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Abstract 

Biofouling in the dairy industry accounts for billions of dollars in lost product each year. 

Surface properties, such as macro, micro and nano topography and hydrophobicity were 

analysed with bacteria in monoculture and co-culture to determine the surface 

characteristics that prevented biofilm formation. Replica biomimetic surfaces were made 

using dental wax from five different types of plant leaves (White Cabbage (Brassica 

oleracea capitate), Leek (Allium ampeloprasu), Tender Heart (Brassica oleracea), 

Cauliflower (Brassica oleracea var. botrytis), and Gladioli (Gladiolus); this included a flat 

surface wax control. Surface physicochemistry was determined using contact angle 

measurements and surface topography (Sa, Sq, and Spv) using optical profilometry. 

Monoculture and co-culture bacterial attachment, adhesion and retention assays were 

carried out using Escherichia coli and Listeria monocytogenes and determined using 

colony-forming units/mL. Scanning Electron Microscopy provided quantitative cell counts 

(CFU/cm2). The results demonstrated that the Tenderheart leaf surface was the most 

hydrophobic with the highest surface free energy, highest γs
AB, most electron-donating and 

most electron-accepting surface. The Leek surface demonstrated the lowest surface free 

energy. The White cabbage surface was the most non-polar surface, with the least γs
AB 

properties, the least electron-accepting and least electron-donating surface. However, it had 

the highest Sa and Sq values. The Cauliflower leaf surface was the least hydrophobic and 

least nonpolar surface whilst the Gladioli surface was found to have the highest Spv values. 

Finally, the flat surface showed the lowest Sa, Sq and Spv values. Following the attachment, 

adhesion and retention assays, E. coli in monoculture did not show any trends between the 

surface properties and the number of cells retained. However, for L. monocytogenes in 

monoculture, following the attachment and retention assays the Flat surface showed the 

least number of cells (6 Log10 CFU/cm2 and 4.5 Log10 CFU/cm2 respectively). Following 
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the adhesion and retention assays, the Gladioli surface (highest Spv values) displayed the 

lowest numbers of L. monocytogenes cells (6 Log10 CFU/cm2 and 3.7 Log10 CFU/cm2 

respectively). Use of the bacteria in co-cultures demonstrated that for both the attachment 

and retention assays, the Tenderheart surface (most hydrophobic) displayed the lowest 

number of cells (4.5 Log10 CFU/cm2 and 3.4 Log10 CFU/cm2 for E. coli, 5.1 Log10 CFU/cm2 

and 3.9 Log10CFU/cm2 for L.monocytogenes respectively).  SEM analysis did not correlate 

with the CFU/mL assays. However, with L. monocytogenes the flat surfaces (lowest 

roughness) retained the lowest numbers of cells (4.7 Log10 cells /cm2)  and regarding the 

co-culture, the White cabbage surface (most hydrophilic) displayed the lowest number of 

cells when tested for bacterial attachment, adhesion and retention (4.1 Log10 cells /cm2, 4.5 

Log10 cells /cm2 and 0 Log10 cells /cm2 respectively. These results demonstrate that when 

more topographically complex surfaces are analysed, the conclusions drawn between the 

effect of the surface properties on bacterial attachment, adhesion and retention from more 

uniform surfaces do not apply. Further, the processes of bacterial attachment, adhesion and 

retention are different and hence differentiation between these classifications needs to be 

clarified. It became apparent that the varying methods used produced a wide range of results 

and that the use of different bacteria in monoculture and co-culture affected the microbial 

assays. Hence, a new approach needs to be taken to understand the cell: surface interactions 

on complex surfaces. 
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Introduction 

Biofouling is a major concern in many different industries. The dairy industry must prevent 

biofouling not only to stop product wastage but also to avert the distribution of contaminated 

product that can cause transmission of bacteria to consumers (Fu et al., 2016). Biofouling 

in the dairy industry accounts for billions of dollars in lost product each year. Causes of this 

include protein denaturation, protein aggregation and bacterial fouling (Bansal and Chen, 

2006).  

Most of these industries rely on physical cleaning such as washing down dairy equipment 

regularly with cleaning products or clean in place procedures (Guozhen et al., 2019). 

Modern methods of bacterial removal are either chemical or physical. Physical removal 

methods can consist of the use of steam or pressure, ultraviolet light exposure and manual 

scrubbing. Chemical removal methods can consist of the use of sodium hypochlorite, 

sodium hydroxide and novel methods such as bacteriocins, bacteriophages, essential oils, 

non-thermal plasma and quorum sensing inhibitors (Fister et al., 2016; Galié et al., 2018).  

In the UK outbreaks transmitted by food occur multiple times a year, often linked with raw 

drinking milk or improper handling of meat (Pennington, 2014). In 2016, an outbreak within 

mixed salad leaves resulted in the transmission of a strain of Escherichia coli to 161 people 

throughout England Scotland and Wales, with 62 of the patients needing hospital care. 

Unfortunately, this outbreak resulted in the death of two patients (Gobin et al., 2018). 

 In 2017, a total of 135 cases of Listeriosis were reported in England and Wales of which 

30.3% of patients died (Public Health England, 2018). Removing bacteria from industrial 

equipment is a costly process that results in equipment downtime, for example in the paper 

industry downtime and breakdowns caused by bacterial build-up can cost between $2000 

and $10,000 in every instance (Bajpai, 2015). A possible method to prevent food spoilage 

is to prevent initial bacterial attachment and subsequent biofilm formation. The application 
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of biomimetic topographies may provide a solution to stop bacterial accumulation on 

surfaces in the food industry (Shahali et al., 2019). 

Biomimetic surfaces 

Biomimetic surfaces are created to replicate all or some of the properties of surfaces found 

in nature, such as macro, micro and nano topography, unique surface structures and 

chemical interactions (Hwang et al., 2015). Biomimetic surfaces can be produced by many 

different methods. The use of photolithography is a common method due to its high level 

of detail (Boyan et al., 2017). The process of creating a biomimetic surface with 

photolithography starts with analysing a bioLogical surface with microscopy and extracting 

detailed X, Y and Z spatial data, which is then used to create a greyscale digital photomask. 

A UV light is applied to a surface coated with a photoresist layer which uses the mask as a 

template. The surface is developed with a solvent to remove material from the surface 

leaving the etched pattern behind (Kyle et al., 2016). These methods require specific 

equipment throughout making them cost-intensive and so not suited to the large-scale 

production. Fabrication via a mould is an alternative option which is far more cost-effective 

without compromising detail on the microscale (Wiedemeier et al., 2017). In more recent 

years 3D scanning and printing have become a far more economical alternative to 

biomimetic surface production. Multiple sets of quantitative surface characteristic data can 

be obtained with magnetic resonance imaging, topography analysis and ultrasound. This 

data gives information about the surface and the structure below that can be printed as 

individual layers with a resolution up to 50nm (Xiao et al., 2019; Vaidya and Solgaard, 

2018).  
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Properties of leaf surfaces 

The surface of some plant leaves have unique properties that allow them to repel debris that 

has settled on their surface. The most well known of this phenomenon is the Lotus effect. 

Lotus leaves and many other similar Nelumbonaceae have papillae on each epidermis cell 

on the adaxial side. These are narrow structural protrusions coated in epicuticular wax that 

minimize water to leaf contact area increasing surface hydrophobicity. The papillae’s 

primary functions concerning hydrophobicity are to increase surface area and protect the 

epicuticular wax (Ensikat et al., 2011). Water contact pressure also determines how the 

surface reacts to liquid; rain droplets travelling at an average speed of 3 m/s would on a 

more ridged surface carry enough energy to protrude into the sub-papillae air pockets thus 

negating the structural hydrophobicity (Koch et al., 2008). However, due to the flexibility 

of the leaf itself the impact energy is absorbed and so the water droplet rolls off (Ensikat et 

al., 2011). Surface wettability is measured by analysing the contact angle of water on a 

surface. A surface with a water contact angle <90° is considered wettable and a surface with 

a contact angle >90° is considered non-wettable, any surface with a water contact angle 

>150° is considered superhydrophobic (Law, 2014). 

The epicuticular wax is the principal component of the surface’s hydrophobicity, if it is 

removed the leaf contact angle reduces from 161°to 122° consequently lowering its status 

from superhydrophobic to non-wettable. The epicuticular wax is thought to be the most 

crucial component in plant leaf composition concerning bacterial attachment (Marcell and 

Beattie, 2002).  

Topography and bacteria 

The relationship between microbial attachment and surface topography is dependent on 

multiple variables (Sa, Sq and Spv). Surface topography can be divided into three main 

categories representing the size of surface variation, nano (< 0.5 µm), micro (>0.5 µm – 10 

µm) and macro (<10 µm) (Rajab et al., 2017). Due to the presence of multiple roughness 
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structures on the leaf surface, any contaminating particles are carried away with the water 

droplets resulting in a self-cleaning surface (Yamamoto et al., 2015).  

Topographies of manufactured surfaces can vary greatly depending on the method of 

production, surfaces with an average peak to valley height (Sa) that is similar to specific 

bacterial cell size may retain more of that species bacteria than surfaces with a much smaller 

or larger Sa. Bacterial morphology also influences retention, rod-shaped cells may not 

become trapped in any surface features or pits due to their elongated shape compared to 

cocci bacteria (Whitehead and Verran, 2006).  

Nano topography has been shown to influence bacterial adhesion, by altering a glass 

surface, resulting in a more wettable surface (44.8°- 41.6°), decreased Sa (2.1-1.3 mm) and 

other surface parameters. A three-factor reduction in adhered cells was observed per mm2 

(Mitik-Dineva et al., 2008). Macroscopic topography variations have been shown to provide 

a preferential position for initial bacterial deposition from the surrounding medium 

(Lorenzetti et al., 2015).  

Surface Topography in nature 

Papillae and waxes exist in nature to primarily prevent fouling of the plant and water loss 

(Barthlott et al., 2017). “Bioinspired” surfaces have been developed that take inspiration 

from nature replicating topographical features such as nano spikes, nanowires, and nano 

grass, that use these features to create a bactericidal environment. The surfaces replicated 

cicada and dragonfly wings and gecko skin (Tripathy et al., 2017). Each surface had a wide 

variation of wettability and bactericidal efficacy. Some of the surfaces created were 

observed rupturing the cell wall in what is known as the contact killing mechanism 

(Tripathy et al., 2017).  

