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Abstract

This thesis presents work on generative approaches to human motion tracking

and pose estimation where a geometric model of the human body is used for

comparison with observations. The existing generative tracking literature can be

quite clearly divided between two groups. First, approaches that attempt to solve

a difficult high-dimensional inference problem in the body model’s full or ambient

pose space, recovering freeform or unknown activity. Second, approaches that

restrict inference to a low-dimensional latent embedding of the full pose space,

recovering activity for which training data is available or known activity.

Significant advances have been made in each of these subgroups. Given suffi-

ciently rich multiocular observations and plentiful computational resources, high-

dimensional approaches have been proven to track fast and complex unknown

activities robustly. Conversely, low-dimensional approaches have been able to

support monocular tracking and to significantly reduce computational costs for

the recovery of known activity. However, their competing advantages have –

although complementary – remained disjoint. The central aim of this thesis is

to combine low- and high-dimensional generative tracking techniques to benefit

from the best of both approaches.

First, a simple generative tracking approach is proposed for tracking known ac-

tivities in a latent pose space using only monocular or binocular observations.

A hidden Markov model (HMM) is used to provide dynamics and constrain a

particle-based search for poses. The ability of the HMM to classify as well as

synthesise poses means that the approach naturally extends to the modelling of

a number of different known activities in a single joint-activity latent space.

Second, an additional low-dimensional approach is introduced to permit transi-

tions between segmented known activity training data by allowing particles to

move between activity manifolds. Both low-dimensional approaches are then

fairly and efficiently combined with a simultaneous high-dimensional generative

tracking task in the ambient pose space. This combination allows for the recov-

ery of sequences containing multiple known and unknown human activities at an

appropriate (dynamic) computational cost.

Finally, a rich hierarchical embedding of the ambient pose space is investigated.

This representation allows inference to progress from a single full-body or global

non-linear latent pose space, through a number of gradually smaller part-based la-

tent models, to the full ambient pose space. By preserving long-range correlations

present in training data, the positions of occluded limbs can be inferred during

tracking. Alternatively, by breaking the implied coordination between part-based

models novel activity combinations, or composite activity, may be recovered.
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PaMPas Particle Message Passing
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PSH Parameter Sensitive Hashing
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Chapter 1

Introduction

In this chapter a brief introduction to the field of human motion track-
ing is given (expanded further in Chapter 2). A number of important
terms are defined and the thesis statement and outline are given.

1.1 Background

There is a rich body of literature on the analysis of human motion from non-

invasive visual cues, driven by applications in diverse areas such as human-

computer interaction, visual surveillance and medicine [RKM08]. The topic is

a broad one that has grown considerably in recent years [MHK06] and features

many quite distinct sub-branches. The taxonomy of Poppe [Pop07b] is adopted

to define the area in which this thesis attempts to contribute. The literature

may be broadly divided into two groups: generative approaches that optimise

the configuration of a volumetric body model to coincide with observations, and

discriminative approaches that predict pose configurations directly from obser-

vations. In this work novel generative tracking approaches are developed, using

a fixed geometric body model based on the dimensions of the tracking subject

to synthesise poses for comparison with image observations. The generative ap-

proach entails both a modelling and estimation stage. Modelling requires the

1
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specification of an objective function for comparison of the body model with ob-

servations, and estimation requires the recovery of the optimal pose given the

objective function.

Defining a single pose given a simple body model consisting of a kinematic tree

requires around 30 parameters. Even with carefully formulated objective func-

tions e.g. [ST03a, SB01], the estimation problem over a 30D space given a single

observation contains a large number of local optima [ST02a]. Simple approaches

like gradient descent are therefore unlikely to find or maintain globally optimal

solutions. For this reason probabilistic inference has been favoured and particle

filtering methods [AMGC02] have become perhaps the most widely adopted ap-

proach to estimation in generative tracking. By maintaining multiple hypotheses

about the true pose configuration particle filters are, in theory at least, capable

of supporting a multimodal objective surface during estimation.

By deploying a particle filter in a body model’s full or ambient pose space and

permitting each configuration parameter to vary independently, no restrictions

are placed on pose and freeform or unknown activity can be tracked. However,

in practice such approaches have relied upon: large particle numbers to sample

the pose space with sufficient density [BEB08]; carefully constrained dynamical

models [CGH05]; and observations from a minimum of four synchronised cameras

to minimise ambiguity in the modelling step [SBB10]. Reducing reliance on any

one of these factors is desirable, but tends to come at the expense of increased

dependence on another.

Learning a low-dimensional latent pose space from training data is an effective

method for constraining the estimation task. Projection of training poses onto a

low-dimensional manifold encodes correlations between body model parameters

and particle filtering in the resulting subspace has permitted reductions of both

particle numbers and camera numbers, e.g. [TLS05, LPS07, RRR08a]. The cen-

tral limitation of such approaches is that they constrain the classes of activity

that can be tracked to known activities – that is, those present in the training

set.
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As an example, take a latent pose space learned from walk activity data. This

space contains only walking poses and has no capacity to generalise to a new

activity regardless of its simplicity. A novel activity such as wave will inevitably

cause tracking to fail, see also Section 3.3.6 for an experimental proof. To improve

robustness, one might therefore construct a latent pose space from both walk data

and wave data. However, even a subtly different combined or composite activity

such as walk whilst waving remains beyond the scope of the new model: extra

training data is necessary for every activity of interest.

This thesis looks at a number of ways in which the constraints of a latent pose

space can be relaxed to permit the recovery of hitherto unseen poses. The aim

is to retain the efficiency and robustness of latent pose space estimation while

introducing the potential for generalisation to events such as known activity tran-

sitions, composite activity and unknown activity. A number of novel solutions

are put forward (these are listed in Section 1.3), but each involves permitting

particles to move away from latent variables in a controlled manner. This may

be by moving between different manifolds in a joint-activity pose space, by break-

ing the temporal correlations between individual body parts, or by flowing out

of the latent pose space and into the unconstrained ambient pose space. By

carefully integrating each of these possibilities into a particle-based approach to

estimation, the robust tracking of multiple classes of activity at an appropriate

(dynamic) computational cost is demonstrated.

The field of human motion tracking and pose estimation has recently benefitted

from the introduction of freely available datasets that include ground truth and

allow for quantitative evaluation and comparison of techniques. In particular, the

HumanEva-I and HumanEva-II datasets provide observations of human motions

from multiple cameras and a synchronised motion capture (MoCap) record of

ground truth [SBB10]. These tools have transformed the presentation of results

within the field, making possible the quantitative cross-comparison of a range of
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existing techniques1. In the remainder of this thesis each contribution is thor-

oughly tested on either the HumanEva datasets or other freely available human

motion datasets, quantitative results are presented and comparisons drawn with

existing state of the art approaches. In addition, software used to create many of

the main results is made available to other researchers via the author’s website.

1.2 Problem Statement

In Chapter 2 a number of high-dimensional and low-dimensional tracking ap-

proaches from the literature are highlighted. High-dimensional approaches are

able to track freeform motions where rich observation data and sufficient com-

putational resources are available. Conversely, low-dimensional approaches can

recover known activities from limited observation data and at reduced computa-

tional cost. However, no attempts to marry the two within a single framework ex-

ist. The potential benefit is a generative tracking system that can recover known

activities efficiently and robustly (e.g. through occlusions) from a low-dimensional

pose space, but upon encountering unknown activity is able to adjust the scope of

its inference task to recover unknown poses from a high-dimensional pose space.

The problem statement addressed by this thesis is concisely stated as follows,

Low-dimensional generative tracking techniques have brought a num-

ber of advantages over their high-dimensional counterparts including

reduced computational cost and accurate tracking from limited obser-

vation data. However, the requirement that training data be available

for an offline learning stage means these advantages come at the ex-

pense of flexibility: the ability to track hitherto unseen activities. The

strengths of low-dimensional and high-dimensional generative tech-

niques are potentially complementary; this thesis investigates ways in

which they might be combined.

1See for example work in the the International Journal of Computer Vision’s recent special
issue on “Evaluation of Articulated Human Motion and Pose Estimation” [EVA10].
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1.3 Contributions of this Thesis

The three main contributions of this thesis are as follows: (i) the specification of a

novel low-dimensional generative tracking technique for known activity tracking;

(ii) its efficient combination with a high-dimensional generative tracking tech-

nique for known and unknown activity tracking; (iii) the use of a hierarchy of

part-based latent pose spaces for composite activity tracking. The motivation

and context for this work is carefully introduced over the course of the follow-

ing two chapters, but a concise list of the resulting contributions with relevant

sections forward-referenced is given below.

1. Construction of activity models for known activities. PCA is used to re-

cover a latent pose space from MoCap training data (Section 3.3.2), and a

dynamical model learned by training a hidden Markov model (HMM) from

the resulting distribution of latent variables (Section 3.4.2). This combina-

tion of pose space and dynamical model is referred to as an activity model.

2. Integration of the activity model into an annealed particle filtering (APF)

[DBR00] framework for particle dispersion during estimation (Section 4.2).

The definition of a number of novel objective functions that permit the

resulting tracker – termed HMM-APF – to recover known activity from

narrow-baseline stereo (Section 4.3.1), monocular (Section 4.3.2) and wide-

baseline stereo observations (Section 4.3.3).

3. Definition of two further complementary activity models. Known activity

transitions are modelled by permitting particles to flow between activity

manifolds in a joint-activity latent pose space (Section 5.3.3). Unknown

activities are modelled using Gaussian noise to propagate particles in the

high-dimensional ambient pose space (Section 5.3.1).

4. Proposal of a multiple activity model APF (MAM-APF) scheme to unify

separate search strategies under the APF framework (Section 5.4). A parti-

cle stacking approach is described, allowing for the simultaneous consider-

ation of multiple activity models described by different dynamical models
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spanning pose spaces of different dimensionality. A variable number of

particles are resampled at each annealing layer, allowing for the recovery

of known activities using only a small number of particles in latent pose

space, and unknown activities using a large number of particles in the am-

bient pose space (Section 5.4.2).

5. Proposal of an activity model for composite activity tracking based on a hi-

erarchy of latent variables adopted from the machine learning literature on

non-linear dimensionality reduction [LM07]. Inference moves gradually be-

tween a single low-dimensional known activity latent pose space, through a

number of gradually smaller part-based models, to the body model’s uncon-

strained high-dimensional ambient pose space (Section 6.3). This approach

permits the recombination of activity to create novel poses (Section 6.5.3)

while retaining the ability to solve traditional “global” latent space prob-

lems such as tracking through occlusion (Section 6.5.4).



Chapter 2

Literature Review

2.1 Introduction

In this chapter an overview of the field of articulated human motion tracking

is presented. Due to the large volume of work in this area, the overview is

not intended to be exhaustive but rather to define the areas in the literature

where this thesis attempts to contribute, and their wider context. Comprehensive

reviews of the literature can be found in a number of review papers e.g. [MG01,

MHK06, Pop07b, Smi08].

In the following sections, work on both pose estimation, and tracking is reviewed.

Following the definitions given by Sigal [Sig08], these approaches are defined

as follows. Pose estimation problems are concerned with the estimation of a

single static human pose at a single instant, given a single sensor observation.

Tracking problems are concerned with the estimation of a sequence of static

human poses given a sequence of sensor observations and the initial pose estimate

corresponding to the first observation. The “sensor” may be multiocular, in

which case there are several synchronised images at any instant. Although the

focus of this thesis is a solution to the tracking problem, pose estimation is a

complimentary (but inherently more challenging) problem that may be used to

7
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initialise tracking and can, in theory, be used for tracking by solving a pose

estimation problem at each frame.

Following the taxonomy of Poppe [Pop07b], the discussion of the literature is

divided between two central approaches: discriminative (or model-free) and gen-

erative (or model-based). Discriminative approaches attempt to model directly

a mapping from sensor observation to pose. Generative approaches use a model

of the human body to synthesise pose hypotheses. They then attempt to model

the likelihood of resulting pose hypotheses given an observation by constructing

a model of the observation likelihood, or objective function. Discriminative ap-

proaches usually focus on pose estimation and generative approaches on tracking

but this is not always the case.

2.2 Discriminative (Model-Free) Approaches

Discriminative approaches to pose estimation and tracking attempt to infer hu-

man pose directly from an observation. Although not directly relevant to the work

presented in this thesis, discriminative approaches are important for the way they

compliment generative approaches (e.g. for initialisation) and for the component

techniques they have in common (e.g. dimensionality reduction). The area can

be broadly divided between the following two methodologies: example-based ap-

proaches – that retain a large database of image-pose pairs and given an input

observation, search for the most closely matching image to return the associated

pose, e.g. [SVD03, PP06, OMBH06, MM06, How07, RRR+08b]; learning-based

approaches – that learn a continuous mapping between observations and pose

allowing the training set to be discarded, e.g. [AT04a, AT06, EL04, RS01, Bra99,

GSD03, SKLM05, SKM06b].
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2.2.1 Example-Based

For example-based approaches, the number of full-body training examples re-

quired to recover general motions is large [MM06]. Even if a database is thought

to be “complete”, matching success will also depend on the choice of descriptors

and the particular search strategy. Nearest neighbour searches e.g. using silhou-

ette [How07] or histogram of oriented gradients (HOG) representations [Pop07a],

have been successful but are impractical with large datasets. One solution is to

use fast approximations, for example Shakhnarovich et al. [SVD03] use param-

eter sensitive hashing (PSH) to retrieve matching exemplars in a fast nearest

neighbour approximation. Learning-based discriminative approaches offer an al-

ternative mechanism for benefitting from the information within large datasets

of image-pose pairs.

2.2.2 Learning-Based

Learning-based approaches offer the potential to remove the requirement to store

and search large amounts of training data. The alternative problem they address

is how best to specify a general mapping between image and pose. For example,

Agarwal and Triggs [AT04a] use a relevance vector machine (RVM) to characterise

a mapping between histograms of shape contexts and pose. This approach is

challenging because it is possible for different poses to give rise to the same

image features given different camera views and subject orientations; mappings

are therefore multi-valued. To overcome this problem Rosales and Sclaroff [RS01]

cluster training data in the pose space before using neural networks (NNs) to

learn different mapping functions for each cluster. More generally, mixtures of

regressors [AT06] have been introduced to cope with the multivalued nature of the

problem, e.g. the use of a Bayesian mixture of experts (BME) by Sminchisescu

et al. [SKLM05]. This multivalued problem is similar to that which arises in

generative tracking, where a number of different pose hypotheses may agree well
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with an observation. A number of important techniques are therefore common

to both approaches.

Perhaps the most important aspect of learning-based approaches in the context

of the work presented in this thesis, is the use of dimensionality reduction. In

generative work the observation that typical human motions occupy only a small

subspace within the full space of kinematically feasible poses has led to the use of

dimensionality reduction techniques to learn latent embeddings of the pose space

(see also Section 2.3). Similarly, in learning-based discriminative approaches such

techniques may be used to learn an embedding in the image space and constrain

the recovery of a mapping to pose space. The central issue for dimensionality

reduction to overcome is that the data is highly non-linear and therefore a non-

linear, twisted data manifold must be recovered. This has led to the adoption of

state of the art dimensionality reduction techniques e.g. locally linear embedding

[RS00] and the Gaussian process latent variable model [Law05].

Elgammal and Lee [EL04] use local linear embedding (LLE) [RS00] to learn a non-

linear manifold embedding from visual input. They then learn a mapping from

the embedding space to the pose space with a generalised radial basis function

(GRBF), allowing the reconstruction of poses from monocular silhouettes. Learn-

ing this mapping is simplified by the recovery of an intermediate low-dimensional

visual manifold. Bowden et al. [BMS98, BMS00] combine both shape (2D con-

tour, 2D head and hand locations) and structure (3D salient point locations)

parameters into a single feature vector and learn a “piecewise linear” model.

This is done by performing an initial principal components analysis (PCA) on

data and then clustering within the global eigenspace before learning a further

set of local linear models by PCA – the approach is sometimes referred to as

hierarchical PCA (HPCA) [BMS97, HH97]. By finding 2D estimates for head

and hand locations they are able to constrain a search for the optimal contour

solution. Likewise by finding the linear model closest to this initial estimate and

then the closest allowable training datum within that cluster, they are able to

perform 3D pose estimation. With a presumption of small inter-frame changes in
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silhouette and head/hand positions, a more efficient constrained tracking mode

search is possible.

Ong and Gong [OG99] take a similar approach but using multiocular observa-

tions. They note the potential for discontinuous changes in the 2D contour of a

3D shape during tracking and, following [HH98]1, learn a Markov transition ma-

trix to account for large “jumps” between locally linear clusters within the global

eigenspace. Furthermore, they account for uncertainty in the current estimate by

maintaining multiple pose hypotheses using a particle filter [IB98a, AMGC02].

The work is interesting for its use of artificially inflated dynamics in particle

dispersion for robust tracking. This is in common with a number of generative

tracking approaches, and also with the work presented in this thesis. Grauman

et al. [GSD03] demonstrate quantitatively superior performance when using mul-

tiocular observations. They combine silhouette contour information and 3D pose

coordinates into a single feature vector and use a mixture of probabilistic princi-

pal components analysis (PPCA) to describe a prior density over training data.

They are able to treat 3D pose reconstruction as a missing data problem (see

also Appendix B for more detail on PPCA).

Recent work by Lawrence [Law05] has proposed a dual probabilistic interpreta-

tion of PCA (see also Appendix B) that may be non-linearised using Gaussian

processes (GPs) [RW06] to give a form of probabilistic non-linear dimensionality

reduction. This technique, termed the Gaussian process latent variable model

(GP-LVM), has been shown to give good reconstruction results on human mo-

tion data [QDLM08] and has proven popular and effective in generative work (see

also Section 2.3). More recently it has also been applied to the discriminative

task [ETL07, MP06] using techniques similar to those described above. For ex-

ample, Ek et al. [ETL07] adopt a shape plus structure approach and learn a joint

latent space using training data from both the pose space and the image space

(similar with [BMS98, BMS00]), while Moon and Pavlović use a particle filter to

support multiple hypotheses in a non-linear latent space (similar with [OG99]).

Ek et al. use dynamical models to disambiguate sequences of (one-to-many) pose

1Here the problem is the 2D projection of a 3D hand, rather than human body.
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to latent space mappings. The approach is impressive but reconstruction errors

are found to occur due to a lack of training data, or more specifically a lack of

viewpoint data given the training activity (see Fig. 2 in [ETL07]). This work

emphasises the fundamental difficulty of the discriminative task: large amounts

of training data must be available, regardless of whether the approach is example-

or learning-based.

Although learning-based approaches can remove the need to retain a large data-

base for “online” searching, the data acquisition task required for “offline” learn-

ing remains formidable. In more recent work Ong et al. [OMBH06] attempt to

achieve viewpoint invariant monocular tracking by moving to richer feature vec-

tors, or “exemplars”, that incorporate image information from twelve different

viewpoints in addition to structural pose information. Clustering is performed in

the exemplar space (without the use of dimensionality reduction) and a particle

filter is again used to maintain multiple pose hypotheses. The approach is an

attempt to negate the need to learn multiple models for multiple viewpoints e.g.

[EL04].

In order to take a discriminative approach to pose estimation and/or tracking,

training data must contain the necessary set of test poses and viewpoints, and it

must be possible to extract the relevant image features from both training and

test sequences. Thus, example-based approaches require huge databases to gen-

eralise to freeform motions. Those that attempt to generalise to new poses by

interpolating a number of close matches, e.g. [Pop07a], may be more expressive

but cannot guarantee the resulting pose solution is viable. For learning-based dis-

criminative approaches, where an intermediate manifold representation is used,

a viable pose is guaranteed by “clamping” image feature projections to the man-

ifold before mapping to the pose space, e.g. [EL04], but precludes the recovery

of a novel pose. A more expressive system able to correctly estimate some novel

inputs is described by Agarwal and Triggs [AT04a] who learn a mapping directly

from image space to pose space. However, where the input is ambiguous there

is still no guarantee that the resulting pose estimate is kinematically viable, see
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for example the “compromise solutions” in Fig. 7 of [AT04a]. Prior knowledge,

including kinematic constraints, is difficult to incorporate into such approaches.

These difficulties have played a part in the wide adoption of generative approaches

(see also Section 2.3), where a body model is moved to coincide with image fea-

tures, rather than image features having to be “recognisable”. This is the route

taken in this thesis. However, many of the same difficulties apply to generative

approaches also, e.g. reliable feature extraction, generalisation to novel poses,

supporting multiple hypotheses. Learning-based discriminative approaches and

generative approaches have therefore seen application of many of the same tech-

niques. Their combination as two separate but complementary tracking processes

has proven effective and is currently the focus of much attention, further discus-

sion is given in Section 2.4.1.

2.3 Generative (Model-Based) Approaches

Generative approaches to pose estimation and tracking involve the projection

of a geometric body model into the image observation for the maximisation of

an observation likelihood or objective function. Such approaches are, overwhelm-

ingly, based upon the 3D kinematic tree of Marr and Nishihara [MN78] with some

choice of volumetric primitive to model individual limbs e.g. cylinders [DR05] or

superquadrics [ST03a]. Although there are a range of choices available for the pa-

rameterisation of such a model a high number of degrees of freedom is inescapable,

leading to a high-dimensional ambient state space (> 30D). A brute force search

of such a space for the optimal pose given the objective function is not feasible, all

but precluding the use of generative models for pose estimation. The problem is

analogous to the task of searching a “complete” pose database in example-based

discriminative tracking. Generative approaches are therefore limited to tracking

tasks, where a good initialisation is available with the first observation and the

problem can be reduced to recovering a series of small inter-frame changes in

pose.
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Even when limited to tracking applications, the traditional generative approach

described above has a number of drawbacks. Without sufficiently rich observa-

tions, ambiguity in the 3D to 2D projection, or in the observation model can

lead to a persistently multimodal objective surface over the state space [ST02a].

Although probabilistic multiple hypothesis methods exist for supporting (at least

temporarily) this ambiguity (e.g. multiple hypothesis tracking [CR99], particle fil-

tering [IB98a, AMGC02]) and for attempting to resolve it (e.g. annealed particle

filtering [DR05] covariance scaled sampling [ST03a] and kinematic jump sampling

[ST03b]) they are computationally expensive and the true mode does not always

win out.

These probabilistic approaches use Bayes’ rule to approximate a posterior dis-

tribution by combination of the observation model with a predictive prior on

pose. If the gap in pose space between the true solution and the set of cur-

rent hypotheses grows large with respect to the predictive prior, there is little

hope of recovery. In practice, this has meant that all but a handful of the most

powerful (and complex) generative approaches that employ sophisticated hypoth-

esis propagation techniques, e.g. [ST03a, ST03b], are unable to recover freeform

motion from monocular observations. It should also be noted that even these

methods require “good” monocular observations – e.g. high quality silhouettes

[ST03b] – that may be difficult to achieve outside the laboratory. In general,

generative algorithms require multiocular sensor observations featuring a mini-

mum of four wide-baseline cameras for robust tracking (see quantitative studies

in [BSB05, BEB08, SBB10]).

The limitations of generative approaches have motivated a number of develop-

ments in the field. First, the combination of discriminative approaches with

generative ones, the former providing initialisation at the first frame and reini-

tialisation from errors (see also Section 2.4.1). Second, the use of activity-specific

predictive priors imposed either within the high-dimensional state space, or by

the learning of a low-dimensional embedding of the pose space, and used for the

propagation of pose estimates (see also Section 2.3.2). Finally, the emergence of a

new subset of bottom-up generative approaches that are distinct from the class of
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“synthesise and test” approaches discussed so far (which are subsequently referred

to as top-down). Bottom-up approaches model the body as a set of independent

limbs in a global coordinate system, with only weak constraints enforced between

neighbours. Inference involves detecting and then assembling these limbs into a

plausible pose. This class of approaches has been particularly successful in per-

forming efficient 2D pose estimation in monocular images and this in turn has

led to a new strand of approaches that attempt to infer 3D pose from 2D pose.

Because bottom-up approaches employ a less constrained model of the human

body, e.g. connections between limbs can be “loose” [SBR+04] as opposed to the

exact constraints of top-down models, they are sometimes discussed separately

from generative approaches e.g. [MHK06], or sometimes not at all e.g. [Smi08,

Urt06]. Here a discussion of bottom-up approaches is included as there appears

to be potential for their integration with top-down generative approaches such

as the ones presented in this thesis (see also Section 2.3.2 and Chapter 6). Fur-

ther, bottom-up approaches are classified as generative (as in [Pop07b, Dau09])

because they still involve the projection of an – albeit weakly constrained – body

model into the observation for comparison with image features. The body model

typically features fixed size cylindrical limbs, and an orthographic camera pro-

jection is used for their comparison with image features, e.g. [FH05].

2.3.1 Bottom-Up

Bottom-up generative approaches to pose estimation and tracking have been

heavily influenced by the work of Fischler and Elschlager on pictorial structure

models (PSMs) [FE73]. PSMs use a collection of parts arranged in some de-

formable configuration to model the appearance of objects in images. Given an

observation, matching is performed by the minimisation of an objective func-

tion that incorporates each part’s fit with image evidence and its deformation

cost given its immediate neighbours. Based on this approach a number of ap-

plications to human pose estimation have been described [IF01, FH05, SBR+04,

SB06b, LH05, RFZ07]. Ioffe and Forsyth [IF01] present methods for 2D pose
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estimation based on finding a large number of possible locations for individual

body parts and then “pruning” the results to leave only groups of parts that

satisfy the kinematic constraints of the full body. Felzenszwalb and Huttenlocher

[FH05] show that by discretising limb state spaces and modelling neighbouring

limb interactions with a particular form of spring-like connection, a globally op-

timal 2D pose may be found using dynamic programming (DP). Ramanan et

al. [RFZ07] present methods for the automatic construction of person-specific

appearance models for individual limbs in PSMs, facilitating identification and

robust 2D tracking of multiple subjects.

The class of bottom-up generative approaches are capable of 2D monocular pose

estimation where top-down generative approaches are not, but they are also re-

strictive in a number of ways. First, modelling only neighbouring limb con-

straints precludes the consideration of long range limb interactions e.g. to deal

with occlusions (although efforts are made to account for this in [LH05]). Sec-

ond, the model offers no capacity to include temporal constraints. Finally, effi-

cient inference relies on relatively heavy discretisation of each model part’s state

space and is not suitable for extension into 3D. Recent work by Sigal et al.

[SB06b, SB06c, SBR+04] has gone some way towards alleviating these problems.

Sigal et al. [SBR+04] define a loose-limbed body model that supports a broader

range of interactions between any (not only neighbouring) pair-wise combination

of limbs. They show how non-parametric belief propagation (NPBP) may be

used to perform 3D pose inference. Sigal and Black [SB06b] apply the approach

to 2D pose estimation by giving consideration to self occlusions when evaluating

image likelihoods. In the standard bottom-up PSM formulation [FH05] there

is nothing to stop multiple body parts occupying the same image feature (to

minimise the energy function). This problem is known as “over-counting” and is

also addressed by the work of Jiang [Jia09]. The authors later use this approach

to provide an intermediate 2D pose estimate from monocular sequences, before

“lifting” to recover a 3D pose estimate [SB06c]. They achieve this by generalising

the discriminative approach of Agarwal and Triggs [AT04a] to learn a mapping

from 2D poses – rather than 2D silhouettes – to 3D poses. Similarly, Micilotta
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et al. [MOB06] assemble 2D upper body pose estimates using a combination of

AdaBoost and RANSAC [MOB05] before “lifting” to 3D via an example-based

discriminative database search.

In summary, bottom-up approaches can be broadly divided between the following

alternative methodologies: (i) the use of a simple and coarsely adjustable body

model for fast 2D pose inference; (ii) the adoption of a more expressive 3D body

model at the cost of more expensive and (necessarily) approximate inference

[SBR+04]; (iii) the recovery of 2D pose [SB06b] in an intermediate stage before

“lifting” to 3D pose estimates [SB06c, MOB06]. In Section 2.4.2 it is argued that

the final methodology motivates a previously unexplored combination of bottom-

up and top-down generative approaches within a single tracking framework. This

is where the top-down 3D tracking approach takes as its input the 2D pose

estimates of a simultaneous bottom-up scheme.

2.3.2 Top-Down

Top-down generative approaches optimise the configuration of a body model (usu-

ally 3D) to coincide with features in the image observation. Although a number of

options are available for the parameterisation of a 3D kinematic tree such as that

of Marr and Nishihara [MN78] e.g. Euler angles [BSB05], quaternions [SBR+04]

and exponential maps [BM98], the dimensionality of the complete pose vector

is typically upwards of 30D regardless of the choice. Even when using sophis-

ticated objective functions [ST03a, SB01], direct optimisation methods will en-

counter many local minima, as shown experimentally by Sminchisescu and Triggs

[ST02a]. Even given a good initialisation, such schemes are likely to be distracted

from the true configuration by local optima, never to recover. For this reason

probabilistic inference has been favoured over deterministic optimisiation.

By taking the ingredients of the top-down generative tracking problem (observa-

tions of human movement z0, z1, ..., zt, an initialising pose s0 and a model of the

observation likelihood p(zt|st)), making a first order Markov assumption about
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the underlying pose evolution p(st|s0, s1, ..., st−1) = p(st|st−1) and an independent

sensor assumption p(zt|z0, z1, ..., zt−1, s0, s1, ..., st) = p(zt|st), one can use Bayes’

rule to derive the following expression for the posterior state density (see also

Appendix A)

p(st|z0, z1, ..., zt)︸ ︷︷ ︸
Posterior at time t

=
1

C
p(zt|st)︸ ︷︷ ︸
Likelihood

∫
st−1

p(st|st−1)︸ ︷︷ ︸
Dynamical model

p(st−1|z0, z1, ..., zt−1)︸ ︷︷ ︸
Posterior at time t− 1

dst−1.

(2.1)

This expression, commonly called the filtering equation, may be interpreted as

Bayes’ rule for inferring a posterior state density from data for the time-varying

case [IB98a]. It has formed the basis for inference in a great number of visual

tracking applications via both Kalman filtering [GdBUP95, KM96] and particle

filtering [DNBB99, BSB05].

Kalman filtering offers a provably optimal solution where the observation likeli-

hood is Gaussian and the dynamics linear with Gaussian noise [May79]. However,

where the system state is complex, e.g. an articulated body, and observations am-

biguous, e.g. monocular [ST02a] or cluttered [BI98], the observation likelihood is

inevitably multimodal, and therefore non-Gaussian. Furthermore, a presumption

of linear dynamics is a poor one for human motions where the dynamical model

is required to reflect non-linearities such as joint angle accelerations, hard limits

or “end stops”, and limb collisions [SBB10]. The extended Kalman filter (EKF)

takes steps to support non-linear observations likelihoods and dynamics, requir-

ing only that they are differentiable in order that a first order Taylor expansion

approximation can be used. However, this locally linear assumption is still re-

strictive and the EKF cannot incorporate discontinuous dynamics such as joint

endstops, or support truly multimodal posterior distributions due, for example,

to an absence of visual information, e.g. at the “elbow singularity”2 [DNBB99].

In their evaluation of the Kalman filter, Deutscher et al. [DNBB99] demonstrate

multimodality experimentally using Monte-Carlo estimation for sample-based

2A straight elbow leads to high uncertainty in shoulder parameters as it is no longer possible
to observe rotations of the upper arm.
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non-parametric estimates of the true posterior. Rather than simply a simula-

tion tool, efficient time-recursive Monte-Carlo methods such as particle filtering3

[AMGC02] have become the dominant framework for probabilistic inference in

visual tracking. Here an arbitrary posterior distribution is represented via a set

of weighted “particles” moving within the state space according to some prior

dynamical model. Each particle is weighted based on its associated observation

likelihood, and “resampling” of the particle set – selecting particles with prob-

ability proportional to their weight – produces distributions that approximate

the true posterior at each instant. Particle-based methods form the basis for

inference in this thesis and full details follow in Chapter 3.

Using particle filtering it is possible to support a dynamical model that enforces

joint angle limits, and to disallow interpenetration of limbs e.g. [DNBB99, BSB05,

SBB10]. It is also possible to support a multimodal observation likelihood. This is

demonstrated experimentally by Balan et al. [BSB05] who apply a particle filter

(with silhouette based observation likelihood) to human motion tracking from

multiocular observations. They find that particle filtering is able to support,

and eventually to resolve, temporary multimodality in the posterior. This is in

contrast to a similar annealing-based approach that concentrates particles around

a single pose interpretation, occasionally leading to tracking failure.

In theory, given enough particles, long periods of ambiguous observation data

might be supported by simultaneously maintaining a large range of alternative

pose interpretations (wide, dense, multimodal particle distribution) until such

time as observations allow the true pose parameters to be resolved. However, the

number of particles required to sample a given state space with constant lattice

spacing is exponential in the dimensionality of that space. For the tracking of

full body human motion the state space dimensionality is typically above 30 and

each particle requires propagation and observation likelihood evaluation (with

associated computational costs). In practice this precludes the sampling of all

but a small sub-region of the state space and the capacity to maintain broad

3introduced to the computer vision community in the form of the CONDENSATION algo-
rithm [IB98a].
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multimodal distributions is therefore reduced. Furthermore, particle filtering has

been shown to collapse into a unimodal posterior even where weightings are kept

(artificially) flat, in a process known as “sample impoverishment” [KF00]. Ex-

perimental investigations have found standard particle filtering to fail after only

seconds when restricted to observations from fewer than three cameras [BSB05].

