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Abstract 

Doxorubicin (DOX) is a one of the most potent anticancer drug which is widely used in 

the treatment of childhood and adult cancer. Cardiac toxicity is a dangerous so far 

unsolved complication of DOX. Doxorubicin-induced cardiotoxicity is attributed to 

oxidative stress and p53-dependent apoptosis. The establishment of an effective safe 

compound would be of great benefit in the management of DOX-induced cardiotoxicity. 

Aged garlic extract (AGE) is a natural, promising compound to lessen DOX-induced 

cardiotoxicity due to it antioxidant, antiapoptotic, and multiple health promoting effects. 

This study investigated the protective effect of AGE against DOX-induced cardiotoxicity 

in Wistar rats and in rat cardiac myocytes. It also investigated the effect of AGE pre-

treatment on oxidative stress, p53, active caspase-3 and gene expression in DOX-treated 

rat cardiac myocytes. The results of this study have revealed that AGE protects against 

DOX-induced cardiotoxicity in vivo and in vitro. Four groups of rats were assessed for 

serum cardiac enzymes, plasma and heart malonialdehyde (MDA), serum total 

antioxidant status (TAS), and light and electron microscopic examination of the heart 

tissue. Serum cardiac enzymes were found to be elevated in DOX-treated rats. The 

findings of this study have revealed that there is an oxidative stress in DOX-treated rats, 

as manifested by increased plasma and heart MDA concentrations and reduced serum 

TAS. Pre-treatment with AGE reduced MDA concentrations and normalised TAS, which 

are indicators of oxidative stress in DOX-treated rats and attenuated histopathological 

alterations in DOX-treated rats. Aged garlic extract pre-treatment did not interfere with 

the cytotoxic activity of DOX, but it augmented DOX uptake into tumour cells in mice 

bearing EAC and increased the long term survivors of tumour-bearing mice. Pre-

treatment of rat cardiac myocytes with AGE lowered DOX-induced elevation of 8-

isoprostane, p53 and caspase-3 activity. The results of this study demonstrated that pre-

treatment with AGE insignificantly reduced increased expression of some antioxidant 
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genes in DOX-treated rat cardiac myocytes. Further studies are needed to identify the 

detailed molecular mechanisms underlying the protective effects of AGE.   
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Chapter 1 General Introduction 

1.1 Introduction to cancer 

Cancer is a disease resulting from a change in the control mechanism that handles cell 

survival, proliferation, and differentiation. Any malignant growth or tumour caused by 

abnormal and uncontrolled cell division is known as cancer. Cancer may spread to other 

parts of the body through the lymphatic system or the blood stream. Cancer is one of the 

most common causes of death in the world. In 2010, cancer caused the deaths of close to 

1,500 Americans each day. Notably, it is the second most common cause of death in the US, 

exceeded only by heart disease. Furthermore, cancer is responsible for nearly 1 in every 4 

deaths. In addition, it should be highlighted that cancer is not a single disease; rather, it is a 

group of diseases characterised by the uncontrolled growth and spread of abnormal cells.  

Moreover, age is a known risk factor for the development of cancer. Essentially, cancer is 

very much a disease of aging with the exception of a few cancers, such as childhood 

leukaemia and testicular cancer. In older adults, there is a rapid increase in the incidence of 

cancers, such as, breast, melanoma, prostate and ovarian (Ferlay et al., 2010). Various 

factors account for the increased incidence of cancer in the elderly, including hormonal 

changes, accumulated damage (e.g., excessive sun exposure, smoking), and age-related 

declines in the immune function (Beghe and Balducci, 2005) and decreased efficiency in 

cellular mechanisms (e.g., changes in telomerase activity). Moreover, numerous studies have 

demonstrated an association between immunosuppressive treatment and the development of 

tumours (Vajdic et al., 2006). 
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Incidence of cancer 

Cancer is a major cause of death worldwide: during 2007, it was responsible for 7.9 million 

deaths (approximately 13% of all deaths). The majority of cancer-related deaths each year 

are owing to cancer of the lungs, stomach, liver, colon and breast.  

There is a difference between men and women in the most common types of cancer. Breast 

cancer is the world’s most common female cancer, with approximately 1.4 million cases 

occurring annually, thereby accounting for almost one quarter of all cancers in women 

(Ferlay et al., 2010). Furthermore, twelve million deaths worldwide as a result of cancer are 

estimated to occur in 2030. 

According to the IARC GLOBOCAN 2008 database, an estimated 12.7 million new cancer 

cases and 7.6 million deaths were been reported as of 2008. The most commonly diagnosed 

cancers worldwide include lung (1.61 million; 12.7% of the total), breast (1.38 million; 

10.9% of the total) and colorectal cancers (1.23 million; 9.7% of the total). Furthermore, the 

most common causes of cancer-related deaths are owing to cancer of the lung (1.38 million; 

18.2% of the total), stomach (0.74 million; 9.7% of the total) and liver cancers (0.69 million; 

9.2% of the total) (Ferlay et al., 2010). 

Risk of developing cancer 

The majority of cases of cancer have been reported in adults who are middle-aged or older. 

Moreover, approximately 78% of all cancers are diagnosed in persons aged 55 years and 

older. The probability that an individual will develop cancer during the course of their 

lifetime or die from cancer is described as lifetime risk. According to the American Cancer 

Society Statistics 2010, men have slightly less than a 1 in 2 lifetime risk of developing 
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cancer, whilst women have a risk of a little more than 1 in 3. The most important lifestyle 

risk factor for cancer is tobacco use (Lopez et al., 1994; McCormack and Boffetta, 2011).  

Cancer in Saudi Arabia 

The national cancer registry in Saudi Arabia was established in 1992; however, there have 

been annual incidence reports ranging from 1992 through to 2005. The number of cancer 

cases and the incidence of cancer are both increasing. From the ninth incidence report 

published by the Saudi Cancer Registry in 2005, the overall age-standardised incidence rate 

(ASR) for all Saudis with a world standard population reference was 74.3/100,000 

(74.1/100,000 in males and 74.4/100,000 in females). For all sites, the age-specific incidence 

rate (AIR) increased with age for both males and females. After the age of 64 years, the 

increase was almost double for males compared with females. The median age at diagnosis 

was 59 years for men and 49 years for women. 

The five geographic regions with the highest ASR were the Eastern region at 98.2/100,000, 

Riyadh region at 91.2/100,000, Makkah region at 80.5/100,000, Tabuk region at 

70.6/100,000, and Jouf region at 61.9/100,000. The total number of cancer cases analysed 

amongst Saudis during the year 2005 was 7,563. Accordingly, Table 1.1 shows the most 

common cancers in Saudi Arabia, with lung cancer seen to account for approximately 4% of 

all newly diagnosed cancers in Saudi Arabia (Alamoudi, 2009).  
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Table ‎1.1: Ten most common cancers in the Saudi population in 2005 (all ages) 

Cancer Number  %  

Breast  948  12.5  

Colo-rectal  778  10.3  

Non-Hodgkin lymphoma  596  7.9  

Thyroid  473  6.3  

Leukemia  441  5.8  

Lung  347  4.6  

Liver  292  3.9  

Skin  281  3.7  

Prostate  261  3.5  

Hodgkin disease  259  3.4  

Taken from (Alamoudi, 2009) 
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Treatment of cancer 

Cancer treatment options include chemotherapy, radiation treatments, and surgery. 

Antineoplastic agents help cancer patients with varying degrees of success, and can be used 

either in combined regimen or separately. 

Surgical treatment 

For many centuries, surgery was the only treatment for cancer, and still remains the 

mainstream treatment for many forms of cancer despite the introduction of additional 

methods of therapy. Surgery is used to diagnose or treat cancer. When cancer has not spread 

to the lymph node or distant sites (metastasized), surgery is considered to be the most 

effective in treating and eliminating most types of cancer. Furthermore, surgery may be used 

alone or in combination with other treatments, including radiation therapy and 

chemotherapy. Moreover, surgery is curative if the cancer has not metastasised.  

The treatment of cancer depends on the type, location and size of the tumour. In order for 

radiation therapy and chemotherapy to be more effective, surgery is applied in order to 

reduce tumour size. This procedure is known as debulking. Moreover, surgery has no 

significant role in widespread metastasised or inoperable tumours affecting the head and 

neck cancer.  



  

6 

 

Radiation therapy 

The second most common form of treatment of cancer, next to surgical excision, is 

radiotherapy. It is estimated that 50% of cancer patients will be treated with radiotherapy at 

some time during the course of their disease. Radiation therapy has a central role in the 

management of many types of cancer either as the only treatment or as part of other 

treatment options, including surgery, chemotherapy or immunotherapy (Glatstein et al., 

2008).  

The use of several types of ionising radiation (x-ray, gamma rays or electron beams) to treat 

tumours is a part of conventional cancer radiation therapy. Radiation therapy acts by causing 

damage to the DNA of tumour cells; this results in biochemical alterations, which 

subsequently lead to the arrest of the cells’ ability to divide indefinitely. Measured doses of 

radiation should be accurately related to an established tumour volume. Moreover, owing to 

the fact that radiation oncologists aim to balance the desired damage to the tumour and the 

undesirable radiation-induced injury to adjacent tissues, lethal tumour doses are not always 

accomplished (Levin et al., 2005).  

In the case of tumours adjacent to critical body structures, appropriate targeting and delivery 

of radiation dose is essential. Charged-particle-beam therapy which has been clinically 

available since 1954 is an important technology which is able to achieve precise delivery of 

radiation dose. 

Chemotherapy for the treatment of cancer   

The majority of patients with cancer present to their doctor when the disease has already 

spread. For these patients, the surgical resection of the primary tumour or local radiotherapy 
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may control the tumour, but cure of the metastatic disease via such treatments is impossible. 

Thus, for the majority of cancer patients, the cure of the disease depends either upon earlier 

diagnosis tumours being treated when local treatment may be curative, or otherwise upon the 

development of some systemic treatment to kill metastatic tumour cells.  

The origin of cancer chemotherapy can be traced back to the 1860s, during which time 

potassium arsenate was used in the treatment of leukaemia (Forkner and Scott, 1931; 

Waxman and Anderson, 2001).   

The early results of cancer chemotherapy were not impressive, but in 1941, oestrogens were 

shown to cause regression of metastics prostate cancer; this was the first real evidence that 

cancer cells could be controlled via drug treatment (Haddow, 1943; Cox and Crawford, 

1995). During the last twenty-five years, cancer chemotherapy has evolved to become a part 

of a sound medical discipline with an important role in the control of cancer. There are 

quantitative rather than qualitative biochemical differences between normal and neoplastic 

tissues; nevertheless, such quantitative differences can be utilised as a basis for 

chemotherapy. 

In order to overcome the limited log kill of individual anticancer drugs, a combination of 

agents with varying toxicities and mechanisms of action are used. This combination 

chemotherapy is the standard approach to the curative treatment of testicular cancer and 

lymphomas, and also to palliative treatment of many other tumour types.  

Chemotherapy destroys not only the cancer cells but also many rapidly dividing normal 

body cells, such as the cells lining the gastrointestinal tract, hair follicles, bone marrow cells 

and lymphocytes (Hu et al., 2011; Kris et al., 2011). This normal cell destruction leads to the 
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common side effects experienced with chemotherapy, including nausea, vomiting, diarrhoea, 

hair loss and greater susceptibility to infection. 

Types of chemotherapeutic agents 

There are many different classifications for anticancer chemotherapeutic agents; they can be 

classified according to their source into synthetic compounds and natural products. 

Moreover, those originating from plant or bacterial sources are known as natural. 

Approximately one quarter of anticancer drugs in use are derived from natural products 

(Bernardes et al., 2009; Demain and Vaishnav, 2010; Karikas, 2010). Furthermore, synthetic 

agents of clinical use are alkylating and antimetabolite agents.  

Another group is the anthracyclines, plant alkaloids, topoisomerase inhibitors (Takimoto, 

2008). All of these drugs affect cell division, and DNA synthesis or function. Monoclonal 

antibodies and the new tyrosine kinase inhibitors, e.g. imatinib mesylate, act by directly 

targeting a molecular abnormality in certain types of cancer (George, 2002). Furthermore, 

hormones are used in the treatment of cancer; they modulate tumour cell behaviour without 

directly attacking cancer cells (Gundersen et al., 1994). 

1.2 Anthracycline antibiotics 

History and mechanism of action 

Anthracyclines rank amongst the most effective anticancer drugs ever developed (Weiss, 

1992). The first anthracyclines were isolated from the pigment-producing Streptomyces 

peucetius early in the 1960s, and were named doxorubicin (DOX) and daunorubicin (DNR) 

(Di Marco et al., 1969). Several other anthracycline analogs are in use in clinical practice, 

including idarubicin, epirubicin, and mitoxantrone. Moreover, anthracyclines (ACs) are used 
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in the treatment of haematologic and solid malignancies owing to the fact that they are a 

highly effective chemotherapeutic agent (Hortobagyi, 1997).  

They have weak bases and have a planar cyclic anthraquinone nucleus attached to an amino 

sugar (Figure 1.1). Moreover, they have the ability to interfere with rapidly diving cells. This 

action is mediated through their ability to intercalate into cell DNA (Gewirtz, 1999). The 

major antitumour effect of this drug involves DNA intercalation and interference with the 

catalytic cycle of DNA topoisomerase II (Hande, 1998; Lyu et al., 2007). The planar 

aglycone moiety (Figure 1.1) can insert non-specifically between adjacent base pairs of 

DNA, and binds to the sugar phosphate backbone of DNA from the minor groove (Hande, 

1998; Zeman et al., 1998; Palchaudhuri and Hergenrother, 2007), thereby causing local 

uncoiling of DNA strands, thus resulting in a block of DNA and RNA synthesis, as well as 

the inhibition of DNA repair. Intercalation can also interfere with the topoisomerase II-

catalyzed breakage reunion reaction of DNA strands to cause a non-repairable break.  

Chemistry of doxorubicin 

Doxorubicin has a tetracycline chromophore ring attached by glycosidic linkage with 

daunosamine sugar (Figure 1.1). It also has a quinine and hydroquinone moieties on adjacent 

rings which modify its function as an electron-accepting and donating agent. The 

carbohydrate moiety is essential for its antitumour activity (Henry, 1979), and has a 

molecular weight of 579.98 and is soluble in water at 50mg/ml. Doxorubicin hydrochloride 

is stable with no loss of activity when reconstituted with sterile water and refrigerated at 4
o
C 

for six months (Hoffman et al., 1979).  
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Pharmacokinetics of doxorubicin 

Doxorubicin is very poorly absorbed following oral administration, and is therefore 

commonly administered through intravenous infusion in saline over a period up to 96 hours 

in order to reduce cardiotoxicity (Myers and Chabner, 1990). It is administered commonly in 

a dose of 60 to 75 mg/m
2 
as a single 

 
intravenous injection at 21-day intervals when used as a 

single agent (Benjamin et al., 1974). In addition, DOX is used also simultaneously with 

other chemotherapeutic drugs. The usual dose is 40 to 60 mg/m
2 

as single intravenous 

injection every 21–28 days; this is repeated for 4–6 or more cycles.  
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Figure ‎1.1: Chemical structure of anthracyclines  
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Doxorubicin follows a multiphasic disposition after intravenous injection. The disappearance 

curve of DOX is biphasic with elimination half-lives of 0.6 h and 16 h (Rodvold et al., 1988; 

Cusack et al., 1993). There is a rapid tissue uptake of DOX, as is suggested by the initial 

distribution half-life of approximately 5 minutes. As the drug is distributed into tissue, DOX 

blood levels fall dramatically. The terminal half-life of 20–48 hours results in slow 

elimination from tissues (Creasey et al., 1976; Benjamin et al., 1977). Moreover, there is an 

extensive drug uptake into tissues, as is indicated from the steady state distribution volume 

of 809 to 1214 L/m
2
. The drug does not cross the blood brain barrier; rather, the slow 

elimination phase of DOX is owing to renal and biliary clearance and metabolism.  

Doxorubicin is metabolised in the liver. Doxorubicin metabolism occurs through the 

reduction of a side chain carbonyl group by aldoketo reductases (Ahmed et al., 1981), 

subsequently resulting in the formation of the metabolite doxorubicinol. Moreover, it is also 

metabolised by a reductive cleavage of the sugar moiety to form the 7-hydroxy aglycone 

(Pan and Bachur, 1980). Doxorubicin and its major metabolite doxorubicinol binding to 

plasma protein is 74–76%. Furthermore, 40% of the dose appears in the bile in 5 days, whilst 

5–12% of the drug and its metabolite appear in the urine during the same time period. 

There is a correlation between DOX partitioning from blood to tissue and DNA 

concentration (Terasaki et al., 1982; Terasaki et al., 1984). Recently, analytical analyses of 

DOX reactions using nuclear magnetic resonance (NMR) spectroscopy have highlighted that 

DOX can form covalent adducts with DNA at guanine-cytosine (GC) sequences, with a bond 

formed between DOX aminosugar N3’ and guanine N2’ of the DNA strand (Wang et al., 

1991; Cutts and Phillips, 1995; Swift et al., 2008; Cipolla et al., 2009). The formation of 

DOX covalent adducts with DNA has been correlated to programmed cell death (Zeman et 

al., 1998); however, further studies have shown additional antitumour effects of DOX, 
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including binding of negatively charged phospholipids in cell membranes with resultant 

alterations of their function, metal ion chelation, and generation of free radicals.  

Many studies have also shown that DOX favourably binds to the cardiolipin of 

mitochondrial membranes, thereby resulting in defects of mitochondrial membrane functions 

(Marcillat et al., 1989; Goormaghtigh et al., 1990). The maximum antitumour activities of 

DOX occur during S-phase of the cell cycle. At low concentrations, cells will proceed 

through S-phase and then die in G2-phase.  

Side effects of doxorubicin 

Nausea, vomiting, diarrhoea and loss of appetite are some of the common side effects. 

Doxorubicin also causes temporary alopecia, stomatitis. A major dose-limiting complication 

is myelosuppression (Bally et al., 1990; Judson et al., 2001). Another toxic manifestation as 

a result of DOX treatment is hepatotoxicity (Bagchi et al., 1995). Cardiotoxicity is the most 

serious complication and it limits the total dose. 

A dose-dependent drug-induced cardiotoxicity which can progress to irreversible congestive 

heart failure has limited the widespread use of anthracyclines (Figure 1.2). The overall 

prevalence of DOX cardiomyopathy is 1.7–6.8% (Cortes et al., 1975; Lefrak et al., 1975; 

Minow et al., 1975; Praga et al., 1979), and is highly dependent on the total dose. Moreover, 

there is a sharp increase in the incidence of DOX-related cardiotoxicity at accumulative dose 

above 550 mg/m
2
 body surface area. Furthermore, it is recommended that the maximum 

cumulative dose of DOX is 500 or 450 mg/m
2
.  

A large-scale study that retrospectively evaluated the cardiotoxicity of DOX reported that an 

estimated 7% of patients developed DOX-related congestive heart failure (CHF) following a 

cumulative dose of 550 mg/m
2
 (Swain et al., 2003). Heart damage following anthracycline  
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Figure ‎1.2: The cytotoxicity of anthracycline antibiotics.  (Adapted from Peng et al., 2005) 
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chemotherapy can be divided into early and late cardiotoxicity. Cardiotoxicity that develops 

during chemotherapy or otherwise during the first year following its completion is 

considered to be an early cardiotoxicity, whilst if this occurs one year or more following the 

completion of therapy, it is defined as a late cardiotoxicity (Shan et al., 1996). Patients can 

show DOX-cardiotoxicity as subclinical heart failure and as clinical heart failure. The 

incidence and risk of early clinical cardiotoxicity and late subclinical cardiotoxicity have 

been evaluated by several studies (Sallan and Clavell, 1984; Sorensen et al., 1995; Nysom et 

al., 1998).  

Risk factors for doxorubicin cardiotoxicity 

There is an increased risk for both types of cardiotoxicity alongside a higher cumulative dose 

of DOX (Minotti et al., 2004) with the female gender, age over 65 years (but also very 

young children), diabetes, pre-existing heart disease and hypertension, liver disease or 

mediastinal radiotherapy, type of tumour, black race, presence of trisomy 21, and exposure 

to cyclophosphamide, ifosfamide, or amsacrine (Dearth et al., 1984; Lipshultz et al., 1995; 

Puma et al., 2008; Velensek et al., 2008). 

Mechanism of action of doxorubicin 

The mechanisms of cytotoxicity of DOX in cancer cells include four main mechanisms: 

firstly, the inhibition of topoisomerase II; secondly, high affinity binding to DNA, via 

nucleic intercalation, which leads to the inhibition of DNA and RNA synthesis, and cleavage 

of DNA strands by alterations of topoisomerase II; thirdly, binding to the cell membrane, 

which changes its normal fluidity and transport of ions; and finally, the generation of 

semiquinone free radicals and oxygen free radicals through an iron-dependent, enzyme-

mediated reductive process (Davies and Doroshow, 1986; Gervasi et al., 1986; Minotti et al., 
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2001). Tumour cell growth is inhibited in response to some or all of these effects, and cells 

are more likely to die by one or more of these mechanisms (Gewirtz, 1999). Furthermore, it 

occurs in normal tissues as well as the tumour target, and the effects on the heart pose a 

major clinical dilemma (Figure 1.2). Doxorubicin causes cardiotoxicity by mechanisms other 

than those mediating their antitumour effectiveness, and so strategies can be developed 

which protect the heart without diminishing tumour response.  

1.3 Mechanism of doxorubicin cardiotoxicity 

In spite of the wide use of DOX, the cardiotoxic mechanism is still not completely 

understood. The most common hypothesis is the formation of free radicals and superoxide 

(Rajagopalan et al., 1988; Vasquez-Vivar et al., 1997). Cardiac cells are more prone to free 

radical damage owing to their highly oxidative metabolism and relatively poor antioxidant 

defences (Doroshow et al., 1980). This mechanism was proposed originally as the basis for 

DOX related cardiotoxicity, although other variables may be involved, including the 

interaction of the DOX with iron (Myers et al., 1977). Doxorubicin can interact with haem-

containing cellular proteins, such as complex I of the mitochondrial respiratory system, so as 

to generate damaging reactive oxygen species (Figure 1.3).  

Accordingly, mitochondria play a major role in the action of DOX particularly with respect 

to cardiotoxicity (Jung and Reszka, 2001; Conklin, 2005). Abnormal mitochondria are one 

of the earliest and most prominent histomorphological features of acute anthracycline-

induced cardiomyopathy. Several studies demonstrate that DOX affects both ATP and 

phosphocreatine levels in cultured cardiac cells (Seraydarian et al., 1977). Furthermore, 

defects of several bioenergetic functions in the mitochondria have been reported (Iwamoto et 
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al., 1974; Mailer and Petering, 1976; Goormaghtigh et al., 1982; Muhammed et al., 1982; 

Muhammed et al., 1983; Muhammed and Kurup, 1984; Praet et al., 1984).  

It has been shown that DOX forms an electrostatic complex with cardiolipin a phosholipid of 

the mitochondrial inner membrane (Goormaghtigh et al., 1982; Goormaghtigh et al., 1983; 

Praet et al., 1984; Goormaghtigh et al., 1986). Cardiolipin is required by mitochondrial 

complex I,II,III and IV in order to maintain maximal activity (Fry and Green, 1981). 

Moreover, DOX can undergo a one-electron reduction, which can result in the formation of a 

semiquinone radical species. Furthermore, mitochondrial complex I catalyses DOX 

reduction (Thayer, 1977; Davies et al., 1983; Davies and Doroshow, 1986; Doroshow and 

Davies, 1986). One electron transfer to molecular oxygen leads to the re-oxidation of the 

semiquinone radical species, which accordingly leads to the formation of superoxide anion. 

In addition, activated oxygen species such as superoxide, hydrogen peroxide and hydroxyl 

radicals will be formed from the interaction of DOX products with NADH dehydrogenase of 

Complex 1 (Davies et al., 1983; Davies and Doroshow, 1986; Doroshow and Davies, 1986). 

It is also known that DOX can activate signal transduction pathways and cause apoptosis in 

cardiac myocytes, as has been shown in previous studies (Wu et al., 2002; Clementi et al., 

2003; Mihara et al., 2003; Rebbaa et al., 2003). Moreover, DNA fragmentation and DNA 

degradation occur as result of DOX-induced apoptosis. Furthermore, there is also 

simultaneous activation of many apoptotic-associated protein activities and levels, including 

caspase-3 (Rebbaa et al., 2003), caspase-9 (Cui et al., 2002), cytochrome C (Clementi et al., 

2003), and reduced levels of anti-apoptotic proteins, such as Bcl-2 (Wu et al., 2002). 

Doxorubicin causes the activation of pro-apoptotic proteins and increased levels of BAX 

(Wu et al., 2002) and p53 proteins (Cui et al., 2002) 
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Figure ‎1.3: The electron transport chain in the mitochondrion.   
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Doxorubicin cardiotoxicity is described as Type 1 chemotherapy related cardiac dysfunction 

(Ewer and Lippman, 2005), which is characterised by ultra-structural changes, and has a 

greater susceptibility to become irreversible. Myofibrillar loss, dilation of sarcoplasmic 

reticulum and swollen mitochondria are the major morphological changes in the 

myocardium of patients treated with DOX. Furthermore, mitochondrial respiration provides 

more than 90% of ATP that is utilised by cardiomyocytes; therefore, any change of 

mitochondrial structure and function will result in disturbance in cardiomyocyte function 

(Ventura-Clapier et al., 2004). 

