
Please cite the Published Version

Hashmi, Adeel (2011) Hardware Acceleration of Network Intrusion Detection System Using FPGA.
Doctoral thesis (PhD), Manchester Metropolitan University.

Downloaded from: https://e-space.mmu.ac.uk/626461/

Usage rights: Creative Commons: Attribution-Noncommercial-Share Alike
4.0

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://e-space.mmu.ac.uk/626461/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

MANCHESTER METROPOLITAN UNIVERSITY

Hardware Acceleration of Network

Intrusion Detection System Using

FPGA

by

Adeel Hashmi

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Science and Engineering

School of Computing, Mathematics and Digital Technology

January 2011

Acknowledgements

I would like to express my gratitude to my PhD supervisors Dr. Andy Nisbet and Mr.

Clive Mingham for the guidance and support. Throughout my thesis writing period,

they provided encouragement, sound advice, good teaching, and lots of good ideas. I

would have been lost without them.

I am grateful to my office mates for providing a stimulating and fun environment in

which to learn and grow. I am especially grateful to Pete, Naomi and John for their

valuable feedbacks and providing me regular cups of coffee.

Special thanks to my friends Nauman and Kaleem for helping me get through the difficult

times, and for all the emotional support, entertainment, and caring they provided.

Lastly, and most importantly, I wish to thank my family for their support, patience and

understanding. To them I dedicate this thesis.

i

Abstract

This thesis presents new algorithms and hardware designs for Signature-based Net-

work Intrusion Detection System (SB-NIDS) optimisation exploiting a hybrid hardware-

software co-designed embedded processing platform. The work describe concentrates

on optimisation of a complete SB-NIDS Snort application software on a FPGA based

hardware-software target rather than on the implementation of a single functional unit

for hardware acceleration. Pattern Matching Hardware Accelerator (PMHA) based on

Bloom filter was designed to optimise SB-NIDS performance for execution on a Xilinx

MicroBlaze soft-core processor. The Bloom filter approach enables the potentially large

number of network intrusion attack patterns to be efficiently represented and searched

primarily using accesses to FPGA on-chip memory. The thesis demonstrates, the via-

bility of hybrid hardware-software co-designed approach for SB-NIDS. Future work is

required to investigate the effects of later generation FPGA technology and multi-core

processors in order to clearly prove the benefits over conventional processor platforms

for SB-NIDS.

The strengths and weaknesses of the hardware accelerators and algorithms are analysed,

and experimental results are examined to determine the effectiveness of the implemen-

tation. Experimental results confirm that the PMHA is capable of performing network

packet analysis for gigabit rate network traffic. Experimental test results indicate that

our SB-NIDS prototype implementation on relatively low clock rate embedded process-

ing platform performance is approximately 1.7 times better than Snort executing on

a general purpose processor on PC when comparing processor cycles rather than wall

clock time.

Contents

Acknowledgements i

Abstract ii

List of Figures vi

List of Tables ix

Abbreviations x

1 Introduction 1

1.1 Background and Problem Overview . 1

1.2 Solution Synopsis . 2

1.3 Aims and Objectives . 3

1.3.1 Objectives . 3

1.4 Contributions and Claims . 4

1.5 Thesis Outline . 6

2 Background 7

2.1 Chapter Roadmap . 7

2.2 Network Security Issues . 8

2.2.1 Flawed Internet Protocol Design 9

2.2.2 Vulnerabilities in Software . 21

2.2.3 Malicious Code . 22

2.3 Network Defence Mechanism . 25

2.3.1 Configuration Management . 25

2.3.2 Firewall . 25

2.3.3 Intrusion Detection System . 27

2.4 Intrusion Detection System: An Indepth Analysis 28

2.4.1 Host Monitoring . 28

2.4.2 Network Monitoring . 28

2.4.3 Types of Intrusion Detection System 28

2.4.4 Intrusion Detection Techniques . 32

2.4.5 Popular Intrusion Detection System Products 33

2.4.6 Issues and Limitations of Intrusion Detection System 34

2.4.7 NIDS Computationally Demanding Process 36

2.5 Summary . 39

iii

Contents iv

3 Survey and Related Work 40

3.1 Chapter Roadmap . 40

3.2 Introduction to Literature Review . 41

3.3 Literature Explanation . 41

3.4 SB-NIDS using High Performance Computing Platform 41

3.4.1 Computer Clusters for SB-NIDS 44

3.4.2 Embedded Processing Platform for NIDS 50

3.5 Pattern Matching for SB-NIDS . 53

3.5.1 SB-NIDS Specific Pattern Matching Algorithms 54

3.5.2 Packet Filtering Technique for Pattern Matching in SB-NIDS . . . 58

3.5.3 Pattern matching using High Performance Computing Platform . . 68

3.6 Chapter Summary . 74

4 Proposed System Architecture 75

4.1 Chapter Roadmap . 75

4.2 System Description . 76

4.2.1 Overview . 76

4.2.2 Architecture . 76

4.2.3 Deployment . 77

4.2.4 Features . 77

4.3 System Prototyping . 79

4.3.1 Snort . 79

4.3.2 Snort Architecture . 80

4.3.3 Prototyping Challenges . 85

4.3.4 Prototyping Requirements . 86

4.4 Chapter Summary . 91

5 Design and Implementation 92

5.1 Chapter Roadmap . 92

5.2 Snort Port on Hybrid Hardware-Software Processing Platform (MMU-
Snort I) . 93

5.2.1 Analysis . 93

5.2.2 Design . 94

5.2.3 Implementation . 97

5.3 Pattern Matching Hardware Accelerator (MMU-Snort II) 99

5.3.1 Analysis . 100

5.3.2 Design . 106

5.3.3 Implementation . 114

5.4 Final Optimisation of Snort Port (MMU-Snort III) 118

5.4.1 Analysis . 118

5.4.2 Design . 123

5.5 Chapter Summary . 128

6 Results and Analysis 129

6.1 Chapter Roadmap . 129

6.2 Experimental Testbed . 130

6.3 Testing and Evaluation of Snort Port (MMU-Snort I) 131

Contents v

6.3.1 Functional Test . 131

6.3.2 Performance Test . 131

6.4 Testing and Evaluation of Pattern Matching Hardware Accelerator (MMU-
Snort II and MMU-Snort III) . 135

6.4.1 Performance Test . 135

6.4.2 Comparison with Previous Work 143

6.5 Chapter Summary . 144

7 Conclusion and Future Work 145

7.1 Chapter Summary . 145

7.2 Overall Conclusion . 149

7.3 Limitations and Future Directions . 150

7.3.1 Regular Expression Search . 150

7.3.2 Non-Interruptible Update . 151

7.3.3 Packet filtering . 152

7.4 Final Comments . 152

Bibliography 154

APPENDIX A: Published Research 166

List of Figures

2.1 Two core reasons of network attacks . 8

2.2 Denial of Service classification . 10

2.3 Denial of Service second classification . 10

2.4 Denial of Service attacks using TCP . 11

2.5 Normal TCP connection and TCP SYN flooding attack 12

2.6 Denial of Service attacks using ICMP . 13

2.7 Smurf attack . 14

2.8 Denial of Service attacks using IP . 15

2.9 Network topology of DDoS . 17

2.10 MAC address forgery attack also known as ARP spoofing 19

2.11 Types of malware . 23

2.12 Firewall sitting between LAN and the Internet 26

2.13 Types of Firewall . 26

2.14 Typical IDS data analyses flow . 27

2.15 Types of IDS . 29

2.16 Typical NIDS data analyses flow . 30

2.17 NIDS sitting between LAN and the Internet 30

2.18 Typical HIDS data analyses flow . 31

2.19 NIDS sitting between LAN and the Internet and HIDS agents on Internet
facing servers . 32

2.20 Packet Inspection in SB-NIDS . 37

3.1 Network Intrusion Detection Systems and Filtering Systems 42

3.2 Pattern Matching . 43

3.3 Typical arrangement of hardware for Cluster-based SB-NIDS 45

3.4 Loadbalancing using hash calculator . 47

3.5 Suffix tree and Bad-character shift table for SBMH 55

3.6 Example showing pattern search in a text “patternrstyz”. Pattern “rstyz”
is found in a text in final shift . 55

3.7 Prefix tree and text alignment to begin pattern search in AC-BM algorithm 56

3.8 Search shows good-prefix shift . 57

3.9 Block diagram showing typical position of Filtering System for SB-NIDS . 58

3.10 Pre-processing in ExB of a text “1000poundsinnetworkpacket” 60

3.11 ExB algorithm searching patterns in a text “1000poundsinnetworkpacket” 60

3.12 Example of pre-processing of patterns “filteringprocess” and “filterin-
goodmilk” in PIRAMHA . 62

3.13 Example of searching text “verygoodfilteringprocess” for patterns “filter-
ingprocess” and “filteringoodmilk” in PIRAMHA 62

