comparisons test for analysis of differences between treatment groups 
compared to vehicle control. 

One-Way ANOVA progressive motility 
F (DFn, DFd) P value  
F (7, 52) = 2.34 P=0.0373   

   
Dunnett's multiple comparisons test 95% CI of diff. Adjusted P Value 
      

Vasopressin 10pM -0.1883 to 0.05127 0.4814 
Vasopressin 10nM -0.182 to 0.05757 0.5813 
Vasopressin 10µM -0.2369 to -0.01517 0.0194 
dDAVP 10pM -0.2921 to 0.2733 0.9999 
dDAVP 10nM -0.3674 to 0.198 0.9416 
dDAVP 10µM -0.2946 to 0.019 0.1064 
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4.3.2.2 Sperm linearity  

Sperm linearity is the measure of the linearity of the curvilinear path as a ratio between 

the straight line velocity and curvilinear velocity (VSL/VCL x 100). Linearity is a kinematic 

assessment. To investigate if VP and dDAVP modulates sperm kinematics further, human 

sperm linearity was calculated from the sperm track coordinates provided from the CASA 

(SAMi software) using Matlab script. The data were normalised to each individual 

participants baseline (vehicle control) prior to any statistical analysis to control for 

individual baseline variation (delta linearity). Normality was investigated using the Shapiro-

Wilk test in Graph-Pad Prism. Linearity was found to be not normally distributed and 

therefore the non-parametric Kruskal-Wallis analysis was used with Dunn’s multiple 

comparison test for post-hoc analysis of differences between treatment groups. Overall 

significance of differences between groups was found at <0.0001. Statistically significant 

differences were found in the 10 nM vasopressin, 10 µM vasopressin and 10 µM dDAVP 

treatment conditions when compared to the control at p = 0.000 for the three treatment 

conditions. The 10 nM and 10 µM vasopressin treatments increased sperm linearity 

whereas 10 µM dDAVP reduced sperm linearity. No other treatment condition was found 

to be statistically significant. N = 3 (Figure 26, Table 45). 
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Figure 26. Sperm linearity after 1 hour incubation with serial dilutions of 
vasopressin and dDAVP. Analysed using Kruskal-Wallis test and Dunn’s 
multiple comparisons test. Statistically significant differences found at 10 
nM, 10 µM vasopressin and 10 µM dDAVP., *** indicates p < 0.001. n = 3. 
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Table 45. Delta linearity following 1 hour incubation with vasopressin or dDAVP. Kruskal-Wallis test for overall 
differences and Dunn’s multiple comparisons test for analysis of differences between treatment groups compared to 
vehicle control. 

Kruskal-Wallis test Linearity 

P value <0.0001   

   
Dunn's multiple comparisons 
test 

Mean rank 
diff. 

Adjusted P 
Value 

      

Vasopressin 10pM -46.76 >0.9999 

Vasopressin 10nM 168.8 0.0002 

Vasopressin 10µM 299.9 <0.0001 

dDAVP 10pM 45.14 >0.9999 

dDAVP 10nM 6.943 >0.9999 

dDAVP 10µM 358.7 <0.0001 
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4.3.2.3 Sperm curvilinear velocity (VCL) 

Human sperm curvilinear velocity (VCL) was calculated from the sperm track coordinates 

provided from the CASA (SAMi software) using Matlab script. The data were normalised to 

each individual participants baseline (vehicle control) prior to any statistical analysis to 

control for individual baseline variation (delta VCL). Normality was investigated using the 

Shapiro-Wilk test in Graph-Pad Prism. VCL was found to be not normally distributed and 

therefore the non-parametric Kruskal-Wallis analysis was used with Dunn’s multiple 

comparison test for post-hoc analysis of differences between treatment groups. Overall 

significance of differences between groups was found at <0.0001. Statistically significant 

differences were found in the 10 pM, 10 nM, 10 µM vasopressin and 10 pM, 10 nM dDAVP 

treatment conditions when compared to the control at p = 0.000 for the five treatment 

conditions. The vasopressin and dDAVP treatments increased sperm VCL. The 10 µM 

dDAVP treatment was not found to be statistically significant. N = 3. (Figure 27, Table 46). 
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Figure 27. Sperm VCL after 1 hour incubation with serial dilutions of 
vasopressin and dDAVP. Analysed using Kruskal-Wallis test and Dunn’s 
multiple comparisons test. Statistically significant differences found at 
10pM, 10 nM, 10 µM vasopressin and 10 pM, 10 nM dDAVP., *** indicates 
p < 0.001. n = 3. 
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Table 46. Delta VCL following 1 hour incubation with vasopressin or dDAVP. Kruskal-Wallis test for overall differences 
and Dunn’s multiple comparisons test for analysis of differences between treatment groups compared to vehicle control. 

Kruskal-Wallis test VCL 

P value <0.0001   

   
Dunn's multiple comparisons 
test 

Mean rank 
diff. 

Adjusted P 
Value 

      

Vasopressin 10pM -320.8 <0.0001 

Vasopressin 10nM -192.1 <0.0001 

Vasopressin 10µM -259.5 <0.0001 

dDAVP 10pM -260.9 <0.0001 

dDAVP 10nM -255.5 <0.0001 

dDAVP 10µM -87.97 0.1936 
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4.3.2.4 Sperm straight line velocity (VSL) 

Human sperm straight line velocity (VSL) was calculated from the sperm track coordinates 

provided from the CASA (SAMi software) using Matlab script. The data were normalised to 

each individual participants baseline (vehicle control) prior to any statistical analysis to 

control for individual baseline variation (delta VSL). Normality was investigated using the 

Shapiro-Wilk test in Graph-Pad Prism. VSL was found to be not normally distributed and 

therefore the non-parametric Kruskal-Wallis analysis was used with Dunn’s multiple 

comparison test for post-hoc analysis of differences between treatment groups. Overall 

significance of differences between groups was found at <0.0001. Statistically significant 

differences were found in the 10 pM, 10 nM, 10 µM vasopressin and 10 µM dDAVP 

treatment conditions when compared to the control at p = 0.000 for the four treatment 

conditions. The 10 pM vasopressin treatment increased sperm VSL and the 10 nM and 10 

µM vasopressin and 10 µM dDAVP treatments decreased sperm VSL. No other treatment 

was found to be statistically significant. N = 3. (Figure 28, Table 47).  
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Figure 28. Sperm VSL after 1 hour incubation with serial dilutions of 
vasopressin and dDAVP. Analysed using Kruskal-Wallis test and Dunn’s 
multiple comparisons test. Statistically significant differences found at 10 
pM, 10 nM, 10 µM vasopressin and 10 µM dDAVP., *** indicates p < 0.001. 
n = 3 
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Table 47. Delta VSL following 1 hour incubation with vasopressin or dDAVP. Kruskal-Wallis test for overall differences 
and Dunn’s multiple comparisons test for analysis of differences between treatment groups compared to vehicle control. 

Kruskal-Wallis test VSL 

P value <0.0001   

   
Dunn's multiple comparisons 
test 

Mean rank 
diff. 

Adjusted P 
Value 

      

Vasopressin 10pM -255.6 <0.0001 

Vasopressin 10nM 543.2 <0.0001 

Vasopressin 10µM 538.6 <0.0001 

dDAVP 10pM 99.82 0.0949 

dDAVP 10nM 37 >0.9999 

dDAVP 10µM 697.7 <0.0001 
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4.3.3 Intracellular calcium measurements  

4.3.3.1 Microplate fluorescence assay 

Capacitation and acrosome reaction are prerequisite maturation steps that are essential 

for fertilisation to be possible. Capacitation and acrosome reaction are mediated via PKA 

and protein tyrosine phosphorylation, which is dependent on the influx and efflux of 

calcium in the cell (Puga Molina et al., 2018). Calcium assays are an effective measure of 

capacitation and acrosome reaction in sperm from the cell as specific ligands may trigger 

these signalling cascades indicating a role in either capacitation, acrosome reaction or both 

(Parodi, 2014).  

Human sperm were isolated from the seminal plasma. Sperm were loaded with Fluo-4 AM 

(4µM) and were resuspended to a concentration of 10 million/mL and loaded into the wells 

of a 96 well plate for fluorescence coated with poly-D-lysine. F0 (starting background 

fluorescence) was read for 45 seconds then the individual treatments were added to the 

relative wells and read for a further 10 minutes. Sperm were treated with 10 µM ionophore, 

3 µM progesterone, 10 µM, 10 nM and 10 pM vasopressin, 10 µM, 10 nM and 10 pM 

dDAVP, 10 µM oxytocin* and DMSO as the vehicle control. Each well was normalised to its 

baseline (F0) prior to statistical analysis. (Figure 29)  

 

[*Although the oxytocin receptor was not localised on human sperm (data not included) – it can elicit a 

intracellular response via the vasopressin receptor (Song and Albers, 2018)] 
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Figure 29. Average calcium traces over 10 minutes and 45 seconds with injection of compounds. Sperm cells 
loaded with calcium indicator Fluo4-AM. A – no treatment, B – Vehicle control (DMSO), C – progesterone 3 µM, 
D – calcium ionophore A23187 10 µM, E – vasopressin 10 µM, F – dDAVP 10 µM. Arrow indicates time of injection 
(45 seconds). N = 4. 
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Differences between treatments were assessed using a one-way ANOVA the overall test 

was statistically significant at p < 0.000. The Dunnett’s test for multiple comparison was 

used to analyse differences between each treatment compared to the vehicle control.  

Statistically significant differences in calcium response were observed when compared to 

the vehicle control in the 10 pM vasopressin (p = 0.0001), 10 nM vasopressin (p = 0.0403), 

10 µM vasopressin (p = 0.0001), 10 pM dDAVP (p = 0.0001), 10 µM ionophore (p = 0.0001), 

3 µM progesterone (p = 0.0001). N = 4. (Figure 30, Table 48). 
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Figure 30. Differences between calcium traces of sperm treated with 
vasopressin, dDAVP, oxytocin, ionophore and progesterone. Significance 
determined via One-Way ANOVA and Dunnett’s multiple comparisons test. 
**** indicates p < 0.0001, * indicates p < 0.05. N = 4. 
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Table 48. Significance of calcium response in sperm treated with vasopressin, dDAVP, oxytocin, ionophore and 
progesterone. One-Way ANOVA for overall differences and Dunnett’s multiple comparisons test to investigate 
differences between the treatments and vehicle control. N = 4. 

One-Way ANOVA 

F (DFn, DFd) F (10, 2376) = 961.2 
P value  P<0.0001  
    

Dunnett's multiple comparisons test 
Mean 
Diff. 95% CI of diff. 

Adjusted 
P Value 

Vasopressin 10 pM 0.02243 0.01055 to 0.03431 0.0001 
Vasopressin 10 nM 0.01222 0.000341 to 0.0241 0.0403 
Vasopressin 10 µM -0.02752 -0.0394 to -0.01564 0.0001 
dDAVP 10 pM 0.02357 0.01169 to 0.03545 0.0001 
dDAVP 10 nM 0.003275 -0.008605 to 0.01515 0.9887 
dDAVP 10 µM 0.005186 -0.006693 to 0.01707 0.8281 
Oxytocin 10µM -0.00067 -0.01255 to 0.01121 0.9998 
Ionophore 10 µM -0.2543 -0.2662 to -0.2424 0.0001 
Progesterone 3 µM -0.1658 -0.1777 to -0.1539 0.0001 
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4.3.3.2 Live cell calcium imaging 

Single cell calcium imaging was carried out to establish spatiotemporal patterns of calcium 

signalling after treatment vasopressin (10 µM) and dDAVP (10 µM) Progesterone (500nM) 

was used as a positive control (Figure 33) as per methods section 2.13.2. 

Out of the 175 cells analysed for responses to vasopressin treatment 85.7% of them 

responded to progesterone, any unresponsive cells were not further assessed. Of the 150 

cells that responded to progesterone 10.7% of them responded to the vasopressin 

treatment (Figure 31).  

 

 

 

Non-responsive
to	progesterone

Responsive	to	
Progesterone

14.3%

85.7%

89.3%

10.7% Responsive	to	vasopressin

Non-responsive	
to	vasopressin

Figure 31. Proportion of cells responsive to the positive control progesterone and of those the 
proportion responsive to vasopressin treatment.  
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Out of the 492 cells analysed for responses to dDAVP treatment 77% of them responded 

to progesterone, any unresponsive cells were not further assessed. Of the 379 cells that 

responded to progesterone 19.5% of them responded to the dDAVP treatment (Figure 32).  

Non-responsive
to	progesterone

Responsive	to	
Progesterone

Non-responsive	
to	dDAVP

Responsive	to	dDAVP

23%

77%

80.5%

19.5%

Figure 32 Proportion of cells responsive to the positive control progesterone and of 
those the proportion responsive to dDAVP treatment. 
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Control dDAVP (10 µM) Progesterone (500 nM) 

Figure 33. Fluorescent micrograph of sperm loaded with calcium green demonstrating response to dDAVP and progesterone treatment. 
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Sperm cells loaded with calcium green 1AM and perfused with vasopressin showed a mild 

transient response.  At 6 minutes the sperm were perfused with progesterone, which 

induced a larger calcium response (Figure 34). 

The first 4 minutes of the trace was baseline calcium levels.  
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Figure 34. Average calcium traces of live sperm cells which responded to 
vasopressin over 8 minutes. Sperm cells loaded with calcium indicator calcium 
green. Arrow indicates time of perfusion of vasopressin (4 minutes) and 
progesterone (6 minutes). N = 3. 



153 
 

The cells that responded to vasopressin were then statistically analysed using a repeated 

measures ANOVA. The overall differences were statistically significant at p < 0.0001, the 

Tukey’s multiple comparisons test was used for post-hoc analysis of differences between 

treatment periods and statistically significant differences were found between all 

treatment groups (control, vasopressin 10 M and progesterone 500 nM) at adjusted p < 

0.0001 (Figure 35, Table 49). 

 

 

 

Table 49. Repeated measures ANOVA for overall differences in treatments with vasopressin and progesterone and 
Tukey’s multiple comparisons test for differences between treatments. 

Repeated Measures ANOVA 

F (DFn, DFd) F (1.043, 15.65) = 55.12 
P value  P<0.0001  
    

Tukey's multiple comparisons test Mean Diff. 95% CI of diff. 
Adjusted  
P Value 

Control vs. Vasopressin -0.1384 -0.1786 to -0.09829 <0.0001 
Control vs. Progesterone -0.702 -0.932 to -0.4721 <0.0001 
Vasopressin vs. Progesterone -0.5636 -0.7805 to -0.3466 <0.0001 
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Figure 35. Differences in calcium response between control period, 
vasopressin and progesterone perfusion in live sperm which responded 
to vasopressin treatment. N = 3. 
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Sperm cells perfused with dDAVP elicited a calcium peak, which was followed by a 

progesterone-induced response after 6 minutes (Figure 34, Figure 36).   
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Figure 36. Average calcium traces of live sperm cells which responded to dDAVP 
over 8 minutes . Sperm cells loaded with calcium indicator calcium green. Arrow 
indicates time of perfusion of dDAVP (4 minutes) and progesterone (6 minutes). N 
= 3. 
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The cells that responded to dDAVP were then statistically analysed using a repeated 

measures ANOVA. The overall differences between treatment and controls were significant 

at p < 0.000, the Tukey’s multiple comparisons test was used for post-hoc analysis of 

differences between treatment periods and significant differences were found between all 

treatment groups (control, dDAVP 10 M and progesterone 500 nM) at adjusted p < 0.000 

(Figure 37, Table 50).  