Consequently, considerable work has been done on how best to spread samples

within the state space, or “smart sampling”. This work has broadly taken two

routes: (i) high-dimensional approaches – that attempt to confine sampling to

pertinent portions of the ambient state space; (ii) low-dimensional approaches –

that learn a low-dimensional latent pose space from training data and perform

sampling in the latent space. These approaches have parallels with example-based

and learning-based discriminative techniques, respectively.

2.3.2.1 High-Dimensional Approaches

In high-dimensional approaches, inference is undertaken in the body model’s full

or ambient pose space. This is challenging because of the high dimensionality

of this space. The most straight forward way in which to constrain the ambient

state space is to impose maximum and minimum limits beyond which joints

cannot rotate. Such constraints are simple to enforce in particle-based tracking

approaches, with particles propagated into illegal regions of the state space simply

disregarded. Similar checks can be performed to ensure that limb interpenetration

is not permitted [BB06], and environment interactions such as surface contact

respected [VSJ08]. If joint limits are learned from training data, e.g. walking

data in [BSB05], they can serve as a restrictive prior that helps to constrain the

tracking problem, but precludes the tracking of freeform motions not present in

the training data. This is similar to the approach of Caillette et al. [CGH05] where

high-dimensional pose data is clustered and particles restricted to the vicinity of

the learned clusters during tracking. More recent work by Sigal et al. [SBB10] has

employed a less restrictive set of anatomical joint limits. The authors find that

tracking fails rapidly when such constraints are lifted. More complex approaches

to joint rotation modelling have been developed in the robotics and biomechanical
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communities, e.g. hierarchical implicit surface joint limits where the rotational

capacity of limbs in the kinematic tree is a function of their parent’s rotation

[HUF04].

MacCormick and Isard [MI00] attempt to overcome the high dimensionality of the

state space by “carving” it into independent low-dimensional spaces that may be

separately estimated by particle filtering. In the context of an articulated body,

their partitioned sampling (PS) approach is similar to the search space decom-

position (SSD) of Gavrila and Davis [GD96], where the torso is localised and the

result used to constrain the search for the immediate children in the hierarchical

tree, i.e. the upper arms and upper legs. Navaratnam et al. [NTTC05] apply a

similar approach in a bottom-up generative context. The most problematic as-

pect of such searches is that failure to locate the hierarchical root (torso) – which

is often most severely affected by self occlusions – can lead to complete failure.

A quantitative evaluation of PS and comparison to other techniques discussed in

this section is given by Bandouch et al. [BEB08].

Deutscher and Reid [DR05] address the high dimensionality of the state space

by attempting only to recover the single pose that maximises the observation

likelihood function at each frame, rather than propagating a full posterior ap-

proximation. The resulting annealed particle filtering (APF) algorithm employs

a number of separate resampling stages at each time instant to concentrate par-

ticles into a globally optimal pose solution. A quantitative study by Balan et al.

[BSB05] showed that where sufficiently rich observation data is available more

accurate tracking is achieved versus a standard particle filter [BSB05]. However,

this improvement is at the expense of the Bayesian framework and the authors

also find APF to suffer during periods of ambiguous observation data, sometimes

recovering an incorrect pose interpretation from which it is unable to escape. The

APF algorithm formed the “baseline” in the most recent and extensive quanti-

tative human motion tracking study in the literature [SBB10]. More details on

the APF algorithm are given in Chapter 3.
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In contrast to APF’s single interpretation tracking philosophy other high dimen-

sional approaches have focused on maintaining a broad representation of the pos-

terior. Hyperdynamic sampling (HS) [ST02b] makes a modification to the obser-

vation likelihood in order to create “bumps” at the cores of local minima forcing

particles to transition (via nearby saddles in the objective surface) between com-

peting pose interpretations. Covariance scaled sampling (CSS) [ST03a] scatters

particles widely before using deterministic optimisation to recover a number of lo-

cal maxima in the posterior. The results are then used to estimate the shape and

weighting of a number of Gaussian-like distributions which jointly approximate

the full distribution. A similar approach is taken by Poon and Fleet [PF02] where

the posterior gradient is followed to recover a number of good hypotheses. Cham

and Rehg use a similar, purely functional, Gaussian mixture approximation to

the posterior in their multiple hypothesis tracking (MHT) approach [CR99]. For

the challenging case of monocular tracking specifically, kinematic jump sampling

[ST03b] may be incorporated into sampling schemes to spread samples across a

number of plausible 3D pose solutions that project to the same 2D observation.

As noted in Section 2.2.2, the 3D to 2D projection means that these compet-

ing solutions may be well separated in terms of the ambient pose space. These

techniques are among some of the most sophisticated in the literature. They are

also complex – and therefore computationally expensive – and have not had the

benefit of quantitative evaluation on the datasets with associated ground truth

that have appeared since their introduction, e.g. [SB06a].

2.3.2.2 Low-Dimensional Approaches

In low-dimensional approaches, the idea is to recover a latent pose space from

training data and conduct inference within this new low-dimensional space. The

reduced dimensionality of this restricted state space means that the number of

particles needed for probabilistic inference is reduced and alternative techniques

such as deterministic optimisation become viable. Just as for learning-based dis-

criminative approaches (see also Section 2.2.2) a central issue is how to recover

embeddings of non-linear training data, usually in the form of motion capture
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(MoCap) data. Accordingly, low-dimensional top-down generative approaches to

tracking have seen a combination of non-linear dimensionality reduction tech-

niques with the state space search techniques discussed in Section 2.3.2.1. This

line of attack has facilitated many examples of 3D human motion tracking from

monocular observations, e.g. [SJ04, SBF00, UFHF05, HGC+07].

Linear dimensionality reduction using PCA has proven remarkably successful for

the representation of some human motions [AT04b, SBF00, UFF06b]. Demirdjian

[Dem03] has also enforced more general articulated body model constraints by

projecting unconstrained body model transformations onto a linear articulated

motion space. Within the PCA space Sidenbladh et al. [SBF00] use a parti-

cle filter for tracking and Urtasun et al. deterministic optimisation [UFF06b].

However, investigation of the unconstrained PCA space has ultimately proven

problematic. The underlying probabilistic assumption [TB99] that latent data is

Gaussian distributed is too simplistic. The mean pose is often nonsensical and

all regions of the resulting space that are far from latent data potentially contain

“illegal” poses [Bow00]. Similarly with the evolution of learning-based discrimi-

native approaches, learning locally linear models of pose data has become more

typical. Li et al., for example, use locally linear coordination (LLC) to model

walking pose data and the multiple hypothesis tracking (MHT) algorithm for

inference [LYST06].

Any non-linear dimensionality reduction technique employed for the purpose of

pose space reduction must offer a mapping from latent space back to the original

ambient space in order that hypotheses can be evaluated using the observation

likelihood. Sminchisescu and Jepson [SJ04] find a non-linear embedding using

Laplacian eigenmaps [BN03] and recover a mapping (sometimes referred to as

an “inverse mapping”) from the latent to original pose space separately, using

radial basis function (RBF) regression. They are then able to perform proba-

bilistic inference using CSS [ST03a]. In later work Lu et al. [LPS07] extend the

Laplacian eigenmaps embedding to produce a probabilistic latent variable model

with inverse mapping, the Laplacian eigenmaps latent variable model (LELVM).

They use particle filtering to reconstruct 3D poses from monocular sequences.
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Tian et al. [TLS05] use the GP-LVM [Law05] to reduce the dimensionality of 2D

pose training data. The GP-LVM naturally provides a probabilistic Gaussian

process (GP) mapping from latent to ambient space (see also Section 3.3.4).

They use a standard particle filter for inference during tracking. Urtasun et

al. later employed a scaled Gaussian process latent variable model (S-GPLVM)

[GMHP04] in order to account for different variances within the dimensions of

the training set with different length scales for the corresponding GPs [UFHF05]

(see also Section 3.3.4.1). The authors are able to use straightforward gradient

descent optimisation during tracking. The GP-LVM preserves dissimilarity in

the ambient space and so while nearby points in the latent space map to nearby

points in the ambient space, there is no guarantee that the reverse is true. This

can lead to “wormholes” in the latent pose space of the kind seen when modelling

2D projections of the body/hand [BMS98, OG99] (see also Section 2.2.2). The

choice of dynamical model therefore becomes a more important consideration,

with simple noise-based dispersion of hypotheses unlikely to be adequate.

Some latent variable models have demonstrated a capacity to recover intra-

activity variations in style [UFF06a], and other work has looked specifically at

separating style and content for synthesis [BH00] and at modelling transitions

between activities [UFGP08]. However, the central problem for low-dimensional

top-down generative tracking approaches is that they are unable to generalise

to new poses. Unless the motion to be tracked comprises poses featured in the

training set, it cannot be recovered. As in learning-based discriminative ap-

proaches, moving away from the latent variables to other regions of the latent

pose space may produce novel poses, but not necessarily useful ones. In this

thesis (and in [DLC10, DLC+09]) it is argued that this limitation motivates the

following two efforts: (i) the integration of low-dimensional and high-dimensional

top-down generative approaches within a single framework able to recover known

activity with fewer particles/cameras but also able to increase the scope of its

search effort to recover novel motions (see also Section 2.4.4); (ii) the adoption of

“richer” low dimensional latent variable models for tracking, such as hierarchies
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of latent variables able to incorporate conditional independencies between body

parts [LM07].

Hierarchical low-dimensional generative approaches have previously been pro-

posed to provide the potential for independence between part-based latent models

describing separate partitions of the state space, e.g. [KHM00, RRR09]. These are

distinct from hierarchical PCA4 and related dimensionality reduction techniques

where the aim is to recover a piecewise representation of full-body or global train-

ing poses [BMS97, HH97]. They are also distinct from their hierarchical counter-

parts in the high-dimensional literature (see also Section 2.3.2.1) where the aim is

to reduce the difficulty of the inference task, e.g. [MI00, GD96, BEB08]. Rather,

the intention of the hierarchical decomposition is to produce a more expressive

model of pose where part-based models can vary in tandem or in isolation.

Interacting with such a model manually (e.g. by clicking with a mouse) allows

for the creation of novel poses not seen in the training set, and the potential

for application in character animation has been noted, e.g. see [LM07] and ac-

companying source code. How to automate the search for such poses in, say, a

generative tracking scenario, remains a challenging problem. Existing techniques

have tended to descend the hierarchy with a set of particles [KHM00, RRR09],

starting with complete coordination between part-based models and moving to

complete independence. The difficulty is that pose diversity is constrained by

those global poses that perform well at the top level and novelty becomes limited.

Conversely, starting at the bottom of the hierarchy with a collection of uncoordi-

nated part-based models sacrifices the benefit of longer-range correlations present

in the training data. Despite their potential for originality, hierarchical models

have typically been applied to known activity tracking [KHM00] and classifica-

tion [HLWJ08] problems, or have relied on a final high-dimensional search step

to recover unknown poses [RRR09].

4Although Karaulova et al. [KHM00] do use a hierarchy of hierarchical PCAs.
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2.3.2.3 Dynamical Models

So far constraint of the system state (st in Eq. 2.1) by definition of illegal regions

of the state space (see Section 2.3.2.1), or by learning low-dimensional embed-

dings from training data (see Section 2.3.2.2) has been covered. A discussion of

the dynamical model in Eq. 2.1 has been avoided. A widespread approach, and

one that is compatible with the filtering equation, is to approximate motion as a

first order Markov process. Although generally inappropriate for human motions

where non-linear variations must be treated as noise (see also the Kalman filter

discussion in Section 2.3.2), a simple presumption of zero dynamics plus Gaus-

sian noise (estimated from training data) has enabled multiocular probabilistic

particle-based inference [DR05, BSB05]. The dynamical model is found by finite

differencing training data to produce a diagonal covariance matrix composed of

the maximum changes found in each dimension.

Many authors have chosen to violate the Markov assumption made in Bayesian

filtering and build second order dynamical models, e.g. [PF02, SBF00, PRM00].

The use of second order autoregressive processes (ARPs) for modelling “repeti-

tious” motion dynamics by Rittscher and Blake [RB99] and North et al. [NBIR00]

also constitutes a second order linear-Gaussian Markov model. Balan et al.

[BSB05] conduct quantitative human motion tracking experiments with a second

order model, estimating joint angle velocities from particle movements over the

last two time steps. Interestingly, they find worse performance with the second

order model than with a simple (first order) noise model: the domain of allowable

poses becoming quickly over constrained by the particle set’s momentum.

A discussion of the use of latent pose spaces to constrain the space of allowable

system states was given in Section 2.3.2.2. An alternative interpretation of this

family of techniques is that restriction of inference to the latent space imposes a

form of dynamical model on the ambient pose space, i.e. the use of a latent space

in itself constitutes a dynamical model. Nevertheless, a dynamical model must

be recovered for the latent space and high-dimensional techniques – although

sometimes adopted [TLS05] – are not necessarily appropriate.
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Non-linear dimensionality reduction techniques such as the GP-LVM [Law05]

that preserve dissimilarities (rather than similarities) from the high-dimensional

pose space can create jumps or wormholes in the latent pose space. Using linear

dimensionality reduction technique such as PCA used to model non-linear activity

data can lead to similar considerations. Here the result for a single activity

is continuously distributed data (no wormholes) forming a non-linear manifold

within the linear latent space. The mean pose may be nonsensical and indeed

there is no guarantee that any poses away from the manifold are meaningful.

In both instances, the presumption of a smoothly evolving latent coordinate (as

in [TLS05]) that can be modelled by low level noise is not appropriate for the

discontinuous latent pose space.

Estimating first order Markov transition probabilities between clusters of data has

proven useful in particle-based discriminative approaches where low-dimensional

linear models learned (at least in part) from the image space can also feature

wormholes [OG99, HH98] (see also Section 2.2.2). Bowden [Bow00] has also

shown that a first order Markov model of cluster transitions within a linear la-

tent pose space can be used to produce realistic activity synthesis (each cluster is

further decomposed onto its own principal components in an HPCA approach).

The final model could (arguably5) be interpreted as a hidden Markov model

(HMM) where states are not directly observable, but rather emit observables via

some distribution over an observation space. This approach introduces the idea

of “partitioned” dynamics where each observation distribution provides a local

dynamical model, while a transition matrix controls the movement between com-

ponent models. This is the explicit aim of the more expressive switching linear

dynamical systems (SLDSs) of Pavlović et al. [PRCM99] where a Markov tran-

sition matrix controls movement between a number of linear dynamical systems

(rather than fixed observation densities) to give a composite model of activity

dynamics. This use of local dynamical models is reminiscent of the use of lo-

cally linear spatial models to represent non-linear data distributions (see also

Section 2.2.2 and Section 2.3.2.2).

5This is not the interpretation presented in the original paper.
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The recovery of a latent space can simplify the task of estimating activity dynam-

ics, reducing the amount of training data needed, for example. This is analogous

to the use of manifold learning as an intermediate stage in discriminative ap-

proaches to simplify the task of learning a mapping to the high-dimensional pose

space (see also Section 2.2.2). Models have also been introduced to learn low-

dimensional manifolds and dynamical processes simultaneously [MP06, WFH08,

LTS07]. Wang et al. [WFH08] introduced the Gaussian process dynamical model

(GPDM), an extension of the GP-LVM with an additional GP prior over the

latent space giving p(st|st−1). The GPDM naturally recovers a smooth distribu-

tion of data in the latent space (see also Section 3.3.4.3). Urtasun et al. have

used this model with deterministic optimisation techniques for human motion

tracking [UFF06a] and Raskin et al. using an annealed particle filter [RRR08a].

Li et al. [LTS07] learn a piecewise linear representation of non-linear manifolds

where each region has its own linear dynamical model. Their latent dynamical

model is a generalisation of the SLDS [PRCM99] and they use it in combination

with a multiple hypothesis tracker to recover human activity.

Smooth first order dynamics are suitable for use in the filtering equation (see also

Eq. 2.1) and have been found to perform well for single activities (better than

second order models) [BSB05]. Their application becomes more problematic

when extended to multiple activities, however. For example, finite differencing

ambient pose data for both punch and kick activities produces an “aggregated”

covariance matrix that is unsuitable for tracking either activity in isolation. Noise

is consistently high in the degrees of freedom relating to both the arm and the

leg rather than one or the other. Such issues can also arise within more complex

individual activities where dynamics evolve over time. This further motivates

the use of a “piecewise” dynamical model such as an HMM or SLDS to capture

a range of temporal properties.

Isard and Blake [IB98c] have shown how a particle filter may be used to incorpo-

rate multiple dynamical models, linked through a first order Markov transition

matrix. The resulting “mixed state” particle filter is adopted by Deutcher et

al. [DNBB99] to model non-linearities in human motion dynamics, such as joint
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endstops. A fixed transition matrix (usually set by hand) means that one must

constantly sacrifice some reasonable fraction particles to the wrong dynamical

model. The danger being that transitions will otherwise be missed. Similarly,

Pavlović et al. [PRCM99] learn SLDSs for two separate activities before combin-

ing them into a single SLDS using one transition matrix. Only a single dynamical

model need be “active” at each instant, but the ability of the resulting matrix

to cope with sequences featuring multiple activities relies upon those activities

sharing one or more dynamical states.

With HMMs comes the additional benefit of well understood algorithms for the

classification of observations both between an individual HMM’s states and be-

tween multiple HMMs [Rab89]. In the context of particle-based inference the

ability to classify observations (poses) between multiple HMMs means that par-

ticles need not be “wasted” on the wrong dynamical model. In the work of Wren

and Pentland [WP98] groups of HMMs are learned over a common state space

in order to provide classification and activity specific predictions during multi-

ple activity tracking. Again, the ability of such a set of models to cope with

sequences featuring multiple activities relies upon HMMs sharing states. This

raises a subtle but important point about the segmentation of multiple activity

training data.

Where multiple activity training data is continuous the system state will trace

out a continuous trajectory through state space over time. Learning a piecewise

representation of such a sequence – e.g. by clustering data – naturally leads to

component activities sharing states. See for example the sequences of consecutive

ballet moves6 processed by Hou et al. [HGC+07]. This is not necessarily the

case for segmented multiple activity data – that is, data that does not feature

activity transitions. For example, all walking poses are spatially well-separated

from jogging poses; there is no natural overlap between their segmented activity

data. Creating a latent space from such data leads to two well-separated activity

6It would be interesting to know the effect of alternative choreographies using the same
component moves on tracking accuracy.
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manifolds (see also Chapter 5 for examples) and how best to capture transitions

is not clear.

Where two or more activities do naturally share a component dynamical or spa-

tial state, pose may evolve from that state in two or more different ways. Several

approaches have appealed to higher order dynamical models to resolve this ambi-

guity i.e. by looking at a longer pose history it may be possible to determine the

current activity and move away from a “junction” state in the appropriate way.

For example, a second order SLDS has been applied to combinations of two ac-

tivities [PRM00]. Agarwal and Triggs [AT04b] use activity-specific second order

ARPs to propagate particles within a CSS scheme but take an interesting “soft

partitioning” approach, learning a Gaussian mixture model over class centres to

calculate a weighted mixture over nearby ARPs, given a particle’s location. Hou

et al. [HGC+07] use variable length Markov models [RST94] capable of auto-

matically increasing their temporal “memory length” in ambiguous portions of

the state space. The quantitative investigation presented in Appendix C sug-

gests that disambiguation is not always possible by using longer state histories,

suggesting that a multiple hypothesis estimation framework remains important.

2.4 Discussion and Conclusions

This chapter has given a brief overview of the state of the art in human pose esti-

mation and tracking. In keeping with the findings of other reviews, e.g. [Pop07b],

various opportunities for synergy between competing or seemingly unrelated ap-

proaches have arisen, e.g. generative and discriminative approaches, bottom-up

and top-down approaches, classification and tracking. Furthermore, a novel area

of contribution has been identified: the combination of high-dimensional and

low-dimensional generative search strategies within a single framework. In the

remainder of this thesis two methods for achieving this are explored: (i) the

simultaneous consideration of quite separate low- and high-dimensional particle-

based generative trackers; (ii) the gradual transition of inference from a global
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low-dimensional latent pose space, through a number of increasingly short ranged

part-based latent spaces, to the ambient pose space. This chapter concludes by

briefly reviewing each of the combined approaches that have been highlighted

and discussing their relevance to this thesis.

2.4.1 Generative and Discriminative

Top-down generative tracking approaches require hand initialisation and this has

motivated their combination with discriminative approaches for “bootstrapping”

at the first frame [SBB07] and for reinitialisation from errors [Dem04]. Sigal et

al. [SBB07] use a mixture of regressors mapping to pose space to get an initial

estimate for a generative tracking approach based on APF [DR05]. Demirdjian

[Dem04] combines the results of an earlier generative tracking algorithm [Dem03]

with discriminative view-based pose estimates to achieve robust tracking. The

merging of these two approaches allows the tracker to recover from errors by

reinitialising.

The approaches of Sigal and Black [SB06c] and Micilotta et al. [MOB06] discussed

in Section 2.3.1 are bottom-up generative approaches that use a discriminative

step to perform “lifting” from 2D to 3D. Sigal and Black achieve this by general-

ising the discriminative learning-based approach of Agarwal and Triggs [AT04a]

to learn a mapping from 2D poses – rather than 2D silhouettes – to 3D poses.

Micilotta et al. compare 2D upper pose estimates against a database of images

with known 3D structure in an example-based discriminative step.

Importance sampling due to Isard and Blake [IB98b] represents another impor-

tant contribution to uniting top-down tracking with image based discriminative

techniques. Particles are drawn from a proposal distribution created based on

the current observation, rather than simply from the dynamical prior, thus incor-

porating the current observation into future hypothesis creation. This approach

enables automatic initialisation and tracking with fewer particles. The unifica-

tion of discriminative and generative approaches, as in [SKM06b], is an important
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research topic that is receiving much attention, but no contributions to this area

are made in this thesis.

2.4.2 Top-Down and Bottom-Up

Bottom-up approaches (see also Section 2.3.1) are able to provide fast estimates

of body pose from single images but are – with only a handful of exceptions

(e.g. [SBR+04]) – limited to 2D estimates. Conversely, top-down approaches

(see also Section 2.3.2) have no capacity to self initialise, but they are able to

impose temporal consistency and support multiple 3D pose interpretations. One

way in which top-down and bottom-up generative tracking approaches might be

effectively unified is to have a bottom-up process producing “observations” for

the evaluation of a top-down process’s objective function. That is, the set of 2D

joint positions produced by the bottom-up process might be used by a top-down

generative tracker to evaluate the likelihood of 3D pose hypotheses.

Rather than extrapolating to 3D from intermediate bottom-up 2D pose estimates

using discriminative techniques [SB06c, MOB06], a generative 3D tracker can

be used to support multiple hypotheses, for example. The potential for the

combination of bottom-up and top-down approaches in future suggests there is

much value in work that seeks to infer 3D poses from 2D joint locations e.g.

[UFHF05, UFF06a, HLF00, Tay00]. Chapter 6 (and [DLC+09]) describes a novel

contribution to this class of approaches.

2.4.3 Classification and Tracking

Probabilistic particle-based inference is a dominant methodology in top-down

generative 3D human motion tracking, where observation data is inevitably am-

biguous on occasion. Equally, the state of the art in (the much less common)

3D bottom-up generative tracking [SBR+04, Sig08, SBIH10] is also achieved us-

ing a variation of particle filtering: particle message passing (PaMPas) [Isa03].

The repeated application of Bayes’ law (see Eq. 2.1) requires the specification
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of a dynamical model that inevitably colours the resulting posterior distribution

estimate [DNBB99]. In Section 2.3.2.3 the need for such a model to be activ-

ity specific and the challenges of switching between multiple models to support

multiple activity tracking was discussed. It is desirable that there exists some

mechanism to classify the current system state in order that the assumptions

made during subsequent inference might be tailored appropriately:

It is highly desirable to develop systems where classification feeds back

into the perception of motion since perception and classification are

inextricably bound together. Rittscher and Blake [RB99].

Where a state space is shared between multiple activities then HMMs provide

an appropriate technique for classification and activity specific synthesis [WP98].

New human motion recognition techniques have been devised that are capable

of outperforming HMMs, but these often violate the constraints of the track-

ing framework e.g. the consideration of past and future system states [SKM06a].

Where there is no “natural” overlap between activities it is not clear how tran-

sitions might be modelled. This is a subtle but important difference between

training on continuous (e.g. [HGC+07]) and segmented (e.g. [SB06a]) multiple-

activity data. In ambient pose space a mixed-state particle filter [IB98c] can be

used to investigate “quantum leaps” between activity class dynamics via a first

order Markov transition matrix. A variation on this idea is adopted in Chap-

ter 5 (and in [DLC10]) with an extra “activity transition” class used to permit

particles to flow gradually between activity manifolds in a latent pose space.

2.4.4 Low- and High-Dimensional

An inevitable consequence of multiple activity tracking for low-dimensional gen-

erative approaches is that latent spaces must be constructed for every activity

to be recovered. Alternatively a joint latent space that contains all activities

must be created. Additionally, if one accepts the conclusions of Sections 2.3.2.3

and 2.4.3 – that activity specific dynamical models are necessary – then separate
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dynamical models must also be estimated. This is an unrealistic basis on which

to conduct tracking and this thesis will argue it motivates the combination of

high- and low-dimensional search strategies.

An “unknown” dynamical model may be defined, operating within the ambient

state space and capable (with sufficient computational resources and observa-

tions) of recovering freeform motion e.g. [DR05, SBB10]. This activity model

may be complemented with activity-specific latent spaces, also with their own

dynamical models. Model switching can be conducted via a first order Markov

transition matrix using a mixed-state particle filter [IB98c]. Importantly, these

two spaces have quite different computational requirements in terms of the es-

timation task. Low-dimensional latent spaces require only a few particles for

successful exploration while the ambient state space of the body model requires

a large number. In Chapter 5 (and in [DLC10]) an approach is proposed that

recovers known and unknown human motions by dynamically adjusting parti-

cle numbers to conduct inference in state spaces of differing dimensionality at

appropriate computational cost.



Chapter 3

Theory and Techniques

This chapter describes each of the component techniques that are
drawn together to define generative tracking approaches in later chap-
ters. These consist of methods for solving the estimation task and
methods for learning priors on pose and dynamics, or “activity mod-
els”. A number of different observation formats are introduced, moti-
vating the introduction of novel objective functions for the modelling
task in Chapter 4.

3.1 Introduction

In the remainder of this thesis a number of techniques are introduced to address

the problem statement defined in Chapter 1. These are all based around a genera-

tive approach to tracking that employs particle filtering techniques to recover pose

estimates from a pre-defined state space. The state space may be the ambient

high-dimensional pose space of the geometric body model, or a low-dimensional

latent pose space recovered using some form of dimensionality reduction tech-

nique. A dynamical model must also be specified for the exploration of the state

space. This generic combination of pose space and dynamical model is referred

to as an activity model. In this chapter the methods used to construct activity

models and to conduct inference in later chapters are reviewed, namely: particle-

based Bayesian tracking (Section 3.2.1), the use of annealing (Section 3.2.2),

35
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body model specification (Section 3.3.1), linear/non-linear dimensionality reduc-

tion (Section 3.3.2), the estimation of temporal dynamics (Section 3.4) and the

form of system observations (Section 3.5).

3.2 Estimation

Generative approaches to tracking human motion must be able to cope with both

non-linear motions, and non-Gaussian observation functions caused, for exam-

ple, by background clutter. Particle filtering supports both these requirements,

maintaining a finite number of weighted samples to approximate a conditional

probability density for the pose configuration given observed data and a dynam-

ical model. Particle filtering is reviewed below, before describing the annealing

extension proposed by Deutscher and Reid [DBR00].

3.2.1 Particle Filtering

Human motion tracking problems can be formulated as the evolution of a system

state st over time, t = 0, 1, 2, ..., T , described by a Markov process and observed

by some sensor providing independent observations given st. The state density

pt(st), or posterior distribution, given by p(st|z0, z1, ..., zt), where (z0, ..., zt) is

the set of all observations up until time t, may be propagated over time with the

following rule [AMGC02] (a full derivation is given in Appendix A):

p(st|z0, z1, ..., zt) ∝ p(zt|st)
∫
st−1

p(st|st−1)p(st−1|z0, z1, ..., zt) dst−1. (3.1)

The sequential importance resampling (SIR) [AMGC02], or conditional density

propagation (ConDensAtion) algorithm [IB98a], allows for the representation of

a multimodal posterior distribution via a finite set of N weighted particles,

Sπt =
{

(s
(1)
t , π

(1)
t ), ..., (s

(N)
t , π

(N)
t )

}
. (3.2)
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Figure 3.1: Visualisation of weighted particles. The location of the global
maximum of w(s) is not clear and calculating the expected pose (solid black

vertical line) doesn’t lead to a good solution.

See for example, Fig. 3.1, where particles have been spread across a 1D state

space by a dynamical model and weighted in proportion to the likelihood of the

observation given the corresponding system state.

After initialisation of the particle set at the point s0 (usually with ground truth),

N particles are randomly sampled and dispersed by a dynamical model, p(st|st−1).

Each new point in the state space s
(n)
t is evaluated using an objective function

w(zt, s
(n)
t ) and assigned a proportional weighting π

(n)
t , approximating the ob-

servation likelihood p(zt|s(n)
t ). Resampling then takes place, with N particles

randomly sampled for dispersion from the existing distribution, with likelihood

proportional to their weighting, and with replacement. In this way, the particle

set may be propagated over time to maintain a representation of p(st|z0, z1, ..., zt).

The expected pose at each instant in time t can be found by

E(st) =
N∑
n=1

π
(n)
t s

(n)
t . (3.3)

As discussed in Section 2.3.2.1 this pose estimate may be inadequate for a number

of reasons, see for example Fig. 3.1 where the expected pose lies some distance

from the globally optimal pose.
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3.2.2 Annealed Particle Filtering

Given an observation, annealed particle filtering (APF) [DBR00] attempts only

to recover the single pose that maximises the objective function. This is done

by “cooling” the weighting distribution calculated at each time step and then

gradually “warming” it over a number of successive resampling stages, or layers.

The result is a slow transition from a broad and inclusive distribution over the

pose space to a narrow and discriminative one. This causes resampled particles

to concentrate gradually into the globally optimal mode of the objective function.

See for example Fig. 3.2 which depicts the recovery of a globally optimal pose

using four resampling and dispersion stages at a single time step. The poste-

rior distribution is not fully represented – a departure from the formal Bayesian

framework – but APF has been found to give good results on human motion

tracking problems, outperforming SIR [BSB05, SBB10].

Resampling takes place at r = R,R − 1, ..., 0 separate resampling layers at each

time step t, where

wr(zt, st) = w(zt, st)
βr , (3.4)

with β0 > β1 > ... > βR. Setting the exponents too high risks particles becoming

distracted by other local optima. Setting them too low means a large number

of layers are required to recover an optimal pose. Deutscher and Reid [DBR00]

proposed a method for the automatic selection of these parameters based on

achieving a desired particle survival rate at each layer. The survival rate [MI00]

is an approximation of the fraction of particles that will be resampled from a

distribution for inclusion in the next layer,

αr = Dr/N, (3.5)

where Dr is an estimate of the number of particles resampled,

Dr =

(
N∑
n=1

(π
(n)
t,r )2

)−1

. (3.6)
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A high survival rate results in an evenly spread weighting distribution, while

a low survival rate concentrates weights into just a few particles. Quantitative

investigations into human motion tracking using APF [BSB05, SBB10] have found

good expected tracking poses can be reliably recovered using a constant survival

rate of 0.5,

αR = ... = α0 = 0.5. (3.7)

APF is used for the estimation step in the generative approaches presented in

this thesis. To aid exposition in later chapters the steps described by Deutscher

and Reid [DBR00] for a single annealing run are summarised in Fig. 3.3.

The original APF implementation proposes a quite general first-order dynamical

model func0(st−1), using the addition of Gaussian noise to approximate p(st|st−1).

Finite differencing of training data is used to find the maximum change in each

body model parameter between consecutive time steps. These values form the

diagonal covariance matrix P0 of a multivariate Gaussian random variable with

zero mean n0 ∼ N(0,P0), that is used for the dispersion of particles. The mag-

nitude of the dynamical model is rescaled at each annealing layer (denoted by

funcr() in Fig. 3.3) by multiplication of the covariance matrix by the particle

survival rate αr, to give

Pr = αR × ...× αr × P0 (3.8)

and

nr ∼ N(0,Pr). (3.9)

This is in order that particle diffusion decreases at the same rate the particle

set density increases, see the gradual reduction in the magnitude of particle dis-

persion in Fig. 3.2. The use of this activity model – ambient pose space plus

Gaussian noise – during tracking is referred to as standard APF. Standard APF

results are included as a baseline in many of the experiments presented in this

thesis and also form the recently published baseline [SBB10] for the HumanEva-II

dataset.
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Figure 3.2: Visualisation of APF particle dispersion [DBR00].
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1. At each time step t annealing begins at layer r = R.