vi

List of Figures vii

3.14 Block diagram of Snort offloader showing two main hardware modules . . 64

3.15 Packet processing flow in filtering hardware 66

4.1 NIDS Modules . 76

4.2 NIDS Deployment . 77

4.3 Snort architecture showing packet processing flow 80

4.4 Packet Sniffer function . 81

4.5 Packet processing flow through Preprocessors 82

4.6 Packet checking in Detection Engine . 83

4.7 Snort rule of CGI-PHF attack . 83

4.8 Snort rule header . 84

4.9 HandelC and MicroBlaze design system 88

4.10 OPB slave memory space in system.mhs file 89

4.11 OPB slave memory space in system.mhs file 90

5.1 Snort on RC300 board . 96

5.2 Packet Capture Hardware Accelerator (PCHA) architecture 97

5.3 Decision Engine Hardware Accelerator (DEHA) architecture 98

5.4 Key Stages of Snort . 100

5.5 Parsed structure of Snort rules in memory (SRT) 101

5.6 A state machine concept constructed using patterns “he, she, him, her, his”102

5.7 Example Snort rule . 103

5.8 Python code: 3 character string to integer conversion 103

5.9 Empty Bloom Filter . 104

5.10 Insert bit-strings (x1) and (x2) . 104

5.11 Query bit-strings (x3) and (x4) . 104

5.12 Top level diagram showing modified Detection Engine 107

5.13 Block diagram of pattern matching hardware function unit 107

5.14 Packet processing flow for Snort rule evaluation 109

5.15 Rule selection . 110

5.16 Hardware modules performing packet payload searching 111

5.17 Rule units computing hash values . 112

5.18 2-to-N hash module computing ten hash values using two hash values . . 113

5.19 Bloom filter index checking with corresponding hash values 113

5.20 False positive analyser with hash table lookup unit and comparator circuit114

5.21 Pattern Matching Hardware Accelerator (PMHA) architecture 115

5.22 Hash calculator circuit design . 116

5.23 Rule selection and evaluation result . 120

5.24 Example Snort rules . 120

5.25 Patterns from Snort rules with their length 122

5.26 A line graph showing the increase of patterns after breakup 123

5.27 Old and new Pattern Matching algorithms on FPGA 124

5.28 Rule selection and evaluation result with modified algorithm 125

5.29 Modified false positive analyser with Hash table lookup unit and Com-
parator circuit . 126

5.30 Pattern matching algorithm flowchart for longer (> 64 bytes) pattern . . 127

6.1 Topology of experimental test network . 130

List of Figures viii

6.2 Snort CPU cycles comparison . 132

6.3 CPU cycles count of Snort on PC . 133

6.4 CPU cycles count of Snort on MicroBlaze 134

6.5 Synthesis result on Xilinx XC2V6000 -4 Virtex-II FPGA 134

6.6 Aho-Corasick state machine and pattern matching hardware accelerator
memory requirements . 136

6.7 Aho-Corasick (ac-standard) state machine memory size (MB) for different
character count . 136

6.8 PMHA throughput at 50 MHz for the test results in Table 6.1 137

6.9 Pattern Matching Hardware Accelerator (PMHA) throughput with total
7876 patterns . 138

6.10 PMHA throughput comparison before and after optimisation 139

6.11 PMHA throughput comparison before and after optimisation 140

6.12 False Positive vs Bloom filter size . 141

6.13 Synthesis result of six hash module on Xilinx XC2V6000 -4 Virtex-II FPGA142

6.14 Synthesis result of two hash module and 2-to-N hash module on Xilinx
XC2V6000 -4 Virtex-II FPGA . 143

6.15 Synthesis result of full SB-NIDS prototype (MMU-Snort III) on Xilinx
XC2V6000 -4 Virtex-II FPGA . 143

List of Tables

2.1 Summary of DoS attacks using TCP . 11

2.2 Summary of DoS attacks using ICMP . 13

2.3 Summary of DoS attacks using IP . 16

2.4 Common DDoS attack tools . 17

2.5 Forgery using Network protocols . 18

2.6 Viruses types and behaviour . 24

2.7 Comparison of IDS types . 29

2.8 Summary of IDS detection techniques . 32

2.9 Summary: Product details of leading HIDS and NIDS 34

2.10 Summary: Best NIDS/NIPS product of leading private companies 34

3.1 Summary of Computer cluster and Embedded processing based SB-NIDS 44

3.2 NIDS cluster hardware specification . 46

3.3 Advantages and disadvantages of cluster based NIDS 46

3.4 NIDS specific hybrid multi-pattern matching algorithms 54

3.5 Pattern Filtering Systems . 58

3.6 Details of Hardware technologies . 59

3.7 Advantages and disadvantages of software based pattern matching filter-
ing system . 59

3.8 Hardware based pattern filtering . 67

3.9 Some pattern matching implementation on FPGA and Network Processor 69

3.10 Hardware Details of development platform 70

3.11 Snort Rule Evaluation Systems summary 72

4.1 Modifier Keywords . 85

5.1 Profile of Snort on PC . 93

5.2 Total number of patterns . 122

6.1 Clock cycle count of Pattern Matching Hardware Accelerator (PMHA) . . 137

6.2 Comparison of clock cycle count of PMHA before and after optimisation . 139

6.3 False positive rate of PMHA (MMU-SnortII) with 7876 patterns 141

6.4 False positive rate of PMHA (MMU-Snort III) with 9150 patterns 142

6.5 Pattern Matching Hardware Accelerator (PMHA) Memory Size (Kbits) . 143

6.6 Pattern matching hardware architecture on FPGA 144

ix

Abbreviations

AC Aho-Corasick
ARP Address Resolution Protocol
ASIC Application Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
BGP Border Gateway Protocol
BM Boyer-Moore
BRAM Block Random Access Memory
CAM Content Addressable Memory
CERT Computer Emergency Response Team
CIAC Computer Incident Advisory Capability
CPU Central Processing Unit
DEHA Decision Engine Hardware Accelerator
DoS Denial of Service
DDoS Distributed Denial of Service
DPI Deep Packet Inspection
ESMTP Enhanced Simple Mail Transfer Protocol
FPGA Field Programmable Gate Array
FSL Fast Simplex Link
Gbps Giga-bit per second
GPU Graphic Processing Unit
GUI Graphical User Interface
HDL Hardware Description Language
HIDS Host Intrusion Detection System
HTTP Hypertext Transfer Protocol
IC Integrated Circuit
ICMP Inernet Control Message Protocol
IDS Intrusion Detection System
IP Internet Protocol
IPS Intrusion Prevention System
IPsec Internet Protocol Security
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IRC Internet Relay Chat
ISP Internet Service Provider
LMB Local Memory Bus
MAC Media Acess Control
MIT Massachusetts Institute of Technology
MTU Maximum Transmission Unit
NIDS Network Intrusion Detection System

x

Abbreviations xi

NIDS Network Intrusion Prevention System
NPU Netwok Processing Unit
OPB On-chip Peripheral Bus
OS Operating System
OSPF Open Shortest Path First
OTN Option Tree Node
P2P Peer-to-Peer
PCHA Packet Capture Hardware Accelerator
PMHA Pattern Matching Hardware Accelerator
POD Ping of Death
PCRE Perl Compatible Regular Expressions
QoS Quality of Service
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RPC Remote Procedure Call
RTN Rule Tree Node
SB-NIDS Signature Based-Network Intrusion Detection System
SB-NIPS Signature Based-Network Intrusion Prevention System
SDRAM Synchronous Dynamic Random Access Memory
SIP Session Initiation Protocol
SMTP Simple Mail Transfer Protocol
SoC System on Chip
SoPC System on Programmable Chip
SPI Stateful Packet Inspection
SRAM Static Random Access Memory
SRT Snort Rule Tree
SSL Secure Socket Layer
TCP Transmission Control Protocol
TFN Tribe Flood Network
ToS Type of Service
TTL Time to live
UDP User Datagram Protocol
US-CERT United States-Computer Emergency Readiness Team
VoIP Voice over Internet Protocol

Chapter 1

Introduction

This thesis is about optimisation of Signature-based Network Intrusion Detection Sys-

tem (SB-NIDS) packet analysis speed. A complete SB-NIDS prototype is presented,

developed using hybrid hardware-software embedded processing platform.

1.1 Background and Problem Overview

One of the effective ways to secure computer networks from the attacks is the network

defence software technology such as Network Intrusion Detection System (NIDS). NIDS

has been widely adopted in the business and government sector to secure computer

networks by detecting different kinds of network attack as well as detection of illegal

access to confidential data and resources. Although NIDS is a good network defence

software, on high data rate networks such as gigabit rate its performance is poor. It is

unable to analyse all traffic as network packets arrive faster than NIDS packet analysis

speed. Consequently, NIDS packet buffer fills very quickly and force it to drop some

packets without analysis in order to make more space in buffer for new packets. For

example, SB-NIDS software package Snort when executed on Intel Xeon Dual-Core

2.0 GHz general purpose processor and test with network test data which requires 175

concurrent Transmission Control Protocol (TCP) connections is only able to analyse

network traffic up to 566 Mbps throughput [2, 3]. The main reasons for slow packet

analysis rate are the complexity of network packet analysis operations and frequent

memory accesses. These operations typically involve bit masking, bit comparison, bit

shifting that general purpose processor instruction sets do not support efficiently. Also

frequent memory accesses on these loosely coupled processor architectures consume a

relatively high number of CPU clock cycles (100s) if a cache miss occurs (Section 6.3).

1

Chapter 1. Introduction 2

Various attempts have been made to optimise SB-NIDS packet analysis speed (Chap-

ter 3). Most of the current state of the art solutions optimise only specific computation-

ally intensive parts or components of SB-NIDS software (Section 3.5). Some solutions

use clusters of processors and high performance embedded processing platforms in or-

der to optimise a complete SB-NIDS application (Section 3.4.1). Commercial NIDS

solutions based on embedded processing platforms use high specification embedded pro-

cessing hardware. They claim to provide a complete SB-NIDS solutions with a support

of up to 10 Gbps network throughput (Section 2.4.5). Still a great deal of work needed

to be done to support NIDS packet analysis throughput preferably over 10 gigabit rate

as network data rates continuously increasing such as recently approved IEEE 802.3ba

standard which supports 40 Gbps and 100 Gbps transmission rate [4].

1.2 Solution Synopsis

A prototype SB-NIDS using hybrid hardware-software embedded processing platform

was developed to enable high speed packet analysis. To support this effort, an open

source and widely used SB-NIDS software package Snort was used. An execution analysis

of Snort was carried out using software profiling tools in order to identify bottlenecks in

packet analysis. Based on the profiling results, the most suitable embedded processing

platform was selected. This embedded platform is a hybrid hardware-software processing

solution having tightly coupled hardware architecture to enable low clock cycle accesses

to hardware peripherals such as Network Interface Cards (NICs) and memory. It also

allows hardware accelerator development in Field Programmable Gate Array (FPGA)

and multi-processing using MicroBlaze soft processing cores. One of the main goals of

hardware accelerator development is to offload any computationally significant operation

of a software from a CPU to FPGA. FPGA provides parallelism, pipelining and bit-

level processing facility, and has great potential to reduce and/or remove performance

bottlenecks in SB-NIDS software. Multi-processing facility can be applied to SB-NIDS

packet analysis process in order to improve the overall SB-NIDS processing efficiency

although this is not investigated in this thesis.

Prototyping and optimisation was carried out in stages. Initially, Snort was ported to

the embedded processing platform. This involved Snort software architecture restructur-

ing in order to successfully map and execute to new processing platform which is based

on Xilinx MicroBlaze soft-core processor and FPGA. This prototype is called as Manch-

ester Metropolitan University-Snort I (MMU-Snort I). MMU-Snort I performance on

new processing platform then evaluated to identify any improvement or bottlenecks in

packet analysis processes. Test results showed that prototype SB-NIDS or MMU-Snort I

Chapter 1. Introduction 3

execution speed has improved when compared with the CPU clock cycles of the original

Snort software package when executed on a PC with a general purpose processor.

In the next stage pattern matching algorithm performance was optimised. This involved

development of Pattern Matching Hardware Accelerator (PMHA) and its integration

into Snort prototype or MMU-Snort I. This resulted in the second prototype called

MMU-Snort II. PMHA provides high throughput and low memory pattern matching

solution using a Bloom filter data structure based approach which allows quick lookup

of keywords or patterns [5]. The size of the attack signatures is significantly reduced

to the extent that the whole attack pattern represented as Bloom filter is stored to

FPGA on-chip memory/Block Random Access Memory (BRAM) for quick checking

of signature presence in packet payload data. Aditionally, full database of patterns is

stored in off-chip Synchronous Dynamic Random Access Memory (SDRAM) for further

signature checking in case a signature stored in FPGA BRAM is found in a packet during

first stage of pattern lookup. This is because Bloom filter search approach can provide

false positive matches for pattern lookup. The integration of PMHA into MMU-Snort I

required further design changes, resulting in an optimised and integrated PMHA for

Snort on the same processing platform. In the last stage, PMHA was further optimised

to search efficiently longer patterns (> 64 Bytes) and for fast pruning of Bloom filter

false positive matches which resulted in MMU-Snort III prototype.

In summary, investigation and development of complete SB-NIDS prototype using hy-

brid hardware-software processing platform is presented here, with a focus on the added

benefits of throughput and reduced memory requirements. A full description of the

architectures and algorithms is presented in this thesis. In addition, a detailed per-

formance analysis and experimental results are used to demonstrate the suitability of

hybrid hardware-software platform for SB-NIDS execution, higher throughput support

and smaller memory requirements.

1.3 Aims and Objectives

The aim of this research project is to develop a series of algorithms and hardware

architectures for SB-NIDS in order to optimise its packet analysis speed.