Sharkskin is coated in denticles situated micrometre apart from one another that move with 

the underlying elastic skin beneath. It is thought that the combination of the surface texture 



12 
 

and the denticle flexibility aids preventing bacterial attachment (Kesel and Liedert, 2007). 

A biomimetic surface called Sharklet has been developed mimicking shark skin 

microstructures and attributes with an aim to reduce bacterial attachment. Sharklet has been 

shown to reduce E. coli colony forming units (CFU) by 47% when compared to a smooth 

control surface concerning bacterial adhesion. A 77% reduction in colony size and an 80% 

reduction in migration were also reported when compared to the control surface (Reddy et 

al., 2011). It is thought that sharklet can do this due to its ability to put mechanical stress 

on bacterial cells that attempt to adhere to it. In a process called mechanotransduction 

surface structures create stress on the cell membranes when contact is made causing the cell 

to expend more energy to stay in contact with the surface thus making it disadvantageous 

to do so resulting in cell detachment (Schumacher et al., 2008). Sharklet is currently being 

applied in the medical industry for use in catheters and wound dressings (Magin et al., 

2016). 

Surface Topography quantification 

Surface topography or roughness can be quantified in two separate ways, the measuring of 

one or more cross-sectional 2D lines drawn across the surface which is represented with the 

letter R when presenting values or 3D scanning which has recently become a more available 

alternative in which a map of the measured surfaces is digitally created and analysed. The 

types measurements remain the same as when looking at a 2D line or a 3D scan however 

they are represented with the letter R and S retrospectively. Ra equal to the arithmetical 

mean height of a surfaces profile. However, if multiple Ra measurements are made of the 

same surface then Ra becomes indicative of the surface Sa (Lancashire, 2017). Sa is the most 

commonly used method of surface roughness quantification for quality control due to its 

ability to give a centre line average (CLA) and relative simplicity. It does not give 

information about surface wavelength and lacks the sensitivity to measure smaller surface 
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details. Sq presents a parameter known as the surface Root mean square which describes the 

standard deviation of the distribution of surface heights. Sq provides more accuracy when 

analysing large surface deviations when compared to Sa  (Gadelmawla et al., 2002).  Spv is 

described as the total peak to valley height of a surface, this gives a general indication of 

surface roughness. However, it does not consider the shapes of surface details that form the 

overall roughness (Etxeberria et al., 2015). Surfaces designed to test bacterial affinity are 

typically uniform with structured peaks and troughs and so produce highly precise 

quantitative topographical data (Perera-Costa et al., 2014). BioLogical surfaces do not 

adhere to such strict architecture and so present a larger relative deviation in topographic 

analysis when compared to man-made surfaces (Scardino et al., 2009).  

Physicochemistry of surfaces 

The hydrophobicity of a surface is directly related to its wettability. Many factors affect 

surface wettability such as surface chemistry and micro and nano topography (Härth and 

Schubert, 2012);(Duta et al., 2015).  Surface wettability is determined by the mean left and 

right contact angle of a liquid placed on a surface. This data is analysed to determine the 

surface hydrophobicity which is presented in the form of the ΔGiwi  (Van Oss, 1995). ΔGiwi 

is equal to the surface free energy (γs) of the sample (Barkai et al., 2016). ΔGiwi represents 

the amount to which a polar attraction between surface and water is greater or smaller than 

the polar attraction water molecules have between themselves. When the net free interaction 

energy between a surface and water is less than zero the surface is classed as hydrophobic, 

when interaction energy is greater than zero the surface is classed as hydrophilic. To obtain 

the ΔGiwi of a surface first the Lifshitz-Van der Waals surface energy (γs
LW) representing 

polar interactions and the Lewis acid-base surface energy (γs
AB) representing non-polar 

interactions must each obtained (Faten et al., 2016). Polar acid-base interactions are 

comprised of electron donor and acceptor interactions (Rosairo et al., 2001).  Acid-base 
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interactions are typically due to electron donor (γs
-) and electron acceptor (γs

+) interactions. 

If a surface does not possess electron donor or acceptor then it is described as apolar, 

conversely, if it possesses both then it is described as bipolar (Chibowski, 1992). 

Surface Chemistry 

Epicuticular wax plays a crucial role in pathogen prevention in plants. Forming a smooth or 

crystalline layer on the external surface of plant leaves this wax is composed of very-long-

chain aliphatics (Buschhaus et al., 2007). The composition and 3D structure of the wax 

creates a hostile environment in the pollysphere for bacteria. Select species of bacteria 

(Bacillus sp., Janibacter sp., Kocuria sp., Methylobacterium sp., Microbacterium sp., 

and Staphylococcus sp.) possess the ability to produce biosurfactants that degrade the 

Epicuticular wax, this grants them access to nutrients and water on the leaf surface bellow 

(Zeisler-Diehl et al., 2018; Siriratruengsuk et al., 2017). 

Escherichia coli 

Escherichia coli is a Gram-negative, rod-shaped, facultative anaerobic bacterium. Some E. 

coli strains form symbiotic relationships in humans and animals by aiding in the production 

of vitamin K and preventing pathogenic bacteria colonising the gastrointestinal tract (Lim 

et al., 2010). Other strains can cause outbreak and illness. Unpasteurised milk can act as a 

vector for the bacterium due to the faecal-oral transmission cycle of the bacteria and the 

location of udders in dairy animals (McClure and Hall, 2000).  In 2016, the CDC reported 

that dairy accounted for 11% of all outbreaks in the US, although this figure represents only 

unpasteurized milk (CDC, 2016). In 1999, an outbreak was linked to E. coli present in 

pasteurized milk occurred in North Cumbria, UK and 114 people were affected, with 28 

being admitted to hospital, resulting in the largest E. coli  0157 outbreak in England and 

Wales recorded at that time (Goh et al., 2002).   
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Enteric pathogenic E. coli infections can cause stomach cramps, bloody diarrhoea, fever 

and vomiting. E. coli 0157 has multiple virulence factors, one of which is the production of 

Shiga toxins which are bacteriophage encoded toxins that consist of an active subunit (A1) 

and five receptor binding subunits (B5). When bound to a host cell A1 is internalised into 

the cell cytoplasm where it inhibits cell protein synthesis, this can cause bloody diarrhoea 

or Haemolytic Uremic Syndrome (HUS) (Lim et al., 2010). E. coli can also produce heat-

liable enterotoxin which stimulates membrane-bound adenylate cyclase in intestinal 

epithelial cells which leads to elevated levels of Cyclic adenosine monophosphate resulting 

in hypersecretion of electrolytes and water manifesting as diarrhoea in patients (Gyles, 

1992). 

Listeria monocytogenes 

Listeria monocytogenes is a Gram-positive cocci bacterium in the firmicute family. It is a 

facultative anaerobe and is one of the most virulent foodborne pathogens (Chen et al., 

2014). Listeriosis is most commonly contracted from contaminated animal products 

especially soft cheeses and unpasteurised milk (Hanson et al., 2019). Up to 30% of 

foodborne listeriosis cases in high-risk individuals such as the elderly and pregnant women 

can lead to meningoencephalitis, miscarriage or stillbirth and even death (Segado-Arenas et 

al., 2018). L. monocytogenes infects via the oral route, once inside the hosts intestine it 

enters the epithelial cells and targets the liver where it will begin to multiply. In healthy 

patients, this is commonly the final step of the infection as a cell-mediated immune response 

initiates and removes the cells. However, in immunocompromised patients, the infection 

will continue to spread from the liver to the blood with the possibility of host death 

(Ramaswamy et al., 2007). 

L. monocytogenes contamination in the food industry is relatively common due to its 

virulence factors, it is a facultative halophile and can grow in temperatures as low as 0°C. 
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It can be extremely difficult to remove from equipment, utensils, and floors in food 

production factories (Huang et al., 2016). Many aspects of the food industry operate at 

environmental temperatures between 4 and 12 °C when grown at this temperature L. 

monocytogenes displays a reduced affinity for biofilm formation (Bonaventura et al., 

2008). At these temperatures L. monocytogenes biofilms displaying sparse clusters of cells 

and a reduced amount of EPS. (Colagiorgi et al., 2017).  

 

 

 

Microbial Co-cultures 

Mixed species biofilms are commonly found within the environment in which they often 

live in symbiosis and consequently enhancing the overall pathogenicity of clinically 

significant species (Madsen et al., 2012). Symbiosis can increase the biofilms virulence 

factors subsequently enhancing its proclivity for attachment (Camargo et al., 2017). 

Bacteria living in co-culture have been shown to have increased short-term mutation rates, 

increasing the possibility of antibiotic resistance (Frapwell et al., 2018). Co-culture biofilms 

have also been shown to present increased resistance to chemical agents such as 

chlorhexidine when compared to monoculture biofilms, this was due to shared protection 

conferred by neutralizing enzymes or inhibitory molecules that are spread throughout the 

biofilm (Marsh et al., 2011). 

Attachment, adhesion and retention 

Artificial surfaces commonly used in the food industry, such as polyethene, wood, glass 

rubber and stainless steel are subject to biofilm formation, this can lead to surface corrosion 

and alteration of product taste and smell (Galié et al., 2018). There are four stages of biofilm 

formation, attachment, adhesion, retention and biofilm development. Each stage making 
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bacterial removal more challenging. These stages can be affected by a multitude of 

environmental factors, such as bacterial species, surface roughness and surface 

hydrophobicity.  

Bacterial attachment is the initial stage of interaction between bacterial cell and surface. 

This process is controlled primarily by two main processes, Brownian motion and Van der 

Waals forces. Brownian motion is described as the particles move throughout a medium 

allowing initial contact to be made (Marshall, 1986). Van der Waals forces are weak 

intermolecular forces that unlike covalent bonding do not rely on chemistry, instead, they 

rely on electron configuration to attract atoms (Yannopapas and Vitanov, 2007). Bacterial 

attachment as a result of van der Waals forces is a three-step process, the first employs 

Lifshitz–van der Waals forces which are effective over several hundred nanometres, the 

second step utilises Lifshitz–van der Waals forces in conjunction with electrostatic 

interactions which takes place at a distance of 20nm. The third step occurs at a distance of 

5nm where specific cell receptors begin the process of adhesion. Throughout the stages of 

attachment, bacteria still present Brownian motion and can be removed by weak fluid shear 

forces (Palmer et al., 2007).  

