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ABSTRACT 21 

Skeletal muscle satellite cells (SC) play an important role in muscle adaptation. In untrained 22 
individuals, SC content and activation status has been observed to increase in response to a 23 
single bout of exercise. Muscle fiber characteristics change considerably when resistance 24 
exercise is performed chronically, but whether training status affects the activity of SC in 25 
response to a single bout of exercise remains unknown. We examined the changes in SC content 26 
and activation status following a single bout of resistance exercise, prior to and following a 16wk 27 
progressive resistance training (RT) program in fourteen young (25±3yr) men. Before and after 28 
RT, percutaneous biopsies from the vastus lateralis muscle were taken prior to a single bout of 29 
resistance exercise and after 24 and 72h of post-exercise recovery. Muscle fiber size, 30 
capillarization, and SC response were determined by immunohistochemistry. Following RT, 31 
there was a greater activation of SC after 24h in response to a single bout of resistance exercise 32 
(Pre:1.4±0.3,24h:3.1±0.3 Pax7+/MyoD+ cells/100 fibers) as compared to before RT 33 
(Pre:1.4±0.3,24h:2.2±0.3 Pax7+/MyoD+ cells/100 fibers, p<0.05); no difference was observed 34 
72h post-exercise. Following 16wk of RT, MyoD mRNA expression increased from basal to 24h 35 
after the single bout of exercise (p<0.05); this change was not observed prior to training. 36 
Individual capillary-to-fiber ratio (C/Fi) increased in both type I (1.8±0.3 to 2.0±0.3 C/Fi, 37 
p<0.05) and type II (1.7±0.3 to 2.2±0.3 C/Fi, p<0.05) fibers in response to RT. Following RT, 38 
enhanced activation of SC in response to resistance exercise is accompanied by increases in 39 
muscle fiber capillarization.  40 

 41 

KEY WORDS: muscle stem cells, Pax7, MyoD, capillaries, perfusion  42 

 43 

 44 
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INTRODUCTION 45 

The activation, proliferation and/or differentiation of satellite cells (SC) are important 46 

events in post-exercise recovery leading to muscle fiber adaptation, remodeling and repair. 47 

Following a single bout of damage (21, 22) or resistance exercise (37) in humans, expansion of 48 

the SC pool is observed by 24h, peaking at 72h post-exercise (36). Irrespective of the model 49 

employed, these aforementioned studies (21, 22, 37) were primarily performed on exercise-naïve 50 

participants. Presumably then, the typically observed increase in SC content may be a result of 51 

general stress rather than a refined adaptive response to an exercise bout.  It is well established 52 

that repeated bouts of exercise result in markedly reduced indices of muscle damage and stress 53 

following subsequent bouts (20). Similarly, exercise-trained individuals typically demonstrate an 54 

attenuated damage or stress response to a habitual exercise challenge (28, 29, 44), suggesting 55 

that adaptation has occurred. However, whether the acute SC response following a single bout of 56 

exercise is altered in exercise-trained individuals (i.e., individuals who are accustomed to the 57 

exercise stimulus) as compared to exercise-naïve individuals following a single exercise session 58 

remains unknown.  Consequently, comparing the change in SC content in the untrained and 59 

trained state following a single bout of exercise can provide insight to the nature of adaptation.  60 

The progression of SC through the myogenic program is orchestrated by a transcriptional 61 

network collectively known as the myogenic regulatory factors (i.e., MyoD, Myf5, Myogenin 62 

and MRF4). There is relatively little known regarding adaptation in the myogenic program 63 

following exercise-training. In addition, various regulatory factors such as hepatocyte growth 64 

factor (HGF), interleukin 6 (IL-6), myostatin, insulin-like growth factor-1 (IGF-1) have been 65 

shown to be key regulators in the process of activation, proliferation and/or differentiation (21-66 

23, 26). Some of these factors are produced locally by skeletal muscle (27, 39). As an ‘endocrine 67 
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organ’, skeletal muscle tissue produces and releases various cytokines that act in a paracrine, 68 

autocrine, or endocrine fashion (27). Consistent with this notion, it has been shown that the 69 

systemic environment plays a critical role in SC function (3, 9). Although regulatory signals may 70 

originate locally, they may also be derived from other organs and the broader circulatory system 71 