1.4  Oxidative stress and doxorubicin cardiotoxicity 

Oxidative stress has been implicated in the pathology of different diseases, including cancer, 

diabetes mellitus, inflammatory disease, ageing and also in DOX-induced cardiotoxicity 

(Figure 1.3). Moreover, normal cellular metabolism produces reactive oxygen species 

(ROS). Reactive oxygen species at low concentrations result in beneficial effects, and have a 

physiological role in the host defence mechanism (against infectious agents) and in a number 

of cellular signalling systems (Barja, 1993). Notably, the overproduction of reactive oxygen 

and/or a deficiency of antioxidant mechanisms results in a harmful state, which is known as 

oxidative stress (Halliwell, 1994). Notably, excess ROS inhibit normal functions in the body 

as it damages cellular DNA, lipids, and protein. 

Owing to the effect of unstable free radicals on various cellular molecules, such as lipids, 

DNA and proteins, human beings are subjected to various diseases and aging. The reactive 

oxygen species damage often leads to disrupting enzymes, ultimately developing mutations 

causing cancer, injuring membranes, and decreasing overall immunity. It has also been 

established that ROS are the resultant of normal metabolism. Furthermore, it can be 
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neutralised through small molecules and cellular antioxidant enzymes (Queiroza et al., 

2009). Some of these small molecules include minerals, vitamins and phytochemicals.  

The level of ROS is often found to increase during inflammation, or otherwise when a 

person is exposed to sunlight for a long. Other causes of increase in ROS levels include 

exercise, radiation, pollution, smoking and even some medicines. The increase in ROS is 

often seen to lead to oxidative stress, which further results in heart diseases, arthritis, aging, 

HIV/AIDS, cancer, atherosclerosis, stroke, Alzheimer’s disease (Amagase et al., 2001; 

Borek, 2001; Banerjee et al., 2003; Dillon et al., 2003). 

Molecules containing one or more unpaired electrons are known as free radicals (Gilbert, 

2000). Free radicals have a high degree of reactivity owing to the unpaired electrons 

(Bergendi et al., 1999). As a consequence of their instability, free radicals tend to either 

accept or donate electrons from or to other adjacent molecules in order to achieve a more 

stable state, thereby leading to a propagation of chain of reactions with the formation of new 

radicals, which in turn can react with further macromolecules. Lipid peroxidation is an 

example of free radical-mediated tissue damage (Betteridge, 2000). The most common class 

of radical species are those derived from oxygen. With this in mind, all aerobic organisms 

use molecular oxygen to generate ATP, which is the chemical energy considered useful for 

life. The end products of many catabolic pathways are combined with O2 in the mitochondria 

to produce most of this energy.  

In mammalian cells, mitochondrial ATP-production takes place mainly in enzyme 

complexes coupled with the electron transport chain (McIntyre et al., 1999). During energy 

transduction, a small number of electrons leak out, subsequently forming the free radical 

superoxide. Superoxide is produced from both complexes I and III of the electron transport 
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chain (Miwa et al., 2003) and, in its anionic form, can readily cross the inner mitochondrial 

membrane. Excessive production of superoxide under stress conditions releases free iron 

from iron-containing molecules, such as haemoglobin. This released iron can generate 

hydroxyl radical (through the Fenton reaction) (Liochev, 1999; Thomas et al., 2009). The 

hydroxyl radical, •OH, has a very short half-life (approximately 10–9 s) and indiscriminately 

oxidises its closest targets (Kehrer, 2000). 

Other sources of ROS include cellular enzyme systems, such as NADPH oxidase, xanthine 

oxidase, uncoupled endothelial nitric oxide (NO) synthase (eNOS), arachidonic acid 

metabolising enzymes comprising cytochrome P-450 enzymes, lipoxygenase and 

cyclooxygenase (Griendling, 2005; Mueller et al., 2005). Besides, free radicals may be 

generated in the body in response to electromagnetic radiation from the environment, and 

acquired directly as oxidising pollutants, such as ozone and nitrogen dioxide (Betteridge, 

2000; Irmak et al., 2002). Furthermore, increased levels of transition metal ions such as 

those of iron, copper and mercury, which are potent catalysts for free radicals formation lead 

to the generation of free radicals via the Fenton chemistry (Valko, 2005; Valko et al., 2006). 

Fe 
2+

 + H2O2 → Fe
3+

 + •OH + OH- 

In order to protect the cells and organ systems of the body against reactive oxygen species, 

humans have developed a highly complex antioxidant protection system that normally 

scavenge free radicals produced by the Fenton reaction and other stimuli; thus, antioxidants 

are capable of stabilising or deactivating free radicals before they attack cells. Hydroxyl, 

peroxyl (•RO2), alkoxyl (RO•), and hydroperoxyl (HRO2
-•          ) are examples of oxygen-free 

radicals. Examples of nitrogen-free radicals include Nitric oxide (•NO), and nitrogen dioxide 

(NO2
-•       ). Oxygen- and nitrogen-free radicals can be converted to other non-radical reactive 
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species, including hydrogen peroxide, hypochlorous acid (HOCl), hypobromous acid 

(HOBr), and peroxynitrite (ONOO
–
) (Figure 1.4) (Fang et al., 2002).  

An antioxidant is defined as any substance that when present at low concentrations 

compared with those of an oxidizable substrate, significantly delays or completely prevents 

oxidation of that substrate (Halliwell and Gutteridge, 1995; Gutteridge and Halliwell, 2000). 

Enzymes are the first line of protection against ROS. Superoxide dismutase (SOD), catalase, 

glutathione reductase, glutathione peroxidase and glutathione S-transferase are all examples 

of antioxidant enzymes (R hrdanz and  ahl, 1998; van Deel et al., 2008). There are also non- 

enzymatic antioxidising agents which act as a second line of defence against ROS. 

Nonenzymatic antioxidants include glutathione, ascorbate (vitamin C), α-Tocopherol 

(vitamin E), carotenoid, flavonoid and α-lipoic acid (Ryan et al., 2010; Krishnaiah et al., 

2010).  

Cardiotoxicity of DOX is known to be partly mediated through the generation of ROS. The 

findings highlighted that the treatment of animals with a variety of antioxidants such as 

probucol, amifostine, dexrazoxane, and melatonin protects heart against the toxicity of DOX 

support the role of ROS in DOX-induced cardiac toxicity (Seifert et al., 1994; Siveski-

Iliskovic et al., 1994; Samelis et al., 1998; Nazeyrollas et al., 1999; Liu et al., 2002). In 

addition, DOX-induced cardiac injury is greatly attenuated when antioxidant enzymes, such 

as manganese superoxide dismutase (MnSOD), catalase, or glutathione peroxidase 1 (Gpx1), 

in the cardiomyocytes of transgenic mice are overexpressed (Kang et al., 1996; Yen et al., 

1996; Xiong et al., 2006). 
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Figure ‎1.4: Main reactive oxygen species; RH: organic molecule. (Adapted from Bartosz, 

2009 ) 
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The previous studies strongly support the role of ROS in DOX-induced cardiotoxicity 

because MnSOD specifically transforms superoxide to hydrogen peroxide. Mitochondria is 

the major target of DOX-induced toxicity in cardiomyocytes as MnSOD is only located in 

the mitochondria (Goormaghtigh et al., 1983; Davies and Doroshow, 1986; Keller et al., 

1998; Ashley and Poulton, 2009). 

1.5 Strategies to reduce doxorubicin cardiotoxicity 

Use of analogues  

During the last two decades, there have been numerous attempts to identify a novel 

anthracyclines superior to DOX in terms of activity, which produces less cardiac toxicity. 

This resulted in the synthesis of 2000 analogues (Weiss, 1992). Amongst these analogues, 

only a few have been approved clinically. Epirubicin (EPI) and idarubicin (IDA) are popular 

useful alternatives to DOX or DNR, respectively. Unfortunately, replacing DOX with EPI or 

IDA does not abolish the risk of developing chronic cardiotoxicity (Anderlini et al., 1995; 

Ryberg et al., 1998).   

Alternative approaches to drug delivery 

Administration of DOX as continuous slow infusion over 48–96 hours instead of the 

standard rapid infusion has been associated with less cardiac toxic effects (Legha et al., 

1982; Shapira et al., 1990). Furthermore, the use of liposomes to target drug delivery to 

reduce cardiotoxicity has been tested in clinical trials, and was found to be effective (Treat et 

al., 1990; Strother and Matei, 2009). 
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Combination therapy with antioxidants 

The use of agents that may counteract the free-radical mediated cardiotoxic effect of DOX 

without interfering with its antitumour effect could be of value. Injac and Strukelj (2008) 

recently reviewed the protective effects associated with several natural products, drugs, 

adjuvant therapy, and numerous approaches, including exercise and calorie restriction. 

The primary mechanism of DOX -induced cardiotoxicity is the production of free radicals as 

a by-product of DOX metabolism. This suggests some new approaches, such as the potential 

use of natural antioxidants (Quiles et al., 2002). Vitamins (E, C, A, carotenoids), coenzyme 

Q, flavonoids, polyphenols, selenium, herbal antioxidants, and virgin oil are the most 

commonly used and investigated compounds (Quiles et al., 2002). 

Probucol is a lipid-lowering drug which has been found to be effective in protecting the heart 

against the toxic effects of DOX (Li and Singal, 2000). Probucol is a strong antioxidant 

owing to the presence of two phenolic groups in its molecular structure. Li and Singal (2000) 

investigated the effect of probucol on DOX-induced cardiotoxicity in a rat model, and 

accordingly reported that probucol completely hindered cardiotoxicity without interfering 

with the antitumour effect of DOX. Moreover, Probucol prevented myocardial lipid 

peroxidation and DOX-induced decrease in antioxidant activity (Iliskovic and Singal, 1997). 

Glutathione peroxidise (GSHPx) activity is also increased in rat heart by probucol. 

Another drug which has been shown as equally effective as probucol is the pineal hormone 

melatonin. Morishima et al. (1998) studies rats, and subsequently demonstrated that 

melatonin may be protective against DOX-induced cardiotoxicity through the inhibition of 

lipid peroxidation in rats. 
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 Combination therapy with iron chelator 

Moreover, several studies have investigated the role of iron chelator in the protection against 

DOX cardiotoxicity. Herman and Ferrans (1981), for example, revealed that dexrazoxane 

reduced the abnormalities associated with DOX in dog heart. Another study by (Osman et 

al., 1993) demonstrated that desferrioxamine attenuated the haematological and cardiotoxic 

complication of DOX in mice. The cardioprotective effect of dexrazoxane is owing to its 

ability to inhibit the conversion of Fe
3+ 

to Fe
2+ 

, thereby leading to the inhibition of formation 

of hydroxyl radical. Moreover, Schroed and Hasinoff (2002) demonstrate that the open ring 

hydrolysis product of dexrazoxane, ADR-925, is able to remove Fe
3+ 

from its complex with 

DOX in rat. Dexrazoxane is clinically proven for reducing DOX-induced cardiotoxicity 

(Schroeder and Hasinoff, 2002). In addition, Lebrecht et al. (2007) reported recently that 

dexrazoxane prevents late-onset DOX cardiotoxicity by preventing cardiac mitochondria 

from interconnected genetic and functional insults, which are triggered off and maintained 

by ROS. Unfortunately, however, with dexrazoxane, there are increases in the incidence of 

leukopenia (Cvetkovic and Scott, 2005). 

So far, there is no specific treatment for cancer therapy-related cardiomyopathy. 

Symptomatic patients receive standard treatments for congestive heart failure, such as 

angiotensin-converting enzyme inhibitors, beta-blockers, diuretic, digoxin and 

spironolactone (Simbre et al., 2001). However, recent experimental evidence supports the 

preventive effects of erythropoietin on cardiac dysfunction in DOX-induced cardiomyopathy 

(Li et al., 2006).  
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1.6 Garlic 

Garlic is one of the most investigated medicinal plants. Garlic (Allium sativum) has been 

known for centuries for its various roles as a medicine. The oldest reports of health-

promoting properties of garlic date back to the 16
th

 Century BC when, in the so-called Ebers 

Papyrus from Egypt, over 20 aliments were purported to be efficiently cured by garlic 

(Block, 1985). In the last 15 years, interest has arisen in attempting to identify the specific 

medicinal properties of garlic, as well as its active ingredients responsible for therapeutic 

effects.  

Moreover, the raw garlic contains sulphur compounds such as alliin, ajoene, cysteine 

sulfoxides and trisulfides, and at least 17 amino acids in addition to a variety of vitamins and 

minerals (Brace, 2002) (Table 1.2). Water is a major constituent of aged garlic extract 

(AGE). It also contains other compounds, such as carbohydrate, sulphur compounds, protein, 

fibre, amino acids, saponins, vitamins and minerals (Lawson, 1996). Organosulphur 

compounds are responsible for the characteristic flavour and aroma associated with garlic. In 

AGE, most of the components responsible for the characteristics, such as odour 

(thiosulfinates), are removed during the aging process. Water-soluble organosulphur 

compounds together with unique biochemical constituents, such as S-allyl-L-cysteine, 

fructosylarganine and 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acids are the major 

elements present in AGE (Ryu and Rosen, 2003). The conversion of γ-glutamyl-S-

allylcysteine the parent compound to alliin occurs during the aging process to produce S-

allylcysteine (SAC), S-allylmercaptocysteine (SAMC) and others. S-allylcysteine is used for 

standardization because it is bioavailable (Nagae et al., 1994). 
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Besides its dietary consumption, the use of garlic supplementation for its therapeutic benefits 

is becoming more and more popular worldwide. It has been shown that garlic can act as an 

antithrombotic, antihypertensive, antiplatelet (Agarwal, 1996; Rahman, 2001), antimicrobial, 

antiatherosclerotic, antihypoglycemic, anticancer, antidote (for heavy metal poisoning), 

hepatoprotective and immunomodulatory agent (Agarwal, 1996; Banerjee et al., 2003). 

Commercial garlic products 

Several garlic preparations exist in the market, including garlic tablets, aged garlic extract, 

oil of steam-distilled garlic, oil of oil-macerated garlic, ether extracted oil of garlic, and 

liquid garlic (Table 1.3). 

Aged garlic extract 

Wakunaga of America Co. Ltd. (Mission Viejo, USA) manufactures AGE. The soaking of 

sliced raw garlic in 15–20% aqueous ethanol for up to 20 months in stainless steel tanks at 

room temperature result in the formation of AGE. Aged garlic extract tablets, powder 

capsules and liquid forms are a result of the filtration and concentration of aged garlic in 

ethanol under reduced pressure at low temperature. Aged garlic extract liquid form contains 

10% (w/v) ethanol. Thiosulphinates, the harsh and pungent oil soluble constituent in garlic is 

present in garlic preparations other than AGE. Furthermore, AGE is rich in mild and 

odourless water soluble sulphur compounds. Adverse effects, such as aggravation of the 

stomach, hepatotoxicity and oxidasing activity against red blood cells, are caused by 

thiosulphinate allicin (Egen-Schwind et al., 1992a; Egen-Schwind et al., 1992b; Burden et 

al., 1994; Freeman and Kodera, 1995; Hoshino et al., 2001). On the other hand, AGE has 

proven safe for human consumption, with is no toxicity associated with its prolonged use 

((Hoshino et al., 2001; Lawson and Gardner, 2005). 
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Table ‎1.2: Commercially available garlic products 

Product Main compounds and characteristics 

Garlic essential oil I% oil-soluble sulphur compounds (e. g., DAS 

or DADS) in 99 % vegetable oil  

No water-soluble fraction 

 

 

 

 

No allicin 

Not well standardised 

No safety data 

Garlic oil macerate Oil-soluble sulphur compounds and alliin 

No allicin 

Not well standardised 

No safety data 

Garlic powder   

 

 

 

 

 

 

 

 

 

 

Aged garlic extract 

Alliin and a small amount of oil-soluble 

sulphur compounds 

No allicin 

Not well standardised 

Results on cholesterol are not consistent 

No safety data 

Mainly water-soluble compounds (e. g. 

SAC, SAMC or saponins) 

Standardised with SAC 

Small amount of oil-soluble sulphur 

compounds 

Various beneficial effects 

Well-established safety 

Heavily researched (300+ papers) 

Taken from Amagase et al. (2001)Abbreviations: DAS, diallyl sulphide; DADS, diallyl disulphide; 

SAC, s-allyl cysteine;SAMC, s-allyl mercaptocysteine. 
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Table ‎1.3: General composition of garlic 

Component Amount (fresh weight ;%) 

Water  62-68 

Carbohydrates 26-30 

Protein 1.5-2.1 

Amino acids:common 1-1.5 

Amino acids: cysteine sulphoxides  0.6-1.9 

y-Glutamylcysteine 0.5-1.6 

Lipids 0.1-0.2 

Fibre 1.5 

Total sulphur compounds 1.1-3.5 

Sulphur 0.23-0.37 

Nitrogen 0.6-1.3 

Minerals 0.7 

Vitamins 0.0015 

Saponins 0.04-0.11 

Total oil-soluble compounds 0.15 

Total water-soluble compounds  97 

  

Taken from (Lawson 1996) 
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Chemical constituents of aged garlic extract 

Aged garlic extrac provides similar health benefits as those achieved by fresh garlic, albeit 

without the presence of unlikable side effects of fresh garlic (Imai et al., 1994; Nagae et al., 

1994; Amagase et al., 2001; Borek, 2001; Kasuga et al., 2001). Moreover, AGE is 

considered to be a very high-standard product being developed from organic fresh garlic that 

is aged and extracted for around 20 months at room temperature. During this process, the 

antioxidants found in garlic are increased to very high levels compared with those found in 

fresh garlic. Furthermore, the process helps to convert the harsh and not-so-stable 

compounds, such as allicin, and to produce a much more stable and palatable substance 

Potential therapeutic effects of aged garlic extract 

Over 360 scientific research studies have been published which attest to the health benefits 

of AGE and it constituents.  

Boosting immunity  

The immune system of human beings has various types of protective substances and cells 

which help to fight several infections, as well as life-threatening illnesses, including cancer. 

Moreover, a person with a strong immune system is also able to fight viral, bacterial and 

fungal diseases without much difficulty; however, in cases where the immune system suffers 

damage such as in the case of HIV/AIDS patients, or owing to aging, pollution, stress, 

malnourishment etc. The human body is not able to fight the infection, and often succumbs 

to the ailment. In this regard, studies have found that AGE helps to improve the immune 

system and to fight infections and diseases (Adetumbi and Lau, 1983; Kyo et al., 2001; 

Nance et al., 2006). 
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Antiviral properties 

Research has indicated that AGE helps to prevent the influenza virus from spreading, and is 

found to be as effectual as vaccination. It has also been found that AGE aids in terms of 

enhancing immunity in patients suffering from HIV/AIDS; it also increases the natural killer 

cells (NK) activities which help to kill cancer cells and to stimulate activity in various 

immune cells, including macrophages and lymphocyte. Therefore, AGE assists in enhancing 

the anti-cancer activities of the immune cells (Deshpande et al., 1993). 

Abdullah et al. (1989) found that, following the inclusion of AGE in the diet of patients 

suffering from AIDS for 6 weeks, there were marked improvements witnessed in their NK 

cells activities, which were previously depleted owing to the AIDS virus. However, AGE 

treatment increased the NK cells to the normal levels again.  

Antibacterial and antifungal properties  

Clinical studies have found that, owing to the utilisation of AGE, the development of 

Candida albicans yeast can be inhibited. Yeast is often viewed as the main reason for oral 

infections in patients with HIV/AIDS, as well as other sexually transmitted diseases (Tadi et 

al., 1990). Moreover, it has also been found that AGE helps to kill Heliobacter pylori, which 

is predominantly linked with cancer and stomach ulcers. In addition, further research may 

reveal that AGE might help to cure Heliobacter pylori as it has been found that 

approximately 85% of patients with Heliobacter pylori do not respond to antibiotics (Delaha 

and Garagusi, 1985) 



  

33 

 

Antiallergic properties 

Owing to the rise in pollution and environmental disruption, allergies have become a part of 

human life. In this regard, the majority of allergies result from the release of mast cells by 

histamine, which can cause havoc in our lives. However, studies have also established that 

AGE may help to prevent the release of histamine by between 50% and 90%. Furthermore, it 

also helps to decrease allergic reactions by approximately 25–45%, even after a person is 

exposed to various allergy-inducing substances (Kyo et al., 1997). 

Anti-stress properties 

In the traditional medicines, practitioners have often prescribed garlic to help eradicate stress 

and enhance vigour, which has been highlighted through various studies. Moreover, 

additional researches have also established that AGE has aided swimmers and runners to 

enhance their endurance (Ushijima et al., 1997; Morihara et al., 2006; Morihara et al., 2007). 

Furthermore, as per a study in Japan, patients with stress showed improved results when they 

were given AGE supplements, along with Vitamins B12 and B1. Markedly, it was also 

found that AGE helped to reduce fatigue and weaknesses in the patients (Hasegawa et al., 

1983). 

Preventing cancer 

DNA mutation which has been aggregated over a period of time, combined with the risk 

factors associated with age, is known to result in the occurrence of cancer. It has been found 

that chemical carcinogens and injury by free radicals are the main causes of damage to DNA 

(Amagase and Milner, 1993). With this in mind, a study has found that the intake of garlic in 
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diet increases immunity and lowers the risks associated with the growth of colon, stomach 

and prostate cancer (Steinmetz et al., 1994; Fleischauer and Arab, 2001). 

Studies also indicate that AGE may help to prevent various kinds of cancer, as it scavenge 

free radicals which may potentially damage DNA, thereby enhancing antioxidant levels, 

blocking carcinogens and increasing the process to dispose carcinogens. Therefore, AGE 

may aid in reductions of cancer of the liver, bladder, lungs, mammary glands and 

oesophagus, along with colon, stomach and prostate (Milner, 1996). 

With this in mind, a number of preclinical studies provide evidence that garlic may 

potentially inhibit carcinogen-induced tumours in various organs (Milner, 1996). It has been 

reported that there is a significant reduction in gastric cancer risk with increasing 

consumption of garlic in humans (You et al., 1989). 

It has also been found that AGE can also aid in enhancing cancer therapy. As per analysis, 

the major death-related cancers are breast, prostate and colon cancer; however, recent studies 

indicate that S-allyl mercaptocysteine and S-allyl cysteine found in AGE may help to inhibit 

the growth of cancer cells in the prostate by approximately 80%. Furthermore, it is also 

acknowledged that AGE also helps to prevent the growth of cancer cells in the prostate, 

thereby preventing polyamines used to divide cells and accordingly decreasing PSA or 

prostate-specific antigen (Pinto et al., 1997, Pinto et al., 2000). 

Minimising drug toxicity 

During the treatment of cancer, the major problem or issue that one may face is liver toxicity 

and cardiotoxicity arising owing to ROS produced by drugs, such as methotrexate, DOX and 

fluorouracil. Research has found that AGE can help to protect the liver from fluorouracil and 
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methotrexate toxicity (Yüncü et al., 2006); thus, AGE can be potentially used to cure 

patients who are on anti-cancer therapy. Furthermore, AGE even helps to reduce toxicity in 

the liver owing to environmental pollution and carcinogens (Wang et al., 1998; Pinto and 

Rivlin, 2001). In addition, AGE is a neuroprotector as it was found to inhibit amyloid β-

protein (Abeta) toxicity (Kosuge et al., 2003). 

In human beings, AGE has been seen to help to reduce risks factors associated with 

cardiovascular diseases (Imai et al., 1994; Steiner et al., 1996; Rahman and Billington, 2000 

Borek, 2001; Ho et al., 2001; Lau, 2001; Dillon et al., 2002). Aged garlic extract decreases 

blood pressure and cholesterol, and also lowers homocysteine (Dillon et al., 2002). 

Furthermore, AGE also improves blood circulation and decreases the progression of 

atherosclerosis by approximately 50%, thereby leading to reductions in heart attack risks 

(Srivastava et al., 1995).  

Antioxidant effects of aged garlic extract  

Research has found that AGE is loaded with antioxidants compared with the fresh garlic and 

various other garlic preparations available in the market. Aged garlic extract helps to 

augment cellular antioxidants and to aid maintaining a healthy body and immune system, 

along with preventing toxicity (Wei and Lau, 1998). Park et al. (2009) investigated the 

antioxidant activities and antigenotoxic effects of garlic extract prepared through various 

different processing methods, and concluded that garlic extract possesses significant 

protective effects against DNA damage induced by hydrogen peroxide (H2O2) and four-

hydroxynonenal (HNE) that may be related to antioxidant activity.  

Moreover, various studies have found that garlic has anti-oxidant properties which may help 

to increase the immune system and to also prevent strokes and heart diseases. In addition, 
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studies have also found that AGE helps to prevent the decrease of glutathione (GSH) where 

in oxidised LDL and endothelial cells are put together (Ide and Lau, 2001). 

Ide and Lau. (1999) have demonstrated that in a cell free system, AGE scavenges H2O2. In 

addition, AGE can guard the endothelial cells from oxidized LDL-induced injury by 

preventing depletion of intracellular GSH and by removing peroxides. AGE boost GSH 

levels in vascular endothelial cells by regulation of the GSH redox cycle specifically 

increasing glutathione disulphide (GSSG) reductase activity. Furthermore, an increase in 

SOD activity was also observed (Zhaohui Geng, 1997). 

Aged garlic extract possesses strong antioxidant activity. Drobiova et al. (2009) have 

reported that the treatment of streptozotocin-induced diabetic rats with 500 mg/kg garlic 

daily caused increased antioxidant activity reaching levels in excess of those observed in 

normal rats. Moreover, Kim et al. (2001) suggested that SAC act as a scavenger of 

superoxide radical and it also increases Cu/Zn SOD activity. It was shown that a dose of 125 

mg/kg i.p. of SAC produced a decrease in superoxide radical production and blocked (100% 

of protection) of lipid peroxidation in mice (Rojas et al., 2011). 

The antioxidant activity of AGE and SAC in hydroxyl radical and superoxide generating 

systems was measured by Kim et al. (2001). They found that the formation of 5,5-dimethyl-

1-pyrrolline N-oxide (DMPO) adduct of the hydroxyl radical was strongly prevented by 

garlic extract and SAC in the H2O2 plus iron system which produces the hydroxyl radical. In 

addition, AGE and SAC reduced the accumulation of superoxide generated in the xanthine 

oxidase (XO)/acetaldehyde system. 

