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Abstract  

Background: An early symptom of Alzheimer’s disease (AD) is a disturbance of the circadian rhythm 

that is associated with disrupted sleep/wake cycles.  

Objective: To investigate if BMAL1, a key gene that drives the circadian cycle, is epigenetically 

regulated in brains in relation to longitudinal changes in cognition, sleep quality, and AD 

neuropathology. 

Methods: Frontal cortex tissues were acquired from the Manchester Brain Bank (N = 96). DNA 

methylation at six CpG sites at the promoter of BMAL1, determined using bisulfite pyrosequencing, 

was tested for associations with Braak stage, CERAD score and Thal phase, longitudinal changes in 

cognition, sleep measurements and cross-section measures of depressive symptoms (BDI score). 

Results: Methylation across all the CpGs strongly correlated with each other. We found increased 

CpG2 methylation with higher Braak (t(92)=2.47, p=0.015) and CERAD (t(94 )=2.04, p=0.044) stages. 

No significance was found between longitudinal fluid intelligence, processing speed and memory 

tests, but methylation at CpG1 (r=0.20, p=0.05) and CpG4 (r=0.20, p=0.05) positively correlated with 

vocabulary. CpG2 positively correlated with cross-sectional fluid intelligence (r=0.20 p=0.05) and 

vocabulary (r=0.22 p=0.03). Though longitudinal analysis revealed no significance between sleep 

duration, midsleep and efficiency for any of the CpG sites, CpG3 (B=0.03, 95%CI=0.00/0.06, p=0.03) 

and CpG5 (B=0.04, 95%CI=0.01,0.07, p=0.01) significantly correlated with night wake. CpG4 

correlated with depressive symptoms (B=-0.27, 95%CI=0.49/-0.05, p=0.02).  

Conclusion: Methylation of BMAL1 associated with tau pathology, changes in cognitive measures, a 

measure of sleep and depressive symptoms, suggesting an involvement of the circadian cycle. 

 

 

Key words: Alzheimer’s disease, circadian cycle, BMAL1, cognition, sleep quality, depressive 

symptoms.
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Introduction 

Sleep disorders and sleep-wake rhythm disturbances, are typical symptoms of Alzheimer's disease 

(AD) that may precede the other clinical signs of this neurodegenerative disease [1]. Insomnia, 

excessive daytime sleepiness and sun-downing are among the most common reported disturbances 

and AD patients show decreased sleep efficiency and increased latency to REM sleep, together with 

disturbances in sleep-wake cycles [2,3].  Alterations in the diurnal rhythm of activity and sleep due to 

circadian rhythm dysregulation often occur early in the course of the disease and may even precede 

the development of cognitive symptoms [4]. Decreased robustness of circadian rhythms has been 

associated with increased risk of future dementia in an elderly cohort [5], while sleep fragmentation 

appears to impart a higher risk of subsequent AD [6].  

A hallmark of AD are deficits in executive functioning affecting skills such as working 

memory, fluid intelligence and processing speed  and the frontal cortex has been widely associated 

with these functions. The frontal cortex is also highly sensitive to sleep changes [7]. A PET study 

found that changes in this region, including the superior frontal gyrus,  were present in patients with 

MCI that progressed to Alzheimer's disease (AD) compared to those that did not  [8]. Accumulating 

evidence, especially in animal models, suggests that circadian clock dysfunction could promote 

neurodegeneration and contribute to AD pathogenesis. Studies in transgenic AD mice models have 

found that chronic sleep restriction and deprivation exacerbates AD pathology in brains, including 

increased amyloid-β (Aβ) and phosphorylated tau [9–11]. A recent study in humans found that 

circadian dysfunction could contribute to the earliest stages of AD pathogenesis, with increasing AD-

related neurodegeneration, as measured by cerebral spinal fluid (CSF) levels of phosphorylated tau 

to Aβ42 ratio, associated with fragmentation of circadian rest-activity rhythms [12]. This may further 

relate to dysregulation of the orexinergic system found in AD [13]  

Increases in AD pathology are further linked to alterations and degradation of key circadian 

clock factors important in controlling regulation of circadian rhythm. Song et al., [14] found the 

changes in circadian rhythm caused by Aβ, correlated with the accelerated degradation of BMAL1 in 

transgenic mice containing AD mutations. BMAL1 (Brain and Muscle ARNT-Like 1) also known as 