 

 

  

C
o

n
tr

o
l

d
D

A
V

P

P
ro

g
e
s
te

ro
n

e

0 .0

0 .5

1 .0

1 .5

2 .0

T r e a t m e n t

F
/

F
0

* * * *

* * * *

* * * *

Figure 37. Differences in calcium response between control period, 
dDAVP and progesterone perfusion in live sperm which responded to 
vasopressin treatment. N = 3. 
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Table 50. Repeated measures ANOVA for overall differences in treatments with dDAVP and progesterone and Tukey’s 
multiple comparisons test for differences between treatments. 

 

 

 

 

  

Repeated Measures ANOVA 

F (DFn, DFd)  F (1.115, 81.36) = 220 

P value  P<0.0001  
    

Tukey's multiple comparisons test Mean Diff. 95% CI of diff. 
Adjusted  
P Value 

Control vs. dDAVP -0.2343 -0.257 to -0.2115 <0.0001 
Control vs. Progesterone -0.6003 -0.6836 to -0.517 <0.0001 
dDAVP vs. Progesterone -0.366 -0.4487 to -0.2834 <0.0001 
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4.3.4 Phospho-tyrosine western blots 

Protein tyrosine phosphorylation is involved in capacitation and results in the 

hyperactivation and acrosome reaction of sperm (Naz and Rajesh, 2004). To examine how 

vasopressin may regulate sperm capacitation - protein tyrosine phosphorylation was 

investigated using western blot using anti-phosphotyrosine antibody  on human sperm 

samples treated with serial dilutions of vasopressin and dDAVP. The samples were 

normalised to β-tubulin and checked for normal distribution using Shapiro-Wilk test in 

GraphPad Prism. Relative intensity was analysed using a repeated measures One-Way 

ANOVA and Dunnett’s multiple comparisons test and for non-parametric the Friedman’s 

test and Dunn’s multiple comparisons test. No treatment was found to be statistically 

significant. N = 3. (Figure 38, Figure 39, Table 51, Table 52, Table 53, Table 54).  

Figure 38. Western blots to detect phospho-tyrosine in protein lysates from 
sperm treated with vasopressin and dDAVP. A – phospho protein tyrosine. B – β-
tubulin. Lane 1 – no treatment, lane 2 – vehicle control, lane 3 – vasopressin 10 
pM, lane 4 – vasopressin 10 nM, lane 5 – vasopressin 10 µM, lane 6 – dDAVP 10 
pM, lane 7 – dDAVP 10 nM, lane 8 – dDAVP 10 µM. Representative of n = 3. 
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Figure 39. Relative pixel intensity of western blots of sperm treated with vasopressin and dDAVP. Relative pixel 
intensity of the full lane, band 1 – 110 kDa, band 2 – 80 kDa and band 3 – 54 kDa. N = 3. 
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Table 51. Repeated measures One-Way ANOVA for overall differences in all treatments for the full lane and Dunnett’s 
multiple comparisons test for differences between treatments and vehicle control. 

Full lane RM one-way ANOVA 
F (DFn, DFd) P value   

F (1.652, 3.304) = 0.2696 P=0.7429 

   

Dunnett's multiple comparisons test 
  95% CI of diff. Adjusted P Value 

Vasopressin 10 pM -2.115 to 1.486 0.7041 
Vasopressin 10 nM -2.742 to 1.997 0.7589 
Vasopressin 10 μM -3.282 to 2.928 0.9916 
dDAVP 10 pM -5.143 to 4.146 0.908 
dDAVP 10 nM -3.295 to 2.513 0.8302 
dDAVP 10 μM -5.401 to 4.262 0.8797 

 

Table 52. Repeated measures One-Way ANOVA for overall differences in all treatments for band 1 and Dunnett’s 
multiple comparisons test for differences between treatments and vehicle control. 

Band 1 RM one-way ANOVA 
F (DFn, DFd) P value   

F (1.395, 2.79) = 1.23 P=0.3847 
   

Dunnett's multiple comparisons test 
  95% CI of diff. Adjusted P Value 

Vasopressin 10 pM -3.035 to 2.157 0.7213 
Vasopressin 10 nM -3.277 to 2.285 0.6921 
Vasopressin 10 μM -1.329 to 1.793 0.7861 
dDAVP 10 pM -2.671 to 2.66 0.9999 
dDAVP 10 nM -3.364 to 2.282 0.6518 
dDAVP 10 μM -4.956 to 4.097 0.9378 

 

Table 53. Friedman’s test for overall differences in all treatments for band 2 and Dunn’s multiple comparisons test for 
differences between treatments and vehicle control. 

Band 2 Friedman test 
P value 0.0929   
   

Dunn's multiple comparisons test 
  Rank sum diff. Adjusted P Value 
Vasopressin 10 pM -9 0.5338 
Vasopressin 10 nM -11 0.2258 
Vasopressin 10 μM -3 >0.9999 
dDAVP 10 pM 2 >0.9999 
dDAVP 10 nM -7 >0.9999 
dDAVP 10 μM 0 >0.9999 
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Table 54. Friedman’s test for overall differences in all treatments for band 3 and Dunn’s multiple comparisons test for 
differences between treatments and vehicle control. 

Band 3 Friedman test 
P value 0.8438   

   

Dunn's multiple comparisons test 
  Rank sum diff. Adjusted P Value 
Vasopressin 10 pM 0 >0.9999 
Vasopressin 10 nM 5 >0.9999 
Vasopressin 10 μM 2 >0.9999 
dDAVP 10 pM 0 >0.9999 
dDAVP 10 nM 6 >0.9999 
dDAVP 10 μM 1 >0.9999 
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4.3.5 Acrosome reaction 

The acrosome is a structure on the anterior part of the head of the sperm containing 

essential enzymes believed to facilitate the penetrance of the oocyte zona pellucida. In 

order to release these enzymes the sperm must undergo the exocytotic process of the 

acrosome reaction. Impairments in the ability for sperm to undergo acrosome reaction, or 

premature acrosome reaction are indicators of sperm function (Fénichel et al., 1991). 

In order to assess the acrosomal status of human sperm FITC-PSA was used. Human sperm 

were capacitated and treated with either 10 µM vasopressin or 10 µM Ionophore with 

DMSO as a vehicle control. The acrosomal status was statistically analysed using an 

independent t-test. Statistically significant differences were observed in the vasopressin 

treatment at p = 0.006 when compared to the vehicle control.  

Previous studies have reported the acrosome reaction assay scoring in to three classes of 

lectin labelling (Glenn et al., 2007). In the present study acrosome reaction was investigated 

using FITC-PSA and 3 classifications of acrosomal status was observed; intact, partially 

reacted and fully reacted Figure 40.   

 

 

Vasopressin showed an inhibitory effect on the acrosome reaction, however the ionophore 

treatment, which was used as a positive control did not induce acrosome reaction (Figure 

41). N = 5.  

Due to inconsistencies with the FITC-PSA assay, it was decided to further explore the 

acrosome reaction after treatment with vasopressin using different fixative protocols and 

scanning electron microscopy.  

A B C 

Figure 40. Representative images of FITC-PSA stained sperm. A – acrosome reacted, B – partially reacted, C – 
acrosome intact. 630 X magnification. 
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Sperm treated with vasopressin and controls were prepared for SEM. The same test 

sampled were prepared in different fixatives for FITC-PSA. The FITC-PSA method was 

unreliable regardless of fixation methods or incubation times, the data showed extreme 

differences from true acrosomal status as is observable in the same sample in SEM. The 

SEM data showed that the ionophore did induce acrosome reaction whereas vasopressin 

and dDAVP mildly inhibited the acrosome reaction in this sample (Figure 42, Table 55). N = 

1. 
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Figure 41. Percent acrosome reacted human sperm with vasopressin and 
ionophore. Human sperm incubated with 10 µM vasopressin and 10 µM 
Ionophore stained with FITC-PSA. A statistically significant difference was 
observed in vasopressin treatment * indicates p < 0.05, ** indicates p < 
0.01. N = 5. 



163 
 

  

A 

B 

C 

Figure 42. Examples of SEM images of sperm. A – acrosome intact, B – partially reacted, 
C – acrosome reacted. 25000 X magnification. 
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Table 55. Percentages of acrosomal status in human sperm. Vasopressin 10 µM, dDAVP 10 µM ionophore 10 µM and 
DMSO as vehicle control used as treatments. FITC-PSA method of detecting acrosomal status, either air-dried or fixed in 
PFA prior to staining and SEM data for acrosomal status in the same sample. N = 1. 

 

 

   

% 
No 

Treatment 
Vehicle 

Vasopressin 
10 µM 

dDAVP 10 
µM 

Ionophore 10 
µM 

FITC-PSA PFA        
Intact  22 11.3 9.2 18 16.3 
Partial 67.7 76.1 63.2 67.4 74.5 
Reacted 10.2 12.6 27.6 14.6 9.2 
        
FITC-PSA Air dry       
Intact  2.4 1.6 2 0.3 1.7 
Partial 29.2 26.6 12 22.9 13.3 
Reacted 68.4 71.8 86 76.8 85 
        
SEM       
Intact  47.8 41.2 45.7 51.9 4 
Partial 47.8 57.6 48.5 45.5 46.8 
Reacted 4.4 1.8 6.2 2.6 49.2 
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4.3.6 Seahorse cell mito stress test 

 

The Seahorse cell mito stress test is a metabolomic assay that can be used to assess 

mitochondrial function in response to various components. The Seahorse cell mito stress 

test is used to measure oxygen consumption rate and extracellular acidification rate 

allowing for the determination of multiple parameters of mitochondrial function using 

modulators of the electron transport chain. Figure 43 demonstrates the real time changes 

in OCR following injections of treatment (control/vasopressin/dDAVP), oligomycin, FCCP 

and rotenone/antimycin A. 

 

 

Statistical analysis was performed in GraphPad Prism. The data was tested for normality 

using the Shapiro-Wilk test for normality, showing all OCR data normally distributed. A one-

way repeated measures ANOVA was used to investigate differences between the 

treatment groups. The F statistic represents the ratio between two variances; the between-

group variance and the within-group variance, this represents whether the variability 

between the means of the groups are higher than random chance or not, the higher the F 

the greater the null hypothesis can be rejected. The one-way repeated measures ANOVAs 

showed statistically significant differences were observed in the OCR rates between the 
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Figure 43. Oxygen consumption rate of sperm over time. Oxygen consumption rate was normalised to protein 
concentration per well and each individual participant were normalised to their baseline. A – first injection of 
either vehicle control (DMSO), vasopressin 10 µM or dDAVP 10 µM. B – second injection of oligomycin. C – third 
injection of FCCP. D – fourth injection of rotenone/antimycin A. N = 3. 
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treatment groups and the control overall and at treatment, FCCP and rotenone/antimycin 

A injections (Table 56).  

 

Table 56. Significance (p-values) of repeated measures one-way ANOVA tests for OCR between treatment groups and 
vehicle control within injection groups determined. 

Repeated measures ANOVA 
  F (DFn, DFd) P value 

Overall F (1.636, 22.91) = 25.85 P<0.0001 
Baseline F (1.493, 2.985) = 0.000 P>0.9999 
Treatment F (1.87, 3.739) = 27.04 P=0.0061 
Oligomycin F (1.063, 2.125) = 6.934 P=0.1124 
FCCP F (1.092, 2.184) = 100.5 P=0.0072 
Rot/Anti A F (1.02, 2.04) = 66.59 P=0.0139 

 

Dunnett’s multiple comparisons test was used to investigate differences between groups 

and correct for multiple comparisons where statistically significant differences were 

observed compared to the control between overall vasopressin and dDAVP OCR. 

Statistically significant differences were found at the FCCP injection in the vasopressin and 

dDAVP OCR compared to control. At the rotenone/antimycin A injection vasopressin OCR 

was significantly different from control (Table 57). 

 

Table 57. Significance (p value) of differences in OCR between treatment groups and control within each injection using 
Dunnett’s test to correct for multiple comparisons. 

Dunnett's multiple comparisons test 

 

Adjusted P 
Value 95% CI 

Adjusted 
P Value 95% CI 

  Vasopressin dDAVP 

Overall 0.0009 -4.237 to -1.263 0.0054 0.6443 to 3.4 
Baseline 0.9999 -3.346 to 3.346 0.9999 -5.512 to 5.512 
Treatment 0.0795 -8.981 to 1.112 0.1103 -1.543 to 7.271 
Oligomycin 0.3459 -4.065 to 2.136 0.1447 -2.091 to 7.315 
FCCP 0.0108 -4.556 to -1.706 0.0385 0.5817 to 8.535 
Rot/Anti A 0.0283 -9.967 to -1.473 0.9876 -3.039 to 3.189 
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The data was tested for normality using the Shapiro-Wilk test for normality and all ECAR 

data was normally distributed. A one-way repeated measures ANOVA was used to 

investigate differences between the treatment groups. The one-way repeated measures 

ANOVAs showed statistically significant differences were observed in the ECAR rates 

between the treatment groups and the control overall and at treatment, oligomycin, FCCP 

and rotenone/antimycin A injections (Table 58).  

Figure 44. Average oxygen consumption rate at each injection period for control, vasopressin and dDAVP 
conditions. * is representative of p = < 0.05. N = 3. 



168 
 

 

 

 

Table 58. Significance (p-values) of repeated measures one-way ANOVA tests for ECAR between treatment groups and 
vehicle control within injection groups determined. 

Repeated measures ANOVA 
  F (DFn, DFd) P value 

Overall F (1.224, 17.14) = 16.6 P=0.0004 

Baseline F (1.007, 2.014) = 0.3546 P=0.6129 

Treatment F (1.222, 2.443) = 132.5 P=0.0034 

Oligomycin F (1.02, 2.039) = 76.85 P=0.0120 

FCCP F (1.195, 2.391) = 13.99 P=0.0485 

Rot/Anti A F (1.455, 2.91) = 11.7 P=0.0421 

 

Dunnett’s multiple comparisons test was used to investigate differences between groups 

and correct for multiple comparisons where statistically significant differences were 

observed compared to the control between overall vasopressin ECAR. Statistically 

significant differences were found at the oligomycin injection in the vasopressin ECAR 

compared to control.  Statistically significant differences were found at the FCCP injection 

in the vasopressin ECAR compared to control. At the rotenone/antimycin A injection 

vasopressin ECAR was significantly different from control (Table 59). 
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Figure 45. Extracellular acidification rate of sperm over time. Extracellular acidification rate was normalised to 
protein concentration per well and each individual participant were normalised to their baseline. A – first injection 
of either vehicle control (DMSO), vasopressin 10 µM or dDAVP 10 µM. B – second injection of oligomycin. C – 
third injection of FCCP. D – fourth injection of rotenone/antimycin A. N = 3. 
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Table 59. Significance (p value) of differences in ECAR between treatment groups and control within each injection 
using Dunnett’s test to correct for multiple comparisons. 