Dillon et al. (2002) investigated the antioxidant properties of AGE in vivo in non-smoking 

and smoking human volunteers. The levels of 8-iso-PGF2α are a reliable and sensitive novel 
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marker of increased oxidative stress and lipid peroxidation in vivo. It was used to evaluate 

the antioxidant effects of AGE. Dietary supplementation with AGE for 14 day significantly 

lowered plasma and urine concentrations of 8-iso-prostaglandin F2α by 29% and 37% in non-

smokers and by 35% and 48% in smokers. 

Aged garlic extract and cardioprotection  

Aged garlic extract has been shown to protect against cardiovascular disease (Imai et al., 

1994; Steiner et al., 1996; Rahman and Billington, 2000; Borek, 2001; Ho et al., 2001; Lau, 

2001; Dillon et al., 2002). Furthermore, AGE is also known to reduce blood pressure, lower 

LDL and elevate HDL cholesterol, inhibit the production of prostaglandins involved in 

inflammation and vasoconstriction, lower homocysteine, and also inhibit platelet 

aggregation and adhesion. Furthermore, it has been reported by Harauma and Moriguchi 

(2006) that AGE reduced blood pressure in spontaneously hypertensive rats more safely than 

raw garlic. Aged garlic extract protects also against dementia, which could be related to its 

effects in increasing microcirculation and lowering homocysteine (Dillon et al., 2002; Yeh 

and Yeh, 2006).  

The synthesis of constitutive nitric oxide a protective element against myocardial damage is 

increased by AGE (Morihara et al., 2002). Studies demonstrate that AGE improves 

microcirculation and blood properties by preventing lipid peroxidation and haemolysis in 

oxidised erythrocytes (Moriguchi et al., 2001). 

Researchers state that AGE helps to lower blood pressure, high cholesterol, high 

homocysteine level and triglycerides, and also reduces risks associated with stroke and heart 

diseases. It has also been seen that AGE along with S-allyl cysteine aid in decreasing the 

risks associated with most of these diseases (Bordia, 1981; Fulder, 1989; Warshafsky et al., 
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1993; Murray, 1995). Moreover, in their study, Steiner and Li (2001) found that an intake of 

2.4–4.8 grams of AGE daily for six months helps to reduce cholesterol by around 5–7%. The 

study also found that AGE aided in lowering LDL, preventing the collection of platelets that 

might promote clotting, and decreasing blood pressure and triglycerides. It further assisted in 

increasing HDL, which promoted a healthy body. 

Various studies have also found that garlic and its compounds help in inhibiting enzymes, 

which cause fatty acid synthesis and cholesterol in rats and human cells (Gebhardt, 1993; 

Liu and Yeh, 2001; Yeh and Liu, 2001). After measuring the enzyme activity, it was also 

found that garlic and its compounds prevent the synthesis of enzymes which cause 

cholesterol biosynthesis. These enzymes are namely HMG-CoA reductase and squalene 

monooxygenase 

Moreover, it has been found that AGE helps to reduce cholesterol in the same manner as 

statin drugs, which are taken to lower cholesterol levels. Liu and Yeh (2002) studied the 

effects of water-soluble organosulphur compounds of garlic on hepatic cholesterol 

biosynthesis in cultured rat hepatocytes, and accordingly found that the activity of 3-

hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase in the cells treated with AGE was 

30–40% lower than that of the untreated cells. Moreover, it has also been seen that AGE 

taken in combination with statins in patients with known coronary artery disease help in the 

suppression of cholesterol in a better manner. Moreover, AGE may exert anti-atherogenic 

effects through the inhibition of both smooth muscle phenotypic change and proliferation, 

and on lipid accumulation in the artery wall and to the macrophage (Budoff et al., 2004). 

However, it has also been seen that AGE taken alone may also provide similar benefits of 

lowering cholesterol without the side effects, such as muscle pain and fatigue, as felt by 

some people who take statin regularly (Liu and Yeh, 2002; Budoff et al., 2004). 
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Several other cardioprotective influences of garlic has also been found in a number of 

studies. For instance, garlic is being used to reduce unstable angina, to enhance the elasticity 

of blood vessels and to diminish arterial occlusive diseases (Breithaupt-Grogler et al., 1997; 

Li et al., 2000). The effect of AGE as a cardioprotective against DOX toxicities requires 

investigation at both in-vivo and in-vitro level. 

Hypothesis 

Administration of AGE will offer cardioprotection in rats given cardiotoxic doses of DOX. 

1.7 Aims of the Study 

The aims of this study were to:  

 Investigate the protective effect of AGE against DOX–induced cardiotoxicity in rats; 

 Investigate the effect of AGE on the antitumor activity of DOX in mice. 

 Investigate the protective effect of AGE against DOX–induced cardiotoxicity in rat 

cardiac myocyte; and 

 Investigate the effect of AGE on the signalling pathway and gene expression in vitro. 

  



  

40 

 

Chapter 2 : Materials and Methods                               

2.1 Materials                                      

Rat cardiac myocytes 4 million,  (LONZA,UK) 

Ehrlich ascites carcinoma cells (EAC), a generous gift from Prof Abdel-Moneim Osman 

Active caspase-3 (R & D Systems International, UK) 

BIO-RAD protein estimation kit (Bio-Rad laboratories, Hertfordshire, UK).  

Bovine serum albumin (Sigma, UK) 

Dulbecco’s modified eagle’s medium (Cambrex Bioscience) 

Foetal bovine serum (FBS) (Cambrex Bioscience) 

Dimethylsulphoxide (DMSO) (Sigma, UK) 

Isopropanol, ethanol, Tween 20 (Sigma, UK) 

Isoton 11, azide-free balanced electrolyte solution (Coulter) 

Paraformaldehyde (Sigma, UK) 

Sodium bicarbonate (Sigma, UK) 

Trypsin-10X, trypsin-EDTA solution (Sigma, UK) 

Phosphate buffered saline (PBS): one tablet of PBS was dissolved in 100 ml d H2O and 

autoclaved at 121C for 15 min. 
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Rat cardiac myocyte basal medium (LONZA, UK) 

Rat cardiac myocyte growth medium (LONZA,UK) 

Lipid peroxidation assay kit (Calbiochem, USA)  

Human/mouse active p53 assay kit (R&D Systems, UK) 

Mouse total p53 assay kit (R&D Systems, UK) 

8-Isoprostane EIA kit (Calbiochem, USA) 

Human active caspase-3 quantikine ELISA kit (R&D Systems, UK) 

Kyolic aged garlic extract was a generous gift from Wakunaga of America Co., Ltd. 

Randox total antioxidant control cat no. NX2331 and total antioxidant status assay kit 

(Randox Laboratories, Antrim, UK) 

CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega, UK) 

Male Wistar albino rats (8– 10 weeks of age, 180–200 g body weight) from King Fahd 

Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia. 

Doxorubicin hydrochloride (Sigma, UK).  

Plasma total lactate dehydrogenase (LDH) assay kit (Randox, UK) 

Total creatine phosphokinase (CPK) assay kit (Spinreact, Spain) 
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Aprotinin, leupeptin,  pepstatin , phenylmethylsulfonylfluoride (PMSF), chymostatin, 

sodium orthovanadate (Na3VO4) , activated sodium fluoride (NaF) , Sodium Azide (NaN3) 

, β-Glycerophosphate,  Triton X-100 (Sigma, UK) 

RT2 First Strand Kit, (SA Bioscience, USA)  

Qiagen RNeasy® Mini Kit , 

AmpliTaq Gold®  PCR Master Mix, 250 Units/ 5mL (Applied Biosystem, Roche, USA) 

Oxidative Stress and Antioxidant Defense PCR Array (SA Biosciences, USA) 

RT2 qPCR Primer Assay for rat Prdx5, RT2 qPCR Primer Assay for rat Ptgs2, RT2 qPCR 

Primer Assay for Rat Cygb, RT2 qPCR Primer Assay for rat Ucp3, RT2 qPCR Primer Assay 

for rat Gpx2, RT2 qPCR Primer Assay for rat Gpx7, RT2 qPCR Primer Assay for rat Ldha, 

(SA Bioscience, USA) 

RT² qPCR SYBR Green/ROX MasterMix, (SA Bioscience, USA) 

Tris-borate-EDTA (TBE) buffer,(Invitrogen,UK) 

Ethidium bromide (Sigma, UK) 

Vectashield mounting medium for fluorescence with DAPI (Vector Laboratories,USA) 

Six-well, 24-well, 48-well and 96-well plates,  96-well EIA/RIA plates  (Nunc 

Corporation) 

Tissue culture flasks; T-25, and T-75 (Nunc Corporation) 

Disposable tubes and stoppers, compatible with chloroform and methanol  
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Plain and EDTA tubes for blood collection. (BD Vacutainer®, USA) 

Reusable glass 96-well plate. (Cayman Chemical, USA) 

Centrifuge tubes 50 and 15 ml (Corning, USA) 

2.2 Equipment  

CO2 incubator (Lab Impex Research) 

Spectrophotometer (CECIL CE 7200, Cecil Instruments, Cambridge, UK) 

Statistical package (version 15; SPSS Inc., Chicago) for the analysis of all the study data      

Centrifuge (Sigma 3-16K, UK) 

Single threshold coulter counter (Beckman Coulter) Water bath (LAUDA Brinkmann, 

Ecoline RE 120,Germany) 

Kinetic microplate reader (Molecular Devices, USA) 

LS 45 fluorescence spectrometer (Perkin-Elmer, USA) 

Barnson Sonifier (250 VWR Scientific, Danbury, Conn, USA) 

Digital multi channel pipits (Eppendorf) 

Ice maker (Borolab Ltd) 

Immunofluorescence microscope (Zeiss Axo imager Z1) 

Inverted phase contrast microscope, Nikon TMS-F 
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Laminar flow hood or safety cabinet: tissue culture grade (Walker Safety Cabinet Ltd) 

Magnetic stirrer hotplate (Stuart Scientific Co,UK). 

Embitek RunOne-electrophoresis cell 

Stratagene MX3000P 

Universal model 200 laboratory, pH meter (Medical Scientific Instruments,UK). 

Vortex (Chiltern, UK ) 

PerkinElmer Fluorescence Spectrometer LS55 

Shaker (POS-300, Grant-bio, England) 

Analytical scale (Sartorius, Oxford,UK) 

PTC-100 Programmable-thermal cycle controller 

PTC-200 Peltier thermal cycler, DNA engine  

Ultrospec 2000, Phamacia Biotech, Cambridge, England. 

Syngene G Box (Bio-imaging system) (Syngene, UK) 

Biotek ELX800 Plate reader, USA. 

Deep freezer -80 
o
C ,Nuaire, Japan. 
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2.3 Measurement of serum total creatine phosphokinase  

Creatine phosphokinase is a cellular enzyme with wide tissue distribution in the body. Its 

physiological role is associated with adenosine triphosphate (ATP) generation for contractile 

or transport systems. Elevated CPK values are caused by diseases of skeletal muscle and 

myocardial infarction (Antman et al., 2000). Serum CK activity raises following myocardial 

infarction beginning within 6 hours and peaking on an average at 24 hours and returning to 

normal within 2-3 days. 

Principle  

Serum total creatine phosphokinase (CPK) was measured using commercial kits from 

SPINREACT, Spain. Serum creatine phosphokinase was determined based on the method of 

Szazs et al. (1976). Creatine kinase (CK) catalysed the reversible transfer of a phosphate 

group from phosphocreatine to ADP. This reaction is linked to those catalysed by 

hexokinase (HK) and glucose-6-phosphate dehydrogenase (G6P-DH):  

Phosphocreatine + ADP Creatine + ATP

CK

ATP + Glucose ADP + Glucose-6-phosphate (G6P)
HK

G6P + NADP+
6-Phosphogluconate + NADPH + H+

G6P-DH

Phosphocreatine + ADP Creatine + ATP

CK

ATP + Glucose ADP + Glucose-6-phosphate (G6P)
HK

G6P + NADP+
6-Phosphogluconate + NADPH + H+

G6P-DH

 

The catalytic concentration of CPK present in the sample is proportional to the rate of 

NADPH formation, measured photometrically at 340nm.  
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Procedure   

A volume of 20 μl aliquot of rat serum was pipetted into a cuvette, and then 1ml of working 

reagent was added and mixed well. Following incubation at 37
o
C for 2 minutes, the initial 

absorbance (A) was read at 340nm. Thereafter, the absorbance (A) was recorded at 1 minute 

interval for 3 minutes. The difference between absorbances and the average absorbance 

differences per minute (∆A/min) was calculated. The total CP  of the sample was calculated 

as A/minX8095 U/L CPK. 

2.4 Measurement of serum lactate dehydrogenase  

An increase in serum LDH activity is observed following myocardial infarction beginning 

within 6 – 12 hours and reaching a maximum at about 48 hours and it remains elevated for 

4-14 days before coming down to normal levels. The prolonged elevation makes it a good 

marker for those patients admitted to the hospital after several days of myocardial infarction 

(Varley et al., 1984). Serum CPK and LDH activity were used as a marker for DOX 

cardiotoxicity in several studies (Al-Shabanah et al., 1998, Yagmurca et al., 2003, Mansour 

et al., 2008, Koti et al., 2009, Ibrahim et al., 2010) 

Principle  

Serum lactate dehydrogenase (LDH) was assayed utilising the method of Moss and 

Henderson (1999). Lactate dehydrogenase catalysed the reduction of pyruvate by NADH, 

according the following reaction:  

L-lactate  +  NAD+Pyruvate + NADH + H+

LDH
L-lactate  +  NAD+Pyruvate + NADH + H+

LDH
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The rate of decrease in concentration of NADPH, measured photometrically at 340nm, is 

proportional to the catalytic concentration of LDH present in the sample. 

Procedure 

A volume of 50 μl aliquot of rat serum was pipetted into a cuvette, and then 1ml of working 

reagent was added and mixed well. Following incubation at 37
o
C for 1 minute, the initial 

absorbance (A) was recorded at 340nm. The absorbance (A) was read at 1 minute intervals 

thereafter for 3 minutes. The difference between absorbances and the average absorbance 

differences per minute (∆A/min) was calculated. The equation ∆A/min x 9690 = U/L LDH 

was used to calculate LDH. 

2.5 Histopathological examination 

The rat abdomen was opened under anesthesia and heart sample was removed immediately 

washed with saline. Part was processed for light microscope and other part for electron 

microscopic examination. 

Structure 

Heart pieces (approximately ½ cm) were fixed in 10% formaldehyde for 48 hours, and 

accordingly processed for paraffin sectioning at 5 µm thickness. The sections were mounted 

on glass slides and stained with haematoxylin and eosin to study the changes in the normal 

structure of the heart (Monnet and Orton, 1999).  

Ultrastructure 

For transmission electron microscopy, small pieces of heart tissue (1mm) were excised and 

fixed in 2.5% buffered glutaraldehyde overnight, and then post-fixed in 2% osmium 
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tetroxide for two hours at 4
o
C. The specimens were then washed twice in phosphate buffer, 

dehydrated in ascending grades of ethanol, cleared in three changes of propylene oxide, and 

finally embedded in Epon 812 at 60
o
C for two days. Sectioning was carried out on an LKB 

ultramicrotome with the use of glass knives for both semithin and ultrathin sections. The 

semithin sections (0.5 µm thickness) were stained using toluidene blue whilst the ultrathin 

sections (400 A thickness) were double stained with uranyl acetate and lead citrate, and 

examined under a Philips 300 electron microscope operating at 80 k,v (Robinson et al., 

1987). 

2.6  Measurement of plasma malondialdehyde            

Kit components 

Reagent 1: N-methyl-2-phenylindole in acetonitrile 

Reagent 2: Methanesulfonic acid (MSA).  

MDA Standard: 1,1,3,3-tetramethoxypropane (TMOP) in Tris-HCl. 

Ferric ion in methanol: diluent for reagent 1. 

Principle 

Lipid peroxidation is well known to result from oxidative stress. Peroxidation of 

polyunsaturated fatty acids results in the formation of malondialdehyde (MDA) as an end-

product. The measurement of MDA in the plasma provides an appropriate index of lipid 

peroxidation. Moreover, a colorimetric assay using the calbiochem assay kit was applied to 

measure MDA. The principle of this assay relies on the ability of the chromogenic reagent 

(R1) to react with MDA at 45
o
C.  Notably, a stable chromophore results from the 



  

49 

 

condensation of one molecule of MDA with two molecules of the chromogen reagent. This 

stable product has maximal absorbance at 586nm (Liu et al., 1997).  

Standard preparation 

A 10 mmol MDA solution was diluted 1/500 (v/v) in distilled water immediately prior to use 

to provide 20 µmol stock standard solution. Six standards solutions, each 200 µl were 

prepared for calibration by diluting the MDA standard (20 μM) with water to give the 

following concentrations: 0, 0.5, 1.00, 2.00, 3.00, and 4.00 µmol. Each standard was run in 

triplicate. 

Procedure 

Plasma samples were separated by centrifugation at 3000 g at 4
o
C for 10 minutes. A volume 

of 650 ul of diluted reagent 1 was then added to each 200 ul sample in polypropylene tube 

and vortexed for 3–4 seconds. Subsequently, 150 µl of 12 N HCl was added, mixed well, 

and incubated at 45
o
C for 60 minutes. Following, the tubes were cooled on ice, and the 

absorbance measured at 586nm. Next, a blank containing water was used to zero the 

spectrophotometer. 

Calculation of MDA Concentration 

From the MDA standard curve data, the net absorbance for each standard at 586nm was 

calculated by subtracting the blank (A)ْ value from each of the standard absorbance values. 

Net (A 586) was plotted versus [MDA], and a linear regression analysis of A586 on [MDA] 

was performed as follows: 

A586=a [MDA] + b 
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The calculation of the MDA concentration in each sample was then calculated from the net 

A 586 of the sample according to the following: 

    
         

 
 

 

where 

[MDA] is the M concentration of MDA in the plasma 

A586= net absorbance at 586nm of the sample 

A=regression coefficient (slope) 

b=intercept 

df=dilution factor 

2.7  Measurement of serum total antioxidant status  

Principle 

Total antioxidant status was determined according to the method of Miller et al. (1993). This 

method is based on the quenching of 2, 2 ٰ-Azino-di(3-ethyl benzthiazolin sulphonate) radical 

cation (ABTS
●+

) by antioxidants; this was carried out with the use of a total antioxidant 

assay kit. In this assay, ABTS was incubated with a peroxidase, and H2O2 to produce the 

radical cation ABTS
●+

, resulting in a stable blue green colour measurable at 600nm. 

Antioxidants in the added sample cause inhibition of colour development to a degree 

proportional to their concentration. 
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Procedure 

One ml of Chromagen was added to 20 μl aliquot of rat serum in a cuvette and mixed well. 

Following incubation at 37
o
C, the absorbance (A1) was recorded, and then 200 μl of H2O 2 

was added and mixed well. Three minutes later, the absorbance (A2) was recorded. The 

absorbance of a blank sample (20 μl deionized water) and a standard sample (20 μl) was 

assessed in the same way as serum samples. Calculation of the total antioxidant status of the 

sample was carried out using the formula: 

 

 Factor =
Conc. of  standard

(Δ A blank - Δ A standard)
 Factor =

Conc. of  standard

(Δ A blank - Δ A standard)  

Total antioxidants (mM) = Factor × (Δ A blank - Δ A standard). The absorbance of total 

antioxidants (TA) in the serum is linear up to 2.5 mM. 

2.8 Measurement of 8-isoprostane in rat cardiac myocyte 

culture medium 

The isoprostanes are described as a part of eicosanoids which are non-enzymatic in nature. 

These are produced when tissue phospholipids are randomly oxidised through the use of 

oxygen radicals. As per a recent study, 8-isoprostane has been found to be the best index for 

determining oxidative injury through the use of an oxidant stress rat model (Gross et al., 

2005; Morrow, 2005). The level of 8-isoprostane in rat cardiac myocyte culture medium 

cells was determine using Cayman 8-isoprostane assay kit.  
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Kit Component 

8-isoprostane EIA antiserum, 8-isoprostane AChE tracer, 8-isoprostane standard, EIA buffer 

concentrate (10X), wash buffer concentrate (400X), Tween 20, mouse antirabbit IgG coated 

plate, Ellman
΄
s reagent. 

Principle 

Competition between 8-isoprostane and an 8-isoprostane acetylcholinesterase (AChE) 

conjugate (8-isoprostane tracer) for a limited number of 8-isoprostane specific rabbit 

antiserum binding sites forms the basis of this assay. The amount of 8-isoprostane tracer that 

is able to bind to the rabbit antiserum is inversely proportional to the concentration of 8-

isoprostane in the well; this is owing to the fact that the concentration of 8-isoprostane tracer 

is held constant whilst the concentration of 8-isoprostane varies. The rabbit antiserum 8-

isoprostane (either free or tracer) complex binds to the rabbit IgG mouse monoclonal 

antibody, which has been previously attached to the well. Subseqently, the plate is washed to 

remove any unbound reagents, and next, the Ellmans reagent containing the substrate to 

AChE is added to the well. This enzymatic reaction results in the formation of a product 

with distinct yellow colour, which was measured at 412nm. The strength of this colour is 

equivalent to the amount of 8-isoprostane tracer bound to the well, which is inversely 

proportional to the amount of free 8-isoprostane in the well during incubation. 

Absorbance α [bound 8-isoprostane tracer] α 1/[8-isoprostane] 
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Procedure 

A volume of 50 µl of EIA buffer and 50 µl of culture medium was added to non-specific 

binding wells. Then 50 µl of culture medium was added to maximum binding (Bo) wells. A 

volume of 50 µl from each of the eight standards which were diluted in culture medium (0.8-

500 pg/ml) was added to standard wells in duplicate. The remaining wells were coated with 

50 µl/well of culture medium sample. A volume of 50 µl of 8-isoprostane tracer was added 

to each well with the exception of the total activity (TA) and the blank wells. Next, 8-

isoprostane EIA antiserum (50 µl) was added to each well with the exceptions of the total 

activity well, the non-specific binding, and the blank wells. Subsequently, the plate was 

covered with a plastic film and incubated for 18 hours at 4
o
C. Later, the wells were emptied 

and rinsed five times with wash buffer. A volume of 200 µl of Ellman
’
s reagent, which was 

reconstituted immediately before use, was added to each well. Next, 5 µl of tracer was added 

to the total activity wells. Next, the plate was covered with plastic film and placed on an 

orbital shaker in dark for 90–120 minutes at room temperature in order to allow the plate to 

develop. Finally, the plate was read at a wavelength 405nm. 

Calculation of 8-isoprostane concentration 

The mean of non-specific binding well absorbance readings was calculated. The mean of 

maximum binding (Bo) wells absorbance readings was calculated. The mean of the non-

specific binding was subtracted from mean of Bo; this is referred to as the corrected Bo or 

corrected maximum binding. Next, the percentage sample or standard/maximum bound 

(%B/ Bo) was calculated for the remaining wells; this was done by subtracting the mean non-

specific binding absorbance from the standard or sample absorbance, and the result was then 

divided by the corrected Bo. The detection limit of this assay is (80% B/ Bo), 2.7 pg/ml. 
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2.9 Measurement of active caspase 3 in rat cardiac myocyte cells 

Kit component 

Active Caspase-3 Microplate 96 well microplate (12 strips of 8 wells) coated with 

monoclonal antibody specific for caspase-3. 

Active Caspase-3 Conjugate Concentrate 0.75ml of a 23-fold concentrated solution 

containing streptavidin conjugated to horseradish peroxidase (HRP), with preservatives. 

Type 12 Conjugate Diluent: 12.5ml of buffer for diluting the conjugate concentrate, with 

preservatives. 

Active Caspase-3 Standard: 40 ng of caspase-3 derivatised with a biotinylated inhibitor in a 

buffered protein base, with preservatives, lyophilised. 

Calibrator Diluent RD5-20 Concentrate (5X): 21ml of a concentrated buffered protein 

solution, with preservatives. 

Extraction Buffer Concentrate (5X): 21ml of a concentrated buffered protein solution 

containing surfactants, with preservatives. 

Biotin-ZVKD-fmk Inhibitor: 400 g of biotinylated ZVKD-fmk inhibitor, lyophilised. 

Wash buffer concentrate- 21ml of a 25-fold concentrated solution of a buffered surfactant, 

with preservative. 

Colour Reagent A: 12.5ml of stabilised hydrogen peroxide. 

Colour Reagent B: 12.5ml of stabilised chromogen (tetramethylbenzidine). 
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Stop Solution: 23ml of diluted hydrochloric acid 

Principle  

Active caspase-3 concentrations were measured by a quantitative sandwich enzyme 

immunoassay technique. The active Caspase-3 ELISA uses a biotinylated caspase inhibitor 

to covalently alter the large subunit of caspase-3. The inhibitor is added directly to the 

culture medium where it enters apoptotic cells and makes a stable thio-ether bond with the 

cysteine on the active site. Notably, the inhibitor does not covalently alter inactive caspase-3, 

which is the basis for discrimination between active and inactive caspase-3. Subsequently, 

cells are solubilised in a denaturing extraction buffer and diluted in order to decrease 

denaturant concentration. Caspase-3 specificity is obtained through the use of a caspase-3 

specific monoclonal antibody coated on the microplate. Both caspase-3 zymogen and the 

large subunit are captured by the monoclonal antibody. Detection is with HRP-streptavidin 

which binds the biotin on the inhibitor attached to the caspase-3 large subunit. Owing to the 

fact that the zymogen is not modified with biotinylated inhibitor, it is not detected by HRP-

streptavidin. The ELISA measures the relative amount of caspase-3 large subunit modified 

with biotin-ZVKD-fmk (fluoromethylketone). Owing to the fact that the modification 

requires that the large subunit is present in an active caspase-3, the amount of active caspase-

3 is directly proportional to the amount of biotin-ZVKD-fmk-modified large subunit 

Procedure 

Following the induction of apoptosis in cardiac myocyte, 2 µl of 5 mM biotin-ZVKD-fmk 

per 1ml of culture medium was added to obtain a final concentration of 10 µM. Cells were 

incubated with biotin-ZVKD-fmk inhibitor for 1 hour. Following the 1 hour incubation in 

the CO2 incubator, the medium was removed and cells were gently rinsed with phosphate 
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buffered saline (PBS). A volume of 110 µl extraction buffer (1X) containing protease 

inhibitors was added. Next, cells were scraped with plastic 200 µl pipette tips. Following, the 

six well plates was covered and placed in refrigerator at 2–8
o
C overnight. The subsequent 

day, 400 µl per well of calibrator diluents was added and the 6 well plate was rocked to mix. 