2. The annealing run is initialised by a set of unweighted particles, St,r =

{(s(1)
t,r ), ..., (s

(N)
t,r )}. These may be the result of a previous annealing run, or

the manually initialised particle set S1,r.

3. Each particle is then assigned a weight based on the evaluation of an ob-
jective function,

π
(n)
t,r ∝ wr(zt, s

(n)
t,r ) (3.10)

and the results normalised, so that
∑N

n=1 π
(n)
t,r = 1. This forms the weighted

particle set,

Sπt,r =
{

(s
(1)
t,r , π

(1)
t,r ), ..., (s

(N)
t,r , π

(N)
t,r )

}
. (3.11)

4. The weighted particle set Sπt,r is then resampled to give N particles randomly

drawn with a probability equal to their weighting π
(n)
t,r and with replacement.

As the nth particle is drawn, it is dispersed to produce a new unweighted
particle using

s
(n)
t,r−1 = funcr(s

(n)
t,r ) (3.12)

where funcr represents an arbitrary dynamical model.

5. A new set St,r−1 has now been recovered and is used to initialise the layer
r − 1. Steps 3 and 4 are repeated until the set Sπt,0 is produced.

6. The set Sπt,0 can be used to calculate the expected tracking pose by

E(st) =
∑N

n=1 π
(n)
t,0 s

(n)
t,0 . (3.13)

7. A new unweighted set St+1,R, used to initialise the first layer r = R of the
next annealing run at t+ 1 is then found by

s
(n)
t+1,R = func0(s

(n)
t,0 ). (3.14)

Figure 3.3: Standard APF particle dispersion, as proposed by Deutscher and
Reid [DBR00]. See also Fig. 3.2.

3.3 State Space

Assuming the geometric body model is fully specified at time t by a single state

vector bt composed of Db parameters then it is usually assumed that s ∈ <Db ;

that is, particles reside in the same space as the system state. However, where Db

is large an attractive alternative to is to recover a low-dimensional embedding of

(a portion of) the original state space (see also Section 2.3.2.2). In this scenario
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particles reside in a latent space with fewer dimensions. A mapping from the

latent space to the original state space exists and permits the parameterisation

of the body model for objective function evaluations. In this section notation for

the body model parameters bt is introduced and techniques for the recovery of

an associated latent pose space from training data are reviewed.

3.3.1 High-Dimensional “Ambient” Pose Space

The state vector st must completely describe the configuration of some geomet-

ric model of the human body which can be projected into the image plane for

comparison with observations. As mentioned in Chapter 2, a number of different

options exist for the parameterisation of such a model e.g. Euler angles, quater-

nions and exponential maps. The themes discussed in this section are, however,

quite general and refer to an arbitrary state vector bt composed of Db parameters,

or degrees of freedom (DOFs) that can be used to completely specify a particular

choice of body model at time t. In anticipation of subsequent partitioning of the

state space, it is useful to write bt in terms of a set of position parameters and

a set of pose parameters. A small number of Dω “position” parameters describe

the overall location of the model in a global coordinate system,

ωt = (ω1
t , ..., ω

Dω
t )> (3.15)

and a larger number of Dy “pose” parameters describe the configuration of its

component parts or limbs relative to one another,

y
t

= (y1
t , ..., y

Dy

t )>. (3.16)

The body model’s state vector is then given by the concatenation of the position

and pose vectors,

bt = [ωt, yt] = (ω1
t , ..., ω

Dω
t , y1

t , ..., y
Dy

t )>. (3.17)
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where Dω < Dy and Dω + Dy = Db. When referring to activity training data,

the notation Ω = {ω1, ..., ωM} is used to denote a set of M position vectors, and

Y = {y
1
, ..., y

M
} to denote a set of M pose vectors.

If the search for a pose solution is undertaken in the body model’s ambient pose

space, then particles are dispersed in a Db-dimensional space in an attempt to

recover the system state,

st ≡ bt. (3.18)

In this thesis the number of position parameters ranges betweenDω = 1 for simple

horizontal displacement in monocular video (e.g. Chapter 6) and Dω = 6 for full

rotational and translational control (e.g. Chapter 5). Similarly the number of

pose parameters ranges between Dy = 36 for the HumanEva body model [SB06a]

and Dy = 50 for the more detailed CMU body model [CMU]. Regardless of the

particular choice of parameterisation Dω +Dy = Db ≥ 30 and the use of enough

particles to sample a high-dimensional space with sufficient density is required.

The high-dimensional approach to estimation places no restrictions on pose but is

both challenging and computationally expensive, e.g. [DBR00, BSB05, SBB10].

3.3.1.1 HumanEva Data

Before proceeding it is useful to introduce a specific example of body model pa-

rameterisation. Working with HumanEva data is an important part of the work

presented in this thesis, and to track the HumanEva subjects the body model of

Bălan et al. [BSB05] is adopted. The model itself is simple, comprising a kine-

matic tree of ten truncated cones but, importantly, the precise cone diameters

and lengths are available for each of the HumanEva subjects [SB06a]. Fig. 3.4

shows a subject’s body model superimposed onto a pose observation, the config-

uration has been calculated from MoCap markers attached to the subject’s body.

In this work the body model’s configuration is defined using a set of Dω = 6

position parameters giving the global translation and rotation of the pelvis, and

a set of Dy = 36 pose parameters giving the relative 3DOF Euler joint rotations
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Figure 3.4: 3D body model: (a) projected into an observation for comparison;
(b-c) from two rotated views.

between limbs,

bt = [ωt, yt] = (ω1
t , ..., ω

6
t , y

1
t , ..., y

36
t )>. (3.19)

These parameters can be calculated from the MoCap data in the HumanEva-I

Training partition to give sets of position vectors, Ω = {ω1, ..., ωM} and sets of

pose vectors, Y = {y
1
, ..., y

M
}. Fig. 3.5 shows series of pose vectors extracted

from walk and jog activity sequences.

If this body model is used in tracking then searching for pose solutions in the

body model’s ambient pose space to recover the system state at each timestep

requires the use of enough particles to sample a Dω +Dy = 42-dimensional space

with sufficiently high density. It is precisely this kind of result that motivates use

of dimensionality reduction techniques. A body model modest in its complexity

and level of realism leads quickly to a high-dimensional search problem. The

HumanEva format facilitates a number of discussions and comparisons in the

remainder of this chapter. In later chapters other choices of parameterisation are

made, but each is similar and takes the form of Eq. 3.17.

3.3.2 Low-Dimensional “Latent” Pose Space

To reduce the difficulty of the high-dimensional estimation task, a low dimen-

sional latent pose space can be recovered from training data. This approach is mo-

tivated by the observation that individual degrees of freedom in high-dimensional
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Figure 3.5: 36D pose vectors for known activities: (left) walk; (right) jog.
Vertical red lines denote the omission of bad MoCap data.

human motion data tend not to vary in complete isolation, but are correlated and

can be well described through a mapping from an underlying low-dimensional pro-

cess. Recovery of low-dimensional embeddings of human activity tends to focus

on pose parameters (excluding position parameters) to learn a model of activity

that is independent of a training subject’s position and orientation. Such a model

is suitable for reuse in different tracking scenarios.

By recovering a set of latent variables X = {x1, ..., xM} from the set of pose

vectors Y = {y
1
, ..., y

M
}, each with dimensionality Dx < Dy, the particle filter-

ing task can be reduced to finding a set of position parameters and latent pose

parameters

st = [ωt, xt] = (ω1
t , ..., ω

Dω
t , x1

t , ..., x
Dx
t )>, (3.20)

where depending on the choice of technique as few as Dx = 2 dimensions of-

ten suffice for good tracking results, e.g. [SBF00, UFF06b, UFHF05]. The low-

dimensional approach to estimation is less challenging and can be achieved at

reduced computational expense. However, this benefit comes at the expense of

flexibility; only known activities – that is activities featured in the training set –

may be recovered during tracking.

Two related dimensionality reduction techniques have been widely adopted for

generative tracking: (linear) principal components analysis (PCA), e.g. [UFF06b,

SBF00], and the (non-linear) Gaussian process latent variable model (GP-LVM),
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Figure 3.6: 3D latent pose spaces and latent variables found by PCA: (left)
walk; (right) jog. Joint angle data is that shown in Fig. 3.5.

e.g. [TLS05, HGC+07]. The competing benefits of each approach are explored in

the remainder of this section.

3.3.3 Principal Components Analysis

Principal components analysis (PCA) can be used to decompose the variation in

a set of M pose vectors, Y = {y
1
, ..., y

M
}. The mean ȳ and covariance matrix

S are calculated for the data and singular value decomposition used to find the

eigenvectors, φ
i

and eigenvalues, χi of S. This allows for an estimate of any data

point in the training set, y
m

, using

y
m
≈ ȳ + Φxm, (3.21)

where Φ = [φ
1
, φ

2
, ..., φ

Dx
] contains the first Dx eigenvectors corresponding to

the largest eigenvalues, and the latent variable is given by

xm = (x1
m, ..., x

Dx
m )> = Φ>(y

m
− ȳ). (3.22)

In this way the training data Y are approximated by a set of latent variables

X = {x1, ..., xM}, such as those shown in Fig. 3.6. Using the approximation in
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Figure 3.7: Average 3D absolute error between 500 original and recon-
structed pose vectors using a range of PCs: (left) walk; (right) jog. Body

dimensions of S4 were used for fair comparison.

Eq. 3.21, the body model can be fully specified using a single weighting vector x

taken from the resulting latent pose space, and a position vector ω.

In Fig. 3.7 errors are plotted for the walk and jog pose vectors of HumanEva

subjects S1-S3 (see Section 3.3.1.1 for details of the body model) reconstructed

from PCA pose spaces with a range of different dimensionalities, Dx. The error

measure is the same used to evaluate tracking performance and is calculated from

the average distance between 15 joint centres in the original and reconstructed

poses, as defined by Sigal et al. [SBB10]1. Although at a given dimensionality

PCA produces higher reconstruction errors than the non-linear alternatives ex-

plored in remainder of this section, these errors are still below the state of the

art in generative tracking from 4 cameras [SB10] by Dx = 4 (around 20mm).

Furthermore, in contrast to the non-linear alternatives, this 4D linear pose space

has negligible computation time and a simple bi-directional mapping to the high-

dimensional ambient pose space. Where there is a significant quantity of training

data or where calculating mappings to and from ambient space is necessary, PCA

is favoured, e.g. Chapter 4 and Chapter 5. Where the amount of training data

is small and the mapping only operates in one direction, non-linear alternatives

are preferred, e.g. Chapter 6. The remainder of this section reviews the GP-LVM

[Law05], a non-linear latent variable model that can be derived by considering a

novel probabilistic interpretation of PCA.

1A full definition is given in Section 3.5.4.1.
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3.3.4 Gaussian Process Latent Variable Models

A probabilistic interpretation of PCA (PPCA) has been derived only relatively

recently, by Tipping and Bishop [TB99]. The derivation starts from a simple

probabilistic model where a series of low-dimensional latent variables are related

to a series of high-dimensional training data through a matrix of linear mapping

parameters W and the addition of noise. More recently, Lawrence [Law05] has

developed a dual probabilistic interpretation of PCA (DPPCA) that allows for

the non-linearisation of this mapping. The final result of DPPCA is simply

stated here, but a more detailed derivation highlighting the duality between both

probabilistic interpretations of PCA is given in Appendix B.

DPPCA gives the conditional probability of a matrix of centred (mean sub-

tracted) high-dimensional data vectors Y = [y
1
, ..., y

M
]> given a centred matrix

of low-dimensional latent variables X = [x1, ..., xM ]> as

p(Y |X, β) =

Dy∏
i=1

N(y
:,i
|0,K), (3.23)

where y
:,i

is the ith column of Y and the matrix K is developed from the covari-

ance between individual latent variables plus a noise term, K = XX> + β−1I.

This result can be recognised as a product of Dy independent Gaussian processes

[O’H78], each being associated with a different dimension of the original high-

dimensional ambient data space, and each sharing the same linear covariance

function plus noise. Lawrence has shown [Law05] how DPPCA can be extended

to non-linearise the mapping between latent and ambient parameters with differ-

ent choices of matrix K. The resulting probabilistic non-linear model is known

as the Gaussian process latent variable model (GP-LVM).

3.3.4.1 Gaussian Processes

Formally, a Gaussian process (GP) is defined as a collection of random variables

with the particular property that any finite subset of the collection has a joint
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distribution that is a Gaussian [RW06]. More informally, a GP can be thought

of as a probability distribution over functions [Law05]. Perhaps the most helpful

context in which to introduce GPs is that of non-linear regression. Starting with

the case of one-dimensional input and output spaces, if training data {y1, ..., yn}
is available for a range of input values, {x1, ..., xn} how might a suitable function

be fitted to the training data? Further, how might the solution be used to find a

new prediction given a new input value x∗?

Adopting the analogy of Rasmussen and Williams [RW06] a suitable function can

be thought of as a very long (but finite-dimensional) vector where each element

contains the value f(x) for a particular value of x. Regression using GPs assumes

a Gaussian distribution over all “functions” that explain the training data; that is,

the set of observations relate to the elements of a single vector sampled from an n-

dimensional Gaussian. The GP extends (multivariate) Gaussian distributions to

infinite dimensions and can be used to describe any number of new instantiations

of the function.

The GP is defined by a mean function (presumed to be zero here) and a covari-

ance function; both are functions of the input space. The form of the covariance

function may be tailored to provide results that satisfy prior beliefs about the

function, e.g. that it is smooth. The top row of images in Fig. 3.8 shows visualisa-

tions of a number of different covariance functions as greyscale images; elements

that co-vary strongly appear lighter. Prediction at a new point x∗ involves calcu-

lation of the posterior distribution p(x∗|x1, ..., xn), which is given by a Gaussian

distribution. Predictions conditioned on training data are consistent, regardless

of the number of input values that are queried. The results of such queries are

also consistent with all other such finite queries. The covariance function usually

contains a number of parameters, or “hyperparameters”, upon which predictions

are also conditioned. The values of hyperparameters can be inferred from training

data and so GP regression is often referred to as being non-parametric.
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Figure 3.8: Priors over latent space: (a) linear; (b) RBF; (c) periodic. Co-
variance matrices are shown as greyscale images (top row) and five example

samples (bottom row).

The covariance function for a GP prior over linear functions corrupted by noise

is given by

k(xi, xj) = x>i xj + β−1δij, (3.24)

where xi and xj are vectors from the input space. If these inputs are taken from

the matrix, X, and Eq. 3.24 used to calculate the covariance between each of the

M points, then the following covariance matrix is recovered

K = XX> + β−1I. (3.25)

This can be recognised as the linear kernel with noise from Eq. 3.23: PCA is a

product of GPs, each with a linear covariance function. Fig. 3.9(a) shows example

functions produced using the linear kernel. Each “function” in fact consists of

200 individual points given by a single sample drawn from a 200D multivariate

Gaussian distribution.
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Figure 3.9: Functions sampled from different GPs: (a) linear kernel plus
noise; (b) RBF kernel with α = 1 and γ = 1; (c) RBF kernel with α = 1 and

γ = 10, reducing the horizontal length scale.

The key contribution of the GP-LVM is to replace the linear kernel with a non-

linear alternative to produce a non-linear model,

K =? (3.26)

A popular choice is the radial basis function (RBF) kernel (plus noise) which

ensures that nearby points are well correlated,

k(xi, xj) = α exp
(
−γ

2
(xi − xj)>(xi − xj)

)
+ β−1δij. (3.27)

The hyperparameters α and γ control the vertical and (inverse) horizontal length

scales respectively (see Figs. 3.9(b) and 3.9(c)), and their values can be inferred

from the data.

3.3.4.2 Optimisation

Maximising the likelihood in Eq. 3.23 is equivalent to minimising its negative

logarithm [Law05],

L =
DyN

2
ln 2π +

Dy

2
ln |K|+ 1

2
tr(K−1Y Y >). (3.28)

In the case where K = XX>+β−1I, the linear kernel with noise, it is possible to

obtain a closed form solution [Law05]. The eigenvalue problem that is developed
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Figure 3.10: GP-LVMs learned from single walk cycle, with and without dy-
namics: (a) GP-LVM; (b) GPDM. Note that in Eq. 3.23 the covariance matrix
is shared by all dimensions of the ambient data space. This leads to an identi-
cal level of uncertainty being associated with each dimension of reconstructed
data. The figures above have been shaded to indicate the uncertainty of the

mapping at each point in the latent space.

can be shown to be equivalent to that solved in PCA. However, if the aim is to

account for non-linear processes by experimenting with non-linear kernels such

as the RBF kernel, there will be no closed form solution and likely multiple local

optima.

Here the gradient of Eq. 3.28 with respect to the latent points must be found then

be used in combination with Eq. 3.28 in a non-linear optimiser to obtain a latent

variable representation of the data. Gradients with respect to the hyperparame-

ters of the kernel matrix (e.g. noise level, horizontal length scale, vertical length

scale) may also be computed and used to jointly optimise X and the kernel’s

parameters. In practice latent variables are initialised using PCA and hyper-

parameters manually and optimisation is performed using the scaled conjugate

gradient (SCG) algorithm [Møl93]. An example of the results for a single cycle

of HumanEva walk data is given in Fig. 3.10(a).

3.3.4.3 Dynamics

An interesting extension to the GP-LVM is provided by enforcing a prior, p(X)

on the latent space to provide a dynamical model. To create a GP-LVM the
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mappings W are marginalised (see Appendix B) and once this is done integrating

out the latent space and an associated dynamical prior is not tractable. However,

the dynamical model can be combined with the GP-LVM likelihood in Eq. 3.23

and an MAP solution recovered.

Wang et al. [WFH08] adopt this approach to enforce an autoregressive model of

dynamics, an extra Gaussian process being used to model p(xt|xt−1) in the latent

space. The resulting dynamical model – termed the Gaussian process dynamical

model (GPDM) – has proven useful in tracking human motions through occlu-

sions [UFF06a] and has the attractive property that the smooth distribution of

latent variables produced by PCA initialisation tends to be preserved during op-

timisation. See for example Fig. 3.10(b) where the use of dynamics results in a

smooth distribution of latent variables (no wormholes) that is similar to Fig. 3.6.

This is useful for particle-based inference using simple Gaussian random vari-

ables for particle dispersion, e.g. [RRR08a]. The GPDM is adopted in a baseline

experiment in Chapter 6.

An alternative regressive model of dynamics introduced by Lawrence and Moore

[LM07] is also used in this thesis. Here a Gaussian process prior is placed over the

latent pose space, taking as its inputs the vector of times at which the ambient

sequence was observed, m ∈ <M×1,

p(X|m) =
Dx∏
i=1

N(x:,i|0,Km) (3.29)

where x:,i is the ith column of X and Km is a covariance matrix given by a co-

variance function such as the RBF kernel, see Eq. 3.27. Examples for a 2D latent

space are shown in Fig. 3.8(b); note that nearby values are strongly correlated

as evidenced by a bright diagonal in the covariance matrix and a smooth set of

sample functions.
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The prior in Eq. 3.29 could be combined with the GP-LVM likelihood in Eq. 3.23

to give a new model,

p(Y |m) =

∫
p(Y |X)p(X|m) dX (3.30)

but the required marginalisation is analytically intractable. However, multipli-

cation of Eq. 3.23 by a prior on the latent variables gives a joint distribution

p(Y ,X|m). This joint distribution is proportional to the posterior distribution

p(X|Y ,m) and so maximising the negative log-likelihood in Eq. 3.28 plus an ex-

pression for log p(X|m) is equivalent to seeking a maximum a posteriori (MAP)

solution,

log p(X|Y ,m) = log p(Y |X) + log p(X|m) + const. (3.31)

The gradient of the first and second terms can be included with those of the

hyperparameters Θ for joint optimisation with the SCG algorithm.

Where the GPDM’s autoregressive dynamics give a unimodal prediction of xt as

a function of xt−1, the regressive alternative removes this relationship, permit-

ting the trajectory of X in the latent space to cross or overlap and subsequently

to bifuricate2. Further, the requirement for the samples Y = {y
1
, ..., y

M
} to be

equally spaced is removed. The utility of regressive dynamics is well demon-

strated by the work of Andriluka et al. [ARS08]. In this thesis they are useful

in introducing the idea of hierarchy into the construction of the latent variable

model: Gaussian process priors over the ambient space are conditioned on latent

variables that are in turn constrained by a Gaussian process prior conditioned on

sampling intervals. In Section 3.3.5 (and Chapter 6) the simple dynamical model

reviewed here is extended to a deeper hierarchy of latent variables.

3.3.5 Hierarchical GP-LVM

The H-GPLVM [LM07] allows for the incorporation of conditional independen-

cies into latent variable models of human motion. Pose models are learned for

2Consider the example of a subject who walks for several cycles before breaking into a run.
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individual body parts and additionally for the correlations between parts. The

resulting model can be used to specify natural body part parameterisations ei-

ther jointly or independently. The hierarchy used in this thesis is depicted in

Fig. 3.11.

Following the derivation of the dynamical model in Section 3.3.4.3, a Gaussian

process prior can be placed over the root node (see X9 in Fig. 3.11) to provide

regressive dynamics, leading to the following marginalisation

p(Y1, . . . ,Y6|m) =

∫
p(Y1|X1)× . . .×

∫
p(Y6|X6) . . . (3.32)

×
∫
p(X2,X3|X7)×

∫
p(X4,X5,X6|X8) . . .

×
∫
p(X1,X7,X8|X9) . . .

× p(X9|m) dX9 dX8 dX7 dX6 dX5 dX4 dX3 dX2 dX1

where each conditional distribution is given by a Gaussian process. Just as in the

previous section the necessary marginalisations are not tractable, but an MAP

solution can again be found by maximising

log p(X1, . . . ,X9|Y1, . . . ,Y6,m) = log p(Y1|X1) + . . .+ log p(Y6|X6) . . . (3.33)

+ log p(X2,X3|X7) . . .

+ log p(X4,X5,X6|X8) . . .

+ log p(X1,X7,X8|X9) + log p(X9|m).

Following [LM07], initial estimates of the latent variables in the leaf nodes are

made using PCA. Initial estimates for the parents of leaf nodes are found by

applying PCA to the concatenated latent variables of their dependents. Bottom-

up construction continues in this manner until the root nodes are reached. There

is one root node for each activity modelled, and the latent model in each root

node is a function of the latent variables of its dependents that belong to its

specific activity only. In this work all latent spaces have two dimensions. The

covariance function used for the dynamical model is specified by the periodic
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Figure 3.11: A hierarchy for capturing conditional independencies in the
human body. Y2 is the subset of training data relating to the left leg, Y3 is
that of the right leg, etc. This data is modelled by the latent variables X2 and

X3 which are in turn modelled by X7.

function given by Rasmussen and Williams [RW06]

km(mi,mj) = α exp

(
−2γ sin2

(
mi −mj

2

))
. (3.34)

Examples for a 2D latent space are shown in Fig. 3.8(c). The parameters of the

dynamical model are not optimised, in order that they constrain the root node’s

latent space. Furthermore, for this constraint to be reflected at each layer of the

hierarchy, the noise parameter β−1 of each Gaussian process not in a leaf node

is fixed at 1× 10−6. Without this step optimisation can act in such a way as to

remove the effect of the dynamics as the hierarchy is descended.

3.3.6 Generalisation

PCA and the GP-LVM have competing advantages in terms of data reconstruc-

tion accuracy and computational cost. The principal axes can be recovered by sin-

gular value decomposition of the pose vectors’ covariance matrix, requiring negli-

gible computation time. In contrast, GP-LVMs have training requirements with
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complexity cubic in the number of training points. The GP-LVMs in Fig. 3.10 for

example, took 580 and 500 seconds to learn from a single walking cycle (with and

without dynamics, respectively) and it is generally necessary to employ a sparse

representation of activity training data. However, the resulting latent variable

model can be used to give lower activity reconstruction errors than PCA; see

Quirion et al. [QDLM08] for a comprehensive comparison. Perhaps more impor-

tantly however, PCA and the GP-LVM share a common limitation: regardless of

the particular choice of dimensionality reduction technique, the resulting latent

pose space has only a very limited capacity to generalise beyond the training

data.

To illustrate the inability of these models to generalise, a set of HumanEva-I walk

pose vectors (of the form described in Section 3.3.1.1) were processed to recover

both a 2D back constrained GP-LVM (BC-GPLVM) [LQC06] and a 2D PCA

subspace. A single pose from an unknown box activity was then mapped into

each latent space (see the “unknown pose” coordinates in Fig. 3.12) and then

reconstructed by mapping back to the ambient pose space. Both spaces fail to

preserve the box pose, giving high reconstruction errors; 271mm for BC-GPLVM

and 267mm for PCA. Similarly, an exhaustive sampling-based approach will not

result in a box pose being found. This result is representative, and neither the

linear nor the non-linear latent space is able to generalise to substantially novel

unknown poses.

This result is the key motivation for the work presented in this thesis. Latent

pose spaces recovered by (possibly sophisticated, non-linear) dimensionality re-

duction have only a very limited capacity to generalise. The large number of

low-dimensional generative tracking techniques reviewed in Chapter 2 will fail

upon encountering unknown activity, continuing to recover known poses from

the latent space. The benefits of these approaches are highly desirable – robust

and inexpensive tracking of known activity – but further steps are necessary to

avoid failure during unknown activity. This is the aim of this thesis. In Chapter 5

a method for efficiently and fairly combining separate low-dimensional and high-

dimensional inference tasks to track known and unknown activities is proposed.
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Figure 3.12: Reconstructions of an unknown box pose from walk latent pose
spaces: (a) PCA latent pose space; (b) BC-GPLVM latent pose space using a
multi-layer perceptron with 15 hidden nodes for back constraints. Note that
neither space is able to generalise to the unknown pose. The BC-GPLVM and

PCA spaces give reconstruction errors of 271mm and 267mm, respectively.

In Chapter 6 a richer pose space embedding composed of a hierarchy of non-linear

latent variable models found by learning an H-GPLVM is used to recover novel

poses.

3.4 Temporal Dynamics

The dimensionality reduction techniques discussed in Section 3.3 each provide a

method for constraining the system state s. However, PCA is not a dynamical

model and steps must be taken to define p(st|st−1). This section investigates

potential options for both pose and position parameters.

3.4.1 Finite Differencing

Given a particular choice of state space, and regardless of whether it is high-

or low-dimensional, a dynamical model func0(st−1) must be specified in order

to conduct particle-based estimation, e.g. by APF. One option is to use finite

differencing of training data, just as in the original APF paper [DBR00]. By
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Figure 3.13: Maximum delta values for individual joint angles: (left) walk;
(right) jog. Joint angle data is that shown in Fig. 3.5.

finite differencing sets of position vectors Ω = {ω1, ..., ωM}, and pose vectors

Y = {y
1
, ..., y

M
}, associated Gaussian random variables of the same form as

Eq. 3.9 can be recovered,

nωr ∼ N(0,P ω
r ) (3.35)

nyr ∼ N(0,P y
r ). (3.36)

Similarly, given a set of latent variables X = {x1, ..., xM}, (e.g., see Fig. 3.6) one

can compute

nxr ∼ N(0,P x
r ). (3.37)

A single anomalous jump of large magnitude in any one pose space dimension,

for example due to inaccuracies in MoCap training data, can result in an overly

noisy dynamical model that makes estimation difficult. For this reason the 95th

percentile of delta values was used for estimation of covariance matrices. Results

for a range of different percentiles in ambient and latent pose spaces recovered

from HumanEva-I data (in the format described in Section 3.3.1.1) are shown in

Figs. 3.13 and 3.14 respectively. Notice that the 99th percentile is not always a

suitable representative of the data as a whole. Choosing to work with the highest

single difference can lead to erratic tracking results.

Gaussian random variables are used for particle dispersion throughout the work

presented in this thesis. For example, nωr is used to disperse position parameters

in all experiments, and nyr to disperse pose parameters when tracking unknown
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Figure 3.14: Maximum delta values for individual latent variable parameters:
(left) walk; (right) jog. Latent variables for first three PCs are shown in Fig. 3.6.

activities in the ambient pose space (details are postponed for later chapters).

Additionally, the use of nxr to disperse latent pose parameters is adopted as a

baseline – termed latent APF – in later experiments.

Ultimately, experimental results in later chapters show that latent APF is unable

to provide robust tracking of known activity, and in Section 3.4.2 a method

to recover better constrained dynamical models using hidden Markov models is

described.

3.4.2 Hidden Markov Models

For the GP-LVM points nearby in the latent space map to points nearby in

the ambient pose space, but the reverse is not necessarily true and “quantum

leaps” often occur in latent space, see for example Fig. 3.10 where consecutive

walking poses have been moved far apart in latent space at two points in the

activity cycle. In the case of PCA, however, latent variables X = {x1, ..., xM}
recovered from pose vector training data form smooth trajectories: points that

are nearby in the ambient pose space are also nearby in the latent pose space. The

resulting distributions (see for example Fig. 3.6) have two important properties:

dynamics vary depending on the current location within the training manifold,

and the latent space away from the latent variables may contain unrelated, even
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impossible, pose configurations. Given these properties it is desirable to recover a

better constrained dynamical model than the simple addition of Gaussian noise.

The hidden Markov model’s (HMM) construction is ideal for modelling dimen-

sionally reduced activity data. A human’s intentions to produce movement are

imprecisely realised (by their muscles) and the resulting pose configurations are

then imprecisely measured (by sensors) [CBA+96]. That is, the performance of

human activity is an inherently stochastic process, and the latent coordinates

X = {x1, ..., xM} constitute noisy observations of that process. HMMs allow

for the description of such a doubly stochastic system [Rab89]. An HMM λ is

specified by the parameters {S,A, a, pi(x)} where,

1. S = {s1, ..., sN} is the set of hidden states;

2. The matrix, A is the transition matrix, where the entry Aij gives the prob-

ability of a transition from state si to state sj;

3. The vector a is a prior with ai giving the probability of a sequence starting

in state si;

4. pi(x) is the probability density associated with state si. In this thesis this

emission probability is modelled by a single multivariate Gaussian over the

latent space; pi(x) = N(x|µ
i
,Σi) with mean µ

i
and covariance matrix Σi.

Fig. 3.15 shows an example of a simple three-state HMM learned over a 1D state

space: the transition matrix controls movement between states and individual

state probability densities control the emission of observables across a shared

space.

The following steps are taken for all HMM training in later chapters. States are

initialised by K-means clustering of X. The transition matrix A is set randomly

(with rows normalised) and the prior a “flat” with every value equal to 1/N .

Each HMM parameter is then reestimated using no more than 50 iterations of

the Baum-Welch algorithm. In order that synthesis may begin from any point
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Figure 3.15: An example of a three state HMM with each state emitting an
observable x.

in the activity cycle without penalty, a is not reestimated. Appendix C gives

full details of the use of HMMs with single multivariate Gaussian observation

functions for training and classification.

Fig. 3.16 shows HMMs learned from the HumanEva-I activity data of subject

S2. Using the addition of nxr for particle dispersion will result in a random

walk through the latent pose space, while traversing an HMM will provide a

spatially sensitive dynamical model and restrict pose estimates to lie close to

training data. Furthermore, a set of HMMs can also be used to classify pose

data. Where separate HMMs are trained to represent a set of different activities,

the probability that subsequent test data were produced by each model can be

evaluated and the activity classified as belonging to the most likely HMM. In this

way, a set of N distinct activities can be classified using a set of N HMMs. A

quantitative investigation into the accuracy of human motion data classification

using HMMs is presented in Appendix D.
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Figure 3.16: Visualisation of HMMs trained from latent variable distribu-
tions: (left) walk; (right) jog. State means are plotted in red, significant tran-

sitions in blue.

3.4.3 Inflating Dynamics

Bălan et al. [BSB05] have observed that if standard APF becomes stuck in the

incorrect mode of the objective function, even if only for a few time steps, track-

ing may never be recovered. This is because the magnitude of the jump through

state space required to recapture track quickly becomes larger than that which is

permitted by the dynamical model. For this reason it can be beneficial to exagger-

ate the levels of diffusion produced by the dynamical model. This technique has

proven beneficial in both discriminative [OG99] and generative [ST03a, Smi08]

particle-based approaches, as noted in Chapter 2.

For high-dimensional spaces this ambition is particularly problematic. As the

dimensionality of a state space grows, the number of samples required to sample

a unit interval with constant density grows exponentially; the so-called “curse of

dimensionality”. Low-dimensional embeddings of the pose spaces are therefore

“cheaper” to investigate and by using HMMs to provide dynamics particle prop-

agation can be further constrained and inference made more efficient still. This

more specific approach to particle dispersion where particular changes in pose

are anticipated is sometimes called “smart sampling”.
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In the remainder of this thesis a number of methods for the inflation of activity

dynamics are presented. Each dynamical model that is defined can be used to

produce p(st−1+T0
|st−1) where T0 ≥ 1, when creating a new particle set for the

next frame with Eq. 3.14. In line with the APF dispersion scaling in Eq. 3.8, steps

are taken to rescale the number of synthesised time steps after each annealing

layer using the survival rate αr.