(42). Therefore, it has been hypothesized that muscle fiber capillarization may play an important 72 

role in the regulation of SC (5).   73 

In healthy young men, RT is sufficient to promote capillarization (11). The increase in 74 

capillary number, induced by training, likely reflects the necessity to match the demand for 75 

oxygen (15) and nutrients (6, 7) to support growing/adapting muscle fibers. Furthermore, the 76 

increase in capillary number is larger as compared to the increase in muscle fiber size, leading to 77 

a greater number of capillaries per area muscle, which suggests a more efficient perfusion of the 78 

muscle fiber following prolonged resistance exercise training (14). Whether increased muscle 79 

fiber capillarization influences SC regulation in healthy young adults remains unknown.  80 

We assessed the activation of the SC pool in response to a single bout of resistance 81 

exercise in a group of healthy young men prior to (untrained state response; UTSR) and 82 

following (trained state response; TSR) 16 weeks of resistance training (RT). We hypothesized 83 

that, following RT there would be an augmented activation of muscle SC in response to a single 84 

bout of resistance exercise and that this would be associated with enhanced muscle fibre 85 

perfusion. 86 

METHODS 87 

Participants. Fourteen healthy young men (YM: 25 ± 3 yr; mean ± SEM) were recruited to 88 

participate in this study. All participants were recreationally active with no formal weight 89 
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training experience in the previous 6 months. The participants in this study were a subset of a 90 

larger project investigating the adaptation of skeletal muscle tissue to prolonged resistance 91 

exercise training in healthy young men and included data relating to fiber cross sectional area, 92 

strength changes with training and expansion of the quiescent satellite cell pool (1, 24). The 93 

participant selection for the present study was based upon the availability of tissue for all time 94 

points for which to perform immunohistochemical analysis. Exclusion criteria included smoking, 95 

diabetes, the use of nonsteroidal anti-inflammatory drugs (NSAIDs) and/or statins, and history of 96 

respiratory disease and/or any major orthopaedic disability. The study was approved by the 97 

Hamilton Health Sciences Integrated Research Ethics Board, and conformed to the guidelines 98 

outlined in the Declaration of Helsinki. Participants gave their informed written consent prior to 99 

their inclusion to the study.  100 

Muscle biopsy sampling. Percutaneous needle biopsies were taken, after an (~10h) overnight 101 

fast, from the mid-portion of the vastus lateralis under local anesthetic using a 5 mm Bergstrom 102 

needle adapted for manual suction (2). Subjects had not participated in any physical activity for 103 

at least 96 hours before the biopsy collection prior to the bout of resistance exercise in the 104 

untrained condition (i.e., prior to resistance training) and the trained condition (i.e., following 105 

resistance training). The muscle biopsy procedure was repeated under the same fasted condition 106 

(~10h) 24h and 72h following the single bout of resistance exercise detailed below. Incisions for 107 

the repeated muscle biopsy sampling were spaced approximately 3 cm apart to minimize any 108 

effect of the previous biopsy. Upon excision, muscle samples were immediately mounted in 109 

optimal cutting temperature (OCT) compound, frozen in liquid nitrogen–cooled isopentane, and 110 

stored at -80° C until further analyses.    111 
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Exercise Training. Exercise training was performed four times per week, divided into two upper 112 

and two lower body sessions under strict supervision as described previously (24). The lower 113 

body session consisted of five exercises: leg press, leg extension, leg curl, calf press and plank 114 

exercise. The upper body session consisted of six exercises: chest press, shoulder press, lat pull 115 

down, row, biceps curl and triceps extension. Training progressed from two sets performed at 116 

70% of 1 repetition maximum (RM) to four sets performed at 85% of 1RM, with the final set 117 

performed to the point of momentary muscle exhaustion. At the conclusion of each workout, and 118 

on the mornings of non-training days, participants consumed a beverage containing 30 g of whey 119 

protein, 25.9 g of carbohydrates and 3.4 g of fat (Musashi p30, Notting Hill Victoria, Australia). 120 