Bacterial adhesion creates a stronger bond between bacteria and surface. Bacterial adhesins 

are utilized to secure cells firmly to the structure. These adhesins can form part of bacterial 

appendages such as pili ad fimbriae. Multiple strains of E. coli poses P fimbriae which have 

the adhesin papG located at the fimbriae tip (Wullt, 2003). Multiple suggested theories are 

trying to fully explain the process of bacterial adhesion such as DVLO theory, 

Thermodynamic theory and Neuman’s theory. An extended DVLO theory has been 

suggested that combines van der Waals forces, double layer interactions, acid-base 

interactions and hydrophobic interactions; however, this theory is not conclusive 

(Katsikogianni and Missirlis, 2004).  



18 
 

Bacterial retention becomes much more challenging due to bacterial cells utilizing surface 

topography and hydrophobicity, creating a more hospitable environment with the 

production of an extracellular polymeric matrix (EPS) (Bos et al., 2000; Donlan, 2002). 

This step of surface colonisation requires more physical force for bacterial removal to be 

achieved. Bacterial retention is the final step before biofilm formation (Whitehead et al., 

2015). Due to the nature of bacterial attachment the longer cells are present on a surface the 

more mechanisms that are in place to prevent cell detachment such as adhesins and EPS 

formation (Pizarro-Cerda and Cossart, 2006). 

This research aimed to determine the effects of bioinspired surface properties on bacterial 

attachment, adhesion and retention. Surface properties, such as macro, micro and nano 

topography and hydrophobicity were analysed with bacteria in monoculture and co-culture 

to determine the surface characteristics that prevented biofilm formation.  

 

Methods and materials 

Biomimetic replicates coupons emulating five different types of plant leaves (White 

Cabbage (Brassica oleracea capitate), Leek (Allium ampeloprasu ), Tender Heart (Brassica 

oleracea), Cauliflower (Brassica oleracea var. botrytis), and Gladioli (Gladiolus) and flat 

wax control were created by fabricating a silicone negative mould (Duosil silicone Shera; 

Germany) from the leaves by adhering them to a mould base with double-sided tape (3M). 

Dental wax (Kemdent Eco dental wax; UK) was poured into the negative mould creating a 

positive wax mould of each leaf. To create the individual coupons a 15 mm diameter steel 

hole punch (Trimming shop; UK) was used to create equally sized coupons. 

Each biomimetic coupon was analysed with a goniometer (Krüss; Germany) using ultrapure 

water (BDH; UK), diiodomethane (Alfa Aesar; US) and formamide (VWR International; 
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US). A 5 µl drop of each liquid was applied to the surface. The left and right contact angle 

of the droplet was used to calculate the surface hydrophobicity with the Van Oss equation. 

 

Equation 1. ΔGiwi equation (Van Oss, 1995) 

Surface Topography 

The coupons were measured with an optical light profilometer (Zygo; US) to find the Sa, 

Sq, and Spv, a 3D scan of each surface was created and levelled to adjust for surface 

inclination. A surface cross-sectional line was also obtained from each surface. Images 

obtained with a maximum range of 160 µm x 160 µm in X and Y directions. For statistical 

analysis, three replicates for the same surface were measured five times each resulting in 15 

measurements for each surface type.  

Bacterial preparation 

E. coli and/or L. monocytogenes were obtained from stock plates stored on tryptone soya 

agar (TSA) (Oxoid; US) at 4°C (Liebherr; Switzerland), placed into 10 mL of TSB and 

incubated for approximately 18 h at 37°C on an orbital shaker set at 150 rpm (New 

Brunswick Scientific; US). Cultures were then washed by centrifugation (Rotina 380, 

Hettich; Germany) at 1721 RCF three times, rinsing with sterile water in between. Cultures 

were diluted to an absorbance of 0.5 at 540nm on a spectrophotometer (+/- 10%) (Jenway; 

UK) equating to 3.38E+08 E. coli cells and 7.60E+08 L. monocytogenes cells per mL. 

 

Attachment (Wash) and Adhesion (Spray) assays 

The cell suspension was sprayed onto the biomimetic coupons using a compressed gas paint 

sprayer (Spraycraft; UK)for a duration of  5 s at a distance of 10 cm inside a class two 

laminar flow cabinet(Faster; Italy). Immediately after sterile distilled water was sprayed 
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onto the coupons for a duration of 5s at a distance of 10 cm. The spraying of both attachment 

and adhesion coupons was done in tandem, adhesion coupons were placed above the 

attachment as to prevent water dripping down and inadvertently washing them, both sets of 

coupons were adhered with double-sided tape in rows of four to a stainless steel tray which 

was angled at approximately 45°. The coupons from the spray assay were swabbed with 

70% ethanol on their sides to remove residual bacteria.  Each coupon was added to 2 mL of 

PBS (1 tablet per 100 mL)(Oxoid; US) and vortexed for one min. Coupons were extracted 

with sterile forceps and placed into a separate 2 mL of PBS and vortexed again. The contents 

of each of the two universals of PBS were then mixed, creating the solution to be used for 

serial dilutions. Each sample was diluted to 106
 in PBS by diluting at a ratio of 1:10. 3x10 

µl drops were plated out from each dilution onto TSA, MacConkey agar (Oxoid; US) or 

oxford growth medium (Oxoid; US). The agar plates were incubated for 18 h at 37°C. A 

colony enumeration was then performed. The bacterial adhesion assay was 

methodologically very similar to the attachment assay except for the water rinse which did 

not occur.  

 

 

Retention assays 

Bacteria were prepared as in the bacterial preparation method. Each biomimetic coupon was 

submerged to 25 mL of solution for one hour at 37°C. Once incubated the cell suspension 

was poured off and 25 mL of sterile water was used to rinse the coupons. Each coupon was 

swabbed with 70% ethanol on the abaxial plane and its sides then added to 2 mL of PBS 

and vortexed for one minute, extracted with sterile forceps and placed into a separate two 

mL of PBS and vortexed again, each of the two universals of PBS were then mixed, creating 

the solution to be used for serial dilution. Samples were analysed as before.  
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In the case of monoculture assays, each experiment was run on TSA, however, for the co-

culture analysis E. coli was grown on MacConkey agar and L. monocytogenes was grown 

on Oxford growth medium. Water controls were performed following the exact protocol of 

the assays previously stated with the only exception being the exemption of any bacteria.  

 

Scanning Electron Microscopy 

Throughout the multiple assay’s samples were created in parallel and stored in 4% a  

glutaraldehyde (Agar Scientific, UK) solution then rinsed with sterile distilled water and 

dried for SEM analysis (Zeiss supra 40VT, Germany) to be used in conjunction with the 

CFU analysis. Three separate images were taken of each coupon; a cell enumeration was 

performed and used to ascertain the cells per cm2. Images were analysed at a magnification 

of 5000x. 

Statistics 

Independent samples tests were used to compare all sets of data in individual categories, 

data was considered to be significant if P=<0.05. One way ANOVA and Kruskal-Wallis 

tests were used to compare all data collected. Statistical Product and Service Solutions 

(SPSS) was used to perform all statistical tests for this experiment.   
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Results 

Surface Physicochemistry 

The physicochemistry was carried out on the surfaces to determine the different surface free 

energy parameters of the surface topographies. 

 

Gibbs free energy (ΔGiwi)  

Analysis of the ΔGiwi results demonstrated that the results were not significantly different 

from one another. The Tenderheart surface (-3.6 ΔGiwi ) displayed as the least hydrophobic 

surface (Figure 1a) which was closely followed by the Cauliflower leaf surface (-9.9 

ΔGiwi).   

 The Leek surface (-87 ΔGiwi ) and the White cabbage surface (-87.4 ΔGiwi ) presented as 

the most hydrophobic surfaces (Figure 1a). The Gladioli (-58.1 ΔGiwi ) and Flat (-65.1 

ΔGiwi) surfaces appeared central in the range of data. Thus, the Tenderheart leaf surface 

was the most hydrophobic, whilst the Cauliflower leaf surface was the least hydrophobic. 

 

Surface free energy (γs)  

A significant difference was found when comparing the surface free energy of the White 

cabbage (37.7 γs) surface against the Leek (21.2 γs) (P= 0.028) and Flat (34.0 γs) (P=0.024) 

surfaces. The Tenderheart (67.6 γs) surface demonstrated the highest surface free energy 

value. The Gladioli (25.5 γs) surface displayed the second-lowest γs value after the Leek 

surface. The Cauliflower leaf surface  (40.8 γs) surface displayed the second-highest γs value 

after the Tenderheart surface (Figure 1b). In summary, the Tenderheart leaf surface 

demonstrated the highest surface free energy whilst the Leek surface demonstrated the 

lowest surface free energy. 

 

 



23 
 

Lifshitz-Van der Waals forces (γsLW)  

The White cabbage surface (37.4 γs
LW) when compared to the Gladioli surface (23.2 γs

LW) 

(P= 0.049) and the Cauliflower surface (15.9 γs
LW) (P= 0.033) showed a significant 

difference. The Flat surface (32 γs
LW) and the Tenderheart leaf surface (31.5 γs

LW) displayed 

with the second and third highest surface γs
LW. The Leek surface (21.0 γs

LW) displayed 

centrally in the range of data (Figure 1c). Hence, the White cabbage surface demonstrated 

the most non-polar surface, whilst the Cauliflower leaf surface demonstrated the least 

nonpolar surface. 

 

Lewis Acid-Base forces (γs
AB) 

No significant difference was found when surfaces were compared to one another. The 

Tender heart surface (36.2 γs
AB) and Cauliflower leaf surfaces  (25.9 γs

AB) showed the highest 

Lewis acid-base value. The Leek (0.3 γs
AB), White cabbage (0.3 γs

AB), Gladioli, (2.3 γs
AB) 

and Flat (2.0 γs
AB) surfaces all displayed low values (Figure 1d). In summary, the 

Tenderheart plant surface demonstrated the highest γs
AB, whilst the White cabbage surface 

demonstrated the least γs
AB. 