3.4.3.1 Time Reversal

Where a Gaussian random variable is estimated for use in particle dispersion

the time ordering of latent variable training data is unimportant. That is, finite

differencing {x1, ..., xM} will result in precisely the same dynamical model as

finite differencing {xM , ..., x1}. HMMs on the other hand are sensitive to time

ordering of training data. Where an HMM is used for particle dispersion, it will

synthesise “future” activity poses as implied by the ordering of the training data.

Smart sampling using an HMM allows particles to flow forward in time along

an “activity axis” comprising a number of hidden states that give a piecewise

approximation of the training data manifold: for example, compare the HMMs

in Fig. 3.16 with the latent variable distributions in Fig. 3.6. If the estimation

step recovers an incorrect future pose, dispersion by the HMM at succeeding

time steps provides no mechanism to explore “past” activity poses and recover

track. This may be especially problematic where one wishes to inflate dynamics

artificially. It would be desirable to have particles able to move both forwards

and backwards along this activity axis.

To address this problem the incorporation of a second time reversed transition

matrix Â for use during particle dispersion is proposed. An equilibrium distri-

bution ψ where each element ψi gives the probability of being in state si at any

time t can be estimated from the transition matrix A by generating a number

of transitions and recording the current state index. Given ψ, the elements of a
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time reversed transition matrix Â may be calculated by [Nor98],

Âji =
ψi
ψj
Aij. (3.38)

The matrix Â is used to provide a second dynamical model for the time reversed

activity. Using this model for synthesis causes activity to run backwards.

3.5 Visual Cues for Activity Tracking

In addition to a dynamical model (discussed in Section 3.4), particle-based track-

ing also requires the specification of an objective function, w(zt, st), for assigning

particle weightings. The purpose of APF is to recover the single pose that max-

imises the objective function given the current observation, or the optimal pose.

This section reviews a number of valuable observation formats from which useful

(discriminating) objective functions can be derived (see also Section 4.3).

The form of the objective function depends upon the image cues that can be

reliably extracted. The laboratory settings used to capture HumanEva-I and

HumanEva-II sequences allow for the computation of silhouette features by as-

suming a static background. Extra images containing the background only are

captured (see also Fig. 3.17(a)) and used to train a Gaussian mixture model for

each pixel [BSB05, SB06a, SBB10]. In more natural settings, however, such an

assumption may be difficult or impossible to guarantee.

Section 3.5.1 reviews the multiocular case where multiple synchronised, well-

separated sensors are available in a controlled setting. Section 3.5.2 and Sec-

tion 3.5.3 consider alternatives that might be used where multiple sensors are

unavailable or impractical and/or background and lighting conditions cannot be

controlled. Finally the use of marker-based motion capture techniques for the

provision of training data (for learning) and ground truth (for evaluation) is dis-

cussed in Section 3.5.4.
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(a) (b)

(c) (d)

Figure 3.17: Silhouette and edge cues: (a) background image; (b) tracking
observation; (c) background subtracted observation; (d) chamfer image.

3.5.1 Multiocular Observations

The scenario addressed by the original APF algorithm [DBR00] is that of mul-

tiocular tracking where synchronised observations are available from a number

of well-separated cameras. There, and in the vast majority of other generative

tracking schemes, silhouette features are used in the calculation of the objective

function.

The objective function is based on a sum-squared difference (SSD) Σs between a

binary observation foreground mask V s found by background subtraction of the

observation image, and a set of points {ξ} drawn from the surfaces of the cones

in the body model hypothesis projected into the image,

Σs =
1

|{ξ}|
∑
ξ

(1− V s(ξ))2. (3.39)
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Figure 3.18: Points extracted from body model for objective function evalu-
ation: (a) body model as projected into observation; (b) extraction of sample

points from cone surfaces; (c) extraction of sample points from cone edges.

Fig. 3.17(a) shows the background image for a static camera and Fig. 3.17(b) a

subsequent observation featuring a subject. Subtraction of the former from the

latter can be used to find a foreground mask such as the one shown in Fig. 3.17(c).

The set of points that are taken from the surfaces of the body model for use in

sampling are shown in Fig. 3.18(b).

A similar measure is also used for a comparison of edge features by calculation of

Σe. Here V s is replaced by a chamfer image V e calculated by convolution of the

observation with a gradient-based edge detection mask. Results are thresholded

and smoothed with a Gaussian mask before being rescaled to the interval [0, 1],

giving each pixel a measure of proximity to an edge. The set of points {ξ} are

drawn from the edges of the cones in the body model hypothesis projected into

the image,

Σe =
1

|{ξ}|
∑
ξ

(1− V e(ξ))2. (3.40)

Fig. 3.17(d) shows a chamfer image calculated from the observation in Fig. 3.17(b).

The set of points that are taken from the edges of the body model for use in sam-

pling are shown in Fig. 3.18(c).
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Two SSDs can then be combined and exponentiated to give a single score for a

particular pose,

w(zt, st) ∝ exp [−(Σs + Σe)] . (3.41)

Or where SSD scores are available from a number of different cameras C, these

measurements can be combined to give

w(zt, st) ∝ exp

[
−

C∑
c=1

(Σs
c + Σe

c)

]
, (3.42)

where Σ∗c is the SSD for camera c.

Quantitative investigations have shown that this objective function is sufficient to

track slow motions such as walk when observations are available from at least three

cameras [BSB05, SBB10]. Where fewer cameras are available, or where faster

activities such as jog are observed, tracking fails. For this reason the challenging

monocular and stereo tracking scenarios are a focus of the work presented in this

thesis (see also Chapter 4).

3.5.2 Narrow-Baseline Stereo Observations

A narrow-baseline stereo camera provides synchronised image pairs from 2 close-

mounted parallel cameras. Processed as part of a multi-camera wide-baseline

tracking scheme such as APF [DBR00] the observations are so similar that their

combination offers negligible benefit over monocular tracking performance. How-

ever, by calculation of the disparity between matching features in the paired

images, range information for surfaces in the scene can be estimated at video

frame rates, e.g. [Kon97]. The resulting depth data are sometimes referred to as

2.5D.

3.5.2.1 Ideal Stereo Model

Fig. 3.19 shows the geometry of an idealised stereo pair [KB04]. Images lie in

a common plane, orthogonal to the cameras’ principal rays and their horizontal
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axes are shared. Any 3D point, S projects (through each camera’s focal point) to

a point in each image with a common vertical coordinate, v = v′. The difference

between the horizontal coordinates d = u − u′ is the disparity of the 3D point.

The disparity can be related to the distance r of the object S normal to the image

plane by

r =
f × Tx
d

(3.43)

where Tx is the baseline distance. Using this relationship 2D points in the image

can be reprojected to 3D points in a real world coordinate system centred about

the focal point of the left camera.

In practice, cameras in stereo rigs are not well modelled by perfect pinhole imagers

(as assumed above) and camera calibration is an important step in achieving good

results. Calibration involves the estimation of intrinsic and extrinsic camera

parameters that can be used to warp or rectify acquired images into idealised

image pairs. Once done, horizontal lines correspond in each image and reasonable

disparity estimates can be made. Calibration usually requires the imaging of a

simple planar calibration target such as a checkerboard, see Fig. 3.20, and the

application of a non-linear optimisation procedure.

Once a reasonable calibration has been recovered, the main challenge is to iden-

tify corresponding image elements in rectified images. The search for correlations

is usually conducted between small patches of the images, and across a number

of different disparity values. By setting the upper and lower values of this dis-

parity range, one can control the nearest (highest disparity) and farthest (lowest

disparity) planes at which matching can take place. This results in a 3D volume

of interest or horopter that can be adjusted based on the particular application.

In general, stereo range data provide a relatively noisy image cue. Range accuracy

is affected by errors in camera alignment and calibration while range resolution

– the minimum discernable change in distance given a change in disparity, ∆d –

increases (deteriorates) as the square of the range [KB04],

∆r =
r2

f × Tx
∆d. (3.44)
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Figure 3.19: Ideal stereo camera geometry [KB04]. Cameras are identical,
lie in a common plane, are vertically aligned, and have the same focal lengths
f . Principal rays intersect the image planes at the same coordinate, Cx, Cy
and a 3D point in the scene, S projects to identical vertical coordinates v = v′.
By finding the disparity between a 3D point’s horizontal projected coordinates

d = u− u′, its distance normal to the image plane can be calculated.

Nevertheless, a stereo sensor provides disparity information in addition to what

is essentially a monocular observation, and has a compact physical footprint

similar to that of a monocular sensor. Although noisy, this range data provides

precisely the kind of cue that is helpful in addressing the difficult kinematic

ambiguities (e.g. “forwards/backwards flipping” [ST03b]) that arise from the 3D

to 2D projection, without the need to move to a wide-baseline sensor. A depth-

based objective function is proposed in Section 4.3.1.
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(a) (b)

Figure 3.20: Camera calibration: (a) original image; (b) rectified image.

3.5.2.2 Related Work

Surprisingly few approaches have incorporated stereo range data into the human

motion tracking problem. Amongst those that do, the themes of dimensionality

reduction and particle-based probabilistic inference identified in Chapter 2 remain

common. The iterative closest point algorithm (ICP) was used by Demirdjian

to find the transformation between a set of 3D points on a body model and a

set of range data coordinates [Dem03]. Articulated body model constraints were

modelled by the projection of the unconstrained body model transformation onto

a linear articulated motion space. Azad et al. [AUAD07] considered other image

cues in addition to range data, segmenting the hands and head of the subject

by colour and locating their corresponding 3D positions in range evidence. The

result was used to constrain the state space explored by a particle filter which

incorporated edge and region information into its weighting calculation. Both

approaches used relatively simple body models composed of rigid primitives for

limbs and were shown to track sequences of upper body movement featuring some

self occlusion.

Jojic et al. [JTH99] used a body model described by an articulated set of 3D

Gaussian “blobs”. Tracking was performed using expectation-maximisation and

articulated constraints enforced by an extended Kalman filter. Real time tracking

of head and arm movements was demonstrated on a sequence featuring some
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self-occlusion. The authors note that depth data makes possible background

subtraction by range thresholding.

Plänkers and Fua employed a sophisticated deformable body model to track us-

ing range and silhouette data estimated from a narrow-baseline trinocular range

sequence [PF03]. A set of Gaussian density distributions, or “metaballs” were

used to form an articulated soft object model (ASOM). The form of the ASOM

allows for the definition of a distance function to range data that is differentiable

and so an objective function may be maximised using deterministic optimisa-

tion methods. The parameters of the ASOM were estimated in a frame-to-frame

tracking stage by minimisation of the objective function given range data, before

being refined by a global optimisation over all frames (not strictly fitting with the

tracking scenario explored here). Remarkable upper body reconstruction results

were demonstrated on sequences of a bare-skinned subject performing abrupt

arm waving and featuring self occlusion. ASOMs were later used for compari-

son with stereo range data featuring walking and running by Urtasun and Fua

[UF04]. Full body tracking was achieved by minimising the objective function

with respect to the first 5 coefficients of a pre-computed pose space recovered

from MoCap training data using PCA.

3.5.3 Monocular Observations

Correctly estimating pose from monocular observations is very challenging. Even

where a prior model of activity is available and silhouettes can be reliably cal-

culated, many diverse poses from the same activity can agree well with a single

observation. Although this problem may be alleviated if position parameters are

also constrained based on training data, this approach is very restrictive and

is not pursued here. In Chapter 4 a silhouette-based approach to monocular

tracking is investigated. The original APF weighting function (see Eq. 3.39) is

extended to consider the difference in the total area of observation foreground and

the total area of hypothesis foreground. By requiring strict agreement between

these values the tracking of known activity from monocular observations becomes
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possible (see also Section 4.4.2). However, the approach relies very heavily on

good quality silhouette features.

Extracting silhouette features relies on two strong assumptions. First, the ability

to generate a good background model in an offline learning step before tracking

starts. Second, the ability to control the tracking environment during observation

capture so that the background model remains relevant. The second assumption

means ensuring a static background scene, using a stationary camera, and ensur-

ing consistent lighting conditions (usually by filming indoors). As the number of

cameras used in tracking is reduced, so the dependence on accurate background

modelling for good segmentation increases.

Where only a single camera observation is available, a silhouette-based objective

function (see also Section 4.3.2) can facilitate monocular tracking of known ac-

tivity. However, such approaches will inevitably be sensitive to inaccuracies in

silhouette extraction. Even subtle lighting changes – e.g. shadows cast by the

subject themselves – become problematic. The ability to satisfy the strong as-

sumptions about the tracking environment becomes unrealistic in all but the best

controlled laboratory conditions and so removing this requirement is desirable.

The WSL tracker [JFEM03] – which models the appearance of the object of in-

terest itself rather than its surroundings – is one possible mechanism for achieving

this. The WSL tracker provides robust 2D feature tracks that have been pro-

cessed in a number of other generative tracking studies [UFHF05, UFF06a]. More

generally, the tracker’s output format – a collection of 2D joint locations – is of

particular interest as it matches with that of the family of generative bottom-up

tracking approaches discussed in Section 2.3.1.

3.5.3.1 The Wandering-Stable-Lost (WSL) Tracker

The WSL tracker [JFEM03] maintains an adaptive model of appearance based

on three components: a stable component learned over long time scales and based

on image features that are relatively static; a wandering component learned over
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short time scales and able to adapt to rapid changes in appearance, and to pro-

vide initialisation; and a lost component designed to account for outliers. In the

context of human motion tracking, the example of a walking subject neatly moti-

vates the WSL tracker’s construction. The stable component is able to account

for slowly changing appearance due to changes in 3D viewpoint e.g. as the subject

changes direction. The lost component accounts for outliers due to fleeting oc-

clusions by other objects or momentary self occlusions by other limbs e.g. as one

foot swings in front of the other. The wandering component is able to cope with

more rapid changes in appearance e.g. due to the reappearance of a long-term

occluded arm from behind the subject’s torso.

Following Jepson et al. [JFEM03] the individual components are introduced below

in terms of a probability density for a single real-valued 1D observation zt:

• Wandering (W): a Gaussian density pw(zt|zt−1, σ
2
w) where the mean is given

by the last observation and the variance is fixed.

• Stable (S): a Gaussian density ps(zt|µs,t, σ2
s,t) where µs,t and σ2

s,t are slowly

varying functions of time.

• Lost (L): a uniform distribution over the observation domain pl(zt).

The separate strands W , S and L are then combined through a mixture model,

p(zt|qt,mt, zt−1) = mwpw(zt|zt−1) +msps(zt|qt) +mlpl(zt) (3.45)

where the mixing probabilities are given by m = (mw,ms,ml) and the stable

component’s parameters are contained in q
t

= (µs,t, σ
2
s,t). These parameters are

updated online during tracking using expectation maximisation, and the mixture

model is used to provide prediction densities for new observations, zt.

The use of a range of image features is possible with the WSL tracker e.g.

image brightness, colour and gradient statistics. For the work presented in this

thesis, the parameters introduced in the original paper [JFEM03] are adopted
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Figure 3.21: WSL tracker results for nine independent ellipses.

and image appearance is represented through a collection of filter responses from

a steerable pyramid [SFAH92, SF95]. In practice, tracking is initialised manually

by a user specifying an elliptical region of interest Nt within the first frame of a

sequence of images. The region of interest is then decomposed into a set of phase

observations at a number of orientations, scales and spatial locations within Nt
denoted by {zi,t}i∈N . A set of 1D WSL appearance models are then applied,

one for each phase signal, resulting in the collective appearance model At =

{mi,t, qi,t}i∈N . During tracking it is straightforward to calculate the expected

probability of ownership of every phase observation by each component (W , S
and L). This allows stable image elements to be emphasised when evaluating the

similarity of parts of frame t + 1 with Nt. Only during initialisation or where

rapid appearance changes occur is theW component expected to assume control;

the system gracefully degrading to a two-frame tracker until stable features can

be reestablished. Further details and derivations are given in [JFEM03].

WSL tracking for a number of regions of interest on a walking person are shown

in Fig. 3.21. The idea is to extract single coordinates from these moving elliptical

regions to give 2D estimates of a subject’sM joint locations at each frame. This

technique has previously been used by Urtasun et al. in a number of publications

that use gradient based methods to track 3D pose changes [UFHF05, UFF06a,

Urt06]. In Chapter 6 a simple distance-based objective function is used to “lift”

2D joint locations to 3D poses in a particle-based pose estimation scheme.
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3.5.4 Motion Capture

So far only non-invasive or “markerless” approaches to observing the system

state have been considered. Invasive marker-based motion capture (MoCap) ap-

proaches have significant advantages over markerless alternatives. The use of

retro-reflective markers illuminated by multiple infrared cameras allows for accu-

rate and reliable 3D feature extraction with no special background requirements.

By using carefully defined marker placements (e.g. the Helen Hayes full body

marker set), having subjects wear tight-fitting clothing and carefully recording

their anatomical measurements, commercially available software (e.g. the Vicon

Plug-In Gait package) can be used to extract joint centres and full 3D limb (Eu-

ler) rotations. Although not perfect3 these results are consistently more accurate

than the current state of the art in markerless tracking using large numbers of

cameras (greater than 10), at around 15mm [CMG+10, SB10].

MoCap systems also have a number of drawbacks, however. They are expen-

sive and operate only over a small capture area within a laboratory setting, see

Fig. 3.22. Expert users are required to perform calibration, to manually iden-

tify markers before capture commences, and to post-process the resulting data.

More fundamentally, the MoCap approach – unlike its non-invasive alternatives

– requires the cooperation of the subject. Marker-based systems play two im-

portant roles in facilitating the markerless tracking techniques presented in later

chapters. First, joint centre locations estimated using MoCap are used in many

of the experiments as a record of ground truth. These are compared against

the body model configurations recovered by the markerless algorithm to produce

quantitative tracking results. Second, series of limb rotations estimated using

MoCap are used as training data from which prior models of activity are learned.

These activity models are then used to constrain the search for new poses during

tracking.

3For example the hip joint can only be localised to an accuracy of around 2-10mm using the
Vicon system [CCVC07]
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Figure 3.22: Motion capture lab. Retro-reflective markers on the subject’s
body are returning light from the camera’s flash bulb.

In adopting MoCap as a record of ground truth it is important to acknowledge

that neither the estimation of joint centres (for evaluation) nor the estimation of

limb rotations (for training) is exact. Further, for synchronised datasets such as

HumanEva-I and HumanEva-II [SB06a, SBB10] and their predecessor presented

in [SBR+04, BSB05] slight inaccuracies are also introduced when estimating the

coordinate system alignment between the (non-infrared) video cameras and the

(infrared) Vicon system cameras, and during the subsequent (software based)

synchronisation of the data that results from each system. These datasets also

feature subjects wearing “normal” loose fitting clothing (rather than skin tight

body suits) to create a realistic markerless tracking scenario. From the MoCap

perspective this makes initial marker attachment less precise and leaves it liable to

change as the subject moves during capture. This is also true for the HumanEva-

I Training partition from which activity models are estimated. Despite these

considerations the HumanEva datasets are a valuable resource (especially for the

cross comparison of techniques) and the creators’ estimate of 20mm for optimal

performance remains lower than state of the art in markerless tracking from four

cameras [SB10].
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3.5.4.1 Evaluation

Having discussed the various caveats with which MoCap data is adopted as

ground truth, the remaining question is how best to compute the error between

a body model hypothesis and the MoCap data. In this thesis the measure in-

troduced by Sigal et al. [SBR+04] is adopted. This comprises the average of the

3D Euclidean distances between M = 15 corresponding joint centre pairs in the

hypothesised body model configuration b, and in the ground truth MoCap pose

τ ,

δ(b, τ) =
1

M
M∑
i=1

||li(b)− li(τ)|| (3.46)

where li() returns the 3D location of the ith joint centre. Note that the dimen-

sionality of τ need not match that of b. For example, in HumanEva data each

limb is permitted 6DOFs in the MoCap ground truth. This means that there is

no requirement for limbs to touch and so it is typically impossible to configure a

kinematic tree specified by b in such a way that δ(b, τ) = 0.

In a particle-based approach there are in fact N pose hypotheses to evaluate at

each time step4 Sπt = {(b(n)
t , π

(n)
t )}Nn=1. The approach taken in the remainder of

this thesis is to calculate the expected pose E(st) from the particle set (see also

Eq. 3.13) and then to compare this single pose with MoCap data to give the

expected error,

∆E(Sπt , τ t) = δ (E(bt), τ t) . (3.47)

Other measures do exist (e.g. weighted error, MAP error and optimistic error

[BSB05]) but each give very similar results in the experiments presented here

(see also [DLC08c, DLC08b, DLC+09] for examples). Given that the recent Hu-

manEva baseline has been presented in terms of the expected error only [SBB10],

the same approach is taken here.

4For the purposes of this discussion the particle location s has been exchanged for b to
emphasise that evaluation steps – e.g. calculation of an expected pose – are conducted within
the ambient pose space, even where particles reside in a latent pose space.
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3.6 Discussion and Conclusions

The techniques described in this chapter provide the basis for contributions in

later chapters. The most straightforward combination of the steps described is

as follows:

1. Recover a latent pose space from activity training data by applying some

form of dimensionality reduction technique.

2. Learn a dynamical model for the resulting latent variables by training an

HMM.

3. Use the resulting HMM to propagate particles through the latent pose space

during tracking.

4. Calculate particle weights by comparison of body model hypotheses with

observations.

5. Attempt to recover a globally optimal tracking pose at each frame using

annealing.

These steps are indeed implemented in Chapter 4 and used to recover known

activity from stereo and monocular observations. However, more interesting con-

tributions follow in Chapter 5 and Chapter 6 from looking at the limitations of

such a scheme. What steps should be taken to model more than one known ac-

tivity? How can transitions between known activities be recovered? How should

sequences containing known and unknown activities be tackled? A list of specific

contributions with forward references can be found in Section 1.2, and also at the

beginning of each chapter.



Chapter 4

Known Activity

In this chapter a simple but effective low-dimensional generative track-
ing approach is introduced. A linear latent pose space is recovered from
activity training data by the application of PCA. A dynamical model is
then recovered by learning an HMM from the resulting distribution of
latent variables. During estimation particles are dispersed through the
latent pose space by the HMM in a modified form of annealed particle
filtering. Robust tracking performance is demonstrated with novel ob-
jective functions designed for processing monocular, narrow-baseline
stereo and wide-baseline stereo observations.

4.1 Introduction and Related Work

Research into the markerless tracking of human motion has recently benefitted

from the introduction of common data sets that include ground truth motion

capture (MoCap) data [BSB05, SB06a]. These have allowed for the quantita-

tive evaluation and cross-comparison of tracking approaches. Annealed particle

filtering (APF) [DBR00] and sampling importance resampling (SIR) [AMGC02]

have been shown to recover pose from multiple cameras using silhouette and edge

cues [BSB05, SBB10]. However, both approaches have been found to fail when

limited to observations from fewer than three cameras (this result is tested in

Section 4.4.2). Many distinct pose hypotheses may agree well with the available

image evidence and, despite large particle numbers, ambiguous evidence causes

tracking to fail.

80
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It is therefore useful to appeal to the idea that human motion is well described

by a low-dimensional subspace of the original state space (see also Chapter 2). In

this chapter a new low-dimensional generative tracking approach is introduced. In

light of the problem statement of this thesis, the eventual aim is to integrate this

approach with a complementary high-dimensional tracking approach. Although

this is not attempted until Chapter 5, the ambition informs a number of the

design choices taken in this chapter. For example, principal components analysis

(PCA) is chosen to reduce the dimensionality of joint angle vectors recovered

from MoCap training data. More sophisticated non-linear alternatives such as the

GP-LVM [Law05] are overlooked due to the expense of calculating the mappings

that allow particles to flow between latent and ambient pose space (see also

Section 3.3.6).

The application of PCA leads to a latent pose space that is both linear and contin-

uous, containing many illegal configurations and making it unsuitable for direct

sampling. To address this problem the dimensionally reduced data are treated

as a set of noisy observations of a stochastic process, and a dynamical model and

set of continuous observation density functions are learned by training a hidden

Markov model (HMM) from the distribution of latent variables in the PCA space.

Sampling guided by the HMM produces poses close to the training data, with the

recovered observation densities precluding the sampling of illegal regions. More

sophisticated higher order dynamical models have been adopted in the human

motion tracking literature, for example the use of variable length Markov models

[RST94] by Hou et al. [HGC+07], but HMMs provide a well understood classi-

fication framework [Rab89] that is ideal for use in multiple known activity joint

latent pose spaces for both activity labelling and particle propagation.

The main contributions of this chapter are as follows:

• Use of an HMM to model a non-linear “activity axis” within a linear latent

pose space recovered using PCA (Section 4.2).

• Integration of the HMM into an annealed particle filtering framework for

use in particle propagation (Section 4.2.1).
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• Inflation of dynamics to recover known activity from ambiguous monocular

and stereo observations (Section 4.2.1.1 and Section 4.2.1.2).

• Use of a time-reversed transition matrix to synthesise both past and future

pose hypotheses for robust tracking (Section 4.4.3).

• Construction of chamfer volumes for use in tracking with range data ob-

servations. Where chamfer image pixels hold a value proportional to their

proximity to an edge, chamfer volume voxels hold a value proportional to

their proximity to a surface (Section 4.3.1).

• Proposal of a novel objective function that performs “XOR-like” compar-

isons between hypothesis and observation foreground (Section 4.3.3).

4.2 Activity Model Definition

If the class of activity is known a priori then, as discussed in Section 3.3.2,

inference during tracking can be confined to a (Dω+Dx)-dimensional space where

Dω is the dimensionality of the body model’s global position vector and Dx is

the dimensionality of a latent pose space recovered from training data. Where

PCA is used to recover this latent pose space then low error reconstructions may

be achieved with values as low as Dx = 4 (see also Fig. 3.7). A simple linear

mapping (see also Eq. 3.21) exists from latent to ambient pose space which allows

for fast parameterisation of the body model bt with complexity independent of

the number of training data.

Position parameters are typically subject to some simple set of max/min con-

straints; e.g. the body model must reside within the confines of the capture

environment, but are otherwise free to occupy any value within this range. The

estimation of the Gaussian random variable nωr from training data remains an

appropriate mechanism for position parameter dispersion during tracking. This

is not true for the dispersion of pose parameters, however. Latent training data

typically forms a twisted, non-linear manifold away from which poses are not
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guaranteed to be relevant to the original activity, or even anatomically possi-

ble. Simply estimating the parameters of a Gaussian random variable nxr does

not constrain the movement of particles sufficiently and is unlikely to facilitate

robust tracking (this claim is investigated experimentally in Section 4.4.3). As

an alternative to simple noisy dispersion of particle pose parameters, the use of

HMMs as discussed in Section 3.4.2, is advocated.

There is now considerable quantitative experimental evidence to show that APF

is more successful than particle filtering for human motion tracking [BSB05,

SBB10]. However, APF is adopted at the expense of the Bayesian framework

and the annealing process can recover the wrong pose interpretation when faced

with multiple maxima of approximately equal magnitude [BSB05]. For this rea-

son, a recurring theme in this thesis is the artificial inflation of dynamics to

produce p(st−1+T0
|st−1) where T0 ≥ 1 to facilitate recovery from tracking errors

(see also Section 3.4.3).

For pose parameter dispersion via an HMM this simply means making not one,

but T0 transitions via the transition matrix before sampling from the final state’s

observation density. In general, hypotheses that extend too far along the ac-

tivity manifold die out during annealing, discounted by comparison with image

evidence in the evaluation of the objective function. However, maintenance of

a wider distribution of activity pose samples permits escape from an incorrect

interpretation where image evidence is ambiguous. The only question is how to

set the value T0. Two approaches are investigated here: (i) experimental determi-

nation of a constant T0 value based on tracking accuracy (Section 4.2.1.1), (ii) a

heuristic approach for dynamically adjusting T0 during tracking that has proven

particularly effective where HMMs are used in isolation (Section 4.2.1.2).

4.2.1 Known Activity (HMM-APF)

In the maximal dispersion step at r = 0 (see also Fig. 3.3) position parameters are

dispersed by addition of the Gaussian random variable nω0 , estimated by finite
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differencing of training data (see also Section 3.4.1). Latent pose parameters

are dispersed by classification to an HMM state, followed by synthesis of T0

transitions via the matrix A. Two methods for the inflation of T0 > 1 are

detailed in Section 4.2.1.1 and Section 4.2.1.2.

For the recovery of an optimal pose, the magnitude of dispersion in subsequent

layers r > 0 should decrease at the same rate as the resolution of the particle set

increases [DBR00]. To achieve this the particle survival rate αr is used to rescale

the number of timesteps synthesised Tr, the covariance of the Gaussian random

variable nωr and the covariance matrices of the HMM state observation densities,

Σi,r. Optionally, the time-reversed matrix Â may also be chosen for synthesis,

allowing particles to flow both forwards and backwards along the manifold.

As the state means µ
i
are constant, the effect of rescaling the observation densities

during annealing is to force samples closer to the training data. For parameter

re-estimation in later annealing layers, self transitions by states are more common

as Tr becomes small. Where sj = si dispersion is uncoupled from µ
i

and samples

are drawn from a Gaussian density using the parent state’s scaled covariance

matrix, Σj,r but with µ
j

replaced by the particle’s current estimate of x
(n)
t,r . This

results in a piecewise approximation to manifold dynamics that stops training

data from dominating the choice of new pose hypotheses, allowing the objective

function scores to guide refinement.

The HMM-APF particle dispersion process described above is detailed in Fig. 4.1

and a visualisation of its application to a walk observation is given in Fig. 4.2(a).

The visualisation shows the annealing process for a single observation at a single

time step. Particles can be seen gradually concentrating around a pose solution

over a number of separate annealing layers. The single most important aspect

of this dispersion is that particles must follow the path of the training data.

Particles are not free to move through the latent space but must flow along a

twisting (non-linear) “activity axis” that is defined by the locations of the HMM

states. Initial particle locations are shown in black, intermediate locations in

green and final particle locations in red. The Gaussian covariances from which
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samples are drawn are shown as blue ellipses. Cyan lines depict significant HMM

state transition probabilities and shifted state observation densities are depicted

with dashed ellipses (see also item 4(ii) in Fig. 4.1). Recall from Section 3.2.2 that

maximal dispersion is applied as a final stage just before moving on to process

the next observation (see also Eq. 3.14) and so it is actually the final dispersion

that is greatest in magnitude.

4.2.1.1 Constant T0

One approach to setting T0 is to determine an optimal constant value experi-

mentally, based on tracking performance. Such an investigation is undertaken in

Section 4.4.3 where the range of values T0 = 1, 2, ..., 5 are all tested. In line with

the APF dispersion rescaling (Eq. 3.8), the number of synthesised time steps is

rescaled after each annealing layer using the survival rate αr, to give

Tr = dαR × ...× αr × T0e (4.4)

where de denotes the ceiling operation. Note that setting T0 = 1 causes Tr = 1

for all r, in which case no inflation is in effect and the dynamical model is that

which is implied by the training data.

4.2.1.2 Dynamic T0

HMMs consist of a set of static hidden states each with an associated Gaussian

observation density, and each accounting for a particular subgroup of the latent

training data. This property is an attractive one as it forces particles take up

meaningful poses along the activity manifold as annealing commences at each

timestep. Partitioning the pose space in this way also leads to a more expressive

dynamical model; the particular temporal properties of each state (and the pose

data it represents) are captured in its corresponding row of the transition ma-

trix, A. Rather than simply setting T0 to a constant value, it may therefore be

desirable to tailor the inflation of dynamics as a function of the current state.
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1. The position of the (n)th particle in the rth layer is given by the position

and latent parameters, s
(n)
t,r = [ωt,r, xt,r].

2. The particle’s position parameters ωt,r are updated by the addition of the
Gaussian random variable nωr ,

ω′t,r = ωt,r +
∑Tr

1 nωr . (4.1)

3. For r = 0: the particle’s latent parameters xt,r are updated using an HMM
λ trained from the distribution of latent variables in a pose space recovered
from training data (Section 3.4.2). The current latent vector estimate is
assigned to the state si most likely to have emitted it as an observable via
pi(x). The HMM is then used to make Tr state transitions before emitting
a new estimate x′t,r via the final state’s observation density pj,r(x).

4. For r > 0: dispersion takes place just as in 3 (above), but with the following
additional steps taken to aid refinement:

(i) The dispersion rescaling procedure is extended to the observation den-
sities at each HMM state to give pi,r(x) = N(x|µ

i
,Σi,r), where

Σi,r = αR × ...× αr ×Σi. (4.2)

(ii) Where sj = si dispersion is uncoupled from µ
j

and x′t,r is produced us-

ing the scaled version of the parent state’s covariance matrix Σj,r, but
with µ

j
replaced by the particle’s current latent parameter estimate,

xt,r. This prevents the training data from dominating the choice of
new pose hypotheses, allowing the objective function scores to guide
final refinement.

(iii) Optionally, the transition matrix may be randomly selected as either A
or the time reversed compliment Â in order to allow for the synthesis
of past and future poses.