1.3.1 Objectives

In order to achieve this aim; following research objectives have been identified:

Chapter 1. Introduction 4

• Design and implement SB-NIDS prototype that perform network packet analysis

at higher speed than Snort on general purpose processor.

• Evaluate SB-NIDS prototype using publicly available data for SB-NIDS testing

and identify packet analysis speed improvement and/or any performance issues.

• Gain efficiency and/or improve SB-NIDS packet analysis speed by offloading pat-

tern matching from CPU to FPGA that search one of the largest attack patterns

preferably at gigabit data rate.

• Use Snort application specific knowledge (Section 5.2.2) to improve pattern match-

ing (PMHA) performance further by reducing number of pattern search per packet.

• Evaluate PMHA implementation using publicly available test data for SB-NIDS

in order to to verify its performance improvement.

1.4 Contributions and Claims

The primary objective of this effort is the development of SB-NIDS prototype solution

using one of the viable embedded hybrid hardware-software processing platforms. The

main challenge faced in the development on this platform is the design and implemen-

tation of a full SB-NIDS while improving the performance needed by the state of the

art networks of today. This embedded processing platform is flexible as it not only al-

lows the execution of complete software applications such as SB-NIDS on an embedded

processor but also supports software optimisation, and enables the offloading of pro-

cessing from a CPU to FPGA hardware and multi-processing with multiple processing

cores. It also enables overall improvements in packet analysis speed of SB-NIDS due

to tightly coupled hardware architecture in which hardware peripherals like Ethernet

network interface have significantly lower latency access to network data and the CPU

performs relatively fast off-chip memory accesses requiring tens of clock cycles in com-

parison to hundreds of clock cycles on general purpose processor architectures. The

platform memory hierarchy arrangement in low-to-high clock cycles memory access sort

order are, FPGA BRAM, off-chip Static Random Access Memory (SRAM) and off-chip

Synchronous Dynamic Random Access Memory (SDRAM). This allows further improve-

ments in the SB-NIDS performance by storing frequently access data such as network

attack patterns or signatures to low latency access memory. Overall the processing plat-

form features is found to be viable to implement the SB-NIDS. Also, flexible hybrid

hardware-software processing and scalability in terms of multiple processing cores are

ideal for further optimisation of other SB-NIDS components that are bottlenecks on high

speed packet analysis. The idea presented in this thesis is a prototype SB-NIDS solution

Chapter 1. Introduction 5

that is intended to demonstrate the suitability of hybrid hardware-software processing

for SB-NIDS execution, optimisation and further research and development.

Initially a study of Snort SB-NIDS software architecture was carried out in detail to un-

derstand the packet analysis mechanism and processing requirements, this study was

then used to restructure Snort architecture for porting and optimisation on hybrid

hardware-software processing platform, and in this way a novel SB-NIDS prototype

architecture called MMU-Snort I on this platform was devised. In the next stage MMU-

Snort II was developed which involved the development of special PMHA and algorithm

suitable for low memory hardware that can also be easily integrated with MMU-Snort I.

This effort tempts the development of a algorithm that reduces the amount of large

memory required to store the attack signatures and reduces the pattern matching com-

putational time to enable high speed pattern search in payload. The primary benefit

attained through this which also advances the state of the art, is the compression of the

whole attack signatures that fit on-chip FPGA memory for performing quick filtering

or lookup, less computations required for pattern search than other closely related state

of the art solutions that were implemented using bloom filter based pattern matching

technique, and a complete SB-NIDS prototype based on one of the effective and widely

used open source SB-NIDS, which when further optimise in future using multiple pro-

cessing core and also migrate to a recent and more advanced hybrid hardware-software

processing platform will enable the high data rate network protection.

The strengths and weaknesses of the architecture and algorithms were analysed, and

experimental results were obtained to determine the effectiveness of the implementation.

The resulting contributions of this work are:

• A novel SB-NIDS prototype based on one of the effective and widely used open

source SB-NIDS software package Snort prototyped on a hybrid hardware-software

processing platform for further research, development and optimisation.

• A PMHA that compactly store 7876 unique attack patterns in 8 KB of FPGA

BRAM using Bloom filter search approach that supports quick lookup of packet

data for checking pattern presence.

• An application specific PMHA design which also integrated into prototype SB-

NIDS that supports parallel pattern search in a packet payload up to 1.85 Gbps

throughput.

• An inclusion of Snort application specific knowledge or logic to PMHA that reduces

the number of packet data lookup in Bloom filter stored in FPGA BRAM for 45 %

of SB-NIDS attack signatures 1.

1A JAVA program is written to count the percentage of application specific information.

Chapter 1. Introduction 6

• An adoption of technique to Bloom filter search approach that reduces the number

of hash value computation required by the Bloom filter based search algorithm [6].

The PMHA computes only two hash value in this implementation which produces

the same Bloom filter false positive rate as with ten hash values.

1.5 Thesis Outline

This thesis describes a solution to the problem presented in section 1.1. Chapter 2

is the detail discussion on network security issues and technologies. Chapter 3 is the

summary and discussion of the state of the art SB-NIDS and pattern matching solutions.

Chapter 4 is the proposed system architectures detail. Chapter 5 is the design and

implementation details of SB-NIDS (MMU-Snort I) and PMHA (MMU-Snort II and

MMU-Snort III). Chapter 6 presents the analyses and results which include comparison

of all three prototypes performance in order to estimate performance improvements.

This also include comparison of the results with the closely related state of the art

PMHA. Finally, Chapter 7 summarises the findings and provides some insight into future

directions.

Chapter 2

Background

“Whoever thinks his problem can be solved using cryptography,

doesn’t understand his problem and doesn’t understand cryptography

(Arritributed by Roger Needham and Butler Lampson to each other)”

The statement above is also relevant for current state of the art computer security de-

fence mechanisms such as Firewalls and Intrusion Detection System (IDS). Currently, no

effective solution exists for all network security problems and in some situations defence

mechanisms are themselves vulnerable to network attacks and/or their failure may lead

to complete failure of a network. To understand the scale of network security problems,

issues concerning network security threats and defence mechanisms are discussed in de-

tail in this chapter. The current state of the art in network security technologies are

presented in (Chapter 3).

2.1 Chapter Roadmap

The rest of the chapter is outlined as follows:

• In section 2.2, range of network security issues are discussed concerning two core

problems: flaws in network protocol design with reference to the Internet Protocol

suite (also known as Transmission Control Protocol/Internet Protocol (TCP/IP))

and vulnerabilities in software applications and Operating Systems (OS). Other

network security threats (Malwares such as Viruses, Worms and Spywares) are

discussed briefly to clarify and quantify the scale of network security problems.

• In section 2.3, core network defence mechanisms are discussed to illustrate counter

measures deployed against common network security attacks.

7

Chapter 2. Background 8

• In section 2.4, the main issues concerning Intrusion Detection System (IDS) tech-

nology, limitations and performance are explained in detail. The discussion main

focus is Signature-Based Network Intrusion Detection System (SB-NIDS) technol-

ogy.

2.2 Network Security Issues

The increasing frequency of cyber crimes and computer hacking attacks such as Denial of

Services (DoS) and phishing attacks are indicated by [7–10]. Further, a recent malware

(Section 2.2.3) attack on the University of Exeter (UK) computer network resulted in

the shut down of their entire campus network service [11]. Such problems have occurred

in domains including banking, financial services and retail. Network security problems

are compounded by a heavy reliance on Web for accessing everyday services such as

bill payments and online shopping transactions. Consequently, web based services are

an attractive targets for hackers whose goal is to steal personal financial details. The

hackers themselves are competent, but a big part of problem is actually the “Internet”

itself as explained by Professor Ross Anderson,

“The Internet protocol suite was designed for a world in which trusted

hosts at universities and research labs co-operated to manage networking

in a co-operative way [12].”

Consequently, the Internet was not designed to support secure online services. Flaws

such as easy to manipulate key packet values (Internet Protocol address, Port number

etc) in the “Internet protocol suite (TCP/IP)” hinder the provision of effective mecha-

nisms to deal with network security issues. Further, software application vulnerabilities

enables hackers to install malware on computers in order to create large distributed

collections of hacked machines (botnets) that are deployed to launch Distributed Denial

of Service (DDoS) attacks on computer systems or services (Figure 2.1).

Network attacks
core reasons

Flawed network
protocol design

Vulnerabilities in
software systems

Figure 2.1: Two core reasons of network attacks

Chapter 2. Background 9

2.2.1 Flawed Internet Protocol Design

Network protocols such as IP, TCP, Simple Mail Transfer Protocol (SMTP), and Hyper-

text Transfer Protocol (HTTP) are the core protocols for packet based communication

over the Internet. These protocols and others such as Peer-to-Peer (P2P) Protocol,

Voice Over Internet Protocol (VoIP), Session Initiation Protocol (SIP) have lead to the

development of online network services such as file sharing, electronic media streaming

and financial payment systems. The secure provision of such services is challenging be-

cause they are built on top of IP protocol which is itself flawed. These protocols do not

directly provide authenticity or confidentiality protection. Thus, knowledgeable users

can exploit basic sniffer programs to inspect network packets and even to manipulate

critical protocol features inside packets such as IP addresses, ports and payload data

values. Protocol based network attacks exploit authenticity and confidentiality issues

and may involve manipulation of packets in order to launch:–

• Denial of Services (DoS) and Distributed Denial of Service (DDoS) attacks

• Forgery attacks

• Session Hijacking attacks

In the following sections, protocol based attacks are discussed in order to demonstrate

the exact nature of problems and flaws with Internet protocols.

Denial Of Service (DoS) Attacks

Definition: DoS is an attack on critical network resources such as routers, OS, appli-

cation servers, network links aimed at disrupting their normal function.

DoS attacks can bring down critical network resources and normally results in commu-

nication disruption and service access denial to legitimate hosts.

Classification: Typically DoS attacks strive to deplete available processing and net-

work bandwidth resources which Hussain et al suggested to classified into: software

exploits and flooding attacks [13] (Figure 2.2).

Software exploits are a direct attack on critical network computing equipments (Routers,

Switches, Server machines etc.) whereas Resource depletion attacks aim to deplete

computational processing resources. A TCP SYN DoS attack sends a succession of

SYN requests to a server (Section 2.2.1) 1. The goal of this attack is to cause memory

1TCP SYN packet used in three way TCP handshake process between two machines for establishing
TCP connection.

Chapter 2. Background 10

Denial of Service

Packet FloodingSoftware Exploits

Figure 2.2: Denial of Service classification

and processing resource depletion in order to prevent new legitimate requests for TCP

connections to open and/or for those currently open to fail to make progress on the

machine under attack. A flooding or bandwidth depletion attack is an attempt to deplete

network link bandwidth by sending a high volume of network packets. In this type of

attack, an attacker floods the target network with network packets that completely

occupies the network bandwidth and does not let the legitimate user to get connected

to the network (Figure 2.3).

Denial of Service

Bandwidth DepletionResource Depletion

Figure 2.3: Denial of Service second classification

Network Protocols in DoS Attacks

DoS attacks are typically carried out using lower level network protocols: TCP, Internet

Control Message Protocol (ICMP), User Datagram Protocol (UDP), and IP. Some of

these protocols used for DoS attack identified by Computer Emergency Response Team

(CERT) are [14]:

• TCP attack

• ICMP Ping of Death attack

• UDP flood attack

DoS attacks are not limited to this list of protocols but can also be carried out using IP

packet by exploiting fragmentation and reassembly feature of IP packet.