Dunnett's multiple comparisons test 

 Adjusted P Value 95% CI 
Adjusted 
P Value 95% CI 

  Vasopressin dDAVP 

Overall 0.001 -7.66 to -2.219 0.1763 -1.762 to 0.2976 

Baseline 0.8777 -16.15 to 19.01 0.577 -3.671 to 2.494 

Treatment 0.0097 -10.71 to -4.263 0.8144 -1.227 to 1.514 

Oligomycin 0.0013 -9.637 to -6.988 0.2488 -7.127 to 3.091 

FCCP 0.0924 -10.73 to 1.765 0.3538 -1.981 to 3.724 

Rot/Anti A 0.0395 -11.01 to -0.684 0.2962 -7.987 to 3.85 

 

 

 

 

   

Figure 46. Average extracellular acidification rate of sperm per injection. Extracellular acidification rate was 
normalised to protein concentration per well and each individual participant were normalised to their baseline. 
Base – readings prior to injection.  Treatment – first injection of either vehicle control (DMSO), vasopressin 10 
µM or dDAVP 10 µM. Oligo – second injection of oligomycin. FCCP – third injection of FCCP. Rot – fourth injection 
of rotenone/antimycin A. * is representative of p = < 0.05, ** is representative of p = < 0.01. N=3. 
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4.3.7 Aquaporin-2 and human sperm 

The vasopressin receptor 2 is found in renal cells where it is essential for water 

homeostasis. Vasopressin binds to the vasopressin receptor 2 and triggers an increase in 

intracellular cAMP which results in phosphorylation of aquaporin-2 (AQP2) channels which 

results in their translocation to the cell surface membrane. Aquaporin-2 allows water influx 

into the cell driven via the osmotic gradient (Boone and Deen, 2008). It was postulated that 

as the vasopressin receptor 2 is present on the acrosome of human sperm that the 

presence of AQP2 channels may indicate a mechanistic role in the acrosome reaction. 

 

4.3.7.1 Dot blot investigating the presence of AQP2 channels 

 

The dot blot is a simple method to determine presence of a target protein of interest in a 

sample of interest (section 2.7). HeLa and HK2 cells were used as positive controls, sperm 

protein was probed for aquaporin-2 and then protein content was confirmed with β-

tubulin. Aquaporin-2 was found in sperm total protein as well as in HeLa and HK2 total 

protein (Figure 47). 

  

Aquaporin‐2 

HeLa HK2 Sperm 

β‐Tubulin 

HeLa HK2 Sperm 

Figure 47. Dot blot investigating HeLa, HK2 and sperm protein for the 
presence aquaporin-2 and β-Tubulin. Representative of n = 3. 
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4.3.7.2 Western blots investigating the presence of AQP2 channels 

As the presence of aquaporin-2 was detected via dot blot it was further investigated via 

western blotting. HK2 (aka human proximal tubular cells) total protein was used as a 

positive control (Bouley et al., 2009). Sperm were either untreated, treated with 10 µM 

vasopressin, or capacitated as described in methods (2.4.1). Bands present at the 

glycosylated form of aquaporin-2 at around 45-50 kDa for HK2, sperm, sperm treated with 

10 µM vasopressin and capacitated sperm. The non- glycosylated form of aquaporin-2 was 

detected in sperm, sperm treated with 10 µM vasopressin and capacitated sperm but not 

in the HK2 sample. Β-tubulin was present in all samples and used as a loading control 

(Figure 48). 

  

HK2 Sperm 

Capacitated  
Sperm 

Sperm  
VP 10 µM 

Aquaporin 2 glycosylated form ~ 35‐50 kDa 

Aquaporin 2 non‐glycosylated form ~ 28.8 kDa 

HK2 Sperm 

Capacitated  
Sperm 

Sperm  
VP 10 µM 

β‐Tubulin ~ 50 kDa 

HK2 Sperm 

Capacitated  
Sperm 

Sperm  
VP 10 µM 

Figure 48. Western blot investigating HK2, sperm, sperm treated 10 µM 
vasopressin, capacitated sperm protein for aquaporin-2 and β-Tubulin. 
Representative of n = 1-3. 
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4.4 Discussion 

Any modulator of sperm function can be considered for use as a fertility treatment or as a 

contraceptive. This is the first study to investigate the effects of vasopressin in human 

sperm in vitro and the first to detect the vasopressin receptor 2 by immunocytochemistry 

on the acrosome region of human sperm.  

Sperm motility is an important factor in male reproduction where low sperm motility or 

asthenozoospermia (less than 32% progressively motile sperm) and can account for around 

40-50% of male factor infertility. Absolute asthenozoospermia (100% immotile sperm in 

sample) affects around 1 in 5000 men (Ortega et al., 2011). In the present study, sperm 

progressive motility was significantly increased at 10 M vasopressin when compared to 

the vehicle control.  

Sperm kinematics can be described as the pattern of movement that sperm undertake, 

although motility is the predominantly used measure for sperm quality, kinematics allows 

for important insight into the sperm behaviour such as patterns of hyperactivation and the 

trajectory that the sperm swim in (Valverde et al., 2019). Though it has been noted that 

kinematics results are dependent on a number of factors in the system used; the depth and 

type of counting chamber, the frame-rate recorded and the field of observation therefore 

it is important to note that all readings were performed on the SAMi CASA system at 60 

frames per second in a 20 µm deep counting chamber (Bompart et al., 2018; Nöthling and 

Dos Santos, 2012; Wilson-Leedy and Ingermann, 2007). The kinematics measured in this 

study were linearity (how linear the curvilinear path of the sperm is VSL/VCL), curvilinear 

velocity (VCL) m/s (the velocity of the sperm head along its actual path averaged over 

time) and straight-line velocity (VSL) m/s (the velocity of the sperm head along the 

straight line from the first position to its end point averaged over time) (World Health 

Organization, 2010b). The 10 nM and 10 µM vasopressin treatments significantly increased 

sperm linearity whereas 10 µM dDAVP significantly reduced sperm linearity compared to 

the vehicle control. The curvilinear velocity was significantly increased by the 10 pM, 10 

nM, 10 µM vasopressin and 10 pM, 10 nM dDAVP treatment conditions when compared to 

the control. The sperm straight-line velocity was significantly increased by the 10 pM 

vasopressin treatment and was significantly decreased by the 10 nM and 10 µM 

vasopressin and 10 µM dDAVP treatments. Sperm kinematics have previously been 

associated with assessing the behaviours of hyperactivated human sperm, where VCL is 
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increased this indicated hyperactivated patterns, VSL and linearity was decreased in 

hyperactivated sperm (Mortimer and Mortimer, 1990). Previously, it has been found that 

human epididymal sperm with higher VCL have higher fertilisation rates, as VCL suggests 

hyperactivation this can be considered a measure of capacitation and fertilising potential 

(Davis et al., 1991; Katz et al., 1989).  

In the present study it was found that vasopressin may influence sperm fertilisation 

potential by increasing VCL significantly from 10 pM to 10 µM treatments, and at the 10 

µM vasopressin treatment sperm progressive motility also significantly increased, this may 

indicate that the sperm are hyperactivated by vasopressin. As the AVPR2 has been localised 

to the acrosome of human sperm and no other vasopressin receptors have been found in 

human sperm to date, this would suggest that vasopressin functions through this receptor 

to modulate the sperm motility and behaviour. When the vasopressin receptor 2 specific 

agonist (dDAVP) was used there was no significant differences in motility however the VCL 

was still modulated at the 10 pM and 10 nM dDAVP treatment conditions, this may be 

down to the small sample size used. 

Capacitation and acrosome reaction are prerequisite steps which modify the sperm in 

order for fertilisation to occur, these processes are mediated via PKA and protein tyrosine 

phosphorylation, which are dependent on the influx and efflux of calcium in the cell (Puga 

Molina et al., 2018). Calcium assays in sperm may be considered a method of measuring 

capacitation and acrosome reaction as specific ligands can trigger these signalling cascades 

indicating a role in either capacitation, acrosome reaction or both (Parodi, 2014). In this 

study calcium response was measured via two methods; a fluorescence plate-reader assay 

measuring global calcium response and single cell live calcium imaging, which allowed for 

investigation into the individual cells’ response. 

The fluorescence plate reader assays demonstrated responses in almost all of the 

treatment conditions. Those of statistical significance in comparison with the vehicle 

control following a one-way ANOVA and Dunnett’s test for post-hoc analysis were as 

follows; 10 pM vasopressin, 10 nM vasopressin, 10 µM vasopressin, 10 pM dDAVP, 10 µM 

ionophore, 3 µM progesterone. All of which were significant to p = 0.0001 except the 10 

nM vasopressin treatment group which was significant to p = 0.0403. The 10 pM 

vasopressin, 10 nM vasopressin and 10 pM dDAVP inhibited the calcium response 

compared to the vehicle control (however there was still a greater response than the no 
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treatment controls). The 10 µM vasopressin, the ionophore and progesterone treatments 

all caused a significantly increased calcium response. This indicates that high 

concentrations vasopressin elicits increased calcium response in sperm, which may lead to 

hyperactivation and increased capacitation status. 

Human sperm are a heterogeneous population of cells, where spontaneous capacitation 

and hyperactivation can occur in some cells (Ickowicz et al., 2012). This differential 

response to treatment and control conditions was demonstrated using the live cell calcium 

imaging, where individual sperm responded differently to treatments. For those cells that 

did not respond to the positive control of progesterone, they were omitted for further 

analysis. Only a certain portion of the populations treated and analysed responded to the 

vasopressin and dDAVP treatment (10-20%). Of the sperm that responded, the response 

was significantly different from the vehicle control period and the positive control of 

progesterone to p = < 0.0001 (repeated measures ANOVA, Tukey’s test for multiple 

comparisons). Although progesterone response can be near ubiquitous in humans, it has 

been previously noted that there are subpopulations that do not respond, the same can be 

true for all molecules, individual sperm may have differential expression of surface proteins 

(Aitken and McLaughlin, 2007).  

Vasopressin receptor 2 was localised to the acrosome region of human sperm, therefore it 

was postulated that it may be involved as a potential modulator of the acrosome reaction. 

Acrosome reaction of human sperm following treatment with vasopressin and ionophore 

(positive control) post capacitation was measured primarily by FITC-PSA. Although the level 

of acrosome reacted sperm was significantly decreased in the vasopressin group the 

ionophore did not induce a significantly higher rate of acrosome reaction. These 

inconsistencies lead to further investigation by using different fixatives for the FITC-PSA 

(Figure 40) staining and scanning electron microscopy (Figure 42) to visualise true 

acrosomal status. The SEM demonstrated that vasopressin had a 3 fold increase in 

acrosome reacted sperm when compared to vehicle control (6.2 compared to 1.8), the 

ionophore showed the expected increase in acrosome reacted sperm (Cummins et al., 

1991) The same sample had been used for FITC-PSA staining with both standard air-

dry/methanol fixation and PFA fixation which showed inconsistent results especially when 

compared to the SEM. It can be suggested that vasopressin may induce acrosome reaction 

in sperm compared to vehicle control. The assessment for the acrosome status using SEM 
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was carried out on a single sample. Therefore, to confirm the acrosome status with SEM, 

further assays are required. 

The majority of studies investigating the role of vasopressin and male reproduction involve 

sperm transport through the epididymis and vas deferens and primarily carried out in 

animal models (Assinder et al., 2000b; Nicholson et al., 1999). Except the Kwon et al (2013) 

mouse study there are no studies investigating the effects that exposing sperm to 

vasopressin and dDAVP may have. A previous study in humans investigated the relationship 

between urinary vasopressin and the sperm of infertile males, they found a negative 

correlation with vasopressin levels and sperm count and motility. However, this study only 

had a cohort of 10 males, no control group and investigated using correlations alone with 

no corrections for confounding factors which is important when discussing relationships in 

biosciences in order to avoid Simpson’s paradox; a phenomenon where a trend may occur 

across groups which is then reversed when considering all factors (Blyth, 1972; Puri and 

Puri, 1985).   

Kwon et al (2013) demonstrated that vasopressin had an inhibitory effect on sperm 

function by decreasing motility, calcium response, acrosome reaction, decreased PKA and 

protein tyrosine phosphorylation, decreased fertilisation and embryo development rate in 

the mouse. The data presented in this chapter demonstrates that activation of the 

vasopressin 2 receptor on sperm, increased sperm motility - which is in contrast with the 

findings in the mouse (Kwon et al, 2013). The differences in the response to vasopressin 

treatment in mouse and human are unsurprising. Mouse sperm differ in many ways to 

human sperm and are not considered suitable sentinel for human fertility (Neuber and 

Powers, 2000). Furthermore, the vasopressin receptor 2 is differentially localised in mouse 

and human sperm. In humans, AVPR2 was localised to the acrosome region of the head of 

the sperm whereas in mouse sperm from the caput AVPR2 was solely detected in the 

midpiece and in sperm from the cauda AVPR2 was localised in both the midpiece and 

acrosome region (Kwon et al., 2012).  

Mature sperm do not have an endoplasmic reticulum for calcium storage, there is evidence 

to suggest that sperm have two stores of intracellular calcium; in the acrosome and in the 

neck/midpiece. Mitochondria can serve as a calcium store, within the matrix space 

mitochondria are able to accumulate calcium predominantly through the mitochondrial 

calcium uniporter and calcium uptake occurs via a negative membrane potential in the 
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matrix (Costello et al., 2009a). Release of calcium stores from the mitochondria is possible 

through a sodium/calcium exchanger (Bernardi, 1999). Sperm is able to mobilise the stores 

and modulate the interactions between the calcium stores of the neck/midpiece and the 

CatSper channels and thus regulates motility and induces hyperactivation. In the acrosome, 

the calcium stores have been found to be involved in the exocytosis of the acrosome and 

in calcium free media the mobilisation of these stores alone can trigger acrosome reaction 

(Costello et al., 2009a). In the micrograph of the sperm treated with vasopressin (Figure 22) 

appears that the calcium stores in the neck/midpiece are being mobilised to the flagella 

indicating a possible role in hyperactivation and motility. 

Mitochondria are essential for the motility and hyperactivation of sperm, it has been 

previously found that vasopressin increase the mitochondrial calcium concentration and 

elicit activation of essential enzymes for mitochondrial oxidative metabolism, the 

mitochondrial oxidative metabolism has also been implicated in water uptake into cells and 

mitochondrial swelling  within a rat liver model (Assimacopoulos-Jeannet et al., 1986; 

Lehninger and Neubert, 1961). In more recent studies using male rats, it was found that 

vasopressin inhibited mitochondrial respiration and metabolism linked to complex I, II and 

III in kidney mitochondria, however this was in a haemorrhagic shock model where 

vasopressin is shown to preserve mitochondrial function and to prevent acute kidney injury  

(Sims et al., 2017).  There is limited information on the direct effects of vasopressin on 

mitochondrial function within current literature (Bordt et al., 2019a). An inhibition of 

mitochondrial respiration negatively impacts the ATP production and therefore motility in 

mice  (Tourmente et al., 2015). The Seahorse cell mito stress test was used to measure 

oxygen consumption rate and extracellular acidification rate in sperm following injections 

of vasopressin, dDAVP, vehicle control and modulators of the electron transport chain. 