ARNTL (Aryl hydrocarbon receptor nuclear translocator-like protein 1)  is a core component in the 

regulation of the circadian rhythm and studies have shown that methylation of CpG sites in the 

promoter of BMAL1 can lead to epigenetic silencing in the expression of the gene [15]. Taniguchi et 

al., [16], found epigenetic silencing of BMAL1 prevented the activation of CLOCK protein to targeted 

areas, leading to the disruption of circadian rhythm in malignant cells. These findings suggest the 

epigenetic inactivation of BMAL1 contributes to disruption of the cellular circadian clock. 

Investigating the role of epigenetic regulation of BMAL1 in AD, Cronin and colleagues found altered 
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circadian transcription of the gene in mid frontal cortex and fibroblasts, that associated with 

abnormal promoter methylation when compared with controls [17]. Interestingly, they further 

detected differences in oscillatory patterns of methylation between early and late AD cases in 

fibroblast cells and within brains when related to time of death suggesting alterations in circadian 

rhythm. 

Depression is a risk factor for AD and studies find with lifetime depression associates with 2- 

to 4-fold increased risk of developing AD [18]. A recent large study found increased odds for 

dementia diagnosis after depression, even when the depression occurred 20 years or more before 

the dementia diagnosis [19]. Depression and stress have been linked to damage of neurons together 

with an increase in AD-related pathology, indicating a link between the two. Chronic stress in a rat 

model was found to increase levels of phosphorylated tau in the hippocampus and frontal cortex of 

depressive animals. Human studies have found that neurofibrillary tangles accumulate in greater 

numbers in the hippocampus of AD patients with depression than in those without depression 

[20,21]. Disruptions in circadian rhythms have been associated with depression [22] and individuals 

with an arrhythmic biological clock have a higher risk of developing depression [23]. Linked to this, 

BMAL1 has been found to be hypermethylated in patients with bipolar disorder compared to healthy 

controls [24] suggesting that altered epigenetic regulation of circadian clock genes may provide a 

mechanistic basis for circadian rhythms and depressive symptoms [25]. 

That disturbances in sleep-wake cycles together with depression occur early in AD, and that 

preclinical changes and disruptions in circadian rhythm are linked to both suggest that circadian 

regulation may be a key factor linking these symptoms in the disease. Studies suggest that 

epigenetic regulation of BMAL1 plays an important role in AD via deregulation of circadian rhythms. 

However, the link between epigenetic changes in circadian regulatory factors in the brain in relation 

to sleep and depression in AD has yet to be fully explored. The aim of this study was to investigate 

mechanisms underlying the possible role of BMAL1 epigenetic regulation within frontal cortex of AD 

brains in relation to neuropathology, cognition, depressive symptoms and sleep.  

  

 

Methods 

Study population 

Fresh, frozen tissue was taken from superior frontal gyrus (Brodmann area 8) of the frontal cortex 

from 96 brains of donors who were participants of a large prospective cognitive ageing cohort 

known as The University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age 
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cohort (UMLCHA)  [26,27]. Samples were acquired through the Manchester Brain Bank with ethical 

approval granted from the Manchester Brain Bank Committee. AD neuropathology were determined 

using the National Institute on Aging-Alzheimer’s Association guidelines [28] (Supplementary Table 

1).   

The study took place over five waves between 1982 and 2010 during which a number of Personal 

Details Questionnaire (PDQ) were performed by the participants themselves. The first PDQ 

questionnaire was performed in recruitment until 1995; along with the Beck Depression Inventory 

(BDI) as a measure of depressive symptoms. The second PDQ questionnaire was performed between 

1984 and 1996 and the third PDQ was performed between 2001 and 2003. The fourth and fifth PDQ 

were completed in 2007 and 2010, respectively [29].  

The fifth wave also included validated sleep questionnaires, including the Pittsburgh Sleep Quality 

Index (PSQI). Cognitive g factors (vocabulary, fluid intelligence, processing speed and memory) 

derived from longitudinal biennial measures were included in the analysis. The methods of these 

cognitive assessments were previously described by [26]; they included an intercept and slope per 

fluid, vocabulary, speed and memory which represent two different perspectives. Intercept is 

estimate of function at age 70 years from the longitudinal model while slope is the measure of 

change over time from model. 