Chapter 2. Background 11

DoS Attacks Using TCP

TCP is a connection oriented session level protocol for reliable duplex communication

over the Internet. Many web services on the Internet utilise TCP. Such web services are

hosted on server machines with potentially hundreds and thousands of client machines

simultaneously connected via TCP protocol. Server machines must have high computa-

tional performance and large size main memory in order to serve each and every client

request efficiently and to maintain TCP connection state. Servers are very vulnerable

to attack as it is easy for hackers to launch DoS attacks exploiting TCP packet header

flags bits (SYN, RST).

The two widely known DoS attacks carried out by the manipulation of TCP flags are:

TCP SYN attack and TCP Reset attack [15, 16] (Figure 2.4).

DoS attack using TCP

TCP RST
attack

TCP SYN
attack

Figure 2.4: Denial of Service attacks using TCP

Table 2.1: Summary of DoS attacks using TCP

Attack How Effect Remedy

TCP SYN

Attacker sends repeated
TCP SYN packet with forged
source IP address to target
machine.

Server main memory becomes
full due to pending connec-
tion request.

Software
Patch

TCP RST
TCP RST packet with forged
IP address is send by attacker
to the target machine.

Drop connection that dis-
rupts the communication.

No Solu-
tion

TCP SYN Attack: TCP protocol specification specifies one of the main purposes

of TCP SYN flag is for establishing connection between two machines. This is carried

out using a three way handshake process involving (SYN, SYN-ACK, ACK) packet

exchanges. Hackers exploit this connection establishment process in order to carry out

DoS attack. The attack involves sending a series of TCP packets to the target machine

for connection request with a TCP SYN flag set and forged source IP address. The target

machine on receipt of every TCP SYN packet must allocate space in the SYN queue in

system memory and acknowledge the request by sending back a TCP packet with ACK

flag set to the source machine IP address. The source machine will never acknowledge

this message because source IP address is forged by the attacker. The result is that the

Chapter 2. Background 12

target system SYN queue can become full and force the target machine to reject further

connection requests. Figure 2.5 shows a normal TCP connection establishment process

and TCP SYN attack.

1) SYN

2) SYN - ACK

3) ACK

Normal TCP Connection.
The three-way handshake correctly

performed

Client Server

 1) SYN
(Forged Source IP address)

 2) SYN - ACK
(Sent to forged IP address)

TCP SYN Flood.
Attacker sent many packets but

no ACK pakets

Attacker Server

Figure 2.5: Normal TCP connection and TCP SYN flooding attack

TCP SYN is one of the classic examples of using the TCP protocol to attack network

resources. However, this attack can be fixed by patching the OS (SYN cookie fix) or

a defence mechanism can be used to monitor an unexpected number of flooded request

(Section 2.3).

TCP RST Attack: The purpose of the TCP RST flag is to immediately terminate an

established TCP connection between two machines. If a packet with TCP RST flag set

to ‘1’ received by the destination system then it immediately terminates TCP connection

without any further exchange of TCP packets. The RST flag option is also exploited by

attackers to launch DoS attack as examined for the first time in 2003 by Watson [16].

According to Watson’s description, an attacker closely monitors TCP communications

across networks and gathers vital information concerning host IP addresses and ports

of current participants in TCP connections. On obtaining this information an attacker

launches an attack by creating a TCP packet with a participants host IP address and

ports along with TCP RST flag set and sends this packet to any of the two participants’

hosts resulting in an instant connection termination and DoS effect.

Chapter 2. Background 13

DoS Attack Using ICMP

ICMP is a connectionless protocol and an integral part of IP suite. The ping command

uses ICMP for troubleshooting network communication issues and gathering network

details about hosts and open ports. The information gathered can be used to launch

ICMP DoS attack. Two famous DoS attack carried out using ICMP protocols are the

Smurf attack and Ping of Death attacks [17, 18] (Figure 2.6).

DoS attack using ICMP

Ping of Death
attack

Smurf
attack

Figure 2.6: Denial of Service attacks using ICMP

Table 2.2: Summary of DoS attacks using ICMP

Attack How Effect Remedy

Smurt
attack

Attacker sends ICMP ping
packet with target machine IP
address set as source IP to the
broadcast address.

Network bandwidth depletes
due to packet flooding as
well as processor resources ex-
hausts.

Protocol
fix pro-
posed in
August
1999

Ping of
Death

Attacker sends oversize ICMP
ping packets to the target ma-
chine.

Processors resource depletes
due to operating system prob-
lem dealing with oversize
packets.

Operating
System
patch

Smurf Attack: uses an ICMP echo request/reply (ping) packet. The attacker must

acquire network information concerning particular IP addresses of hosts. The attacker

then spoofs2 ICMP echo request packets to be from one or more valid hosts (victims)

and sends a high volume of packets to the network broadcast address. Now every host on

a network receives an ICMP packet and they reply back to the spoofed IP address of the

victims (valid hosts). Now each victim who originally did not send any ICMP packet

will receive ICMP echo reply from all hosts on a network and this depletes network

bandwidth and may overwhelm the victim machine causing DoS effect. Smurf attack is

shown in figure 2.7.

Figure 2.7 shows only one ping request in smurf attack. A technical countermeasure was

proposed in August 1999 to the protocol standard that ICMP echo requests sent to the

broadcast address are no longer replied to by default [19]. Router configuration can also

be used to prevent the propagation of broadcast packets to other subnetworks.

2Spoofing is the creation of packets with forged or incorrect source address.

Chapter 2. Background 14

Internet

Attacker Machine

Target Machine

Ping request

Broadcast address

Figure 2.7: Smurf attack

Ping Of Death Attack: Another kind of DoS attack using ICMP is also carried out

using ICMP echo request/reply packet or ping packet called Ping of Death (POD) DoS

attack. An attacker sends a high volume of malformed or oversize ICMP ping packets3

up to the allowed maximum IP size of 65535 bytes. These packets are then fragmented

by the transmission network. The victim machine receiving such fragmented packets

tries to reassemble them and a buffer overflow can occur causing a system crash or

reboot. This attack is no longer effective as most operating systems are patched to deal

with malformed ping packets by allocating a significant amount of memory and via the

incorporation of buffer overflow checking code.

DoS Attack Using UDP

UDP is a connectionless transport layer protocol. Thus, it is possible to send any

type of UDP packet to any machine on any ports without informing the recipient or

handshaking. UDP port DoS attack is a DoS attack based on UDP [20].

UDP Port DoS Attack: here, an attacker sends a series of UDP packets to an IP

address of a victim machine on a specific port or a set of random ports. For every

UDP packet received by a victim, its OS tries to determine which application provides

services on this port. If the victim machine is not running any application for the

3Ping is 56 bytes in size and 84 bytes when IP header is considered.

Chapter 2. Background 15

requested service on a port then it replies with an ICMP destination port unreachable

packet indicating there is no service available. If the attackers send UDP packets in large

volume then the overhead of triggering repeated ICMP destination port unreachable

reply packets can overwhelm the victim machine processing and it may even deplete

network bandwidth.

This attack can easily be stopped by analysing the network traffic using network defence

technology such as NIDS with correct packet filtering policies (Section 2.3).

DoS Attack Using IP

IP is widely used protocol and is compatible to work with different types of commu-

nication standards such as Ethernet, Fiber Distributed Data Interface (FDDI) etc. IP

allows applications to send up to 65535 bytes in a single packet (including 20 bytes

packet header). When a packet of such size is sent over a network it is often fragmented

into multiple packets because of Maximum Transmission Unit (MTU)4 packet/frame

transmission limits. All fragmented packets must be reassembled at the destination sys-

tem before passing upward to the application layer. The memory and computational

requirements of reassembly can be used to cause DoS effect such as Ping of Death DoS

attack. Others DoS attacks caused by manipulation of IP protocol are Land attack and

Teardrop attack [21] (Figure 2.8).

DoS attack using IP

Teardrop
attack

Land
attack

Figure 2.8: Denial of Service attacks using IP

Land Attack: here, attackers manipulate the IP packet source field by copying the

destination IP address into the source IP address field in order to trick the destination

machine into sending packets to itself to crash the machine and cause DoS effect.

Teardrop Attack: exploits a bug found in OS fragmentation and re-assembly code that

improperly handles overlapping (and hence malformed) IP fragments. An overlapping

IP fragment occurs if two or more IP fragments have offsets indicating that they overlap

each other in position within the unfragmented IP datagram. An attacker sends a series

4Typical MTU for Ethernet is 1500 bytes.

Chapter 2. Background 16

Table 2.3: Summary of DoS attacks using IP

Attack How Effect Remedy

Land
attack

Attacker flood the target ma-
chine with IP packets with
destination IP address of ma-
chine copied into source IP ad-
dress field.

Target machine sends the
packet to itself that exhausts
the processor resources.

Operating
System
patch

Teardrop
attack

Attacker sends series of over-
lapping IP fragments to victim
machine that exploits bugs
in OS fragmentation and re-
assembly code.

Processors resource depletes
due to operating system prob-
lem with overlapping IP frag-
ments.

Operating
System
patch

of overlapping IP fragments to a target machine and this cause system crash and DoS

effect.

These two attacks can easily be stopped with proper configuration (OS patch) and/or

by the deployment of defence mechanism such as firewalls or NIDS (Section 2.3).

Distributed Denial Of Service (DDoS) Attack

Definition: DDoS uses multiple compromised host systems to mount a coordinated

attack on critical network resources in order to cause DoS effects.

Explanation: In DDoS attack there is typically a master host or node controlling a

number of slave machines to initiate or stop an attack. The master node is in direct con-

trol of an attacker that has taken control of slave machines using DDoS agent software.

DDoS agent software is installed into victim machines either by exploiting a vulnerabil-

ity (Section 2.2.2) in software systems or by tricking the user into installing the agent

software. There may be more than one master node controlled by the attackers that are

used to manage the distributed network of slaves. An attacker usually instructs master

nodes to launch an attack using active slaves and direct them to simultaneously launch

an attack. This DoS attack when launched with a number of nodes is called DDoS

attack. Network topology of DDoS is shown in figure 2.9.

According to Computer Incident Advisory Capability (CIAC) (Renamed to Department

of Energy-Cyber Incident Response Capability (DOE-CIRC) [22]), the first such kind of

DDoS was seen in the summer of 1999 with the introduction of DDoS attack tools [23].

DDoS exploits the weaknesses of common Internet protocol and launches DoS attacks

(TCP SYN flood attack, UDP flood attack, ICMP flood attack etc.) in a distributed

manner in order to quickly deplete processing and bandwidth resources of target ma-

chines and network. First successful DDoS attacks noted in the year of 2000 when Yahoo

Chapter 2. Background 17

Internet
Attacker

Master Node (Router)

Master Node (Router)
Target Server

Slave Nodes

Slave Nodes

Figure 2.9: Network topology of DDoS

website was attacked which resulted in DoS [24]. Table 2.4 has the summary of some

common DDoS attack tools.

Table 2.4: Common DDoS attack tools

Tools Protocols Description

Trinoo (aka
Trin00)

UDP
This tool sends out a large number of UDP
packets to the victim.