Oxygen consumption rate is considered a direct measurement of oxidative phosphorylation 

(OXPHOS) and extracellular acidification rate is considered a direct measure of glycolysis 

through the excretion of lactic acid (Li and Graham, 2012; Wu et al., 2007). Post injection 

with the uncoupling agent FCCP vasopressin significantly increased oxygen consumption 

rate when compared to vehicle control whereas dDAVP significantly decreased OCR 

compared to the vehicle control. After the complex I and III inhibitors rotenone and 

antimycin A (total inhibition of mitochondrial respiration) were injected the vasopressin 

treated sperm showed a significantly increased OCR compared to vehicle control. Changes 

in mitochondrial function can affect motility, hyperactivation and calcium response as 



177 
 

mitochondria act as a calcium store in the neck/midpiece (Costello et al., 2009a). The 

extracellular acidification rate (ECAR) is due to both anaerobic glycolysis and CO2 

production during respiration however the source of ECAR is dependent on multiple factors 

such as cell type and media, and therefore without the proper controls through 

measurements in glucose free media, additions of glucose to measure glycolysis and the 

addition of 2-deoxyglucose to inhibit glycolysis and determine non-glycolytic extracellular 

acidification it is not possible to entirely determine the rate of glycolysis driven extracellular 

acidification  (Mookerjee et al., 2015; TeSlaa and Teitell, 2014). In the present study it was 

found that vasopressin significantly increased extracellular acidification rate at the 

injection of vasopressin, oligomycin and rotenone/antimycin A. As both the OCR and ECAR 

are linked similar trends can be expected, the significantly increased ECAR at treatment and 

oligomycin injection may indicate that vasopressin increases glycolysis and not oxidative 

phosphorylation initially and then increases the maximal respiration potential at FCCP 

injection. At the rotenone/antimycin A vasopressin significantly increased OCR and ECAR 

which both indicate an increase in non-mitochondrial linked respiration through glycolysis. 

 

The activation of vasopressin receptor 2 results to the Gs cell signalling cascade that 

ultimately leads to aquaporin-2 channels being translocated to the cell surface membrane. 

It was postulated that as vasopressin is located on the acrosome of human sperm that it 

may be involved in the acrosome reaction through AQP2 channels to aid the exocytosis of 

the membrane. Initially, sperm were probed for the presence of AQP2 through dot blot and 

it was detected at low levels. Sperm were treated with vasopressin or capacitated and 

further probed via western blots where bands at both the glycosylated and non-

glycosylated isoforms of AQP2 were detected, glycosylation is vital for AQP2s function at 

the cell surface membrane as a water channel and the non-glycosylated form may be 

indicative of stored AQP2 (Hendriks et al., 2004). However, sperm do not have an 

endoplasmic reticulum or Golgi apparatus where N-linked glycosylation typically occurs 

therefore any glycosylation is likely to happen within the epididymis (Taylor and Drickamer, 

2011; Tulsiani et al., 1993) Vasopressin is known to result in the phosphorylation of sites 

on AQP2 that are associated with trafficking to the cell surface membrane which could be 

phosphorylated via PKA (protein kinase A), PKC (protein kinase C), PKG (protein kinase G), 

ERK (extracellular signal related kinases) and casein kinase II (Brown et al., 2008). 
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4.5 Conclusion 

The vasopressin receptor 2 was immunolocalised to the acrosome of human sperm. 

Vasopressin treatment of human sperm significantly modulates motility, kinematics, 

calcium response, mitochondrial function and glycolysis indicating a potential role in 

hyperactivation and capacitation. Vasopressin may also play a role in the acrosome 

reaction through the translocation of AQP2 channels to the cell surface membrane 

however, further work is needed to investigate this hypothesis. Any modulator of sperm 

function has a potential role as a contraceptive or a fertility aid, as vasopressin is also 

present in both follicular fluid and semen as demonstrated in chapter 3 it is important to 

understand its role in reproduction. 
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Chapter 5: The methylation of the oxytocin 

receptor and its role in human sperm 

5.0 Chapter 5: Methylation 

 

5.1 Introduction 

The cause of male factor infertility can have a genetic origin (Krausz and Riera-Escamilla, 

2018). In addition to changes to DNA sequence, gene expression is controlled by changes 

in DNA and  / or chromatin structure (Nevin and Carroll, 2015), which leads to epigenetic 

transmission found to affect the offspring of males with infertility (O’Brien et al., 2010).  

Significant alterations in in sperm DNA methylation patterns between fertile and infertile 

males has led to the notion that idiopathic male infertility may be associated with 

methylation  (Hammoud et al., 2010). 

Epigenetics was coined by Conrad Waddington in 1953 initially as a term to describe events 

leading to the development of a fully mature organism from a zygote as a result of the 

interactions between genes, their products and the phenotype (Felsenfeld, 2014; 

Waddington, 1953). Epigenetics is now defined as ‘‘the study of changes in gene function 

that are mitotically and/or meiotically heritable and that do not entail a change in DNA 

sequence” (Dupont et al., 2009).  DNA methylation and acetylation can act as on/off 

switches for gene expression. Methylation is the addition of a methyl group (CH3) by DNA 

methyltransferases (DNMT) to a cytosine residue using the methyl donor s-

adenosylmethionine (SAM) resulting in 5-methylcytosine (5mC). This predominantly occurs 

in a cytosine-guanine sequence aka CpG sequence on the DNA, the methylation of CpG 

sites is primarily associate with gene silencing (Figure 49). There is also histone modification 

via the addition of acetyl, methyl and other groups to the histone tail, acetylation is 

associated with transcription activation, methylation with transcription repression 

(Bannister and Kouzarides, 2011). 
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During embryonic development epigenetic methylation is established. The egg and sperm 

are methylated with the maternal and paternal methylation patterns prior to fertilisation 

(Nevin and Carroll, 2015). At fertilisation, the paternal genome undergoes genome wide 

demethylation and remains demethylated for multiple divisions. The maternal genome 

undergoes a more gradual passive demethylation, this demethylation is regulated by ten-

eleven translocation methylcytosine dioxygenase (TET) enzymes. However some genes are 

omitted from the global demethylation and the parental methylation pattern is preserved 

- these are known as imprinted genes (Santos et al., 2002; Smallwood and Kelsey, 2012). At 

blastocyst stage the embryo undergoes de novo DNA methylation via DNMT3a and 

DNMT3b in order to differentiate cells into various cell types, DNMT1 maintains the DNA 

methylation state during cell division (Figure 50).   

Figure 49. DNA methylation 
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DNA methylation is important in a variety of biological processes such as aging, X-

chromosome inactivation, transgenerational inheritance/genomic imprinting, 

carcinogenesis and is vital for differentiation of cells (Heo et al., 2017; Meissner et al., 

2008). Primordial germ cells are globally demethylated of the genomic imprints between 

E7.5 and E12.5, then spermatogenesis initiates, the primordial germ cells become 

spermatogonia which replicate via a couple of rounds mitosis to become primary 

spermatocytes. The primary spermatocytes divide via meiosis to develop into round 

spermatids which then undergo the process of spermiogenesis where several molecular 

and morphological changes occur resulting in mature sperm and during which time the 

genome is remethylated (Kishigami et al., 2006). This has led to the concept that it may be 

likely that sperm abnormalities could be linked to aberrant methylation of the DNA during 

spermatogenesis (Nevin and Carroll, 2015). 

Previous research has identified significant differences in sperm methylation patterns 

between fertile and infertile men and found these methylation patterns to have predictive 

potential of embryo quality (Aston et al., 2015). As well as global methylation patters, 

several imprinted genes have also been found to be significantly altered in the sperm of 

infertile men compared to fertile men (Hammoud et al., 2010). Elevated methylation in 

sperm has also been associated with poor semen parameters (Houshdaran et al., 2007). 

Figure 50. DNA methylation changes during development. Primordial germ cells (PGCs) are globally demethylated. Post sex-
determination, new DNA methylation occurs in the male and female germ cell precursor cells. In the male (blue line) all de novo 
methylation is established prior to birth. In the female (red line), de novo methylation is established post-birth during follicular 
growth. Upon fertilisation the paternal DNA is rapidly, actively demethylated and the maternal DNA is passively demethylated during 
replication. Adapted from Smallwood and Kelsey, 2012.  
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Genome-wide association study (GWAS) study identified 2752 CpG sites that have aberrant 

methylation patters in the sperm of men with idiopathic infertility when compared with 

fertile men, the CpG sites showing aberrant methylation were associated with sites that 

are methylated in sperm compared to somatic cells (Urdinguio et al., 2015). 

Aberrant methylation in the promoter of oestrogen receptor genes in the endometrium 

have been implicated in the development and progression of endometriosis (Xue et al., 

2007). Hypermethylation of the progesterone receptor gene via notch signalling in the 

uterus has been shown to lead to infertility in mouse studies (Su et al., 2016). However, 

there is extremely little investigating the effects that receptor gene methylation may have 

on semen parameters in current literature. 

Oxytocin and the oxytocin receptor is expressed throughout male reproductive tracts in 

humans and a number of animals, there is evidence to suggest that oxytocin may regulate 

local steroidogenesis and has a role in sperm transport (Einspanier and Ivell, 1997; Frayne 

and Nicholson, 1998a; Whittington et al., 2001). The oxytocin receptor is a g-protein 

coupled receptor (specifically the Gq subtype which activates the PLC cascade resulting in 

phosphorylation of target proteins and an influx of calcium) and is essential in labour, 

lactation and maternal behaviours as well as in male ejaculation (Bales and Perkeybile, 

2012; Caldwell and Young III, 2006; Ogawa et al., 1980). 

Increased OXTR methylation has been associated with social deficits in autism spectrum 

disorder (ASD), callous-unemotional traits in young people, anorexia, emotional regulation 

issues, mood disorders, poor facial and emotional recognition. Low OXTR methylation  has 

been associated with depression, stress, social anxiety and autism in children (Hollander et 

al., 2007; Kim et al., 2014; Maud et al., 2018; Reiner et al., 2015). 

[The initial aim of this study was to explore the methylation status of the vasopressin 

receptor 2 and the oxytocin receptor. However, due to technical issues and time constraints 

this study focused on the oxytocin receptor CpG sites 924 and 934]. 
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Hypothesis: Semen parameters will be associated with methylation percentage in the 

oxytocin receptor CpG sites 924 and 934 in the sperm of men undergoing ART. 

To investigate the role of methylation status in oxytocin receptor CpG sites 924 and 934  in 

human sperm function the following objectives will be performed: 

 

1. Perform pyrosequencing on DNA from sperm samples derived from patients 

undergoing ART.  

2.  Explore associations between methylation status of CpG sites 924 and 934 and 

sperm parameters 
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5.2 Methods 

Semen samples (n = 94) were obtained from men undergoing assisted conception 

treatment at St Mary’s Hospital, Manchester (see section 2, methods). The parameters 

available for modelling were as follows; progressive motility, concentration, count, volume, 

oxytocin receptor CpG 924 methylation, oxytocin receptor CpG 934 methylation, age, BMI, 

smoker status, alcohol units per week and normal/abnormal semen parameters using WHO 

reference ranges to classify patients as normozoospermic or abnormal if any of the criteria 

were not met. 

To investigate oxytocin receptor methylation primers were designed for CpG island 1 at 

CpG site 924 and CpG site 934, 500 ng of DNA was isolated from sperm samples and 

bisulphite converted using a Bisulfite Conversion Kit (Qiagen) as described in (2.9.1) and 

the percentage methylation at the CpG sites of interest was investigated using 

pyrosequencing (Error! Reference source not found.). 

 

The primers used to amplify CpG sites 924 and 934 of the oxytocin receptor are described 

in Table 60. 

Table 60. Sequences used for pyrosequencing of CpG island in human oxytocin receptor. 

Primer Id Sequence Nt Tm, ºC %GC 

  PCR F1 GGGGGGAGTTAATTTTAGGTT 21 58.7 42.9 

  PCR R1 CTCAATCCCCAAAAATCACTTTACAATCT 29 59.0 34.5 

 Sequencing S1 TTTTGTTTTTGGAGGAG 17 44.0 35.3 

 

The data obtained were modelled in IBM SPSS Statistics version 25. Regression models 

were created for each outcome variable separately in order to obtain meaningful analysis. 

To try to reduce over fitting the regression models all outcome variables, predictor 

variables and confounders were chosen a priori and each predictor was modelled with each 

outcome separately, all relevant confounders were included whether they were 

statistically significant or not (Table 61).  
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Table 61. Outcome variables, predictor variables and covariates used in the modelling. 

 

 

 

 

5.3 Results 

5.3.1 Descriptive statistics 

The Shapiro-Wilk test for normality was used to initially investigate whether the continuous 

outcome variables (count, concentration, volume and progressive motility) were normally 

distributed. As all the variables were statistically significant this indicated they were not 

normally distributed and were further investigated using frequency histograms (Table 62). 

Table 62. Shapiro-Wilk tests for normality for the continuous outcome variables. 

  Shapiro-Wilk 

 Statistic Sig. 

Concentration 0.8 0 

Volume 0.942 0 

Total sperm count 0.886 0 

Progressive motility 0.962 0.009 

 

The table of descriptives for the binary variable of normal or abnormal semen parameters 

– defined by using WHO reference ranges, show the n, mean, median, standard deviation 

(Std Dev), interquartile range (interQ range), minimum and maximum percentage of 

oxytocin receptor methylation for both CpG sites per group (Table 63). 

Table 63. Descriptives for normal or abnormal semen parameters and oxytocin receptor methylation at CpG 924 and 
934 in sperm. 

 

 

 

 

 

Outcome Variables Predictor variables Confounders/Covariates 

Count OXTR CpG 924 Male age 

Concentration OXTR CpG 934 Male BMI 

Volume  Smoker status 

Progressive motility  Alcohol units per week 
Normal/Abnormal semen 

parameters   

  Descriptives - percentage methylated for each CpG site 

  N Mean Median Std Dev InterQ Range Min Max 

OXTR CpG 924               

Normal 59 5.86 5.00 2.63 3.00 3.00 18.00 

Abnormal 22 6.91 6.00 3.79 2.63 3.00 18.00 

OXTR CpG 934               

Normal 59 5.08 4.00 2.48 2.00 3.00 18.00 

Abnormal 22 6.52 6.00 2.69 3.25 2.00 13.00 
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The frequency histograms of the semen parameters show the distribution of the 

continuous outcome variables. Concentration, count and volume all show abnormal 

distribution with positive skew, whereas progressive motility shows abnormal distribution 

with negative skew. Concentration was Log10 transformed to correct the positive skew, 

count and volume were both square root transformed to correct the positive skew and 

progressive motility was log gamma transformed to correct the negative skew prior to use 

in linear regressions (Figure 51). 

The Pearson correlation was used to investigate any collinearity between the predictor 

variables in order to ensure their effects on the outcome variables are unique to each 

predictor variable. Both oxytocin receptor CpG sites were significantly correlated and 

therefore were subsequently regressed separately in order to investigate the individual 

CpG sites relationship with the outcome variables (Table 64). 

Table 64. Pearson correlation matrix for predictor variables. 