 121 

Single bout of resistance exercise. To determine the impact of resistance exercise on SC content 122 

and activation status in relation to RT, participants performed a single bout of resistance exercise 123 

both prior to and following 16 wks of RT. In short, the participants completed four sets of eight 124 

repetitions each at 80% of 1RM on leg press (Maxam, Hamilton, Ontario), leg extension 125 

(Atlantis, Laval, Quebec), calf press and leg curl (Hur, Kokkola Finland). The single bout of 126 

exercise was performed at the same relative intensity both prior to and following RT. The final 127 

set of each exercise was performed to volitional failure (1). A resting period of 2 min between 128 

sets was allowed. All participants were verbally encouraged during the exercise session to 129 

complete the entire protocol. Prior to and following the resistance exercise, a 5 min warm up was 130 

performed on a cycle ergometer. 131 

Immunofluorescence. Muscle cross sections (7µm) were prepared from unfixed OCT embedded 132 

samples, allowed to air dry for 30 minutes and stored at -80˚C. Samples were stained with 133 

antibodies against appropriate primary and secondary antibodies, found in Table 1, as previously 134 
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described (25). Nuclei were labelled with DAPI (4',6-diamidino-2-phenylindole) (1:20000, 135 

Sigma-Aldrich, Oakville, ON, Canada), prior to cover slipping with fluorescent mounting media 136 

(DAKO, Burlington, ON, Canada). The staining procedures were verified using negative 137 

controls, in order to ensure appropriate specificity of staining. Slides were viewed with the Nikon 138 

Eclipse Ti Microscope (Nikon Instruments, Inc. USA), equipped with a high-resolution 139 

Photometrics CoolSNAP HQ2 fluorescent camera (Nikon Instruments, Melville, NY, USA). 140 

Images were captured and analyzed using the Nikon NIS Elements AR 3.2 software (Nikon 141 

Instruments, Inc., USA). All images were obtained with the 20x objective, and ≥ 200 muscle 142 

fibers/subject/time point were included in the analyses for SC content/activation status (i.e., 143 

Pax7+/MyoD- or Pax7+/MyoD-), and fiber cross sectional area (CSA), and perimeter. The 144 

activation status of SCs was determined via the colocalization of Pax7+ and DAPI 145 

(Pax7+/MyoD-) and/or the co-localization of Pax7, MyoD and DAPI (i.e., Pax7+/MyoD+). Slides 146 

were blinded for both group and time point. The quantification of muscle fiber capillaries was 147 

performed on 50 muscle fibers/subject/time point (30). Based on the work of Hepple et al. (15), 148 

quantification of; i) capillary contacts (CC; the number of capillaries around a fiber), ii) the 149 

capillary-to-fiber ratio on an individual fiber basis (C/Fi), iii) the number of fibers sharing each 150 

capillary (i.e., the sharing factor) and iv) the capillary density (CD) was performed. The CD was 151 

calculated by using the cross sectional area (μm2) as the reference space. The capillary-to-fiber 152 

perimeter exchange index (CFPE) was calculated as an estimate of the capillary-to-fiber surface 153 

area (15). The SC-to-capillary distance measurements were performed on all SC that were 154 

enclosed by other muscle fibers, and has been described previously as well as in Fig 1. (25). All 155 

immunofluorescent analysis were completed in a blinded fashion.   156 



6 
 

RNA Isolation. RNA was isolated from 15–25 mg of muscle using the Trizol/RNeasy method. 157 

All samples were homogenized with 1 mL of Trizol Reagent (Life Technologies, Burlington, 158 

ON, Canada), in Lysing Maxtrix D tubes (MP Biomedicals, Solon, OH, USA), with the 159 

FastPrep-24 Tissue and Cell Homogenizer (MP Biomedicals,Solon, OH, USA) for a duration of 160 