The Tribe Flood
Network (TFN)

ICMP, TCP and UDP
This tool is able to attack victims with
ICMP flood, SYN flood, UDP flood and
Smurf attacks.

Stacheldraht ICMP, TCP and UDP
This tool combines the features of Trinoo
and TFN with encryption support.

Trinity TCP and UDP
This tool uses Internet Relay Chat (IRC)
for launching UDP or TCP flood attack.

Tribe Flood
Network 2K
(TFN2K)

ICMP, TCP and UDP
Successor to TFN. This tool uses TCP,
UDP, ICMP or a Smurf packet flood to tar-
get the victim.

Shaft ICMP, TCP and UDP
This tool uses TCP, UDP and ICMP pack-
ets or all three at the same time for flooding
victim.

Omega
ICMP, TCP, UDP and

IGMP

Similar to Shaft. This tool use TCP, UDP,
ICMP, IGMP or mixture of protocols to
flood the victim.

Forgery Attacks Using Protocols

The basic problem is that the core Internet network protocols provide no significant

authenticity or confidentiality protection. Network packets can easily be intercepted and

manipulated to forge or alter IP addresses in order to create spoofed packet containing

false values. Forgery is usually carried out to misrepresent another computer system,

or for attackers/hackers to conceal their identity by forgery which is clearly illegal.

Chapter 2. Background 18

However, packet manipulation and forgery are correct or, atleast are accepted according

to IP protocol specifications in order to support functionality such as legitimate remote

access to electronic services whose access is restricted via source IP address. Most DoS

attacks discussed in previous section and all in this section are carried out with spoofed

addresses.

Table 2.5: Forgery using Network protocols

Protocol Description

SMTP (Email
address)

An email address to represent email sender/receiver identify can
be forged to carry out spamming or phishing attack.

IP (IP address)
Most of the attacks on networks and IT infrastructure use IP
address forgery to misrepresent or hide real identity of attackers.

MAC (MAC
address)

MAC address manipulation on LAN used to hide or misrepresent
attacker identity to carry out attack such as session hijacking.

Forgery Attack Using SMTP

Simple Mail Transport Protocol (SMTP) is the standard protocol for sending electronic

mail (E-mail) across IP networks. SMTP is a simple text based protocol where client

and server exchange string commands for connection establishment, authentication, and

sending of mail data over reliable transport layer (TCP) to recipient mail servers.

SMTP has no real security mechanism as it is created on the idea of co-operation and

trust like other lower level protocols. SMTP allows open mail relay. This means an

SMTP server can be configured to allow anyone on the Internet to send e-mail through

it, not just mail destined for, or originating from, known users. This significantly con-

tributes to the large security problem of current time known as E-mail spamming.

E-mail Spamming: Spammers usually use forged email addresses in order to pretend

their E-mail comes from a real company (in some cases invalid email addresses are

deployed to conceal identity). The goal of Spam is to trick a user into releasing sensitive

information such as Bank details or to lure them into the inadvertent installation of a

trojan horse or virus (Section 2.2.3) when downloading an apparently useful program.

Basic SMTP has no mechanism to authenticate users and/or to verify forged sender

email address in packet headers and it will assume that any correctly formatted email

address is valid. Email phishing attacks are carried out using forged email addresses.

Solution: There is no effective way to stop spam emails. Although proper configura-

tion of SMTP server is recommended and there should be a single point of entry for

connecting to an SMTP server usually through some kind of defence technology so ev-

ery connection can be monitored (Section 2.3). The SMTP extension protocol called

Chapter 2. Background 19

Enhanced SMTP (ESMTP) provides user authentication based on usernames and pass-

words.

Forgery Attack Using MAC

Medium Access Control (MAC) is a link layer level protocol of TCP/IP that allows

multiple devices to be connected to a shared physical communication medium. The

data communication between machines in this shared medium is supported mainly with

the help of a 48 bit unique MAC address (also known as a hardware address). This

address is used in a shared communication medium to identify the individual machines.

MAC Attack: Attacker and victim machines should be on the same subnet for MAC

based forgery attack. An attacker creates a spoofed packet with a forged MAC address

to misrepresent another computer system. The main aim of the attack is to take over a

victim’s communication with another computer on a subnet exchanging sensitive data

and information. There is no defined mechanism to detect MAC address forgery due

to the lack of confidentiality mechanisms in network protocol. Figure 2.10 shows the

forgery attack carry out using Address Resolution Protocol (ARP).

Switch

1)Broadcast ARP request:

Find MAC address

for 192.168.0.3?

Attacker
Machine

 IP: 192.168.0.3
MAC: 02-00-54-4E-11-FF

2)Both attacker

and 192.168.0.3

machine respond

to ARP request

IP: 192.168.0.10
MAC: 12-01-11-4F-1A-FF IP: 192.168.0.2

MAC: 02-10-54-5A-AC-11

Figure 2.10: MAC address forgery attack also known as ARP spoofing

Chapter 2. Background 20

Forgery Attack Using IP

Most of the attacks discussed until now forged addresses such as MAC address, IP ad-

dresses or email address in order to create spoofed network packet for launching different

types of complex network attacks such as DoS or DDoS. Some network configurations

also provide access to network services on resources based on IP or MAC address au-

thentication. If an attacker forges these addresses then it can gain access to services and

information. There are other kinds of attack that carried out with the help of forged IP

address such as session hijacking and routing attacks.

Session Hijacking Using Protocols

Definition: An unauthorised access to information or services in a computer system

by infiltration through an already established connection between hosts is called Session

Hijacking.

Explanation: Like most of the attacks discussed previously, spoofed packets with

forged IP address are commonly used for session hijacking as well as for routing attacks.

Attackers exploit flaws or weaknesses of protocols such as TCP, ICMP and Border

Gateway protocol (BGP) in order to carry out session hijacking. Session hijacking

and routing attacks involve direct intrusion into established network connections. The

objective of these attacks is not just the disruption of communication between hosts

but to actually change the routes used by a host or a router in order to eavesdrop on

communication and steal vital sensitive information directly from network packets.

Session Hijacking Using TCP

TCP supports reliable duplex stream based communication. Packets are delivered in

order using 32 bit sequence numbers in each and every TCP datagram.

Attack Description: TCP session hijacking attack alters TCP sequence numbers. An

attacker must guess or intercept packets to get the correct TCP sequence number of

a TCP session between two hosts. Then, with a TCP sequence number and a forged

IP address of any other trusted host on the network, an attacker creates a spoofed

TCP packet and sends it to the target/victim machine. Because of the correct sequence

number the other host treats the packet as an established session packet and starts

exchanging packets with an attacker machine and discloses sensitive information. The

other machine that originally had an established session with the victim machine now

has an invalid TCP sequence number and its TCP session with the host is invalid.

Chapter 2. Background 21

Session Hijacking Using Routing

Session hijacking can also be carried out by exploiting weaknesses in network routing

table update procedures. The two protocols used for hijacking sessions are ICMP (Route

Redirect message) and Border Gateway Protocol (BGP) [25, 26]. An attacker creates a

spoofed packet with the forged IP address of a victim to misrepresent and inform the

gateway or routers to update their route table with false routing information in order to

redirect communication through a rogue or compromised gateway/router. In this way

an attacker is able to successfully see all communication of a victim machine.

In this section a small number of protocol weaknesses and flaws were discussed along

with variety of network attacks. A more comprehensive overview of network attacks

and flaws in protocols is presented in the survey presented by Simon Hansman and Ray

Hunt [27].

2.2.2 Vulnerabilities in Software

Vulnerabilities in softwares and bad host configurations provide additional opportunities

for hackers to launch different types of network attacks. These vulnerabilities arise due

to flawed programming or badly tested software releases. For example, it is relatively

common for new or updated versions of libraries and applications to be released that are

related to networking and operating system services. SysAdmin, Audit, Network, Secu-

rity (SANS/MITRE) reported in 2009 about the top 25 dangerous coding errors where

two of the errors led to more than 1.5 million US dollars of website security breaches

during 2008 [28]. The common software flaws are unchecked user inputs potentially

leading to buffer overflows and SQL injection5, fundamental issues with OS user policies

where possible unauthorised privilege escalation is possible with the potential for mal-

ware to execute commands on behalf of a hacker. Further, password management flaws

can allow the user or root/Administrator passwords to be cryptographically weak and

therefore easily compromised by hackers in order to gain unauthorised access. A key

task for a network administrator is to be aware of current vulnerabilities in operating

system and application software and to deploy updates or fixes as and when they become

available. The next section discusses network attacks exploiting common vulnerabilities

in software and is further evidence for the need for proper network configurations and

defence mechanism for networks (Section 2.3).

5SQL injection refers to the unintentional direct execution of SQL statements by a program.

Chapter 2. Background 22

DoS Attacks Using Software Vulnerabilities

Some common DoS attacks carried out by hackers by exploiting software vulnerabilities

are now discussed:

Buffer Overflow Attack: exploits flawed programming where a buffer can be overfilled

and values are written into adjacent memory to the end of the buffer storage. This causes

corruption of data which either crashes the application or it can be used to cause the

execution of injected code in order to perform a malicious operation.

Crasher Attacks: causes the host systems to crash, leading to DoS due to a reboot.

A popular example of crasher attacks exploiting OS vulnerabilities are land attack and

Ping of death (Section 2.2.1).

2.2.3 Malicious Code

Malicious code is commonly referred as Malware.

Definition: Malware is a software program designed to perform malicious activities on

a computer system without owner consent.

Explanation: Malware is deployed to cause damage to a computer system by an at-

tacker. It can be used to take control of a computer system, to access sensitive infor-

mation and to launch attacks on other computer system. Malware installation on any

computer is difficult to detect and prevent. Advanced defence mechanisms sometimes

even find it difficult to counter those new variants of malwares commonly known as zero

day exploits (Section 2.4.6). However, certain combination of defence mechanism are

effective but far from perfect in completely countering any new or zero-day malware

attacks (Section 2.3).

Types Of Malware: Malwares can be self-replicating in order to propagate themselves

either by attaching themselves from one computer file to another, or by emailing them-

selves to other machines using a victim’s email client software address book. Examples

of self-replicating malwares are computer Viruses and Worms (Figure 2.11).

Like self-replicating malwares, non-replicating malwares also performs malicious activ-

ities usually by fooling them installing on victims machine. Commonly known non-

replicating malwares are Trojan Horse, Spyware and Adware (Bad Adware) (Figure 2.11).

Other malwares include backdoors, trojan downloaders, password stealers, Crimeware

and Mobile malware.

Chapter 2. Background 23

Non-replicating malwares

Adware
(Bad Adware)

Trojan
Horse

Spyware

Malware

Self-replicating malwares

WormsViruses

Figure 2.11: Types of malware

Crimeware: is a malicious software intended to yield financial benefits for an attacker

using theft of personal information for fraudulent use, theft of trade secrets or intellectual

property and spam distribution [29].

Mobile Malware: is a malicious software designed to infiltrate mobile devices without

user consent. Security analysts believe mobile malware is a significant and large threat

due to the exponential increase in number of mobile devices such as smart phones and

netbook mobile devices with mobile internet connectivity [30].

Self-replicating Malware

Computer viruses and worms are self-replicating malwares that propagate and infect

systems to perform malicious activity. A virus propagates by attaching itself to com-

puter files. A worm propagates through a computer network without attaching itself to

computer file.