 OXTR CpG 934 OXTR CpG 924 

  r p-value r p-value 

OXTR CpG 
934 1.00 - .848** 0.00 
OXTR CpG 
924 .848** 0.00 1.00 - 

A B 

C D 

Figure 51. Distribution histograms of semen parameters. A – sperm count (million), B – sperm concentration (million/mL), 
C – semen volume (mL), D – progressive motility (%). 
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5.3.2 Independent t-tests and semen parameters 

To initially investigate any differences the semen parameters were coded as binary 

variables using the WHO reference ranges, and independent t-tests were performed for 

each outcome variable. Statistically significant differences were observed in the oxytocin 

receptor (OXTR) methylation percentage at CpG 924 and low sperm concentration (p = 

0.029), where low concentration had a significantly higher methylation at OXTR CpG 924 

when compared to those with normal concentration. No statistically significant differences 

were found for count, volume, progressive motility or normal/abnormal parameters for 

OXTR CpG 924 (Figure 52, Table 65). Statistically significant differences were observed in 

the OXTR CpG 934 methylation for concentration, count and normal/abnormal semen 

parameters (p = 0.000, 0.001, 0.026 respectively), where low concentration, low count and 

abnormal semen parameters had significantly higher methylation at OXTR CpG 934 when 

compared to those with normal concentration, normal count and normal semen 

parameters. No statistically significant differences were observed for OXTR CpG 934 with 

volume or progressive motility (Figure 53, Table 65). 
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Figure 52. Mean percentage DNA methylation at oxytocin receptor CpG 924. 
Semen parameters classed using WHO (2010) reference ranges, mean percentage 
methylation for each group shown. Statistically significant differences found in 
methylation of CpG site 924 of the oxytocin receptor with independent t- tests for 
sperm concentration. * represents p < 0.05. N = 81. 
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Table 65. Independent t-test p-values for OXTR CpG 924 and 934. Mean and standard error shown for each group and 
outcome variable. 

  OXTR CpG 924 OXTR CpG 934 

  Mean SEM p-value Mean SEM p-value 

Concentration Normal 5.72 0.30 
0.029 

5.11 0.28 
0.000  Low 9.61 1.46 8.39 0.90 

Count Normal 5.76 0.30 
0.057 

5.15 0.28 
0.001  Low 9.22 1.54 8.11 0.90 

Progressive Motility Normal 6.24 0.36 
0.410 

5.53 0.31 
0.590  Low 5.31 0.75 5.00 0.76 

Normal/Abnormal 
parameters Normal 5.86 0.34 

0.165 
5.08 0.32 

0.026  Abnormal 6.91 0.81 6.52 0.57 
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Figure 53. Mean percentage DNA methylation at oxytocin receptor CPG 934. 
Semen parameters classed using WHO (2010) reference ranges, mean percentage 
methylation for each group shown. Statistically significant differences found in 
methylation of CpG site 934 of the oxytocin receptor using independent t-tests for 
sperm concentration, count and normal/abnormal overall semen parameters. *** 
represents p < 0.001, ** represents p < 0.01, * represents p < 0.05. N = 81. 
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5.3.3 Partial correlations with oxytocin receptor methylation and semen parameters 

To further investigate any potential relationship between each OXTR CpG island 

methylation and semen parameters partial correlations were performed using both the 

binary outcome variables and the transformed continuous outcome variables. Both partial 

correlations were controlled using the confounding variables; age, BMI, smoker status and 

alcohol consumption. 

The partial correlation with the binary outcome variables using the WHO reference ranges 

were coded as 0 for normal and 1 as low/abnormal, therefore any positive correlation is 

indicative of a negative relationship. The correlations showed that there was a statistically 

significant negative correlation between OXTR CpG 934 and sperm count, concentration 

and normal semen parameters. There was not statistically significant correlation with OXTR 

CpG 934 and volume and motility. There was a statistically significant negative correlation 

between OXTR CpG 924 and sperm count and concentration, there was no statistically 

significant correlation between OXTR CpG 924 and volume, motility or normal semen 

parameters (Table 66). 

Table 66. Partial correlations for OXTR CpG 924 and 934 and binary outcome variables. 

  OXTR CpG 934 OXTR CpG 924 

  r p-value r p-value 

Count  0.341 0.003 0.324 0.005 

Concentration  0.367 0.001 0.371 0.001 

Motility  -0.02 0.866 -0.069 0.558 

Normal/Abnormal  0.234 0.045 0.116 0.327 

Partial correlations with the transformed continuous outcome variables showed a 

statistically significant negative correlation between OXTR CpG 934 and concentration but 

no statistically significant correlations with count, volume or progressive motility.  

Statistically significant negative correlations were found between OXTR CpG 924 and 

concentration and volume, no statistically significant correlation was found with count or 

progressive motility (Table 67). 

Table 67. Partial correlation for OXTR CpG 924 and 934 and transformed continuous outcome variables. 

  OXTR CpG 934 OXTR CpG 924 

  r p-value r p-value 

Log 10 concentration -0.294 0.012 -0.281 0.017 

Square root count -0.097 0.415 -0.036 0.762 

Square root Volume 0.152 0.203 0.252 0.033 
Log gamma progressive 
motility -0.05 0.674 -0.009 0.938 
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5.3.4 Univariate regressions semen parameters 

To investigate any relationship between OXTR CpG 924 and 934 methylation and semen 

parameters (count, concentration, volume and motility) univariate regressions were used. 

In order to perform univariate regressions the outcome variables must be normally 

distributed, this was achieved via transformation prior to regressing. The outcome 

variables were individually modelled with each CpG site methylation separately due to 

collinearity issues, modelling separately allowed for investigation of each sites individual 

effect. Confounders included in each model were age, BMI, smoker status and alcohol 

consumed per week. Standardised β values are the relative change in the outcome 

variables (semen parameters) due to the change in the predictor variables (CpG site 924 

and CpG 934 methylation). The unadjusted models show the individual effects of each 

predictor variables or confounders on the outcome variables. The fully adjusted models 

show the effects of the predictor variables have on the outcome variables when the 

confounders are adjusted for.  

Multicollinearity for confounders within the models was investigated using tolerance and 

variance inflation factor (VIF) during regression analysis. A VIF value between 1 and 10 is 

acceptable and indicates no multicollinearity issues within the model. All the variables 

within all the regressions were acceptable. 
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5.3.4.1 Univariate regressions for sperm concentration and CpG 924 and 934 methylation 

 

The unadjusted univariate regression showed that both CpG site 924 and CpG site 934 had 

a statistically significant negative association with sperm concentration. None of the 

confounding factors (age, BMI, smoker status and alcohol consumption) showed a 

significant relationship with sperm concentration individually (Table 68). 

 

Table 68. Unadjusted univariate regression values for sperm concentration. 

Unadjusted univariate regression log 10 concentration  

   95% CI 

  
Standardised 
β  

p-
value Lower  Upper  

Male age (years) -0.021 0.846 -0.016 0.013 

Male BMI -0.049 0.648 -0.026 0.017 

Smoker -0.045 0.673 -0.189 0.123 

Alcohol (units per week) 0.171 0.102 -0.002 0.017 

OXTR CpG 924 -0.303 0.006 -0.063 -0.011 

OXTR CpG 934 -0.306 0.006 -0.073 -0.013 

 

The fully adjusted univariate regression for CpG site 924 methylation and sperm 

concentration demonstrated that the CpG 924 methylation had a statistically significant 

negative association with sperm concentration. Alcohol consumption showed a statistically 

significant positive association with sperm concentration in the model. No other variables 

showed any significant association with concentration (Table 69).  

Table 69. Fully adjusted univariate regression values for sperm concentration and CpG 924 methylation. 

Fully adjusted univariate regression log 10 concentration CpG 924 

   95% CI 

  
Standardised 
β  

p-
value Lower  Upper  

Male age (years) -0.05 0.663 -0.019 0.012 
Male BMI -0.081 0.471 -0.031 0.014 
Smoker -0.08 0.467 -0.216 0.1 
Alcohol (units per week) 0.305 0.01 0.003 0.025 
OXTR CpG 924 -0.27 0.016 -0.059 -0.006 

 

The fully adjusted univariate regression for CpG site 934 methylation and sperm 

concentration demonstrated that the CpG 934 methylation had a statistically significant 

negative association with sperm concentration. Alcohol consumption showed a statistically 
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significant positive association with sperm concentration in the model. No other variables 

showed any significant association with concentration (Table 70).  

Table 70. Fully adjusted univariate regression values for sperm concentration and CpG 934 methylation. 

Fully adjusted univariate regression log 10 concentration CpG 934 

   95% CI 

  
Standardised 
β  

p-
value Lower  Upper  

Male age (years) -0.061 0.592 -0.019 0.011 
Male BMI -0.087 0.44 -0.031 0.014 
Smoker -0.041 0.715 -0.189 0.131 
Alcohol (units per week) 0.328 0.006 0.004 0.026 
OXTR CpG 934 -0.288 0.012 -0.072 -0.009 

 

5.3.4.2 Univariate regressions for sperm count and CpG 924 and 934 methylation 

The unadjusted univariate regression showed no statistically significant association 

between both CpG site 924 and CpG site 934 and sperm count. None of the confounding 

factors (age, BMI, smoker status and alcohol consumption) showed a significant 

relationship with sperm count individually (Table 71). 

Table 71. Unadjusted univariate regression values for sperm count. 

Unadjusted univariate regression square root count 

   95% CI 

  
Standardised 
β  

p-
value Lower  Upper  

Male age (years) 0.018 0.863 -0.19 0.226 
Male BMI -0.119 0.266 -0.505 0.141 
Smoker -0.036 0.736 -2.703 1.917 
Alcohol (units per week) 0.151 0.152 -0.038 0.241 
OXTR CpG 924 -0.082 0.468 -0.558 0.259 
OXTR CpG 934 -0.154 0.169 -0.793 0.141 

 

The fully adjusted univariate regression for CpG site 924 methylation and sperm count 

demonstrated that the CpG 924 methylation had no association with sperm count. Alcohol 

consumption showed a statistically significant positive association with sperm count in the 

model. No other variables showed any significant association with sperm count (Table 72).  
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Table 72. Fully adjusted univariate regression values for sperm count and CpG 924 methylation. 

Fully adjusted univariate regression square root count CpG 924 

   95% CI 

  
Standardised 
β  

p-
value Lower  Upper  

Male age (years) -0.02 0.865 -0.257 0.217 
Male BMI -0.15 0.201 -0.588 0.126 
Smoker -0.06 0.598 -3.13 1.815 
Alcohol (units per week) 0.285 0.018 0.035 0.364 
OXTR CpG 924 -0.04 0.722 -0.49 0.341 

 

The fully adjusted univariate regression for CpG site 934 methylation and sperm count 

demonstrated that the CpG 934 methylation had no association with sperm count. Alcohol 

consumption showed a statistically significant positive association with sperm count in the 

model. No other variables showed any significant association with sperm count (Table 73).  

 

Table 73. Fully adjusted univariate regression values for sperm count and CpG 934 methylation. 

Fully adjusted univariate regression square root count CpG 934 

   95% CI 

  
Standardised 
β  

p-
value Lower  Upper  

Male age (years) -0.025 0.829 -0.262 0.21 
Male BMI -0.143 0.219 -0.573 0.134 
Smoker -0.041 0.725 -2.937 2.053 
Alcohol (units per week) 0.297 0.014 0.043 0.372 
OXTR CpG 934 -0.119 0.305 -0.743 0.236 

 

 

 

5.3.4.4 Univariate regressions for sperm progressive motility and CpG 924 and 934 methylation 

The unadjusted univariate regression model showed no association between CpG site 924 

or CpG site 934 methylation and progressive motility. The confounding factors showed no 

significant association with progressive motility (Table 74). 
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Table 74. Unadjusted univariate regression values for progressive motility. 

Unadjusted univariate regression log gamma progressive motility 

   95% CI 

  
Standardised 
β  

p-
value Lower  Upper  

Male age (years) -0.089 0.398 -2.9 1.162 
Male BMI 0.032 0.768 -2.717 3.667 
Smoker 0.103 0.326 -11.31 33.668 
Alcohol (units per week) -0.052 0.624 -1.721 1.037 
OXTR CpG 924 0.036 0.748 -3.44 4.767 
OXTR CpG 934 0.022 0.845 -4.264 5.199 

 

The fully adjusted univariate regression for sperm progressive motility and CpG site 924 

showed no significant associations between CpG 924 methylation and sperm progressive 

motility. The confounding factors showed no associations with sperm progressive motility 

(Table 75). 

Table 75. Fully adjusted univariate regression values for progressive motility and CpG 924 methylation. 

Fully adjusted univariate regression log gamma progressive motility CpG 924 

   95% CI 

  
Standardised 
β  

p-
value Lower  Upper  

Male age (years) -0.112 0.361 -3.64 1.343 
Male BMI 0.118 0.33 -1.919 5.639 
Smoker 0.124 0.295 -12.27 39.858 
Alcohol (units per week) -0.072 0.557 -2.243 1.219 
OXTR CpG 924 -0.007 0.954 -4.462 4.212 

 

The fully adjusted univariate regression for sperm progressive motility and CpG site 934 

showed no significant associations between CpG 934 methylation and sperm progressive 

motility. The confounding factors showed no associations with sperm progressive motility 

(Table 76). 

Table 76. Fully adjusted univariate regression values for progressive motility and CpG 934 methylation. 

Fully adjusted univariate regression log gamma progressive motility CpG 934 

   95% CI 

  
Standardised 
β  

p-
value Lower  Upper  

Male age (years) -0.114 0.352 -3.664 1.321 
Male BMI 0.122 0.314 -1.853 5.689 
Smoker 0.131 0.276 -11.88 40.95 
Alcohol (units per week) -0.068 0.584 -2.22 1.259 
OXTR CpG 934 -0.041 0.734 -6.016 4.258 
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5.3.5 Normal or abnormal semen parameters binary logistic regression 

Rate ratio also referred to as Exp (B) is representative of the probability that an event will 

occur if all other factors in the model remain constant. The unadjusted models represent 

the individual predictor variables overall main effects on the outcome variable, the 

adjusted models represent the effects that each predictor variable has on the outcome 

when all of them are taken into consideration. 

In order to investigate whether there is any relationship between normal or abnormal 

semen parameters a binary logistic regression was used (assessed as normal if all WHO 

reference ranges were met and abnormal is any of the WHO reference ranges were not 

met). 

A warning was issued (marked with **) in association with the alcohol consumed per week 

in the unadjusted model1. This warning was issued for the fully adjusted model for OXTR 

CpG 924 and therefore alcohol consumed per week had to be removed as a confounder 

from this model. 

The unadjusted binary logistic regression showed no statistically significant relationship 

between normal or abnormal semen parameters and any of the other variables (Table 77). 

 

Table 77. Unadjusted binary logistic regression for normal/abnormal semen parameters. 

Unadjusted binary logistic regression 

   95% CI 

 Sig. Exp(B) Lower Upper 

Ex-Smoker 0.386 0.664 0.263 1.676 

Non-Smoker . 1 . . 