40 sec at a setting of 6 m/sec. Following five minute room temperature incubation, homogenized 161 

samples were stored at -80°C for one month until further processing. After thawing on ice, 200 162 

ml of chloroform (Sigma-Aldrich, Oakville, ON, Canada) was added to each sample, mixed 163 

vigorously for 15 sec, incubated at RT for 5 min, and spun at 12000 g for 10 min at 4°C. The 164 

RNA (aqueous) phase was purified using the E.Z.N.A. Total RNA Kit 1 (Omega Bio-Tek, 165 

Norcross, GA, USA) as per manufacturer’s instructions. RNA concentration (ng/ml) and purity 166 

(260/280) was determined with the Nano-Drop 1000 Spectrophotometer (Thermo Fisher 167 

Scientific, Rockville, MD, USA). RNA integrity was determined using the Agilent 2100 168 

Bioanalyzer (Agilent Technologies, Toronto, ON, Canada). Samples were reverse transcribed 169 

using a high capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA, 170 

USA) in 20 μl reaction volumes, as per manufacturer’s instructions, using an Eppendorf 171 

Mastercycler epGradient Thermal Cycler (Eppendorf, Mississauga, ON, Canada) to obtain 172 

cDNA for gene expression analysis. 173 

Quantitative real time RT-PCR. All QPCR reactions were run in duplicate in 25 µl volumes 174 

containing RT Sybr Green qPCR Master Mix (Qiagen Sciences, Valencia, CA, USA), prepared 175 

with the epMotion 5075 Eppendorf automated pipetting system (Eppendorf, Mississauga, ON, 176 

Canada), and carried out using an Eppendorf Realplex2 Master Cycler epgradient (Eppendorf, 177 

Mississauga, ON, Canada). Primers are listed in Table 2 and were re-suspended in 1X TE buffer 178 

(10mM Tris–HCl and 0.11 mM EDTA) and stored at −20◦C prior to use. Messenger RNA 179 
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expression was calculated using the 2−∆∆Ct method, and fold changes from baseline were 180 

calculated using the ∆∆Ct method (18). Gene expression was normalized to the housekeeping 181 

gene Beta-2-microglobulin (β2M). Expression of β2M did not differ between time points. 182 

Statistical Analysis. Statistical analysis was performed using Sigma Stat 3.1.0 analysis software 183 

(Systat Software, Chicago, IL, USA). To assess the long-term changes in muscle fiber 184 

characteristics in response to 16 wks of RT, two way ANOVA was performed with time (pre- 185 

and post-exercise training) and fiber type (type I and II) as within subject factors, appropriate 186 

post-hoc analysis was performed if interactions were detected. Separate one-way repeated 187 

measures ANOVA, with time (Pre, 24 and 72 h) as a within factor, were performed to assess the 188 

following; the acute change in satellite cell activity status (i.e., Pax7+/MyoD- and/or Pax7+ 189 

/MyoD+ cells); the acute change in distance of activated SC to nearest capillary following a 190 

single bout of resistance type exercise; the acute change in MRF mRNA expression, prior to and 191 

following 16 wks of RT. In the one-way repeated measures ANOVA design for the acute SC 192 

response, post-exercise time points were only compared with baseline and Bonferonni 193 

corrections were applied to account for multiple comparisons. In addition, to assess the 194 

difference in the acute SC response prior to and following 16 wks of exercise training, a paired 195 

sample Student’s t-test was utilized to compare the change in SC content and activation status 196 

(Pre vs 24h, and Pre vs 72h), prior to and following 16 wks of RT. Statistical significance was 197 

accepted at p < 0.05. All results were presented as means ± standard error of the mean (SEM). 198 

 199 

RESULTS 200 

Muscle fiber CSA and fiber-type distribution. Muscle fiber CSA was significantly greater in type 201 

II compared to type I, both prior to and following RT (p<0.05, Table 3). We previously reported 202 
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a significant increase in muscle fiber CSA in a larger cohort (1).  Analysis of this subset of 203 

subjects resulted in similar statistically significant changes to those observed in the larger cohort 204 

previously reported (1).  The percentage of type II muscle fibers was significantly greater than 205 

type I fibers (p<0.05, Table 3); muscle fiber type distribution did not change with RT. Following 206 