Sleep questions within the PDQ included “Generally, at what time do you go to bed at night?”, 

“Generally, at what time do you get up in the morning?”, “On average, how many hours sleep do 

you get every night?”, “How many times during the night do you wake up?” (night wake) and “Do 

you have any difficulty in getting to sleep?”. Sleep efficiency (%) was calculated as “sleep duration x 

100/(getting up time-going to bed time)”, with sleep efficiency above 100% was accepted as 100% 

[29]. We used longitudinal sleep data (collected in 5 wave): sleep duration (time), mid-sleep time for 

evaluation of chronotype, sleep efficiency (%), night wakes (number). 

The BDI [30] was used to measure depressive symptoms and the scores for this were continuous  

with a higher number indicating more depressive symptoms. The mean BDI score for the 1st wave 

was 6.3 [31], whilst for the participants tested in this study the scores of the 93 were: mean=6.57, 

standard deviation (SD)=6.30, range=0-31.  

 

DNA methylation analysis 

Genomic DNA was extracted using the Isolate II Genomic DNA kit (Bioline) and 500 ng bisulfite-

converted using the EpiMark Bisulfite Conversion Kit (New England Biolabs). The mean ratio of the 

absorbance at 260 and 280 nm (A260/280) of the 96 samples was 1.89 (StdDev .118). A linear 

regression with A260/280 and PMD gave a non-significant correlation (Coeff Std error .000, Std Coeff 
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Beta .025, t .236, p=.814) Primers were designed using the Pyromark Assay design software (Qiagen) 

to amplify regions of the BMAL1 promoter (F – GTGGGATATTTGGAGGTTATGATG; R: 

ACAATTCCTAACTCCCTCTCT-Biotinylated). PCRs were performed using MyTaq HS mix PCR reagents 

(Bioline) with the following conditions: initial denaturation of 5min 95°C; 49 cycles of 95°C for 30sec, 

56°C for 30sec, 72°C for 30s; final extension of 72°C for 5min. The BMAL1 promoter region analysed 

(GRCH38/hg38  chr11:13277037-13277245) contained 6 CpG sites and located to the shore of a CpG 

island spanning the transcriptional start site (Figure 1). Amplicons were processed on the Qiagen 

Q24 Workstation and sequenced using the Sequencing primer ATATTTGGAGGTTATGATGA designed 

to analyse the bisulphite converted region 

AYGTAAAGAAYGTGAGAATATTTGTAGTTTTYGGGGTGGAAATGTTTTTTAGAAATATTAAGTATTYGTTTTTTY

GTTGAGATTTTGGTAAATTAGGGATTTTAGGAAGGGTTTGGTATTTAAYGTTTTTAAAATTGGTTTTTTAGATG. 

Assays were performed in duplicate on the Qiagen Q24 pyrosequencer and included a control for 

complete bisulphite conversion [32]. The region we focussed on was 590 bp upstream of the 

transcriptional start site and in a shore region 60bp 5’ of the CpG island, previously shown to be 

epigenetically silenced by promoter methylation, bound by Mecp2 and histone modifications in cell 

lines [33]. 

 

Statistical Analysis 

All statistical analyses were performed using Stata Statistical Software (Release 14. College Station, 

TX: StataCorp LP). The significance threshold was p<0.05; accounting for multiple analysis of 6 CpGs 

using Bonferroni this would be corrected to p<0.008.     Data was analysed using Pearson correlation 

to determine association between CpG methylation and neuropathology stages, and  linear 

regression to determine differences between AD pathology groups adjusting for age and sex. A 

trigonometric regression fit was used to test for daily methylation cycles (Y(timeofdeath) = Intercept 

+ B1 * Cos(2pi*timeofdeath/24) + B2 * Sin(2pi*timeofdeath/24)). A Pearson correlation was used to 

analyse methylation amounts and score of longitudinal and cross-sectional cognition change. For 

longitudinal sleep data analysis, linear mixed model was used to analyse methylation, adjusting for 

age and sex. For cross-sectional data of depressive symptoms, linear regression was used to analyse 

methylation amounts adjusting for age and sex. 