Male BMI 0.089 1.118 0.983 1.272 

Male age (years) 0.092 1.074 0.988 1.167 
Alcohol consumed per 
week** 0.999 1 0.946 1.057 

OXTR CpG 924 0.176 1.111 0.954 1.295 

OXTR CpG 934 0.041 1.223 1.008 1.483 

 

                                                     
1 The maximum number of step-halvings was reached but the log-likelihood value cannot be further improved. 
Output for the last iteration is displayed. The GENLIN procedure continues despite the above warning(s). 
Subsequent results shown are based on the last iteration. Validity of the model fit is uncertain 
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The fully adjusted binary logistic regression showed no statistically significant relationship 

between OXTR CpG 924 and normal/abnormal semen parameters (Table 78). 

Table 78. Fully adjusted binary logistic regression for OXTR CpG 924 methylation and normal/abnormal semen 
parameters. 

 

 

 

 

 

The fully adjusted binary logistic regression showed no statistically significant relationship 

between OXTR CpG 934 and normal/abnormal semen parameters (Table 79). 

 

Table 79. Fully adjusted binary logistic regression for OXTR CpG 934 methylation and normal/abnormal semen 
parameters. 

 

 

 

 

 

 

 

  

Adjusted binary logistic regression for OXTR CpG 924 

   95% CI 

 Sig. Exp(B) Lower Upper 

Ex-Smoker 0.317 0.568 0.188 1.72 

Non-Smoker . 1 . . 

Male BMI 0.221 1.099 0.945 1.279 

Male age (years) 0.066 1.098 0.994 1.214 

OXTR CpG 924 0.402 1.076 0.907 1.277 

Adjusted binary logistic regression for OXTR CpG 934 

   95% CI 

 Sig. Exp(B) Lower Upper 

Ex-Smoker 0.297 0.549 0.178 1.696 
Non-Smoker . 1 . . 
Male BMI 0.143 1.125 0.961 1.317 
Male age (years) 0.034 1.12 1.009 1.244 
Alcohol consumed per 
week 0.17 0.947 0.877 1.023 
OXTR CpG 934 0.345 1.089 0.913 1.298 
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5.4 Discussion 

 

This study investigated the percentage methylation of the oxytocin receptor. This was 

measured at 2 CpG sites (924 and 934) via pyrosequencing in the sperm of patients 

undergoing ART at St Mary’s Hospital, Manchester. The relationship between percentage 

oxytocin receptor methylation and clinical parameters was investigated through a variety 

of statistical analyses.  

Oxytocin has a well-established involvement in reproduction in particular in the female; 

lactation, birth and maternal-infant bonding (Fuchs et al., 1982; Marlin et al., 2015; 

Nickerson et al., 1954). Oxytocin is involved in the human sexual response for both males 

and females with increased levels at orgasm and involvement in arousal, sociosexual 

interactions and sexual satiety (Carmichael et al., 1987; Carter, 1992). 

Oxytocin and its receptor has been implicated in spermatogenesis. Within the seminiferous 

tubules there are discontinuous layers of fibroblast/smooth muscle cell-like cells known as 

peritubular myoid cells (Hermo et al., 1977). The peritubular myoid cells support the 

seminiferous tubules via the contractile propulsion of fluid containing immotile sperm to 

the rete testes, this contractile function is modulated via angiotensin II and oxytocin (Schell 

et al., 2010; Welter et al., 2014). The human leydig cells have been shown to produce 

oxytocin and act upon the peritubular myoid cells increasing contractility in the 

seminiferous tubules, it has been proposed that oxytocin may also have an autocrine role 

in spermatogenesis via the stimulation of steroidogenesis (Frayne and Nicholson, 1998a; 

Thackare et al., 2006). Previously in mice, oxytocin treatments in vitro and in vivo have been 

found to increase proliferation of germ cells (spermatocytes and spermatids) in the testis 

in a dose dependant manner (Anjum et al., 2018). 

Aberrant DNA methylation has been demonstrated to have an effect on male fertility. 

Significant differences in sperm DNA methylation patterns are found between fertile and 

infertile men and it is thought that the methylation patterns may have a predictive factor 

in embryo quality in IVF. DNA methylation is important in all aspects of male fertility such 

as; spermatogenesis, male organ and sexual development and sexual behaviour  (Aston et 

al., 2015; Cisneros, 2004).  
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Methylation levels at the OXTR CpG sites 924 and 934 have primarily been associated with 

modulating social behaviour. Previous studies showed increased methylation at OXTR CpG 

924 and 934 in autism and the increased methylation resulted in a 20% decrease in OXTR 

expression in males (Tops et al., 2019). Increased methylation at OXTR CpG site 934 has 

been associated with decreased social perception, decreased emotional regulation and 

increased callous-unemotional traits (Dadds et al., 2014a; Puglia et al., 2015). However, this 

is the first study investigating oxytocin receptor methylation in male infertility, any 

modulations in the methylation status of the oxytocin receptor can result in altered 

expression and function. A previous study investigated oxytocin receptor levels in the 

lymphocytes of fertile and infertile males and demonstrated a significant increase in the 

monomer form of oxytocin receptor in the asthenozoospermia and oligozoospermia group 

when compared to normozoospermic controls and obstructive azoospermia group (Lui et 

al., 2010).  

Both of the oxytocin receptor CpG sites measured were significantly correlated and 

therefore were regressed separately to elucidate the individual relationships each CpG site 

had with the semen parameters.  

Initial differences between oxytocin receptor methylation at both sites were investigated 

using independent t-tests. The CpG site 924 was found to have a statistically significantly 

higher percentage methylation in patients with low concentration when compared to those 

with normal concentration. The CpG site 924 did not show any other statistically significant 

differences with the other parameters. The CpG site 934 was found to have statistically 

significantly higher percentage methylation in patients with low concentration, low count 

and abnormal overall semen parameters when compared to those with normal 

concentration, normal count and normal semen parameters. The CpG site 934 did not show 

any further statistically significant differences with the other semen parameters. 

Further investigations with partial correlations accounting for confounding factors (BMI, 

age, alcohol consumption and smoking status) were performed on both the binary 

variables and transformed continuous variables for semen parameters. The partial 

correlations demonstrated that CpG site 924 and 934 had statistically significant negative 

impacts on sperm count and concentration, and CpG site 934 also had a statistically 

significant correlation with overall abnormal semen parameters (i.e. categorised as 

normozoospermic or not). For the transformed continuous variables CpG 934 showed a 
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statistically significant negative correlation with sperm concentration, CpG 924 showed a 

statistically significant negative correlation with sperm concentration. No other outcomes 

were significantly correlated with the CpG sites 924 and 934.  

The fully adjusted univariate regressions demonstrated a statistically significant negative 

association between sperm concentration and both CpG 924 (Standardised β: -0.27 [-0.059, 

- 0.006], p = 0.016 ) and CpG 934 (Standardised β: -0.288 [-0.072, -0.009], p = 0.012).  

The fully adjusted binary logistic regression showed a no statistically significant associations 

between overall normal/abnormal semen parameters and CpG 924 or CpG 934. 

The overall outcome of the analyses demonstrates the novel negative association between 

oxytocin receptor methylation levels at CpG sites 924 and 934 with sperm concentration. 

Although the oxytocin receptor has not been localised on mature sperm to date previous 

research has localised it throughout the male reproductive tract (Einspanier and Ivell, 1997; 

Frayne and Nicholson, 1998b). The oxytocin receptor may be expressed in 

spermatids/spermatocytes or primordial germ cells and is worthy of further investigation 

as oxytocin has been demonstrated in previous studies to be involved in spermatogenesis 

and steroidogenesis as well as sperm transport through the male reproductive system and 

local production by the leydig cells any modulation in the receptor function through 

methylation may have negative implications for male fertility (Anjum et al., 2018; Frayne 

and Nicholson, 1998a; Thackare et al., 2006). 

There are further implications in transgenerational epigenetics. The primordial germ cells 

develop while the foetus is in utero, the maternal environment during pregnancy can have 

an effect on the future health of the developing foetus and there is further evidence to 

suggest that parental experiences can be transmitted through both male and female 

germlines which can have multigenerational impacts (Szyf, 2015). Furthermore, paternal 

exposures to lifestyle and/or environmental toxicants can alter the sperm epigenome, with 

transgenerational effects. A recent study demonstrated that exposure of cannabis can have 

adverse neurodevelopmental outcomes in offspring. Schrott et al, (2019) provided data 

demonstrating widespread DNA methylation changes in human and rat sperm upon 

exposure to delta-9-tetrahydrocannabinol (THC). This study reported that the Discs-Large 

Associated Protein 2 (DLGAP2), which is involved in synapse organization, neuronal 

signaling, and strongly implicated in autism, exhibited significant hypomethylation at 17 

CpG sites in human sperm. In the same study, adult male rats exposed to THC, showed 
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differential DNA methylation at Dlgap2 in sperm, together with the nucleus accumbens of 

rats whose fathers were exposed to THC prior to conception. (Schrott et al., 2020). 

These data and the findings in the present study indicate that the sperm epigenome and 

alterations in DNA methylation may impact the health of the offspring, especially where 

receptors are not present in the mature sperm. 

 

5.5 Conclusion 

The methylation of oxytocin receptor DNA CpG sites 924 and 934 are significantly 

negatively associated with sperm concentration which may be indicative of a further role 

for the oxytocin receptor in spermatogenesis than currently present in literature. 

Furthermore, alterations in the sperm DNA methylation can be used as indicators for long-

term health risks in the offspring.   
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Chapter 6: Overall discussion 

6.0 Discussion 

 

An increasing trend in male fertility has been reported demonstrating a significant decline 

in the sperm count. Levine et al (2017) reported this decline in sperm count occurring over 

the past 40 years. These data warrant further research to elucidate the causes of this 

decline. This study sought to investigate the role of the neuropeptides, oxytocin and 

vasopressin on sperm function and fertility. 

The role of neuropeptides in reproduction is well documented with major functions in the 

HPG axis, influencing the activity of the reproductive endocrine system, fecundity and 

sexual behaviour (see Table 1). Despite the involvement of neuropeptides in reproduction, 

little is known about their effects on sperm function and within the follicular fluid, an 

essential microenvironment where the oocyte matures. 

In the follicular fluid of women undergoing assisted reproduction the concentrations of 

TNFα, oxytocin and vasopressin were detected. The concentrations of TNFα and oxytocin 

were largely variable in the cohort at 0.36 – 1783.15 pg/mL and 285.26 – 2442.17 pg/mL 

respectively. The concentration of vasopressin was highly consistent at 3055.56 – 3091.08 

pg/mL.  

In published literature, TNFα concentration in human follicular fluid has been found at 

similar levels to the lower range found in this study and has been associated with poor 

quality oocytes (Lee et al., 2000; Wang et al., 1992). Other studies have demonstrated that 

TNFα concentration in human follicular fluid is not associated with successful IVF (Mendoza 

et al., 2002). The present study did not find any relationship between TNFα concentrations 

and the clinical outcomes investigated; number of oocytes, number fertilised, the choice 

between freeze all and embryo transfer and clinical pregnancy. However, it is the first to 

demonstrate a large variability of TNFα concentration in human follicular fluid and previous 

literature demonstrated a potential impact upon oocyte quality which was not a measured 

clinical outcome in this study. It has been previously demonstrated that TNFα interacts with 

other cytokines in a synergistic or antagonistic manner resulting in differing effects (Neta 

et al., 1992). Cytokines are involved in various aspects of female reproduction such as 



202 
 

regulating ovulation and potential involvement in pregnancy outcomes (Bedaiwy et al., 

2007; Büscher et al., 1999; Gaafar et al., 2014; Mendoza et al., 2002). Measuring the 

concentrations of the cytokines that interact with TNFα in combination with the 

concentration of TNFα would better demonstrate its role in female reproduction and 

potentially the mechanistic process through which it functions. 

Oxytocin has a well-established involvement in reproduction in particular in the female; 

lactation, birth and maternal-infant bonding and is also involved in the human sexual 

response in both sexes including; arousal, sociosexual interactions and sexual satiety 

(Carmichael et al., 1987; Carter, 1992; Fuchs et al., 1982; Marlin et al., 2015; Nickerson et 

al., 1954).  

Previously oxytocin and vasopressin have been detected in human follicular fluid at 

concentrations ranging from 5.54 – 299 pg/mL and 5.8 – 131 pg/mL respectively (Khan-

Dawood and Dawood, 1983; Schaeffer et al., 1984; Tjugum et al., 1986; Verges et al., 1986). 

The higher range of previous studies was similar to the lower range of the oxytocin 

concentrations found in human follicular fluid by this study and is the first to report a large 

variation in oxytocin concentration. The oxytocin concentration in human follicular fluid 

was found to have a significantly negative association with the number of oocytes fertilised 

(RR – 0.968 [0.957, 0.98], p – 0.000) using regression analysis. In the present study, 

vasopressin was detected at very high concentrations in human follicular fluid and 

concentrations were consistent across the patient cohort. Vasopressin regulates the water 

channels aquaporin-2 and aquaporin-3, which allow influx of water into the cell and out of 

the cell respectively (Knepper, 1997). The high and consistent concentrations of 

vasopressin in human follicular fluid may play a role in maintaining the osmotic gradient in 

the follicular antrum during follicular maturation. This idea may be supported in literature, 

the mRNA of aquaporin-2 in granulosa cells has been found to be upregulated throughout 

ovulation (Thoroddsen et al., 2011). The high concentrations of vasopressin may also be 

due to multiple follicle aspirates from stimulated women, which is something worth further 

investigation. The vasopressin concentration in human follicular fluid was not found to 

have a relationship with any of the clinical outcomes measured in this study. 

This is the first study to report concentrations of TNFα, oxytocin and vasopressin in human 

follicular fluid at these levels. Although a relationship between vasopressin and TNFα has 

been demonstrated in previous  studies where vasopressin functions through the oxytocin 



203 
 

receptor to result in the shedding of tumour necrosis factor receptor 1, this may be unique 

to human aortic endothelial cells as no relationship between oxytocin, vasopressin and 

TNFα was detected in this study (Yang et al., 2019). Previously, the effects of oxytocin and 

vasopressin in female fertility have primarily been investigated through animal studies or 

ovarian tissue extracts from women undergoing surgery. These studies demonstrated a 

potential role for oxytocin in the oestrous cycle and luteolysis and both oxytocin and 

vasopressin may have a role in influencing the secretion of gonadotropin (Wathes, 1984). 

In the semen of men undergoing ART concentrations of vasopressin and oxytocin were 

detected at 143.35 - 2827.24 pg/mL and 496.55 - 3100.24 pg/mL respectively. The levels of 

vasopressin and oxytocin were modelled statistically to elucidate any relationship with 

semen parameters. Vasopressin concentration in semen did not show any relationship with 

any of the semen parameters. However, the data presented in this study demonstrate that 

there may be a role for oxytocin in regulating sperm count and concentration. In semen, 

an increased concentration was negatively associated with sperm count (standardised β: - 

0.332 [-0.004, -0.001], p – 0.004) and concentration (standardised β: -0.293 [-0.003, 0], p – 

0.000) and not found to be associated with volume, progressive motility, total motility or 

overall normal/abnormal semen parameters, the relationship between oxytocin 

concentration and sperm count/concentration may be indicative of a direct role in 

spermatogenesis. This study is in concordance with some previous findings. One study 

found that plasma levels of oxytocin were not correlated with sperm motility, count or 

morphology.  However, other more recent studies have found plasma levels of oxytocin to 

be negatively correlated with lower sperm motility, lower sperm count and lower normal 

morphology with higher concentrations found in infertile men (Lui et al., 2010; Mostafa et 

al., 2015; Ogawa et al., 1980). Another study performed a small single blind experiment 

where acute oxytocin administration prior to sperm collection increased sperm release in 

human oligozoospermic patients. It was postulated that oxytocin has a physiological role in 

sperm transport and epididymal motility (Filippi et al., 2002). It is clear oxytocin may play a 

role in spermatogenesis and possibly sperm function and fertilisation rate. However, there 

is no consensus in the published literature.  