16 wks of RT, there was a significant increase in both type I and type II fiber muscle fiber CSA 207 

and perimeter (p<0.05, Table 3).  Furthermore, following 16 weeks of RT, type II muscle fiber 208 

CSA was greater than type I (p<0.05, Table 3). 209 

Muscle fiber capillarization. There was greater CC (the number of capillaries around a fiber), 210 

C/Fi ratio (capillary-to-fiber ratio), CFPE (capillary-to-fiber perimeter exchange index), and CD 211 

(capillary density) in type I compared to type II muscle fibers (p<0.05, Table 4). In both type I 212 

and type II muscle fibers, CFPE, C/Fi ratio, was significantly greater following RT (all p<0.05, 213 

Table 4). In contrast, no differences in type I and type II muscle fiber CC and CD were observed 214 

with RT. 215 

Fiber type specific satellite cell content and distance to nearest capillary. In resting muscle, SC 216 

content was greater in type II than type I muscle fibers (p<0.05, Table 5) both prior to and 217 

following RT, as previously reported (1). Type II-associated SC were located at a greater 218 

distance to their nearest capillary as compared to type I-associated SC (p<0.05, Table 5) both 219 

prior to and following RT. Both the number of type I- and type II-associated SC increased 220 

following RT (p<0.05, Table 5). There was no change in distance to the nearest capillary from 221 

either type I- or type II-associated SC following 16 wks RT (Table 5).  222 

Satellite cell content and activation status in response to an acute bout of exercise.  223 

UTSR: Response to a single bout of exercise resulted in total Pax7+ cells/100 myofiber 224 

remaining unchanged at 24h (11.9 ± 0.9 cells/100 myofiber) but increased significantly at 72h 225 
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(15.2 ± 1.3 cells/100 myofiber) compared to Pre (11.8 ± 1.1 cells/100 myofiber) (p<0.05, Fig. 226 

2A). Pax7+/MyoD+ cells/100 myofiber were significantly higher at 24h (2.2 ± 0.3 cells/100 227 

myofiber) and 72h (2.3 ± 0.4 cells/100 myofiber) after the single bout of exercise as compared to 228 

Pre (1.4 ± 0.3 cells/100 myofiber) (p<0.05, Fig. 2B). Pax7+/MyoD- cells/100 myofiber did not 229 

change from Pre (10.4 ± 1.0 cells/100 myofiber) to 24h (9.7 ± 0.8 cells/100 myofiber), but was 230 

trending towards significance at 72h (12.9 ± 1.2 cells/100 myofiber) after the single bout of 231 

exercise (p = 0.06, Fig. 2C). 232 

TSR: In response to a single bout of resistance exercise of the same relative intensity 233 

following 16 wks of RT, total Pax7+ cells/100 myofiber were unchanged 24h (16.6 ± 1.5 234 

cells/100 myofiber) and increased significantly at 72h (17.7 ± 1.3 cells/100 myofiber) compared 235 

to Pre (13.7 ± 1.4 cells/100 myofiber) (p<0.05, Fig. 2A). Pax7+/MyoD+ cells/100 myofiber were 236 

significantly increased at 24h (3.1 ± 0.2 cells/100 myofiber) and 72h (3.1 ± 0.4 cells/100 237 

myofiber) after the single bout of exercise as compared to Pre (1.4 ± 0.4  cells/100 myofiber) 238 

(p<0.05, Fig 2B). Pax7+/MyoD- cells/100 myofiber were unchanged from Pre (12.3  ± 1.2 239 

cells/100 myofiber) to 24h (13.5  ± 1.3 cells/100 myofiber), but was trending towards 240 

significance at 72h (14.6  ± 1.0 cells/100 myofiber) after the single bout of exercise (p = 0.08, 241 

Fig. 2C). 242 

UTSR v. TSR: In comparing the UTSR and TSR responses we discovered that there was 243 

a greater change in the number of Pax7+/MyoD+ cells from Pre to 24h post-exercise recovery 244 

compared to UTSR (Fig. 2B).  245 

Distance of SC to nearest capillary in response to an acute bout of resistance exercise.  246 