Diluted cell extract was collected and vortexed for 1 minute. A volume of 100 µl of standard 

or samples was added to well. Next, the plate was covered with adhesive strip and incubated 

for 2 hours at room temperature. The wells were then washed four times with washing 

buffer. The wells were then incubated for 1 hour at room temperature, with 100 µl of active 

caspase-3 conjugate. Next, the wells were washed four times with washing buffer and 

incubated with 100 µl substrate solution for 30 minutes at room temperature, and notably 

protected from light. The reaction was terminated by the addition of 100 µl of diluted 

hydrochloric acid and the absorbance was read at 450nm. The results were expressed as 

ng/mg protein. 

2.10  Measurement of Active p53 in rat cardiac myocyte Cells 

Kit content 

Active p53 capture antibody 

Active p53 biotin labelled ds oligonucleotide 

Active p53 unlabeled ds oligonucleotide 

Streptavidin- horseradish peroxidise (streptavidin-HRP) 



  

57 

 

Other required reagents 

Substrate Solution: 1:1 mixture of Colour Reagent A (H2O2) and Colour Reagent B 

(Tetramethylbenzidine) (R&D Systems) 

Stop Solution: 2 N H2SO4 (R&D Systems). 

Principle 

Active p53 concentrations were assayed by DuoSet intracellular (IC) enzyme-linked 

immunosorbent assay (ELISA) development system. Reagents used in this form of ELISA 

are sensitive and convenient assays to measure intracellular protein levels in cell lysates. 

This signal transduction assay makes an excellent alternative to Western blot. 

Nuclear extracts from rat cardiac myocyte were incubated with a biotinylated double-

stranded (ds) oligonucleotide containing a consensus p53 binding site. P53-ds 

oligonucleotide complexes were later captured by an immobilied antibody specific for p53. 

After washing away unbound material, detection utilising streptavidin-HRP was performed. 

The specificity of the assay was demonstrated with the use of an unlabelled ds competitor 

oligonucleotide. 

Sample preparation 

The cells were washed with PBS. Next, cells were solubilised with 400 μl of freshly 

prepared lysis Buffer A comprising 10 mM HEPES (pH 7.9), 1.5 mM MgCl2, 10 mM KCl, 0.5 

mM DTT, 2 mM sodium orthovanadate (activated Na3VO4), 3μg/ml aprotinin, 25μg/ml 

leupeptin, 25 μg/ml pepstatin, 25 μg/ml chymostatin, 0.2 mM phenylmethylsulfonylfluoride 

(PMSF), and 5 mM sodium fluoride NaF. Then, in a microcentrifuge, the solubilised cells 
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were centrifuged at 16,000xg for 5 minutes at 4
o
C. Next, the cytosolic supernatant was 

discarded and the nuclear pellet was solubilised with 200 μl freshly prepared lysis buffer B, 

which is composed of 20 mM HEPES (pH 7.9), 1.5 mM MgCl2, 420 mM NaCl, 0.5 mM 

DTT, 25% glycerol, 2 mM activated Na3VO4, 25 μg/ml leupeptin, 25 μg/ml pepstatin, 25 

μg/ml chymostatin, 0.2 mM PMSF, 3 μg/ml aprotinin, and 5 mM NaF. Subsequently, 

nuclear extract were vortexed for 10 seconds and incubated on ice for 20 minutes. Finally, 

samples were centrifuged at 16,000 xg for 5 minutes at 4
o
C. 

Procedure 

A 96-well plate was coated with 100 µl per well of diluted capture antibody. The plate was 

covered and was incubated overnight at room temperature and washed three times with 

washing buffer composed of PBS containing 0.05% Tween 20. Next, it was blocked with 

5% bovine serum albumin (BSA) in wash buffer and incubated for 2 hours at room 

temperature. Following 45 minutes before the end of incubation time, the samples were 

prepared. To 20 µg of nuclear extract, 3µl of biotin labelled ds oligonucleotide was added in 

an eppendorf and the final volume was adjusted to 30 µl with lysis buffer B and accordingly 

incubated at room temperature for 30 minutes. Thereafter, 200 µl of reagent diluent (5% 

BSA in wash buffer) was added to each sample and mixed well. The wells were then 

incubated and sealed for 2 hours with 100 µl of sample. The wells were then washed five 

times with a washing buffer and incubated with 100 µl of streptavidin-HRP diluted in 

reagent diluent (1:40) for 20 minutes, and protected from light at room temperature. The 

wells were then washed five times with washing buffer followed by the addition of 100 µl 

substrate solution and incubated for 20 minutes at room temperature. The reaction was 

terminated by the addition of 50 µl of stop solution (2 N H2SO4) and the absorbance was 

measured at 450nm.  
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2.11  Measurement of total p53 in rat cardiac myocyte cells 

Kit content 

Total p53 capture antibody 

Total p53 detection antibody 

Total p53 standard 

Streptavidin- horseradish peroxidise (streptavidin-HRP). 

Other required reagents 

Substrate Solution: 1:1 mixture of Colour Reagent A (H2 O 2 ) and Colour Reagent B 

(Tetramethylbenzidine) (R&D Systems) 

Stop Solution: 2 N H2 SO4 (R&D Systems). 

Principle 

Total p53 concentrations were determined through the use of sandwich ELISA. In this 

method, both phosphorylated and unphosphorylated p53 were bound by immobilised capture 

antibody specific for p53. A biotinylated detection antibody specific for p53 is used to detect 

both phosphorylated and unphosphorylated protein using a standard streptavidin-HRP 

format after washing away unbound material. 
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Sample preparation 

The cells were rinsed twice with PBS. Next, the cells were solubilised with 200 μl of freshly 

prepared lysis buffer comprising 1 mM EDTA, 0.5% triton X-100, 10 µg/ml leupeptin, 10 

µg/ml pepstatin, 3 µg/ml aprotinin, 150 mM NaCl, 10 mM NaF, 1 mM DTT, 20 mM β-

glycerophosphate in PBS, pH 7.2–7.4. Subsequently, samples were left on ice for 15 

minutes, with samples then centrifuged at 2000g for 5 minutes. The supernatant was 

transferred to a clean test tube. 

Procedure 

A 96-well plate was coated with 100 µl of capture antibody diluted to a working solution of 

4 μg/ml in PBS. The plate was sealed and incubated overnight at room temperature. Next, 

the plate was washed three times with a washing buffer comprising PBS containing 0.05% 

Tween 20. Subsequently, it was blocked with blocking buffer (1% BSA, 0.05% NaN3, in 

PBS, pH 7.2–7.4) and incubated for 2 hours at room temperature. The wells were next 

washed three times with washing buffer and incubated with 100 µl of sample or standard in 

IC diluent 4 consisting of 1 mM EDTA, 0.5% Triton X-100 in PBS, pH 7.2–7.4. The plate 

was then covered and left at room temperature for 2 hours. Thereafter, the wells were 

washed three times with washing buffer and incubated for 2 hours, accordingly sealed at 

room temperature with detection antibody diluted to a working solution of 1µg/ml in 1% 

BSA in PBS, pH 7.2–7.4. Following, the wells were washed three times with washing buffer 

and a freshly prepared streptavidin-HRP diluted in 1% BSA in PBS (1:80). Wells were 

incubated for 20 minutes at room temperature, and thereby protected from light. Following, 

the wells were washed three times with washing buffer and 100 µl of substrate solution was 

added to each well and permitted to develop for 20 minutes at room temperature. Finally, the 
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addition of 50 µl stop solution (sulphuric acid) stopped the reaction and the absorbance was 

measured at 450nm. 

2.12  Protein estimation (Bio-rad Assay) 

In order to determine the protein concentration in cardiac myocyte, 0.5% bovine serum 

albumin (BSA) was prepared (0.5mg/ml in distilled water). The volume of Biorad dye was 

diluted in water at a ratio of 1:5. BSA standard for protein estimation were prepared, as can 

be seen in Table 2.1. From the samples taken, a volume of 10 µl was mixed with 40 µl 

distilled water and completed to one ml with 950 µl of diluted bio-rad solution. Moreover, 

standards and samples were measured with spectrophotometer at 595nm. 
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Table 2.1: Standard curve preparation for protein estimation. 

volume of BSA 

stock (µl) 

Volume of dH2O 

(µl)  

Volume of diluted 

Bio-rad (µl) 
BSA standard 

0 50 950 0 

10 40 950 5 

20 30 950 10 

30 20 950 15 

40 10 950 20 
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2.13 Cell culture techniques 

Neonatal, ventricular rat cardiac myocytes (LONZA, UK) were maintained in rat cardiac 

myocyte complete medium (LONZA, UK), and were routinely cultured in T-75 flasks pre-

coated with poly-l-lysine. Cells were grown at 37
o
C under 95% air/ 5% CO2. Confluent cells 

were collected via trypsinisation, and passaged every 3 days. Cells used for experiments 

were between passages 2 and 8. 

When cells were confluent, the medium was then removed. Next, the cells were rinsed twice 

with 10ml of PBS, and 1x trypsin (5-10ml) was added to the cells in T-75 flasks for 5-7 

minutes in the incubator. Once the cells detached, 5-10ml of cardiac myocyte complete 

medium was added to neutralize the trypsin action. Then cell suspension was centrifuged for 

5 minutes at 1000 g. The supernatant was discarded, and re-suspension of the pellet in 1ml 

fresh medium was carried out, and the number of cells per ml determined. 

Preparation of freezing medium  

The freezing medium was prepared with 10% DMSO in 90% FBS. Briefly, 2.5ml of DMSO 

in 22.5ml of cold FBS was mixed and kept at 20
o
C until used. Fresh freezing medium was 

then prepared or defrosted shortly before use. 

Freezing of cells 

From one confluent 75 cm
3
 flask, two cryotubes were frozen. Approximately 3.5 x 10

5
 cells 

per cryovial were frozen. Cryovials containing cells were kept at –20
o
C for 30 minutes, at –
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80
o
C overnight, and thereafter transferred to the fume phase of liquid nitrogen. Cells were 

ultimately stored in liquid nitrogen for an indefinite time 

Thawing of cells 

From liquid nitrogen, frozen cryotubes of cells were taken and disinfected by spraying with 

70% ethanol. The pressure inside the tubes was liberated inside a laminar flow hood, and the 

frozen cells were then slowly defrosted at 37°C into a T-75 flask containing pre-warmed 

complete medium. Subsequently, the resulting cell suspension was transferred and then 

incubated at 37°C. 

2.14  Cell counting 

With the aid of a Coulter counter, cells were counted. Briefly, 0.1ml of cell suspension was 

added to 20ml isotone solution in a counting chamber, mixed and counted at least three 

times. Cells in suspension were either subcultured or frozen in liquid nitrogen. Cell numbers 

correspond to: 

X (cell number) x (20/0.5) = X x 40 (dilution factor) 

Notably, this equation was used when 0.5ml of trypsinised cell suspension was added to 

20ml of isoton solution and the number of cells was counted using the Coulter counter. 

2.15  3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium (MTS) assay 

Approximately 1 x 10
3
 to 1 x 10

10
 rat cardiac myocyte were seeded in 100μl of rat cardiac 

myocyte complete medium in 96-well plates. The plate was incubated at 37°C in a 

humidified, 5% CO2 atmosphere, and permitted to attach for approximately 4 hours. 



  

65 

 

Following cell attachment, a different treatment was applied for 24 hours. In order to 

determine cell number in 96-well plate, the cell proliferation of cultured cells was quantified 

using the MTS kit (Cell Titer 96® AQueous One Solution cell proliferation assay). The 

assay uses a solution of MTS (Owen’s reagent, a tetrazolium compound and phenazine 

methosulfate, an electron coupling reagent), and was carried out according to the 

manufactureer’s instructions. In brief, 20μl of Cell Titer 96® AQueous One Solution reagent 

was added to each 96-well plate containing 100μl of cell suspension. Subsequently, cells 

were incubated for 2 hours in a humidified, 5% CO2 atmosphere, and the absorbance was 

then accordingly recorded at 490nm using an ELISA plate reader. The proliferation of 

cultured cells was estimated by determining the mean absorbance ± SD of three experiments. 

2.16  Detection of apoptosis with propidium iodide (PI) /4,6-diamidino-2-

phenylindole (DAPI) staining  

Glass cover slips were soaked in pure ethanol 100% for 20 minutes. Subsequently, cover 

slips were placed in 24 well plate and left to air dry inside the biosafety cabinet. Rat cardiac 

myocyte 5X10
4 

were seeded in 24 well plate that was previously coated with the substrate, 

poly-l-lysine. After 24 hours, cell attachment staurosporine 0.25 µM was permitted, and 

different drug treatments were added in a fresh complete medium for 24 hours. One hour 

before the end of the experiment, propidium iodide 10 µg/ml was added and incubated with 

protection from light. Afterwards, the medium was then discarded and cells washed twice 

with PBS. Next, the cells were fixed in 4% paraformaldehyde (50 µl/well) and incubated at 

room temperature for 20 minutes. Subsequently, the paraformaldehyde was discarded and 

cells rinsed with PBS. Finally, one drop of mounting medium with DAPI (Vectashield 

mounting medium for fluorescence with DAPI) was placed on a slide and the cover slip was 
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put upside down on the mounting medium, with the slides kept at 4
o
C. The next day, slides 

were examined using fluorescent microscopy. 

Molecular biology techniques 

2.17  RNA extraction for polymerase chain reaction (PCR) array and real 

time PCR 

The relative levels of mRNA expression for a number of genes involved in oxidative stress 

were determined by real-time PCR and microarray. Qiagen column extraction system was 

used to extract total RNA. Rat cardiac myocyte were cultured on 6 well plate to confluence 

before the addition of AGE (100 µg) or DOX (10 µM) or both of them for 24 hours. The 

cells were washed twice with PBS then 750 µl of trypsin 1x was added per well and then 

incubated for 2–5 minutes. Next, when the cells detached, 750µl of cardiac myocyte 

complete medium was added to counteract the trypsin action. Next, the cell suspension was 

centrifuged for 5 minutes at 1000g. The supernatant was discarded, and re-suspention of the 

pellet in 500 µl PBS was carried out and centrifuged at 1500g for 5 minutes. Later, 

supernatant was discarded and pellet stored in –80
o
C until analysis. To the pellet, 1 volume 

(350 µl) of 70% ethanol was added, and mixed well via pipetting. The samples were then 

transferred to an RNeasy MinElute spin placed in a 2ml collection tube, and accordingly 

centrifuged (8500g for 30 seconds). During this process, RNA bound to the RNeasy silica 

gel membrane. A volume of 350 µl of RW1 buffer (containing a guanidine salt) was added 

to the column and centrifuged (8500g for 30 seconds). A DNase incubation combination was 

prepared by adding 10 µl DNase 1 to 70 µl buffer RDD. Next, the total volume was pipetted 

directly into the RNase silica gel membrane and incubated at room temperature for 15 

minutes in order to digest and remove any traces of DNA. After that, the column was rinsed 
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clean of DNase and other contaminants by adding 350 µl of RW1 buffer and centrifuged for 

30 seconds at 8500g. The column was then placed into a new 2 ml collection tube, and     

500 µl buffer PRE was added to wash the colum by centrifuging for 30 seconds at 8500g. 

Following this, 500 µl of 80% ethanol was added to the RNeasy MinElute column and 

centrifuged for 2 minutes at 8500g in order to rinse the column. The column was then 

transferred to a new 2 ml collection tube and centrifuged at full speed for 5 minutes with the 

lids open so as to completely dry the column and ensure that no ethanol was carried over 

during RNA elution. Afterwards, the column was placed into a new 1.5 ml collecting tube, 

and 30 µl of RNase-free water was pipetted directly to the centre of the spin column 

membrane and centrifuged for 1 minute at full speed in order to elute the RNA. Following, 

RNA samples were stored at –70
o
C. 

Measurement of RNA concentration  

The concentration of known volume of RNA was calculated through measuring absorbance 

at 260nm and 280nm using an ultrospec 2000 spectrophotometer, which was blanked against 

water. Absorbance ratio A260 /A280 was calculated to assess RNA quality. An absorbance 

ratio of 1.8-2 indicates pure RNA.  

2.18  cDNA synthesis using RT
2
 first Strand kit 

An amount of 2.4 µg of RNA was used from each sample. In a sterile PCR tube, 2µl GE (5X 

g DNA elimination buffer) was added to 2.4 µg total RNA and was made up with water 

(H2O) to a final volume of 10 µl and then mixed gently with a pipettor. Next, the PCR tubes 

were incubated at 42
o
C for 5 minutes, followed by immediate chilling on ice for 2 minutes. 

Then, RT cocktail was prepared which composed of 4 µl BC3 (5X RT buffer), 1 µl P2 

(primer and external control mix), 2 µl RE3 (RT enzyme mix 3) and 3 µl water to get a final 
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volume of 10 µl for one reaction. A volume of 10 µl of RT cocktail was added to each 10 µl 

genomic DNA elimination mixture and mixed gently with a pipettor. Subsequently, the tubes 

were incubated at 42
o
C for exactly 15 minutes, and the reaction was immediately stopped by 

heating at 95
o
C for 5 minutes. To each 20

 
µl of cDNA reaction, 91 µl of water was added 

and mixed well. Finally, the first strand cDNA synthesis reaction was stored at –20
o
C. 

2.19  Rat oxidative stress and antioxidant defence PCR array 

The most sensitive and reliable method for gene expression analysis is real-time reverse 

transcription (RT) PCR. The RT
2
 Profiler PCR Array takes advantage of real-time PCR 

performance and combines it with the ability of microarrays in order to detect the expression 

of many genes simultaneously.  

The procedure of PCR Array starts by converting RNA samples into first strand cDNA the 

template for the polymerase chain reaction utilising RT
2
 First Strand Kit. Subsequently, 

cDNA template was mixed with RT
2
 qPCR Master Mixes. The mixture was then pipetted 

into each well of the plate containing pre-dispensed gene specific primer sets. PCR was then 

performed, and finally, the relative expression was determined with Stratagene MX3000p 

and the DDCt method. 

The expression of 84 genes relating to oxidative stress was achieved with the use of the rat 

oxidative stress and antioxidant defence RT² Profiler™ PCR Array. The genes included in 

this array are peroxidases, such as glutathione peroxidase (Gpx) and peroxiredoxins (Prdxn). 

The genes involved in ROS metabolism, such as oxidative stress responsive genes, those 

involved in superoxide metabolism, such as superoxide dismutases (SOD), and oxygen-

transporter genes are also included in this array. The expression of a specific altered gene 

relating to oxidative stress in this array was further tested with real-time PCR. 
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2.20  Quantitative real-time reverse transcription PCR (RT2 qPCR) 

The presence and number of copies of a specific DNA sequence in a given sample can be 

measured with quantitative real-time PCR. It is known as real-time because, unlike normal 

PCR, the DNA is quantified after each amplification cycle. By combining real-time PCR 

with reverse trancriptase PCR (RT-PCR), quantification of low-abundance mRNA using 

fluorescent dye is achievable. Furthermore, relative gene expression in a particular cell at a 

particular time can be measured. 

Real-time PCR  

Assessment of the expression of oxidative stress genes was quantified using RT2-qPCR. 

Semi-quantitative reverse transcription polymerase chain reaction (Semi-qRT-PCR) was 

applied to measure the relative quantities of oxidative stress gene transcripts in rat cardiac 

myocytes. Moreover, the total RNA was extracted, as described in Section 2.17, and was 

transformed directly to cDNA synthesis, as described in Section 2.18. The primers for 

oxidative stress genes and housekeeping genes were ordered from SA Bioscience, USA. 

cDNA was amplified using RT2-qPCR with fluorescence using SYBR Green, with 

fluorescence binding to all newly synthesized double-stranded DNA. Measurement of the 

increase in the fluorescence intensity allowed determination of the initial concentration. 

Fluorescence is determined at the end of each PCR cycle and increases exponentially as the 

reaction progress. The threshold cycles (Ct) for each reaction is calculated based on the point 

at which a statistically significant increase in the amount of PCR product is detected. The Ct 

inversely indicates the number of target sequences present in each sample prior to 

amplification (Higuchi et al., 1993).  
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For each condition, reactions were conducted in triplicate and the mean Ct subsequently 

calculated. The amplification of a known mRNA concentration in serial dilutions was 

measured in order to determine the sensitivity of the expression. For all primers, PCR 

efficiency was assessed. 

Amplification of cDNA aliquots was carried out in 25 µl reaction volume containing 1 µl 

RT
2
 First Strand cDNA, and 1 µl of gene specific 10 µM PCR primer pair stock with 12.5 µl 

of RT
2
 SYPR Green qPCR master mix and 10.5 µl H2O. The thermal cycle conditions 

consist of an initial denaturation step at 95
o
C for 10 minutes, followed by 40 cycles at 95

o
C 

for 15 seconds, 60
o
C for 1 minute, and 72

o
C for 30 seconds. The assessment of specificity of 

the amplified product was then performed through the evaluation of dissociation curves 

which showed product melting points.  

2.21  Reverse transcription-PCR (RT-PCR) 

The cDNA generated with the first strand kit was used in RT-PCR. In a 0.25ml PCR tube, 

cDNA 1 µl, primer 1 µl, and water 10.5 µl was mixed and then completed to a final volume 

of 25 µl with 12.5 µl of buffer using AmpliTaq PCR master mix kit (Applied Biosystem). 

PCR was accomplished using a PTC-200 programmable thermal controller (MJ Research, 

USA). The samples were denaturated at 95
o
C for 10 minutes, followed by 38 cycles of 

denaturation at 95
o
C for 30 seconds, primer annealing at 60 

o
C for 1 minute, and DNA 

extension at 72
o
C for 1 minute. 

2.22  Agarose gel electrophoresis of DNA 

PCR products were electrophoresed at 100 V through 2% agarose gel in Tris-borate-EDTA 

(TBE) electrophoresis buffer. A volume of 10 µl from sample was mixed with 10 µl of 2x 
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DNA dye and loaded on the agarose gel. The gels were then stained in a solution composed 

of 10 µl ethidium bromide in 100ml distilled water for 30 minutes. Thereafter, bands were 

visualised on an ultraviolet tranilluminator and photographed using Gene snap programme 

from G Box. 

2.23 Statistical analysis 

Statistical analyses were performed using the statistical software package SPSS (version 15; 

SPSS Inc., Chicago). Results were expressed as the mean ± standard error of the mean 

(SEM). The experimental data were statistically analysed using one-way analysis of variance 

(ANOVA) followed by the LSD test. The unpaired student t-test was used for two group 

statistical analysis. The level of significance was set at p < 0.05. 
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Chapter 3  Effect of aged garlic extract against doxorubicin–induced 

cardiotoxicity in rats and antitumor activityof doxorubicin in mice 

3.1 Introduction 

The clinical use of DOX is restricted by the dose-dependent side effects of cardiotoxicity, 

which may lead to irreversible cardiomyopathy, and ultimately heart failure (Shan et al., 

1996). The cardiotoxic effects of DOX may occur promptly after a single dose, or several 

weeks to months after repetitive DOX administration. A number of explanations account for 

the DOX cardiotoxicity; free radical production, calcium overloading, mitochondrial 

dysfunction and peroxynitrite formation have all been proposed as mechanisms (Olson and 

Mushlin, 1990; Mihm et al., 2002; Denicola and Radi, 2005; Mukhopadhyay et al., 2009). 

The semiquinone form of DOX is a toxic, short-lived metabolite that interacts with 

molecular oxygen and starts a cascade of reactions, producing ROS (Gilleron et al., 2009; 

Thorn et al., 2010). The free radical hypothesis is well accepted and documented. Owing to 

the proposed role of free radicals in DOX cardiotoxicity, compounds with antioxidant 

activity may protect against DOX-induced toxicities in the heart (Siveski-Iliskovic et al., 

1995; Qin et al., 2008).  

Aged garlic extract has been reported to have powerful antioxidant and free radical 

scavenging properties (Borek, 2001; Drobiova et al., 2009) and may prove useful as a 

protectant against DOX-induced cardiotoxicity. 
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The current study included four groups of rats, control, AGE, DOX, and AGE+DOX treated 

rats.This study aimed to investigate the ability of AGE in terms of protecting against DOX-

induced cardiotoxicity. The specific objectives were: 

To determine serum CPK, LDH, MDA, and TAS in the four different groups of rats  

To study histopathological changes in rats treated with DOX, AGE or both. 

To evaluate the effect of AGE on the antitumour activity of DOX by measuring survival of 

mice bearing Ehrlich ascites carcinoma (EAC) tumour and determination of effect of AGE-

pre-treatment on DOX uptake in EAC-cells 

To determine tissue distribution of DOX in the presence and absence of AGE in the plasma, 

heart, liver, and kidneys of mice at different time points. 

3.2 Materials and Methods 

The AGE used in following experiments contained 28.6% extracted solids (286 mg/ml), and 

S-allyl cysteine, the most abundant water-soluble compound in AGE was present at 1.47 

mg/ml. 