5. The new estimates are then used to create a particle in a new set

[ω′t,r, x
′
t,r] =

{
s

(n)
t,r−1 if r > 0;

s
(n)
t+1,R if r = 0.

(4.3)

Figure 4.1: Dispersion of a single particle for known activity: HMM-APF.

Take the example of a highly self-referential state. Self-referential states are those

states that are highly likely to self transition, i.e. the matrix element Aii is close

to one. They arise wherever a state is responsible for modelling one or more large

consecutive sequences of training data, e.g. where the training activity contains

a static pose that is held for some period of time. These states are legitimate
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products of the temporal properties of the training data, but their effect is to

leave all but a small fraction of the particle set concentrated about the current

state mean. The aim of inflating dynamics is to maintain an artificially wide

distribution of pose candidates and therefore facilitate recovery from transient

errors (due for example to poor observation data). In practice the magnitude of

Aii ranges widely between states and is a product of both the underlying activity,

but also of parameter choices such as the number of states and initialisation

values. Setting T0 high enough that a reasonable fraction of particles escape a

self-referential state is likely to result in erratic propagation elsewhere on the

manifold.

To address this issue a “transition temperature” parameter ρT is introduced into

the synthesis process. The transition temperature is a lower bound on the prob-

ability of a non-self state transition occurring and therefore a function of the

current state. In line with APF dispersion rescaling the transition temperature

is rescaled by the particle survival rate αr at each annealing layer to give,

ρr = αR × ...× αr × ρT . (4.5)

For a particular state si at layer r, a non-self state transition is then ensured by

making Tr state transitions where,

Tr =

⌈
log(1− ρr)

log(Aii)

⌉
. (4.6)

Where the dependence of Tr on the state index i has been dropped in order to

leave the notation in Fig. 4.1 applicable to both constant and dynamic approaches

to inflation. This approach uses the temporal properties of activity data to ensure

spatial variation amongst pose candidates and can be helpfully viewed as a simple

form of time warping.
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4.3 Objective Functions

Tracking from a minimum of four synchronised cameras in a laboratory environ-

ment can arguably be described as a solved problem. Providing good silhouette

data can be extracted, Bayesian tracking techniques such as the annealed par-

ticle filter can maintain accurate 3D estimates of pose during freeform human

activity performance [BSB05, SBB10]. As the number of cameras is reduced

below three, however, tracking accuracy deteriorates sharply. This section intro-

duces a number of objective functions intended for use where sensor numbers are

limited (< 3). Each one is suitable for use in assigning particle weights during

particle-based inference and is evaluated for use in human activity tracking in

Section 4.4.

4.3.1 Range-Based

In standard APF [DBR00], a measure of agreement between edge features is

calculated, Σe (see also Section 3.5.1 for a full discussion). This involves the

detection of edges in the current image observation zt, and the convolution (or

smoothing) of the resulting edge map with a 2D Gaussian kernel. The value of

each pixel in the resulting image is proportional to that pixel’s proximity to an

edge. Such an image is also called a chamfer image. Pose hypotheses are then

projected into the chamfer image and sample points are extracted from the edges

of the component cones for the calculation of the SSD.

This approach can be extended to range data by discretising an (x, y, z) point

cloud estimated by a narrow-baseline stereo camera onto a 3D grid. The data

describes 2.5D surfaces calculated from the disparity between image pairs (see

also Section 3.5.2). The data is smoothed by convolution with a 3D Gaussian

kernel and the values rescaled to the range [0, 1]. The result is a volume V v, where

each voxel’s value is proportional to its proximity to a surface, or chamfer volume.

Chamfer volumes for a number of synthetic surfaces are shown in Fig. 4.3. A
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Figure 4.3: Example chamfer volumes: (a-c) surfaces have been discretised
onto 203 grids and smoothed with a 73 spherical Gaussian kernel with σ = 4.

chamfer volume calculated from a real narrow-baseline stereo camera observation

of a walking person is shown in Fig. 4.4(c).

To calculate particle weights a hypothesis s
(n)
t can be projected into the chamfer

volume and a set of 3D sample points {ξ} extracted from the visible surfaces of

the body model’s component cones. That is, portions of the cones with surface

normals pointing away from the stereo camera are omitted from the calculation

as are sample points occluded by other nearer cones. An SSD score can then be

calculated by,

Σv =
1

|{ξ}|
∑
ξ

(1− V v(ξ))2. (4.7)

A visualisation of the sampling strategy is shown in Fig. 4.4(c) where the hy-

pothesis can be seen projected into the chamfer volume. Fig. 4.5 shows the same

pose hypothesis enlarged and rotated to show sample points (blue lines depict

the camera’s principal ray). Samples from regions of the model with surface

normals pointing towards the camera are denoted by circles; those that are not
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(a) (b) (c)

Figure 4.4: Narrow-baseline stereo images of a walking person: (a) top; (b)
bottom; (c) chamfer volume and body model hypothesis.

self-occluded by crossed circles. The chamfer volume is used for tracking in Sec-

tion 4.4.1.

4.3.2 Monocular

As a first step towards tracking from standard single-camera observations, this

section presents work on a simple monocular silhouette-based objective function

(further work usingWSL tracks is presented in Chapter 6). The silhouette-based

SSD function described in Section 3.5.1 is extended to enforce a match between

the areas of hypothesis foreground (Fs) and observation foreground (Fz). This

strategy is illustrated using simple shapes in Fig. 4.6: the aim is to minimise the

difference in size between the foreground region produced by the hypothesised

triangle and that produced by the observed triangle. A measure of the disparity

between these values, W , is calculated as

W =

(
1− abs

(
Fz − Fs

max(Fz, Fs)

))
. (4.8)

The silhouette-based SSD score Σs is then re-weighted by W as follows

Σs
W =

1

W γ
× Σs, (4.9)
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Figure 4.5: Body model from Fig. 4.4(c) rotated to show extracted sample
coordinates (red) and effects of intra- and inter-cone occlusion (empty circles).

where the requirement for observation and hypothesis silhouette sizes to match

may be enforced by varying the exponent γ. Strict agreement can be enforced

by setting γ high, while setting γ = 0 is equivalent to using the original APF

objective function Σs (Σs
W = Σs in Eq. 4.9). This objective function is used for

tracking in Section 4.4.2.

4.3.3 Wide-Baseline Stereo

In the multiocular calculation of particle weightings described in Section 3.5.1

and the monocular extension described above, there is no consideration given to

foreground in image evidence which is left unaccounted for by a pose hypothesis.

This becomes problematic where camera numbers are reduced and, in the ab-

sence of simultaneous observations from many different angles, the body model

is free to take up compact but incorrect poses, or to move directly away from the

camera simply to subsume itself in observation foreground. For example, see the

observation foreground mask for a box pose in the left hand side of Fig. 4.8(b),
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Figure 4.6: Diagram of observation and hypothesis foreground areas. Aim
is to have Fs and Fz matching in size.

where an erroneous low guard pose hypothesis is largely subsumed by observation

foreground and therefore scores well in terms of Σs.

Edge features can be useful in mitigating this problem as poses that explain

the subject’s outline score well in terms of Σe (see Eq. 3.40) [DBR00]. When

tracking from only two cameras, however, edge cues have proven unable to prevent

hypotheses moving directly away from sensors, see also standard APF results in

Section 4.4.2 and [DLC08c]. This is likely to be due to the large number of

internal edge responses that are recovered from casually dressed subjects such as

those in the HumanEva database. These individuals wear loose-fitting clothing

that creases and has detailing, see for example the high internal edge scores on

the subject’s torso in Fig. 3.17(d).

In this section a complementary silhouette-based measure is put forward as an

alternative to the use of edge cues. Specifically, sampling of the observation

foreground for comparison with the body model hypothesis is proposed. When

combined with Σs, synthesised poses are required to satisfy two criteria: the

body model should not lie over observation background nor leave observation

foreground unaccounted for. This strategy is illustrated using simple shapes in

Fig. 4.7: the aim is to minimise both the area of hypothesis that is left unex-

plained by observation and the area of observation that is unaccounted for by the

hypothesis. The approach could be described as a sampling-based version of the

symmetrical pixel-based objective function used by Sigal et al. [SBB10].
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Figure 4.7: Diagram of symmetric sampling strategy. The aim is to minimise
both the unexplained foreground regions, Σs and Σs̄.

A measure of agreement Σs̄ is computed between a binary hypothesis foreground

mask V s̄, and a set of points {ν} drawn uniformly from the foreground region of

the observation foreground mask V ,

Σs̄ =
1

|{ν}|
∑
ν

(1− V s̄(ν))2. (4.10)

The resulting set of samples are shown in the right hand side of Fig. 4.8(b).

The measure Σs̄ is combined with the standard silhouette comparison Σs by

substituting Σs̄ for Σe in Eq. 3.41. A quantitative evaluation of this approach is

presented below and it is used for tracking in Section 4.4.3.

The usefulness of this measure is demonstrated by considering the consequences

of inducing known, artificial errors in the pose derived from a HumanEva-I box

sequence. As shown in Fig. 4.8(b)-4.8(e), while the 500 frames of fragment run,

the pose extracted stays motionless, and is compared on the one hand with the

objective function scores extracted from the images, and on the other with the

true pose obtained from motion capture (see also Section 3.3.1.1). This arrange-

ment illustrates the relationship between the image-based SSD terms and true

pose inaccuracies for a wide range of desired poses; during tracking, a wide range

of possible poses will be tested against a single frame.

To account more accurately for the observation foreground masks cast by sub-

jects, the binary hypothesis foreground mask is created from a set of truncated

“clothes” cylinders with the subjects’ limb widths scaled by a factor of 1.0-1.5.
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The hypotheses masks in Figs. 4.8(b)-4.8(e) use a scaling of 1.5 for each limb,

but in practice these values are set manually based on a subject’s clothing, e.g.

1.5 for a trousered lower leg, 1.0 for an unclothed head or forearm.

As can be seen from Fig. 4.8(a), both objective function scores relate quite closely

to the true pose difference. However, the combined measure (Σs + Σs̄) is in fact

significantly more strongly associated with the true pose difference, as assessed

by a Spearman rank correlation analysis. This shows that while the correlation

between the original measure and the pose difference has r = 0.267, the new

measure has r = 0.677. Due to the large number of frames, d.f. = 498, and so

both of these values are significant far beyond P = 0.05. Similarly, the probability

of the difference between these correlations being generated by chance is too small

to be calculated.

4.4 Experiments

This section contains known activity tracking results for monocular, narrow-

baseline stereo, and wide-baseline stereo observations of walk and jog activities

using HMM-APF combined with the objective functions defined in Section 4.3.

Further details are given in the following subsections, but this introductory sec-

tion covers a number of themes that are common to all experiments.

The body model of Bălan et al. [BSB05] is used in each experiment; a kinematic

tree composed from a set of 10 truncated cones (see also Section 3.3.1.1). The

adoption of this body model allows for the straightforward application of new

tracking algorithms to the HumanEva-I and HumanEva-II datasets described

in [SB06a, SBB10] and their predecessor described in [BSB05]. These datasets

consist of a number of synchronised video sequences providing views of different

human activities performed by a number of different subjects. Processing these

sequences offers two important advantages over other methods of evaluation, (i) a

synchronised record of MoCap ground truth permits the quantitative evaluation

of markerless tracking techniques and (ii) an additional partition of MoCap data
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Figure 4.8: Silhouette features for a fixed low guard pose hypothesis with
hands held against the torso during a 500 frame box sequence. (a) 3D abso-
lute error scores and corresponding SSD scores. Dashed vertical lines denote
punches, with the 4 bold vertical lines corresponding to the image pairs (b)-
(e). These show the sampling strategy for Σs (left) and Σs̄ (right), with non

matching samples plotted in red.

is provided that features the same subjects performing the same activities (at

different times) and that is intended for training.

The training partition allows for cones in the body model to be accurately resized

based on the measurements of individual subjects. It also permits the extraction

of series of body model configurations that relate to a particular subject’s pose
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during the performance of training activities. For a particular activity, these

configurations are given by series of global position vectors Ω = {ω1, ..., ωM} and

pose vectors Y = {y
1
, ..., y

M
} giving the relative joint rotations between limbs

in terms of Euler angles. The position vectors comprise Dω = 6 parameters,

three rotational and three translational and the pose vectors comprise Dy = 36

Euler angles. This pose representation features some redundancy; each joint

is permitted three degrees of freedom, but many in fact require less. This is

reflected by a negligible or zero variation across the training data (see also the

lowest values in Fig. 3.13), meaning that particle positions do not vary in these

dimensions1.

Training data can be used for the learning of pose and dynamical models nec-

essary for performing HMM-APF. Based on the investigation in Section 3.3.2 a

latent pose space dimensionality Dx = 4 was chosen for all experiments, resulting

in a corresponding set of latent variables X = {x1, ..., xM} related to the original

pose vectors Y through a linear mapping. HMMs of the form λ = {S,A, a, pi(x)}
were estimated from latent variables using the steps described in Section 3.4.2.

The Baum-Welch algorithm (see also Appendix C) guarantees only to find a lo-

cal optimum and the HMM is reestimated from a new initialisation before each

individual tracking experiment. Once training is complete a time-reversed tran-

sition matrix Â can optionally be calculated using Eq. 3.38, where the invariant

distribution ψ is estimated by making 103 transitions via the original transition

matrix, A. Finite differencing of training data as described in Section 3.4.1 was

also used to estimate the covariance matrices, P ω
r , P y

r and P x
r , used for disper-

sion at each layer. Note that these variables additionally facilitate tracking by

standard APF or by SIR (see also Section 3.2.1 and Section 3.2.2) in either the

latent or ambient pose spaces; these approaches are both adopted as baselines

for comparison. The “default” APF parameters of 5 annealing layers and a con-

stant survival rate of αR = ... = α0 = 0.5 were adopted from the literature, see

Section 3.2.2 for a discussion of the implications of varying these values.

1For the dataset presented in [BSB05] a number of pose parameter variances are explicitly
set to zero, effectively giving Dy = 25 but this does require some “ad hoc” manual adjustments
to the remaining pose parameters.
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4.4.1 Narrow-Baseline Stereo Tracking

In this section the HMM-APF algorithm is applied to range data using the cham-

fer volume objective function defined in Section 4.3.1. First, a simulation is un-

dertaken to investigate the effect on tracking of: (i) varying the number of HMM

states and (ii) inflating dynamics via the transition temperature. Second, track-

ing is attempted using real stereo camera range data. Training data and test

data are both taken from the dataset in [BSB05].

4.4.1.1 Simulation

To investigate the effectiveness of parameters chosen for the training and tracking

processes, a series of simulation experiments were conducted using synthetic walk

trials. The body model was “animated” using the 30fps ground truth test data

from [BSB05]. The translation parameters in each position vector were set to zero

to produce a pose recovery problem2. Synthetic range data relative to a fixed

observation point was sampled from the visible surfaces of the cones and used to

create a set of “idealised” chamfer volumes from which tracking was attempted

using the SSD measure Σv. The scenario is one of a known subject performing

known activity.

Expected error results (see also Section 3.5.4.1) for 40 particle HMM-APF using a

range of state numbers to build the HMM are shown in Fig. 4.9(a). In Fig. 4.9(b)

the number of states is held constant (at 15) and the effect of increasing the

transition temperature on tracking accuracy is investigated. Each point plotted

represents an average score from 10 separate tracks of the test sequence, with

4.9(b) also showing the best and worst tracking results. Fig. 4.9(a) used the first

75 frames of the sequence – which feature straight-line walking – to investigate the

quality of pose recovery using different numbers of HMM states. Figs. 4.9(b) and

4.10 used a 150 frame sequence featuring a more challenging change of direction.

Fig. 4.10 shows the performance of HMM-APF with 15 states and ρT = 0.6 versus

2Translation parameter variance was also set to zero in P ω
r .
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Figure 4.9: Range data simulation results: (a) mean tracking error versus
number of states; (b) tracking error versus transition temperature ρT .

latent SIR using P x
r for propagation and an equivalent number of particles (200;

that is, 40 particles multiplied by 5 annealing layers).

No significant improvement in performance was found using greater than 10 HMM

states. Failures were observed when using only the HMM transition matrix A

(low ρT , Fig. 4.9(b)) or the Gaussian random variable P x
r (latent SIR, Fig. 4.10)

as a dynamical model for tracking the longer sequence. However, inflating the

learned dynamical model by increasing ρT to make more state transitions pro-

duced consistent reductions in the tracking error. This improvement was most

pronounced above the value ρT = 0.5: ensuring that at least half the particle

set is spread beyond the current state reducing the average error by around a

third. To reflect this trend the transition temperature was fixed at ρT = 0.6 –

just above the observed step-change in average error – for the comparison with

SIR (Fig. 4.10) and other experiments in the remainder of this chapter.

Although choosing even higher transition temperatures may appear to bring

futher benefits – e.g. see results for ρT = 0.8 – this corresponds to very high

magnitude dispersion and particles have been observed moving right round the

activity manifold in a single time step at these temperatures. The reduced error

score at ρT = 0.8 is likely to be due to the reinforcement of these particles at or
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Figure 4.10: SIR versus HMM-APF for range data.

near the current pose estimate. This result is interesting but such high tempera-

tures are inappropriate for all but periodic activities with cyclic manifolds3. The

proposed HMM-APF method maintains tracking throughout each of the 10 tests

with a more conservative transition temperature of ρT = 0.6. Fig. 4.10 shows

frame-by-frame errors for the longer sequence, the increase in SIR tracking error

at around frame 60 is due to tracking failures as the subject turns towards the

camera. Attempting to propagate the full posterior does not lead to improved

performance, reflecting the findings of [BSB05] on the same data.

4.4.1.2 Range Data

A 5 second sequence of an unknown walking subject was recorded at 30fps using

a Videre MDCS2-VAR stereo camera [Vid]. The camera was held by hand and

continually adjusted to ensure the subject remained fully in shot4. Range data

was calculated using the commercially available Small Vision System software

[Vid, Kon97] and discretised onto a 3D grid with a resolution of 4cm in each

dimension. It was then smoothed with a 7× 7× 7 Gaussian kernel with σ = 4 to

produce a series of chamfer volumes. The body model of the subject from [BSB05]

was hand-initialised at the first frame and HMM-APF tracking attempted using

3In Section 4.4.3 an alternative approach to reinforcement is investigated by using a time-
reversed transition matrix to enable particles to move backwards along the activity manifold
away from the current pose estimate, as well as forwards.

4Translation parameter variance was halved in the estimation of P ω
r to represent this fact.
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100 particles, 15 states, and ρT = 0.6. The scenario is one of an unknown subject

performing known activity.

Results are shown in Fig. 4.11 and demonstrate qualitatively satisfactory tracking

of an unknown walking subject from stereo range data. As anticipated, the depth

cue is noisy and ambiguous (see also discussion in Section 3.5.2.1) but although

some mis-tracking is seen – for example the right leg in the top right image

of Fig. 4.11 is attracted by the nearby background clutter – a reasonable pose

estimate is always recovered within a few frames. Although the quality of pose

recovery is similar to that presented in other studies (e.g. [UFF06b]), perhaps the

most impressive aspect of the result is maintenance of a good global translation

and rotation estimate for the subject as they move through the room.

One concern when tracking with strong priors on dynamics and pose is that

observations are in fact redundant and the particle set will move through the

correct state space trajectory regardless. A particularly interesting example is

given by Sidenbladh et al. [SBF00] (see in particular their Fig. 7) where the

particle set is found to reconstruct the poses of a person walking in a straight

line with surprising accuracy despite the complete absence of observations (all

particles are assigned an equal weighting). Tracking only breaks down when the

subject turns to walk in a new direction. Having the subject in Fig. 4.11 perform

a relatively sharp turn ensures that it is impossible for the activity prior alone to

maintain tracking: in addition to the pose parameters, the 6 position parameters

of the root must also be estimated via P ω
r . This represents a challenging difference

versus the more common scenario of a subject walking in a straight line across the

field of view of a stationary camera, e.g. see the full body stereo results presented

in the study by Urtasun and Fua [UF04].

4.4.2 Monocular Tracking

The HMM-APF algorithm was used to track the first 150 frames of the walk

sequence tested by Bălan et al. [BSB05] using 40 particles and the weighted
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Figure 4.11: Narrow-baseline stereo tracking results with N = 100.

SSD score Σs
W defined in Section 4.3.2. The scenario is one of a known subject

performing known activity. Results are shown in Fig. 4.12 with standard APF

using five times as many particles (200 per layer), P ω
r and P y

r for the propagation

of particles, and the original edge-plus-silhouette weighting function described in

Section 3.5.1 included for comparison. For each setting, tracking of the sequence

was attempted 10 times and the average expected error at each frame across

the 10 runs is plotted. The average expected error was also calculated across

each entire run and the mean and standard deviation of error across the 10 runs

is shown in the legends. For the relative error calculation in Fig. 4.12(b), the

global coordinates of the virtual and MoCap pelvis markers were set equal before

computing the average marker error. Typical qualitative results for standard

APF and HMM-APF are shown in Fig. 4.13 and Fig. 4.14, respectively.
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In the case of monocular tracking, maintaining an accurate estimate of the sub-

ject’s global coordinates is very challenging. The body model tends to “sit back”,

ensuring it is enveloped by image evidence and scoring well in terms of the

silhouette-based objective function. This can be seen in Fig. 4.12(a) for stan-

dard APF and for HMM-APF with γ = 0 where the high absolute errors are

due, overwhelmingly, to error in estimating the subject’s global position within

the room. Enforcing agreement between the silhouette sizes by setting γ = 5

causes the body model to move with the subject as they start to walk towards

the camera (around frame 90 in Fig. 4.12(a), top right image in Fig. 4.14). Error

arising from inaccuracy in the global coordinates is difficult to eliminate entirely,

with absolute error still reaching around 300mm for γ = 5, but (with dynamics

inflated by ρT = 0.6) correct pose recovery is now observed across all 10 runs,

giving a mean expected relative error of 55± 5mm, see Fig. 4.12(b).

These findings are interesting as they show that, where activity is known, HMM-

APF has the capacity to outperform standard APF quite considerably on monoc-

ular data. Results have been presented in such a way as to facilitate direct com-

parison with the extensive quantitative evaluation of standard APF presented in

[BSB05]. Ultimately, however, the approach presented relies too heavily on good

quality segmentation. Even though data is captured in a controlled environment,

demanding agreement between Fs and Fz does not allow the subject’s global loca-

tion to be accurately inferred; although relative error is consistently low, absolute

error features a considerable peak. Using range data (see also Section 4.4.1) may

overcome this problem but this cannot be demonstrated quantitatively without

a synchronised record of MoCap ground truth. Further discussion is given in

Section 4.5 and an alternative approach to monocular tracking in Chapter 6.

4.4.3 Wide-Baseline Stereo Tracking

HMM-APF clearly shows potential for the recovery of known activity from lim-

ited observation data. However, the comparison with a high-dimensional ap-

proach such as standard APF – intended for the recovery of freeform motions –
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Figure 4.12: Monocular tracking results for HMM-APF versus standard APF
across 10 runs: (a) average expected absolute error; (b) average expected

relative error.
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Figure 4.13: Monocular tracking using standard APF with N = 200.
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Figure 4.14: Monocular tracking using HMM-APF with N = 40.
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1. The position of the (n)th particle in the rth layer is given by the position

and latent parameters, s
(n)
t,r = [ωt,r, xt,r].

2. The particle’s position parameters ωt,r are updated by the addition of the
Gaussian random variable nωr ,

ω′t,r = ωt,r +
∑Tr

1 nωr . (4.11)

3. The particle’s latent parameters xt,r are updated Tr times by the addition
of the Gaussian random variable nxr ,

x′t,r = xt,r +
∑Tr

1 nxr . (4.12)

4. The new estimates are then used to create a particle in a new set

[ω′t,r, x
′
t,r] =

{
s

(n)
t,r−1 if r > 0;

s
(n)
t+1,R if r = 0.

(4.13)

Figure 4.15: Dispersion of a single particle for known activity: latent APF.

is perhaps inappropriate. Here a more competitive baseline is proposed: latent

APF. Latent APF uses the Gaussian random variable nxr as a dynamical model

in the same latent pose space as HMM-APF. The latent APF particle dispersion

process is detailed in Fig. 4.15 and a visualisation of its application to a walk

observation is given in Fig. 4.2(b). Notice that in contrast to HMM-APF (de-

picted in Fig. 4.2(a)) particles are now free to move anywhere in latent space,

independent of the path traced out by training data. Particles are dispersed not

by an HMM, but by an aggregated dynamical model found by finite differencing

latent data.

One problem for the use of dynamic T0 is that there is no clear analogue for use in

other dispersion methods. This has two implications: (i) that direct comparisons

between dynamical models are difficult to draw; (ii) that the integration of multi-

ple dynamical models is difficult (this is the objective of Chapter 5). To facilitate

comparison between HMM-APF and latent APF, T0 is held constant through-

out tracking, and the performance of both schemes on much longer HumanEva-I

activity sequences is investigated for a range of different choices of T0.

Each approach was tested on a walk and jog sequence from the HumanEva-I
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Validation partition using two wide-baseline cameras and the complementary

SSD scores Σs and Σs̄ proposed in Section 4.3.3. The walk and jog activities are

of particular interest as they are the two known activities in the HumanEva-II

Combo sequences studied in Chapter 5. The walk sequence of subject S1 and the

jog sequence of subject S3 were chosen as they are the longest in the HumanEva-

I dataset. Pose and position vectors were extracted from S1 and S3’s portions

of the HumanEva-I Training partition, finite differencing used to estimate the

Gaussian random variables nxr and nωr , and PCA applied to recover latent pose

spaces and associated HMMs. The scenario is one of a known subject performing

known activity.

For every value of T0, the whole of each sequence was tracked ten times using

the two cameras C1 and C2. The lowest number of particles tested by Sigal et

al. [SBB10] were used; 50 particles over 5 annealing layers. In Fig. 4.16 average

3D absolute expected error results are presented for each sequence using both

HMM-APF (with and without the time reversed matrix, Â) and latent APF.

Error bars show the standard deviation in average error across the ten runs at

each T0 value.

Average latent APF errors decrease with the number of time steps up to around

T0 = 4, mirroring the benefit of inflating dynamics seen in Figs. 4.9(b) and

4.12(b). However tracking failures still take place, as evidenced by the large

standard deviations in error. For HMM-APF, robust tracking without failures

is achieved even at low T0 values, suggesting that a tightly constrained dynam-

ical model in addition to a 2-camera symmetric objective function considerably

reduces ambiguity.

Without the use of the time reversed transition matrix Â, HMM-APF perfor-

mance slowly degrades with increased T0 when processing the faster jog activity.

In contrast, HMM-APF with Â correctly tracks both of the sequences across the

range of T0 values, producing low average errors and low standard deviations

in error across each batch of ten runs. The difference in performance between
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Figure 4.16: 3D absolute error results for HMM-APF versus latent APF:
(left) walk; (right) jog. HMM-APF with time reversed transition matrix Â
recovers low error pose estimates across the range of T0. Latent APF produces
higher average errors, with optimal performance occurring at around T0 = 4.

HMM-APF and latent APF suggests that, in addition to the latent pose space,

the choice of dynamical model is important for producing robust tracking.

4.5 Discussion and Conclusions

HMM-APF appears to support robust tracking from a number of different sources

of observation data. Inflation of dynamics proved particularly important for am-

biguous observation data as evidenced by tracking failures for low ρ0 in Fig. 4.9(b)

and Fig. 4.12(b). This appears to be less important when using two cameras and

the symmetric observation function, see Fig. 4.16 but inflation is strongly ad-

vocated regardless; particles should be spread as widely as possible to facilitate

recovery from errors if they do occur. Use of the reverse transition matrix Â

ensures there is no degradation in performance for HMM-APF up to and includ-

ing T0 = 5 for both walk and jog activities. Inflation of dynamics also ensures

that optimal performance is obtained from the latent APF baseline, occurring

at around T0 = 4. Tracking errors continue to occur, however, confirming the

importance of a well-constrained dynamical model – the HMM – in addition to

a latent pose space.
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The results using range data are interesting, but the absence of a synchronised

record of ground truth limits their usefulness. Synchronised narrow-baseline

stereo and MoCap data capture – similar to that presented in HumanEva – is

an objective of future work (see also Section 7.1.2.1). Qualitative results suggest

that a relatively noisy estimate of 2.5D surface data is a sufficient cue for human

motion tracking where the activity class is known. This is the only experiment

where the subject is unknown – that is, no training data is available for them

and the dimensions of the body model were not tailored to their physical appear-

ance. Although it is the use of an activity model that facilitates tracking, the

constraints this places on the state space are visible in stylistic intra-activity dif-

ferences between the training and test subject, e.g. in the bend of the arms as they

swing forward in Fig. 4.11. This result indicates the specificity of HMM-APF.

Addressing this limitation is the primary objective of Chapter 5.

The use of chamfer volumes should offer an advantage over monocular approaches

in terms of absolute tracking error as the true 3D position of the subject relative

to the sensor is estimated. The method can be easily applied to data captured

using other range sensors, such as time-of-flight cameras and should perform

well outdoors and in other more natural scenes where backgrounds are changing

and lighting and shadows are not controlled. This is in contrast to the use of

silhouettes. To achieve monocular tracking considerable emphasis had to be given

to agreement between observation and hypothesis foreground area. When this

agreement is not enforced tracking breaks down, e.g. compare results for γ = 5

and γ = 0 in Fig. 4.12(a). Performance will inevitably suffer as the quality of

extracted silhouettes degrades.

In longer sequences such as the HumanEva-I videos tested in Section 4.4.3, the

quality of silhouettes varies quite considerably. Accuracy of segmentation changes

as the subject moves through the capture area, occluding different regions of the

background model and casting shadows over their surroundings. For this rea-

son use of the more principled symmetric objective function proposed in Sec-

tion 4.3.3 is pursued for the more challenging sequences addressed in Chapter 5.
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The monocular case is revisited in Chapter 6 by using a tracker that models the

subject’s appearance rather than that of their surroundings.



Chapter 5

Known and Unknown Activity

In this chapter the low-dimensional generative tracking approach de-
fined in Chapter 4 is integrated with a simultaneous high-dimensional
generative tracking approach. The associated inference tasks have
quite different levels of difficulty and are assigned differently sized
particle quotas to reflect this fact. A “particle stacking” method is de-
scribed to ensure fair but efficient exploration of each space. A method
for drawing a variable number of samples at subsequent annealing lay-
ers based on the emerging picture of activity model membership is pro-
posed. The resulting algorithm is demonstrated tracking known and
unknown human motions in the HumanEva-II Combo sequences using
a variable number of particles and fewer than four cameras.

5.1 Introduction and Related Work

Existing generative tracking approaches can be broadly divided between two

groups: those that attempt to solve an estimation problem in the body model’s

ambient pose space (e.g., [DBR00, CGH05, BEB08]), and those that attempt it

in a low-dimensional embedding of the ambient pose space learned from training

data (e.g., [SBF00, LYST06, TLS05]). High-dimensional applications of particle-

based estimation – including particle filtering [AMGC02], annealed particle filter-

ing [DBR00], adaptive diffusion [DR05], and partitioned sampling [MI00] – have

required large particle numbers and a minimum of four cameras [SBB10, BSB05,

BEB08]. While such approaches are computationally demanding, requiring a

111
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large number of objective function evaluations against each camera observation,

they have been successful in recovering freeform motions without restriction on

activity class.

An alternative to searching the ambient pose space is to learn a low-dimensional

latent pose space from training data. This was the approach undertaken in

Chapter 4. The generative estimation task has been attempted in linear PCA

spaces recovered from MoCap data using both particle filtering [SBF00] and de-

terministic optimisation [UFF06b]. Similar techniques have also been applied

in non-linear latent pose spaces recovered using “piecewise linear” PCA [BS00],

locally linear coordination (LLC) [LYST06], the Laplacian eigenmaps latent vari-

able model (LELVM) [LPS07], and the Gaussian process latent variable model

(GP-LVM) [TLS05]. In contrast to high-dimensional approaches, the use of a

latent pose space has allowed for robust tracking from fewer cameras, at reduced

computational expense. The main drawback of these approaches is their inabil-

ity to generalise (see also Section 3.3.6). Although some pose spaces have been

shown to account for intra-activity variations in style [UFF06a], none are able to

account for new activities not featured in the training set.

This chapter attempts to combine the competing benefits – flexibility and effi-

ciency – of these two generative tracking scenarios within a single approach. The

approach presented is partly inspired by the use of mixed-state particle filters to

track with multiple dynamical models [IB98c], but additionally adapts the num-

ber of particles needed. Variable particle numbers have previously been adopted

to minimise an error estimate between the true posterior and the sample-based

approximation [Fox01]. However, here their numbers are varied based on the

difficulty of the estimation task given a particular activity model. The approach

is similar in style to the variable-mass particle filter for vehicle tracking [KM08],

where variable particle numbers may be allocated to competing dynamical models

based on arbitrary criteria.