UTSR: Pax7+/MyoD+ cells were closer to their nearest capillary compared to 247 

Pax7+/MyoD- cells both prior to the single bout of exercise (Pre) and at 24h post-recovery 248 



10 
 

(p<0.05, Figure 3A).  There were no difference in distance to the nearest capillary from SC that 249 

were Pax7+/MyoD- or Pax7+/MyoD+ (p>0.05, Figure 3A) at 72h post-exercise. Prior to resistance 250 

training, there was no difference in the distance of Pax7+/MyoD+ or Pax7+/MyoD- cells to the 251 

nearest capillary 24h or 72h following a single bout of exercise in comparison to the Pre 252 

distance. 253 

TSR: Pax7+/MyoD+ cells were located closer to the nearest capillary compared to 254 

Pax7+/MyoD- cells prior to the single bout of exercise (p<0.05, Figure 3B). However, at 24h 255 

post-recovery, the difference in distance between SC and its nearest capillary was abolished, 256 

such that there was no difference between the two SC populations (Figure 3B). At 72h, there was 257 

a re-establishment of the relationship observed at the Pre time point, such that Pax7+/MyoD+ 258 

cells were again located closer to their nearest capillary compared to Pax7+/MyoD- cells (p<0.05, 259 

Figure 3B). Following 16 wks resistance training, there was no difference in the distance of 260 

Pax7+/MyoD+ or Pax7+/MyoD- cells to the nearest capillary 24h or 72h following a single bout 261 

of exercise as compared to baseline measurements. 262 

MRF genes in response to an acute bout of resistance exercise. 263 

UTSR:  In response to a single bout of exercise, MyoD mRNA expression did not 264 

increase from basal levels at 24h (1.1-fold change) or 72h post-exercise recovery (1.8-fold 265 

change), compared to Pre (Fig 4A). MRF4 mRNA expression did not significantly increase from 266 

basal expression at 24h (1.2-fold change) or at 72h post-exercise recovery (1.3-fold change) (Fig 267 

4B). Myf5 mRNA expression did not significantly increase from basal expression at 24h (1.4-268 

fold change) or at 72h post-exercise recovery (1.1-fold change) (Fig 4C). 269 

TSR:  Following 16wk of RT, a single bout of exercise resulted in MyoD mRNA 270 

expression increased 1.4-fold from basal levels at 24h post-exercise recovery (p<0.05, Fig. 4A). 271 
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However, MyoD mRNA expression was no longer increased 72h post-exercise recovery 272 

compared to Pre (1.2-fold change) (p>0.05, Fig. 4A). Myf5 mRNA expression was increased at 273 

both 24h (2.0-fold) and 72h (1.5-fold) post-exercise compared to Pre (p<0.05, Fig 4C). MRF4 274 

mRNA expression did not significantly increase from basal levels at 24h (1.2-fold change) or at 275 

72h post-exercise (1.2-fold change). 276 

 277 

DISCUSSION 278 

In the present study we observed an altered activation of the SC pool in response to a 279 

single bout of exercise following 16 wks of RT. We speculate that increased capillarization as a 280 

result of 16 wks of exercise training may be an important factor for enhancing SC activation in 281 

the post-exercise period. 282 

Activation, proliferation and/or differentiation of SC are important events in the post-283 

exercise recovery period to support muscle fiber adaptation. Accordingly, SC number is 284 

increased substantially in the days following a single bout of resistance exercise (36). More 285 

importantly, a greater proportion of SC are in the active state following exercise, as defined by 286 

the co-localization of MyoD with Pax7 (23, 37).  In the present study, prior to exercise training, 287 

there was an ~35% increase in active SC (MyoD+/Pax7+) 24h following a single bout of 288 

resistance exercise. However, there was a significantly greater increase in active SC (~55%) at 289 

the same time point following 16 wks of RT.  Consistent with this observation, we observed an 290 

increase in MyoD gene expression (~1.4 fold from Pre) 24h post exercise following RT as 291 

compared to no change in the untrained status response. These findings suggest an enhanced SC 292 

