

Please cite the Published Version

Van Thong, P, Le Duc, O, Leprince, B, Bodres, C, Zuklin, T, Ducotterd, C, Vinh, LQ, Oanh, LV, Anh, NT, Fa, John (2) and Luiselli, L (2020) Unexpected high forest turtle diversity in hill forests in northern Vietnam. Biodiversity and Conservation, 29 (14). pp. 4019-4033. ISSN 0960-3115

DOI: https://doi.org/10.1007/s10531-020-02061-y

Publisher: Springer (part of Springer Nature)

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/626537/

Usage rights: O In Copyright

Additional Information: This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10531-020-02061-y

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

1 ORIGINAL PAPER

² Unexpected high forest turtle diversity in hill forests in northern ³ Vietnam

Pham Van Thong^{1,2}, Olivier Le Duc^{1,2}, Benjamin Leprince^{1,2}, Cedric Bodres^{1,2}, Tomas
Zuklin^{1,2,3}, Charlotte Ducotterd^{1,4*}, Luu Quang Vinh⁵, Lo Van Oanh⁵, Nguyen Tam Anh⁵,
John E. Fa^{6,7}, Luca Luiselli^{8,9,10}

¹Turtle Sanctuary and Conservation Center, 19 rue Béranger, 75003 Paris, France; emails:
t.pham@turtle-sanctuary.org; o.leduc@turtle-sanctuary.org; c.bordes@turtle-sanctuary.org;
b.leprince@turtle-sanctuary.org

²Associated Wildlife and Environment Conservation Community AWECC, 19 rue Béranger
 75003 Paris, France

³Ecosystem Governance Thematic Group, Commission on Ecosystem Management, IUCN,
Gland, Switzerland; email: <u>t.zuklin@turtle-santuary.org</u>

⁴Centre Emys, Protection et Récupération des tortues, Chavornay, Switzerland; email:
 <u>c.ducotterd@turtle-sanctuary.org</u>

⁵Vietnam National University of Forestry, street 21, Xuan Mai town, Chuong My district, 100000
 Hanoi, Vietnam; email: <u>qvinhfuv@yahoo.com.au; looanh56b@gmail.com;</u>
 tamanhvfu@gmail.com

19	⁶ Division of Biology and Conservation Ecology, School of Sciences and the Environment,
20	Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
21	⁷ Center for International Forestry Research (CIFOR), CIFOR Headquaters, Bogor 16115,
22	Indonesia; email: jfa949@gmail.com
23	⁸ Institute for Development, Ecology, Conservation and Cooperation, via G. Tomasi di Lampedusa
24	33 - 00144 Rome, Italy; email: l.luiselli@ideccngo.org
25	⁹ Department of Applied and Environmental Biology, Rivers State University of Science and
26	Technology, P.M.B. 5080, Port Harcourt, Nigeria
27	¹⁰ Département de Zoologie et Biologie Animale, Faculté des Sciences, Université de Lomé, B.P.
28	1515, Lomé, Togo
29	*Corresponding author: Charlotte Ducotterd, charlotte.ducotterd@gmail.com
30	
31	
32	
33	
34	
35	

36 Abstract

Almost all Asian turtle species are considered threatened by the World Conservation Union 37 (IUCN). We investigated the turtle fauna and their distribution in hilly forests in northern Vietnam, 38 using a combination of 1) field surveys; 2) hunter interviews; 3) examination of hunter quarry, and 39 4) monitoring of hunting activity. We performed field surveys in bamboo and hilly secondary 40 41 forests (500-1,350 m), applied 103 hunter interviews, and examined the same number of hunter bags. Overall, we found a total of 124 different individuals of as many as 9 turtle species 42 (representing 18% of the currently known total chelonian fauna in the Indo-Burma region). Two 43 species were the most dominant, the Impressed tortoise (Manouria impressa), which we found 44 mostly as shells in villages, and the Indochinese box turtle (*Cuora galbinifrons*) sighted inside 45 bamboo forests at different elevations. C. galbinifrons is considered one of the most critically 46 endangered turtle species in the world. Given that there are still large expanses of unexplored 47 bamboo forests and mixed bamboo - evergreen forest (over 5 million hectares) remaining 48 throughout northern Vietnam, if our results are typical of other similar habitats, it is likely that C. 49 galbinifrons may be more common than currently assessed. We therefore suggest that field surveys 50 51 should be conducted as soon as possible to confirm whether these turtles are as seriously threatened 52 as presently considered by the IUCN.

53

Key words: Chelonians; hunting surveys; Indo-Burma region; habitat; Cuora galbinifrons.

54

55

57 Introduction

58 As many as 83% (88 species) of all Asian turtle taxa (Geomydidae, Testudinidae, Trionychidae, Platysternididae) are considered threatened according to the World Conservation Union (IUCN), 59 60 due to overhunting and habitat loss (Rhodin et al., 2018). Most Critically Endangered (CR) and 61 Endangered (EN) species are found in Southeastern China, Southeast Asia, Indonesia, and northern India (Rhodin et al., 2018). However, the situation is particularly critical in Vietnam (Turtle 62 63 Taxonomy Working Group et al., 2017; Pham, 2018), where there is also a taxonomically diverse turtle fauna (Bourret, 1941; Stanford et al., 2018). Despite the country's importance, Vietnam's 64 65 turtles remain poorly known especially in terms of their ecology (Turtle Taxonomy Working Group et al., 2017; Van et al., 2019). 66