The main contributions of this chapter are as follows:
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• Definition of two further activity models to complement HMM-APF (Chap-

ter 4). Known activity transitions are modelled by permitting particles to

flow between activity manifolds in a joint-activity latent pose space (Sec-

tion 5.3.3). Unknown activities are modelled using Gaussian noise to prop-

agate particles in the high-dimensional ambient pose space (Section 5.3.1).

• Proposal of an approach to combine a number of different activity mod-

els within the APF framework (Section 5.4). A particle stacking approach

allows for the simultaneous consideration of multiple activity models de-

scribed by different dynamical models spanning pose spaces of different

dimensionality.

• The resulting estimation tasks are quite different in terms of difficulty, and

they are assigned differently sized particle quotas to reflect this. A variable

number of particles are resampled at each annealing layer based on the

emerging picture of activity class membership. This allows for the recovery

of known activities using only a small number of particles in a latent pose

space, and unknown activities using a large number of particles in the full

pose space (Section 5.4.2).

• Evaluation of the proposed scheme on HumanEva-II data. Robust tracking

and classification is demonstrated on the HumanEva-II Combo sequences,

which contain known activities, known activity transitions and unknown

activity (Section 5.5). The proposed approach allows for a reduction of

over 50% in the number of objective function evaluations required during

known activity tracking.

The resulting algorithm, which is termed multiple activity model annealed par-

ticle filtering (MAM-APF), is an attempt to combine the best aspects of both

generative approaches: faster recovery of known activity with few particles where

possible, but the flexibility to work for longer with more particles to recover un-

known activities where necessary.
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5.2 Dimensionality Reduction

The focus of this chapter is to address the inflexibility of the work presented in

Chapter 4 by combining latent space estimation for known activity with ambient

space estimation of unknown activity. To this end PCA is chosen to perform

dimension reduction. This is because particles must be free to flow between

ambient and latent pose spaces during tracking, and the inexpensive bi-directional

mapping offered by PCA is ideal for this purpose. For GP-LVMs learning itself

is expensive and once complete calculation of the GP mapping between new

points in the latent pose space and the ambient high-dimensional pose space has

complexity quadratic in the number of training points. Further, the GP mapping

is not bi-directional, and additional steps, such as the use of “back constraints”

[LQC06], must be taken to enable mapping from new points in the ambient

space to new points in the latent space. Work on generalising to novel poses

using non-linear latent variable models learned from small amounts of training

data is presented in Chapter 6.

5.3 Activity Model Definitions

In this section the various techniques described in Chapter 3 are combined to

define three separate activity models. These are intended for use in particle

dispersion during three different scenarios: (i) unknown activities, (ii) known

activities, (iii) known activity transitions. Just as in Chapter 4, the inflation

of dynamical models is undertaken to encourage recovery from errors [ST03a,

Smi08]. In anticipation of this fact, each of the following subsections describes

how the dynamical model may be used to produce p(st−1+T0
|st−1) where T0 ≥ 1,

when creating a new particle set for the next frame with Eq. 3.14.

Although a dynamic inflation method has been investigated in Section 4.2.1.2,

it has no analogue outside the HMM framework. As the intention here is the

combine a number of different activity models, dynamics are inflated uniformly
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across all activity models using a constant value for T0 (see also Section 4.2.1.1).

In line with the APF dispersion scaling in Eq. 3.8, the number of synthesised

time steps is rescaled after each annealing layer using the survival rate αr, to

give

Tr = dαR × ...× αr × T0e . (5.1)

Note that setting T0 = 1 causes Tr = 1 for all r, in which case no inflation is in

effect and Section 5.3.1 describes standard APF [DBR00].

5.3.1 Unknown Activities

To track an unknown activity – that is, an activity for which no training data is

available – the ambient 42D pose space must be explored. Although this search

is expensive due to the high-dimensionality of the search space, it places no

restriction on the activity class. This is the original aim of standard APF, and

the techniques covered in Section 3.2.2. By dispersing particles in the ambient

pose space using a Gaussian random variable it is, in theory, possible to recover

any pose. Fig. 5.1 describes the dispersion of particles in the ambient pose space

for unknown activity tracking.

Following Bălan et al. [BSB05] a check is used to find particles that describe

poses where limbs intersect either with each other, or with the floor. Rather

than simply discarding these hypotheses, however, resampling of the previous set

continues until a complete set of “good” poses has been found. The intersection

test looks for any intersection (regardless of its extent) between pairs of cones

in the subject’s body model. In practice many natural poses (including those in

the HumanEva-I training set) were found to violate this intersection condition.

This is because the rigid primitive shapes provide poor models of the deformable

skin and muscle that surrounds bones in the human body. Training activities

such as jog, where the arms are held close to the torso, regularly lead to slight

intersections. To avoid the exclusion of these poses a set of truncated “bones”
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1. The position of the (n)th particle in the rth layer is given by the position

and pose parameters, s
(n)
t,r = [ωt,r, yt,r].

2. The particle’s position parameters ωt,r are updated Tr times by the addition
of the Gaussian random variable nωr ,

ω′t,r = ωt,r +
∑Tr

1 nωr . (5.2)

3. Similarly, the particle’s pose parameters y
t,r

are updated Tr times by the

addition of the Gaussian random variable nyr

y′
t,r

= y
t,r

+
∑Tr

1 nyr . (5.3)

4. The new estimates are then used to create a particle in a new set

[ω′t,r, y
′
t,r

] =

{
s

(n)
t,r−1 if r > 0;

s
(n)
t+1,R if r = 0.

(5.4)

Figure 5.1: Dispersion of a single particle for unknown activity tracking.

cylinders with the subjects’ limb widths scaled by a factor of 0.8 were instead

tested using the strict intersection conditions.

5.3.2 Multiple Known Activities

The HMM-APF approach described in Chapter 4 may be extended to model

two activities in a joint latent pose space. Equal lengths of pose vector training

data for each of two activities are concatenated before the application of PCA.

The resulting latent variables are then divided equally and used to train two

separate activity HMMs. The increase in reconstruction error due to modelling

walk and jog activities in a joint latent pose space rather than individual latent

pose spaces is small, see left hand side of Fig. 5.2 (and Fig. 3.7 for comparison).

Particle dispersion takes place just as described in Section 4.2.1 and Fig. 4.1, but

with every particle assigned to the single most likely parent state from either of

the two activity HMMs.
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(a) Walk.
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(b) Jog.

Figure 5.2: Activity reconstruction errors for joint-activity latent pose
spaces: (a) walk; (b) jog. Errors are shown for individual-subject spaces (left)

and joint-subject spaces (right).

5.3.3 Known Activity Transitions

Where two (or more) segmented activities are modelled by the latent pose space,

a transition activity model is introduced to permit particles to flow along tran-

sition lines between the most likely parent states in each of the activity HMMs.

In the absence of any HumanEva-I training data, transition lines are useful in

capturing the transition between walk and jog in the HumanEva-II Combo se-

quences. Fig. 5.3 describes the dispersion of particles along transition lines for

the tracking of transitions between known activities. Example transition lines

are depicted in Fig. 5.4, and the associated poses in Fig. 5.5.
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1. The position of the (n)th particle in the rth layer is given by the position

and latent parameters, s
(n)
t,r = [ωt,r, xt,r].

2. The particle’s position parameters ωt,r are updated Tr times by the addition
of the Gaussian random variable nωr ,

ω′t,r = ωt,r +
∑Tr

1 nωr . (5.5)

3. The particle’s latent parameters are allocated to the parent state most likely
to have emitted them via pi(x). This may come from either activity HMM.
They are then shifted to lie at the closest point on a line connecting the
parent state’s mean µ

i1
with the mean of the particle’s most likely parent

state in the other activity HMM, µ
i2

. This line is referred to as the transition

line.

4. The new estimate is then updated Tr times by dispersal along the transition
line by a zero mean scalar Gaussian random variable n↑r,

x′t,r = xt,r +
∑Tr

1 n↑r × û (5.6)

where the unit vector û is given by

û = (µ
i2
− µ

i1
)/||(µ

i2
− µ

i1
)||. (5.7)

The variance of n↑r is chosen to be equal to the single largest element of the
parent state’s observation density covariance matrix at layer r,

n↑r ∼ N(0, ||Σi,r||max). (5.8)

5. The new estimates are then used to create a particle in a new set

[ω′t,r, x
′
t,r] =

{
s

(n)
t,r−1 if r > 0;

s
(n)
t+1,R if r = 0.

(5.9)

Figure 5.3: Dispersion of a single particle for known activity transitions.

5.4 Combining Activity Models (MAM-APF)

At every time step t, standard APF attempts to recover the body model pose

that maximises the objective function [DBR00]. In contrast to standard particle

filtering – where the posterior p(st|z0, z1, ..., zt) is propagated between time steps

– the annealing process recovers a set of particles that are densely concentrated

about a particular pose solution. To produce the initialising particle set for the
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Figure 5.4: Joint-activity latent pose spaces: (left) individual-subject space;
(right) joint-subject space. Example transition lines are also plotted (black

points). The associated transition poses are shown in Fig. 5.5.

next time step, a dynamical model is used to disperse particles with maximum

levels of diffusion, see Eq. 3.14 and the bottom of Fig. 3.2.

Each of the three activity models described in Section 5.3 is a candidate for the

performance of this dispersion step. Their competing predictive properties are

well summarised with reference to the “streetlight effect” [DTS+05]. Given a

fixed allocation of N particles, the activity models for known activity and known

activity transitions are analogous to narrow and bright streetlights illuminating

small regions of the ambient pose space (via the latent pose space) with high

sample density. The number of particles required to recover a solution is small,

but if the true solution lies outside this region then the search is a futile endeavour.

Alternatively, the activity model for unknown activities is analogous to a wide

and dim streetlight illuminating a high-dimensional volume of the ambient pose

space with low sample density. This streetlight should guarantee illumination

encompasses the true solution, but the number of particles used must be large in

order to ensure it is successfully recovered.

In the remainder of this section a multiple activity model annealed particle filter-

ing (MAM-APF) method is proposed for the simultaneous consideration of com-

plimentary activity models. This is achieved by assigning each activity model
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Figure 5.5: Modelling transitions between known activities. Poses recon-
structed from the transition lines in Fig. 5.4: (left) individual-subject space;
(right) joint-subject space. Each set of poses is shown from two rotated views.

its own unique quota of particles when re-initialising the particle set between

frames. In each of the annealing layers that follow, a variable number of particles

are drawn during resampling based on how well populated each activity model

becomes. This approach ensures that enough particles are available to recover

unknown activity via the ambient pose space, but that where known activities

occur the latent pose space is not oversampled.

5.4.1 Simultaneous Activity Models

As a first step to supporting multiple activity classes during tracking, it is pro-

posed that each of the three activity models described in Section 5.3 receive an

equal allocation of N particles upon creation of the new (maximum dispersion)

particle set at each frame. This constitutes an equal prior on each activity class.

3N particles are resampled from the particle set recovered at the previous time

step Sπt,0 and divided randomly between each of the three activity models to pro-

duce equal quotas of N particles. The activity models are then used to disperse

their particle allocations, producing St+1,R. The result is a maximally diffused

particle set that represents the predictions of all three activity models, which

may be evaluated and resampled over successive annealing layers to recover a

pose that maximises the objective function.
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Particles are augmented by their activity model index a
(n)
t = 1, 2, 3 and are fully

specified by the three parameters (s
(n)
r,t , π

(n)
r,t , a

(n)
t ). This index persists throughout

the annealing run at each time step and ensures the particle is dispersed using

its corresponding activity model at each layer. At each subsequent resampling

stage just N particles are resampled. These particles may belong to any activity

model and no quotas are enforced. By setting the particle number low, known

activity and known activity transitions can be reliably and efficiently tracked in

the latent pose space. However, this risks losing track where unknown activity

occurs and the true pose can only be found by searching the ambient pose space.

Conversely, by choosing N large enough to support ambient pose space search

the latent pose space is oversampled during known activity, thus sacrificing any

potential gain in efficiency.

5.4.2 Variable Particle Numbers

In order to increase the efficiency of the search, the approach described in Sec-

tion 5.4.1 is modified to allow differently sized particle quotas to be allocated to

each activity model. The activity models for known activities and known activity

transitions (whose dynamical models span a low-dimensional latent pose space)

are assigned a quota of N1 = N2 = Nmin particles each. The activity model for

unknown activity (whose dynamical models spans the high-dimensional ambient

pose space) is assigned a quota of N3 = Nmax particles. The quotas reflect how

many particles are required for each scheme to assume complete responsibility

for tracking.

For creation of the new (maximum dispersion) particle set at each time step,

every particle is dispersed by its respective activity model. The result is (as in

Section 5.4.1) a maximally diffused particle set that represents the predictions of

all three activity models. However, the equal prior on activity classes no longer

holds, and the particle set is not suitable for resampling. For example, take the

case where after dispersion takes place, every particle achieves the same objective
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function score. If the distribution of particles between dynamical models is un-

even due to the quota allocation, then the resampled particle set will contain the

same disparity. This is despite the fact that each model’s predictions explained

the current observation equally well.

To address this problem two distinct measures are introduced: effective particle

number; and unique particle number. Nmax/Nmin effective particles are “stacked”

at each of the 2Nmin unique particle locations in the latent pose space to give an

equal number of effective particles in each activity model. By placing multiple

particles at the same point, one is effectively returned to the approach described

in Section 5.4.1, but only one objective function evaluation is required per stack.

Resampling from this new particle set is no longer biased in favour of schemes

with larger quota allocations, and subsequently resampled particle sets in the

annealing layers that follow do not require stacking. A maximally dispersed

particle set is shown in the bottom right of Fig. 5.6 with unique particle numbers

shown in the legend followed by effective particle numbers in brackets.

Rather than resampling a fixed number of particles from the maximally diffused

particle set, a variable number of particles are resampled based on activity model

membership. With every particle that is resampled from a particular activity

model a = 1, 2, 3, the value Nmax/Na is added to a counter parameter. Sampling

continues to take place until the counter value reaches Nmax. The set of survival

rates (see Eq. 3.7) are used to reshape the weighting distribution at each layer,

just as in standard APF. The difference is that resampling of the distribution

may terminate early: a maximum of Nmin particles can be resampled from the

latent pose space, or Nmax particles from the ambient pose space. In general, a

mixture of particles from the competing activity models are resampled. See for

example the particles resampled from different activity models in layers r = 4, 3, 1

of Fig. 5.6; note that the total of their counter contributions (shown in brackets

in the legends) always meets or just exceeds Nmax = 250.
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Figure 5.6: 3D view of MAM-APF particle dispersion over 5 layers for T0 = 4
in the latent pose space. Layer r = 2 is omitted to maximise figure size. The
observed pose is a walk pose. Multiple activity models are employed for each
of known activity (red pluses), unknown activity (green points) and transitions
(black points). Unknown activity hypotheses are projected into the latent pose
space for visualisation. The numbers of resampled particles from each activity
model are shown in the legends, with the counter contribution in brackets.
For final layer r = 0 (maximal) dispersion the unique particle numbers are

shown with effective particle numbers in brackets.
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5.5 Experiments

In Section 5.5.1 each of the three activity models described in Section 5.3 are

combined within an MAM-APF framework to recover the HumanEva-II Combo

sequences which contain both known and unknown activity with transitions. The

symmetric objective function of Section 4.3.3 is used and comparison is drawn

with the use of standard APF [DBR00] using the same objective function. Body

model dimensions are available for both subjects S2 and S4, but known activity

training data is only available for S2. The scenario is therefore one of sequences of

known and unknown activities performed by both known and unknown subjects.

For a particular activity, pose configurations in the HumanEva-I training data

are given by series of global position vectors Ω = {ω1, ..., ωM} and pose vectors

Y = {y
1
, ..., y

M
} giving the relative joint rotations between limbs. The position

vectors comprise Dω = 6 parameters, 3 rotational and 3 translational and the

pose vectors comprise Dy = 36 Euler angles, every joint being permitted 3 degrees

of freedom. A latent pose space dimensionality of Dx = 4 was again chosen for all

experiments, resulting in a corresponding set of latent variables X = {x1, ..., xM}
related to the original pose vectors Y through a linear mapping.

HMMs of the form λ = {S,A, a, pi(x)} were estimated from latent variables using

the steps described in Section 3.4.2 and were reestimated from a new initialisation

before each individual tracking experiment. A time-reversed transition matrix Â

was then calculated using Eq. 3.38, where the invariant distribution ψ is esti-

mated by making 103 transitions via the original transition matrix, A. Finite

differencing of training data as described in Section 3.4.1 was used to estimate

the covariance matrices, P x
r and P y

r , used for dispersion at each layer. Note that

these variables additionally facilitate tracking by standard APF.

During tracking five annealing layers and a constant survival rate of αR = ... =

α0 = 0.5 were again adopted from the literature (Section 3.2.2 gives a discussion

of the implications of varying these values). The complementary SSD scores Σs

and Σs̄ proposed in Section 4.3.3 were used in the calculation of particle weights.
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In all experiments, the 3D absolute error between the expected tracking pose (see

also Eq. 3.13) and a ground truth MoCap pose is calculated at each frame using

Eq. 3.47.

5.5.1 Known and Unknown Activity using MAM-APF

The HumanEva-II Combo sequence for subject S2 was tracked using MAM-APF.

Pose and position vectors for walk and jog were extracted from S2’s portion of

the HumanEva-I Training partition and PCA applied to recover a joint-activity

latent pose space and associated HMMs for known activity tracking, see Fig. 5.4

(left). Nmin = 50 particles were assigned to each of the latent pose space activity

models (known activity, known activity transitions) and Nmax = 250 particles to

the ambient pose space activity model (unknown activity).

S2’s Combo sequence was tracked five times from cameras C1 and C2 with T0 =

3. 3D absolute tracking errors were calculated for each run using the online

evaluation system [SB06a]. The final weighted particle set at each frame, Sπt,0,

was also used to perform a classification task. First each particle’s activity model

index was considered and the current pose classified as unknown if more than

half belonged to the unknown-activity activity model. Otherwise every particle’s

parent HMM state in the latent pose space was found and the current pose

classified as walking if more than half were assigned to λwalk and jogging if more

than half were assigned to λjog.

This test described above is a simple multiple-HMM classification task performed

on each particle in isolation. It asks the question: given we observed this partic-

ular datapoint, which of the two HMMs was most likely to have emitted it? The

details of classification between multiple HMMs are given in Appendix C and ex-

amples of their application to sequences of human poses in Appendix D. If there

is uncertainty in the classification result then one option is to consider a longer

state history including pose estimates at t − 1, t − 2, .... Appendix D considers

this case but finds only modest improvements in classification accuracy. The
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classification test proposed above was therefore not extended to include previous

pose estimates as this is likely to introduce a classification lag during activity

transitions, the possibility of genuine activity transformation being disregarded

in the light of a consistent pose history.

Fig. 5.7 shows the average expected tracking error across the five runs at each

frame, with the colour set according to the mode classification result across the

five runs. The average number of objective function evaluations made at each

frame and the average processing time required are also shown. The number of

objective function evaluations is also equivalent to the number of unique particles

used per frame (see also Section 5.4.2). Note that objective function evaluations

remain low throughout the known activities before rising to recover the unknown

activity. The subject’s posture as they prepare to balance on one foot around

frame 750 is indeed well described by a walk pose. Images showing the expected

tracking pose superimposed on the image observations of HumanEva-II camera

C1 are shown in Fig. 5.10.

5.5.2 Unknown Subjects

In the second experiment MAM-APF was used to track an unknown subject.

A joint-activity joint-subject space was recovered from the training data of all

three HumanEva-I subjects and a separate HMM trained for each subject’s per-

formance of each activity. By capturing the variation between subjects’ perfor-

mances, the aim was to maximise the ability of the latent pose space to generalise

to new styles of known activity. The resulting activity model – shown on the right

of Fig. 5.4 – was then used to track the HumanEva-II Combo sequence for the

unknown subject S4, for whom no training data is available.

Using the same parameters as in Section 5.5.1, known activities were consistently

and accurately recovered. However, the unknown balance segment proved more

difficult. A failure mode – in which the subject’s legs switch places – was regularly

recovered at around frame 950. This appeared to be caused by strong shadows
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Figure 5.7: MAM-APF tracking results for S2’s HumanEva-II Combo se-
quence: (top) 3D absolute error results averaged over five separate runs and
colour coded by mode activity classification result; (middle) average number

of objective function evaluations per frame and Matlab processing time.

cast onto the floor by the subject’s lower legs and (incorrectly) included in the

observation foreground mask, V s. Neither increases in T0 nor doubling of the

unknown particle quota to Nmax = 500 enabled consistent recovery of the correct

pose, and so a third camera was used (C1-C3) to obtain robust results. This

failure mode highlights a potential drawback of the symmetric objective function,

without which there would be no requirement to explain artefacts in the silhouette

image.

Fig. 5.8 shows the average tracking error across the five runs at each frame. Just

as for the known subject in Section 5.5.1, MAM-APF consistently outperforms

the standard APF baseline and uses only half as many particles during the known

activities. The final walking segment is a correct known activity classification, as
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Figure 5.8: MAM-APF tracking results for S4’s HumanEva-II Combo se-
quence: (top) 3D absolute error results averaged over five separate runs and
colour coded by mode activity classification result, frames 298-335 are ignored
as accurate ground truth is not available; (middle) average number of objective

function evaluations per frame and Matlab processing time.

the subject leaves their balance pose (around frame 1200) and starts walking out

of the capture area. Images showing the expected tracking pose superimposed

on the image observations of HumanEva-II camera C1 are shown in Fig. 5.11.

Section 5.5.3 presents further work on the correction of activity misclassifications.

5.5.3 Projection-Reconstruction Error

Confusion between the two known activities is not a problem for the classification

approach and there is therefore no need to pass longer state histories to the two

HMMs (see also the investigation in Appendix D). It is possible, however, for the
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Figure 5.9: Average projection-reconstruction (P-R) errors for the S4 Combo
results. By additionally requiring that “unknown” poses exceed a threshold P-
R error, the misclassifications seen in Fig. 5.8 can be automatically corrected.
Here the threshold is set as the average known activity reconstruction error for
the latent pose space (µR = 58mm) plus one standard deviation (σR = 20mm).

unknown activity model to do the work of the known activity model by recovering

known poses from the ambient space, see the occasional unknown (blue) frames

during the walk and jog phases in Figures 5.7 and 5.8. Such “overlap” between

activity classes can be identified by reconstructing a recovered unknown pose from

its projected coordinate in the latent space and then calculating a projection-

reconstruction (P-R) error between the original and the reconstruction (using

Eq. 3.47). Misclassifications can be automatically identified and reclassified by

requiring that unknown poses exceed a lower bound on P-R error given the latent

pose space. For example, in Fig. 5.9 all unknown expected poses that have a

P-R error below the latent pose space’s average known activity reconstruction

error are reclassified by comparison of the associated particle sets between the

two known activity HMMs (as described in Section 5.5.1). Alternatively, P-R

error thresholding could be used as a prior on particle dispersion by the unknown

activity model, resampling until all ambient pose space configurations are “novel”

given the latent pose space.
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5.6 Discussion and Conclusions

MAM-APF gives equal consideration to the predictions of multiple activity mod-

els at each frame. The difficulty of the associated estimation tasks is quite dif-

ferent and this has allowed the recovery of known and unknown activities using

a variable number of particles. Here (and also in Chapter 7, Section 7.2) further

discussion is given to some specific aspects of the proposed approach.

5.6.1 Tracking Performance

MAM-APF is able to reliably recover known activities from the HumanEva-II

Combo sequences with fewer than four cameras and a reduced number of particles.

This is in contrast to standard APF, see the quantitative comparisons in Figs.

5.7 and 5.8 and the investigation by Sigal et al. [SBB10]. MAM-APF is also

able to increase particle numbers to recover the balance phases with its unknown

activity model. Estimating freeform motion in the high-dimensional ambient

pose space with a generic dynamical model is inherently more challenging, and

the average 3D absolute error rises by 30-50mm. In general, however, a good

track is maintained throughout the sequences, see Figs. 5.10 and 5.11.

The recovery of a failure mode when using 2 cameras to track S4’s balance phase

illustrates a potential danger of using the annealing methodology where image

evidence is ambiguous: if an incorrect mode is recovered, tracking may never be

regained. However, it should be noted that particle filtering has been found to

perform significantly worse than standard APF on the Combo sequences [SBB10],

despite its capacity to approximate a multimodal posterior over time. Further-

more, robust 2-camera tracking of S4’s balance phase is likely to be possible if

some consideration is given to the effects of shadows cast by the lower legs. The

addition of feet to the body model may be helpful e.g. [SBB10], or more sophis-

ticated background subtraction methods could be adopted [HD04].
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5.6.2 Classification

The MAM-APF approach naturally lends itself to sequence classification based on

the activity model membership of particles. Figs. 5.7 and 5.8 show the algorithm

is able to correctly classify frames from the Combo sequences into their particular

activity classes with reasonably few exceptions. The dashed vertical lines in

these figures represent the ground truth activity segmentations defined by Sigal

et al. [SBB10], and used in the calculation of the error tables. Misclassifications

are generally due to the unknown activity model recovering a known activity

pose. Sigal et al. [SBB10] note that S4’s jog phase displays a greater variation

in performance style. This may explain why a slightly higher number of S4’s jog

poses were recovered by the unknown activity model than for S2. No problems

were experienced with false known activity transitions, e.g. [DLC08a].

Rather than clear and instantaneous changes between activities, the Combo se-

quences feature a number of slow activity transitions (relative to sampling rate)

where intermediate poses do not feature in the HumanEva-I Training dataset (in

which activities are segmented). S2’s transition from walk to jog takes place over

a period of approximately one second, starting with an abrupt rise in the forward

swing of the left forearm that appears to increase vertical displacement (frames

380-400) before the subject eventually settles into a jog by around frame 440. In

the absence of training data, it is the transition activity model that facilitates the

maintenance of a track, and permits the recovery of intermediate poses from the

space in between the two activity manifolds (e.g. see Fig. 5.5). During this period

however, the mode classification result of MAM-APF remains as walking up until

the jog gait is fully established at around frame 440. More accurate identification

and recovery of activity transitions themselves is a potentially interesting future

research topic.
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5.6.3 Computational Cost

The computational cost of generic particle filtering is proportional to the number

of particles used. For APF it is proportional to the number of particles used

across all annealing layers. Total runtime is dominated by the evaluation of the

objective function for each particle. As the objective function must be evaluated

for each observation, computation time is also proportional to the number of

cameras. For the standard APF baseline computation times are constant at

around 25 and 40 seconds per frame for two and three cameras, respectively.

This work has addressed the high and fixed computational cost of particle-based

inference by varying the number of particles depending on their activity class

membership. For Combo sequences, the number of objective function evaluations

remains low throughout the known activities of walk and jog as poses are recovered

from the latent pose space. The number of evaluations then rises as the ambient

pose space is explored to recover the unknown balance activity, see tables in Figs.

5.7 and 5.8. Computation times fall by around 50% to 15 and 20 seconds per

frame when tracking known activity from two and three cameras, respectively.
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F.1: 50mm F.110: 61mm F.219: 60mm F.329: 75mm F.438: 102mm F.547: 73mm

F.656: 91mm F.765: 80mm F.874: 106mm F.984: 83mm F.1093: 71mm F.1202:120mm

Figure 5.10: Tracking results for the S2 Combo sequence using two cameras.

F.2: 48mm F.116: 54mm F.230: 72mm F.345: 46mm F.459: 94mm F.573: 73mm

F.687: 84mm F.801: 45mm F.915: 118mm F.1030: 89mm F.1144:132mm F.1258: 47mm

Figure 5.11: Tracking results for the S4 Combo sequence using three cameras.



Chapter 6

Composite Activity

In Chapter 4 a full body or “global” latent pose space is recovered from
training data. Sampling such a space results in coordinated full body
poses. In Chapter 5 this global latent space is combined with an am-
bient state space search in which each parameter of the body model
is fully independent and free to produce uncoordinated poses. This
chapter investigates the use of a hierarchy of latent variables during
inference: the hierarchical Gaussian process latent variable model (H-
GPLVM) [LM07]. A particle-based approach is used to “back off”
through the model and exploit progressively greater independence be-
tween body parts to recover unknown activities. At its top level the
H-GPLVM’s root node is effectively a single low-dimensional global
pose space approximating poses from the training set. At the bot-
tom level its leaf nodes define conditional distributions over the high-
dimensional ambient state space. As such, it can be used as a route
between the two pose spaces. The extent to which the final pose es-
timate is constrained by the known activity training data depends on
the extent to which correlations between the latent model’s nodes are
respected during the descent. Long range correlations can be used to
infer the positions of occluded limbs, alternatively they may be disre-
garded in order to recover novel unknown activity poses.

6.1 Introduction and Related Work

Low-dimensional models of activity can be employed to effectively constrain the

search task in generative human motion tracking. This was demonstrated using

a form of APF guided by an HMM in Chapter 4 and has also been achieved

134
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using deterministic optimisation and particle filtering (e.g., [LYST06, LPS07,

RRR08a, SJ04, UFF06a, UFHF05]). Some of these approaches show a capacity

to generalise to variations in style, or unknown subjects. Hou et al. [HGC+07]

tracked an unknown subject performing jumping jacks. Urtasun et al. were able

to track unknown walking subjects [UFF06b], the golf swings of unknown subjects

[UFHF05] and an exaggerated walking style with increased stride length and rigid

limbs [UFF06a]. However, when the activities to be tracked deviate significantly

from those in the training data, these full-body or “global” models are unable to

cope and tracking fails (e.g., [SJ04]). The central argument put forward in this

chapter is that some capacity to relax the constraints of full-body models and

exploit conditional independencies in the kinematic tree is desirable.

Chapter 5 introduced a combined low-dimensional and high-dimensional tracking

approach to address the problem of unknown activity tracking. The balance por-

tion of the HumanEva-II Combo sequences provides a somewhat extreme example

of unknown activity that is unusual in the context of the HumanEva-I training

partition but also in the more general sense. Departure from training activities

may be far more subtle. A useful example is provided by activity combinations

such as walk whilst waving. Although the component parts of an activity may be

present in training data – e.g. walk activity + wave activity – the global nature of

the latent pose space precludes tracking. If observations are sufficiently rich then

tracking may be achieved by relying on a separate generic high-dimensional ap-

proach (e.g. [GD96, MI00, DBR00, ST03a] and the work presented in Chapter 5)

but each pose parameter is fully independent and the prior model of correlations

provided by activity training data is sacrificed. Similarly, part-based models (e.g.

[FH05, LC04]) could be used to find kinematically feasible 2D solutions but do

not capture long range correlations, only those between neighbouring limbs1. It

is unclear how either approach might cope with occlusion, for example.

The findings of this chapter show that with a learned hierarchical model of body

coordination for multiple activities, one can recover novel poses that comprise

1Loopy graphical models [SBR+04] can be used to permit more expressive constraints on
3D pose but greatly increase the cost of inference.
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aspects of different activities, or composite activity. An H-GPLVM [LM07] (see

also Section 3.3.5) is constructed by learning separate low-dimensional models for

the variation in individual body parts and then augmenting them with further

latent variable models capturing their coordination. Using a form of annealed

particle filtering that includes a crossover operator (Section 6.3), it is shown that

the H-GPLVM learned from two or more activities can be used to recover novel

test poses. The approach presented is intended to be a compromise between the

restrictions of a low-dimensional full-body activity model and the challenges of

searching the high-dimensional state space of the body model.

Inference proceeds gradually (via a number of GPs) from the top to the bottom

of the hierarchy. The intention is a gradual progression between a single global

latent pose model (root node), through a number of increasingly short-ranged

part-based models (intermediate and leaf nodes), to the original ambient pose

space; the dimensionality of the state vector increasing with depth. It is the

use of a crossover operator that allows for the recombination of different pose

elements at each layer. Without it poses are always limited by the global poses

that have performed well at the top of the hierarchy. This is a useful contrast

with other hierarchical models, e.g. that of Karaulova et al. [KHM00] where a

single global pose is then refined by “fine tuning” in a number of part based

latent models or the related approach taken by Raskin et al. [RRR09] (see also

Section 2.3.2.2).

The proposed approach allows the recovery of activity combinations such as walk

whilst waving but can also recover less intuitively obvious composite poses, see

for example Section 6.5.1. The hierarchical decomposition of articulated human

motion data is useful because unlike other tracking targets – e.g. the deformable

materials considered by Salzmann et al. [SUF08] using “flat” part-based models –

there is benefit in appealing to the longer-range correlations between local models.

For example, the position of an occluded arm is inferred using such correlations

in Section 6.5.4. Disregarding the higher levels of the hierarchy and performing

a “leaves-only” search would result in a randomly flailing arm, rather than one

that is correlated with the visible upper body (see also Fig. 6.12).
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Although the approach presented in this chapter is tested on tracking-style prob-

lems, such as continuous video featuring people walking, it is in fact a 3D pose

estimation technique that is independent at each frame. The pose is not manu-

ally initialised at the start frame, nor is the pose recovered at one frame used to

initialise the search at the next frame. Instead of testing only poses that are close

(in terms of the state space) to the previous estimate, a considerable level of pose

diversity is intentionally introduced to permit the recovery of novel composite

configurations not present in the training data.