 

The data presented in this research is the first to localise the vasopressin receptor 2 has on 

the acrosome of human sperm. Furthermore, this is the first study to investigate the any 

effects vasopressin may have in human sperm function in vitro. Vasopressin was found to 
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modulate several aspects of sperm function. During in vitro motility and kinematic assays 

it was found that vasopressin significantly increased human sperm progressive motility at 

10 µM, significantly increased linearity at 10 nM and 10 µM, increased VCL at all 

concentrations used (10 pM – 10 µM), increased VSL at 10 pM and decreased VSL at 10 nM 

and 10 µM. The vasopressin receptor 2 agonist dDAVP was found to decrease sperm 

linearity at 10 µM, increased VCL at 10 pM and 10 nM, decreased VSL at 10 µM. Although 

VCL and VSL are related, they can be considered as a measure of cell vigour and straight 

line progression respectively, VCL is considered to be directly related to hyperactivation 

and VSL is considered to be related to non-hyperactivated sperm  (Cancel et al., 2000; 

Mortimer and Mortimer, 1990). The calcium measurements found in both the microplate 

fluorescence assay and the live cell imaging at 10 µM vasopressin significantly increased 

calcium response in human sperm and in the live cell imaging calcium response was also 

significantly increased with 10 µM dDAVP. It has been well established that calcium 

response plays an essential role in regulating motility and particularly, hyperactivation of 

sperm (Costello et al., 2009a; Lishko et al., 2011; Publicover et al., 2007; Strünker et al., 

2011). Although hyperactivation is considered a visual and behavioural measure of 

capacitation, it has been debated that both processes may be independent of each other 

in human sperm, where hyperactivation specifically refers to the pattern of movement 

controlled by the flagella and capacitation refers to the membrane changes which alter the 

location of calcium binding sites in the plasma membrane of the sperm head (de Lamirande 

and Cagnon, 1993; Mortimer et al., 1998). The capacitation, hyperactivation and acrosome 

reaction of sperm are prerequisites to fertilisation (De Lamirande et al., 1997; Wang et al., 

1993). Assessment of the acrosome reaction using FITC-PSA produced inconsistent results. 

Therefore, scanning electron microscopy was used to investigate the acrosome reaction in 

further depth. It was found that vasopressin increased the amount of acrosome reacted 

sperm by approximately 3-fold compared to the vehicle control. The results of this study 

suggest that vasopressin increases hyperactivation of sperm in vitro, vasopressin may have 

a role in capacitation and acrosome reaction also. 

The mitochondria essential in human sperm motility, hyperactivation and calcium response 

as the mitochondria can act as a calcium store in the neck/midpiece and an inhibition of 

mitochondrial respiration has been shown to negatively impact ATP production and sperm 

motility in mouse studies (Costello et al., 2009b; Kasai et al., 2002; Tourmente et al., 2015). 

Vasopressin has been found to increase mitochondrial calcium concentration, activate 
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essential enzymes for oxidative metabolism which has been demonstrated to be involved 

in water uptake into the cells in rat liver models (Assimacopoulos-Jeannet et al., 1986; 

Lehninger and Neubert, 1961). In rat haemorrhagic shock models vasopressin was found to 

prevent acute kidney damage via the inhibition of mitochondrial respiration linked to 

complex I, II and III however, there is little known in published literature about the direct 

effects of vasopressin on mitochondrial function (Bordt et al., 2019b; Sims et al., 2017). 

Using the Seahorse cell mito stress test to measure human sperm mitochondrial oxygen 

consumption rate and extracellular acidification rate following injections of vasopressin, 

dDAVP, vehicle control and modulators of the electron transport chain, it was found that 

vasopressin treatment significantly increased oxygen consumption rate after FCCP 

(uncoupling agent) and rotenone/antimycin A (total inhibitors of mitochondrial respiration) 

injections. The dDAVP treatment significantly decreased oxygen consumption rate 

following FCCP injection. The extracellular acidification rate was significantly increased in 

vasopressin treatment following injection of the treatment, oligomycin and 

rotenone/antimycin A. The oxygen consumption rate is considered a direct measurement 

of oxidative phosphorylation (OXPHOS) and extracellular acidification rate is considered a 

direct measure of glycolysis through the excretion of lactic acid (Li and Graham, 2012; Wu 

et al., 2007). However, extracellular acidification rate can be due to both anaerobic 

glycolysis and CO2 production through respiration, both of which are reliant on several 

factors including cell type and media used, further tests would be necessary to determine 

the non-glycolytic extracellular acidification and glycolysis driven extracellular acidification  

(Mookerjee et al., 2015; TeSlaa and Teitell, 2014). The findings in the present study 

demonstrate that vasopressin may increase glycolysis rather than oxidative 

phosphorylation, whilst increasing maximal respiration potential following the uncoupling 

at the FCCP injection and the increase in both oxygen consumption and extracellular 

acidification rate following the rotenone/antimycin A injection indicates an increase in non-

mitochondrial linked respiration through glycolysis. There is a large body of research 

suggesting that glycolysis is the primary source of  ATP production required for motility and 

alterations in this would impact sperm motility and hyperactivation (du Plessis et al., 2015; 

Lardy and Phillips, 1941; Mukai and Okuno, 2004). 

Overall, the data would indicate that vasopressin stimulates an increase in human sperm 

hyperactivation through activation of key pathways such as glycolysis and the calcium 

response. Vasopressin may also have a role to play in modulating human sperm motility 
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and capacitation. Hyperactivation, capacitation and motility are all essential to male human 

fertility. 

Aberrant DNA methylation has been demonstrated to have an effect on male fertility with 

significant differences in sperm DNA methylation patterns found between fertile and 

infertile men. DNA methylation is important in all aspects of male fertility such as; 

spermatogenesis, male organ and sexual development and sexual behaviour (Aston et al., 

2015; Cisneros, 2004). Oxytocin and the oxytocin receptor have previously been implicated 

in spermatogenesis, steroidogenesis, the healthy contractile function in the seminiferous 

tubules (Frayne and Nicholson, 1998a; Schell et al., 2010; Thackare et al., 2006; Welter et 

al., 2014). The oxytocin receptor CpG sites 924 and 934 have been associated with 

modulating social behaviours, autism, mood and personality traits (Dadds et al., 2014b; 

Puglia et al., 2015; Tops et al., 2019). This study investigated the methylation levels in the 

oxytocin receptor at CpG sites 924 and 934 in men undergoing ART and is the first to find a 

relationship between oxytocin receptor methylation and male fertility. There was a 

significant negative association between sperm concentration and both CpG 924 

(Standardised β: -0.27 [-0.059, - 0.006], p = 0.016 ) and CpG 934 (Standardised β: -0.288 [-

0.072, -0.009], p = 0.012). Although presently the oxytocin receptor has not been localised 

on mature sperm it is found throughout the male reproductive tract, the receptor may be 

expressed in immature sperm cells (spermatid/spermatocytes/primordial germ cells) and 

would warrant further investigation due to the findings in this study and in previous studies 

implicating oxytocin receptor in spermatogenesis (Einspanier and Ivell, 1997; Frayne and 

Nicholson, 1998b).  

During in utero development of the foetus, the maternal environment and paternal 

exposures to lifestyle and environmental toxicants can affect the future health of the 

offspring via alterations in the epigenome, which may have multigenerational impacts 

(Szyf, 2015). For instance, paternal exposure to cannabis prior to conception has been 

demonstrated to have adverse neurodevelopmental effects on the offspring through the 

methylation of discs-large associated protein 2(Schrott et al., 2020).  

The findings in the present study demonstrate that the oxytocin receptor methylation may 

be important in spermatogenesis and alongside previous research may implicate the 

oxytocin receptor methylation in the health of the offspring, especially where CpG sites 924 

and 934 are associated with mood disorders and autism. 
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The presence of the neuropeptides oxytocin and vasopressin in the semen and follicular 

fluid and the association between oxytocin and lower fertilisation rate, sperm 

concentration and sperm count, the presence of the vasopressin receptor 2 on human 

sperm and vasopressin’s positive effects on sperm in vitro and the negative association 

between oxytocin receptor methylation and sperm concentration indicate important roles 

for these neuropeptides in human fertility. The neuropeptides oxytocin and vasopressin 

are very similar, differing by only 2 amino acids, this results in the cross reactivity between 

the neuropeptides and both their receptors (Song and Albers, 2018). However, the data 

from this study indicate that oxytocin and vasopressin have different effects on human 

fertility. Vasopressin has been shown to stimulate sperm hyperactivation, glycolysis and 

calcium response and may potentially influence sperm motility and capacitation, these 

processes are vital for male fertility. However, oxytocin is associated with negative impacts 

on fertility, it is negatively associated with fertilisation and sperm count and concentration.  

In many studies, such as the present one, it is important to consider confounding factors 

that can influence the outcomes. The confounders included in the regression analyses were 

all chosen a priori and included due to their established biological relevance to the 

outcomes measured. 

It is well established within the literature that increased age has negative implications for 

fertility, both maternal and paternal advancing age is associated with poor fertility, 

complications in pregnancy and adverse health outcomes in offspring. In males the 

testosterone levels decrease with age resulting in hypogonadism, semen parameters 

decrease potentially as soon as 35 years, after 40 years males show an increased amount 

of sperm DNA damage and decreased motility and vitality. In the female fertility, declines 

significantly over the age of 36, both the ability to get pregnant and maintain the pregnancy 

are negatively impacted, there is an increased risk of aneuploidy, spontaneous abortion 

and chromosomal abnormalities  (Sharma et al., 2013). In the models used in this study, 

age was found to be significantly relevant when modelling fertilisation of oocytes and in 

the methylation cohort. Age was found to have a negative association with fertilisation in 

women undergoing IVF which is in concordance with current literature and found to have 

a paradoxical positive association with overall normal semen parameters (classified as 

normozoospermic using the WHO reference ranges for semen parameters). 
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Whether IVF or ICSI was used was an important confounding factor as it with ICSI the sperm 

are directly injected into the oocyte, fertilisation rate has been investigated with sibling 

oocyte split treatment studies and in some has been shown to have an effect on outcome 

where IVF has a higher rate of total failed fertilisation rates than ICSI, however, in other 

studies no statistically significant effect was found (Fan et al., 2012; Lee et al., 2017; Plachot 

et al., 2002; Staessen et al., 1999). In the follicular fluid cohort it was found that using ICSI 

over IVF significantly increased fertilisation of oocytes and significantly decreased the 

choice to freeze all embryos.  

Body mass index (BMI) is considered a parameter which affects clinical outcomes. Obesity 

(a BMI greater than or equal to 30) is associated with several diseases as well as 

hypogonadism and other impacts on the endocrine systems therefore affecting both male 

and female fertility (Brewer and Balen, 2010; Phillips and Tanphaichitr, 2010; Reece, 2008). 

In women, obesity is associated with poor response to ART treatments leading to lower 

fertilisation rates and lower live birth rates. Obesity in women is also associated with 

increases in miscarriage, gestational diabetes, larger foetuses and subsequent delivery 

complications (Homan et al., 2007; Pandey et al., 2010). In men, obesity is associated with 

reduced circulating testosterone levels and poor sperm concentration, motility and 

morphology (Cabler et al., 2010; MacDonald et al., 2009). Women who are clinically 

underweight (BMI less than 18.5) have an increased risk of infertility, this is suggested to 

be due to an increase in FSH levels, a short luteal phase leading to secondary amenorrhoea 

due to reduced leptin levels (Frisch, 1987; Grodstein et al., 1994a). Low BMI is also 

associated with reduced clinical pregnancy rates and increased miscarriage rates in 

comparison to women of a healthy BMI, they have higher rates of premature labour and a 

reduced birth weight (Davies, 2006; Han et al., 2010). In this study BMI was only available 

to be included for the models of oxytocin receptor methylation in sperm and was not found 

to be statistically significant in any of the models of sperm parameters.  

Smoking tobacco has repeatedly been demonstrated to have a severe negative health 

consequences and is thought to be a predominant contributor to alterations in CpG 

methylation (Breitling, 2013). The WHO state that there are no levels of exposure that are 

considered safe (World Health Organization and Tobacco Free Initiative (World Health 

Organization), 2007). In reproduction, both male and female fertility is impacted by 

cigarette smoking as well as second hand smoke exposure, increased DNA damage to 
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sperm, detrimental effects on semen parameters, it increases the risk of early menopause, 

higher risk of tubal factor, reduced oocyte retrieval, higher incidence of diploid and triploid 

oocytes, poor conception rates, reduced IVF/ICSI rates, doubled ectopic pregnancy risk, 

increased rate of miscarriage by 80% (Evans et al., 1981; Potts et al., 1999; Tomova and 

Carroll, 2018). In this study smoker status was only available to be included for the models 

of oxytocin receptor methylation in sperm and was not found to be statistically significant 

in any of the models of sperm parameters, this was included as either ex-smoker or non-

smoker, patients undergoing ART are required to quit smoking prior to treatment and 

therefore the exposure of the ex-smokers to tobacco smoke may be vastly different. 

Alcohol consumption has been well established in the literature to be associated with many 

negative health outcomes, in fertility, it is associated with severe pregnancy complications, 

poor development of the foetus, increases in female factor infertility due to ovulatory 

factors or endometriosis, increased association with miscarriage (Grodstein et al., 1994b; 

Henriksen et al., 2004). In men, chronic alcohol use is associated with an increase in FSH, 

oestrogen and LH, decreases in progesterone and testosterone and significant negative 

impacts on sperm count, morphology, motility and decreased seminal volume (Muthusami 

and Chinnaswamy, 2005). In this study, regression analysis demonstrated that alcohol 

consumption had a positive association with sperm concentration and count. 

6.1 Overall conclusion 

 

This study demonstrated the neuropeptides vasopressin and oxytocin have a role in fertility 

and sperm function. It is the first to locate the vasopressin receptor 2 on the acrosome 

region of human sperm and demonstrate a role in sperm motility, kinematics, calcium 

response, mitochondrial respiration and glycolysis. In the clinical cohorts of men and 

women undergoing IVF where increasing concentrations of oxytocin in follicular fluid was 

found to be negatively associated with fertilisation of oocytes in women and increasing 

concentrations of oxytocin in semen was negatively associated with sperm count and 

concentration in men. In sperm, increases in the oxytocin receptor methylation at CpG sites 

924 and 934 were negatively associated with sperm concentration. These data indicate a 

novel role for vasopressin and oxytocin in sperm function, spermatogenesis, fertilisation 

and potentially indicating transgenerational implications for the oxytocin receptor.  
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6.2 Limitations 

Research using human samples and clinical cohorts come with limitations and there are 

some limitations recognised in this study.  