Most herpetological studies published to date in Vietnam are species lists (Nguyen et al., 67 2009; Nguyen and Ho, 1996) or just focus on the turtle trade in the region (Cheung and Dudgeon, 68 2006; Hendrie, 2001, 2000; Hendrie and Trang, 2000; Le Dien Duc and Broad, 1995; Pham Van 69 70 et al., 2019; Tran et al., 2016; Van Dijk et al., 2000; Van et al., 2019). These trade studies, which are based on market surveys only, assume catastrophic declines of Vietnamese turtles despite the 71 fact that no field data are available to support this (Das et al., 2016; Fritz et al., 2002; Le, 2007; Le 72 et al., 2004; Ly et al., 2011; McCormack et al., 2014; Pham et al., 2018). Such lack of field 73 evidence is exacerbated for some species e.g. Cuora zhoui, Mauremys nigricans that are only 74 75 known from markets but have never been observed in the wild (Ben and John, 2012; Pham et al., 2017). The absence of detailed information on the species' abundance, distribution and ecology 76 makes it difficult to develop adequate conservation actions for these highly threatened reptiles; 77 field surveys are urgently needed. 78

In Vietnam, turtles are likely to be less common in the lowlands than in upland forests. Typical for other animal groups in the country, most turtle species may remain relatively undisturbed in the highlands, since most of these areas have escaped habitat disturbance and destruction by humans. However, because these mountainous areas are logistically difficult to survey, few studies have been undertaken here.

In this paper, we documented the composition, habitat distribution, and abundance of turtle species in a mature secondary hilly forest area in northern Vietnam. We used field surveys as well as gathered data on hunting practices of the area's inhabitants. Over two survey periods, during the rainy season, we were able to obtain first-time records of turtle species in a little-known area of their distribution. Our study can be used as an example of the fieldwork required to advance the conservation knowledge of such a threatened group of reptiles in one of the most biodiverse countries in the world.

92

93 Materials and methods

94 Study area

The study was conducted during two consecutive periods (12th to 23th May, 12th to 24th August 2019) in the Tam Thanh commune (N20°11′15″, E104°50′29″), Quan Son district, northern Vietnam (Fig. 1 and 2). The Tam Thanh commune adjoins the southern Laos border within the northern Indochina Subtropical Moist Forests (WWF), dominated by evergreen and semievergreen forests. The climate of the region is subtropical montane climate, with an average temperature of 23°C, maximum temperature of 40°C from May to July and lowest temperature of 2.6°C in December. Average rainfall is 1900 mm; the wet season is from May to October (> 100 102 mm rainfall) and the dry season from December to January. Humidity averages around 84%
103 (online dataset in http://huyenquanson.vn/gioi-thieu/dieu-kien-tu-nhien/8)

Human activities have been responsible for some habitat modification and destruction, but 80% forest cover still remains. This forest area is considered important for the conservation of biodiversity in Vietnam (Sterling and Hurley, 2005). The Tam Thanh forest area (5,054.2 ha) is composed of 4,824.88 ha of natural forest and 85.02ha of plantation forest. Within the natural forest, 59.3% consists of evergreen and semi-deciduous forest, 28.2% bamboo forest, and 12.5% mixed evergreen and bamboo forests (Thanh Hoa FPD, 2019).

The forest in Tam Thanh commune is managed by a local board, where regulated extraction
of timber and non-timber products is allowed by the local inhabitants (Regulation no.17/2015/QĐTTg, 2015). The commune had a total population in 2018 of 3,911 inhabitants of three main
ethnicities: Thai, Muong, Kinh (Tam Thanh People Committee, 2019).

114

115 **Protocol**

Interviews were performed in the Tam Thanh, Son Lu, Nam Dong, Trung Thuong communes in
the Quan Son district. Field surveys and the hunter monitoring survey were carried out in Tam
Thanh forest.

119

120 Field surveys

In tropical and sub-tropical regions, the rainy season is the period of highest above ground activity for turtles (Luiselli, 2003). Thus, in our study, we conducted random walks during the rainy season, applying a time-constrained search effort (Akani et al., 1999a, 1999b). A team of two main researchers and seven local assistants undertook turtle searches between 0700 and 1700 Hanoi time during each survey day. The first field survey was from 11th to 23th May 2019 at an elevation range of 500-750 m a.s.l while the second was from 14th to 24th August 2019 at elevations ranging between 900-1350 m a.s.l (Fig. 1). We followed random transects (1 to 4.5 km long depending on the quality of the surveyed habitat) within which we searched for turtles. Recording of searching time was stopped when an animal was found and measured. Hunting dogs were not used to allow for future comparisons of the data with those from other studies that did not employ dogs.

All individual turtles found during the field surveys or caught by local hunters and available in their homes, were examined and identified to species. For each individual, we recorded carapace length (CL), carapace width (CW), carapace height (CH) and body mass (BM). Length measurements were taken with a 30cm caliper (accuracy 0.1 cm), and turtle body mass was taken using a 5kg scale, (accuracy 1g). Hunters confirmed that all turtles recorded in this study came from the study area; all collected species are known to occur in the region (Stuart et al., 2001; Douglas et al., 2011).

138

Hunter interviews

Three Vietnamese researchers applied structured interviews, in Vietnamese, from 18th to 27th
December 2018 and 12th to 20th May 2019. Hunters were asked the following questions:

- 142 (i) What kind of turtles occurs in this forest?
- 143 (ii) Can you describe the main morphological characteristics of each species?
- 144 (iii) Do you hunt turtles by chance, or do you use specific hunting techniques?
- 145 (iv) Which months/season do you normally go to hunt for turtles?
- 146 (v) Where did you hunt for turtles?
- 147 (vi) For what purpose do you use the hunted turtles?