Virus: The term computer virus first came to known in 1986. Fred Cohen’s PhD thesis

demonstrated how program code could propagate itself from one machine to another [31].

Table 2.6 summarises some common virus types [32].

The top four virus types in table 2.6 are easy to detect using virus scanner technology.

However, the last three types of viruses use tactics that enable them to successfully avoid

detection by virus scanners or other network defence mechanism such as SB-NIDS.

Worm: Computer worms typically cause more destruction to computer systems and

networks than computer viruses. Computer worms are of two types: Mass-mailing

worms and Network-aware worms [27]. Mass-mailing worms spread through emails.

Example of mass-mailing worm is Mellisa that attaches itself to email for propagation.

Network-aware worms are more sophisticated and destructive than mass-mailing worms.

Network-aware worms look for known vulnerabilities in Internet hosts and try to gain

access in order to compromise machines. Once a worm reaches a target machine it

modifies critical operating system files to hide its identity and then attempts to propagate

Chapter 2. Background 24

Table 2.6: Viruses types and behaviour

Protocol Description Detection

File Infector
Mainly infects the program files (.EXE, .COM, .BIN
etc). It may also infect script or configuration file.

Easy

Boot record
infector

Infects system boot sector. Easy

Multi-partite virus Hybrid nature. Infects boot record as well as file. Easy

Macro virus Infects macro-enabled Microsoft office document. Easy

Stealth virus
Stealth virus disguises itself to thwart detection by
altering its file size, or concealing itself in memory.

Hard

Encrypted virus
It uses encryption to hide itself from virus scanners.
Each time it infects it automatically encodes itself
differently.

Hard

Polymorphic virus
Everytime this virus infects file it changes its signa-
ture.

Hard

to further hosts. Examples of this kind of worm is SQL slammer worm that exploits

the known vulnerability in Microsoft SQL Server 2000 and Microsoft Desktop Engine.

Non-replicating Malware

There are other malicious codes or malwares which are intrusive, hostile and annoying.

Unlike viruses and worms they are non-replicating and do not propagate themselves.

Such malware often installs itself in a victim machine by tricking the user into believing

them to be benign programs when actually they have a malicious purpose. Often such

programs interfere with system settings and open backdoors for remote access to system

resources. The two widely known non-replicating malwares are: Trojan Horse and

Spyware.

Trojan Horse: Trojan Horse or a Trojan is a non-replicating malware that spreads

by opening an email attachment or downloading and running a file from the Internet

containing trojan code. Trojans appear to perform desirable functions but are used

to compromise victim system security. Usually it changes system settings and allows

hackers to remotely connect to a machine for malicious purpose. Desirable operations

performed by hackers using trojans are file uploading and downloading, launching at-

tacks such as DDoS and email spamming, other malware installations, data theft, remote

screen viewing, rebooting the machine and resource hogging of hardisk space and pro-

cessor computing power.

Spyware: A non-replicating malware that secretly installs itself in a victim’s machine

for the purpose of collecting data. Sometimes spyware come as part of regular software

packages and are installed in a hidden directory. Spyware monitors victim’s system usage

and Internet surfing habits and sends the information over the internet to spyware owner

Chapter 2. Background 25

or hacker. Information collected using spyware is then used to target advertisements and

to further tempt the user into installing other malicious malwares.

2.3 Network Defence Mechanism

This section discusses techniques and some state of the art network security technologies

used to minimise and counter network threats.

2.3.1 Configuration Management

Configuration management aims to minimise network security issues through technically

sound network organisation and by frequently applying application software updates

and OS patches. Vulnerability scanner and configuration management software tools

are available to automatically apply such updates and patches. Encryption is typically

deployed to protect the transmission of sensitive information. Typical deployments

include the IP layer using a framework such as IPsec or at the application layer using the

Secure Socket Layer (SSL) protocol. Firewalls are typically used to secure a network from

outside attack and to prevent subversive users from advertising unauthorised network

services to the external internet beyond the firewall. Another strategy is Virtual Private

Network (VPN) which securely sends private data between two sites or locations.

2.3.2 Firewall

A Firewall is a combination of software and hardware coupled with restrictions on net-

work topology that is used to secure and limit network access. A typical firewall deploy-

ment is shown in figure 2.12. Firewalls are used to limit outgoing and incoming network

traffic to ensure that it is well-formed (thus preventing spoofed packets entering or leav-

ing the network) and legitimate. Standard networking equipment such as routers offer

functionality such as packet filtering using rules to determine which incoming/outgoing

network packets are allowed to pass or be dropped.

Types Of Firewall: Firewall comes in three main flavours as shown in figure 2.13,

although variations of these basic organisations are also possible.

Packet Filter: A packet filter applies selective passing or blocking of network pack-

ets based on Open System Interconnection (OSI) layer 3 (IPv4/IPv6) and OSI-layer 4

(TCP, UDP, ICMP, and ICMPv6) headers. The most often used criteria of passing or

blocking the packets are source and destination IP addresses (IPv4 and IPv6), source

Chapter 2. Background 26

Internet

Internal Network

Firewall

Dual-homed

Host

Figure 2.12: Firewall sitting between LAN and the Internet

Firewall

Application
Gateway

Packet
Filter

Circuit
Gateway

Figure 2.13: Types of Firewall

and destination ports (TCP, UDP, ICMP, and ICMPv6). Some packet filter also checks

the ICMP codes along with other criteria to pass or block network packets.

Packet filters can detect packets that has spoofed or malformed IP addresses for launch-

ing different network attacks (Section 2.2.1). For example, packet filters can stop all

the packets coming from outside the network with forged local network IP addresses

in sender source packet header field to foil attacks. Packet filters cannot detect any

protocol violation that is often used to disguise certain types of attack traffic because

packet filters make no attempt to understand the packet payload data.

Circuit Gateways: It is a more complex firewall that can detect specific protocol vi-

olations. A circuit gateway monitors the transport level of OSI model (OSI layer 4 or

TCP sessions). For example, TCP handshaking between host is checked to determine

whether a requested session is legitimate. Also circuit gateway monitors the request/re-

ply packets of established session for detecting protocol violation. For example, TCP

SYN DoS attack can easily be detected by circuit gateways.

Chapter 2. Background 27

Circuit gateway is effective for session monitoring. However, it cannot prevent attacks

carried out using malicious code encapsulated in packet payload data.

Application Gateways: operate at the application layer of the OSI model (OSI

Layer 7), consuequently, they examine packet payload data to determine if the con-

tents are well-formed and legitimate. Unfortunately, this means that specific code, or

programs must be available to analyse the contents of multipacket messages in order

to determine if the messages conform to the protocol specification and that they are

well-formed. The computational and memory requirements of such gateways are signifi-

cantly increased over other firewalls and they can become network bottlenecks that limit

data-transfer rates. Application gateways can detect the spread of worm and computer

viruses by comparing packet payload data with the signature of known malwares.

Currently firewall is virtually non-existent and is replaced by Internet Security systems.

These systems are actually IDS or Intrusion Prevention Systems (IPS) which offers an

effective means to detect and prevent the networks against complex kind of network

attacks and malware outbreak by combining the power of all types of firewalls and

malware scanners. The IDS technology is now discussed in more detail.

2.3.3 Intrusion Detection System

IDS is a security system for detecting attacks on a computer and network. IDS actively

monitors events occuring on computer systems and networks and analyses them for the

signs of suspicious activities. If IDS finds any suspicious activities then it logs event

information and raises an alarm for the attention of Network Administrators as shown

in figure 2.14.

Internet

1) Capture
Data

3) Analyse
Data

4) Intrusion
Alert/Log

Database

2) Decode
Data

Data Source

Figure 2.14: Typical IDS data analyses flow

Chapter 2. Background 28

2.4 Intrusion Detection System: An Indepth Analysis

IDS provides more effective security solution than firewall because they go beyond moni-

toring of network packets and even analyse OS events and log possible signs of suspicious

activities. In this way an IDS detects those activities or attacks that cannot be detected

with a firewall, such as trojans, spywares and other bad adwares.

2.4.1 Host Monitoring

Host monitoring IDS must carefully analyse every event occurring on a computer for

the possible signs of suspicious activities. IDS must be trained to recognise suspicious

event patterns, and or have knowledge of legitimate patterns of events. For example,

typical computer authentication systems might allow a maximum of 5 consecutive failed

login attempts for user access prior to the IDS on a host raising an alarm. Further, if

any user performs suspicious operation on a computer then the host IDS should raise

an alert for the attention of Network Administrators.

2.4.2 Network Monitoring

IDS when deployed for network traffic analysis, analyses all inbound and outbound

network traffic and alerts network administrators on the discovery of potential network

threats. Such IDS can identify network probes/scanning and attacks such as TCP SYN

attack, viruses/worm outbreaks and attacks on software vulnerabilities.

An IDS is a passive monitoring system, since its primary purpose is to only alert the

network administrators whereas an IPS, forcibly halts suspicious activity by for example

blocking suspicious network packets, or halting activity due to suspicious events on a

specific host in order to prevent an attack with the risk of potentially halting legitimate

activity. Usually every IDS has an option to be configured as an IPS. For example, the

IPS associated with Automated Teller Machine (ATM) may block or retain a card if

incorrect pin is entered repeatedly.

2.4.3 Types of Intrusion Detection System

There are two types of IDS based on the type of events they monitor. The two types

are called Host IDS (HIDS) and Network IDS (NIDS) (Figure 2.15). There is another

kind of IDS that have combine capability of both IDS known as Hybrid IDS.

Chapter 2. Background 29

These IDS types may use two different types of intrusion detection techniques: Signature

detection and Anomaly detection. IDS types and their detection techniques are now

discussed.

Intrusion Detection System(IDS)

Network IDS (NIDS)Host IDS (HIDS)

Hybrid IDS

Figure 2.15: Types of IDS

Table 2.7: Comparison of IDS types

IDS Types Analyse Deployment

NIDS Network traffic/data Network points/backbone

HIDS Host events/data Individual machine

Network Intrusion Detection System

NIDS is a type of IDS that analyses network traffic for the detecting signs of malicious

activities. NIDS is a complementary technology to firewall and detect attacks often

missed by firewall. NIDS analyses incoming/outgoing network traffic, and can detect

suspicious activities of spyware, adware, trojans and other malwares that are not de-

tected by Firewalls. NIDS can inspect a range of protocol vulnerabilities from data link

layer to application layer of TCP/IP protocol stack. It can also detect malicious code

or malware in a network packet payload data using pattern matching commonly known

as Deep Packet Inspection. Figure 2.16 shows the packet processing flow in NIDS.

Packets are capture from the network interface by NIDS’s packet capture component.

This packet is then passes on to the Packet Decoder component that stores data to

memory for later analysis concerning the decoded packet protocol/payload information.

The data analysis component analyses this decoded packet protocol data for any protocol

anomalies and malware patterns. Finally, the intrusion alert component raises the alert

and/or logs the events.

NIDS Deployment: A NIDS can be deployed on a point in a network where network

packet inspection is essentially required. A large number of NIDS can be deployed either

on a major network backbone to analyse every packet crossing through networks or it

can also be setup at only specific network points analysing traffic directed to specific

Chapter 2. Background 30

Internet

1) Capture
Data

3) Analyse
Data

4) Intrusion
Alert/Log

Database

2) Decode
Data

Data Source

a)Deep Packet

Inspection

b)Protocol

Analysis

Figure 2.16: Typical NIDS data analyses flow

server or machines. A common strategy of deployment is a combination of firewall and

NIDS. Whatever deployment position is decided, NIDS should not be accessible from

anywhere on a network, so it is not assigned an IP address. However, it is normally

accessible locally from inside the network for configuration and maintenance.