Performing 3D pose estimation (rather than recovering small inter-frame changes

in pose, or tracking) from silhouettes using generative “synthesise-and-test” tech-

niques is known to be very challenging (see also the discussion given in Sec-

tion 2.3). Experience with noisy range data (see also known activity tracking

experiments in Section 4.4.1.2) suggests it may be at least as challenging with-

out some attempt to define a symmetric objective function. For these reasons

the techniques described in the remainder of this chapter are restricted to “lift-

ing” problems where 3D poses are inferred from known 2D joint locations, e.g.

[UFHF05, UFF06a]. A possible future extension of the approach to tracking

scenarios is suggested in Section 7.3.2.2.

The HumanEva sequences tested in previous chapters do not feature examples of

composite activity. For example, the component joint angles of the HumanEva-

II balance poses (alternate legs raised high with arms horizontally out at the

sides) cannot be reconstructed as piece-wise combinations of walk and jog nor

of any of the other HumanEva-I training activities: the individual body part

configurations necessary are simply not present. Alternatively, although separate

walk and wave activities are available, there is no walk whilst waving test data. For

this reason 2D joint locations were extracted from new monocular test sequences

featuring simple composite activity by using the WSL tracker [JFEM03] (see

also Section 3.5.3.1) and training data was selected from the larger CMU MoCap

repository [CMU].

The main contributions of this chapter are as follows:
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• Implementation of the “back off” procedure suggested by Lawrence and

Moore [LM07] using a form of annealed particle filtering with crossover

operator (Section 6.3).

• Demonstration of the composite nature of a number of activities from the

CMU MoCap database (Section 6.5.1 and Section 6.5.2).

• Monocular tracking of composite activity from 2D WSL data

(Section 6.5.3).

• Recovery of occluded limbs by terminating back off above the hierarchy’s

leaf nodes (Section 6.5.4).

6.2 Hierarchies of Latent Variables

The GP-LVM [Law05] (see also Section 3.3.4.2) represents high-dimensional data

through a low-dimensional latent model, and a non-linear Gaussian Process (GP)

mapping from the latent space to the data space. This makes it ideal for the

representation of human motion data. The GP-LVM exploits a probabilistic

interpretation of PCA as a product of independent GP models over features,

each with a linear covariance function [Law05]. By the consideration of non-

linear covariance functions, such as a radial basis function kernel, non-linear latent

variable models can be formulated. Optimising the latent variables (initialised

with PCA) and kernel parameters given the set of high-dimensional training

points results in a probabilistic model of the original data.

The H-GPLVM [LM07] (see also Section 3.3.5) is a form of GP-LVM with a

hierarchical latent representation. The leaves of the latent model comprise a

latent model for each limb or distinct part of the body. That is, each leaf node

is a GP-LVM for a single body part. To capture the natural coordination of

body parts one can then model the joint distribution over latent positions in a

subset of leaf nodes with a GP from a parent latent variable. The hierarchical

decomposition used in this chapter is shown in Fig. 6.1 with the direction of the
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Figure 6.1: Skeleton and hierarchy of latent variables [LM07].

GP mappings between levels shown by arrows. Fig. 6.2 shows an H-GPLVM of

the same form learned from motion capture data. The left leg and right leg, for

example, are coordinated by the lower body latent variable. Given a lower-body

latent position, there is a GP mapping (see also Section 6.2.1) to latent positions

for the left and right legs, from which there are GP mappings to the joint angles

of the two legs.

6.2.1 Data Generation

To aid the exposition of inference in the H-GPLVM latent positions in non-leaf

nodes are sometimes referred to as specifying partial or full-body poses in the

original ambient pose space. Strictly speaking, there is no direct connection

between the two, and implicit in these statements is the assumption that the

probabilistic mappings between parent and child are used to fully descend the

hierarchy through the leaf nodes to the ambient pose space.
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Activity 1

Left Leg Right Leg Left Arm Head Right Arm

Activity 2

Abdomen Lower Body Upper Body

Figure 6.2: An H-GPLVM learned from two activities, namely swing arms
and walk with hurt stomach (illustrated below in Fig. 6.7).

For GP-LVMs a new latent position x∗ can be shown [Law05] to project into the

data space as a Gaussian distribution

p(y∗|x∗) = N(y∗|µ, σ
2I). (6.1)

Whose mean is

µ = Y >K−1k:,∗ (6.2)

where K is the kernel matrix developed from the training data and k:,∗ is a column

vector developed from computing the elements of the kernel matrix between the
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training data and the new point x∗. The variance is then given by

σ2 = k(x∗, x∗)− k>:,∗K−1k:,∗. (6.3)

Within the context of an H-GPLVM, y∗ may describe a further set of concatenated

latent coordinates defining positions in each of a node’s children.

Fig. 6.3(a) illustrates the idea of implicit descent through the hierarchy. A fully

coordinated swing arms pose has been generated by selecting a single latent point

in the root node. The hierarchy is the same one shown in Fig. 6.2 with training

data for swing arms and walk with hurt stomach depicted by red crosses and

green circles, respectively. The latent point responsible for the pose is shown by

a solid blue circle in the top left root node. Given this point, a set of dependent

coordinates in the root node’s immediate children can be found via the GP map-

ping described above (the mean position has been used in the figure, see Eq. 6.2).

The mappings between parent and children can be used to recursively descend

the levels of the hierarchy to the leaf nodes and then to the ambient space. The

set of latent coordinates that arise from the single root node coordinate are also

shown by solid blue markers, one in every dependent node. Fig. 6.3(b) shows a

walk with hurt stomach pose reconstructed by descending from a single point in

the top right root node.

6.3 Activity Model Definition

Rather than a single latent pose space as in previous chapters, the model of pose

used in this chapter consists of a set of latent pose spaces. For example, for the

model depicted in Fig. 6.2 there are ten latent spaces, the indices of which are

given by the set L = {1, 2, ..., 10}. Pose hypotheses are defined by a position

vector and a collection of latent vectors, each defining a coordinate in an active

space. To avoid limiting the discussion to a particular hierarchical decomposition

this is written simply as

st = [ωt, {xit}∀i∈A], (6.4)
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where A ⊂ L is the subset of active spaces. The only condition for a complete

pose hypothesis is that every leaf node either be active, or have at least one active

ancestor. The method for pose generation described in Section 6.3.1 guarantees

this is always the case. In terms of the particle set it is helpful to imagine a

set of N related particles in every active space, each defining a partial pose. The

collection of |A|×N locations combine to describe N full-body pose hypotheses,

where |A| gives the total number of active spaces.

To exploit the hierarchical structure of the H-GPLVM Lawrence and Moore

[LM07] suggest that a “back off” method inspired by language modelling might

be used for the recovery of poses not featured in the training set. The idea is

to descend the hierarchy and search nodes at the next level independently; this

concept forms the basis for inference in this chapter. By shifting search down one

level in the hierarchy the level of coordination amongst body parts can gradually

be relaxed. While recovery of a novel test pose by inspection of full-body models

at the root nodes may not be possible, a good fit might be obtained by backing

off to the middle level nodes to optimise the abdomen, upper body and lower

body independently.

Fig. 6.4(a) illustrates the introduction of independence between parts of the body.

A swing arms pose has been instantiated from a single point in the top left root

node, just as in Fig. 6.3(a). However, the point that results in the “legs” node

of the middle level of the hierarchy has been deliberately shifted to lie near the

walk with hurt stomach latent data. This new coordinate, its dependents, and

the body parts that are affected are shown in magenta. The resulting composite

pose (shown on the right of the figure) is the product of two independent latent

coordinates. In Fig. 6.4(b) the pose has been further modified by the introduc-

tion of a third independent latent coordinate (shown in cyan) in the left arm’s

leaf node. By backing off to probe nodes at a given layer of the hierarchy inde-

pendently, correlations present in the training can be broken, different activities

recombined, and novel poses recovered.
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(a) Fully coordinated swing arms pose generated from a single point in the top left root node.
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(b) Fully coordinated walk with hurt stomach pose generated from a single point in the top right root node.

Figure 6.3: Pose generation.
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(a) Composite pose showing independence between lower and upper body.
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(b) Extension of the pose in (a) to show independent movement of a single body part via a leaf node.

Figure 6.4: Composite pose generation.
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To cope with novel poses not explicitly present in the training data, following

Deutscher and Reid [DR05], a form of crossover operator is introduced to re-

combine the building blocks of particles that have performed well. This type of

mechanism is ideal for the exploitation of reduced levels of coordination between

limbs. For novel poses it will be necessary to retain full-body poses from the top

level nodes of the hierarchy that are somewhat flawed. That is, even poses that

show comparatively poor agreement with observation data may prove valuable

in lower levels of the hierarchy, since they fit some but not all parts of the body

well. The annealing schedule of APF is able to support a wide range of hypothe-

ses in the early annealing layers before eventually concentrating on a particular

solution in later layers.

6.3.1 Composite Activity

The particle-based search proceeds from the top to the bottom of the H-GPLVM

over a number of annealing layers, with back off occurring after each resampling

stage. The reader may find it helpful to refer to the hierarchical decomposition

of two activities used in this chapter and depicted in Fig. 6.2, but the method is

also applicable to other decompositions.

Given a new observation zt, maximal dispersion proceeds as follows. A set of N

particles is initialised by uniformly sampling from the latent representatives of

the training set at the root nodes. Each particle holds a latent position that may

be used to completely descend the hierarchy and recover a full-body 3D pose.

To allow these initial poses to depart from the training data, each particle’s

latent position is then perturbed with the addition of a zero mean Gaussian

random variable nx0 with covariance P x
0 . Each corresponding pose s(n)

t,R is then

evaluated against the observation using wR(z, s), and N particles are resampled

with likelihood in proportion to their weights and with replacement.

Given the latent position held by each resampled particle, the H-GPLVM defines

Gaussian conditional distributions over the child nodes in the level below (see
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also Section 6.2.1). To exploit the potential for independence between these

latent spaces (and therefore body parts) in the dispersion step, a new particle

set is constructed by applying a crossover operator as follows. A single sample is

drawn from the conditional distributions corresponding to each particle, yielding

N new latent positions in each child node. N new particles, each holding a set of

latent positions are then created by randomly sampling once from the new latent

positions in each of the child nodes, without replacement. Subsequent annealing

layers r = R − 1, ..., 1 proceed to back off down the hierarchy in just the same

way, but are initialised with the new particle set from the previous layer.

Where a pose observation features occlusion or self occlusion it is desirable to

infer the location of an occluded limb from visible limbs based on their correla-

tions within the training data. Where zt takes the form of a set of labelled 2D

features e.g. [JFEM03] or [Ram06] and one or more are absent, the implication

for the search strategy is as follows: where image evidence for a subtree of the

skeleton is missing, descent should not pass below that subtree’s parent node.

In Section 6.5.4 this principle is used to recover the occluded arm of a walking

subject. Otherwise, back off ceases to take place only once the leaf nodes are

reached.

In practice, the covariance of the GP mappings from parent to child in the H-

GPLVM are often relatively small. This is due in part to the regularisation

conditions (see Section 3.3.5) and in part to the use of only one activity cycle. To

encourage individual body parts to depart from the training data and increase

pose diversity, the covariance is artificially inflated to be equal to P x
r where,

P x
r = αR × ...× αr × P x

0 . (6.5)

This weighted dispersion term is also applied to latent positions in nodes where

back off has ceased to take place. Individual particle dispersion is summarised

in Fig. 6.5 and the application of the crossover operator to the particle set in

Fig. 6.6.
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1. The position of the (n)th particle in the rth layer is given by the position

and latent parameters, s
(n)
t,r = [ωt,r, {xit,r}i∈A].

2. The particle’s position parameters ωt,r are updated by the addition of the
Gaussian random variable nωr ,

ω′t,r = ωt,r + nωr . (6.6)

3. For r = 0:

• The particle’s latent parameter is initialised by activating a single root
node, giving A′, and sampling a single latent variable (training pose).

• This is then perturbed by the Gaussian random variable nx0 to give
{xit,r}

′

∀i∈A′ .

4. For r > 0:

• Each of the particle’s latent parameters is used to descend to the
next layer of the latent hierarchy using the mean mapping µ (see also
Eq. 6.2). This gives a new set of latent coordinates in a new set of
active nodes, A′. Descent does not take place at the leaf nodes or
where the limb(s) controlled by the child node are occluded.

• Each of the particle’s latent coordinates is perturbed with the scaled
Gaussian random variable nxr to give {xit,r}

′

∀i∈A′ . This allows body part
configurations to depart from the training data.

5. The new estimates are then used to create a particle in a new set

[ω′t,r, {xit,r}
′

∀i∈A′ ] =

{
s

(n)
t,r−1 if r > 0;

s
(n)
t+1,R if r = 0.

(6.7)

Figure 6.5: Dispersion of a single particle for composite activity tracking.

6.4 Objective Function

Hou et al. [HGC+07] have proposed a suitable objective function for particle-

based inference from WSL data (see also Section 3.5.3.1). This is defined as

the sum of the squared 2D Euclidean distances between corresponding pairs of

joint centres in the observation z = {wi}Mi=1 and in the hypothesised body model

configuration b,

ΣWSL =
M∑
i=1

||li(b)− wi||2 (6.8)

where li() returns the 2D location of the ith joint centre.
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1. For r > 0: The latent parameters of each particle in the unweighted set
define a total of |A| ×N latent coordinates across the A active nodes.

• A single new particle is created by randomly sampling a single coordi-
nate from each of the |A| active latent spaces.

• Sampling continues without replacement until all latent coordinates
have been resampled.

• The result is a new particle set defining N unique full-body poses.

Figure 6.6: Action of the crossover operator on the particle set.

6.5 Experiments

In each experiment H-GPLVMs were trained (see also Section 3.3.5) from pose

vectors Y = {y
1
, ..., y

M
} recovered from MoCap data [CMU] and decomposed

as shown in Fig. 6.2. The rotational components and vertical displacement of

the position vector were moved into the pose vector, giving Dy = 50. Only in

experiments where the subject walks across the image was a separate (horizontal)

position parameter maintained, with Dω = 1. All latent spaces in the hierarchy

have dimensionality Dx = 2.

In Section 6.5.1 MoCap test data was also used to investigate the performance

of the H-GPLVM using a simple, well defined objective function. The score for

each particle is calculated from the sum of the squared 3D Euclidean distances

between a set of 15 markers on the wrists, elbows, shoulders, feet, knees, hips,

head, neck and pelvis of the hypothesised skeleton and the test skeleton (this is

simply Eq. 6.8 for the 3D case). The skeletons were identical in size, estimated

from the MoCap data of CMU subject 35 [CMU]. The scenario is one of composite

activity performed by a known subject.

In Section 6.5.3 and Section 6.5.4 a set of 2D feature tracks were obtained for

a subset of these 15 joint locations for unknown subjects in monocular video

sequences. These were again compared with the skeleton of CMU subject 35,

this time using the sum of squared 2D Euclidean distances, ΣWSL (defined in

Section 6.4). To facilitate this comparison an orthographic camera projection

was presumed and a single constant scaling factor was estimated by hand to give
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reasonable agreement in the height of the subject and skeleton. The scenarios

are that of known and composite activity performed by an unknown subject.

To provide a baseline for comparison, a GPDM [WFH08] was also learned from

each training data sequence and APF performed in the resulting latent spaces

in an approach similar to [RRR08a]. GPDMs are an extension of the GP-LVM

that incorporate dynamics, an extra GP being used to give a first order model of

data dynamics in the latent space (see also Section 3.3.4.3). The smooth latent

space recovered by a GPDM is suitable for exploration with particle filtering

techniques where dispersion is based on a Gaussian random variable, here nxr . All

experiments used 100 particles and 10 annealing layers with a constant survival

rate of αR = ... = α0 = 0.5. Rather than finite differencing latent data, latent

noise covariance was set to a manually inflated value of P x
0 = 0.25I to encourage

pose diversity.

6.5.1 3D MoCap Data: Walk

An H-GPLVM (shown in Fig. 6.2) was trained using single 40 frame cycles

of swing arms (CMU file 86 07.amc) and walk with hurt stomach (CMU file

91 26.amc) activity sequences. The model was then used to recover novel poses

from a walking subject (CMU file 35 01.amc, 90 frames) using the 3D Euclidean

distance objective function. The required departure from the training data is

quite considerable, see Fig. 6.7. The GPDMs were unable to recover the walking

poses with the particle set oscillating between the latent spaces of the two activ-

ities with constant frequency, jumping from the least worst swing arms pose to

the least worst walk with hurt stomach pose, see Fig. 6.7(c).

In contrast, the H-GPLVM was able to optimise limbs independently recovering

good pose estimates at every frame, see Fig. 6.7(d). The required subdivision of

the skeleton operates at two scales. The lower body is recovered from walk with

hurt stomach pose data and the upper body from swing arms. The upper body

is then further subdivided between the two arms. While the arms swing in phase
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(a) Training data 1: swing arms.
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(b) Training data 2: walk with hurt stomach.
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(c) GPDMs: the models are unable to generalise to novel poses.
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(d) H-GPLVM: back off and the addition of latent space noise allows the recovery of novel poses.

Figure 6.7: Training data and resulting pose estimation results for a walk
sequence: (a-b) MoCap training data [CMU]; (c) GPDMs – particles oscillate
between the best compromises in each latent space; (d) H-GPLVM – good pose
recovery, note the opposing swing of the arms. Errors are plotted in Fig. 6.8.

in the training data, they are uncoupled to give the out of phase opposing swing

seen in the walking data. Error values for pose estimation are shown in Fig. 6.8.

The H-GPLVM consistently outperforms the GPDMs with average expected error

across the sequence of 45.3mm versus 92.7mm for the GPDMs.
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Figure 6.8: Expected errors for MoCap walk sequence in Fig. 6.7.

6.5.2 3D MoCap Data: Walk whilst Waving

To investigate performance on combined activities, an H-GPLVM was trained

with single cycles of MoCap data from a person walking (see Fig. 6.9(a)) and

a person standing and waving (see Fig. 6.9(b)). The model was then used to

recover poses from a combined walk whilst waving test sequence. Searching the

two GPDMs with APF recovered the best compromise at each frame, an accurate

walking pose that ignored the waving hand. Test poses far exceeded the GPDMs’

capacity to generalise, i.e. the variation is more than stylistic.

Searching the H-GPLVM resulted in a good expected pose estimate at each frame,

see Fig. 6.9(c). The improvement in terms of joint location error is shown in

Fig. 6.10. The H-GPLVM was able to significantly outperform the GPDMs during

the wave with an average expected error across the sequence of 17.0mm versus

32.6mm.

6.5.3 2D WSL Data: Walk whilst Waving

In order to test the H-GPLVM’s ability to recover combined poses from 2D feature

points the WSL tracker [JFEM03] was used to track 9 feature points on the

body of a subject performing walk whilst waving. These comprised the hands,

feet, knees, head, right shoulder and pelvis locations at each frame (see green

squares in Fig. 6.11). An H-GPLVM was trained using single cycles of slow
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(a) Training data 1: walk CMU file 35 01.amc
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(b) Training data 2: stand and wave CMU file 113 27.amc

−10

0

10
−5

0
5

0

5

10

15

20

25

30

xz

y

−10

0

10
−5

0
5

0

5

10

15

20

25

30

xz

y

−10

0

10
−5

0
5

0

5

10

15

20

25

30

xz

y

−10

0

10
−5

0
5

0

5

10

15

20

25

30

xz

y

−10

0

10
−5

0
5

0

5

10

15

20

25

30

xz

y

−10

0

10
−5

0
5

0

5

10

15

20

25

30

xz

y

−10

0

10
−5

0
5

0

5

10

15

20

25

30

xz

y

−10

0

10
−5

0
5

0

5

10

15

20

25

30

xz

y

−10

0

10
−5

0
5

0

5

10

15

20

25

30

xz

y

−10

0

10
−5

0
5

0

5

10

15

20

25

30

xz

y

(c) H-GPLVM: “back off” permits combination of elements of each training set for successful pose estimation.

Figure 6.9: Training data and resulting pose estimation results for a walk
whilst waving sequence: (a-b) MoCap training data [CMU]; (c) H-GPLVM

tracking results. Errors are plotted in Fig. 6.10.

walk/stride (CMU file 08 11.amc) and stand and wave (CMU file 143 25.amc)

activity sequences and used to recover the test poses with the 2D Euclidean

distance objective function, ΣWSL. The tracking skeleton’s pelvis was also allowed

to translate horizontally to allow for a moving subject, and the extra particle

parameter was dispersed with a scalar Gaussian random variable nxr and preserved

between frames.

Results for the H-GPLVM and the GPDM baseline are shown in Fig. 6.11. The

baseline recovers the best possible candidate from the two GPDMs at each frame,

this is a stand and wave pose at every instant. The H-GPLVM is able to combine
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Figure 6.10: Expected errors for MoCap walk whilst waving sequence in
Fig. 6.9. The GPDMs are unable to recover the combined activity poses and

error is high during the wave (frames 15-60).

walking poses for the lower body and right arm with a waving pose for the left

arm to give good 3D pose reconstruction throughout, see Fig. 6.11(c).

6.5.4 2D WSL Data: Walk with Occlusions

One advantage of learning global latent models of activity at the full-body scale

is the ability to recover known poses given limited image evidence. For example,

given a latent variable model learned from walking poses, walking sequences

featuring occluded limbs have been reconstructed from a small set of 2D feature

points [HGC+07, UFF06a, UFHF05]. In this section the H-GPLVM is shown

to be “back compatible” with this kind of reconstruction of partially occluded

known poses performed by an unknown subject.

An H-GPLVM was trained using a single cycle of slow walk/stride data (1 root

node only) and used to reconstruct poses from the 2D WSL tracker data used

by Urtasun et al. [UFHF05] (see green squares in Fig. 6.12). In contrast to

Section 6.5.3, there is no data for the right arm and the right knee track is lost

about half way through the sequence resulting in a challenging reconstruction

problem. The placement of occluded limbs must be inferred from higher level

correlations in the training data. In the case of a missing right arm, back off

is terminated in the “upper body” node (see Section 6.3.1). While the legs are
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(a) GPDMs: neither latent space contains the pose. The waving hand is recovered at the expense of the legs.

(b) H-GPLVM: back off allows the combination of training data for accurate pose recovery.
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(c) H-GPLVM: inferred 3D poses from a different view point.

Figure 6.11: Pose estimation results using 2D WSL feature tracks from a
monocular walk whilst waving sequence: (a) GPDM; (b) H-GPLVM; (c) rotated

3D view of poses. Training data is slow walk/stride and stand and wave.

independently optimised in the leaf nodes, the left arm, right arm and head are

jointly optimised in the “upper body” node. The result is a right arm that is

necessarily coordinated with the visible upper body.

Pose estimation results are shown in Fig. 6.12. To account for marker loss, a

piecewise objective function was used to give no further increase in the contribu-

tions of markers separated by 30cm or more to the calculation of ΣWSL. Despite

an absence of image evidence for the right arm, well coordinated walking poses

were recovered at each frame with the occluded right arm oscillating out of phase

with the visible left arm. This long-range skeletal correlation is a benefit of the

hierarchical approach; in a “flat” part-based model, an occluded limb would be

free to randomly flail.
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Figure 6.12: Pose estimation results using 2D WSL feature tracks from
a monocular walk sequence [SBS02] using H-GPLVM. Note the position of

occluded right arm is inferred from the visible upper body.

6.6 Discussion and Conclusions

This chapter has outlined a middle ground between searching low-dimensional

global pose models and searching in the original high-dimensional state space.

This is achieved by descending through a hierarchical part based model: the

H-GPLVM. Breaking correlations between local part-based models permits the

recovery of novel composite activity poses. However, it is the retention of long

range correlations in the higher levels of the hierarchy that permits known activity

tracking through occlusion.

Just as in Chapter 5 the benefit of encountering known activity (e.g. see Sec-

tion 6.5.4) could be reflected in terms of computational cost. This is by termi-

nating back off as soon as one (or more) particles attain some minimum error

threshold. For theWSL experiments presented here this additional step is trivial

(checking for a lower bound on ΣWSL calculations) and may also be possible if

using bottom-up tracker output as input (see also Section 7.3.2.3). However, this

is unlikely to be possible if using more general objective functions such as those

presented in Section 4.3.

At its top level the H-GPLVM is akin to a set of GPDMs, one for each activity.

But by “backing off” to benefit from progressively greater independence between

body parts, and by making increasingly discerning comparisons with image ev-

idence, the stochastic search algorithm presented is able to recover novel pose

configurations. H-GPLVMs can be used to recover poses that are beyond the

scope of other widely used global latent variable models such as the GPDM.



Chapter 7

Conclusions

A number have methods have been proposed for the recovery of known
and unknown human motions. Here the contributions made in this
thesis are reviewed, their relative merits discussed and future work
proposed.

7.1 Known Activity

In Chapter 4 a method was described for known activity tracking – that is, track-

ing of activities for which training data is available. The approach is discussed

further below and the need for future work highlighted.

7.1.1 Contributions

HMM-APF entails the use of an HMM to disperse particles across a latent pose

space as part of an annealed particle filtering framework. PCA is used for dimen-

sionality reduction of MoCap training data and an associated dynamical model is

recovered by learning an HMM from the resulting latent variables. The method

has been found to be capable of recovering activity from less than three cameras;

specifically, from monocular, narrow-baseline stereo and wide-baseline stereo ob-

servations. Furthermore, these results are achieved using only a small allocation

of particles.

156
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This performance contrasts with high-dimensional standard APF which fails

when tracking human motions from three or fewer cameras using much larger

particle allocations. This has been confirmed by a number of quantitative in-

vestigations into particle filtering and APF [BSB05, SBB10] and related variants

[BEB08]. It is also the finding of this thesis, see for example Figures 5.7 and 5.8

where standard APF has been combined with the symmetric objective function

used in this work (see also Section 4.3.3) but is still unable to recover walk and

jog activities reliably.

The observed improvements in performance are in line with other work on latent

models for known activity tracking, see for example Section 2.3.2.2. The draw-

back that unites all these various approaches is an inability to generalise to (even

modestly) novel activities. It is this limitation that motivates the work presented

in Chapters 5 and 6.

7.1.2 Future Work

7.1.2.1 Quantitative Evaluation of Range Data Tracking

Narrow-baseline stereo data (see also Section 3.5.2) presents a particularly inter-

esting observation format for the application of known activity tracking (see also

Section 4.4.1). This is primarily because it has the potential to remove the need

for background subtraction and with it the requirement that camera position,

background appearance and lighting conditions do not change. Section 4.4.1.2

demonstrated qualitatively satisfactory tracking of a walking subject from a mov-

ing stereo camera, without the need for background subtraction.

Stereo cameras are becoming relatively cheap and simple to calibrate e.g. [I2I]

but applications to human motion tracking are still relatively rare (see also Sec-

tion 3.5.2.2). It is likely that the difficulty of quantifying tracking accuracy and

the lack of any shared datasets within the community represents a barrier to

progress. In the cases of monocular and multi-camera tracking, freely available

datasets containing video with synchronised motion capture ground truth – e.g.
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HumanEva [SB06a] – have contributed to the advancement of the state of the art

by simplifying the necessary evaluation and comparison tasks. The production of

a similar resource featuring range images of human movement with synchronised

MoCap ground truth is experimentally challenging, but could play a similarly

important role in the recovery of human movement from stereo.

7.1.2.2 Temporal Diversity in Known Activity

The use of dynamic T0 where known activity dynamics are captured by an HMM

deserves further investigation. One barrier to this is the absence of a clear ana-

logue for the inflation of other forms of dynamical model. The method described

in Section 4.2.1.2 is therefore overlooked for use in MAM-APF (see also Chap-

ter 5). However, when tracking known activity exclusively, the ability to consider

the next spatially significant change in pose rather than only the next temporal

change is likely to prove useful. The walk and jog activities processed in Chapter 4

involve reasonably constant motion1 but activities that result in more markedly

self-referential states are perhaps a more interesting candidate for investigation.

One example is given by sparring activities where a relatively static guard pose

is occasionally interrupted by explosive bursts of motion, such as a punch being

thrown. Here training data results in a highly self-referential guard state si that,

during inference, all but a small fraction of particles will fail to escape; Aii ≈ 1.

Tracking from anything other than rich observation data is therefore challenging.

During such activities it may be beneficial to insist on exploring the next spatially

distinct pose with particles – that is, an early punch state with the arm starting

to extend. This can be achieved using the transition temperature, ρT introduced

in Section 4.2.1.2.

1The rate of “flow” between hidden states is not constant, however. For example, there is a
momentary lull in the walking gait when both feet are in contact with the floor.
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7.2 Known and Unknown Activity

In generative tracking, the use of high-dimensional activity models has previ-

ously allowed the recovery of freeform human motions without limitations on

activity class. Drawbacks have included the need for sufficiently rich observa-

tions from multiple cameras, and a high and fixed computational cost during

tracking. As an alternative, many approaches (including HMM-APF, presented

in Chapter 4) have adopted a low-dimensional activity model to recover certain

classes of activity from fewer cameras and at reduced computational cost. The

drawback being that training data must be available for every activity that is

to be tracked. To address these limitations Chapter 5 introduced a generative

tracking approach that gives equal consideration to the predictions of both low-

and high-dimensional activity models at each frame.

7.2.1 Contributions

MAM-APF combines a number of different activity models within the APF frame-

work. Each activity model is aimed at solving a particular class of tracking

problem. For example, a novel method is introduced for the recovery of activity

transitions by using particles to explore “transition lines” between different man-

ifolds in a joint-activity latent pose space. The estimation tasks associated with

each activity model are quite different in terms of difficulty, and differently sized

particle quotas are assigned to them to reflect this. An equal prior over activity

models is efficiently ensured using a particle stacking technique.

In a simple (single layer) particle filter the multiple activity model technique can

bring no computational advantage, but by drawing a variable number of samples

based on the emerging picture of activity model membership across a number of

annealing layers significant gains in efficiency can be made. The final distribution

of particles between activity models can also be used as a classifier for each obser-

vation. MAM-APF provides good segmentations of sequences featuring multiple

known and unknown activities with transitions. The algorithm is an attempt to
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combine the best of two generative tracking approaches: faster recovery of known

activity with few particles where possible, but the flexibility to work for longer

with more particles to recover unknown activities where necessary.

7.2.2 Future Work

7.2.2.1 Many Known Activities

In Chapter 5 a joint-activity pose space was adopted to recover known activ-

ity transitions, and a joint-subject pose space to generalise to unknown subjects.

The HumanEva-II data set has permitted quantitative investigation, but it would

be interesting to extend the approach to support larger numbers of known activ-

ities in the future. Where more activities are used to create a joint pose space,

an HMM-guided particle-based approach is well placed to explore the resulting

activity manifolds.

Where activities contain poses that are close in latent space (and therefore in

ambient space) probabilistic classification between nearby HMM states can be

used to select the correct HMM for propagation. Achieving classification based

only on a single pose (first order dynamics) may be challenging, however. For

example, there may be genuine “junctions” in the latent space due to two or more

activities sharing a similar component pose. The investigation presented in Ap-

pendix D finds that even the consideration of long state histories does not always

guarantee disambiguation of a pose between activity classes. This motivates the

multiple hypothesis particle-based approach to estimation: an ensemble of pose

hypotheses drawn from noisy (Gaussian) state observation densities will naturally

divide between competing (nearby) HMM states for subsequent propagation. For

example, in Section 5.5.2 the proximity of the three subjects’ latent data (see also

Fig 5.4, right) leads particles to flow constantly between HMMs during tracking.

Where HMMs represent substantially different but partially overlapping activi-

ties in a joint space, the correct HMM will assume complete control of tracking
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(and the known activity particle quota) at such time as its future pose hypotheses

begin to diverge from those of the others.

The dimensionality of a joint-activity space must grow with the number of ac-

tivities modelled. Alternatively, a set of individual low-dimensional latent pose

spaces could be used, one for each known activity. Here the use of transition lines

is no longer possible. This is the approach taken in earlier work [DLC08a], but

forcing an equal number of particles into each space means that computational

cost increases with the number of activities. In contrast, results in Chapter 5

have shown it is not necessary to saturate every HMM with particles, only to

select a single parent HMM state for each particle in the quota.

An infinity of points in the high dimensional pose space describing unrelated

unknown poses do in fact project to latent coordinates close to known activity

training data. This is because pose variations are concentrated in the orthogonal

complement to the PCA subspace [MP97]. This is important in the context

of MAM-APF where particles can flow between ambient and latent space. If

multiple latent pose spaces are used, it may be insufficient simply to find the

single most likely parent state in order to determine which known activity model

contains the “closest” pose. A low cost solution is to reconstruct an unknown

particle’s pose from its latent coordinate in each space, and select the activity

that gives the lowest projection-reconstruction error (see also Section 5.5.3).

7.2.2.2 Activity Class Transitions

In Chapter 5 an equal prior is placed over all activity models at all frames,

anticipating the commencement of any class of activity with equal probability.

This can be interpreted as a “flat” Markovian activity model transition matrix,

e.g. see those used for dynamical model transitions by Isard and Blake [IB98c].