 

Electron Acceptor (γs
+)  

No significant difference was found when comparing surface electron acceptor values (γs
+). 

The Tenderheart (15 γs
+) surface displayed the highest electron acceptor value, with the 

Cauliflower (14.1 γs
+) surface showing a slightly lower value. The Leek (0.2 γs

+) surface 

showed the lowest value, closely followed by the White cabbage (0.6 γs
+) surface. The 

Gladioli (3.0 γs
+) and Flat (2.0 γs

+) surfaces displayed relatively low values also (Figure 1e). 

Thus, the Tenderheart leaf surface was the most electron-accepting surface whilst the White 

cabbage surface was the least.  
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Electron donor (γs
-) 

No significant difference was found when comparing surface electron donor values (γs
-). 

The Tenderheart (21.8 γs
-)  surface displayed the highest electron donor values, which was 

followed by the Cauliflower (11.0 γs
-) surface. The Leek (0.1 γs

-), Gladioli (0.4 γs
-) and Flat 

(0.5 γs
-) surfaces displayed relatively lower values. The White cabbage (0.1 γs

-) surface 

displayed the lowest value (Figure 1f). In summary, the Tenderheart leaf surface was the 

most electron-donating, whilst the White cabbage surface was the least. 
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1a) ΔGiwi    

 

 

1b) surface free energy 
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1c) Lifshitz-van der Waals 

 
 

1d) Lewis acid-base 
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1e) Electron acceptor 

 

1f) Electron donor 

Figure 1 Surface energies of the prepared surfaces  
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Surface Topographies 

 

The topography of the surfaces was analysed to determine roughness values. 

Arithmetical mean deviation of the surface roughness (Sa)  

 

When comparing surface Sa several comparisons were statistically significant. When 

compared to the Tender heart (2.1 µm) surface the Cauliflower (3.4 µm) (P=0.000), Gladioli 

(2.6µm) (P=0.020), Flat (0.6 µm) (P=0.000) surfaces all showed a significant difference. 

When compared to the Leek surface the Leek (1.6 µm) surface the Cauliflower (P=0.000), 

Gladioli (P=0.033), White cabbage (3.8 µm) (P=0.021), and Flat (P=0.000) surfaces all 

showed a significant difference. When compared to the Cauliflower surface the Gladioli 

(P=0.021), White cabbage (P=0.000) and Flat (P=0.000) surfaces all showed a significant 

difference. When compared to the Gladioli surface the White cabbage (P=0.001), and flat 

(P=0.000) surfaces showed a significant difference. When compared to the White cabbage 

surface the flat (P=0.000) showed a significant difference. White cabbage, Cauliflower and 

Gladioli presented with high Sa values. The Flat surface displayed the lowest Sa. In 

summary, the White cabbage surface was found to have the highest Sa value and the Flat 

surface showed the lowest (Figure 2a). 

Root-mean-square deviation of surface topography (Sq)  

 

When comparing surface Sq a number of comparisons were significant. When compared to 

the Tenderheart (2.2µm) surface the Cauliflower (4.3 µm) (P=0.000) surface showed a 

significant difference. When compared to the Leek (2 µm) surface the Cauliflower (P=0.000), 

Gladioli (3.9 µm) (P=0.000), White cabbage (5.2 µm) (P=0.044), and Flat (0.8 µm) 

(P=0.000) surfaces all showed a significant difference. When compared to the Cauliflower 

surface the Gladioli (P=0.008), White cabbage (P=0.000) and Flat (P=0.000) surfaces all 
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showed a significant difference. When compared to the Gladioli surface the White cabbage 

(P=0.001) and Flat (P=0.00) surfaces showed a significant difference. When compared to the 

White cabbage surface the flat (P=0.00) surface showed a significant difference. In summary, 

the White cabbage surface presented with the highest Sq values while the Flat surface 

displayed the lowest. (Figure 2b). 

Mean peak to valley height of surface topography (Spv) 

When comparing surface Spv the Tender heart (54.3 µm) surface compared with the 

Cauliflower (57.8 µm) (P=0.002) and Flat (6.7 µm) (P=0.000) surfaces there were 

significant differences demonstrated. The Leek (38.1 µm) surface compared with the 

Cauliflower (P=0.000) and Flat (P=0.000) surfaces also showed significant differences.  

The Cauliflower surface compared with the White cabbage (52.9 µm) (P=0.014), Gladioli 

(60.3 µm) (P=0.019) and Flat (P=0.000) surfaces showed significant differences, as well as 

the White cabbage surface compared with the Flat (P=0.000) surface. In summary, the 

Gladioli surface was found to have the highest mean peak to valley height of surface 

topography and the Flat surface had the lowest (Figure 2c). 
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Figure 2  Surface topographies of the prepared surfaces a) Arithmetical mean deviation 

(Sa) b) Root-mean-square deviation of surface topographies (Sq) c) Mean peak to valley 

height of surface topographies (Spv) 
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Colony-forming units/ mL (CFU/mL) analysis 

 

Surfaces were analysed with attachment, adhesion and retention assays to determine the 

effect varying topographies had on pre-biofilm surface colonisation. 

E. coli in monoculture 

 

Attachment assays 

No significant difference was found when comparing the numbers following the bacterial 

attachment assays. The Leek (6.3 Log10 CFU/cm2) surface displayed the highest number of 

E. coli cells attached. The Gladioli (6.2 Log10 CFU/cm2) and Flat (6.3 Log10 CFU/cm2) 

surfaces displayed centrally in the range of data. The Cauliflower (6.1 Log10 CFU/cm2) 

surface displayed the lowest number of E. coli cells attached, followed by the Tenderheart 

(4.12 Log10 CFU/cm2) and White cabbage (6.12 Log10 CFU/cm2) surfaces. In summary, the 

Cauliflower surface was found to prevent attachment of E. coli cells the most and the Leek 

surface displayed the highest number of cells attached (Figure 3). 

Adhesion assays 

No significant difference was found when comparing the results of the bacterial adhesion 

experiments of E. coli in monoculture. The Leek (6.7 Log10 CFU/cm2) surface displayed 

the highest E. coli cells adhered, flowed by the Gladioli (6.6 Log10 CFU/cm2) surface. The 

White cabbage (6.5 Log10 CFU/cm2) and Cauliflower (6.57 Log10 CFU/cm2) surfaces were 

found to be central in the range of data. The Flat (6.26 Log10 CFU/cm2)  surface displayed 

the lowest number of cells adhered flowed by the Tenderheart (2.3 Log10 CFU/cm2) surface. 

In summary, the Flat surface was found to prevent adhesion of E. coli cells the most while 

the Leek surfaces displayed the highest number of cells adhered (Figure 3). 
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Retention assays 

Several significant differences were found when comparing the bacterial retention assays. 

The Cauliflower (4.4 Log10 CFU/cm2) surface compared with the Tenderheart (4.2 Log10 

CFU/cm2) (P=0.046), Leek (4.6 Log10 CFU/cm2) (P=0.046) White cabbage (3.6 Log10 

CFU/cm2) (p=0.052) and Flat (5.4 Log10 CFU/cm2) (P=0.021) surfaces was all found to be 

significant. No significant difference was found when the Gladioli (4.7 Log10 CFU/cm2) 

surface was compared to all other surfaces. The Flat surface presented with the highest 

number of E. coli cells retained, while the White Cabbage presented with the lowest. In 

summary, the White cabbage surface was found to prevent retention of E. coli cells the most 

while the Flat surfaces retained the highest number of cells (Figure 3). 

 

 

Figure 3  E. coli attachment, adhesion and retention of biomimetic surfaces presented as 

Log10 CFU/cm2. 
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L. monocytogenes in monoculture 

 

Attachment assays 

When compared to the White cabbage (6.0 Log10 CFU/cm2) surface, the Gladioli (6.1 Log10 

CFU/cm2) (P=0.046) and Tender heart (6.2 Log10 CFU/cm2) (P=0.0009) surfaces showed 

significant differences concerning the numbers of bacteria attached. The Cauliflower (6 

Log10 CFU/cm2) surface-displayed central in the range of data. In summary, the Leek 

surface displayed the most L. monocytogenes cells attached while the Flat surface showed 

the least (Figure 4).  

Adhesion assays 

When compared to the White cabbage (6.8 Log10 CFU/cm2) surface, the Tender heart (6.3 

Log10 CFU/cm2) (P=0.004), Leek (6.8 Log10 CFU/cm2) (P=0.04), and Flat (6.7 Log10 

CFU/cm2) (P=0.042) surfaces showed significant differences in the results as did the 

Gladioli (6 Log10 CFU/cm2) surface when compared to the Tender heart surface (P=0.012),  

in relation to bacteria adhered. In summary, the White cabbage surface displayed the highest 

number of L. monocytogenes cells adhered, while the Gladioli surface displayed the least 

(Figure 4).  

Retention assays 

No significant difference could be found when comparing cells retained. The Leek (5 Log10 

CFU/cm2) surface retained the highest number of L. monocytogenes cells, followed by the 

Tenderheart (4.5 Log10 CFU/cm2) and Flat (4.5 Log10 CFU/cm2) surfaces. The Gladioli (3.7 

Log10 CFU/cm2) surface displayed the lowest number of retained L. monocytogenes cells, 

followed by the White cabbage (4.1 Log10 CFU/cm2) and Cauliflower (4.3 Log10 CFU/cm2) 

surfaces. In summary, the Leek surface displayed the highest number of cells retained while 

the Gladioli surface displayed the lowest (Figure 4).  
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Figure 4  L. monocytogenes attachment, adhesion and retention of biomimetic surfaces 

presented as Log10 CFU/cm2. 
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Microbial Co-cultures 

Isolation of CFU/cm2 of each species of bacteria was obtained from a 1:1 culture using two 

varieties of selective growth media. 