Internet

NIDS

Management Console

File Server

WWW Server

HIDS

HIDS

Firewall

Figure 2.17: NIDS sitting between LAN and the Internet

Figure 2.17 shows NIDS deployment in which a firewall first filters network packets and

remaining packets are analyse by NIDS. NIDS network interfaces are connected to the

main network link via port mirroring devices, the NIDS is typically configured with no

IP address in order to protect direct attack on the NIDS device itself. Another NIDS

network interface connected to the management console is configured with an IP address

in order to manage NIDS software. The management console and NIDS are usually setup

on a local or internal network. Managing NIDS over the Internet is considered risky and

prone to attack as communication between management console and NIDS could be

eavesdrop, attack and compromise, which would be disastrous for the whole network.

Chapter 2. Background 31

Host Intrusion Detection System

HIDS is a type of IDS software system that analyses the events occurring on a computer

systems rather than network for detecting malicious events. HIDS closely examines the

state of a computer system including hardisk activity, Random Access Memory (RAM)

contents, OS processes and log files, and raises an alarm if it encounters any unusual

or unexpected activity. For example, if a user with Read-only file access rights tries to

modify the files content then HIDS will raise an alarm and notifies the administrators

about ongoing activity. Figure 2.18 shows the event analysis flow in HIDS.

1) Capture
Data

3) Analyse
Data

4) Intrusion
Alert/Log

Database

2) Decode
Data

Data Source

a)Event

analysis

b)Log

analysis

c)File

analysis

d)Hardisk

analysis

Figure 2.18: Typical HIDS data analyses flow

OS events are first intercepted by the HIDS’s event capture component. These events are

then decoded and the decoded data is stored to HIDS application memory for analysis.

The data analysis component examines events data for any violation of system access

rights or any similar suspicious activities. Finally, an intrusion alert component raises

the alert and/or logs the events.

HIDS Deployment: HIDS normally install on a monitoring devices rather than on a

crucial network points. HIDS is indeed a requirement for a system hosting private data

and internet facing servers such as web servers, database servers. Industry standard for

most intrusion detection systems mandate the use of both NIDS and HIDS. Figure 2.19

shows this kind of deployment.

HIDS agent software is typically installed on any LAN servers facing the Internet and

providing services to external machines. HIDS agent software collects server machine

Chapter 2. Background 32

Internet

NIDS

Management Console

File Server

WWW Server

HIDS Agent

HIDS Agent

HIDS Server

Firewall

Figure 2.19: NIDS sitting between LAN and the Internet and HIDS agents on Internet
facing servers

events and pass them on to the HIDS server software for event analysis. HIDS server

has necessary information (e.g. system policies, rules, signature) in order to carry out

analysis and if malicious activity is found it logs events or/and raise alarm(s) for the

attention of Network Administrator. A management console is also usually connected

to the HIDS server that keeps HIDS server information up-to-date with new policies and

attacks.

2.4.4 Intrusion Detection Techniques

There are two approaches used by IDS to monitor events for the detection of malicious

activity. Signature detection and Anomaly detection. Signature detection is the prevalent

approach in IDS implementation, and is deployed in notable commercially successful

products such as TippingPoint IDS and Cisco IPS series. Table 2.8 shows the summary

of both detection techniques.

Table 2.8: Summary of IDS detection techniques

Technique Method Advantage Disadvantage

Signature
detection

Analyse data using
database of attack
signatures/patterns.

Accurate detection of
attacks.

Unable to detect previ-
ously unseen attacks.

Anomaly
detection

Analyse data using
statistical techniques.

Detect previously un-
seen as well as old at-
tacks.

Raise lots of false
alarms.

Signature Detection

Signature detection techniques involve matching sets of known attack signatures with

events occurring on a computer and network for any signs of malicious activity. Each

Chapter 2. Background 33

attack signature represents a known security threat (e.g. Virus, Worms, Spyware, DoS

attacks etc).

An IDS that analyses data using signature detection techniques is known as Signature

based IDS (SB-IDS). A SB-IDS maintains a database of signatures used to checking the

flow of network traffic or computer system events for the presence of malicious/suspicious

activity. When any packet or computer events matches a signature an appropriate action

is taken, which usually involve raising alarm(s), logging events and sending alert to the

Network Administrator. A NIDS that uses signatures for detecting attacks in network

traffic is called Signature based NIDS (SB-NIDS). Snort and TippingPoint are SB-NIDS

with a feature to detect malicious events occurring on a network. OSSEC is a Signature

based HIDS (SB-HIDS) that use signatures to analyses computer system events.

Anomaly Detection

Anomaly detection techniques use statistical methods such as frequency, variance, mean

and standard deviation to analyse events and define if a pattern is normal or anamolous.

In order to analyse these events, first a baseline of normal profile of users, networks,

servers and workstations, server and application programs is created to detect anomalous

events [33].

An IDS that uses anomaly detection to detect attacks is called Anomaly based IDS

(AB-IDS). Bro is an open source, Unix based NIDS that analyse network traffic using

signatures as well as anomaly detection techniques [34]. Bro is primarily a research

platform for intrusion detection.

Commercial IDS solutions prefer signature detection implementation over anomaly de-

tection because it is difficult to define normal system and network profiles. Further, it

becomes highly subjective as to what is normal, and what is an anomaly that could

be an indicator of suspicious/malicious activity or attacks. Commercial anomaly detec-

tion products do not appear to be successful and none are evident. However, the main

drawback of signature detection technique it can not let the IDS detect attacks that are

previously unseen.

2.4.5 Popular Intrusion Detection System Products

The concept of intrusion detection for internet security has been around for nearly thirty

years which was born with James Anderson seminal paper entitled, Computer Security

Threat Monitoring and Surveillance [35]. Even after 30 years, only a small number of

successful commercial and open source IDS products/applications are available. The

Chapter 2. Background 34

reason is very simple, an IDS is a highly sophisticated software system that must an-

ticipate and detect malicious activity by analysing millions of generated events/packets.

It is difficult for software vendors to successfully bring to market an effective IDS solu-

tion with the characteristics of accurately detecting malicious behaviour and intrusion.

Current commercial and open source developers are unable to saturate the market of

IDS technology and only a small number of vendors and developers are providing IDS

solutions.

Table 2.9 and Table 2.10 shows the product details of leading HIDS and NIDS and

private companies NIDS.

Table 2.9: Summary: Product details of leading HIDS and NIDS

Product
Release
Date

Platform Method Description

Tripwire
HIDS [36]

1992 Unix
Monitor file
changes (File
integrity checker)

Commercial products: Trip-
wire Enterprise and Tripwire
for Server. Open source ver-
sion moderated on Source-
forge.net

OSSEC
HIDS [37]

2005

Linux,
Solaris,

Windows,
MAC OS X,
OpenBSD,
FreeBSD

Signature and
Anomaly detection

Owner (Trend Micro): Free
and open source software

Bro
HIDS [38]

1998 Unix
Signature and
Anomaly detection

Open source NIDS for re-
search purpose

Snort
NIDS [3]

1998

Linux,
Solaris,

Windows,
IBM AIX

Signature detection
and Protocol analy-
sis

Commercial product: Source-
fire IDS/IPS. Open source
version available from
snort.org

Table 2.10: Summary: Best NIDS/NIPS product of leading private companies

Company Best Product Method Throughput

Cisco IPS 4200 Model: 4270 [39] Signature detection 4.0 Gbps

IBM
Proventia NIDS Model:

GX6116 [40]
Signature detection 6.0 Gbps

Sourcefire IDS/IPS Model: 3D9900 [41] Signature detection 10.0 Gbps

TippingPoint NIPS Model: 5100N [42] Signature detection 5.0 Gbps

2.4.6 Issues and Limitations of Intrusion Detection System

IDS security technology is not a perfect security solution and limitations and weakness

include sophisticated attacks, false alarms, zero-day exploits and speed of analysis (Sec-

tions 2.4.6). Complementary security tools and products include:- vulnerability scanners

that probe ports of network servers for detecting anything malicious that could allow

Chapter 2. Background 35

unauthorised access, File integrity checkers to monitor important systems and private

data for signs of unauthorised modifications, and Honeypots that are deployed as a trap

machine with fabricated information designed to appear valuable in order to lure the

hackers away from critical systems [43–45].

IDS limitations and weaknesses are now discussed.

Sophisticated Attacks

NIDS provide no mechanisms to deal with sophisticated network attacks such as DDoS

which carries out with the help of botnets. An IDS cannot detect the location of botnet

client or master machine nodes.

False Alarms

A false alarm in IDS is defined as, any ongoing network and computer activity that

IDS seems suspicious and so raise alarm which actually neither malicious nor misuse of

resources.

SB-IDS’s have the potential of very low false alarm rate as they have exact signatures

from an attack and malicious activity database which they use to compare network

traffic and events occurring on a computer. In other words any action that is not

explicitly recognised as an attack is considered acceptable. However, AB-IDS produce

higher number of false alarms as these IDS have a baseline definition of normal event

and activity that they use to distinguish between normal and anomalous events. The

baseline is an estimated calculation of what is known as normal activity on a network

and computers, which are effective to detect previously unseen attacks but raises a

high number of false alarms because anything that does not correspond to a previously

learned behaviour is considered intrusive.

False alarms are a fundamental issue for anomaly detection techniques and improvements

in lowering the false alarm rate is an active area of research. Statistical and artificial

intelligence (Artificial neural network) are the main methods used to create a baseline

profile of normal network and computer usage for anomaly based IDS in order to detect

anomalous activities [46].

Chapter 2. Background 36

Zero-day Exploits

A Zero-day exploit is defined as, a piece of malicious code used by hackers that exploits a

software vulnerability unknown to the owner/user of software or developer or any other

person.

SB-IDS’s provide no ways to deal with zero-day exploits and other attack variants as their

detection success relies on the provision of attack signatures. By definition a signature

database has no definition of a zero-day exploit and the attack will be missed. AB-IDS

can potentially detect zero-day exploits if they result in system/network behaviour that

is sufficiently unusual but there is no guarantee of detection everytime and AB-IDS

additionally suffers with the issue of false-alarms.

Speed Of Packet Analysis

The evolution of new hardware and network technologies has resulted in dramatic in-

creases in network transmission link speeds. The contant increase in link speed requires

high computational performance from NIDS as it must accomplish all processing in even

less time. Possible solutions to counter this issue is to either reduce the overall data rate

of the network, or simply drop some packets without analysis to keep up with the pace or

rate of incoming/outgoing packets. Both solutions have drawbacks as one lower the net-

work data rates or slows down the network and the other puts the network at increased

security risk as some attack signatures can be missed to detect in drop packets.

Researchers came up with a different idea to tackle this ongoing problem. They identified

the need to improve NIDS packet analysis speed using high performance processing

hardware or a platform that is more suitable for packet processing. These platforms

have been used to optimise algorithms to increase packet analysis speeds for NIDS.

Commercial answer to this problem is also high performance processing platforms where

NIDS sold as standalone packet analysis devices that are ready to be deployed in a

network. Successful commercial products such as Cisco NIDS, Tipping NIDS, Sourcefire

NIDS and IBM all selling these standalone devices.