While it is prudent to continually cater for the possibility that known activity

will start to transform into unknown activity, the reverse does not always hold.

Where the projection-reconstruction error (see also Section 5.5.3) is consistently

high given the latent pose space, it is natural to ask whether the projection is
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appropriate at all. That is, if the unknown activity model (correctly) permits

particles to move through the ambient pose space until they are “far” from all

known activity poses, it may no longer be appropriate to force equal particle

quotas into the known activity model.

The projection-reconstruction error could be used to dynamically adjust the prior

on activity model transitions. In practice this would mean making adjustments

to the probability of unknown-to-known activity class transitions based on how

accurately the latent pose space is able to reconstruct the last expected pose.

The potential computational saving is relatively modest – 2Bmin unnecessary

objective function evaluations at the first layer during unknown activity (around

5% of computation time per frame) – but the practice may also help to guard

against false transitions.

7.3 Composite Activity

Appeals to low-dimensional models of pose are not unreasonable. It is true that

during every day activity the range of typical human movements is surprisingly

limited, especially given the range of possible movements e.g. see the CMU Mo-

Cap database [CMU]. Although it may not be viable to learn low-dimensional

activity models for all typical movements, an interesting alternative is to learn a

compact subset of activities with which remaining activities “overlap”. This is

the approach taken in Chapter 6 where novel poses are recovered by gradually

breaking down known activities into smaller part-based representations which are

recombined using a crossover operator to create new poses.

7.3.1 Contributions

Section 6.5 demonstrates the recovery of unknown activity through the recom-

bination of known activity via a hierarchical part-based representation of pose.

The H-GPLVM provides a quite unique model of pose – a hierarchy of latent
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rather than observable variables – but how best to conduct inference is not clear.

Faced with complete global coordination of body parts at the root (useful for

dealing with occlusion) and no coordination whatsoever at the leaves (useful for

recovering novel poses), it is not obvious how to proceed. Chapter 6 implements

the suggestion of Lawrence and Moore [LM07]: “backing off”. This means mov-

ing from the top to the bottom of the hierarchy in stages, applying the models

at each level independently. The result is a state vector that gradually increases

its dimensionality en route from a single global latent pose space to the ambient

pose space (see also Eq. 6.4).

The philosophy of annealing is to support a wide range of diverse pose hypotheses

initially before gradually concentrating in on a globally optimal solution through

increasingly discerning comparisons with image evidence (see also Fig. 3.2). This

is ideal for the exploration of the H-GPLVM where it is important not to be

drawn into a local optimum too quickly. For example, if the objective function

scores achieved by full-body poses at the top level of the hierarchy are not cooled

when an unknown pose is observed then resampling will overlook many partially

accurate poses. Committing to the best full-body pose solutions reduces diversity

and may preclude recovering the correct pose at lower levels. The ability to

introduce and to support such diversity is critical to the success of the approach.

7.3.2 Future Work

7.3.2.1 Investigating Compositionality

Although Section 6.5 contains some interesting examples, the extent to which

human activities more generally are composite is not investigated. Given a large

enough database of examples this question can be addressed experimentally. The

CMU MoCap database [CMU] is a suitable candidate and a quantitative analysis

of joint angle data could permit the recovery of a set of “basis activities” that

have maximum overlap with other movements. It would be interesting to know
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the required size of this set and the computational cost of training and exploring

an associated H-GPLVM in order to recover a range of composite activities.

7.3.2.2 Tracking Mode

The approach presented in Chapter 6 might also be extended to tracking sce-

narios. In contrast to pose estimation, the aim here is to recover small inter-

frame changes in pose with a more conservative dynamical model. However,

there remains the challenge of exploiting the various scales of correlation that

are captured by the different levels of the H-GPLVM. One possibility is to apply

the original technique to provide an initialisation by pose estimation at the first

frame and then to cluster the resulting coordinates in each leaf node based on

their nearest latent training variable. Where a particle describes points with com-

mon (or nearby) cluster indices in two or more sibling nodes, these values can be

combined by ascending the hierarchy to the equivalent cluster in the parent node.

Performing this step ensures that the poses at t − 1 are retained as the start-

ing point for particle dispersion at t, but also identifies long range correlations,

enabling the application of dynamics at the appropriate level of the hierarchy.

7.3.2.3 Bottom-up Output as Top-down Input

As mentioned in Section 2.4.2 a potential focus for future research is to replace

the 2D WSL tracker results used here and in [UFHF05, UFF06a] with the 2D

joint location estimates of a bottom-up tracker e.g. [RFZ07]. This would remove

the need to hand initialise (defining WSL ellipses in the first frame) and the

work presented in Chapter 6 is a potential candidate for inferring occluded limb

positions from long-range correlations in training data. A difficulty is that the

input does not account for “sidedness” – that is, (unless perhaps clothing is

asymmetrically coloured [RFZ07]) there is no notion of right and left for a given

limb. Addressing how best to support and resolve this ambiguity would be an

interesting future topic for investigation.
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7.4 Concluding Remarks

This thesis has presented a collection of work aimed at bridging a gap between

low-dimensional and high-dimensional generative tracking approaches. This has

included: (i) defining novel low-dimensional activity models for known activity

tracking; (ii) combining these with high-dimensional activity models for unknown

activity tracking; (iii) gradually removing dependencies between partitioned low-

dimensional pose models to recover composite activity. Each of these contribu-

tions has been tested within the estimation framework of the annealed particle

filter [DBR00] and various different objective functions have been proposed for

tracking from different forms of observation: monocular, narrow-baseline stereo,

and wide-baseline stereo. These techniques have permitted the dynamic reduc-

tion of particle numbers during known activity, and the ability to track known

poses through occlusion. Where observation data is sufficiently rich they have

additionally permitted the recovery of composite poses by activity combination,

and unknown activity poses by dynamically increasing the size of the particle

set.



Appendix A

Bayesian Filtering

The Bayesian filtering equation is much cited but rarely derived in the tracking

literature. For completeness it is included here; the derivation below is closely

based upon that given by Sigal [Sig08] and elaborates each step for clarity.

The system state st at every discrete time instant t is exposed to some sensor

to produce the corresponding observation zt. In the context of this thesis, the

system state is a set of joint angles, the sensors are cameras and the observa-

tions are digital images. Observations are presumed to be independent of both

each other and of the past and future state of the underlying dynamical pro-

cess. The recursive Bayesian filtering equation can be derived by manipulation

of the joint distribution p(s0, s1, ..., st|z0, z1, ..., zt) using conditional probability

rules (Section A.1) and Bayes’ rule (Eq. A.2).

A.1 Marginalisation

For two continuous random variables, X given Y , the marginal probability density

function can be written as pX(x). This is

pX(x) =

∫
y

pX,Y (x, y) dy =

∫
y

pX|Y (x|y)pY (y) dy (A.1)
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where pX,Y (x, y) gives the joint distribution of X and Y , while pX|Y (x|y) gives

the conditional distribution for X given Y . The second expression comes from a

more general rule about conditional probabilities:

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
, (A.2)

for pY (y) 6= 0.

A.2 Bayes’ Rule

Bayes’ rule is given by,

pX|Z(x|z) ∝ pZ|X(z|x)pX(x). (A.3)

A.3 The Filtering Equation

The joint distribution can be integrated to marginalise past system states,

p(st|z0, z1, ..., zt) =

∫
s0

∫
s1

...

∫
st−1

p(s0, s1, ..., st|z0, z1, ..., zt) ds0ds1...dst−1.

(A.4)

Then by making the first order Markov assumption that st depends only on st−1,

p(st|s0, s1, ..., st−1) = p(st|st−1) (A.5)

Eq. A.4 can be rewritten as

p(st|z0, z1, ..., zt) =

∫
st−1

p(st, st−1|z0, z1, ..., zt) dst−1. (A.6)

Rewriting using Bayes’ Rule (Eq. A.3) gives

p(st|z0, z1, ..., zt) =

∫
st−1

p(z0, z1, ..., zt|st, st−1)p(st, st−1)

p(z0, z1, ..., zt)
dst−1. (A.7)
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Where by assuming that the current observation is conditionally independent of

the past observations given st,

p(zt|z0, z1, ..., zt−1, s0, s1, ..., st) = p(zt|st) (A.8)

this can be rewritten as

p(st|z0, z1, ..., zt) =

∫
st−1

p(zt|st,���st−1)p(z0, z1, ..., zt−1|��st, st−1)p(st, st−1)

p(zt)p(z0, z1, ..., zt−1)
dst−1.

(A.9)

Where the simplifications are possible because the current observation zt is inde-

pendent of all past and future system states (Eq. A.8). Next, restating the final

term in the numerator in terms of a conditional and a prior (Eq. A.1) gives

p(st|z0, z1, ..., zt) =

∫
st−1

p(zt|st)p(z0, z1, ..., zt−1|st−1)p(st|st−1)p(st−1)

p(zt)p(z0, z1, ..., zt−1)
dst−1.

(A.10)

Rearranging to recognise the right hand side of Bayes’ Rule (Eq. A.3)

p(st|z0, z1, ..., zt) =

∫
st−1

p(zt|st)
p(zt)

p(st|st−1)
p(z0, z1, ..., zt−1|st−1)p(st−1)

p(z0, z1, ..., zt−1)
dst−1,

(A.11)

recovers

p(st|z0, z1, ..., zt) =

∫
st−1

p(zt|st)
p(zt)

p(st|st−1)p(st−1|z0, z1, ..., zt−1) dst−1. (A.12)

As p(zt) is a constant and p(zt|st) independent of st−1, one has that

p(st|z0, z1, ..., zt)︸ ︷︷ ︸
Posterior at time t

=
1

C
p(zt|st)︸ ︷︷ ︸
Likelihood

∫
st−1

p(st|st−1)︸ ︷︷ ︸
Dynamical model

p(st−1|z0, z1, ..., zt−1)︸ ︷︷ ︸
Posterior at time t− 1

dst−1.

(A.13)



Appendix B

Probabilistic Interpretations of

PCA

In the following subsections some of the key steps in the derivations of PPCA

[TB99] and the GP-LVM [Law05] are reproduced. The reader may first wish

to familiarise themselves with the results for the marginal probability density

function for a continuous random variable in Section A.1.

B.1 Probabilistic PCA

Following Tipping and Bishop [TB99], a matrix of low-dimensional latent vari-

ables,

X = [x1, ..., xN ]> (B.1)

is related to a matrix of concatenated high-dimensional pose vectors,

Y = [y
1
, ..., y

N
]>, (B.2)

through a set of linear mapping parameters corrupted by noise,

y
n

= Wxn + η
n
. (B.3)
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The mapping is given by W ∈ <Dy×Dx with Dy the dimension of the data space,

Dx the dimension of the latent space and η
n

a vector of noise terms. In PPCA

the noise is taken to be Gaussian distributed,

p(η
n
|β) = N(η

n
|0, β−1I), (B.4)

with a mean of zero and a spherical covariance given by β−1I.

The conditional probability of the nth original pose datum given its corresponding

latent datum and mapping can be written as

p(y
n
|xn,W , β) = N(y

n
|Wxn, β

−1I), (B.5)

where the mean vector µ = Wxn (from Eq. B.3) and the covariance matrix

Σ = β−1I from (Eq. B.4) have been used to parameterise a Gaussian distri-

bution. Then assuming independence across data points (and just multiplying

probabilities together),

p(Y |X,W , β) =
N∏
n=1

N(y
n
|Wxn, β

−1I) (B.6)

This result can then be manipulated to give both the PPCA result [TB99] and

the GP-LVM result [Law05].

In PPCA the latent variables X are marginalised as nuisance parameters, and

the mapping parameters W optimised by likelihood maximisation of p(Y |W ).

In this case Eq. B.6 is multiplied by a prior on X and integrated with respect

to X. The form of the prior is chosen to be Gaussian with zero mean and unit

covariance by convention,

p(X) =
N∏
n=1

p(xn) =
N∏
n=1

N(xn|0, I). (B.7)
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This leads to

p(Y |W , β) =
N∏
n=1

∫
N(y

n
|Wxn, β

−1I)N(xn|0, I) dxn (B.8)

=
N∏
n=1

N(y
n
|0,C)

where X has gone from the conditional and the final result can be recognised as

a product of zero mean Gaussians with C = WW>+β−1I. Tipping and Bishop

give a proof that Eq. B.8 is maximised when W spans the principal sub-space of

the ambient data.

B.2 Dual Probabilistic PCA

In contrast, derivation of the GP-LVM [Law05] begins with a dual probabilistic

interpretation of PCA in which the mapping parameters W are marginalised

(also using a Gaussian prior), and the latent variables X optimised by likelihood

maximisation of p(Y |X). In this case Eq. B.6 is multiplied by a prior on W and

integrated with respect to W ,

p(Y |X, β) =
N∏
n=1

∫
N(y

n
|Wxn, β

−1I)p(W ) dW . (B.9)

If the form of the prior is again chosen to be Gaussian and with zero mean and

unit covariance,

p(W ) =

Dy∏
i=1

N(wi|0, I) (B.10)

where wi is the ith row of the matrix W then the likelihood can be written as,

p(Y |X, β) =

Dy∏
i=1

1

(2π)
N
2 |K|N2

exp

(
−1

2
y>

:,i
K−1y

:,i

)
(B.11)

=

Dy∏
i=1

N(y
:,i
|0,K).
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Where W has gone from the conditional, y
:,i

is the ith column of Y and K =

XX> + β−1I. This result is termed dual probabilistic PCA (DPPCA).



Appendix C

HMM Training and Classification

This appendix contains equations for learning and classification using HMMs with

single multivariate Gaussian observation functions. Expectation maximisation

derivations are based on the paper by Rabiner [Rab89] and the particularities of

the single Gaussian case follow the results given by Wilson and Bobick [WB01].

C.1 Training: the Baum-Welch Algorithm

The Baum-Welch algorithm requires calculation of the forward and backward

variables for the data set X = {x1, ..., xM}. The forward variable for a state si

at time m is the total probability of all paths through the model that emit the

training data up to time m, {x1, ..., xm} and finish in state si

αm,i = pi(xm)
N∑
j=1

αm−1,jAji (C.1)

where α1,i is calculated using the distribution a i.e. ai × pi(x1). Similarly, the

backward variable for a state si at time m is the total probability of all paths

from state si that emit the rest of the training data
{
xm+1, ..., xM

}
βm,i =

N∑
j=1

βm+1,jpj(xm+1)Aij (C.2)
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where βM,i = 1. At any time m, the value αm,iβm,i gives the total probability

of all paths through the model that produce the data X and pass through state

si at time m. Furthermore,
∑N

i=1 αm,iβm,i is constant for all m and gives the

probability of the sequence X given λ, or p(X|λ). These results can be used to

calculate the probability that the model was in state si when feature vector xm

was observed, given all the data

γm,i = αm,iβm,i

/
N∑
i=1

αm,iβm,i (C.3)

with which one can estimate the parameters of the Gaussian emission function

p(x) associated with each state si

µ
i

=
M∑
m=1

γm,ixm

/
M∑
m=1

γm,i (C.4)

Σi =
M∑
m=1

γm,i(xm − µi)(xm − µi)
T

/
M∑
m=1

γm,i (C.5)

these are the first two maximisation steps.

In order to reestimate the matrix A, it is necessary to consider the probability

that a transition from state si to state sj occurred between timesteps m− 1 and

m

ξm,ij = p(qm = sj, qm−1 = si|X,λ) =
αm−1,iAijpj(xm)βm+1,j

p(X|λ)
(C.6)

where qm is the active hidden state at time m. This is the total probability of all

paths through the model which emit
{
x1, ..., xm−1

}
and pass through state si at

m − 1 (given by αm−1), multiplied by the transition-emission pair si transitions

to sj, sj emits xm, multiplied by the total probability of all paths from state sj

that emit the remainder of the training data
{
xm+1, ..., xM

}
(given by βm,j), as

a fraction of all paths through the model that emit the data.
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Summing over the total number of state transitions gives the expected number

of transitions from si to sj

Eij =
M∑
m=2

ξm,ij (C.7)

as the expectation step. The final maximisation step is then

Aij = Eij

/
N∑
j=1

Eij (C.8)

This process can then be iterated, with Eqs. C.4, C.5 and C.8 providing the new

estimate for λ, until some convergence criteria is met. The elements of a may

also be reestimated using γ1,i, although this is not done in this work.

C.2 Classification

The definition of the forward variable α can be used to calculate the likelihood

of a sequence of feature vectors given a particular set of model parameters. For

a set of test data X ′ = {x′1, ..., x′M} and model λ = {S,A, a, pi(x)},

p(X ′|λ) =
N∑
i=1

αM,i. (C.9)

Therefore, if an HMM is trained for each activity of interest, one can evaluate the

likelihood that unseen test data was produced by each of the models and classify

data as belonging to the model most likely to have emitted it.



Appendix D

HMMs for MoCap Data

Classification

This appendix presents an investigation into the use of HMMs for
modelling dynamics in low-dimensional embeddings of human activity
data. HMMs provide a natural framework for modelling noisy obser-
vations of a stochastic process. A good dynamical model is important
for efficient particle dispersion and HMMs are an interesting candi-
date for a number of reasons. First, hidden state observation densities
can be used to define “valid” subregions of the embedding space, pre-
venting the sampling of “illegal” poses. Second, movement between
hidden states via the transition matrix provides reliable activity syn-
thesis. Finally, probabilistic classification of poses is possible by the
evaluation of each state’s observation density. This last characteristic
of HMMs is of particular interest where a single subspace is used to
model jointly a number of separate activities.

D.1 Introduction

Particle-based inference requires a model of temporal dynamics for particle dis-

persion. As discussed in Section 3.4.1 this model may be very simple, for ex-

ample a Gaussian random variable. However, more sophisticated models have

the potential to improve tracking performance by anticipating future poses and

propagating particles to pertinent regions of the pose space in a “smart sampling”
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approach. First order Markov chains [HH98], second order autoregressive pro-

cesses [AT04b] and higher-order variable length Markov models [CGH05] have all

previously been used for this purpose (see Section 2.3.2.3 for further discussion).

Each has been shown to perform well. Hidden Markov models (HMMs), however,

have another potentially useful feature: the ability to classify poses.

Pose classification is useful where a single pose space is used to model a number

of different activities. In this case it is desirable to classify a pose for two rea-

sons. First, in the context of estimation, classification allows propagation of each

particle by the correct activity HMM. Second, classification of the resulting pose

allows a tracker additionally to label human activities. In light of these factors

and in anticipation of the usefulness of a joint activity pose space, the ability of

HMMs to classify human activities is further investigated in this appendix.

If activity classification is the only objective, there are a number of methods

that may be preferred to the HMM. Section 4 of [WHT03] gives a comprehensive

review of the various techniques that have been applied to the human action

recognition task and a discussion of their relative merits. In particular, both

template matching and neural networks have received much attention e.g. [BD96,

GXT94], respectively. Template matching techniques offer low computational

complexity and ease of implementation over state space approaches such as the

HMM. However, they are typically more sensitive to noise and variation in the

speed of movements [WHT03]. Neural networks have been found to give very

similar results to the HMM on human motion classification problems [BMB+04].

It is the HMM’s ability both to classify and to synthesise poses that sees it

adopted in this thesis. This chapter presents a quantitative investigation into

the difficulty of the classification task in a joint activity pose space. Depending

on the activities that are present, the task is a challenging one and the results

motivate the combination of HMMs with particle-based estimation. By sustaining

multiple hypotheses – each a result of HMM synthesis – these techniques are

able to support, and eventually to resolve, ambiguity in the classification task

[DLC08a].
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D.2 Related Work

In the first application of HMMs to human motion recognition, Yamato et al.

[YOI92] classified a set of 6 different tennis strokes. Good known subject clas-

sification results (better than 90%) were achieved, but recognition rates drop

considerably when the test subject is removed from the training data. This work

is interesting for its use of hidden states with very short duration; 36 states

were used to model sequences of between 23 and 70 symbols in length. Wilson

and Bobick [WB95] adopted the HMM for recognition of simple gestures such

as waving. The authors note that although gestures may appear to us as a well

defined sequence of conceptual states, they may appear to sensors as a complex

mixture of perceptual states. No topology shaping was therefore enforced1 and

the HMM was left potentially ergodic. The resulting model represents a wave ac-

tivity; individual hidden states are particular physical configurations of the arm,

observations are low resolution images of the arm captured from a fixed camera.

The HMM construction – noisy observations of an underlying stochastic process

– is a natural and intuitively appealing choice.

HMMs have also been adopted where a much tighter coupling between conceptual

and perceptual states is possible. Campbell et al. studied observations from a

vision system able to give accurate 3D estimates of a subject’s hand positions.

The authors view human gesture performance as a doubly stochastic system

ideal for the application of HMMs: a human’s intentions to produce movement

are imprecisely realised (by their muscles) and the resulting pose configurations

are then imprecisely measured (by sensors). They undertake a study of the best

choice of features (e.g. hand position, velocity and acceleration) for classification

of T’ai Chi moves performed by a known subject. In this work both hidden

states and observations occupy the same domain. One can imagine the vector of

observation parameters tracing out a trajectory through state space that passes

through or nearby static hidden states belonging to one of a number of separate

HMMs. If sensor errors are small (e.g. MoCap data of full body movement,

1For example, HMM structure (such as left-to-right) can be enforced by initialising state
transition matrix entries to zero before Baum-Welch training.
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or the use of a “dataglove” for gestures [LX96]) then natural differences in the

performance of gesture may become the dominant source of variation.

Variations in the performance of gesture and activity are often most marked be-

tween different subjects. Classifying the gestures of unknown subjects – subjects

for whom there is no training data – is therefore challenging, e.g. [YOI92]. Bow-

den [Bow99] has shown that extracting a richer high dimensional state vector

and then performing dimensionality reduction with principal components anal-

ysis can help a model to generalise, alleviating the known subject requirement.

Brand and Hertzmann [BH00] introduced stylistic HMMs (SHMMs) which specif-

ically address this problem by attempting to recover the “essential structure” of

data while disregarding its “accidental properties” in a separation of structure

and style.

Brand [BOP96] comments on the shortcomings of HMMs for vision research, not-

ing that many human activities are not well described by the Markov condition,

as they feature multiple interacting processes. This fact has motivated adoption

of higher order models such as the variable length Markov model by Galata et al.

[GJH01]. Longer state histories are useful for encoding activity with correlations

at different temporal scales. For example, they can be useful where an HMM

overlaps to form a junction in the state space. Where different activities share

conceptual states, classification of the associated perceptual state is unavoidably

ambiguous. Consideration of previous states may alleviate the problem. An in-

vestigation into classification accuracy versus test data batch length is presented

in Section D.5.3.

In the wider context of Bayesian tracking, however, the use of a higher order tem-

poral model is not strictly compatible with the recursive filtering equation (see

also Eq. 2.1). In Chapter 4 and Chapter 5 HMMs are adopted for particle disper-

sion and are successfully used to classify single poses in intra- and inter-activity

scenarios, respectively. Ultimately it seems that the need for highly accurate
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classifications is mitigated by the use of multiple hypothesis support during in-

ference. That is, given enough particles the predictions of every competing HMM

are well represented.

D.3 State Vector Definition

Given a sequence of MoCap frames m = 1, ...,M for a particular activity a subset

of feature points were extracted. These were the markers on the right shoulder,

elbows, wrists, right hip, knees and ankles. Angles between right radius and

right humerus, both radii, right femur and right tibia, and both tibia were then

calculated. For example, the angle between the two radii bones may be calculated

from the marker coordinates in the global coordinate system cRelb, cRwri, cLelb,

cLwri by defining limb vectors lLrad = cLwri − cLelb and lRrad = cRwri − cRelb. The

relationship

|lLrad||lRrad| cos θ = lLrad.lRrad (D.1)

was then used to determine the angle θ between limbs. In this way, a state vector

was compiled at each frame

xm =


θRrad,Lrad

θRhum,Rrad

θRfem,Rtib

θRtib,Ltib

 , m = 1, ...,M. (D.2)

As limbs are considered relative to one another, the state vector should remain

consistent for a particular pose regardless of the subject’s location in the world

coordinate system, see Fig. D.2(a). In order to minimise ambiguity in the state

space, the state vector was extended to contain a finite differencing estimate of

∆xm made using the previous timestep, i.e. ∆xm ≈ xm − xm−1.
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D.4 Learning HMMs

A set of 6 subjects were recorded performing 6 periodic activities using a Vicon

MoCap system. These were walking on the spot, running on the spot, one-footed

skipping, two-footed skipping and two types of star jump, see Fig. D.1. The

Vicon system provided coordinates of markers attached to feature points on each

subject, in the manner of a 3D moving light display (MLD) system. Feature

points were located on the head, torso, shoulders, elbows, wrists, hips, knees and

ankles. Each activity was performed by at least 3 individuals and state vectors

were extracted at each frame as described in Section D.3. Each resulting sequence

was divided into two halves, each of between 5 to 12 seconds at 60fps. One half

was used for training, the other retained for testing.

Each of the activities was represented by 30 states, each with a Gaussian obser-

vation density. Initial estimates of the state means and covariance matrices were

found by K-means clustering. The transition matrix A was initialised randomly

(with each row summing to 1) and the prior a set with every value equal to

1/N , where N is the total number of states. Elements of a were not reestimated

in order that test data could begin at any point during the activity unit with

no probabilistic penalty. The transition probabilities and state means and co-

variances were reestimated using no more than 20 iterations of the Baum-Welch

update equations (see Appendix C for details).

D.5 Experiments

Using the “forward algorithm” it is relatively simple to calculate the possibility

that test data was emitted by an HMM (see also Section C.2). By training a set

of N HMMs using training data from a set of N activities it is possible to classify

subsequent batches of training data between the N activities. Of particular

interest is how much test data is required to achieve reliable classification.
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(a) jumping on the spot 1 (jump1)

(b) jumping on the spot 2 (jump2)

(c) Running on the spot (run)

(d) Skipping on the spot 1 (skip1)

(e) Skipping on the spot 2 (skip2)

(f) walking on the spot (walk)

Figure D.1: MoCap activity data.

D.5.1 Synthesis

Once trained, an HMM can be used to synthesise activity data. A starting state is

chosen with probability proportional to the set of likelihoods a, and a state vector
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Figure D.2: Walk data: (a) an example of the state vector time series for a
walking subject; (b) synthetic walking data produced by an HMM.

sampled from the chosen state’s observation density. Subsequent transitions are

then made via the recovered state transition matrix A, each accompanied by the

emission of a vector of state parameters. An example of synthetic walk data is

shown in Fig. D.2(b).

D.5.2 Classification

Each subject’s test data for each activity was tested separately. The probability

p(X∗|λ) was calculated 5 times for each test sequence X∗ = {x1, ..., xM}, the

Baum-Welch algorithm having been allowed to reconverge to a newly estimated

set of parameters λ each time. Table D.1 summarizes the classification results for

each batch of activity test data against each trained model. For cross comparison,

the forward variable is calculated over the first 2.5 seconds of each test sequence.

Classification results are concentrated on the diagonal and no misclassifications

are made for four of the activities. In the cases of jump1 and skip1, all off-diagonal

classifications are due to just one test sequence in each batch, with all other

sequences being correctly classified. Further discussion is given in Section D.6.
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λjump1 λjump2 λrun λskip1 λskip2 λwalk

Xjump1 17/20 3/20 0/20 0/20 0/20 0/20
Xjump2 0/20 20/20 0/20 0/20 0/20 0/20
Xrun 0/15 0/15 15/15 0/15 0/15 0/15
Xskip1 0/15 1/15 0/15 12/15 2/15 0/15
Xskip2 0/20 0/20 0/20 0/20 20/20 0/20
Xwalk 0/15 0/15 0/15 0/15 0/15 15/15

Table D.1: Activity classification results.

D.5.3 Confusion Matrices

Fig. D.3 shows the forward variable for each activity model as a function of the

number of frames of one subject’s test walk sequence taken as input (m). Walk

is not correctly established as the most likely activity until m = 4 and jump2

temporarily overtakes it for m = 27, 28, 29. Walk subsequently remains the most

likely interpretation. p(Xwalk|λrun) proved extremely unlikely, causing arithmetic

overflow by m = 2 and is not plotted.

In order to determine how quickly reliable classification may take place across

the activity cycles, each test sequence was divided into smaller segments for

evaluation with the forward variable. Segment lengths of 2, 4, 8, 16, 32 and 64

frames were used and all possible continuous segments of this length tested, with

data segments allowed to overlap, thus maximising the number of classification

problems considered. The classification results were used to form a confusion

matrix for each activity and these are shown in Table D.2.

D.6 Discussion and Conclusions

Given reasonably long batches of test data good classification of activity is

achieved (see Table D.1). Classification between the broad activity types (run,

walk, skip, jump) is reliable. Although subtle changes in activity proved more

difficult – e.g. there is confusion between the two star jumps and one-footed and

two-footed skipping – classification rates remained upwards of 80%. Reduction of

test data segment length for reliably classified activities such as jump2 and skip2
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Figure D.3: Forward variable for one subject’s test walk sequence for all
activity models as a function of the number of frames (m).

produced a gradual spread in the distribution across activity columns of the con-

fusion matrix (see Table D.2). However, correct classification remains above 80%

using only two observations (separated by 1/60th of a second). These results

demonstrate a surprising ability to discriminate between activities given only

very small fragments of test data and a rather “bland” set of state parameters.

The two jump activities considered in this chapter share some of the same poses.

It is therefore unavoidable that some test poses will divided between HMMs.

In pure classification tasks this result may be unacceptable, and longer state

histories don’t guarantee improvement (see lower rows in Table D.2). Viewed

in the context of multiple hypothesis tracking, however, this result is likely to

be sufficient. An ensemble of observations (particles) will be divided between

competing HMM states with, say, a 70-30 ratio for jump1 and jump2 activities.

If the HMMs are then used for particle propagation, the future predictions of

both activity models are represented.
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(a) jump1

λjump1 λjump2 λrun λskip1 λskip2 λwalk

M = 2 0.7190 0.2810 0.0000 0.0000 0.0000 0.0000
M = 4 0.7045 0.2955 0.0000 0.0000 0.0000 0.0000
M = 8 0.7062 0.2938 0.0000 0.0000 0.0000 0.0000
M = 16 0.7221 0.2779 0.0000 0.0000 0.0000 0.0000
M = 32 0.7511 0.2489 0.0000 0.0000 0.0000 0.0000
M = 64 0.7738 0.2262 0.0000 0.0000 0.0000 0.0000

(b) jump2

λjump1 λjump2 λrun λskip1 λskip2 λwalk

M = 2 0.0397 0.9460 0.0000 0.0011 0.0132 0.0000
M = 4 0.0311 0.9566 0.0000 0.0000 0.0122 0.0000
M = 8 0.0238 0.9706 0.0000 0.0000 0.0057 0.0000
M = 16 0.0012 0.9988 0.0000 0.0000 0.0000 0.0000
M = 32 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
M = 64 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

(c) run

λjump1 λjump2 λrun λskip1 λskip2 λwalk

M = 2 0.0229 0.0249 0.9254 0.0191 0.0076 0.0000
M = 4 0.0077 0.0464 0.9168 0.0251 0.0039 0.0000
M = 8 0.0000 0.0614 0.9287 0.0099 0.0000 0.0000
M = 16 0.0000 0.0686 0.9293 0.0021 0.0000 0.0000
M = 32 0.0000 0.0531 0.9215 0.0254 0.0000 0.0000
M = 64 0.0000 0.1128 0.8872 0.0000 0.0000 0.0000

(d) skip1

λjump1 λjump2 λrun λskip1 λskip2 λwalk

M = 2 0.0267 0.1336 0.0095 0.7977 0.0324 0.0000
M = 4 0.0270 0.1351 0.0077 0.8147 0.0154 0.0000
M = 8 0.0237 0.1443 0.0040 0.8162 0.0119 0.0000
M = 16 0.0104 0.1432 0.0000 0.8423 0.0041 0.0000
M = 32 0.0046 0.1175 0.0000 0.8641 0.0138 0.0000
M = 64 0.0237 0.1834 0.0000 0.7929 0.0000 0.0000

(e) skip2

λjump1 λjump2 λrun λskip1 λskip2 λwalk

M = 2 0.0145 0.0193 0.0000 0.0386 0.9277 0.0000
M = 4 0.0081 0.0114 0.0000 0.0309 0.9495 0.0000
M = 8 0.0017 0.0017 0.0000 0.0017 0.9950 0.0000
M = 16 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
M = 32 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
M = 64 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

(f) walk

λjump1 λjump2 λrun λskip1 λskip2 λwalk

M = 2 0.0114 0.1641 0.0000 0.0000 0.0000 0.8245
M = 4 0.0089 0.1705 0.0000 0.0000 0.0000 0.8206
M = 8 0.0000 0.1667 0.0000 0.0000 0.0000 0.8333
M = 16 0.0000 0.1267 0.0000 0.0000 0.0000 0.8733
M = 32 0.0000 0.0655 0.0000 0.0000 0.0000 0.9345
M = 64 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table D.2: Activity classification rate versus data segment length.
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