E. coli in co-culture 

E. coli was isolated from co-culture using MacConkey agar. 

Attachment assays 

The White cabbage (5.5 Log10 CFU/cm2) surface was found to be significant when 

compared to the Tender heart (4.5 Log10 CFU/cm2) (P=0.046), Leek (5.1 Log10 CFU/cm2) 

(P=0.046) and Gladioli (6.2 Log10 CFU/cm2) (P=0.046) surfaces in relation to E. coli cells 

attached in co-culture. The Gladioli surface displayed the most E. coli cells attached 

followed by the White cabbage and Cauliflower (5.4 Log10 CFU/cm2) surfaces. The 

Tenderheart surface displayed the least amount of E. coli cells attached, followed by the 

Leek and Flat (5.2 Log10 CFU/cm2) surfaces. In summary, the Gladioli surface displayed 

the highest number of cells attached while the Tenderheart surface displayed the lowest 

(Figure 5). 

Adhesion assays  

When compared to the Leek (6.2 Log10 CFU/cm2) surface, the Tender heart (5.1 Log10 

CFU/cm2) (P=0.049) surface showed a significant difference between the number of cells 

adhered. The Leek surface displayed the highest number of E. coli cells adhered in co-

culture, followed by the Gladioli (6.1 Log10 CFU/cm2) and Cauliflower (6 Log10 CFU/cm2) 

surfaces. The Tenderheart surface displayed the lowest number of E. coli cells adhered in 

co-culture followed by the White cabbage (5.6 Log10 CFU/cm2) and Flat (5.9 Log10 

CFU/cm2). In summary, the Leek surface displayed the highest number of cells adhered, 

while the Tenderheart surface showed the least (Figure 5).  
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Retention assays 

When compared to the Tender heart (3.4 Log10 CFU/cm2) surface, the White cabbage (4.7 

Log10 CFU/cm2) (P=0.049) and Flat (4.8 Log10 CFU/cm2) (P=0.030) surfaces showed a 

significant difference in the number of cells in relation to E. coli retention within the co-

culture. Significant differences were also observed when comparing the Cauliflower (4.61 

Log10 CFU/cm2) surface to the Gladioli (6.18 Log10 CFU/cm2) (P=0.033) surface. The 

Gladioli surface displayed the highest number of E. coli cells retained, followed by the Flat 

and White cabbage surfaces. The Tenderheart surface displayed the lowest number of E. 

coli cells retained, followed by the Leek (5.21 Log10 CFU/cm2) and Cauliflower surfaces. 

In summary, the Gladioli surface displayed the highest number of cells retained while the 

Tenderheart surface displayed the lowest (Figure 5).   

 

 

 

Figure 5 E. coli co-culture attachment, adhesion and retention of biomimetic surfaces 

presented as Log10 CFU/cm2. 
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L. monocytogenes in co-culture 

 

L. monocytogenes was isolated from co-culture using Oxford growth medium.  

Attachment assays 

In relation to bacterial attachment, White cabbage (6.2 Log10 CFU/cm2) showed a  

significant difference when compared to Tenderheart (5.1 Log10 CFU/cm2) (P=0.043) and 

Gladioli (6.3 Log10 CFU/cm2) (P=0.046). The Gladioli surface displayed the highest 

number of L. monocytogenes cells attached, followed by the White cabbage surface. The 

Tenderheart surface presented with the lowest number of L. monocytogenes cells attached 

followed by the leek (5.5 Log10 CFU/cm2), Cauliflower (5.7 Log10 CFU/cm2) and Flat (5.8 

Log10 CFU/cm2) surfaces. In summary, the Gladioli surface displayed the highest number 

of cells attached while the Tenderheart surface displayed the least (Figure 6). 

Adhesion assays 

No significant difference was found when comparing L. monocytogenes cell adhesion in 

co-culture. The Flat (6.6 Log10 CFU/cm2) surface displayed the highest number of L. 

monocytogenes cells adhered, followed by the Leek (6.6 Log10 CFU/cm2), Gladioli (6.6 

Log10 CFU/cm2) and Cauliflower (6.5 Log10 CFU/cm2) surfaces. The Tenderheart (6.1 

Log10 CFU/cm2) surface displayed the lowest number of cells adhered, followed by the 

White cabbage (6.3 Log10 CFU/cm2) surface (Figure 6). In summary, the Flat surface 

displayed the highest number of cells adhered, while the Tenderheart surface displayed the 

least.  

Retention assays 

No significant difference could be found when comparing all surfaces concerning bacterial 

retention with L. monocytogenes in co-culture. The Gladioli (5.1 Log10 CFU/cm2) surface 

displayed the highest number of L. monocytogenes cells retained, followed by the Flat (4.8 
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Log10 CFU/cm2) and Cauliflower (4.6 Log10 CFU/cm2) surfaces. The Tenderheart 3.9 Log10 

CFU/cm2) surface showed the lowest number of L. monocytogenes cells retained, followed 

by the Leek (4.1 Log10 CFU/cm2) and White cabbage (4.3 Log10 CFU/cm2) surfaces. In 

summary, the Gladioli surface displayed the highest number of cells retained, while the 

Tenderheart surface displayed the least (Figure 6).  

 

 

Figure 6 L. monocytogenes co-culture attachment, adhesion and retention of biomimetic 

surfaces presented as Log10 CFU/cm2. 
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SEM analysis 

 

Surfaces were analysed with attachment, adhesion and retention assays to determine the 

effect varying topographies has on pre-biofilm surface colonisation; SEM was used to 

determine cells /cm2. 

E. coli in monoculture SEM analysis 

 

Attachment assays 

None of the results compared in relation to the numbers of bacteria observed following SEM 

of the bacterial attachment showed a significant difference. The Leek (5.9 Log10 cells /cm2) 

surface presented with the highest number of E. coli cells attached, followed by the 

Tenderheart (5.7 Log10 cells /cm2), Gladioli (5.7 Log10 cells /cm2) and Flat (5.6 Log10 cells 

/cm2) surface. The White cabbage (4.7 Log10 cells /cm2) surface presented with the lowest 

number of E. coli cells attached, followed by the Cauliflower (5.5 Log10 cells /cm2) surface. 

In summary, the Leek surface displayed the highest number of cells attached, while the 

White cabbage surface displayed the least (Figure 7). 

Adhesion assays 

None of the results compared in relation to bacterial adhesion showed any significant 

difference. The Flat (6.3 Log10 cells /cm2) surface displayed the highest number of E. coli 

cells adhered, followed by the Gladioli (6.1 Log10 cells /cm2), White cabbage (6.0 Log10 

cells /cm2) and Tenderheart surfaces (5.9 Log10 cells /cm2). The Cauliflower (5.4 Log10 cells 

/cm2) surface displayed the least amount of E .coli cells adhered closely followed by the 

Leek (5.7 Log10 cells /cm2) surface. In summary, the Flat surface displayed the Highest 

number of cells (Figure 7).  

Retention assays 
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Concerning E. coli retention, the comparison of the Tenderheart (4.7 Log10 cells /cm2) and 

Leek (0 Log10 cells /cm2) (P=0.000) surfaces was found to be significant. The Cauliflower 

(4.8 Log10 cells /cm2) surface displayed the highest number of E. coli cells retained, 

followed by the White cabbage (4.8 Log10 cells /cm2) and Tenderheart surfaces. The Leek 

surface displayed the lowest number of E. coli cells, followed by the Gladioli (4.5 Log10 

cells /cm2) and Flat (4.5 Log10 cells /cm2) surfaces. In summary, the Cauliflower displayed 

the highest number of cells retained, while the Leek displayed the lowest (Figure 7). 

 

 

Figure 7 E. coli monoculture attachment, adhesion and retention scanning electron 

enumeration analysis presented as Log10 CFU/cm2. 
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L. monocytogenes in monoculture SEM analysis 

 

Attachment assays 

A significant difference was found when comparing the Leek (6.1 Log10 cells /cm2) and 

Gladioli (6.8 Log10 cells /cm2) surface to the Flat (5.6 Log10 cells /cm2) (P=0.029), 

(P=0.025) surface. The Gladioli surface displayed the highest number of L. monocytogenes 

cells after an attachment assay, followed by the Cauliflower (6.5 Log10 cells /cm2), 

Tenderheart (6.4 Log10 cells /cm2) and Leek surfaces. The Flat surface displayed the lowest 

number of L. monocytogenes cells attached, followed by the White cabbage (5.9 Log10 cells 

/cm2) and Leek surfaces. In summary, the Gladioli surface displayed the highest number of 

cells attached, while the Flat surface displayed the lowest (Figure 8). 

Adhesion assays 

When comparing bacterial adhesion none of the surfaces showed a significant difference in 

the number of bacteria adhered to the different surfaces. The Gladioli (6.8 Log10 cells /cm2) 

surface displayed the highest number of L. monocytogenes cells present after an adhesion 

assay, followed by the Flat (6.7 Log10 cells /cm2), White cabbage (6.7 Log10 cells /cm2), 

Tenderheart (6.6 Log10 cells /cm2) and Cauliflower (6.5 Log10 cells /cm2) surfaces. The Leek 

(6.3 Log10 cells /cm2) surface presented with the lowest number of L. monocytogenes cells 

present. In summary, the Gladioli surface displayed the highest number of cells adhered, 

while the Leek surfaces displayed the lowest (Figure 8).  

Retention assays 

A significant difference was found when comparing the numbers of bacteria retained on the 

Tenderheart (5.9 Log10 cells /cm2) surface to the White cabbage (5.2 Log10 cells /cm2)  

(P=0.023) surface. The Cauliflower (6.1 Log10 cells /cm2) surface displayed the highest 

number of L. monocytogenes cells present after a retention assay, followed by the 

Tenderheart and Gladioli (5.8 Log10 cells /cm2) surfaces. The Flat (4.7 Log10 cells /cm2) 
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surface displayed the lowest number of L. monocytogenes cells present after a retention 

assay, followed by the White cabbage and Leek (5.6 Log10 cells /cm2) surfaces. In summary, 

the Cauliflower surface displayed the highest number of cells retained, while the Flat 

surface displayed the lowest (Figure 8).  