activation following 16 wks of RT. We suggest that this is an adaptive response to chronic 293 

exercise training that allows for an augmented post-exercise response to acute exercise. To better 294 
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understand the nature of this observation to an acute bout of exercise following training, we 295 

examined whether enhanced SC activation following RT in young men was accompanied by 296 

changes in muscle fiber capillarization. 297 

Skeletal muscle fiber perfusion is essential for the delivery of oxygen, growth factors and 298 

macronutrients to skeletal muscle fibers. Inadequate muscle fiber perfusion has been suggested 299 

to play a role in ‘anabolic resistance’ and impaired nutritive flow in various populations (13, 32, 300 

40). In order to meet increased metabolic demand and to support continuous muscle hypertrophy 301 

during resistance exercise, an increase in muscle capillarization may be required. Consistent with 302 

this notion, muscle fiber capillarization has been reported to increase significantly in response to 303 

RT in healthy young men (12, 14, 19). In agreement, we report a ~13% increase in C/Fi in type I 304 

and a ~26% increase in type II muscle fibers. Furthermore, we observed an increase in type I 305 

(~10%) and type II (~17%) CFPE index. As CFPE is regarded as a proxy measure of 306 

microvascular perfusion (16), an increase in CFPE suggests improved delivery of circulating 307 

nutrients and/or growth factors. Therefore, increases in muscle fiber vascularization and/or the 308 

reorganization of the microvascular bed following RT may result in enhanced supply of 309 

circulating growth factors during the post-exercise period that could influence the SC response. 310 

There are many growth factors that may play a role in regulating SC function (e.g., IL-6, 311 

IGF-1, Myostatin, HGF) (17). Therefore, an increase in muscle fiber perfusion may result in 312 

enhanced exposure of SC to regulatory growth factors in circulation (4, 5). We and others have 313 

reported an anatomical relationship between muscle SC and capillaries (5) and have also noted 314 

that activated SC are closer to capillaries than quiescent SC (5, 25) suggesting that proximity of a 315 

SC to a capillary could be an important factor for SC function. Accordingly, it has been 316 

hypothesized that SC content (5, 10) and/or activation status (4, 5, 25) may be related to muscle 317 
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fiber capillarization. In the present study, activated SC cells were located in closer proximity to 318 

capillaries compared to quiescent SC at baseline (Pre; prior to the single bout of resistance 319 

exercise) in both the UTSR and the TSR condition. We were unable to observe any direct or 320 

significant correlation between the increase in muscle capillarization and the altered acute SC 321 

response in the TSR. However, we observed that the temporal-spatial relationship between both 322 

quiescent and active SC and the nearest capillary had been changed in response to a single bout 323 

of exercise at 24h following 16 wk RT. These small changes may be indicative of an adaptive 324 

response of the spatial relationship between SC and capillaries following chronic training. 325 

Whether the small changes in the relationship between active and/or quiescent SC and the 326 

distance to the nearest capillary can explain the enhanced activation of SC in response to a single 327 

bout of exercise following 16 wks of RT remains unknown and requires further study. 328 

Furthermore, SC activation status was not determined in a fiber type specific manner, and future 329 

studies should address this issue. 330 

While we observed an increase in capillarization following RT that accompanied an 331 

altered SC response to resistance exercise, there remains an incomplete understanding of how the 332 

SC response to a stimulus is initiated. Indeed, there is evidence to suggest that numerous 333 

cytokines and growth factors produced by skeletal muscle and/or the microvasculature may 334 

stimulate SC in an autocrine/paracrine fashion rather than through circulation. IL-6, previously 335 

reported to have a role in SC regulation (34, 41), is produced locally by contracting muscles (39). 336 