149 Hunter activity survey

To obtain more detailed information on turtle hunting activities in the study area, we monitored the movements of a hunter of Thai origin (41 years old). Using a smartphone application (Samsung Health), the hunter was able to self-record the distance travelled during each hunting trip during the hunting season (May to July 2019) as well as the number of hunting days in each month. A trained dog accompanied the hunter. During all hunting surveys, the hunter recorded the number of individuals and turtle species encountered.

156

157 Habitat description

We described the following microhabitat characteristics within a 10m radius around each point ofcapture of turtles:

160	(i)	Main habitat types: 1	= stream, $2 =$ evergreen	forest, 3 = bamboo forest;

161 (ii) Canopy cover, estimated on the basis of the percentage of sunny spots on ground;

162 (iii) Ground temperature (°C, collected by B61200-1300 infrared thermometer);

163 (iv) Ground humidity (%, by AR827 Hygrometer);

164 (v) Slope angle (degree, using "Angle meter", an Android app for mobile phones).

165

166 Statistical analyses

167 To calculate turtle searching effort, we used the following formula:

 $S = \frac{x}{a \star b}$

with S = turtle relative frequency of observation; x = number of turtles found in a given transect; a = number of people involved in the time searching along a given transect; b = total time spent for a trip along a given transect.

To determine whether the turtle taxonomic composition of the study area was adequately 172 assessed, we performed a rarefaction analysis using the total (i.e. the field observed + the hunters' 173 174 collected) turtle sample. Sample-based rarefaction (or species accumulation curve) was implemented using the analytical solution known as "Mao's tau," with Standard Deviation 175 (Colwell et al., 2004). In the graphical plot, Standard Errors were converted to 95% confidence 176 177 intervals. To evaluate statistically whether the observed number of species (on the basis of the observed number of individuals) was fully assessed, we used the Chao-1 index with 95% 178 confidence intervals, after 9,999 bootstraps. 179

180 Carapace length was correlated with turtle body mass using a Pearson's correlation 181 coefficient. Alpha was set at 5%, and means are presented \pm 1 Standard Deviation. All statistical 182 analyses were performed on PASW statistical software 18.0 version.

183

184 **Results**

185 Field surveys

A total of 21,700 min (i.e. 361.8 h), covering a total of 64.9 km transect length, were spent in the forest searching for turtles by the survey team (194.4 hours in May and 167.4 in August). During the May surveys, three *C. galbinifrons* and two *G. spengleri* were found, but only one *G. spengleri* was observed during the second survey (Fig. 3). In May, the overall turtle encounter rate was 0.014 individuals × person × hour (altitudinal range = 500-750 m a.s.l.), but 0.006 in August (altitudinal range = 900-1350 m a.s.l.). The encounter frequency for *C. galbinifrons* was 0.008 individuals × person × hour and that of *G. spengleri* was 0.005 individuals × person × hour. The observed density
for *C. galbinifrons* was 0.057 individuals per km and 0.031 individuals per km for *G. spengleri*.

Microhabitat characteristics for each individual turtle observed are given in Appendix 1, 194 body size measurements in Appendix 2. C. galbinifrons individuals were found at lower elevations 195 $(x = 657.2 \pm 36 \text{ m a.s.l.})$ than G. spengleri $(x = 772.3 \pm 170.6 \text{ m a.s.l.})$, but sample sizes were too 196 197 small for any statistical evaluation. Three C. galbinifrons were found in bamboo forest but all three G. spengleri individuals were observed in mixed bamboo-evergreen forest. No animals were found 198 in surroundings of streams or water bodies, and only one G. spengleri individual was discovered 199 200 in a rocky area of the forest with numerous crevices. Percentage forest cover was similar for both species (C. galbinifrons: $70.0 \pm 15.8\%$; G. spengleri: $73.3 \pm 7.6\%$) as well as the slope of the 201 sighting site (C. galbinifrons: $21.2 \pm 14.4^{\circ}$; G. spengleri: $26.3 \pm 11.8^{\circ}$). Only one of six individuals 202 (a G. spengleri) was observed nearby a forest trail, but all other individuals were in more remote 203 sites. 204

205 Mean carapace length of *Manouria impressa* (n = 36) was 212.2 ± 47.1 mm (range 124-310 mm) and the mean body mass (only shells) was 429.8 ± 304.7 g (range 80-1,800 g). Carapace 206 length and body mass were positively correlated (r = 0.868, P < 0.0001). Mean carapace length of 207 208 C. galbinifrons was 156.3 ± 26.4 mm (range 67.2-187.5 mm; n = 16) and mean body mass was 619.2 ± 218.6 g (range 31-960 g; n = 16); as expected, carapace length and body mass were 209 210 significantly positively correlated (r = 0.898, P < 0.0001; see Appendix 3). In C. mouhotii, mean 211 carapace length was 161.4 ± 12.9 mm (range 147-176 mm; n = 5) and mean body mass was 506.6 \pm 187.7 g (range 247-693 g; n = 5); in G. spengleri, mean carapace length was 102.8 \pm 7.7 mm 212 213 (range 91-112 mm; n = 7) and mean body mass was 149.6 \pm 30.2 g (range 120-211 g; n = 7).

Sample sizes were too small in the latter two species to apply any correlation analysis betweencarapace length and body mass.

In hunter houses in the Tam Thanh commune and Nam Dong SHCA we recorded a total of 118 turtles (Fig. 4) of the two species found in the field as well as another seven species (Table 1); the turtle fauna in the study area being 9 species, 89% of them listed as threatened by IUCN Red List (CR, EN and VU; see IUCN, 2019).