 

 

Figure 8 L. monocytogenes monoculture attachment, adhesion and retention scanning 

electron enumeration analysis presented as Log10 CFU/cm2. 
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E. coli and L. monocytogenes co-culture SEM analysis 

 

Attachment assays 

A significant difference was found when comparing the White cabbage (4.1 Log10 cells 

/cm2) surface to the Gladioli (6 Log10 cells /cm2) (P=0.046) and Flat (4.9 Log10 cells /cm2) 

(P=0.046) surfaces. The Cauliflower surface displayed the highest number of bacterial cells 

attached, followed by the Gladioli, Tenderheart (5.6 Log10 cells /cm2) and Flat surfaces. The 

White cabbage surface displayed the lowest number of bacterial cells attached followed by 

the Leek (4.6 Log10 cells /cm2) surface. In summary, the Cauliflower surface displayed the 

highest number of cells attached, while the White cabbage surface displayed the lowest 

(Figure 9).  

Adhesion assays 

No significant difference could be found when comparing bacterial adhesion of the co-

cultures. The Tenderheart (6.6 Log10 cells /cm2) surface displayed the highest number of 

bacterial cells adhered followed by the Leek (6.3 Log10 cells /cm2), Flat (6.2 Log10 cells 

/cm2) surface. The White cabbage (4.5 Log10 cells /cm2) surface displayed the lowest 

number of bacterial cells, followed by the Cauliflower (5.6 Log10 cells /cm2) and Gladioli 

(5.6 Log10 cells /cm2) surfaces. In summary, the Tenderheart surface displayed the highest 

number of cells adhered, while the White cabbage surface displayed the lowest (figure 9).  

Retention assays 

No significant difference was found when comparing surfaces after the bacterial retention 

assays. The Flat (4.9 Log10 cells /cm2) surface displayed the highest number of bacterial 

cells retained. Followed by the Gladioli (4.5 Log10 cells /cm2) surface. The White cabbage 

(0 Log10 cells /cm2) surface displayed the lowest number of bacterial cells retained, followed 

by the Tenderheart (4.1 Log10 cells /cm2), Leek (4.2 Log10 cells /cm2) and Cauliflower (4.2 
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Log10 cells /cm2) surfaces (Figure 9). In summary, the Flat surface displayed the highest 

number of cells retained, while the White cabbage displayed the lowest (Figure 9).  

 

Figure 9 E. coli and L. monocytogenes monoculture attachment, adhesion and retention 

scanning electron enumeration analysis presented as Log10 CFU/cm2. 
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SEM images 

 

E. coli in monoculture SEM images 
 

Attachment assays 

After an attachment assay on the Tenderheart surface, E. coli cells appeared in small shallow 

surface recesses (~2 µm). No cell clumping was observed (Figure 10a). On the Leek surface 

following an attachment assay, E. coli cells appeared clumped in relatively large groups in 

large surface recesses. Small groups of cells were also observed on smaller negative surface 

features (Figure10d). On the Cauliflower surface ensuing an attachment assay, cells were 

found to be mostly spaced arbitrarily on the surface; however, a small group of cells was 

observed in a shallow negative surface feature (Figure 10g).  Following an attachment assay 

on the Gladioli surface cells were observed in large shallow ridges along the surface. A 

small group of cells was observed on top of a large protruding topographical structure 

(Figure 10j). On the White cabbage surface after an attachment assay, no cells were 

observed in the image (Figure m). On the Flat surface ensuing an attachment assay, no cells 

were observed in the image (Figure 10p).  

Adhesion assays 

 On the Tenderheart surface after an adhesion assay, cells appeared to be grouped in small 

clumps predominantly on lower sections of the topography, however, a small clump of cells 

was also observed in a more elevated and exposed area of the topography (Figure 10b). 

Following an adhesion assay on the Leek surface, a small clump of cells was observed on 

the surface with no apparent connection to topography (Figure 10e). On the Cauliflower 

surface, after an adhesion assay cells appear to be placed on the sides of ridge structures on 

the surface, small clumping was observed (Figure 10h). 
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Ensuing an adhesion assay on the Gladioli surface, cells were observed in small clumps on 

the side of large protruding surface features, with small clumps of cells in large deep surface 

structures (Figure 10k). Following an adhesion assay on the White cabbage surface, cells 

appeared to show a clear affinity for deep surface features, with large clumps of cells present 

in them throughout. Small clumps of cells were also observed on the more exposed areas of 

the surface (Figure 10n). After an adhesion assay on the Flat surface, cells were observed 

in sheltered areas of the surface, with these areas presenting with the largest clumps present 

on the surface, however, an even coating of cells can be seen throughout the image (Figure 

10q). 

Retention assays 

Following a retention assay on the Tenderheart surface, only one independent cell was 

observed on the surface, no large surface features were observed (Figure 10c). After a 

retention assay on the Leek, cauliflower and gladioli surfaces no cells were observed in the 

image (Figure 10f,i,l). Ensuing a retention assay on the White cabbage surface, two 

independent cells were observed in a large shallow negative surface feature (Figure 10o). ). 

Following a retention assay on the Gladioli surface, no cells were observed in the image 

(Figure 10r).  

In summary, an increased frequency of cells clumping was observed when cells were within 

proximity to larger negative and positive surface features like those present on the Gladioli 

and White cabbage surfaces. Smoother surfaces like the Flat surface showed cells 

predominately independent from one another. Surfaces analysed after attachment and 

adhesion assays generally displayed more cell clumping than surfaces after a retention assay 

(Figure 10).  
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a)                                      b)                                       c) 
 

a)                                      b)                                       c) 
 

 
 a)                                      b)                                       c) 

Figure 10 SEM E. coli Tenderheart attachment (a), adhesion (b) and retention (c) 

 

Figure 11 SEM E. coli Leek attachment (a), adhesion (b) and retention (c) 

 

Figure 12 SEM E. coli Cauliflower attachment (a), adhesion (b) and retention (c) 
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a)                                      b)                                       c) 

a)                                      b)                      c) 

a)                                    b)                    c) 

Figure 13 SEM E. coli Gladioli attachment (a), adhesion (b) and retention (c) 

 

Figure 14 SEM E. coli White cabbage attachment (a), adhesion (b) and retention (c) 

 

Figure 15 SEM E. coli Flat attachment (a), adhesion (b) and retention (c) 
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L. monocytogenes in monoculture SEM images 

 
Attachment assays 

After an attachment assay on the Tenderheart surface cells were observed clumped in 

multiple sheltered areas on the surface, with no cells present on more exposed areas (Figure 

11a). Following an attachment assay on the Leek surface cells were observed to be 

arbitrarily spaces on the surface with surface topography having little to no visible influence 

(Figure 11d). Ensuing an attachment assay on the Cauliflower surface cells were found to 

be arranged in numerous large clumps on the side of surface ridges, with little cells in the 

lower grooves beneath (Figure 11g). After an attachment assay on the Gladioli surface cells 

were observed in large clumps showing an affinity for large positive topographical features, 

with fewer cells present on lower and smooth areas in the image (Figure 11j). Following an 

attachment assay on the White cabbage surface cell clumps were observed with a slight 

affinity shown for areas with a more varied microtopography (Figure 11m). Ensuing an 

attachment assay on the Flat surface very few cells were observed in the image, no large 

surface features were observed (Figure 11p). 

 

Adhesion assays 

After an adhesion assay on the Tenderheart surface, a large clump of cells was observed in 

a large negative topographical feature. A smaller clump of cells was seen on a less 

prominent feature. Little to no cells were observed in more exposed areas in the image 

(Figure 11b). Following an adhesion assay on the Leek surface cell clumping was observed 

throughout the image with cells showing little to no affinity for surface structures (Figure 

11e). Ensuing an adhesion assay on the Cauliflower surface minimal cell clumping was 

observed, with cells showing an affinity to adhere to lower regions of the large surface 

feature present in the image (Figure 11h). After an adhesion assay on the Gladioli surface, 
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small amounts of cell clumping was observed in small microtopography features and areas 

within proximity to larger surface features (Figure 11k). Following an adhesion assay on 

the White cabbage surface, cell clumping was observed, and cells appear arbitrarily spaced 

on the relatively smooth surface (Figure 11n). Ensuing an adhesion assay on the Flat surface 

large amounts of independent cells were observed with minimal clumping, no large surface 

features were observed (Figure 11q).  

 

Retention assays 

After a retention assay on the Tenderheart surface, multiple independent cells were 

observed in the image, with some showing an affinity for sheltered grooves to which the 

cells are aligned to fit within (Figure 11c). Following a retention assay on the Leek surface, 

multiple independent cells were observed with some aligned in surface grooves and some 

retained on the side of surface structures (Figure 11f). Ensuing a retention assay on the 

Cauliflower surface, large clumps of cells were observed in the more sheltered areas in the 

image, some independent cells were observed also (Figure 11i). After a retention assay on 

the Gladioli surface, large amounts of cell clumping was observed on the lateral faces of 

multiple surface features, with some small clumps of cells present on the flatter areas of the 

image and on the peaks of the large surface structures (Figure 11l). Following a retention 

assay on the white cabbage surface, small amounts of arbitrarily spaced independent cells 

were observed on the surface with no cell clumps present (Figure 11o). Ensuing a retention 

assay on the Flat surface, only one cell was observed in the image, no large surface features 

were observed (Figure 11r).  

 

In summary, an increased frequency of cells clumping was observed when cells were within 

proximity to larger negative and positive surface features like those present on the Gladioli 
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and White cabbage surfaces. Smoother surfaces like the Flat surface showed cells 

predominately independent from one another. Surfaces analysed after attachment and 

adhesion assays generally displayed more cell clumping than surfaces after a retention assay 

(Figure 11). 
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  a)                           b)                          c) 

a)                         b)                    c) 

a)                         b)                    c) 

Figure 16 SEM L.monocytogenes Tenderheart attachment (a), adhesion (b) and retention (c) 

 

Figure 17 SEM L.monocytogenes Leek (a), adhesion (b) and retention (c) 

 

Figure 18 SEM L.monocytogenes Cauliflower attachment (a), adhesion (b) and retention (c) 
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a)                          b)                     c) 

a)                         b)                      c) 

a)                         b)                      c) 

Figure 19 SEM L.monocytogenes Gladioli attachment (a), adhesion (b) and retention (c) 

 

Figure 20 SEM L.monocytogenes White cabbage attachment (a), adhesion (b) and retention (c) 

 

Figure 21 SEM L.monocytogenes Flat (a), adhesion (b) and retention (c) 
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E. coli and L. monocytogenes co-culture SEM images 

 

Attachment assay 

After an attachment assay on the Tenderheart surface, cells were observed in small clumps 

arbitrarily spaced throughout the image; no large clumps of cells were observed (Figure 

12a).  Following an attachment assay on the Leek surface, no cells were observed in the 

image (Figure 12d). Ensuing an attachment assay on the Cauliflower surface cells were 

observed to be independent and showed an affinity of more exposed rougher areas of the 

topography (Figure 12g). After an attachment assay on the Gladioli surface clumps of cells 

were observed at the base of large surface features, with independent cells present in the 

flatter space in-between (Figure 12j). Following attachment assays on the White cabbage 

and Flat surfaces, no cells were observed in the image (Figure 12m,p).  