 

 

 

 

Results 
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Clinical and pathological characteristics of the study population can be found in Table 1. 

BMAL1 methylation and AD neuropathology 

The mean methylation percentages for all samples per each CpG site were: CpG1 (5.77 ± 6.93), CpG2 

(4.80 ± 6.18), CpG3 (7.76 ± 6.34), CpG4 (7.15 ± 5.69), CpG5 (8.40 ± 6.48) and CpG6 (3.48 ± 3.50). 

Methylation between all the CpGs highly correlate with each other (Supplementary Table 2). There 

were no significant differences between males (n=32) and females (n=64) at any CpG sites (p > 0.05) 

and age of death also not correlated with any CpG. 

A trigonometric regression fit was created for individual CpG methylation with  time of death. None 

of the models was significant  (Supplemental Figure 1).  

A Pearson Correlation test was used to analyse Braak stage and methylation revealing that CpG2 

positively correlated with Braak stage (r=0.26, p=0.01) but lost significance when accounting for 

multiple analysis. CpGs 1, 3, 4, 5 and 6 did not significantly associate. Samples were grouped into AD 

(Braak stage V-VI)  and Non-AD (Braak stage 0-IV). Mean methylation of each CpG between the 

groups are shown in Figure 2. CpG site revealing that CpG2 again showed a significant difference (t ( 

92)=-2.47, p=0.015) with higher methylation in the AD group. When samples were grouped into 

control, intermediate and AD by Braak stage, Control (Braak 0-II) (n=46), Intermediate (Braak III-IV) 

(n=36), AD (Braak V-VI) (n=12), AD group have more CpG2 methylation then intermediate and 

control groups (F(2,91)=3.02, p=0.05). This suggestive significance is still valid after adjusting for age 

of death and sex (B=4.60, 95%CI=-0.85/8.34, p=0.017). When testing for CERAD (Control, 0 – A; AD, B 

– C) CpG2 also differed between control and AD groups (t(94)=-2.04, p=0.04), though did not retain 

significance after correction for multiple analysis. None of the CpGs correlated with Thal groups 

(Control, 0 – 3; AD,  4 – 5). 

 

BMAL1 methylation and longitudinal changes in cognition 

A Pearson correlation test was used to analyse longitudinal cognition scores with BMAL1 

methylation. No significance was found between fluid intelligence, processing speed and memory 

cognitive tests, though for vocabulary CpG 1 (r=0.20, p=0.05) and CpG4 (r=0.20, p= 0.05) showed 

positive correlations that did not remain significant when accounting for multiple analysis. Average 

methylation across all CpGs showed a non-significant association (p=0.06) with vocabulary.  When 

testing intercept (age-adjusted cross-sectional data), CpG2 showed positive correlations with fluid 

intelligence (r=0.20 p= 0.05) and vocabulary (r=0.22 p=0.03) that again did not remain significant 

when accounting for multiple analysis (Table 2).   
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BMAL1 methylation and sleep 

A 5th wave cross-sectional analysis was performed using linear regression adjusted for age and sex to 

analyse methylation % per CpG and sleep data for the PSQI. Data for PSQI was only available for 38 

participants and there were no significant findings between any CpG and PSQI total score, though 

CpG4 showed a non-significant correlation (B=-0.16, 95%CI=-0.31/0.01, p=0.06).  

Sleep characteristics of the samples collected using the PDQ used in this study are shown in Table 3. 

A longitudinal analysis performed using linear mixed model adjusting for age and sex to analyse 

sleep data and methylation percent per CpG site revealed no significance between sleep duration, 

midsleep and efficiency for any of the CpG sites. However, night wake showed a significant 

correlation with CpG5 (B=0.04, 95%CI=0.01/0.07, p=0.01) and with methylation of CpG3 (B=0.03, 

95%CI=0.00/0.06, p=0.03) (Figure 3A) and (Figure 3B). 

 

BMAL1 methylation and depressive symptoms 

A cross-sectional analysis was performed using linear regression adjusted for age and sex to analyse 

methylation per CpG and depressive symptoms using BDI. Only CpG4 significantly correlated with 

BDI score (B=-0.27, 95%CI=0.49/-0.05, p=0.02). 