One of the main limitations of this study is the available confounding factors (as discussed 

above). In order to robustly model the relationship between predictor variables and 

outcome variables it would be ideal to have a high enough number of patients and all 

confounders relevant to each outcome. When investigating the neuropeptide levels in 

semen the only confounding variable available was age whereas other factors influence 

semen parameters such as BMI, smoke exposure and alcohol consumption. In the follicular 

fluid cohort there were only 5 patients overall who had the long-down regulation 

stimulation protocol which caused difficulty in the regression models. The type of infertility, 

male/female/type of either, was not known and therefore not accounted for in the 

regression models. All patients were from the same clinic and there may be a difference in 

the semen parameters of the patients who chose to participate in the research compared 

to those who chose not to. 

There are always limitations with live cell in vitro assays as the controlled and simple 

microenvironment used to investigate direct effects of compounds on cells is rarely 

representative of the complex in vivo environment. For any research using human sperm –

it is important to obtain a fresh sample on the day of experimentation and from a healthy 

donor. For the in vitro assays, participants were recruited from the general population.  

Although participants were available, due to the nature of our recruitment process and 

ethical approval procedures only a limited number of participants could be recruited. 

Therefore, a smaller sample size results in less power and higher variation.  Furthermore, 

the Seahorse extracellular flux analysis required further optimisation, as this was the first 

study to use this system with human sperm to date.  

DNA methylation analysis of human sperm requires primer design targeting regions of 

interest. The methylation analysis intended to include vasopressin receptor 2 however, all 

primers designed did not amplify the region of interest and required further design 

optimisation. However, due to time constraints, optimisation and further primer design 

was not possible.  
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6.3 Future work 

This is the first study to localise vasopressin receptor 2 on human sperm and although a 

functional role of vasopressin in sperm was presented – this research has raised a number 

of future research possibilities.  

Further investigation of the aquaporin receptor in sperm function, in particular acrosome 

integrity and the acrosome reaction is worth pursuing. As the FITC-PSA assays were 

inconclusive and could not be repeated – the SEM was utilised. More SEM work to evaluate 

the acrosome status after vasopressin treatment would be useful. Moreover, localisation 

of the aquaporin receptor and its translocation with vasopressin treatment would reveal a 

novel functional role of vasopressin and aquaporin receptor and sperm function.  

Further investigations into the in vivo effects of vasopressin could be investigated through 

a cohort of healthy males, males on vasopressin receptor 2 antagonists (e.g. tolvaptan) and 

males on vasopressin receptor 2 agonists (desmopressin a.k.a dDAVP) through analysis of 

the semen parameters in these cohorts. However, it may be difficult to discern direct 

effects of the vasopressin receptor 2 agonists/antagonists as patients may likely be on 

further medications, a large enough patient cohort would be required to be able to 

statistically account for additional medications. 

In the present study vasopressin was demonstrated to modulate sperm motility and 

increase calcium concentrations in sperm. In mouse, vasopressin was shown to negatively 

affect sperm function (Kwon et al., 2013b), however the present study has shown the 

opposite. These data suggest a novel function of vasopressin on sperm, which may be to 

influence sperm function in the female reproductive tract. This warrants further 

investigation.  

Investigate vasopressin receptor 2 methylation to elucidate any relationship between 

AVPR2, which is expressed in mature sperm, and semen parameters. As  

As cell and molecular research progresses, the “-omics” are becoming increasingly 

informative. Ideally, a further study would be conducted with a cohort of fertile and 

infertile males. Proteomics, metabolomics and NextGen sequencing performed on the 

sperm samples to elucidate differences between the fertile and infertile males. This would 

provide further insight into neuropeptides within sperm and highlight further 

neuropeptides of interest to investigate.  
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Proteomics on the follicular fluid of the female cohort would provide further insight into 

the constituents and their effects on the number of oocytes, number fertilised and 

pregnancy rate. The data from proteomics could also be mined for differences leading to 

investigations into potential biomarkers for reproductive success. 

  



213 
 

6.4 Research outputs 

 

Ana-Maria Tomova & Michael Carroll. Lifestyle and Environmental Impacts on Fertility. 
Clinical Reproductive Science. Wiley-Blackwell 2018 
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Medical Screening Questionnaire    Participant code:  

 

It is important that the investigators are aware of any health conditions before participation 

in this research study. This information will be kept strictly confidential.  

 

Please answer the following questions as accurately as possible. 

 

Are you currently taking any prescribed medication?   YES/NO 

 

Are you currently attending your GP?     YES/NO 

 

Have you ever suffered from a cardiovascular problem?   YES/NO 

i.e. high blood pressure, anaemia, heart attack etc  

 

Have you ever suffered from a neurological disorder?   YES/NO 

i.e. epilepsy, convulsions etc         

          

Have you ever suffered from an endocrine disorder?    YES/NO  

i.e. diabetes etc     

            

        

Have you ever suffered from a chronic gastrointestinal disorder?  YES/NO 

i.e. Crohn’s disease, irritable bowel syndrome etc      

          

Have you ever suffered from a skin disorder?    YES/NO 

i.e. eczema etc          

           

Do you suffer from any allergies?      YES/NO  

i.e. any medications, foods etc  
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Do you smoke cigeretes        YES/NO 

If yes, how many per day? ______ 

            

Have you had a vasectomy or any urological surrey?   YES/NO 

i.e. testicular surgery   

 

Have you had Mumps?       YES/NO  

 

Have you had any testicular injuries / torsions?     YES/NO 

 

    

Do you knowingly have, or had a Sexually Transmitted Infection?  YES/NO 

           

 

If you have answered “yes” to any of these questions, please provide details below: 

 

 

 

 

 

SE1617126 v.1 

Participant informed consent.                             ID code …………………………… 

Name: …………………………………………………  

 

Date of Birth: …………………………………  
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Project title:  

 

In vitro toxicity studies. 

 

Principal Investigator:  

Dr Michael Carroll 

 

Investigator/Collaborators:  

Dr Oliver Sutcliffe, Senior Lecturer, MMU  

Dr Stéphane Berneau, PDRA, MMU 

  

Ethics approval number:  SE1617126 

I have read and understood the information sheet and all verbal explanation outlining the 

purpose of the study and the assessments involved.  

Any questions I have about the study, or my participation in it, have been answered to my satisfaction. 

I understand that I do not have to take part and that I may decide to withdraw from the study at any 

point without having to give a reason. I understand that my sperm will not be used, at any time, for 

any form of assisted reproductive technique, such as fertilising human eggs or the creation of human 

embryos. I understand that my semen may be also used for teaching purposes. I also understand 

that no personal identifying information will be attached to any data derived from this sample and all 

data presented or published will be anonymised.  

 

My concerns regarding this study have been answered and such further concerns as I have during 

the time of the study will be responded to. It has been made clear to me that, should I feel that my 

rights are being infringed or that my interests are otherwise being ignored, neglected or denied, I 

should inform the Chair of the Ethics Committee of the School of Healthcare Sciences, Manchester 

Metropolitan University, Oxford Road, Manchester, M1 5GD. 

 

 I give my consent for semen collected from me during the course of this study to be retained in 

the study biobank at MMU for retrospective biochemical and molecular biology analysis (please 

circle) YES  NO 
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 I give my consent for samples to be donated to MMU for use in future scientific  / medical research 

and /or teaching purposes. I understand that my sample will not be used for any reproductive 

activities 

   (please circle) YES  NO 

 

Signed  

   Date   

  

Name (Print)……………………………….. 

 

  

 

Witnessed  

 Date   
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Study Procedures 

 

The following is a brief description of the procedures and techniques that will be employed 

during this study.  

 

Semen procurement:  

Semen will be produced by masturbation in to sterile containers provided. On occasions 

where participants cannot provide a specimen from home they will be asked to produce a 

sample on site in a dedicated, secured room. The specimen container will be placed in the 

plastic bag with the completed ‘semen procurement form’.  

Semen analysis: 

Semen analysis is carried out within 30 minutes of specimen production. Volume, pH and 

other physical characteristics are noted. Sperm motility and concentration is measured and 

a sample of semen is smeared on to a glass slide for fixing and morphological analysis.  

Sperm toxicity assays: 

 

Sperm will be exposed to various compounds, after which measurements of sperm vitality 

and function will be measured, such as vitality, motility, morphology and DNA damage.  

Cells and / or DNA will be stored for future analysis after collection.  
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Principle Investigator:   

Dr Michael Carroll (michael.carroll@mmu.ac.uk)  

0161 247 1231 

Participant information sheet 

 

Title of Study: In Vitro Toxicity study  

 
Study Background 

Male factor infertility can account for 40% of infertility experienced by couples trying to 

conceive. As sperm are produced continuously in the testis through the process of 

spermatogenesis – the sperm cells are vulnerable to damage. One major factor resulting in 

male infertility are exposures to chemicals (environmental chemicals, medicines, drugs etc).  

This study will utilise in vitro assays to measure any potential sperm damaging effects of 

various chemicals.  

This information will offer more insight to potential causes of male infertility.   

Who can take part? 

Any male aged over 18 years old.  

What is involved? 

You will be required to provide a semen sample either at home or within a secure room at 

the school of healthcare science. You will produce this semen via masturbation. A full 

sample is required. You will be provided with a sterile container from which to deposit your 

specimen.  

The semen sample will be assessed for parameters such as motility (how well the sperm 

are moving), morphology (the shape of the sperm cells) and concentration (the number of 

sperm per millilitre of seminal fluid). The sperm will then undergo a variety of biochemical 

and molecular biology tests. There will be no genetic testing. The samples will be stored at 

-80°C for further analysis.  

Your sperm sample will NOT, at any time, be used for any assisted reproductive techniques 

and will ONLY be used for research or teaching purposes. No personal identifying 

information will be attached to any data derived from this sample and all data presented or 

published will be anonymised.  

mailto:michael.carroll@mmu.ac.uk
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Please note that this is not a diagnostic test and you will not be informed of the quality of 

your semen/sperm. Recompense is not given for this study.  

 

Are there any risks in taking part in the study? 

 

There may be a slight risk of fainting due to the physical activity of semen production. If you 

are providing the sample on site, the secured room can be locked from the inside. After an 

allotted time has elapsed, a study team member will knock on the door to ensure you are 

OK. If there is no answer, they will enter the room using a key to establish your status.  
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Participant information sheet 

 

Title of Study: Investigating the role of neuropeptides and their effects on sperm function.  

 
Study Background 

 

Male factor infertility can account for 40% of infertility experienced by couples trying to conceive. As 

sperm are produced continuously in the testis through the process of spermatogenesis – the sperm 

cells are vulnerable to damage. Neuropeptides are small proteins that function both as 

neurotransmitters in the brain and as hormones in the body. Neuropeptides role in reproduction are 

very well documented however, very little is currently known about their role in sperm function. 

 

We will investigate the presence of neuropeptide receptors on sperm and the effects that 

neuropeptides may have on sperm function. This information may offer potential therapeutic options 

to improve male infertility.  

 

 

Who can take part? 

 

Any male aged over 18 years old.  

 

What is involved? 

 

You will be required to provide a semen sample either at home or within a secure room at the school 

of healthcare science. You will produce this semen via masturbation. A full sample is required. You 

will be provided with a sterile container from which to deposit your specimen.  

The semen sample will be assessed for parameters such as motility (how well the sperm are moving), 

morphology (the shape of the sperm cells) and concentration (the number of sperm per millilitre of 

seminal fluid). The sperm will then undergo a variety of biochemical and molecular biology tests. The 

samples will be stored at -80°C for further analysis.  
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Your sperm sample will NOT, at any time, be used for any assisted reproductive techniques and will 

ONLY be used for research or teaching purposes.  

You may also be asked to provide a blood sample (optional). The blood will be taken by an 

experienced phlebotomist and is a quick and relatively painless procedure. However, there may be 

some bruising. Blood will be prepared and stored at -80°C until required. These samples will be used 

for biochemical and molecular analysis.  

 

Please note that this is not a diagnostic test and you will not be informed of the quality of your 

semen/sperm.  

 

Are there any risks in taking part in the study? 

 

There may be a slight risk of fainting due to the physical activity of semen production. If you are 

providing the sample on site, the secured room can be locked from the inside. After an allotted time 

has elapsed, a study team member will knock on the door to ensure you are OK. If there is no answer, 

they will enter the room using a key to establish your status.  

 

A slight risk of fainting might also occur during/after blood collection via venepuncture due to fasting 

or a low blood pressure. The procedure may cause alight discomfort or pain, and some bruising. 

Post care and advice will be provided. 

 

How do I withdraw from the study? 

 

To withdraw simply state that you wish to do so in an email to Principle Investigator 

(michael.carroll@mmu.ac.uk) and all information/samples/data will be destroyed. You do not need 

to provide a reason for withdrawal from this study. You have the right to withdraw at any point in time. 

  

mailto:michael.carroll@mmu.ac.uk
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Participant informed consent.                             ID code …………………………… 

 

Name: …………………………………………………  

 

Date of Birth: …………………………………  

 

Ethics approval number:   

 

Project title:  

 

Investigating the role of neuropeptides and their effect on sperm function. 

 

Principal Investigator:  

Dr Michael Carroll 

 

Investigator/Collaborators:  

Ana-Maria Tomova 

Dr Stephane Berneau 

Dr Chris Murgatroyd 

Dr Jason Ashworth 

Prof. Daniel Brison 
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I have read and understood the participant information sheet and all verbal explanation outlining the 

purpose of the study and the assessments involved.  

Any questions I have about the study, or my participation in it, have been answered to my satisfaction. 

I understand that I do not have to take part and that I may decide to withdraw from the study at any 

point without having to give a reason and I understand how to do this.  

I understand that my sperm will not be used, at any time, for any form of assisted reproductive 

technique, such as fertilising human eggs or the creation of human embryos.  

I understand that my semen may be also used for teaching purposes at Manchester Metropolitan 

University. 

I understand that my participation in this study will be confidential unless I choose to break the 

confidentiality myself. 

I understand that my sample will be anonymised for all processing purposes. 

My concerns regarding this study have been answered and such further concerns as I have during 

the time of the study will be responded to. It has been made clear to me that, should I feel that my 

rights are being infringed or that my interests are otherwise being ignored, neglected or denied, I 

should inform the Chair of the Ethics Committee of Faculty of Science and Engineering, Manchester 

Metropolitan University, Oxford Road, Manchester, M1 5GD. 
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 I give my consent for semen collected from me during the course of this study to be retained in 
the study biobank at MMU for retrospective biochemical and molecular biology analysis (please 
circle) YES  NO 

 

 I give my consent for blood collected from me during the course of this study to be retained in the 
study biobank at MMU for retrospective biochemical and molecular biology analysis (please 
circle) YES  NO 

 

 

 

Signed _________________________________   Date ________________________________ 

 

 

Name (Print) __________________________________________________________________ 

 

 

 

 

Witnessed _________________________________   Date _____________________________ 

 

 

Name (Print) __________________________________________________________________ 

 

 