Adhesion assays  

After an adhesion assay on the Tenderheart surface, a high frequency of cells in small 

clumps was observed, with an affinity for more sheltered areas (Figure 12b). Following an 

adhesion assay on the Leek surface cells were observed to be independent of one another 

and arbitrarily spaced throughout the image (Figure 12e). Ensuing an adhesion assay on the 

Cauliflower surface, no cells were observed in the image (Figure 12h). After an adhesion 

assay on the Gladioli surface, only one cell was observed in the image, however, it was 

observed to be within the proximity of a large surface structure (figure 12k). Following an 

adhesion assay on the White cabbage surface, only one cell was observed in the image, 

however, it was observed to be in the deepest surface groove in the image (Figure12n). 

Ensuing an adhesion assay on the Flat surface, a large clump of cells was observed in the 

centre of the image, with large amounts of independent cells throughout. The Large clump 

appeared to be situated in a shallow negative surface feature (Figure 12q).  

Retention assays 
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After a retention assay on the Tenderheart surface, no cells were observed in the image 

(Figure 12c). After a retention assay on the Leek surface no cell clumping was observed on 

the relatively flat surface (Figure 12f). Following retention assays on the Cauliflower, 

Gladioli, White cabbage and Flat surfaces no cells were observed in the image (Figure 

12i,l,o,r). 

In summary, an increased frequency of cells clumping was observed when cells were within 

proximity to larger negative and positive surface features such as those present on the 

Gladioli and white cabbage surfaces. Surfaces without large features such as the flat surface 

showed cells predominately independent from one another while having seemingly no 

impact on cell numbers. Surfaces analysed after attachment and adhesion assays generally 

displayed more cell clumping than surfaces after a retention assay (Figure 12). 
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a)                                           b)                                                           c) 

a)                                                      b)                                                               c) 

 

 

 

 

a)                b)                           c) 

Figure 22 SEM E. coli and L.monocytogenes Tenderheart (a), adhesion (b) and retention (c) 

 

Figure 23 SEM E. coli and L.monocytogenes Leek (a), adhesion (b) and retention (c) 

 

Figure 24 SEM E. coli and L.monocytogenes Cauliflower (a), adhesion (b) and retention (c) 

 

a)                b)                           c) 

a)                b)                           c) 
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a)                                                      b)                                                               c) 

a)                                                      b)                                                               c) 

a)                                                      b)                                                               c) 

Figure 25 SEM E. coli and L.monocytogenes Gladioli (a), adhesion (b) and retention (c) 

 

Figure 26 SEM E. coli and L.monocytogenes White cabbage (a), adhesion (b) and retention (c) 

 

Figure 27 SEM E. coli and L.monocytogenes Flat (a), adhesion (b) and retention (c) 
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Discussion 

  

Due to the ever-approaching obsolescence of antibiotics and increased consumer attitude 

towards the environment and use of harsh chemical cleaning products within it, new 

alternative methods for reducing bacterial fouling in the food industry need to be 

established. Extensive research has been carried out of surface roughness and 

physicochemistry and if an ideal combination of factors can be established in relation to 

bacterial fouling the benefits will far exceed the food industry (Cheng et al., 2019; Carniello 

et al., 2018; Wu et al., 2018; Song et al., 2015). This work looked at different surface 

characteristics in the form of biomimetic plant leaf surfaces and how their structure and 

attributes affect the way bacteria begin the process of biofilm development. Bacterial 

attachment, adhesion and retention were analysed separately to ascertain how each distinct 

process is influenced by varying surface characteristics.  
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Physicochemistry effect on bacteria 

 

Surface physicochemistry governs surface liquid interactions, dictating how liquids and 

bacterial cells behave on surfaces. Surface chemistry and topography are the primary 

influencers of surface physicochemistry (Giovambattista et al., 2009). A trend between 

increased hydrophobicity and reduced levels of bacterial attachment, adhesion and retention 

of E. coli in co-culture after CFU/mL enumeration was established in agreement with 

(Fadeeva et al., 2011) who showed a similar trend. Hydrophobic surfaces have been shown 

to reduce the contact area of the interface between cell and surface, thus decreasing the 

adhesion force present (Yuan et al., 2017). Gibbs surface free energy (ΔGiwi) equates to 

surface hydrophobicity which is calculated using the Van Oss-Chaudhury-Good equation 

of the interaction between the surface when immersed in water (Absolom et al., 1983). 

 

Free surface energy (γs) when compared to E. coli attachment and adhesion in monoculture 

and L. monocytogenes attachment and retention in monoculture exhibited a negative 

correlation. This is seen in related works (Zhang et al., 2015) where a lower difference in 

surface and bacterial cell γs resulted in increased levels of bacterial adhesion. The 

connections between free surface energy and bacterial attachment, adhesion and retention 

are thought to be a result of interactions between the free surface energy of the bacterial 

cell, the free surface energy of the surface and the surface tension of the suspending medium 

(Bollen, 1995). The greater the difference in the surface energy between the surface and 

bacterial cell, the greater the adhesion force present (Pringle and Fletcher, 1983). A 

relatively low surface free energy has been shown to be the optimum level for the prevention 

of bacterial growth on surfaces (Pereni et al., 2006). Surface energy is equal to the sum of 

γs
AB and γs

LW forces, whilst γs
AB is equal to the sum of the γs

- and γs
+ parameters (Chibowski, 

2011). A trend was seen in increased L. monocytogenes adhesion co-culture assays after 
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CFU/mL enumeration that correlated to an increased Lifshitz van der Waals (γs
LW). It has 

been suggested that when non-polar γs
LW forces are increased, bacterial attachment and 

adhesion will also increase (Carniello et al., 2018). The relationship between bacterial 

surface interaction and γs
LW is dependent on a multitude of factors, such as the chemical and 

physical properties of the bacteria, surface, and water solutions (Absolom et al., 1983).  

Polar surface energy is notably important concerning bacterial adhesion. A low γs
AB is 

thought to correlate to less bacterial adhesion (Yuan et al., 2017). γs
AB forces are thought to 

increase with a decrease of separation to a surface, hydrostatic forces are thought to bridge 

this gap resulting in γs
AB being one of the primary forces of bacterial adhesion (Mao et al., 

2011). This was not seen when comparing bacterial attachment, adhesion and retention 

possible due to bacterial cell γs
AB repelling the surface (Ista and López, 2013). It has been 

shown that bacterial cells possess an affinity for surfaces with a high Lewis acid value, 

which is reliant on the ratio of γs
+ and γs

- resulting in a positive number (Fontaine et al., 

1996; Lee, 1996). This was seen in only the negatively charged Lewis base surface which 

presented the lowest values of attachment, adhesion and retention in E. coli and L. 

monocytogenes co-culture after CFU/mL enumeration.  

Due to the surfaces displaying both γs
- and γs

+ values all surfaces were observed to be bipolar 

(Chibowski, 1992). Under typical, conditions bacterial cell walls are electron donors and 

can be repelled by surfaces that present a high γs
-. If a surface has a γs

+ of approximate to 

its γs
- value then only the net difference should be taken as the surface charge (Hamadi et 

al., 2005). The Tender Heart surface presented as the only surface with a negative net 

charge, which displayed the lowest levels of attachment, adhesion and retention in E. coli 

and L. monocytogenes co-culture after CFU/mL enumeration. 
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Surface topography 

 

Surface topography has been suggested to enhance already present physicochemical 

interactions on the surface (Marmur, 2003). Surfaces with increased roughness can present 

a contact angle that deviates substantially from that of a smoother surface (M. W. England 

et al., 2016). This deviation can be a result of the surface being homogeneous to wetting, 

allowing all the surface features to make direct contact with water described with the 

Wenzel equation (Marmur, 2003). Alternatively, deviation in surface contact angle can be 

a result of surface heterogeneity, relying on the Cassie–Baxter model which accounts for 

diminished contact between surface and liquid due to the presence of air bubbles (Marmur, 

2003).  

 

Surface roughness and its effect on bacteria 

 

Surface roughness is described as the deviation from the average line of the surface 

(BiolinScientific, 2019). A correlation between a high Arithmetical mean deviation (Sa) and 

low levels of bacterial retention in monoculture after CFU/mL enumeration was established. 

This is in disagreement with literature, which states that a reduced surface Sa will display a 

reduced level of bacterial colonisation (Dantas et al., 2016). Retention is the first step in the 

process of biofilm formation that EPS production occurs (Jayathilake et al., 2017). 

However, since surface Sa has been shown to not affect EPS production, this may suggest 

that external factors could influence the relationship between Sa and bacterial retention 

throughout all or some of the process, or that EPS production plays less of a role in bacterial 

retention than previously thought (Pizarro-Cerda and Cossart, 2006; Najafinobar, 2011).  

A trend was seen that agrees with other works (Dantas et al., 2016). In relation to Sa and L. 

monocytogenes adhesion in monoculture after CFU/mL enumeration, the surface that 
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presented the highest Sa showed the highest levels of bacterial adhesion, although the 

surface with the lowest levels of L. monocytogenes after an adhesion assay also displayed a 

high Sa possibly indicating the influence of external factors such as Sq, Spv or surface 

physicochemical properties (Marmur, 2003).  