Animal experiments part 1 

Wistar albino rats (8–10 weeks of age, 180–200g body weight) were obtained from King 

Fahad Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia. The 

animals were conditioned for one week at room temperature. A commercial balanced diet 

and tap water, was provided throughout the experiment ad libitum. This study was approved 

by the ethics committee of King Abdul Aziz University Medical Faculty. 
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Twenty-four male Wistar rats were divided into four equal groups, each comprising six 

animals, and housed in a room with regular light/dark cycle with free access to food and 

water. 

Two groups namely Group I and Group II were used as a control. Group I received normal 

saline, intraperitonealy ( i.p.), and distilled water per oral (p.o.). Group II received AGE 250 

mg/kg orally for 28 days. Group III received a single i.p. dose of DOX (25 mg/kg) on day 

27, following the successive administration of distilled water (0.5ml orally) (Venkatesan, 

1998). Group IV received a single i.p. dose of DOX (25 mg/kg) on day 27, following the 

successive administration AGE (250mg/kg orally). 

At the end of the experimental period (29 days), 48 hours, after DOX injection, rats were 

anesthetised and blood samples were collected from the ophthalmic artery in the orbital rim 

prior to sacrifice. Serum was separated and heart specimens were fixed in10% formalin for 

histopathological examination. Samples were then analysed for concentrations of serum 

CPK, LDH, MDA and TAS. 

The concentrations of serum total CPK were measured by the method described in Section 

2.3, serum LDH was assayed by the method described in section 2.4, the concentration of 

plasma and heart MDA was measured by the method described in Section 2.6, the 

concentrations of TAS in the serum were measured by the method described in Section 2.7, 

histopathological changes were examined as described in Section 2.5. 

Animal experiments part 2 

Female Swiss albino mice (8 weeks of age, 20–25g body weight) were obtained from King 

Fahad Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia. The 
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animals were acclimatised for one week at room temperature. A commercial balanced diet 

and tap water were given throughout the experimental period, ad libitum. A line of EAC 

cells was supplied by Prof Abdel-Moneim and maintained in our laboratory by weekly i.p. 

transplantation of 2.5 X 10
6 

cells/ mouse. This study was approved by the ethics committee 

of King Abdul Aziz University Medical Faculty.  

Evaluation of antitumour activity 

The effect of AGE on the antitumour activity of DOX was evaluated using the method of 

Donenko et al. (1991) with slight modification. In brief, EAC cells were injected i.p. into 

forty female Swiss albino mice (2.5 x 10
6 

cells/mouse). Subsequently, 24 hours later, mice 

were equally divided into four groups. In Group 1, mice were administered distilled water 

p.o. daily for six days and received saline 0.2 ml i.p. every other day for a total of 3 doses 

and served as the control group. In Group 2, mice were administered AGE 2860 mg/kg p.o. 

once daily for six days and served as the aged garlic group (Wang et al., 1999). In Group 3, 

mice were injected with DOX (2 mg/kg i.p.) every other day for a total of 3 doses and served 

as the DOX group. In Group 4, mice were administered AGEs 2860 mg/kg p.o. once daily 

for six days before DOX injection (2 mg/kg i.p.) every other day for a total of 3 doses served 

as DOX-aged garlic group. Average survival time for mice and long-term survivors are 

defined as the mice who survived to the end of experiment (90 days) without any apparent 

evidence of tumour cell growth. 

Effect of aged garlic extract pre-treatment on doxorubicin uptake in EAC-cells 

Ehrlich ascites carcinoma cells (EAC) were inoculated as described above at 2.5 x 10
6
 

cells/mouse. Twenty four hours later, AGE (2860 mg/kg p.o.) or an equal volume of saline 

was administered once per day for 6 days. On the 6
th

 day, DOX was injected i.p. in a single 
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dose (15 mg/kg). Six hours after DOX therapy, EAC-cells were withdrawn from each group, 

counted, homogenised and extraction of DOX was performed according to the method of 

Bachur et al. (1970). The concentration of DOX was measured spectrofluorometrically using 

a Perkin Elmer fluorescence spectrometer LS55 with excitation and emission wavelengths of 

470 and 585nm respectively. 

Tissue distribution of doxorubicin in the presence and absence of aged garlic extract 

Forty-eight female Swiss albino mice (20–25g) were inoculated with 0.2 ml of (2.5 x 10
6
) 

EAC i.p. Subsequently, 24 hours later, animals were divided into two groups (24 mice each): 

Group I was injected with DOX (15 mg/kg i.p.) 10 days following the administration of 0.2 

ml distilled water orally; Group II was injected with DOX (15 mg/kg i.p.) 10 days after 

administration of AGE 2860 mg/kg orally.  

At the end of the experiment, mice were anesthetised and blood samples were collected at 

24, 48, 72 and 120 hours following treatment from ophthalmic artery in the orbit rim prior to 

sacrifice. Serum was separated and the heart, liver and kidneys of each animal were 

dissected and used for determination of DOX according to the method of Bachur et al. 

(1970). 

3.3 Results 

Animal experiments part 1 

Serum total creatine phosphokinase 

The mean serum CPK for the four groups of male Wistar rats is shown in Figure 3.1. The 

results show that the mean ± SEM of the concentration of serum CPK was 383.5 ± 71.944 
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U/L for control rats, 457.66 ± 41.38 U/L for AGE treated rats, 1094 ± 158.43 U/L for DOX 

treated rats, 666 ± 25.82 U/L for AGE-DOX treated rats. There was no significant difference 

in serum CPK concentration between control and AGE treated rats. Nevertheless, the 

concentration of serum CPK was significantly (p<0.001) higher in DOX treated rats than 

control rats. This increase was significantly (p<0.05) lower with AGE-pre-treatment.  

Serum lactate dehydrogenase  

Figure 3.2 displays the mean ± SEM for serum LDH concentrations for the four groups. The 

mean ± SEM of the concentrations of serum LDH were 2414.33 ± 420.89 U/L for control 

rats, 3007.83 ± 278.19 U/L for AGE treated rats, 4325 ± 599.63 U/L for DOX treated rats, 

and 3018,17 ± 167.266 for AGE-DOX treated rats. There was a significant (p<0.05) increase 

in serum LDH concentration only in DOX treated rats as compared to control and AGE-

DOX treated rats. This increase was significantly lower with AGE pre-treatment (p<0.05). 

Plasma concentrations of malondialdehyde  

Figure 3.3 shows the calibration curve of MDA. Plasma concentrations of MDA are 

presented in Figure 3.4. The mean ± SEM of the concentrations of plasma MDA were 0.657 

± 0.436 µM for control rats, 5.53 ± 3.24 µM for AGE treated rats, 11.94 ± 1.96 µM for DOX 

treated rats, and 5.54 ± 1.88 µM for AGE-DOX treated rats. There was a significant (p<0.05) 

increase in plasma MDA concentration only in DOX treated rats as compared to control and 

AGE-DOX treated rats. Aged garlic extract pre-treatment significantly reduced the rise in 

plasma MDA, which was caused by DOX (p<0.05). 
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Heart concentrations of malondialdehyde  

Heart concentrations of MDA are shown in Figure 3.5. The mean ± SEM were 20.42 ± 3.95 

µM for control rats, 23.23 ± 2.95 µM for AGE treated rats, 38.77 ± 1.02 µM for DOX 

treated rats, and 22.77 ± 4.79 µM for AGE-DOX treated rats. There was a significant 

(p<0.001) increase in heart MDA concentration only in DOX treated rats when compared 

with control. Furthermore, there was a significant increase in heart MDA concentration 

compared with AGE-DOX treated rats (p<0.05). Aged garlic extract pre-treatment prevented 

DOX-induced increased MDA production in rat heart. 

Serum total antioxidant status  

Antioxidant activity was assessed by measuring TAS. The mean serum TAS for the four 

groups of male Wistar rats is shown in Figure 3.6. The results showed that the mean ± SEM 

for serum TAS was 1.22 ± 0.058 mmol/L for control rats, 1.36 ± 0.01 mmol/L for AGE 

treated rats, 1.09 ± 0.05 mmol/L for DOX treated rats, 1.22 ± 0.01 mmol/L for AGE-DOX 

treated rats. As expected, there was a significant increase in TAS (p < 0.05) in AGE treated 

rats as compared to control rats. A significant (p<0.05) decrease in TAS was observed with 

DOX treated rats as compared to control and AGE-DOX treated rats. 
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Figure ‎3.1: Effect of DOX (25 mg/kg) alone or after pretreatment with AGE on the activity 

of cardiac enzyme CPK. Data are presented as mean ± SEM (n = 6). ** Significantly 

different from control (p< 0.001), # significantly different from DOX (p<0.05). No 

significant difference between between AGE and AGE+DOX (p>0.05, one way ANOVA 

with LSD post test). 
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Figure ‎3.2: Effect of DOX (25 mg/kg) alone or after pretreatment with AGE on the serum 

LDH activity (U/L) of male Wistar rats. The values are presented as mean ± SEM (n=6). * 

Significantly different from control (p< 0.05), # significantly different from AGE+DOX 

(p<0.05). No significant difference between between AGE and AGE+DOX (p>0.05, one 

way ANOVA with LSD post test). 
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Figure ‎3.3: The calibration curve of MDA. This curve is typical of 3 different experiments   
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Figure ‎3.4: Effect of DOX (single dose 25 mg/kg, i.p.) alone and after pre-treatment with 

AGE (250 mg/kg, p.o.) on plasma malonyldialdehyde (MDA) activity (µM/g tissue) of male 

Wistar rats. Results are expressed as means ± SEM (n = 6). * Significantly different from 

control (p< 0.05), # Significantly different from AGE+DOX (p<0.05). No significant 

difference between between AGE and AGE+DOX (p>0.05, one way ANOVA with LSD 

post test). 
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Figure ‎3.5: Effect of DOX on heart homogenate malonyldialdehyde (MDA) activity (µM/g 

tissue; single dose 25 mg/kg, i.p.) alone and after pre-treatment with AGE (250 mg/kg, p.o.) 

in male Wistar rats. The values are presented as mean ± SEM (n=6). ** Significantly 

different from control (p< 0.001), # significantly different from AGE+DOX (p<0.05). No 

significant difference between between AGE and AGE+DOX (p>0.05, one way ANOVA 

with LSD post test). 
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Figure ‎3.6: Effect of DOX on serum total antioxidant status (TAS) activity (mmol/L; single 

dose 25 mg/kg, i.p.) and /or AGE pre-treatment (250 mg/kg, p.o.) in male Wistar rats. The 

values are presented as mean ± SEM (n=6). * Significantly different from control (p< 0.05), 

# significantly different from AGE+DOX (p<0.05). No significant difference between 

between AGE and AGE+DOX (p>0.05, one way ANOVA with LSD post test). 
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Structural and ultrastructural changes in rat heart  

In the four groups of rats namely, control, AGE, DOX, AGE+DOX treated rats, light and 

electron microscopic analyses of left ventricle were carried out. Figure 3.7 show normal 

cardiac myocytes, oval central nuclei and thin wall blood capillaries Light microscope 

examination of DOX-treated heart stained with hematoxylin and eosin, showed periarterial 

fibrosis, loss of striation and increase in inflammatory cells as compared with control rats ( 

Figure 3.8). The histopathologic changes induced by DOX were less in AGE+ DOX treated 

rats. Rats treated with AGE + DOX showed normal appearance of nuclei and striation. There 

was noticeable increase in blood vessels in the heart of AGE+DOX treated rats (Figure 3.9). 

Furthermore, there was extensive cardiac damage in DOX-treated rats as shown by the 

electron microscopic study. Figures 3.10 and 3.11 demonstrate normal shape mitochondria, 

tubular cristae and glycogen deposition as shown under the electron microscopic 

examination of control and AGE-treated rats, respectively. Rats treated with DOX displayed 

mitochondrial degeneration and swelling, intracytoplasmic vacuolization, and focal 

myofilament disarrangement (Figure 3.12) while the pre-treatment of rats with AGE caused 

remarkable reduction in the cellular damage (Figure 3.13). Similar to light microscopic 

observations, there was vascular congestion and increase in blood vessels with AGE pre-

treatment. 
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Figure ‎3.7: Photomicrographs of normal heart tissue. Histological section from the left 

ventricle showing normal cardiomyocytes (black stars), with oval vesicular central nuclei 

(dotted black arrow), together with thin wall blood capillaries (thick white arrow), and a 

branch of the coronary artery were seen amongst the cardiac fibres (thin black arrow) (H&E 

x40). 
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Figure ‎3.8: Light micrograph of DOX treated rat heart. (A) Dark small nuclei (black arrows 

and white dashed arrows). (B) Periarterial fibrosis (thick arrow), and increase in 

inflammatory cells (black arrows) (H&E x 40).  
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Figure ‎3.9: Photomicrographs from AGE + DOX treated cardiac tissue. (A) There was 

increase in sub pericardial vascularity (arrows) (H&E x 20). (B) Normal cardiomyocytes 

with normal appearance of nuclei and striation (star). The nuclei of the cells are oval 

vesicular and central. (C) Normal but dilated congested vessels among cardiac fibres were 

seen (H&E x40). 

A A 

C B 
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Figure ‎3.10: Electron photomicrograph of rat heart in control animals. (A) Normal 

mitochondria (stars) and myofibrils (arrows). (B) Normal heart tissue showing the numerous 

mitochondria (Mi) with tubular cristae (thick dark arrow) and myofibrils (MY). Glycogen 

granules (thin black arrows). Z line (white arrow). 

 



  

90 

 

 

Figure ‎3.11: Electron photomicrograph of heart tissue in AGE- treated animals. (A) Normal 

shape mitochondria and increased glycogen deposition. (B) Increased transcytoplasmic 

vesicles (white arrows) in the capillary wall. Note also the intraluminal cytoplasmic 

extension at the junctional region (thin black arrow).  
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Figure ‎3.12: Electron photomicrograph of heart tissue in DOX- treated animals. (A) Irregular 

wavy fibres, separated by wide tissue spaces (star). The cytoplasm contains tiny vacuoles 

(arrows) and dense mitochondria. Blood capillaries showed an irregular wall. (B) Increased 

trancytoplasmic vesicles in the wall blood capillaries (white arrows). Mitochondria were 

enlarged showing less dense matrix (thin black arrow). 
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Figure ‎3.13: Electron photomicrograph of heart tissue in AGE + DOX- treated animals. (A) 

Transcytoplasmic vesicles were increased in capillary wall. (B) Vascular congestion and 

increase in blood vessels with AGE pre-treatment. 
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Animal Experiment Part 2 

Survival of mice bearing EAC tumours 

Table 3.1 and Figure 3.14 show the effects of AGE pre-treatment on the cytotoxic activity of 

DOX against the growth of EAC cells inoculated i.p. into Swiss albino mice. Control 

tumour-bearing mice showed a mean survival time (MST) of 17 days, whereas, 

administration of DOX (2 mg/kg) for 3 doses increased the MST to 50 days, with 30% long 

term survivors. Aged garlic extract pre-treatment with 2860 mg/kg p.o. once daily for six 

days, increased the MST of tumour bearing mice treated with DOX to 88 days with 70% 

long-term survivors. 

Effects of aged garlic extract pre-treatment on doxorubicin uptake in EAC-cells 

Table 3.2 shows the cellular level of DOX in EAC-cells following treatment with a single 

dose of DOX (15 mg/kg) and/or after daily administration of AGE 2860 mg/kg for 10 days. 

AGE pre-treatment significantly increased the cellular level of DOX 6 hours after treatment 

(144.85 ng/108 cells compared with 81.11 ng/108 cells for DOX alone). 

Effects of aged garlic extract pre-treatment on doxorubicin tissue distribution 

Figure 3.15 shows the calibration curve of DOX. Figures 3.16–3.19 demonstrate tissue 

distribution of DOX (15mg/kg, i.p.) alone and /or after AGE pre-treatment (2860 

mg/kg,p.o.) daily for 10 days in serum heart, liver and kidney of female Swiss albino mice at 

24, 48, 72 and 120 hours. 

There was a significant increase in concentration of DOX in the serum of mice pre-treated 

with AGE (2860 mg/kg,p.o.) daily for 10 days at 24 hours (p< 0.001) as compared to mice 

treated with DOX (15 mg/kg) alone. The serum concentration of DOX in mice pre-treated 
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with AGE was significantly lower than in mice treated with DOX alone at 48 hours (p <0 

.05) (Figure 3.16). 

There was no significant change in concentration of DOX in the heart between the DOX-

treated group and combined drugs treated group at all times (Figure 3.17). Moreover, there 

was a significant decrease in the concentration of DOX in the liver of mice pre-treated with 

AGE (2860 mg/kg, p.o.) daily for 10 days at 24 and 72 hours (p<0.05) when compared with 

mice treated with DOX (15 mg/kg) alone. The liver concentration of DOX in mice pre-

treated with AGE was significantly higher than in mice treated with DOX alone after 48 

hours (p<0.05) (Figure 3.18). There was a significant decline in the concentration of DOX in 

the kidneys of mice pre-treated with AGE (2860 mg/kg, p.o.) daily for 10 days at 24 and 48 

hours (p<0.05) as compared to mice treated with DOX (15 mg/kg) alone (Figure 3.19). 
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Table ‎3.1: Effect of aged garlic extract pre-treatment on the antitumor activity of DOX in 

mice bearing EAC cells.  

Groups 

 

MST  LTS  % 

Control 

 

 

AGE 

 

DOX 

 

AGE plus DOX 

 

17.4±0.8432 

 

 

17.88±1.054 

 

50±9.345* 

 

88±11.532* 

0 

 

 

0 

 

30 

 

70 

 

 

 

  

MST (mean survival time) = average survival days of mice. LTS (long term survivors) are 

defined as the mice who survived to the end of experiment (90 days) without an apparent 

evidence of tumour cell growth.*Indicates significant change from control (p<0.05, one way 

ANOVA with LSD post test) 
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Figure ‎3.14: Effect of AGE pre-treatment on the anti-tumour activity of DOX in mice 

bearing EAC cells. Changes in % animal survival expressed as mean ± SEM. Each group 

consists of 10 animals.*p< 0.05, **p < 0.001 when compared with control, one way 

ANOVA with LSD post test).  
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Figure ‎3.15: The calibration curve of DOX. This curve is typical of 3 different experiments. 
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Table ‎3.2: Tumour cells concentration of DOX (single dose of 15 mg/kg, i.p.) alone and /or 

with AGE pre-treatment (2860 mg/kg) in mice bearing EAC cells. 

 Groups 

Time 

DOX (ng/10X10
6 
Cells) DOX+AGE 

(ng/10X10
6 
Cells) 

p-value 

6 hours 81.11±10.21 144.85±24.23 0.036
*
 

The values are presented as mean ± SEM (n=6). * Significant difference at p<0.05, unpaired 

student t-test)  
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Figure ‎3.16: Serum concentration/time profiles of DOX. Concentration/time profiles of 

DOX (single dose of 15 mg/kg, i.p.) alone and/or with AGE pre-treatment (2860 mg/kg p.o.) 

daily for 10 days in serum of mice bearing EAC. The values are represented as mean ± SEM 

(n=6). * Significant difference at p<0.05, **p < 0.001, one way ANOVA with LSD post test.  
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Figure ‎3.17: Heart concentration/time profiles of doxorubicin. Concentration/time profiles of 

DOX (single dose of 15 mg/kg i.p.) alone and/or with AGE pre-treatment (2860 mg/kg p.o.) 

daily for 10 days in heart of mice bearing EAC. The values are presented as mean ± SEM 

(n=6). No significant differences between DOX and DOX+AGE (p>0.05, unpaired student t-

test).   
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Figure ‎3.18: Liver concentration/time profiles of DOX. Concentration/time profiles of DOX 

(single dose of 15 mg/kg i.p.) alone and/or with AGE pre-treatment (2860 mg/kg p.o.) daily 

for 10 days in liver of mice bearing EAC. The values are presented as mean ± SEM (n=6). * 

Significant difference at p<0.05, unpaired student t-test.  
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Figure ‎3.19: Kidney concentration/time profiles of DOX. Concentration/time profiles of 

DOX (single dose of 15 mg/kg i.p.) alone or with/without AGE pre-treatment (2860 mg/kg 

p.o.) daily for 10 days in kidney of mice bearing EAC. The values are presented as mean ± 

SEM (n=6). *Significant difference at p<0.05, unpaired student t-test.   



  

103 

 

3.4 Discussion 

The ability of AGE to protect the heart against DOX-induced cardiotoxicity was tested in the 

current study. Aged garlic extract reduced the manifestation of DOX-induced cardiotoxic 

effects in rats. In the present study an animal model of acute cardiotoxicity was produced. 

The animal model used in this study is similar to previous reports (Kojima et al., 1994; Kang 

et al., 1996; Wu and Kang, 1998; Monnet and Orton, 1999; Nagi and Mansour, 2000; Al-

Majed et al., 2002; Liu et al., 2002; Yagmurca et al., 2003).  

The dose of DOX used in this study to induce cardiotoxicity in rats is similar to that used in 

other similar studies investigating the effects of DOX on serum cardiac enzymes in rats. Koti 

et al. (2009) studied the effects of lipostat on DOX-induced cardiotoxicity in albino rats. 

They showed that doxorubicin at a dose of 15mg/kg for two weeks induced cardiotoxicity, 

which was confirmed by a significant increase in cardiac enzyme biomarkers (CPK and 

LDH). Ibrahim et al. (2010) also showed that DOX at a dose of 2.5 mg/kg/twice weekly/for 

three weeks in Wistar rats caused significant elevation in serum levels of LDH and CPK of 

182.4% and 183.6%, respectively, when compared to the normal values. In another study 

conducted by Venkatesan (1998), the use of a single dose of DOX 30 mg/kg in male Wistar 

rats caused a significant increase in serum concentration of CPK and LDH compared with 

controls (p<0.001). The concentration of CPK and LDH increased by double when 

compared with control groups. Similarly, Mohamed et al. (2000) and Tatlidede et al. (2009) 

reported that serum CPK and LDH were increased in male Wistar rats following treatment 

with 20 mg/kg of DOX.  

Studies investigating the effects of AGE on DOX-induced cardiotoxicity are limited. The 

ability of AGE to protect against DOX induced cardiotoxicity in rats was reported by 
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Demirkaya et al. (2009). Moreover, it was found that AGE at a dose of 600 mg/kg/day p.o. 

for six weeks administered with 3.750 mg/kg DOX i.p. once a week for 4 weeks (total 

cumulative dose of 15 mg/kg) in Wistar rats caused a significant decrease in DOX-induced 

cardiac injury as determined histopathologically. The protective effect of AGE was more 

obvious in the electron microscopic evaluation. Similar to the present study, Demirkaya et 

al. (2009) report severe mitochondrial swelling, the disappearance of cristae, and a loss of 

myofibrillary structure in the DOX-treated group, all of which were markedly decreased in 

the AGE+DOX group. Another study by Kojima et al. (1994) reports that AGE (WG-1, a 

preserved stock solution; Wakunaga Pharmaceutical) in conjunction with 1.5 mg/kg DOX 

administered i.p. three times per week for 40 days (total cumulative dose of 25 mg/kg) 

highlights significantly less lipid peroxidation as well as no significant pathological heart 

lesions in mice compared with those treated with DOX alone.  

The results of DOX effects on MDA are in agreement with other studies in which DOX-

induced increased plasma and heart lipid peroxidation products either throughout 24 hours 

following DOX administration, on the 3
rd

 4
th

 days of DOX post-dosing injection or after 

cumulative treatment schedules (Luo et al., 1997; Wu and Kang, 1998; Luo et al., 1999; 

Antonio et al., 2005; Lai et al., 2010; Machado et al., 2010; Patel et al., 2010; Yalcin et al., 

2010). Treatment of male Wistar rats with a single dose of DOX 15 mg/kg, i.p. resulted in a 

significant increase in MDA 4 days following DOX administration (p<0.05 vs. control) 

(Elberry et al., 2010). Öz et al. (2006) report that DOX single dose 45 mg/kg significantly 

increased plasma MDA in male Wistar rats after 24 hours of DOX administration (p<0.05). 

Several studies suggest that DOX toxicity is related to oxidative stress and ROS generation 

(Bagchi et al., 1995, Khan et al., 2006, Ana Lucia Anjos et al., 2007, Injac et al., 2008). 

Zhou et al. (2001) found that cardiac myocytes isolated from rats following 6 weekly s.c. 
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injections of DOX (2 mg/kg) or an equivalent volume of saline showed a much higher rate 

of ROS formation compared to saline controls. This higher rate of ROS formation continued 

for 5 weeks following the last injection.    

In the current study, AGE minimized DOX induced oxidative stress which was manifested 

as reduced serum TAS, and increased lipid peroxidation products in the plasma and hearts 

from DOX treated animals. The increase in MDA production caused by DOX was greatly 

reduced in AGE+DOX-treated rats. The increased oxidative stress caused by DOX caused 

peroxidation of membrane lipids measured as MDA (DOX vs. control; AGE+DOX vs. 

DOX) probably altering normal cell function, since polyunsaturated fatty acids are usually 

considered highly susceptible to ROS attack.  

In the present study, AGE lowering effect on MDA production could be due to the presence 

of, SAC, the most abundant organosulfur compound in aged garlic extract.  Previous studies 

have suggested that SAC act as a scavenger of superoxide radical and it also increases Cu/Zn 

SOD activity (Kim et al., 2001). Aged garlic extract and its constituents have been reported 

to protect liver membranes from lipid peroxidation. It prevents both the formation of lipid 

peroxides and the physical damage they cause to membranes such as decrease of membrane 

fluidity or ability to exchange nutrients and waste across the membrane. 