The resulting individual rarefaction curve showed that the species' taxonomic diversity 220 was adequately represented by our data (Fig. 5), with the Chao-1 index indicating that the 221 theoretically predicted number of species (n = 9) was the same as the number of species actually 222 observed in our surveys. M. impressa and C. galbinifrons were the two dominant species in hunter 223 houses, where there was one singleton (Cyclemys oldhamii) and three doubletons (Table 1). 224 Individuals of *M. impressa* were observed in villages as shells of dead animals that had been 225 consumed by local people and then kept as decoration. On the other hand, all C. galbinifrons were 226 found alive, recently caught individuals that hunters would sell to market traders. 227

228

229 Hunter and farmer interviews

A total of 103 independent interviews were conducted. Most interviewees belonged to the Thai ethnic group (details in Appendix 4). According to the majority of interviewees, the two most abundant species were *C. galbinifrons* and *M. impressa*, cited as the dominant species by 54.4% and 64.1% of the interviewees, respectively. All hunters accurately described the main morphological characteristics of the various turtle species, using local names for each (Table 1) and, as reported above, frequently showed shells or living animals to confirm their descriptions. According to the various interviewees, there were several ways to hunt turtles, depending on the species targeted (Table 2). In general, most hunted terrestrial species such as *M. impressa, C. galbinifrons*, and *C. mouhotii*) using hunting dogs, while aquatic species (i.e. *Palea steindachneri*, *Sacalia quadriocellata*) were captured by hand if encountered. An individual of *C. galbinifrons*was caught in a water puddle in the village. For all species, the hunting season was between March
and September (Table 2), and the main purpose for hunting was to sell to market traders or for
domestic consumption when selling prices fell.

243

244 Hunter activity

During the hunting season, the hunter covered a total of 87 km in May, 108.1 km in June and 169.3 km in July; a total of 17 days in the forest in May, 19 in June and 23 in July. During this period, the hunter spent 90% of the time hunting and 10% walking. A total of 40 turtles were collected: one *P. steindachneri*, one *G. spengleri*, 15 *M. impressa* and 23 *C. galbinifrons*. The frequency of encounter was 0.002 individuals per km for *P. steindachneri* and *G. spengleri*, 0.035 for *M. impressa* and 0.053 for *C. galbinifrons*. These hunting scores confirmed that *M. impressa* and *C. galbinifrons* were clearly the two most common turtle species in the study area.

252

253 **Discussion**

Our results revealed that the turtle community in our study area was very diverse, with nine species from four different families (Geoemydidae, Platysternidae, Trionychidae and Testudinidae). Moreover, our saturation analyses showed that the community richness of the study area was satisfactorily captured with the performed field effort. Although our study area fell within the known range of all observed species (Stuart et al., 2001), this high species diversity was remarkable compared to overall species richness of the Indo-Burma turtle hotspot, which include southern

China, Laos, Myanmar, Thailand, Vietnam, and Cambodia (Myers et al., 2000). Indeed, 18% of 260 the species currently known in the Indo-Burma region (n = 50, see Mittermeier et al., 2015) were 261 found in our study area. The observed species' richness was even more remarkable if we take into 262 account that considerable portions of the study forest have been altered by human activities over a 263 long period of time. In particular, it is noteworthy that the most abundant turtle species in our area 264 265 was C. galbinifrons, from direct observations, individuals kept by hunters in their houses, interviewees' opinion, and from information obtained from a monitored hunter. In addition, we 266 encountered C. galbinifrons in the field more frequently than any other reptile, including snakes 267 268 (Pham et al., unpublished observations), and our density estimates (number of individuals per km transect) gave very similar values. 269

Our findings for C. galbinifrons is in direct contrast to what has been previously published 270 which suggests that this is one of the rarest chelonian species in the world (Standford et al., 2018). 271 It is unlikely that our study case is unique because considerable portions of bamboo forest (over 5 272 273 million hectares) are still found in northern Vietnam (MARD, 2016). These areas do not significantly differ from our study area in terms of habitat characteristics and human pressure on 274 the natural environment. It is therefore likely that many more populations of C. galbinifrons are 275 276 found in Vietnam since scientific exploration of these forests is minimal. On the other hand, the other sympatric species appeared clearly least abundant than C. galbinifrons. Therefore, we cannot 277 278 exclude that these other species may be in more serious conservation status than currently 279 considered. Further studies should aim to investigate in other forest areas, whether this turtle species is as threatened as supposed or whether it is just very elusive and therefore difficult to find 280 281 by non-experienced researchers. There is no evidence of active field research on this species in 282 Vietnamese forests. Furthermore, the listing of the species as Critically Endangered has been

extrapolated from trade data and not from field surveys is unsatisfactory (IUCN, 2016). Because 283 in our study C. galbinifrons was not found above 750 m elevation, it is possible that the species 284 may be restricted to bamboo forest patches up to around 700 m a.s.l., with G. spengleri able to 285 survive at higher elevations (from 650-1200 m a.s.l) (Blanck, 2013; Pham et al., 2018). Further 286 studies should be planned to evaluate whether C. galbinifrons is really absent from high mountain 287 forests in northern Vietnam. However, apart from the relative altitude of the records, C. 288 galbinifrons and G. spengleri appeared very similar in terms of microhabitat characteristics of their 289 sites of presence, and bamboo forests seemed to be particularly important habitats for these 290 291 threatened turtles (Ben-Zhi et al., 2005).

Our study also provides unique data on the morphometry of wild caught turtles since most measurements known from captive individuals. These measurements will also be useful to enable comparative studies of the geographic variation of these species within their distribution range. In order to allow future authors to analyze the morphometric variation of these turtles across we provide the raw data in the online supplemental material for this paper.