Interestingly, cell types such as endothelial cells within the muscle have also produce IL-6 under 337 

certain conditions (35, 45), as well as IGF-1 and HGF (5). Given the established spatial 338 

relationship between capillaries and SC, it would stand to reason that cellular cross-talk between 339 

endothelial cells and SC may influence angiogenesis (5, 33). Indeed, Chazaud et al. (2003) 340 
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reported that human muscle progenitor cells undergoing differentiation produce VEGF, a key 341 

factor for angiogenesis (4). Taken together, these findings indicate that the relationship between 342 

microvascular capillaries and SC may be predicated not only on the exposure to systemic factors, 343 

but also the immediate paracrine cross-talk between endothelial cells and SC. Future studies 344 

should address whether cytokines released from skeletal muscle or the microvasculature 345 

stimulate the SC response through autocrine/paracrine pathways, or exposure to endocrine-346 

derived signals delivered through the microvasculature, or some combination of both. 347 

Given the increased muscle perfusion following 16 wks of RT, we speculate that SC may 348 

have received enhanced input from circulating growth factors and more rapidly initiated the 349 

myogenic program and migratory function of SC leading to a loss in the observed anatomical 350 

relationship between SC and capillaries in the rested state and early activated state following 351 

exercise. While we do not find a significant correlation between the altered (post-RT) response 352 

and the increase in capillarization, recent work might lead us to speculate that capillarization 353 

may play a role in resistance training adaptation. Indeed, Snijders et al. (2016) recently observed 354 

that capillarization was linked to changes in muscle cross-sectional area following resistance 355 

training in older men. The study observed that individuals who started with a higher muscle fiber 356 

capillarization at baseline had a greater muscle hypertrophy following resistance training in older 357 

men. Taken together, the changes in SC activation that accompany the increases in muscle 358 

capillarization following long term RT warrant further study into the relationship between 359 

capillaries and the SC pool. In compromised populations, such as older adults, who can have a 360 

relatively reduced muscle capillarization (8, 31) and reduced muscle mass (43), an impaired SC 361 

activation in response to exercise has been observed (23, 37).  Furthermore, it would be 362 

interesting to investigate whether increasing muscle fiber capillarization would result in an 363 
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augmented SC response during the post-exercise period in older adults.  In conclusion, we 364 

observed that an altered activation of the SC pool in response to a single bout of resistance 365 

exercise is accompanied by increased capillarization following 16 wks RT.  366 
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 518 
Figure Legend 519 

Figure 1  520 

Fig. 1 Fiber type specific staining with muscle capillaries. (A) Representative 521 
image of a MHCI/laminin/CD31/Pax7/DAPI stain of a muscle cross section. 522 
Channel views of (B) CD31/Pax7 (C) Pax7/DAPI.  523 

Figure 2 524 

Fig. 2 Characterization of the activity status of SC following a single bout of 525 
resistance exercise prior to (UTSR; open bars) and following 16 weeks of RT 526 
(TSR; filled bars). Quantification of these cell populations as total number of 527 
Pax7+ SC (A) number of MyoD+/Pax7+ (active SC; B), number of MyoD-/Pax7+ 528 
(quiescent SC; C) per 100 myofiber, prior to, 24h and 72h post-exercise recovery. 529 
*; time effect versus Pre (p<0.05), bar indicates that effect of time is present for 530 
both prior to and following 16 wks of RT. #; indicates a significantly greater 531 
(p<0.05) increase with time TSR vs UTSR. Mean ± SEM. SC: satellite cell. 532 

Figure 3  533 

Fig. 3  Distance between activated (MyoD+/Pax7+) and quiescent (MyoD-/Pax7+) 534 
SC to nearest capillary following a single bout of exercise prior to as compared to 535 
following 16 wks of RT. Response to resistance exercise prior to 16 wks RT 536 
exercise (UTSR; A) and following (TSR; B). *; significantly different compared 537 
to active SC within time point (p<0.05), Mean ± SEM. SC: satellite cell. 538 

 539 

Figure 4  540 

Fig. 4 Relative expression of MyoD mRNA (A), MRF4 mRNA (B), Myf5 mRNA 541 
(C) expression in response to a single bout of exercise prior to (UTSR; open bars) 542 
compared to following 16 wks of RT (TSR; filled bars), expressed as fold change 543 
from Pre. Data are normalized to Beta-2-microglobulin. *; significantly different 544 
compared to Pre (p<0.05), Mean ± SEM.  545 
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