It has been reported that the addition of AGE to liver cells results in a significant reduction 

in MDA concentration (Horie et al., 1989). Further studies by Horie et al. (1992) showed 

that the polysulphide fraction of AGE also significantly prevents lipid peroxidation of liver 

microsomes. It has been reported that AGE and S-allylcysteine (SAC) significantly prevent 

membrane damage, loss of cell viability, and lipid peroxidation in bovine pulmonary artery 

endothelial cells exposed to oxidized LDL (Durak et al., 2004).  



  

106 

 

Aged garlic extract possesses strong antioxidant activity. A study found that the treatment of 

streptozotocin-induced diabetic rats with 500 mg/kg garlic daily caused recovery of 

antioxidant activity reaching levels in excess of those observed in normal rats (Drobiova et 

al., 2009). 

The present study demonstrated that AGE enhanced the cytotoxic activity of DOX against 

the growth of Ehrlich ascites carcinoma cells. There is no reported study concerning the 

effects of AGE on anti-tumour effects of DOX. Some studies have shown that garlic 

possesses anti-tumour activity (Omar and Al-Wabel, 2009; Seki et al., 2000; Karasaki et al., 

2001; Kasuga et al., 2001; Chang et al., 2005). Garlic seems to target multiple pathways, 

including the inhibition of the mutagenesis, modulation of enzyme activities inhibition of 

DNA adduct, affecting the intrinsic pathway for apoptotic cell death and cell cycle 

machinery, all of which may lead to its anticancer activities (Sparnins et al., 1986; Sparnins 

et al., 1988; Zhang et al., 1989; Lin et al., 1994; Schaffer et al., 1996; Hageman et al., 

1997). It has been further proposed that the anticancer effect is owing to the organosulphur 

compounds in the garlic (Knowles and Milner, 1998). Moreover, the inhibition of tumour 

cell proliferation by organosulphur compounds has been described in several studies using 

different cell cultures (Sundaram and Milner, 1993; Takeyama et al., 1993; Sakamoto et al., 

1997; Seki et al., 2000). 

In the present study, AGE did not show anti-tumour activity by itself, but rather increased 

the anti-tumour activity of DOX against the growth of Ehrlich cells. Weisberger and Pensky 

(1958) have demonstrated in vitro and in vivo that thiosulfinate extracts of garlic inhibited 

the growth of malignant cells and also prevented the growth of sarcoma 180 ascites tumour. 

Recently, Hakimzadeh et al. (2009) studied the cytotoxic activity of garlic extract on Sk-
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mel3 cell line of melanoma. They concluded that garlic is a potentially useful anti-tumour 

agent against melanoma.  

Kasuga et al. (2001) conducted a study on ICR strain male mice (7 weeks old), which were 

inoculated in the hypoderm of the back with 10
6 

cells of Sarcoma-180 in 100 µL of PBS. 

Twenty-four hours following the carcinoma cell inoculation, garlic preparations were 

administrated orally utilising a stomach tube at doses of 10ml/kg every other day for 3 

weeks (n = 11 administrations). They conclude that AGE inhibited the growth of sarcoma-

180 cells transplanted in mice and enhanced natural killer (NK) and killer cell activities. 

Previous studies have reported similar findings (Kyo et al., 1998). 

The current study showed that AGE alters the pharmacokinetics of DOX in mice. The study 

found that AGE increased the cytotoxic activity of DOX. This action may be owing to the 

suppression of P-glycoprotein associated energy-dependent efflux of DOX pump, leading to 

an increased intracellular drug concentration and increased cellular toxicity (Frézard et al., 

2001). In the present study, AGE produced higher serum level of DOX in aged garlic-pre-

treated group and no increase in DOX concentration in cardiac tissue. Accordingly, it seems 

that AGE prevents the uptake of DOX in cardiac tissue but increases the tumour 

concentration of DOX which may be part of its cardioprotective effect 

Previous reports showed that the decrease in the accumulation of DOX in tissues and its 

increase in plasma might be a function of pH gradient or p-glycoprotein over-expression. 

DOX is a weak base and its accumulation and toxicity in tissue has been investigated as a 

function of the extracellular pH; therefore, DOX levels in tissues increase by escalating the 

extracellular pH and, as a consequence, any drug which decreases the extracellular pH may 

decrease the accumulation of DOX in the tissues (Gerweck et al., 1999). 
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In conclusion, the results of this study demonstrate that AGE protects against DOX-induced 

cardiotoxicity in rats. Moreover, AGE does not interfere with the cytotoxic activity of DOX 

but rather increases its activity against tumour cells in mice bearing EAC. The study is 

distinctive because there were only two studies so far that investigated the effects of AGE on 

some parameters involved in DOX-induced cardiotoxicity. The present study included the 

investigation of several factors involved in DOX-induced cardiotoxicity. These findings 

provide a window for reduction of the serious cardiac complication by natural products, such 

as AGE. 

 

. 
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Chapter 4  Effect of aged garlic extract against doxorubicin-induced 

cardiotoxicity in rat cardiac myocytes  

4.1  Introduction 

Doxorubicin-induced cardiotoxicity has been linked with increased oxidative stress which 

results in damage to macromolecules, membranes, DNA and enzymes involved in energy 

production, thereby leading to cellular damage, energy deficit and acceleration of cell death 

through apoptosis and necrosis (Singal et al., 2000; Tokarska-Schlattner et al., 2006). 

Doxorubicin has been reported to increase the levels of 8-isoprostane (Fujimura et al., 2009). 

A marker of lipid peroxidation, 8-isoprostane, has been found to be the best index for 

determining oxidative injury through the utilisation of an oxidant stress rat model (Gross et 

al., 2005; Morrow, 2005; Hwang and Kim, 2007). 

In the heart, many previous investigations have designated apoptosis of cardiac myocytes as 

the most direct cause of DOX cardiotoxicity (Kalyanaraman et al., 2002; Bernuzzi et al., 

2009; Gilleron et al., 2009; Chao et al., 2011; Chen et al., 2011). The process of apoptosis is 

ultimately characterised by chromatin condensation and DNA fragmentation. This highly 

regulated mechanism is organised by cysteinyl-aspartate-cleaving proteases known as 

caspases. These enzymes cleave numerous and various substrates leading to cell disassembly 

(Kroemer et al., 2007). Moreover, it is recognised that caspase-3 and p53 are two of the 

apoptotic mediators in the main apoptotic signalling pathways. Protein levels of p53 and 

caspase-3 activity tend to increase with DOX treatment (Hong et al., 2010; Lai et al., 2010). 
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Aged garlic extract is a potent antioxidant with established cardioprotective effects (Jacob et 

al., 1993; Rahman and Billington, 2000; Thabrew et al., 2000; Mukherjee et al., 2003). Its 

antioxidant activity is ascribed largely to a key constituent called S-allylcysteine (SAC), 

which is a potent antioxidant and free radical scavenger (Imai et al., 1994; Pérez-Severiano 

et al., 2004; Medina-Campos et al., 2007). Previous studies show that both AGE and SAC 

are effective cardioprotectants (Kojima et al., 1994; Mukherjee et al., 2003; Chuah et al., 

2007; Padmanabhan and Stanely Mainzen Prince, 2007). There is lack of information 

concerning the use of AGE in vitro for the attenuation of DOX-induced cardiotoxicity; 

accordingly, there is a need for this particular study.  

This study investigates the protective effects of AGE against DOX-induced cardiotoxicity in 

rat cardiac myocytes. The objectives were: 

To investigate the effect of AGE on cardiac myocyte growth using either the Coulter counter 

or Cell Titer 96® AQueous one solution cell proliferation assay [3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS kit).  

To determine the concentrations of 8-isoprostane in rat cardiac myocyte culture medium. 

To determine the concentrations of active caspase-3 and the activity of active and total p53 

in rat cardiac myocytes. 

To detect apoptosis using propidium iodide (PI) /4,6-diamidino-2-phenylindole (DAPI) 

staining in rat cardiac myocytes. 
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4.2 Materials and Methods 

Effect of different concentrations of doxorubicin, aged garlic extract or 

both on cell growth in cultured rat cardiac myocytes 

Rat cardiac myocytes were cultured in cardiac myocyte complete medium, as described in 

Section 2.13 Cells were incubated with different concentrations of AGE for 8 hours, 

subsequently followed by incubation with DOX for 24 hours. Following incubation, cells 

were collected by centrifugation (1000g for 5 minutes), and biochemical parameters were 

measured as described in Chapter 2. The effect of DOX, AGE or both on cardiac myocyte 

growth was investigated by measuring the viability of the cells using the Coulter counter and 

Cell Titer 96® AQueous one solution cell proliferation assay [3-(4,5-dimethylthiazol-2-yl)-

5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS kit) as described in 

Section 2.14 and Section 2.15. 

The following parameters were measured, as described in Chapter 2. The concentrations of 

8-isoprostane in cardiac myocyte culture medium were measured by the method described in 

Section 2.8. The concentrations of active caspase-3 in rat cardiac myocytes were measured 

by the method described in Section 2.9. The activity of active and total p53 in rat cardiac 

myocytes was measured by the methods described in Section 2.10 and Section 2.11. 

Apoptosis in cardiac myocytes was detected using PI/DAPI staining according to the method 

described in section 2.16. 
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4.3  Results 

The effect of doxorubicin on rat cardiac myocyte growth using the Coulter counter 

The effect of different DOX concentrations on cardiac myocyte growth was studied using 

the Coulter counter method. Exposure of cardiac myocyteto 0.5, 1, 5, 10 and 20 µM DOX 

reduced their growth by 31.33%, 40.7%, 54.82%, 64.46% and 69.26%, respectively. As 

shown in Figure 4.1, the addition of DOX displayed both potent and dose-dependent 

inhibition of cardiac myocyte growth at the tested concentrations. Doxorubicin significantly 

inhibited cardiac myocyte growth at concentrations between 1 and 20 µM (p < 0.001).  

The effect of aged garlic extract on rat cardiac myocyte growth using the Coulter 

counter 

Figure 4.2 shows the effects of 1-50 µg/ml AGE on cardiac myocyte growth. The growth of 

cardiac myocytes treated with 1, 10, and 50 µg/ml AGE was decreased non-significantly by 

28.70%, 23.73%, and 19.45%, respectively when compared with control. Meanwhile, at a 

concentration of 0.1, 0.5, 1, 5, and 10 mg, AGE resulted in a significant inhibition of cardiac 

myocyte growth. As shown in Figure 4.3, cardiac myocyte growth was significantly reduced 

in the presence of AGE at concentrations between 0.1 and 0.5 mg/ml compared with the 

control (p<0.05). Moreover, the addition of AGE at a concentration of 1–5 mg/ml displayed 

a highly significant inhibition (17%, 34.35%, and 51.88%) respectively on cardiac myocyte 

growth compared with the control (Figure 4.4, p<0.001). 
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The effect of doxorubicin or aged garlic extract or both on rat cardiac myocyte growth 

using the MTS assay 

There was no significant difference in the cardiac myocyte growth treated with 1 µM of 

DOX or 1 and 10 µg of AGE (Figure 4.5). Meanwhile, 5 µM DOX produced a significant 

reduction of 43.64% in the growth of cardiac myocytes compared with the control. 

Moreover, cells pre-treated with 1, and 10 µg of AGE showed a decrease in the growth of 

53.51% and 44% respectively, when compared with control cells (Figure 4.6; p<0.05). The 

exposure of cardiac myocytes to 10 µM of DOX resulted in 74.34% inhibition of cell growth 

compared with the control. Similarly, the pre-incubation of cells with AGE at a 

concentration of 1, and 10 µg caused significant reduction of 74.63% and 69.56% 

respectively (Figure 4.7; p<0.05). However, notably, there was no significant difference 

between DOX-treated cells and AGE+DOX-treated cells.  
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Figure ‎4.1: The effect of different concentrations of DOX on cardiac myocyte growth using 

the Coulter counter method. Cardiac myocytes (2 x 10
4
 cells/ml) were incubated with 

different concentrations of 0.5 – 20 μM DOX for 24 hours and the number of cells counted 

using a Coulter counter. Results were expressed as mean ± SEM (n = 3). ** Significantly 

different from control (p< 0.001, one way ANOVA with LSD post test) 
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Figure ‎4.2: The effects of of AGE (1-50 µg/ml) on cardiac myocyte growth using the Coulter 

counter method. Cardiac myocytes (2 x 10
4
 cells/ml) incubated with 1 – 50 μg/ml AGE for 

24 hours and the number of cells were counted using a Coulter counter. Results were 

expressed as mean ± SEM (n = 3). No significant differences between groups (p>0.05, one 

way ANOVA). 
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Figure ‎4.3: The effects of AGE (0.1-1mg/ml) on cardiac myocyte growth using the Coulter 

counter method. Cardiac myocytes (2 x 10
4
 cells/ml) incubated with 0.1 –1mg/ml AGE for 

24 hours and the number of cells were counted using a Coulter counter. Results were 

expressed as mean ± SEM (n = 3). *Significantly different from control (p< 0.05), ** 

Significantly different from control (p< 0.001, one way ANOVA with LSD post test). 
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Figure ‎4.4: The effects of 1-10 mg/ml AGE on cardiac myocyte growth using the Coulter 

counter method. Cardiac myocytes (2 x 10
4
 cells/ml) were incubated with 1 –10 mg/ml AGE 

for 24 hours and the number of cells were counted using a Coulter counter. Results were 

expressed as mean ± SEM (n = 3). ** Significantly different from control (p< 0.001, one 

way ANOVA with LSD post test). 
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Figure ‎4.5: The effect of DOX 1µM on cardiac myocyte growth using the MTS assay. 

Cardiac myocytes (5 x 10
3
 cells/well) were seeded in 96-well plates. After 8 hours treatment 

without (control) or with 1, and 10 μg AGE, cardiac myocytes were incubated with 1 μM 

DOX for 24 hours. The results were then presented as mean ± SEM (n=3). No significant 

differences between groups (p>0.05, one way ANOVA). 
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Figure ‎4.6: The effect of 5µM  DOX  on cardiac myocyte growth using the MTS assay. 

Cardiac myocytes (5 x 10
3
 cells/well) were seeded in 96-well plates. After 8 hours treatment 

without (control) or with 1, and 10 μg AGE, cardiac myocytes were incubated with 5 μM 

DOX for 24 hours. The results were presented as mean ± SEM (n=3). * Significantly 

different from control (p< 0.05, one way ANOVA with LSD post test).  
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Figure ‎4.7: The effect of 10 µM DOX on cardiac myocyte growth using the MTS assay. 

Cardiac myocytes (5 x 10
3
 cells/well) were seeded in 96-well plates. After 8 hours’ treatment 

without (control) or with 1, and 10 μg AGE, cardiac myocytes were incubated with 10 μM 

DOX for 24 hours. The values are presented as mean ± SEM (n=3). *Significantly different 

from control (p< 0.05, one way ANOVA with LSD post test).  
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The levels of 8-isoprostane in rat cardiac myocyte culture medium 

The effect of AGE on DOX-induced oxidative stress was tested using 8-isoprostane assay in 

culture medium. The amount of 8-isoprostane tracer which is able to bind to the rabbit 

antiserum is inversely proportional to the concentration of 8-isoprostane in the well. 

Doxorubicin (10 µM) was found to increase 8-isoprostane in cardiac myocyte culture 

medium significantly by 37.46% (p<0.05, Figure 4.8). The pre-incubation of cardiac 

myocytes with 1000 µg/ml AGE resulted in a significant decrease in 8-isoprostane levels by 

8% compared with the control (p<0.05), and a significant decrease of 72.59% compared with 

the DOX-treated cells (p<0.001). 

The concentration of active caspase-3 in rat cardiac myocytes 

Figure 4.9 shows the effect of 10 µM DOX on the concentration of active caspase-3 in 

cardiac myocytes in the presence and absence of AGE 10, 100, and 1000 µg/ml. Caspase-3 

activity in DOX-treated cardiac myocytes significantly increased by 17.01% when compared 

with control cells (p<0.05). Aged garlic extract at a concentration of 100 and 1000 µg/ml 

significantly inhibited DOX-induced caspase-3 activation by 48.31% and 31.13 % 

respectively, compared with the control cells. Similar reduction in the concentration of 

active caspase-3 was observed with the pre-incubation of cells with AGE 100 and 1000 

µg/ml of 55.85% and 41.17% respectively, compared with DOX-treated cells (p<0.05). 

Active caspase-3 concentration in rat cardiac myocytes exposed to 10, 100, and 1000 μg/ml 

of AGE were decreased non significantly by 9.03%, 0.55%, and 12.61% respectively, 

compared with control cells. Pre-incubation of cells with 10 µg/ml AGE resulted in a non-

significant reduction in active caspase-3 concentration by 7.14% compared to control and 

20.67% compared to DOX-treated cells. Staurosporine (0.25 µM) was used as a positive 
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control and showed a significant increase in active caspase-3 activity by 23.61% compared 

with the control. 

The activity of active and total p53 in rat cardiac myocytes 

A significant increase in active p53 (approximately 125.56% over control; p<0.05) was 

observed after treatment of cardiac myocytes with 10 µM DOX (Figure 4.10). The treatment 

of cells with 10, 100, and 1000 µg of AGE revealed a non-significant increase in active p53 

of 43.51%, 39.88%, and 7.41% respectively, compared with the control. 

Pre-incubation of cells with AGE 1000 µg/ml significantly reduced DOX-induced active p53 

production by 94.89%, compared with DOX-treated cells (p<0.05). Pre-incubation of cells 

with 10 and 100, µg of AGE caused a non-significant reduction in active p53 by 26.57% and 

78.58%, and respectively compared with DOX-treated cells. Staurosporine (0.25 µM), the 

positive control, displayed a significant increase in active p53 activity by 167.11% compared 

with the control. 

On the other hand, there was no noticeable change in the activity of total p53 in rat cardiac 

myocytes treated with the different conditions (Figure 4.11). 

Detection of apoptosis in rat cardiac myocytes using propidium iodide / 4,6-diamidino-

2-phenylindole staining 

Apoptosis was assessed using PI /DAPI staining. The apoptotic and non-apoptotic nuclei 

were visualized using fluorescence microscopy (Figure 4.12). Cardiac myocytes treated with 

10 μM DOX for 24 hours showed chromatin condensation and nuclear fragmentation, which 

is well known as typical apoptosis (Figure 4.12 C).  
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Pre-treatment of cardiac myocytes with 100 µg AGE reduced significantly the percentage of 

apoptotic cells from 826.19 ± 254.90% (DOX-treated cells) to 81.90 ± 8.87% ( AGE+DOX-

treated cells) (P<0.05; Figure 4.13). Apoptotic myocytes were defined as PI positive and 

DAPI negative. Propidium iodide positive cells appear red when DAPI is used to counter 

stain all nuclei. Non-apoptotic nuclei remained blue. 
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Figure ‎4.8: The effect of AGE on 8-isoprostane tracer levels in cardiac myocytes culture 

medium. After 8 hours’ treatment without (control) or with 10, 100, and 1000 μg AGE, 

cardiac myocytes were incubated with 10 μM DOX for 24 hours. The values are presented 

as mean ± SEM (n=3). * Significantly different from control (p< 0.05). ## Significantly 

different from DOX (p<0.001, one way ANOVA with LSD post test). 
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Figure ‎4.9: The effect of AGE on the concentrations of active caspase-3 in cardiac myocytes. 

After 8 hours’ treatment without (control) or with 10, 100, and 1000 μg AGE, cardiac 

myocytes were incubated with 10 μM DOX for 24 hours. Staurosporine (0.25 µM) was used 

as a positive control. The values are presented as mean ± SEM (n=3). * Significantly 

different from control (p< 0.05). # Significantly different from DOX (p<0.05, one way 

ANOVA with LSD post test). 
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Figure ‎4.10: The effect of AGE on the activity of active p53 in cardiac myocytes. After 8 

hours’ treatment without (control) or with 10, 100, and 1000 μg AGE, cardiac myocytes 

were incubated with 10 μM DOX for 24 hours. Staurosporine (0.25 µM) was used as a 

positive control. The values are presented as mean ± SEM (n=3). * Significantly different 

from control (p< 0.05). # Significantly different from DOX (p<0.05, one way ANOVA with 

LSD post test).  
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Figure ‎4.11: The effect of AGE on the activity of total p53 in cardiac myocytes. After 8 

hours’ treatment without (control) or with 10, 100, and 1000 μg AGE, cardiac myocytes 

were incubated with 10 μM DOX for 24 hours. Staurosporine (0.25 µM) was used as a 

positive control. The values are presented as mean ± SEM (n=3). No significant differences 

between groups (p>0.05, one way ANOVA). 
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Figure ‎4.12: The effect of 100µg AGE on the morphology of cardiac myocyte treated with 

10µM DOX.  After 8 hours’ treatment without (control) or with AGE (100 μg), cardiac 

myocytes were incubated with 10 μM DOX for 24 hours. Cells were fixed and stained with 

propidium iodide, and visualized under a fluorescence microscope. (A) Control, (B) 100 µg 

AGE, (C) 10 µM DOX, (D) 100 µg AGE + 10 µM DOX. Cardiac myocyte were stained by 

propidium iodide (P.I) method and DAPI as a counter stain. P.I positive cells appear red 

when DAPI is used to counter stain all nuclei. Moreover, non-apoptotic nuclei remained 

blue. The arrow indicates a positively stained apoptotic cell. (400x) 
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Figure ‎4.13: The effect of 100µg AGE on the % apoptosis in cardiac myocytes treated with 

10µM DOX. After 8 hours’ treatment without (control) or with 100 μg AGE, cardiac 

myocytes were incubated with 10 μM DOX for 24 hours. Mean of apoptotic cell number 

was plotted by percentage of control. Data are mean ± SEM for a minimum of 3 independent 

experiments for each condition. *Significantly different from control (P < 0.05). # 

Significantly different from DOX (P < 0.05, one way ANOVA with LSD post test). 
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4.4 Discussion 

The current study demonstrated that DOX significantly inhibited cardiac myocyte growth. 

The concentration of 10 μM DOX was chosen in this study since similar levels are seen 

transiently in plasma following pharmaceutical use in patients. 

The effect of AGE on cardiac myocyte growth was analysed in the present study. Aged 

garlic extract caused inhibition of the growth of rat cardiac myocytes. So far, there are no 

studies reporting the effect of AGE on rat cardiac myocytes. Meanwhile, the effect of AGE 

on other cells has been described. The inhibition of various malignant cell proliferations by 

AGE has been reported in several studies (Ban et al., 2007; Chu et al., 2007; Herman-

antosiewicz et al., 2007; Howard et al., 2007; Omar and Al-Wabel, 2009; Viry et al., 2011). 

Howard et al. (2007) reported that S-allylmercaptocysteine (SAMC) at 300 mg/kg/day is 

able to inhibit the growth of androgen-independent prostate tumours in vivo. Furthermore, 

SAMC significantly lessened distant metastasis to multiple distant organ sites in a dose-

dependent manner. Similarly, Chu et al. (2007) investigated the effect of S-allylcysteine 

(SAC) on CWR22R, a human androgen-independent (AI) prostate cancer xenograft in nude 

mice. Treatment with SAC caused inhibition of the growth of CWR22R, with no detectable 

toxic effect on nude mice. A concurrent reduction in serum prostate specific antigen (PSA) 

level and proliferation rate of xenografts was observed with SAC-induced growth reduction. 

The observed antiproliferative effect of AGE appeared to be associated with a G2-M cell 

cycle arrest (Viry et al., 2011).  

The treatment of smooth muscle cells with 0.4, 2, 10, and 50 mg of AGE for 24 hours 

revealed a dose-dependent inhibition of proliferation (p<0.01). However, cells were 

morphologically normal in the presence of AGE even after 48 hours (Efendy et al., 1997). 
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The present study demonstrated that AGE inhibited DOX- induced oxidative stress which 

was appearant as increased 8-isoprostane in rat cardiac myocytes culture media. The increase 

in 8-isoprostane production caused by DOX was greatly reduced in AGE+DOX-treated 

cells. Oxidative stress is one of the major factors involved in the pathogenesis of DOX-

induced cardiotoxicity (Oliveira et al., 2004; Oliveira et al., 2006; Barry et al., 2007; 

Ozdogan et al., 2011). 

Several reports found that AGE has a significant antioxidant activity (Drobiova et al., 2009; 

Arguello-Garcia et al., 2010; Luo et al., 2010; Heidarian et al., 2011; Nencini et al., 2011; 

Ponnusamy and Pari, 2011; Ray et al., 2011; Rojas et al., 2011). Rojas et al. (2011) found 

that a dose of 125 mg/kg i.p. of SAC produced a decrease in superoxide radical production 

and blocked (100% of protection) of lipid peroxidation in mice. Dillon et al. (2002) studied 

the effects of dietary supplementation with AGE on the plasma and urine concentrations of 

the 8-iso-prostaglandin F2α in smoking and non-smoking subjects. Dietary supplementation 

with AGE for 14 day significantly lowered plasma and urine concentrations of 8-iso-

prostaglandin F2α by 29% and 37% in non-smokers and by 35% and 48% in smokers. 

This study has found that Caspase-3 activity was significantly increased in DOX-treated 

cardiac myocytes. The Pre-treatment of cells with AGE significantly reduced DOX-induced 

caspase-3 activation. The activation of caspase-3 is a key mechanism in apoptosis. Caspase-

3 activity first becomes detectable early in apoptosis, continues to increase as cells undergo 

apoptosis, and rapidly diminishes in late stages of apoptosis. The induction of caspase-3 

activity is an early marker of cells undergoing apoptosis. The activation of Caspase-3 in 

DOX-induced cardiotoxicity has been documented in previous studies (Gilleron et al., 2009; 

Kassab, 2009).  
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Pointon et al. (2010) reported that Caspase-3 was increased with acute DOX and up to 50--

fold over control by 30 minutes post-dose in the heart of mice treated with a single dose of 

DOX at 15 mg/kg. Another study by Frias et al. (2010) demonstrated that the treatment of 

neonatal rat ventricular cardiac myocytes with DOX at 0.5 µM significantly induced 

caspase-3 activation in cells approximately 100 fold above control. Jackson et al. (2002) 

reported that AGE inhibited caspase-3 in neuronal cells in a dose-dependent manner.  