297

298 Acknowledgements

The present study was funded by Wildlife Conservation Society's John Thorbjarnarson Fellowship for Reptile Research and by Turtle Sanctuary and Conservation Center NGO, Paris (France). We would like to thank the Vietnam National University of Forestry, Hanoi, and the Thanh Hoa province authorities for providing the necessary permissions for the interview survey and for the field researches (request permissions code: 221, 243,244 DHLN-HTQT and respond permissions code 5550/UBND-THKH, 1660/SNN&PTNT-KL, 195/CCKL-BTTN).

306 **References**

- Akani GC, Barieenee IF, Capizzi D, Luiselli L (1999a) Snake communities of moist rainforest and
 derived savanna sites of Nigeria: biodiversity patterns and conservation priorities.
 Biodiversity and Conservation 8: 629–642
- Akani GC, Luiselli L, Politano E (1999b) Ecological and conservation considerations on the reptile
 fauna of the eastern Niger Delta (Nigeria). Herpetozoa 11: 141–53
- Ben A, John BI (2012) *Mauremys nigricans* (Grey 1834) Red-necked pond turtle, Chinese Red necked turtle, Kwangtung river turtle, Black-necked pond turtle. Conservation Biology of
 Freshwater Turtles and Tortoises. A complilation project of the IUCN/SSC tortoise and
 freshwater turtle speciallist group 1–9
- Ben-Zhi Z, Mao-Yi F, Jin-Zhong X, Xiao-Sheng Y, Zheng-Cai L (2005) Ecological functions of
 bamboo forest: research and application. Journal of Forestry Research 16: 143–147
- Blanck T (2013) Zu Besuch bei *Cuora galbinifrons* auf Hainan, China. Reptilia (Münster) 18(99):
 100–109
- Cheung SM, Dudgeon D (2006) Quantifying the Asian turtle crisis: market surveys in southern
 China, 2000–2003. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 751–
 770
- Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence based species accumulation curves. Ecology 85: 2717–2727
- 325 Das I, McCormack T, van Dijk PP, Hoang HV, Struijk R (2016) Cuora mouhotii (Gray 1862) –
- 326 Keeled Box Turtle. In: Rhodin AGJ, Pritchard PCH, Van Dijk PP, Saumure RA, Buhlmann
- 327 KA, Iverson JB, Mittermeier RA (Eds.) Conservation Biology of Freshwater Turtles and
- 328 Tortoises: A Compilation Project of the IUCN/SSC Tortoises and Freshwater Turtles
- 329 Specialist Group. Chelonian Research Monographs 5 (9): 099.1–12

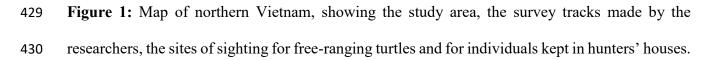
330	Douglas H, Bui DP, Timothy EM, Hoang HV, Van Dijk PP (2011) Vietnam's Tortoises and
331	Freshwater Turtles - Identification book (Vietnamese)
332	Fritz U, Ziegler T, Herrmann H, Lehr E (2002) Intergradation between subspecies of Cuora
333	galbinifrons (Bourret, 1939) and Pyxidea mouhotii (Gray, 1862) in southern North
334	Vietnam (Reptilia: Testudines: Geoemydidae). Faunistische Abhandlungen. Staatliches
335	Museum für Tierkunde in Dresden 23: 59–74
336	Hendrie D (2001) FFI Progress Reports - Turtle Conservation and Ecology project. Indochina
337	Hendrie DB (2000) Status and conservation of tortoises and freshwater turtles in Vietnam.
338	Presented at the Asian turtle trade: proceedings of a workshop on conservation and trade
339	of freshwater turtles and tortoises in Asia. Chelonian Research Monographs, pp. 63–73
340	Hendrie DB, Trang N (2000) Compiled Notes on the Wildlife Trade in Vietnam
341	Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical
342	approaches to estimating microbial diversity. Apply Environment Microbiology 67: 4399-
343	4406.
344	IUCN (2016) Cuora galbinifrons: McCormack T, Shi H, Stuart B: The IUCN Red List of
345	Threatened Species 2016: e.T97357437A3078734.
346	https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T97357437A3078734.en
347	Le DD, Broad S (1995) Investigations into tortoise and freshwater turtle trade in Vietnam. IUCN
348	Le M (2007) Conservation of turtles in Vietnam: a survey of Cat Tien National Park. Oryx 41,
349	544–547.
350	Le M, Hoang T, Le D (2004) Trade Data and Some Comments on the Distribution of Mauremys
351	annamensis (Siebenrock, 1903). Asiatic Herpetological Research 10: 110-113