Increased root-mean-square deviation of surface topography (Sq) has been shown to 

decrease bacterial adhesion and inhibit biofilm formation in other works (Singh et al., 

2011). This was seen when bacterial retention of E. coli in monoculture after CFU/mL 

enumeration and bacterial retention in co-culture after SEM enumeration were compared to 

Sq. Little is known of the direct mechanisms that result in this correlation, it is possible that 

surface Sq is linked to surface physicochemistry values thus creating this effect (Marmur, 

2003). 

A negative correlation was seen when comparing a high surface Sq and Sa to γs
AB γs

LW, γs
+ 

and γs
-, this is possibly due to relatively high variations in surface topography distorting 

physicochemistry results by the trapping of air in micro and nano features on the surface 

(Marmur, 2003).  

A trend was established between a high mean peak to valley height of surface topography 

(Spv) and a high number of bacterial cells present after attachment and retention assays using 

E. coli and L. monocytogenes in monoculture. A surface with a high Spv has a higher degree 

of variation from the Sa mean surface roughness line. This variation could be due to large 

protruding surface features or large surface depressions, in the case of the Gladioli surface, 

it was found to likely be both after analysis with SEM. Recent literature has shown that 

given that concave topography structures are of comparable size to bacterial cells, an 

increased number of bacterial cells could likely be due protection from shear forces and 

turbulent flow (Helbig et al., 2016). The assays observed in this trend all included a rinse 

step that was applied resulting high enough levels of shear force to affect bacterial cells on 
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the surface. The approximate rinse shear force for the attachment assay was 70 kPa (Sharpe, 

2011). The approximate rinse shear force for the retention assay was calculated to be 48 

kPa (pd = 1/2 ρ v2). Both are values that far exceed the minimum levels of shear force needed 

to affect bacterial attachment and retention by a factor of tens of thousands (Nejadnik et al., 

2008). 

 

 

 

Monoculture and co-culture bacterial assays 

 

Results taken from monoculture enumerations were highly varied from each other in 

relation to the surface that displayed the highest and lowest number of bacterial cells 

present, whereas samples tested with co-culture presented relatively equivalent results when 

comparing E. coli and L. monocytogenes cells attached, adhered and retained, indicating 

that the relationship between the two species may be an influencing factor. This is likely a 

result of less experimental variation due to samples being taken from the same samples 

prepared in the same instance. It is thought that L. monocytogenes and E. coli do not have a 

significant effect on each other’s growth rate while growing in co-culture (Mellefont et al., 

2008). Results from the co-culture assays after a CFU/mL enumeration appear to be 

approximately ten times lower than their monoculture counterparts. This showed a cell 

reduction of five times what was to be expected due to cell counts being halved when grown 

on selective agar. Indicating a competitive relationship between the two species of bacteria 

disagreeing with some works (Mellefont et al., 2008). It is possible that while interacting 

with the surfaces stress was added to the bacteria resulting in the loss of an interspecific 

equilibrium (Khare and Tavazoie, 2015). This is also conferred by the larger gap between 
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the number of cells recovered and counted via SEM and CFU enumeration after a retention 

assay, likely due to the amount of time both species were able to interact with one another.  

SEM enumeration 

 

Cell enumeration results acquired by the analysis of SEM images differ greatly from results 

obtained via CFU/mL enumeration. Some SEM results directly contradict relevant literature 

such as bacterial adhesion analysis with co-culture (Yuan et al., 2017). This could be due 

to potential reasons such as, all samples were treated with glutaraldehyde which is used as 

a fixative before SEM analysis, which has been shown to provide no increased protection 

from shear force (Kooten et al., 1992). This would account for the reduced cell numbers 

seen throughout the SEM samples due to the method used to wash glutaraldehyde off the 

surface. Topographies with large surface structure have been shown to protect bacteria from 

shear force (Nejadnik et al., 2008) explaining why a reduction of bacterial cells is not seen 

as prominently in surfaces with a raised Spv. 

SEM cell clumping 

 

Surfaces with less topographical features and lower overall roughness displayed reduced 

amounts of cell clumping when compared to surfaces with large prominent surface 

structures. This was only demonstrated for surfaces that had been subject to a rinse step 

(attachment and retention assays). Surfaces that have not undergone a rinse step showed 

greater amounts of cell clumping. This is likely explained by the presence of large surface 

features which shield cells by aiding in the prevention of cell removal via shear force after 

rinsing (Nejadnik et al., 2008). The effect of shear force on bacterial retention was not 

expected as it is thought that EPS provides a layer of protection from shear force to cells 

(Park et al., 2011). Protection can be conferred from rinsing even in relatively small shallow 
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surface features. This is likely due to the bacteria becoming flush with the surface 

topography thus reducing the shear force applied to the cells(Lazzini et al., 2019).  

 

SEM negative control 

 

The SEM images that had not been treated bacteria were not visualised since the bacteria 

were evident on the surface structures, and no advantage would have been gained from 

analysing these as the value would have been zero since they had been moulded using 

aseptic processing. 

 

Conclusions 

 

The results demonstrated that the Tenderheart leaf surface was the most hydrophobic with 

the highest surface free energy, highest γs
AB, most electron-donating and most electron-

accepting surface. The Leek surface demonstrated the lowest surface free energy. The White 

cabbage surface was the most non-polar surface, with the least γs
AB properties, the least 

electron-accepting and least electron-donating surface. However, it had the highest Sa and 

Sq values. The Cauliflower leaf surface was the least hydrophobic and least nonpolar surface 

whilst the Gladioli surface was found to have the highest Spv values. Finally, the flat surface 

showed the lowest Sa, Sq and Spv values. Following the attachment, adhesion and retention 

assays, E. coli in monoculture did not show any trends between the surface properties and 

the number of cells retained. However, for L. monocytogenes in monoculture, following the 

attachment and retention assays, the Flat surface showed the least number of cells. 

Following the adhesion and retention assays, the Gladioli surface (highest Spv values) 

displayed the lowest numbers of L. monocytogenes cells. Use of the bacteria in co-cultures 

demonstrated that for both the attachment and retention assays, the Tenderheart surface 
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(most hydrophobic) displayed the lowest number of cells. SEM analysis did not correlate 

with the CFU/mL assays. However, for all the assays with L. monocytogenes, the flat 

surfaces (lowest roughness) retained the lowest numbers of cells, and for the co-culture, the 

White cabbage surface (most hydrophilic) displayed the lowest number of cells. These 

results demonstrate that when more topographically complex surfaces are analysed, the 

conclusions drawn between the effect of the surface properties on bacterial attachment, 

adhesion and retention from more uniform surfaces do not apply. Further, the processes of 

bacterial attachment, adhesion and retention are different and hence differentiation between 

these classifications needs to be clarified. It was clear that the different methods gave 

different results and that the use of different bacteria in monoculture and co-culture also 

affected the microbial assays. Hence, a new approach needs to be taken to understand the 

cell: surface interactions on complex surfaces. 

Limitations of the study 

 

Results taken from bacterial cell SEM enumeration were dissimilar to CFU/mL 

enumeration data. This may have been due to time constraints and only three SEM images 

were taken of each sample. The use of a handheld goniometer although convenient may 

have produced contact angle data that was slightly inaccurate. The Wenzel method although 

simpler does not account for air pockets present underneath the droplet. The application of 

a desktop goniometer would likely produce more reliable consistent results that would not 

have to be mapped by hand thus which was often the case thus increasing the chance of 

human error. The application of the more complex Cassie–Baxter model would also likely 

give more reliable results. 
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Future work 
 

The work described in this study looks at the relationship between surface roughness and 

hydrophobicity compared to bacterial attachment, adhesion and retention. No information 

on cell grouping, density or cell spacing in co-culture was isolated from the results obtained. 

The application of multifractal analysis could prove invaluable in the understanding of the 

greater relationship between bacteria surface interactions (Wickens et al., 2014). Fractal 

analysis is a method of surface topography analysis that presumes surface topography is 

self-similar on all scales and that scale is described by a value termed the fractal dimension. 

Fractal analysis has the potential to bring together multiple values from varying surface 

scales into one quantifiable value. This would allow a holistic point of view to be attained 

and analysed in relation to surface topographical analysis. A multifractal is described as a 

fractal that cannot operate in one dimension and a continuous spectrum of dimensions are 

required for the object to exist (Brown and Scholz, 1985; Wickens et al., 2014). The 

combination of fractal analysis and 3D imaging software has the potential to describe cell 

clumping, dispersion and density data that can explain the relationship between individual 

topographical features and bacterial surface interactions at every stage of biofilm formation 

(Dazzo and Yanni, 2017).  

To gain a more comprehensive understanding of all steps of biofilm development the last 

step in this process must be analysed. Once bacterial are retained on a surface cell 

proliferation occurs resulting in biofilm formation (Whitehead and Verran, 2015). A crystal 

violet assay would allow the quantification of biofilms on biomimetic surfaces in 

monoculture and co-culture (Peeters et al., 2008). SEM analysis used in conjunction with 

this assay could give more comprehensive detailed results such as spacing and distribution 

data (Badha et al., 2019). The application of confocal analysis would allow biofilm structure 

and architecture to be understood providing images that differentiate between cells in co-
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culture displaying their intra-biofilm distribution and organisation (Reichhardt and Parsek, 

2019).  

Conditioning film analysis assays would prove insightful towards a more complete 

understanding of biofilm surface interactions. In nature biofilms do not form without there 

first being a conditioning film present, conditioning film composition directly affects how 

a biofilm will develop on a surface (Whitehead and Verran, 2015). Analysis with Fourier 

Transform InfraRed (FTIR) microscopy could give a detailed composition of conditioning 

films which could be used in conjunction with biofilm analysis (Humbert and Quiles, 2011).  

Cell surface hydrophobicity analysis could give a more complete understanding of surface 

physicochemistry by displaying the opposing side of interactions described by data obtained 

with a goniometer. Microbial adhesion to hydrocarbon (MATH) assay would be able to 

describe this data (Rosenberg, 2006).  

Although a general knowledge of the chemical composition of the dental wax is known, a 

detailed understanding may prove to be highly insightful in relation to any influence 

chemicals present have on bacterial growth. Analysis with Fourier-transform infrared 

spectroscopy (FTIR) would provide this insight. 
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