In this study, a significant increase in active p53 was demonstrated following the treatment 

of cardiac myocytes with DOX. Meanwhile, the pre-incubation of cells with AGE produced 

a noticeable reduction in active p53.  

It has been demonstrated that the exposure of cardiac myocyte to 1 μM of DOX for 24 hours 

resulted in a significant increase in phospho-p53 followed by cleaved Caspase-3 expression 

and apoptotic cell death (Ueno et al., 2006). Sardão et al. (2009) found that the treatment of 

cardiac myocyte with 1 μM of DOX for 24 hours caused a significant increase in p53 

nuclear fluorescence intensity and caspase-3 activity. 

The present study demonstrated that the pre-treatment of cardiac myocytes with AGE 

decreased the percentage of apoptotic cells in DOX-treated cells. Green and Leeuwenburgh 

(2002) investigated the effects of DOX 10 μM on rat cardiac H9c2 cells. The exposure of 

H9c2 cells to 10 μM of DOX for 20 hours resulted in a 45% increase in apoptotic cells and a 

significant increase in active caspase-3. 

Damage to DNA, oxidative mitochondrial injury, and nuclear translocation of p53, are all 

implicated in the cardiotoxic effects of doxorubicin (Chua et al., 2006; L'Ecuyer et al., 2006; 

lefrak et al., 1973; Doroshow, 1980). The transcription factor p53 is one of the proteins 

involved in the cell responses to DNA damage (Gomez-Lazaro et al., 2004).  
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In the current study, DOX-induced p53 activation may be caused by extracellular signal-

regulated kinases (ERKs). Agents that damage DNA usually activate ERKs (Schweyer et al., 

2004, Kim et al., 2005). Since p53-dependent apoptosis is affected by the mitogen- activated 

protein kinase (MAPK) cascade, the increased activity of p53 and cell death produced by 

DOX in rat cardiac myocytes may be generated by ERK1/2 (Persons et al., 2000, Pearson et 

al., 2001, Alkhalaf and Jaffal, 2006, Brown and Benchimol, 2006). Liu et al., 2008 

demonstrated that there is increased activation and nuclear translocation of ERK1/2 and p53 

associated with cytotoxicity of DOX in neonatal rat cultured cardiac myocytes. Furthermore, 

they showed that caspase-3 is activated in DOX-treated cardiac myocytes 

The antiapoptotic effect of AGE in this study could be due to an inhibitory effect of on the 

phosphorylation of ERK 1/2 molecules. It has been shown that SAC suppress MAPK/ERK 

signaling pathway in human oral squamous cancer (Tang et al., 2009). Another study by 

(Kim et al., 2006) reported a neuroprotective effect of SAC through suppression of ERK 

signaling pathway. Peng et al., 2002 showed that AGE and SAC protected rat 

pheochromocytoma (PC12) cell line from amyloid-beta peptide-induced apoptosis through 

reduced caspase-3 activation, DNA fragmentation, poly (ADP-ribose) polymerase (PARP) 

cleavage.  

 In conclusion, the results of the current study demonstrate that AGE protects rat cardiac 

myocytes against DOX-induced apoptosis in a dose-dependent manner using PI/DAPI 

staining, active p53, and caspase-3 activity assays. Accordingly, it is stated that AGE may be 

effective in reducing DOX-induced cardiotoxicity. 
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Chapter 5 The effect of doxorubicin on oxidative stress and antioxidant 

gene expression in rat cardiac myocytes in the presence and absence of 

aged garlic extract. 

5.1  Introduction 

It has been established that DNA damage is a consequence of the effective anti-cancer drug 

DOX. The drug is predominantly powerful when used against those tumours which are 

rapidly proliferative (Lee and Byfield, 1976, Kanter and Schwartz, 1979, Singal et al., 

1987). In contrast, cardiac myocytes are only slightly replicative cells known to be 

unaffected by such antimitotic mechanisms. In this regard, free radical generation adds to the 

cardiotoxic impacts induced by DOX (Olson and Mushlin, 1990, Fisher, 1994). Notably, 

DOX is known to generate free radicals directly. Moreover, through redox cycling, DOX is a 

strong chemical catalyst for the production of oxygen radicals (Doroshow, 1983, Powis, 

1989, Olson and Mushlin, 1990). Furthermore, decreases in the quantity of endogenous 

antioxidants have been demonstrated following DOX treatment (Singal et al., 1997).  

The oxidative damage induced by DOX is complicated affecting lysosomes, microfibrils 

mitochondria and sarcoplasmic reticulum (Ogura et al., 1991, Myers et al., 1977, Mimnaugh 

et al., 1985, Singal et al., 1987). Eventually, these intracellular modifications result in 

increased apoptosis in cardiac myocytes. 

The conversion of arachidonic acid to prostaglandin H2 (PGH2), the common intermediate 

in prostaglandin, prostacyclin and thromboxane synthesis, is catalyzed by the 

cyclooxygenases (Coxs). Variety of ligands, including tumor promoters, growth factors, 

cytokines, endotoxins and mitogens stimulate the transcription of prostaglandin-
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endoperoxide synthase 2 ,Cox-2, (Ptgs2) gene which is an immediate-early gene 

(Herschman, 2004). Control of Cox gene expression differs in different cell types and even 

between the same cell types in different species. There is variation in the signal transduction 

pathways for Cox-2 induction depending on the stimulus and cell type (Kang et al., 2007). 

Cardiac myocytes are protected from oxidant injury by Cox-2-dependent prostaglandins 

(Adderley and Fitzgerald, 1999).  

Hydrogen peroxide and organic hydroperoxides are scavenged by the primary antioxidant 

enzymes glutathione peroxidases (Gpxs). Glutathione peroxidases guard biomembranes and 

cellular components against oxidative stress (Brigelius-Flohé, 1999). Glutathione peroxidase 

acts as a peroxynitrite reductase. The oxidation and nitration reactions caused by 

peroxynitrite are prevented by Gpx (Sies et al., 1997). 

 There is variation in the primary structure and localization of Gpx isoforms. The first of the 

Gpx family to be discovered was the cytosolic-mitochondrial Gpx1 (cGpx), a selenium-

dependent enzyme. The gastrointestinal Gpx2 is a cytosolic enzyme present mainly in the 

epithelium of the gastrointestinal tract (Chu et al., 2004). Extracellular plasma Gpx (pGpx, 

or Gpx3) is located mostly in the kidney. Phospholipid hydroperoxide glutathione 

peroxidase (PhGPx or Gpx4) is found in most tissues. Epididymis-specific secretory Gpx is 

Gpx5 or eGPx (Brigelius-Flohé, 1999, Brigelius-Flohe and Flohe, 2003). Less is known 

about Gpx6 and Gpx7.  

A new family of antioxidant enzyme is the Peroxiredoxins (PRDXs) which are expressed in 

all biological kingdoms (Butterfield et al., 1999). There are six PRDX isoforms identified 

and characterized in mammals (Chae et al., 1999, Wood et al., 2003). They have important 

role in eliminating H2O2 and neutralizing other oxidizing molecules (Schroder and Ponting, 
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1998). Peroxiredoxin 5 (Prdx5) is the last member to be recognized amidst the six 

mammalian peroxiredoxins. In mammals, Prdx5 is a unique atypical 2-Cys peroxiredoxin. It 

is commonly found in tissues and has large subcellular distribution. Peroxiredoxin 5 is 

mainly a cytoprotective antioxidant enzyme which acts against exogenous or endogenous 

peroxide attacks (Kropotov et al., 2006). It has been reported that Prdxs suppress apoptosis 

mediated by hydrogen peroxide (Kang et al., 2005).  

In mitochondria, the process of nutritional substrates oxidation is combined with ATP 

synthesis. Electrons move through the respiratory chain during substrate oxidation, which, at 

the same time, expels protons from the mitochondrial matrix, transporting them into the 

intermembrane space (Mitchell, 1961). Uncoupling proteins (UCPs), present in the 

mitochondrial inner membrane intercede uncoupling or proton leak. The uncoupling proteins 

established so far comprise UCP1, UCP2, UCP3 and UCP4, as well as brain mitochondrial 

carrier protein (BMCP1, also known as UCP5). In this regard, a number of researches state 

that UCP2 and UCP3 are both linked with slight uncoupling and decreased mitochondrial 

superoxide production, thereby protecting against oxidative damage (Echtay, 2007, McLeod 

et al., 2005, Nadtochiy et al., 2006, Cannon et al., 2006) 

Cytoglobin (Cygb) is recognised as a member of the vertebrate globin family, which is 

produced amongst different tissues at various levels (Fordel et al., 2004, Shigematsu et al., 

2008, Pesce et al., 2002). Researcher have suggested that cytoglobin up-regulated by 

hydrogen peroxide plays a protective role in oxidative stress (Li et al., 2007).  

The mechanism of action of DOX-induced oxidative stress is still unclear. In this study the 

exposure of cardiac myocytes to DOX was examined to assess oxidative stress and 
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antioxidant defence. Genes that are known to be upregulated by oxidative stress could be 

expected to be upregulated when cells are exposed to DOX. 

The current study aimed to investigate the effect of doxorubicin on oxidative stress and 

antioxidant gene expression in rat cardiac myocytes in the presence and absence of AGE. 

The objectives were: 

To investigate the expression of 84 genes relating to oxidative stress using the rat oxidative 

stress and antioxidant defence RT² Profiler™ PCR Array. 

To investigate the expression of some chosen genes form the RT² Profiler™ PCR array 

using real-time reverse transcription PCR (RT2 qPCR) and semi-quantitative RT- PCR. 

5.2 Materials and methods 

Effect of doxorubicin, aged garlic extract or both on gene expression in cultured rat 

cardiac myocytes 

Rat cardiac myocytes were cultured as described in section 2.13. Cells were incubated with 

100 µg AGE for 8- hours followed by incubation with 10 µM DOX for 4 hours. Treatment 

of cells with DOX for 4 hours were chosen after pilot experiments at 1, 4 and 24 hours. The 

best time for detection of gene expression was after 4 hours exposure to DOX. After this 

incubation, cells were collected by centrifugation (1000 g for 5 minutes) and parameters 

were measured as described in Chapter 2. RNA extraction for polymerase chain reaction 

(PCR) array and real- time PCR was conducted by the method described in section 2.17. 

cDNA synthesis was conducted by the method described in section 2.18.  Rat oxidative 

stress and antioxidant defence PCR array were measured by the method described in section 

2.19. Real-time reverse transcription PCR (RT2 qPCR) were measured by the methods 
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described in section 2.20. Reverse transcription-PCR (RT-PCR) were measured by the 

methods described in section 2.21. Agarose gel electrophoresis of DNA was measured by the 

methods described in section 2.22. 

5.3 Results 

Gene array results 

In order to minimize false positive results and generate a reliable shortlist, only those genes 

upregulated or downregulated >2-fold were selected. Of 84 genes analyzed only 6 genes 

were observed to be changed when DOX-treated cells were pre-incubated with AGE on the 

gene array (Table 5.1). 

 Table 5.1. illustrates the number of genes that were expressed in cardiac myocytes., such as 

Prostaglandin-endoperoxide synthase 2 or Cox-2 (Ptgs2), Glutathione peroxidase 7(Gpx7), 

Peroxiredoxin 5 (Prdx5), Uncoupling protein 3 (mitochondrial, proton carrier) (Ucp3), 

Cytoglobin (Cygp), and Glutathione peroxidise 2 (Gpx2) genes.  

Validation of microarray results 

In order to validate the results of array analysis the technique of real-time reverse 

transcription qPCR (RT
2 
qPCR) or semi-quantitative PCR were used. Products of PCR 

amplification of cDNA prepared from RNA extracted from cardiac myocytes was compared 

on an agarose gel after a fixed number of PCR cycles.  

Standard curve 

For each primer pair, standard curves were constructed to calculate the PCR efficiency. To 

do this, cDNA from cardiac myocytes expressing the target gene (Table 5.1) was serial 
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diluted and amplified, to produce standard curves expressing a linear relationship between 

template quantity and target gene expression (Figure 5.1).  

Dissociation curves 

In order to ensure that any increase in fluorescence was due to cDNA amplification for the 

gene of interest and not caused by non-specific products or primer dimer artefacts, 

dissociation curves were plotted for all PCR products. Dissociation curves for all genes 

analysed were shown to be specific with only a single peak at the melting temperature of the 

PCR product. Figure 5.2 shows an example of the dissociation curve. 

Housekeeping gene selection 

Real-time qPCR is a sensitive and accurate technique for measuring target mRNA 

expression. Normalisation of the results to compensate for differences in the purity and 

concentration of the samples is a key step of this technique. Endogenous reference genes or 

housekeeping genes are the most commonly used normalisers in real-time PCR. 

Preferably, housekeeping genes should be ubiquitously expressed at similar levels in all 

samples and experimental conditions. Two housekeeping genes were selected for validation 

hypoxanthine phosphoribosyltransferase 1 (Hprt1), and lactate dehydrogenase A (Ldh1). 

Since Hprt1 and Ldh1 displayed similar levels of expression, all subsequent target gene 

expression analyses were normalised using the average of the expression of Hprt1, and 

Ldh1.   

Figure 5.3 demonstrate approximately equal expression of the housekeeping gene Hprt1 in 

all samples. Hence it was chosen for normalization of other genes in semi-quantitative 

reverse transcription PCR.  
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Table ‎5.1:The effect of 100 µg AGE pre-incubation on the oxidative stress mediated gene 

expression in rat cardiac myocytes after 4 hours incubation with DOX 10 µM. 

Gene description symbol 
Fold change 

AGE/CT DOX/CT AGE+DOX/CT 

Prostaglandin-endoperoxide 

synthase 2 

Ptgs2 1 -5 -5 

Glutathione peroxidase 7 Gpx7 1 -5 1 

Peroxiredoxin 5 Prdx5 1.25 -5 1.29 

Uncoupling protein 3 

(mitochondrial, proton carrier) 

Ucp3 2.74 4.35 1.25 

Cytoglobin Cygb 1.69 6.97 6.6 

Glutathione peroxidise 2     
Gpx2 1.31 2.95 4.22 
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Figure ‎5.1: A representative diagram of  standard curve for primer pairs for real-time qPCR. 

Each reaction was carried out in triplicate.  
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Figure ‎5.2: A representative diagram of dissociation curve in real-time qPCR 
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Figure ‎5.3: Gel showing semi-quantitative RT-PCR results of house keeping Hprt1 gene 

expression in rat cardiac myocytes. PCR products were loaded on 2% agarose gel and 

stained with ethidium bromide. 50bp DNA ladder was used as marker. 
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Prostaglandin-endoperoxide synthase 2 or Cox-2 (Ptgs2) 

The changes in the mRNA levels of Cox-2 (Ptgs2) were investigated by semi-quantitative 

RT-PCR and real time-qPCR. Semi-quantitative RT-PCR showed a single product of the 

expected size (120 base pairs) in all samples (Figure 5.4). The intensity was less in DOX and 

AGE+DOX-treated cells compared to the AGE-treated cells (Figure 5.5). Analysis of Ptgs2 

expression using real-time qPCR (Figure 5.6) supported the pattern in expression observed 

by semi-quantitative reverse transcription PCR. Doxorubicin and AGE+DOX-treated cells 

each had relative expression of 0.101 and 0.094 respectively, with that of AGE-treated cells 

reaching 1.86. 

Glutathione peroxidase 7 

Semi-quantitative RT- PCR and real-time qPCR both showed Gpx7 expression was higher in 

DOX-treated cells compared to AGE+DOX treated cells (Figures 5.7-5.9). Analysis of Gpx7 

expression using real-time qPCR demonstrated that DOX and AGE+DOX-treated cells had 

relative expression of 1.35 and 1.29 respectively, with that of AGE-treated cells showing 

0.93 (Figure 5.9). 
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Figure ‎5.4: Gel showing semi-quantitative RT-PCR results of Ptgs2 (Cox-2) gene expression 

in rat cardiac myocytes. PCR products were loaded on 2% agarose gel and stained with 

ethidium bromide. 50bp DNA ladder was used as marker. 
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Figure ‎5.5:Semi-quantitative RT- PCR analysis of Ptgs2 expression in cardiac myocytes. 

Results represent mean ± SEM (n=3). No significant differences between groups (p>0.05, 

one way ANOVA). 

 

Figure ‎5.6: The mRNA expression levels of Ptgs2 gene quantified by real-time qPCR. Each 

column represents the mean ± SEM (N=3). * Significantly different from AGE -treated cells 

(p< 0.05, one way ANOVA with LSD post test). 
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Figure ‎5.7: Gel showing semi-quantitative RT- PCR results of Gpx7 gene expression in rat 

cardiac myocytes. PCR products were loaded on 2% agarose gel and stained with ethidium 

bromide. 50bp DNA ladder was used as marker. 

  



  

148 

 

 

Figure ‎5.8:Semi-quantitative RT- PCR analysis of Gpx7 expression in rat cardiac myocytes. 

Results represent mean ± SEM (n=3). No significant differences between groups (p>0.05, 

one way ANOVA). 

 

Figure ‎5.9: The mRNA expression levels of Gpx7 quantified by real-time qPCR. Each 

column represents the mean mean ± SEM (N=3). No significant differences between groups 

(p>0.05, one way ANOVA). 
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Peroxiredoxin 5 

Semi-quantitative reverse transcription PCR demonstrated that Prdx5 expression was higher 

in DOX-treated cells compared to AGE+DOX-treated cells, while in real-time qPCR, DOX-

treated cells showed a lower expression level than AGE+DOX-treated cells (Figures 5.10, 

5.11). Analysis of Prdx5 expression using real-time qPCR showed that DOX and 

AGE+DOX-treated cells had relative expression of 1 and 1.27 respectively, with that of 

AGE-treated cells showing 1.49 (Figure 5.12). Semi-quantitative RT- PCR is in agreement 

with microarray. 

Uncoupling protein 3 (mitochondrial, proton carrier) (Ucp3) 

Semi-quantitative RT-PCR did not reveal Ucp3 product in all samples (Figure 5.13). 

Similarly, real-time qPCR demonstrated absent gene expression in contol cells. In 

microarray, DOX-treated cells showed higher Ucp3 expression than AGE and AGE+DOX-

treated cells reaching 4, 35 and that of AGE and AGE+DOX-treated cells were 2, 74 and 

1,25 respectively (Table 5.1). 
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Figure ‎5.10: Gel showing semi-quantitative RT- PCR results of Prdx5 gene expression in rat 

cardiac myocytes. PCR products were loaded on 2% agarose gel and stained with ethidium 

bromide. 50bp DNA ladder was used as marker.  
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Figure ‎5.11: Semi-quantitative RT- PCR analysis of Prdx5 expression in cardiac rat 

myocytes. Results represent mean ± SEM (n=3). No significant differences between groups 

(p>0.05, one way ANOVA). 

 

Figure ‎5.12: The mRNA expression levels of Prdx5 gene quantified by real-time qPCR. 

Each column represents the mean ± SEM (N=3). No significant differences between groups 

(p>0.05, one way ANOVA). 
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Figure ‎5.13: Gel showing semi-quantitative RT-PCR result of Ucp3 gene expression in rat 

cardiac myocytes. PCR products were loaded on 2% agarose gel and stained with ethidium 

bromide. 50bp DNA ladder was used as marker. 
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Cytoglobin 

Semi-quantitative RT- PCR showed a single product of the expected size, 130 base pairs, in 

all samples (Figure 5.14). Doxorubicin-treated cells showed higher Cybg expression than 

AGE and AGE+DOX-treated cells ( Figure 5.15) whilst real-time qPCR displayed higher 

Cygb expression in AGE+DOX- treated cells reaching 3,32 and that of DOX and AGE-

treated cells were 1,45 and 0,97 respectively (Figure 5.16). 

Glutathione peroxidase 2 

Both the semi-quantitative RT- PCR and real-time qPCR demonstrated expression of Gpx2 

to be higher in DOX-treated cells compared to AGE and AG+DOX-treated cells (Figures 

5.17-5.19). Cells treated with DOX showed relative expression of Gpx2 reaching 42, 22 

whilst that of AGE and AGE+DOX-treated cells were 0,781 and 5, 60 respectively Figure 

(5.19)  
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Figure ‎5.14: Gel showing semi-quantitative RT- PCR results of Cygb gene expression in rat 

cardiac myocytes. PCR products were loaded on 2% agarose gel and stained with ethidium 

bromide. 50bp DNA ladder was used as marker. 
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Figure ‎5.15:Semi-quantitative RT- PCR analysis of Cygb expression in rat cardiac 

myocytes. Results represent mean ± SEM (n=3). No significant differences between groups 

(p>0.05, one way ANOVA). 

 

Figure ‎5.16: The mRNA expression levels of Cygb gene quantified by real-time qPCR. Each 

column represents the mean ± SEM (N=3). No significant differences between groups 

(p>0.05, one way ANOVA). 
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Figure ‎5.17: Gel showing semi-quantitative RT- PCR results of Gpx2 gene expression in rat 

cardiac myocytes. PCR products were loaded on 2% agarose gel and stained with ethidium 

bromide. 50bp DNA ladder was used as marker. 
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Figure  5.18:Semi-quantitative RT- PCR analysis of Gpx2 expression in rat cardiac 

myocytes. Results represent mean ± SEM (n=3). No significant differences between groups 

(p>0.05, one way ANOVA). 

 

Figure  5.19: The mRNA expression levels of Gpx2 gene quantified by real-time qPCR. Each 

column represents the mean ± SEM (N=3). No significant differences between groups 

(p>0.05, one way ANOVA). 
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5.4  Discussion 

The primary microarray analysis demonstrated that Ptgs2 is down-regulated in in DOX-

treated cells. In this study, both semi-quantitative RT- PCR and real-time qPCR showed that 

expression of Ptgs2 was predominantly down-regulated in DOX-treated cells and to lesser 

extent in AGE+DOX-treated cells.  

Researchers have found that prostanoids feedback regulate Cox-2 gene expression. 

However, prostanoid feedback regulation of Cox-2 gene expression depends on cell type and 

prostanoid product (Faour et al., 2001, Hinz et al., 2000). Prostaglandin E2 (PGE2) down-

regulates Cox-2 expression in human umbilal vein endothelial cell (Akarasereenont et al., 

1999) 

Studies have identified Cox-2 in human cardiomyocytes in areas of myocardial infarction 

and in individuals with dilated cardiomyopathy, whereas no Cox-2 was found in normal 

hearts (Wong et al., 1998). Doxorubicin and H2O2 are reported to induce the expression of 

Cox-2 gene (Adderley and Fitzgerald, 1999).  

Prostaglandins have been shown to have a cytoprotective role in several tissues, including 

stomach and heart (Balint, 1994, Kostic et al., 1997). The expression of Cox-2 protects 

against apoptosis and nitric oxide-mediated apoptosis (von Knethen and Brune, 1997, 

Morecki et al., 1998). Song et al. (1996) reported that rats injected with lipopolysaccharide 

(a known inducer of Cox-2) are protected from ischemia/reperfusion injury.  

Increased expression of Cox-2 gene has been found in failing human hearts (Wong et al., 

1998). Several studies have demonstrated that Cox-2 serves a protective function against 
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cardiac injury (Shinmura et al., 2000). There is elevated expression of Cox-2 in a variety of 

cancers (Kashfi and Rigas, 2005, Ranger et al., 2004) 

The microarray analysis showed down-regulation of Gpx7 in DOX-treated cells. Pre-

incubation of cells with AGE normalized Gpx7 gene expression. In contrast to microarray, 

semi-quantitative RT- PCR and real-time qPCR both showed Gpx7 expression was higher in 

DOX-treated cells compared to AGE+DOX treated cells.  

Glutathione peroxidase (Gpx) is the antioxidant enzyme that scavenges hydrogen peroxide 

or organic hydroperoxides and thus protects cellular components against oxidative stress 

(Brigelius-Flohé, 1999). Glutathione peroxidase catalyses the reduction of hydrogen 

peroxide to water, with the simultaneous conversion of reduced glutathione to oxidised 

glutathione (Michiels et al., 1994).  

Several studies have reported that DOX inhibits the activities of antioxidant systems, such as 

SOD and Gpx and decreases GSH content in myocardial tissue (Revis and Marusic, 1978, 

Julicher et al., 1986, Sazuka et al., 1989). Yin et al. (1998) investigated the effect of DOX 

on the activity and mRNA abundance of Gpx in mouse heart. A single i.p. injection of 15 

mg/kg body of DOX was used. Four days after the treatment, DOX increased the levels of 

mRNA for Gpx in mouse heart while the activity of Gpx was not altered in the DOX-treated 

heart.  

The primary microarray analysis showed down-regulation of Prdx5 in DOX-treated cells and 

to lesser extent in AGE+DOX-treated cells. Semi-quantitative RT-PCR demonstrated that 

Prdx5 expression was higher in DOX-treated cells compared to AGE+DOX-treated cells, 

while in real-time qPCR, DOX-treated cells showed a lower expression level than 

AGE+DOX-treated cells. 
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 Xi et al. (2011) study found that upregulation of peroxiredoxin 5 by nitrate explained the 

reported enhancement of cardiac antioxidant defense by nitrate supplementation. Prdx5 may 

play a protective role against oxidative stress during this pathophysiological process 

The microarray study demonstrated that Ucp3 is up-regulated in DOX-treated cells. Pre-

incubation of cells with AGE normalized Ucp3 gene expression. In semi-quantitative RT- 

PCR no expression of UCP3 was detected. 