 

 

 

Discussion 

Investigating DNA methylation at the BMAL1 gene in superior frontal gyrus tissues, we find positive 

correlations at individual CpGs with Braak stage, night wake, fluid intelligence, vocabulary and BDI 

score (depressive symptoms). However, none of these associations remained after controlling for 

multiple analyses. 

The positive correlation between methylation with Braak stage and CERAD score stages, 

suggests a reduced activity of BMAL1 with increased AD pathology, specifically tau and 

neurofibrillary tangles. Tau pathology has been shown to be the earliest observable AD-like change 

in human brain, with abnormal tau phosphorylation and aggregation beginning as early as young 

adulthood and extending to other connected regions even before Aβ is detected [34]. Several animal 

studies find mechanistic links between tau pathology and circadian clock gene disruption. Koss et al. 
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showed that transgenic mice with forebrain mutant human tau expression show increased wake and 

decreased NREM sleep, as well as more robust changes in EEG power than observed in transgenic 

mice with both tau and Aβ [35]. A transgenic mouse model that develop progressive tau pathology 

leading to formation of neurofibrillary tangles, show a long free-running period indicating a 

disruption in the circadian rhythm. They further show disruption in the cyclic expression of BMAL1 

and other circadian clock genes in the hippocampus [36]. Studying BMAL1 methylation in human 

prefrontal cortex, Lim et al., [37] found reduced 24-hour rhythms in DNA methylation from samples 

with AD when compared with control that related to rhythms in RNA expression. A further study has 

shown desynchrony in the 24-hour rhythmicity of BMAL1 expression together with PER1 and PER2, 

between different brain areas in AD important in cognitive functions and circadian rhythm 

regulation [38]; that may contribute to the cognitive and sleep-wake deficits seen in AD patients.  

Sleep deprivation is a major factor affecting cognitive performance, particularly tasks 

mediated by the frontal cortex [39]. Additionally, it has been reported that memory and learning are 

regulated through the circadian timekeeper [40–42]. If memory and learning are regulated by the 

circadian clock and AD disrupts circadian rhythm, then it could be hypothesised that memory and 

learning would deteriorate as AD worsens with circadian clock disruption being a contributing 

mechanism. We find positive correlations between BMAL1 methylation and fluid intelligence and 

vocabulary. Previous research in mice, suggest that essential signalling events in the hippocampus 

required for memory, depends on BMAL1 [43]. It was reported that mice who were completely 

arrhythmic in constant conditions, had impaired spatial learning and memory. This supports the 

theory that cognition performance is dependent on the circadian clock. Snider et al, [44] also 

reported in mice, when BMAL1 was selectively deleted from excitatory forebrain neurons but the 

suprachiasmatic nucleus (SCN) clock remained the same, deficits in both acquisition and recall were 

observed. These studies suggest that both the clock timings and BMAL1, play a critical role in 

cognitive performance and for both learning, and memory retrieval.  

Sleep disturbances, which are common in AD [1], are known to associate with declines in 

executive functioning [45], verbal episodic memory and episodic memory [46]. In this study, night 

wake had a positive correlation with methylation, however, sleep duration, mid sleep and efficiency 

did not correlate. Cedernaes et al. [47] found that a single night of wakefulness, or missing one 

night’s sleep, altered the epigenetic and transcriptional profile of core circadian clock genes, 

including BMAL1, and an increase in BMAL1 expression has also been found amongst shift workers 

when compared with night work [48]. Older adults, particularly those institutionalised with AD, are 

more likely to lead an indoor lifestyle; resulting in decreased exposure to daylight which can disrupt 

circadian regulation leading to sleep problems including night wakefulness and daytime sleepiness. 
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Several studies have found that lighting intervention in AD significantly increased circadian 

entrainment and sleep efficiency [49,50], together with reducing symptoms of depression [51].  

Several studies have indicated that restricted sleep increases the level of deposition of Aβ 

and formation of neurofibrillary tangles [52]. Animal experiments show that changes in the sleep-

wake cycle can elevate hyperphosphorylated tau protein in the brain [9,11]. Tau, released through 

neuronal activity, has recently been found to increase with sleep deprivation in both the interstitial 

fluid of mice and human CSF [53,54]. That we find positive correlations with methylated CpGs in 

BMAL1 with tau pathology and sleep disruption might suggest a shared mechanism. The 

involvement of frontal areas in sleep and neurodegeneration is further supported by 

topographically-specific drop of K complex, one of the hallmarks of NREM sleep representing the 

EEG graphoelement with highest amplitude during normal sleep, in AD compared to healthy controls 

[55]. 