352	Luiselli L (2003) Comparative abundance and population structure of sympatric Afrotropical
353	tortoises in sex rainforest areas: the differential effects of "traditional veneration" and of
354	"subsistence hunting" by local people. Acta Oecologica 24: 157-163
355 356	Ly T, Hoang HD, Stuart BL (2011) Market turtle mystery solved in Vietnam. Biological Conservation 144: 1767–1771
357	MARD (2016) QĐ 3158/QĐ-BNN-TCLN: Inform the status of Vietnam's forest type updated to
358	2015 (in Vietnamese)
359	McCormack TEM, Dawson JE, Hendrie DB, Ewert MA, Iverson JB, Hatcher RE, Goode JM
360	(2014) Mauremys annamensis (Siebenrock 1903) – Vietnamese Pond Turtle, Annam Pond
361	Turtle, Rùa Trung Bộ. Conservation Biology of Freshwater Turtles and Tortoises
362 363 364	Mittermeier RA, van Dijk PP, Rhodin AG, Nash S (2015) Turtle hotspots: an analysis of the occurrence of tortoises and freshwater turtles in biodiversity hotspots, high-biodiversity wilderness areas, and turtle priority areas. Chelonian Conservation and Biology 14: 2–10
365 366	Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858
500	for conservation priorities. rvature 405. 055 050
367	Nguyen VS, Ho TC, Nguyen Q (2009) Herpetofauna of Vietnam, Edition Chimaira. Frankfurt am
368	Main, Germany
369	Nguyen VS, Ho TC (1996) A checklist of amphibians and reptiles of Vietnam. Science
370	Technology Publishing House, Hanoi
371 372	Pham VT (2018) Distribution, threats and ecology of Black Breasted leaf turtle (<i>Geoemyda spengler</i> i GMELIN, 1789) in Tay Yen Tu Nature reserve, Bac Giang province, Vietnam,
<u></u>	

- with notes on other sympatric species (Master thesis in Tropical Forestry). Vietnam
 National University of Forestry, Pp 80
- Pham VT, Leprince B, Luong Xuan H, Nguy Thu Q, Le Duc O, Bordes C, Vuong Tien M, Luiselli
 L (2019) Observations of threatened Asian box turtles (*Cuora* spp.) on trade in Vietnam.
 Herpetological Journal 29: 178–183. https://doi.org/ht
 ps://doi.org/10.33256/hj29.3.178183
- Pham VT, Blanck T, Thao AT, Tran VD (2017) A Computer modeling and interview survey
 combination to find the existence of the turtle from "nowhere" Zhou's box turtle (*Cuora zhoui* Zhao, Zhou & Ye, 1990)
- Pham VT, Vu TT, Dowson JE, Bui TT, Leprince B (2018) Natural history observations on the
 Endangered turtle *Geoemyda spengleri* in Tay Yen Tu Nature Reserve (Vietnam), with
 notes on other sympatric species. The Herpetological Bulletin 146: 1–7
- Regulation no.17/2015/QĐ-TTg, 2015. Vietnam national regulation: Issuing the regulation on
 management of protection forests
- Rhodin AG, Stanford CB, Van Dijk PP, Eisemberg C, Luiselli L, Mittermeier RA, Hudson R,
- Horne BD, Goode EV, Kuchling G (2018) Global conservation status of turtles and
 tortoises (Order Testudines). Chelonian Conservation and Biology 17: 135–161
- Stanford CB, Rhodin AGJ, van Dijk PP, Horne BD, Blanck T, Goode E, Hudson R, Mittermeier
 RA, Currylow A, Eisemberg C, Frankel M, Georges A, Gibbons PM, Juvik JO, Kuchling
 G, Luiselli L, Haitao S, Singh S, WaldeA (2018) Turtle in trouble The world's 25+ most
 endangered tortoise and freshwater turtle. Turtle Conservation Coalition
- Sterling EJ, Hurley MM (2005) Conserving biodiversity in Vietnam: Applying biogeography to
 conservation research. Proceedings California acadamy of sciences 56: 98

Stuart BL, van Dijk PP, Hendrie DB (2001) Photographic guide to the turtle of Thailand, Laos,
Vietnam and Cambodia. IUCN, Asia

- Tam Thanh People Committee (2019) Report on social economic-security and defense for first six
 months 2019 of Tam Thanh commune, Quan Son district, Thanh Hoa province
- Thanh Hoa FPD (2019) Tam Thanh commune forest types. Exported from Thanh Hoa provincial
 Forest Protection Department (FPD) database, forest inventory 2018
- Tran KL, Pham VT, McCormack TEM, Hoang VH, Le M, Ngo MH (2016) Illegal turtle trade in
 Bac Kan, Quang Ninh, Tuyen Quang Provinces and online illegal turtle trade. VNU Journal
 of Science: Earth and Environmental Sciences 32: 291–299
- Turtle Taxonomy Working Group, Rhodin AGJ, Iverson JB, Bour R, Fritz U, Georges A, Shaffer
 HB, van Dijk PP (2017) Turtles of the World: Annotated Checklist and Atlas of Taxonomy,
 Synonymy, Distribution, and Conservation Status (8th Ed.). In: Rhodin AGJ, Iverson JB,
 van Dijk PP, Saumure RA, Buhlmann KA, Pritchard PCH, Mittermeier RA (Eds).
 Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the
 IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research
 Monographs 7:1–292. doi: 10.3854/crm.7.checklist.atlas.v8.2017
- Van Dijk PP, Stuart BL, Rhodin AGJ (2000) Asian turtle trade: proceedings of a workshop on
 conservation and trade of freshwater turtles and tortoises in Asia. Chelonian Research
 Monographs, pp. 1–164
- 415 Van TP, Luu VQ, Tien TV, Leprince B, Khanh LTT, Luiselli (2019) Longitudinal monitoring of
 416 turtle trade through Facebook in Vietnam. Herpetological Journal 29: 48–56.
- WWF (2019) Tropical and subtropical moist broadleaf forests. Southeastern Asia: China, Laos,
 Myanmar, Thailand, and Vietnam. http://worldwildlife.org/ecoregions/im0137 (accessed
 on 8 Sept. 2019)
- 420


Table 1: List of the various chelonian species observed during the present study in the hands of the interviewed hunters from villages

422 around Nam Dong SHCA and Tam Thanh commune. IUCN (2019) red list status and local names are also given.