It has been reported that UCP2 and UCP3 uncoupling proteins are involved in the age-

depended heart dysfunction and development of the pathological mechanisms during 

ischemia-reperfusion (Hoshovska Iu et al., 2009). The mRNA expression of Ucp3 has been 

reported in many tissues (Boss et al., 1997, Vidal-Puig et al., 1997). It is commonly found in 

skeletal muscle and brown adipose tissue. Known factors that up-regulate Ucp3 mRNA 

expression are the thyroid hormone T3, cold exposure, fasting , non-esterified fatty acids, 

and hypoxia (Flandin et al., 2005, Larkin et al., 1997, Jekabsons et al., 1999, Gong et al., 

2000) 

The microarray analysis showed that Cygb is up-regulated in DOX and AGE+DOX-treated 

cells. Semi-quantitative RT- PCR demonstrated that DOX-treated cells showed higher Cybg 

expression than AGE+DOX-treated cells whilst real-time qPCR displayed higher Cygb 

expression in AGE+DOX- treated cells.  

 Nishi et al. (2011) found that Cygb function as a defensive mechanism against oxidative 

stress both in vitro and in vivo. Their study demonstrated that kidney ischemia-reperfusion 

(I/R) increased the number of Cygb-positive cells per area and up-regulated Cygb mRNA 

and protein expression in kidney cortex tissues. Likewise, hypoxia up-regulated Cygb 

expression in cultured rat kidney fibroblasts. A study by Hodges et al. (2008) found that 
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cytoglobin offers cytoprotection of neuronal cells from oxidative-related damage, for 

example, during ischaemic reperfusion injury following hypoxia. It has been shown that 

Cygb protects SH-SY5Y neuroblastoma cells from H2O2-induced cell death (Fordel et al., 

2006) 

Glutathione peroxidase 2 is up-regulated in both AGE+DOX- treated cells and DOX-treated 

cells. Both the semi-quantitative RT- PCR and real-time qPCR demonstrated expression of 

Gpx2 to be higher in DOX-treated cells compared to AG+DOX-treated cells. 

A reduction in the activity of GPx enzyme is associated with the accumulation of highly 

reactive free radicals (Sheela and Augusti, 1995). Several studies have reported that DOX-

induced cardiotoxicity can be inhibited by the overexpression of antioxidant enzymes such 

as MnSOD and catalase (Kang et al., 1996, Yen et al., 1996). It has been demonstrated that 

an early and persistent decrease in Gpx1 after DOX treatment may contribute to DOX-

induced cardiotoxicity (Li and Singal, 2000, Sazuka et al., 1989). It has been reported that 

the up-regulation of glutathione system is effective in the protection against oxidative cell 

injury (Zhu et al., 2007). It has been demonstrated that up-regulation of Gpx2 is a defence 

mechanism against severe oxidative stress (te Velde et al., 2008). 

The results of this study demonstrated that using semiquntitative RT-PCR, AGE pre-

treatment reduced insignificantly the increased gene expression of Gpx7, Prdx5 ,Cygb, and 

Gpx2 observed with DOX. 
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In conclusion, the results of this study have shown that DOX incubation with cardiac 

myocytes caused an increased expression of oxidative stress responsive genes. However, 

AGE pre-incubation seems to normalize the expression of some oxidative stress responsive 

genes. This suggests that AGE is useful for the prevention of DOX-induced cardiotoxicity.  
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Chapter 6 General Discussion 

Doxorubicin is an anthracycline quinone that is widely used as a chemotherapeutic agent for 

treatment of several types of cancer, including breast cancer and leukaemia (Livi et al., 

2011, Lipshultz et al., 2011). However, the administration of DOX is known to induce 

numerous cardiotoxic effects, including transient arrhythmias, nonspecific 

electrocardiographic abnormalities, pericarditis, and acute heart failure and somewhat limits 

its use (Singal et al., 2000, Keizer et al., 1990, Billingham et al., 1978, Bristow et al., 1978). 

The heart is thought to be more sensitive to DOX toxicity as a result of the large number of 

mitochondria, an increased amount of NADH dehydrogenase associated with complex I in 

these mitochondria, the affinity of DOX for the inner mitochondrial membrane phospholipid 

cardiolipin, and a lower peroxide detoxification capacity than that of the liver (Doroshow et 

al., 1980)  

The mechanism by which DOX causes myocardial injury is not fully understood. 

Nonetheless, the free radical hypothesis of DOX toxicity has been steadily gaining support 

over the years. Acute or chronic DOX cardiotoxicity is reduced in transgenic mice 

overexpressing mitochondrial manganese superoxide dismutase (MnSOD ), catalase, or 

cysteine-rich metallothioneins respectively (Yen et al., 1996, Kang et al., 2001, Sun et al., 

2001), supporting the idea that oxidative stress mediates DOX cardiotoxicity.  

The results of this study have shown that DOX induced marked acute cardiotoxicity 48 

hours after DOX injection in rats. Doxorubicin-induced cardiotoxicity was manifested by 

increased serum cardiac enzyme levels. The results reported in this study were in agreement 

with previous studies (Ibrahim et al., 2010, Venkatesan, 1998, Tatlidede et al., 2009). Pre-

treatment with AGE effectively prevented DOX-induced cardiotoxicity.  A study by 
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Demirkaya et al. (2009) demonstrated the ability of AGE to protect against DOX-induced 

cardiotoxicity in rats.  

In this study, the oxidative stress was obvious by the reduction in serum TAS and increased 

MDA production in the plasma and heart of DOX-treated rats. These finding were consistent 

with those of others (Antonio et al., 2005, Machado et al., 2010, Bulent et al., 2008). 

Moreover, AGE efficiently reduced the increase in MDA production in the plasma and 

hearts of rats treated with AGE + DOX. Furthermore, DOX-induced oxidative stress in rat 

cardiac myocytes measured as 8-isoprostane was reduced with AGE pre-incubation. 

The protective effect of AGE against oxidative stress is due to its antioxidant potential. 

Several studies have documented the strong antioxidant activity of AGE (Drobiova et al., 

2009, Aguilera et al., 2010, Al-Numair, 2009, Avci et al., 2008, Awazu and Horie, 2008). In 

the present study, the inhibitory effect of AGE on MDA production and the notciable 

increase in the TAS may be due to SAC. Kim et al. (2001) measured the antioxidant activity 

of AGE and SAC in hydroxyl radical and superoxide generating systems. They found that 

the formation of 5,5-dimethyl-1-pyrrolline N-oxide (DMPO) adduct of the hydroxyl radical 

was strongly inhibited by garlic extract and SAC in the H2O2 plus iron system which 

generates the hydroxyl radical. In addition, accumulation of superoxide generated in the 

xanthine oxidase (XO)/acetaldehyde system was reduced with AGE and SAC. 

Pre-treatment with AGE did not interfere with the cytotoxic activity of DOX but increased 

its activity against tumour cells in mice bearing EAC. A possible explanation for AGE 

enhancement of DOX-cytotoxic activity may involve the inhibition of carcinogen binding to 

mammary cell DNA, augmentation of detoxifying enzymes and hindering of metabolic 

activating enzymes (Sumiyoshi and Wargovich, 1990, Amagase and Milner, 1993). It has 
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been reported that AGE has antitumour activity (Chang et al., 2005, Karasaki et al., 2001, 

Kyo et al., 1998, Lamm and Riggs, 2001, Malki et al., 2009, Milner, 1996, Sakamoto et al., 

1997, Seki et al., 2000). 

Several hypotheses have been proposed for the mechanisms of cardiotoxicity associated with 

DOX therapy. The most common theories proposed to explain DOX cardiotoxicity are free 

radical generation resulting in mitochondrial dysfunction and disruption of calcium 

homeostasis (Wallace, 2003, Berthiaume and Wallace, 2007, Hamza et al., 2008). However, 

many studies have shown DNA damage as an early event in the toxicity induced by DOX in 

cardiac cells (Chua et al., 2006; L'Ecuyer et al., 2006, Nithipongvanitch et al., 2007a; 

Nithipongvanitch et al., 2007b).  

It has also been suggested that a tumor suppressor protein p53 is a critical mediator of DOX 

cardiotoxicity. This notion is supported by the observation that DOX induces p53 

accumulation in the heart and that either pharmacological or genetic ablation of p53 results 

in the attenuation of cardiotoxicity following DOX treatment (Liu et al., 2004, Shizukuda et 

al., 2005).  

The results of this study have revealed that AGE protected rat cardiac myocyte against 

DOX-induced cardiotoxicity manifested as increased activity of p53, caspase-3 and cell 

death. It seems that AGE exerts its cardioprotective effect through both its antioxidant 

activity and inhibition of mitogen- activated protein kinase (MAPK)/ extracellular signal-

regulated kinases (ERK) signalling pathway. Aged garlic extract has a strong antioxidant 

activity and its major constituent SAC is a potent free radical scavenger and inhibitor of 

ERK (Kim et al., 2006). Padmanabhan and Stanely Mainzen Prince, (2007) have reported 

that oral pre-treatment of Wistar rats with SAC (100 mg and 150 mg/kg) was protective 
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against isoproterenol-induced myocardial infarction. They found that SAC reduced lipid 

peroxide products and improved the antioxidant status.  

The present study has demonstrated altered antioxidant gene expression in DOX-treated 

cells. There was a trend of up-regulation of five antioxidant genes in DOX-treated cells. Pre-

incubation with AGE seems to normalize the altered gene expression although not reaching 

statistical significance. 

In conclusion, the present study is the first to show the protective effect of AGE against 

DOX-induced cardiotoxicity at both the in-vivo and in-vitro levels. Pre-treatment of rats with 

AGE minimised DOX- induced oxidative stress and preserved the morphological integrity of 

the heart. Moreover, AGE did not interfere with the antitumor effects of DOX. It enhances 

the cytotoxicity of DOX in tumour cells and guards the organs against DOX-toxic effects. 

Similarly, rat cardiac myocytes were protected from the oxidative stress and apoptotic 

damage with AGE pre-incubation.  

Aged garlic extract reduced the activity of p53, caspase-3 and cell death in DOX-treated 

cells possibly through its inhibitory effects on MAPK/ERK signalling pathway. 

Furthermore, AGE has established strong antioxidant activity. The current findings 

contribute to the insights of DOX-induced cardiotoxicity and identify AGE as a potential 

therapeutic candidate.  
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Future work 

Aged garlic extract appear to possess a number of biological effects in addition to its 

antioxidant activity. It may act by inhibiting MAPK/ERK signalling pathway. Further 

research is needed to elucidate the molecular mechanisms involved. Clinical trials on cancer 

patients receiving DOX treatment will be useful in confirming the protective role of AGE in 

human subjects. 

 Aged garlic extract may be considered as a potentially useful candidate in the combination 

chemotherapy with DOX to limit cardiotoxicity and augment DOX antitumor activity. 

Future studies should also consider performing Western Blotting for detection of protein 

expression of the altered genes with DOX treatment 
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a b s t r a c t

Clinical uses of doxorubicin (DOX), a highly active anticancer agent, are limited by its severe cardiotoxic
side effects associated with increased oxidative stress and apoptosis. In this study we investigated
whether aged garlic has protective effects against doxorubicin-induced free radical production and car-
diotoxicity in male rats. A single dose of doxorubicin (25 mg/kg) caused increased both serum cardiac
enzymes LDH and CPK activities and a significant increase malonyldialdehyde (MDA) in plasma. How-
ever, pretreatment of rats with aged garlic extract (250 mg/kg) for 27 days before doxorubicin therapy,
reduced the activity of both enzymes, and significantly decreased of MDA production in plasma.

Total antioxidant activity was increased after aged garlic extract administration. Histopathological
examination of heart tissue showed that DOX treatment resulted in alteration of cardiac tissue structure
in the form of peri arterial fibrosis and apoptotic changes in cardiomyocytes. Pretreatment with aged gar-
lic extract for 27 days ameliorated the effect of DOX administration on cardiac tissue; cardiomyocytes
looked more or less similar to those of control. However, still vascular dilatation, mild congestion and
interstitial edemas were observed. Our results suggest that aged garlic extract is potentially protective
against doxorubicin-induced cardiotoxicity.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Doxorubicin (DOX) is an effective anthracycline antibiotic used
to treat many human neoplasmas, including acute leukemias,
malignant lymphomas, and a variety of solid tumors. However,
its clinical uses are limited by dose-dependent side effect of cardio-
toxicity, which may lead to irreversible cardiomyopathy and even-
tually heart failure (Shan et al., 1996). The cardiac toxic effects of
DOX may occur immediately after a single dose, or several weeks
to months after repetitive DOX administration. Several explana-
tions account for the doxorubicin cardiotoxicity, e.g., free radical
production, calcium overloading, mitochondrial dysfunction and
peroxynitrite formation have been proposed (Olson and Mushlin,
1990; De Beer et al., 2001; Shuai et al., 2007). The semiquinone
form of DOX is a toxic, short-lived metabolite and interacts with
molecular oxygen and initiates a cascade of reaction, producing
reactive oxygen species (ROS) (Davies and Doroshow, 1986). The
free radical hypothesis is the most popular and is well docu-
mented. The precise mechanism of doxorubicin cardiotoxicity
and related preventive approaches are under intensive investiga-
tions. For example if DOX cardiotoxicity is related to free radicals

formation, compounds with antioxidant activity may protect
against DOX-induced toxicities in hearts (Siveski-Iliskovic et al.,
1995).

Garlic (Allium sativum) is used as a vegetable spice and medici-
nal herb. Recent research on garlic has used it in the form of tab-
lets, fresh, dried raw, boiled and cooked preparation (Gorinstein
et al., 2006). Commercially available garlic preparations in the form
of garlic oil, powder and pills are also widely used for therapeutic
purposes. Garlic exhibits a wide range of properties including
immunomodulatory, hepatoprotective, antimutagenic, anticarci-
nogenic, and antioxidant effects (Horie et al., 1989; Kailash,
1996; Rahman, 2001; Al-Numair, 2009). Aged garlic extract
(AGE) is an odorless garlic preparation produced by prolonged
extraction of fresh garlic at room temperature for up to 20 months
(Amagase et al., 2001; Borek, 2001; Kasuga et al., 2001; Banerjee
et al., 2003). It has been shown to be the most useful garlic product
as antioxidant and effective in medicine compared with other gar-
lic preparations (Borek, 2001; Kasuga et al., 2001; Banerjee et al.,
2003). AGE has been reported to have powerful antioxidant and
free radical scavenging properties (Imai et al., 1994; Amagase
et al., 2001; Borek, 2001). The protective effect of natural product
containing aged garlic on DOX-induced cardiac injury is not clearly
shown on the basis of antioxidant enzymes, however electron
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microscopic study clearly demonstrated such positive effect
(Demirkaya et al., 2009).

Therefore, this study is directed to investigate the protective ef-
fect of AGE against DOX-induced cardiotoxicity from biochemical
and histopathological point of view.

2. Materials and methods

2.1. Reagents

Doxorubicin hydrochloride, was purchased from Sigma–Aldrich Co. (St. Louis,
MO, USA).

AGE (Kyolic�) was kindly provided by Wakunaga of America (Mission Viejo,
CA). It is prepared by soaking sliced raw garlic (Allium satifum) in 15–20% aqueous
ethanol for at least 10 months at room temperature. The extract is then filtered and
concentrated under reduced pressure at low temperature. The content of water-sol-
uble compounds is relatively high while that of oil-soluble compounds is low. The
AGE used in these experiments contained 28.6% extracted solids (286 mg/ml), and
S-allyl cysteine, the most abundant water-soluble compound in AGE, was present at
1.47 mg/ml.

2.2. Animals

Wistar albino rats (8–10 weeks of age, 180–200 g body weight) were obtained
from King Fahd Medical Research Center, King Abdul-Aziz University, Jeddah, Saudi
Arabia. The animals were conditioned for 1 week at room temperature. A commer-
cial balanced diet and tap water, ad libitum was provided throughout the experi-
ment. This study was approved by the ethical committee of King Abdul-Aziz
University Medical Faculty.

2.3. Experimental protocol

Twenty-four male Wistar rats were divided into four equal groups consisting of
six animals each and housed in a room with regular light/dark cycle with free access
to food and water.

Two groups (I and II), were used as a control and received normal saline, i.p. and
distilled water p.o. (group I), and aged garlic extract 250 mg/kg orally (group II) for
28 days. Groups (III and IV) received a single i.p. dose of DOX (25 mg/kg) on day
27th, after successive administration of distilled water (0.5 ml, orally, group III)
or aged garlic extract (250 mg/kg orally, group IV).

At the end of the experiment period (29 days), 48 h, after DOX injection, rats
were anesthetized and blood samples were collected from ophthalmic artery in
the orbital rim prior to sacrifice. Serum was separated and heart specimens were
fixed in 10% formalin for histopathological examination.

2.4. Assessment of cardiac enzymes

Plasma total Lactate dehydrogenase (LDH) and total creatine phosphokinase
(CPK) activities were determined using commercial kits from RANDOX, UK and
SPINREACT, Spain, respectively. Total LDH activity was assessed according to the
method of Henery (1974).

2.5. Determination of lipid peroxides (measured as MDA)

Frozen samples of heart were thawed, rinsed successively with 0.9% NaCl and
with cold (4 �C) 20 mM Tris–HCl, followed by homogenization in Barnson Sonifier
(250 VWR scientific, Danbury, CT, USA). The homogenates were diluted with cold
20 mM Tris–HCl and centrifuged (10 min at 4 �C, 3000 g). Spectrophotometric as-
says of malonyldialdehyde (MDA) were performed with an aid of Lipid Peroxidation
Assay Kit (Calbiochem), in accordance with the instructions of the manufacturer.

2.6. Determination of total antioxidant status in serum

Total antioxidant status was determined using a quenching method ABTS (2,2-
azino-di[3-ethyl benzthiazolin sulphonate]) radical cation (ABRS+) by antioxidants
using a total antioxidant assay kit (Miller et al., 1993), obtainable from Randox
NX2332 kit, Randox Laboratories, Crumlin, UK.

2.7. Histopathological examination of heart section

Formalin fixed heart embedded in paraffin wax was serially sectioned (3–5 lm
section), and stained with hematoxylin and eosin, for only assessment of histopa-
thological changes (Monnet and Christopher, 1999).

2.8. Statistical analysis

Results are expressed as the mean ± SEM. Comparison between different groups
was carried out by one-way analysis of variance test (ANOVA) followed by LSD test.
The statistical significance was accepted at a level of P < 0.05.

3. Results

3.1. Effect of AGE on DOX-induced cardiotoxicity

Treatments of rats with a single dose of DOX (25 mg/kg) re-
sulted in a 185% increases in plasma CPK activities (P < 0.001).
However, LDH activity showed a 48.5% increase compare to control
(Figs. 1 and 2). Pretreatment of DOX-treated rats with AGE
(250 mg/kg) for 27 days, resulted in a 73.7% decrease in plasma
CPK activities (P < 0.05). Light microscopic examination of heart
sections after 48 h of DOX treatment revealed fibrosis around
arteries, apoptotic cells, loss of striation and an increase in inflam-
matory cells (Fig. 4). However, in the case of treatment with AGE
for 27 days, DOX treatment resulted in mild interstitial edema,
mild vascular congestion and normal appearance of nuclei and stri-
ation (Figs. 3 and 5).

3.2. Effect of AGE on DOX-induced changes on MDA levels in serum
and heart homogenate

Figs. 6 and 7 show the effects of AGE treatment for 27 days be-
fore DOX on the levels of MDA in both serum and heart homoge-
nate. A single dose of DOX-induced a 55.3% increase in MDA in
heart homogenates while there was a only 27.1% increase in the
case of AGE pretreatment.

There was a 12-fold increase in MDA in plasma after DOX treat-
ment (P < 0.001) compared with only a 5-fold increase when AGE
was given before DOX (P < 0.05).

3.3. Effect of AGE on DOX-induced changes in total antioxidant levels
in serum

A single dose of DOX decreased in total antioxidant state by
about 4% while AGE administration showed a15% increase
(Fig. 8). Pretreatment of AGE before DOX nearly normalized the
antioxidant levels in plasma (4% compared to control).

4. Discussion

Anthracyclines are used to treat a variety of cancers but are
widely associated with irreversible cardiomyopathy. The mecha-
nism of doxorubicin-induced oxidative stress is the formation of
an anthracycline-iron (Fe2+) free radical complex. The latter reacts
with hydrogen peroxide to produce hydroxyl (OH�) radical (Sugioka
and Nakano, 1982). The iron chelators and free radical scavengers
might provide cardiac protection by preventing the formation of
the extremely reactive hydroxyl radical and by scavenging radicals
that have been formed. The iron chelator ICRF-187 has been shown
to protect against DOX-induced cardiotoxicity during experiments.
However, its clinical success is limited because it increases the
hematotoxicity in cancer patients (Sparano, 1998; Speyer et al.,
1992). This study was directed to investigate the role of AGE which
has been used as both food and medicine in many cultures for
thousands of years (Ackermann et al., 2001; Dillon et al., 2003)
for its antioxidant properties for cardioprotection against DOX-in-
duced cardiotoxicity.

A single dose (25 mg/kg) of DOX-induced marked acute cardio-
toxicity in rats 48 h after treatment. This was demonstrated by in-
crease plasma CPK and LDH activities and confirmed by moderate
histopathological changes in the heart including periarterial fibro-
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sis, apoptotic cells, Loss of striation and increase in inflammatory
cells. It is well known that the magnitude of CK and LDH activities
in blood after myocardial injury reflects the extent of damage in its
musculature (Preus et al., 1988). The mechanism of DOX-induced

cardiotoxicity has been reported to be through formation of super-
oxide anions and their derivatives, particularly highly reactive and
damaging hydroxyl radicals, which induces peroxidation of cell
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Fig. 1. Effect of DOX (25 mg/kg) alone or after pretreatment with AGE on the activity of cardiac enzyme CPK. Data are expressed as mean ± SEM (n = 6). **Significantly
different from control (P < 0.001). #Significantly different from AGE + DOX (P < 0.05).
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Fig. 2. Effect of DOX (single dose 25 mg/kg, i.p.) alone and after pretreatment with AGE (250 mg/kg, p.o.) on serum LDH activity (U/L) of male Wistar rats. The values
expressed mean ± SEM (n = 6). *Significantly different from control (P < 0.05). #Significantly different from AGE + DOX (P < 0.0 5).

Fig. 3. Histological section from the left ventricle showing normal cardiomyocytes
(black stars), with oval vesicular central nuclei, thin wall blood capillaries, and a
branch of coronary artery were seen among the cardiac fibers (H&E �40). Fig. 4. Light micrograph of a part of rat heart treated with Doxorubicin (DOX)

showing peri arterial fibrosis, loss of striation and increase in inflammatory cells.
(H&E 40�).
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membrane lipid (Hemnani and Parihar, 1998). Our results are in
agreement with others (Van Vleet et al., 1980; Tesoriere et al.,

1994; Nagi and Mansour, 2000; Al-Majed et al., 2002; Yagmurca
et al., 2003), who all reported cardiac toxicity after DOX treatment.

Fig. 5. Photomicrographs from AGE + DOX treated cardiac tissue. Notice the increase in sub-pericardial vascularity (arrows) in the upper figure. The lower left figure show
normal cardiomyocytes with normal appearance of nuclei and striation (star). The nuclei of the cells are oval vesicular and central. Normal but dilated congested vessels
among cardiac fibers were seen (right figure) (H&E 40�).
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Fig. 6. Effect of DOX (single dose 25 mg/kg, i.p.) alone and after pretreatment with AGE (250 mg/kg, p.o.) on heart homogenate malonyldialdehyde (MDA) activity (lM/g
tissue) of male Wistar rats. The values are represented by mean ± SEM (n = 6). **Significantly different from control (P < 0.001). #Significantly different from AGE + DOX
(P < 0.05).
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Other investigators have observed generalized tissue damage to
other organs following DOX treatment (Yoda, 1986; Bagchi et al.,
1995). The mechanism of DOX-induced cardiotoxicity has been
implicated by many investigators. In term of specific organ toxic-
ity, lipid peroxidation and formation of peroxinitrite have been in-
volved in the pathogenesis of DOX-induced cardiac toxicity (Myers
et al., 1977; Singal and Pierce, 1986; Pacher et al., 2003). In our
study a significant increase in lipid peroxidation in term of MDA
in plasma (Fig. 7) has been observed after DOX treatment.

The increase in CK activity following acute DOX administration
was significantly prevented by garlic treatment continuously for
27 days before DOX. It is well known that garlic is medicinally used
since ancient times as antioxidant and it has been shown that
chronic intake of garlic enhanced Superoxide dismutase and cata-
lase activities in heart tissue which offers protection against oxida-
tive stress associated with ischemic reperfusion injury (Banerjee
et al., 2002a,b; Mukherjee et al., 2003).

At the same time Borek (2001) reported that storing sliced raw
garlic produces AGE with increased activity of certain new com-
pounds such as S-allylcysteine and S-allylmercaptocysteine, allixin
and selenium which are stable, highly bioavailable and signifi-
cantly antioxidants.

Moreover, garlic was reported to reduce chemotherapy side ef-
fects such as heart and intestinal damage commonly seen with cer-
tain anticancer agents (Al-Numair, 2009).

The biochemical data were confirmed by histopathological data
which showed mild myocardial injury induced by DOX after pre-

treatment of rats with AGE (Fig. 5). It has been reported that car-
diac histopathological changes were induced by DOX treatment
which confirm our presented data (Van Vleet et al., 1980; Tesoriere
et al., 1994; Monnet and Christopher, 1999). Moreover, Borek
(2001), showed that AGE protects cardiac cells in vitro against
DOX-induced cardiotoxicity, our results confirms this data where
AGE pretreatment showed a decrease in DOX-induced elevation
of MDA production in both plasma and heart tissue (Figs. 6 and 7).

In conclusion AGE contains a wide range of antioxidants that
protect against cardiac damaging effects of DOX. Additional human
studies using AGE and its constituents to further elucidate their
protective role against agents that induce tissue damaging effects
and necessary at the same time, the molecular studies to reveal
the underlying mechanisms.
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