Depressive symptoms are particularly common in AD [56] and a high number of depressed 

patients report insomnia, with insomnia also being a risk factor for developing depression [57]. That 

we find BMAL1 methylation associated with depressive symptoms supports the role of circadian 

clock genes in depression and individuals with an abnormally-shifted or arrhythmic biological clock 

have been linked to a higher risk of developing depression [23]. In animal models, Christiansen et al. 

[58] found that BMAL1 regulation was particularly susceptible to stress and Landgraf et al. [59] 

showed that SCN-specific BMAL1-knockdown mice exhibited depression-like behaviour. Altered 

expression of circadian rhythm genes have been found in individuals with depression [60] together 

with polymorphisms in clock genes [61]. There is further evidence that a lifetime history of 

depression is associated with AD pathology. For example Rapp et al., [20] found that AD patients 

with a lifetime history of depression showed an increase in Aβ plaques and neurofibrillary tangles 

when compared against AD patients without a history of depression, suggesting an interaction 

between major depression and AD neuropathology. It has also been suggested that depressive 

symptoms in older age could be affected by tau pathology. Positron emission tomography research 

showed that individuals with elevated tau were twice as likely to be depressed and antidepressant 

use modified this relationship [62]. Furthermore, it has been observed that people with mild 

cognitive impairment and depression are at significantly greater risk of developing AD than those 

without depression [63]. There are therefore clear links between depression, pathology and AD and 

it could be hypothesised that depressive symptomatology could be an early symptom of underlying 

AD neuropathology, that might further relate to regulation of circadian rhythm. 

A major strength of this study is the wealth of data from The University of Manchester 

Longitudinal Study of Cognition in Normal Healthy Old Age cohort. To our knowledge, this is the first 
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study that has examined the association between BMAL1 methylation in post-mortem brain in 

relation to AD neuropathology, longitudinal cognition, sleep and depression. Importantly, though 

this is preliminary work; this needs replicating and the results of this study should be interpreted as 

associations and not causality. Important limitations are that six CpG sites were investigated and if 

corrected for Bonferroni, as a conservative approach, significance would be lost especially as we only 

had access to limited samples with all the measures. Importantly though, the CpGs individually 

correlated with each other (Supplemental Table 2). Therefore, as the test statistics are highly 

dependent, in that adjacent CpGs significantly relate to each other, testing each individually and 

adjusting for Bonferroni throughout could be considered highly stringent. Methylation patterns are 

tissue-specific and it is unclear whether the changes we see in the superior frontal gyrus reflect 

other regions and particularly the SCN. We did not measure gene expression due to differences in 

RNA quality between the brain samples that related to autopsy delay (data not shown). Another 

consideration is that the sleep data in this study was evaluated through questionnaires, PDQ and 

PSQI most conducted around 20-30 years before death. We have previously reported PSQI-PDQ 

correlation using the PSQI as a validation [29,31] and as such we had data from more 

participants for PDQ than the PSQI. Importantly, we found significance in only one variable from 

PDQ, night wake, without any significances between sleep duration, midsleep and efficiency for any 

of the CpG sites. Other more direct measures of sleep, perhaps including different sleep stages, 

could allow to test further mechanisms together with further data at later timepoints. Further 

studies could look at other important CLOCK genes and relate their methylation to sleep and AD. 

This will help create a more robust view of the circadian cycle and give insight into how much 

influence sleep has on circadian clock  gene methylation and AD neuropathology. 