Family	Species	Local name	IUCN red list	No. individuals	Alive	Dead
Geomydidae	Cuora galbinifrons	Táu Cặp, rùa hộp	CR	36	18	18
Geomydidae	Cuora mouhotii	Rùa đá, rùa núi, thọ khiểu, rùa gai	EN	13	10	3
Geomydidae	Cyclemys oldhamii	Rùa cứt trâu, táu nác	NE	1	0	1
Geomydidae	Geoemyda spengleri	Táu lửa, táu phay, rùa gai bé	EN	7	6	1
Geomydidae	Sacalia quadriocellata	Tàu khíu, cong long, rùa bốn mắt, rùa hôi	EN	2	2	0
Platysternidae	Platysternon megacephalum	Rùa mỏ vẹt, rùa đầu to, cạp cang	EN	6	6	0
Testudinidae	Manouria impressa	Táu hạc, rùa gối, tàu nam hiểng, rùa gai	VU	49	5	44
Trionychidae	Palea steindachneri	Pa phả nám, ba ba gai, ba ba khe	VU	2	1	1
Trionychidae	Pelodiscus sinensis	Pha mứn, ba ba trơn	VU	2	1	1
Total				118	49	69

426	Table 2 : Synthesis of the interview	data concerning the turtles at the stud	ly area. For the specific questions see the text.

Family	Species	No. mentioning interviews	%	Fishing- nets	By hand	Hunting dogs	By chance	Hunting season	Consumption	Decoration	Sell to traders	Traditional medicine	Pet
Geomydidae	Cuora galbinifrons	55	53.4		+	+	+	March-September		Y	Y	Y	
Geomydidae	Cuora mouhotii	34	33			+	+	March-September	Y		Y		
Geomydidae	Cyclemys oldhamii	5	4.8	+					Y				
Geomydidae	Geoemyda spengleri	15	14.6			+	+	March-September	Y		Y		Y
Geomydidae	Sacalia quadriocellata	14	13.6		+								Y
Platysternidae	Platysternon megacephalum	38	36.9		+			March-September					
Testudinidae	Manouria impressa	66	64.1			+	+	March-September	Y	Y	Y		
Trionychidae	Palea steindachneri	21	20.4	+	+				Y		Y		
Trionychidae	Palea steindachneri/Rafetus swinhoei	3	2.9										
Trionychidae	Pelodiscus sinensis	20	19.4		+				Y		Y		

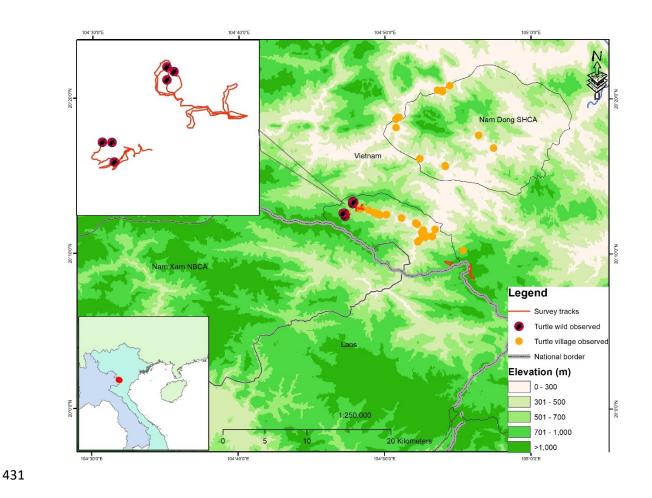
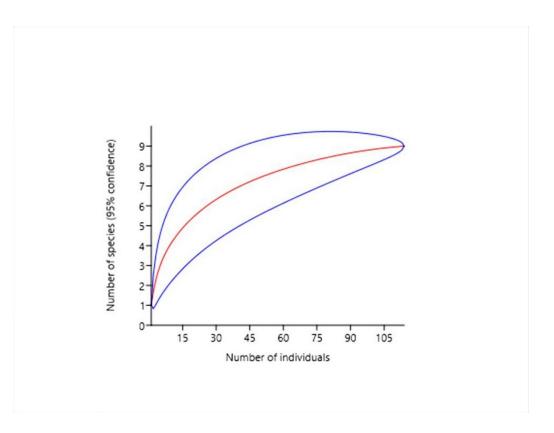


Figure 2: Main habitat types at the study area. Top left: general view of the study forest. Top right:
habitat of *Geoemyda spengleri* with the dominant plant being the bamboo *(Indosasa sp.)*. Bottom
left: Habitat of *Cuora galbinifrons* in the bamboo forest (*Maclurochloa ssp*). Bottom right: *Geoemyda spengleri* habitat in a rocky cave. Photos by Pham Van Thong.

Figure 3: Individuals of *Cuora galbinifrons* (above) and *Geoemyda spengleri* (below) observed
in the wild at the study area. Photos by Pham Van Thong.



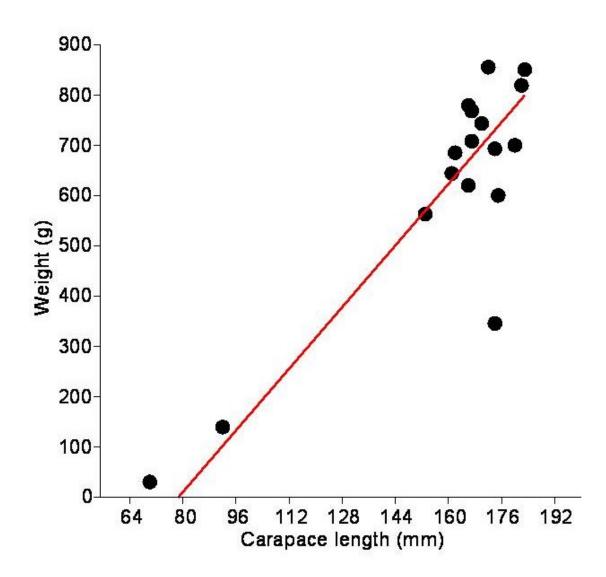
444 Figure 4: Some turtle individuals observed in the hunters' houses at the study area. Left:
445 *Platysternon megacephalum* in Pa village (photo by Nguyen Van Tai). Right: a group of seven
446 *Cuora galbinifrons* and three *Manouria impressa* (photo by Lo Van Ngoi).