In summary, the use of human brain samples from the superior frontal gyrus in this study 

allowed us to develop a mechanistic view of how epigenetic regulation of BMAL1, AD 

neuropathology, cognition, sleep and depressive symptoms may all be linked together. We find that 

BMAL1 methylation positively associated with tau pathology, longitudinal fluid intelligence score for 

males, longitudinal vocabulary for females, night wakes and depression (BDI score). However, 

surprisingly, no significance or associations were found between BMAL1 and speed and memory 

tests, sleep duration, mid-sleep and sleep efficiency. These results suggest that BMAL1 methylation 

does play a role in sleep and AD neuropathology but to what extent needs further research. As the 

circadian cycle is linked to sleep and sleep highly linked to the circadian cycle, it could be 

hypothesised that all play a role in AD neuropathology.  
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FIGURES 
 
 

 
 
Figure 1: Location of CpGs analysed in the BMAL1 (ARNTL) sequence. Highlighted with the forward 

and reverse primers (underlined), sequencing primer (bold) and each CpG site (numbered) at the 

BMAL1 promoter at the shore of the CpG island (green). Location: GRCH38/hg38  chr11:13277037-

13277245.   
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Figure 2: Methylation of CpG sites comparing Braak stage. Mean ± 95% CI is presented. n=94; 

Control (Braak 0-II) n=46, Intermediate (Braak III-IV) n=36, AD (Braak V-VI) n=12.  *= significant at 

0.05 level. 

 

 

 

 

 
 

Figure 3: Correlations between number of night wakes and BMAL1 methylation. Linear models 
adjusting for age and sex with methylation of CpG sites 3 (A) and 5 (B). The grey area represents 95% 
confidence intervals. 
 
 

Table 1. Clinicopathological characteristics for the donor samples.  
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Characteristic Mean (SD) 

Age at death (years) 88.6 (5.75) 

Sex (male/female) 32/64 

Post-mortem delay (hours)a 77.6 (43.0) 

Brain weight (g)b 1214.7 (138.8) 

Braak stage (N)c  

0 (B0) 5 (6%) 

I (B1) 16 (16%) 

II (B1) 25 (27%) 

III (B2) 19 (19%) 

IV (B2) 17 (18%) 

V (B3) 10 (9%) 

VI (B3) 2 (3%) 
a N = 89 
b N = 69 
c N = 94 

 

 

 

Table 2: A Pearson Correlation test to analyse cognitive measures and CpG methylation.  

Variable  CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 
Longitudinal Fluid intelligence 0.05  0.06  0.06  0.14  0.10  0.15  
Longitudinal Processing Speed 0.16 -0.01 -0.08 0.01 -0.04  0.05 
Longitudinal Memory 0.06 0.08 0.11 0.13 0.10 0.12 
Longitudinal Vocabulary 0.20* 0.13 0.12 0.20* 0.12 0.15 
Intercept Fluid intelligence 0.11 0.20* 0.06 0.05 0.05 0.04 
Intercept Processing Speed 0.10  0.08 0.01 -0.03 -0.03 0.03 
Intercept Memory 0.10 0.07 0.09 0.09 0.07 0.08 
Intercept Vocabulary 0.18  0.22* 0.11 0.09 0.05  0.07 
 
Pearson correlation coefficients (r) *=correlation is significant at 0.05 level 

 

Table3: Sleep characteristics of the samples used in this study. PDQ (Personal Detail Questionnaire), 

SD: standard deviation, h: hour, m: minute. %: percent/100. Mean ages at each wave were, 

respectively 1- 62.66 ± 5.32, 2- 66.24 ± 5.49, 3- 77.90 ± 5.4, 4- 83.03 ± 5.25, 5- 85.0 ± 5.45 (mean ± 

SD). PDQ4 for night wake was not collected.    
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 Night wake 
 
(number of times) 
 
n       mean ± SD 

Sleep duration 

(h) 
 
n       mean ± SD 

Midsleep 

(hh:mm) 
 
  n       mean ± SD 

Efficiency 

(%) 
 
  n       mean ± SD 

PDQ1 91 1.14 ± 1.08 93 7.13 ± 1.16 94 3.58 ± 0.65 93 86.23 ± 12.49 

PDQ2 70 1.24 ± 1.08 73 7.16 ± 1.18 73 3.6 ± 0.70 73 85.25 ± 12.37 

PDQ3 42 2.01 ± 1.06  42 6.95 ± 1.29  44 3.28 ± 0.68  42 80.66 ± 12.83 

PDQ4    70 6.64 ± 1.19  74 3.23 ± 0.74 69 77.38 ± 13.63 

PDQ5 42 2.31 ± 1.07  52 7.01 ± 1.43 51 3.14 ± 0.7 51 77.91 ± 14.1 
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