Figure 5: Individual rarefaction curve for the total (i.e. the field observed + the hunters' collected)
turtle sample recorded during the present surveys. Blue lines would indicate 95% confidence
intervals after 9,999 bootstraps.

453 ONLINE SUPPLEMENTAL MATERIALS

Appendix 1. Summary of the microhabitat data for the various turtle individuals found in the field during the present surveys.

	Cuora galbinifrons	Cuora galbinifrons	Cuora galbinifrons	Geoemyda spengleri	Geoemyda spengleri	Geoemyda spengleri
Longitude	20.21035	20.21038	20.22073	20.2229	20.22212	20.1658
Latitude	104.78767	104.78607	104.79681	104.79681	104.79799	104.9297
Altitude (m)	650	669	612	684	664	969
Observation time	09:50	11:10	12:30	14:10	10:04	09:40
Presence of rocky area, rocky cave	0	0	0	0	0	1
Stream	0	0	0	0	0	0
Ground leave litter (mix bamboo and evergreen fallen leave)	0	1	0	1	1	1
Only bamboo leave litter	1	0	1	0	0	0
White mushroom	0	1	0	0	0	0
Bamboo forest cover (dominated by Maclurochloa sp.)	0	0	1	0	1	1
Bamboo forest cover (dominated by Dendrocalamus sp.)	0	1	0	1	1	0
Bamboo forest cover (dominated by Schizostachyum sp.)	1	0	0	1	1	0
Bamboo forest cover (dominated by Indosasa sp.)	0	0	0	1	0	0
Cake leave bush (Phrynium placentarium)	0	1	0	0	0	0
Forest ginger (Amomum sp.)	0	0	0	0	1	0
Forest banana (<i>Musa acuminata</i>)	0	0	0	0	0	0
Fern (Polypodiidae)	0	0	0	0	0	1
Mix bamboo and evergreen forest	0	0	0	1	1	1
Fallen, rotten trees	0	0	0	0	0	0


Forest trail	0	0	0	1	0	0
Weather	Sunny day after heavy raining the day before	Sunny day after heavy raining the day before	Slightly raining	Slightly sunny	Sunny	Overcast, rain is coming
Temperature (°C)	25,2	29,4	22,2	23,4	23,6	22,6
Humidity (%)	87,7	84,6	94	94	89	90
Slope angle (degree)	10	10	40	40	19	20
Forest cover (%)	80	65	85	75	65	80

Appendix 2: Body size measurements of turtle individuals from the study area, CL=Carapace length, CW=Carapace width, SH=Shell height, BM=Body mass. Symbols for the source of individuals: WO=Wild observation, VO= Village observation.

Observation					
type	Species	CL (mm)	CW (mm)	SH (mm)	BM (g)
WO	Cuora galbinifrons	92	70	39	140
WO	Cuora galbinifrons	161	99	70	644
VO	Cuora galbinifrons	170	120	76	743
VO	Cuora galbinifrons	182	121	76	819
VO	Cuora galbinifrons	70	57	23	31
VO	Cuora galbinifrons	174	140	104	346
VO	Cuora galbinifrons	172	121	77	855
VO	Cuora galbinifrons	167	109	68	708
VO	Cuora galbinifrons	167	116	79	768
VO	Cuora galbinifrons	174	113	66	693
VO	Cuora galbinifrons	153	102	67	563
VO	Cuora galbinifrons	183	125	79	850
VO	Cuora galbinifrons	166	105.3	78.8	620
VO	Cuora galbinifrons	162	109	71	685
VO	Cuora galbinifrons	175	132	73	600
VO	Cuora galbinifrons	180	140	85	700
VO	Cuora mouhotii	147	103.5	60	554
VO	Cuora mouhotii	157	109	64	385
VO	Cuora mouhotii	174	110	-	693
VO	Cuora mouhotii	176	120	68	654
VO	Cuora mouhotii	153	105	63	247
WO	Geoemyda spengleri	109.5	69.5	38	211
WO	Geoemyda spengleri	91	68	34	140
WO	Geoemyda spengleri	97	63	35	157
VO	Geoemyda spengleri	109.1	71.86	-	146
VO	Geoemyda spengleri	102	71	38	124
VO	Geoemyda spengleri	98.7	70.6	41.3	149
VO	Geoemyda spengleri	112	75.5	37.8	120
VO	Manouria impressa	132	112	54	266

VO	Pelodiscus sinensis	75	73	31	5
VO	Platysternon megacephalum	123	89	32	329
VO	Sacalia quadriocellata	57	52.5	21	22
VO	Sacalia quadriocellata	80.2	69.7	-	50.5
WO	Cuora galbinifrons	166	114	72	779

Appendix 3: Correlation between carapace length and body mass in 16 *Cuora galbinifrons* from the study area.

Total no.							
interviewees	Interviewee's profession				Ethnicity		
	Hunters	Farmers	Wildlife traders	Other	Muong	Thai	Kinh
103	51	40	6	6	16	86	1

Appendix 4: Summary of the composition of interviewees' profession and ethnicities.