2.4.7 NIDS Computationally Demanding Process

There are three main computationally demanding process of SB-NIDS that are a per-

formance bottleneck on high data rate network and slow down SB-NIDS packet analysis

speed: Stateful Packet Inspection (SPI), Packet Classification and Pattern Matching.

Chapter 2. Background 37

Figure 2.20 shows the typical internal architecture of an SB-NIDS to demonstrate the

packet analysis flow depicting the three main computationally demanding processes.

Src. IP

Dest. IP

Src. port

Dest. port

Protocol

Rule1: IP, Port, Protocol…etc.

Rule2: IP, Port, Protocol…etc.

Rule3: IP, Port, Protocol…etc.

-
-
-

Rule N: IP, Port, Protocol…etc.
Rule1:

“blastworm”
Rule2:

“iloveuvirus”
-
-
-

RuleN:
“0101invispy”

Network
Interface

Packet Sniffer &
Decoder

Rule Selection
(Packet Classification)

Frame

Pass

Rules headers in Memory

Match

Packet headers Header + data

Pass

Rule
Evaluation

Key packet header values
Result

Matched Rules

Stateful Packet
Inspection

Decoded Packet

Figure 2.20: Packet Inspection in SB-NIDS

An SB-NIDS Packet Sniffer component first captures a network packet from a network

interface and uses the Packet Decoder to decode the packet protocols. The decoded

packet protocol data is then store in a SB-NIDS application memory area. This decoded

packet data is then analyses in series of stages. In the case of stateful protocols such

as TCP, the SPI component uses the key packet header values (IP addresses and Port

numbers) to check the packet association with one of the established TCP connections.

Next the packet higher layer protocol data is analyse using SB-NIDS dedicated software

components that checks validity of protocol by looking for invalid protocol values that

may lead to protocol related attacks. Finally, packet header and payload content is

searched for invalid header values and malicious patterns with the help of Rule selection

and Rule evaluation component.

Stateful Packet Inspection (SPI)

Stateful Packet Inspection (SPI) is a process to track each and every network connection

traversing through the network in order to look for any illegal connection trying to attack

Chapter 2. Background 38

the network services and equipments. SPI helps to detect different network attacks such

as TCP SYN DoS attack and port scanning/probing.

For each TCP connection successfully established, the SPI module assigns a unique ID

number by computing a hash value on key packet header values typically IP addresses

and port numbers. The unique ID number is then store in a connection state table in

main memory. For every incoming packet, the SPI module computes the hash value

using IP address and port number and looks up the connection state table in order to

check that the packet belongs to one of the established connections. SPI is a bottleneck

on a high data rate network due to frequent memory access that directly effects packet

analysis speed. Also key packet header values are also hash in SPI which also degrades

packet analysis speed performance. Javier et al carried out a study on SPI to measure

its impact on packet processing speed under high volume traffic [47, 48]. They observed

the packet analysis speed was significantly degraded with an increasing number of active

connections.

Packet Classification

Packet classification is the process of selecting attack signatures or rules for comparison

with packet data in order to detect malicious activity. These rules are selected by

matching key packet header values (IP addresses, Port numbers and Protocol type)

with those specified in a part of rule known as Rule header. In the context of SB-NIDS,

packet classification can also be referred as Rule Selection.

Rule selection involves matching source and destination IP addresses and ports, and

protocol types. Protocol type is a simple matching process which involve only constant

values, whereas IP addresses and ports occasionally involve matching a range of values

which is complex and computationally demanding. This process becoming more com-

plicated due to regular increases in both network data rate and the number of attack

rules. Lakshman, and Stiliadis, Gupta and McKeown and Srinivasan et al developed a

novel algorithm to perform fast packet classification [49–51]. Mcauley and Francis and

Florin et al optimised the packet classification processing speed performance using high

performance processing platform [52, 53].

Pattern Matching

Pattern matching in SB-NIDS involve comparing packet payload contents with known

malicious patterns specified in part of rule known as Rule options. Pattern matching

Chapter 2. Background 39

is carried out using exact pattern matching algorithms. These pattern matching algo-

rithms execute slowly on general purpose processors typically requiring a high number of

memory accesses and comparison operations. For example, a C-programming language

method strcmp(char *str1, char *str2) compare characters requires one memory access

to fetch each character into a CPU register and a comparison per character. On a device

such as an FPGA, an optimised string comparison functional unit can be developed to

check multiple characters in one clock cycle.

Notable pattern matching algorithms include Boyer-Moore and Aho-Corasick [54, 55].

These algorithms are still used in many network and system softwares such as Snort and

grep, and are also currently the subject of pattern matching optimisation research for

network applications (Section 3.5).

2.5 Summary

This chapter began by looking at a range of network security issues concerning two

core problems: i) flawed design of network protocols in particular Internet Protocol

suite (TCP/IP) and ii) the vulnerabilities in software applications and OS. Some other

network security threats such as malwares also discussed to understand and quantify

the scale of network security problem. To minimise and counter these network threats

and stop the spread of malwares some core network defence mechanisms are discussed.

To illustrate the effectiveness and limitations of network security technology, some de-

fence mechanisms are discussed with a main focus on detail explanation of Intrusion

Detection System (IDS), the main issues concerning IDS technology, its limitations and

performance are focussed on Signature-Based Network Intrusion Detection System (SB-

NIDS).

Chapter 3

Survey and Related Work

Monitoring everyday network traffic for an attempted intrusions and complex kinds

of network attack is not a simple task for Network Administrators [56]. This task is

increasingly difficult due to the huge volume of legitimate network traffic and constantly

increasing network data transfer rates. Simultaneously, hundreds of software based

solutions for network monitoring, debugging, surveillance and intrusion detection has

been developed [57]. Some notable software solutions are NMAP, Netcat, Metasploit for

network monitoring and debugging [58–60]. Other solutions are Snort, Bro, Cisco NIDS

for detecting network intrusions and attacks, commonly known as Intrusion Detection

System (IDS) or Network Intrusion Detection System (NIDS) [3, 38, 61] (Section 2.4).

IDS or NIDS, particularly Signature based Network Intrusion Detection System (SB-

NIDS) collect and analyses network traffic in real time by capturing packets directly

from network interface(s). On high speed transmission network with data rate of gigabit

per seconds or over, SB-NIDS struggles to perform packet analysis of every incoming

or outgoing network packet. Consequently, SB-NIDS data buffer becomes full which

force SB-NIDS to remove or drop some packets from packet buffer. This happens due to

complex process of data collection, manipulation and analysis of network data in NIDS

components (Section 2.4.7).

3.1 Chapter Roadmap

The rest of the chapter is outlined as follows:

• In section 3.2, introduction of how state of the art SB-NIDS is explained in the

rest of this chapter. The basic technique and compare and contrast are followed

in state of the art discussion.

40

Chapter 3. Survey and Related Work 41

• In section 3.3 the state of the art are explained. The main focus is on describing

the state of the art SB-NIDS and pattern matching implementations. State of the

art are grouped into categories and their contributions are clearly explained.

3.2 Introduction to Literature Review

The three computationally demanding process of SB-NIDS has been the subject of re-

search and development. They can be distinguished as three independent areas of re-

search (Section 2.4.7). The contribution of research is the state of the art high speed

algorithms and hardware architectures that are capable of supporting high data rate

throughput. In this survey, state of the art of only one area (Pattern Matching) is dis-

cussed in detail due to its direct association with part of the research presented in this

thesis (Section 3.5). Additionally, some state of the art are also discussed that were

proposed to optimise the SB-NIDS using high performance processing and computing

technology to support packet analysis at high data rate network link. Figure 3.1 and

figure 3.2 shows the state of the art related work.

3.3 Literature Explanation

First the state of the art SB-NIDS design and implementation is discussed which are

distinguished in categories and compared (Section 3.4). This is followed by the discussion

of state of the art pattern matching algorithms and hardware architectures (Section 3.5).

Different pattern matching implementations is identified into categories and compared.

3.4 SB-NIDS using High Performance Computing Plat-

form

It has been observed that hardware architectural approach is used consistently to opti-

mise the packet analysis speed performance of complete SB-NIDS to enable high data

rate network traffic analysis. The two hardware architectural approaches for optimising

the complete SB-NIDS are: Computer Clusters and Embedded Processing Platform.

Chapter 3. Survey and Related Work 42

F
ig
u
r
e
3
.1
:

N
et

w
o
rk

In
tr

u
si

o
n

D
et

ec
ti

o
n

S
y
st

em
s

a
n

d
F

il
te

ri
n

g
S

y
st

em
s

Chapter 3. Survey and Related Work 43

F
ig
u
r
e
3
.2
:

P
a
tt

er
n

M
a
tc

h
in

g

Chapter 3. Survey and Related Work 44

Table 3.1: Summary of Computer cluster and Embedded processing based SB-NIDS

Hardware
Architecture

Authors Summary

Kruegel et
al [62]

One of the earliest ideas that employed cluster
of general purpose processor (PC) for deploying
Snort for stateful and distributed packet analysis.

Schaelicke et
al [63]

A Loadbalancer design that supports dynamic
feedback mechanism to ensures dynamic adjust-
ment of network traffic distribution in order to
avoid particular NIDS sensors overloaded with
too much traffic.

Computer Cluster
Xinidis et

al [64]

A sophisticated Loadbalancer that perform
packet distribution as well as packet filtering, lo-
cality buffering and TCP packet reassembly.

Vallentin et
al [65]

Hardware architecture with cluster of general
purpose processors (PC) for the deployment of
SB-NIDS and has mechanism to detect and re-
cover from NIDS node failure.

Ficara et
al [66]

A cluster based NIDS architecture where the SB-
NIDS deployed on a cluster of general purpose
processor (PC) and connected via Loadbalancer
implemented on Network processor performing
packet distribution as well as packet filtering and
packet re-ordering.

Clark et
al [67]

Network Node Intrusion Detection System
(NNIDS) for packet analysis at host (PC) level
developed by porting Snort components on a Net-
work Processor.

Embedded Processing
Clark and
Ulmer [68]

A Network Intrusion Prevention System (NIPS)
implemented on FPGA that perform packet anal-
ysis by monitoring multiple Gigabit Ethernet
links.

Yoon et
al [69]

FPGA based security system with management
subsystem for updating security policies and anal-
ysis subsystem for network packet analysis that
performs stateful packet inspection and signature
checking.

Vasiliadis et
al [70]

A modified Snort where Packet capture, Decoder,
Preprocessor and Logging Engine executes on
CPU and Snort detection engine is offloaded to
Graphic Processing Unit (GPU) for rule evalua-
tion.

3.4.1 Computer Clusters for SB-NIDS

Such SB-NIDS deployed with cluster of NIDS packet analysis engine or sensors that

analyses fraction of distributed network traffic. Figure 3.3 shows the typical arrangement

of hardware for cluster-based SB-NIDS.

The core hardware in such architecture is a Load balancer which distributes the network

traffic for analysis by cluster of SB-NIDS. Load balancer can either be implemented with

Chapter 3. Survey and Related Work 45

Network backbone

Cluster of NIDS

Load balancer

Figure 3.3: Typical arrangement of hardware for Cluster-based SB-NIDS

embedded processing hardware technology or a standalone PC with a Load balancing

software. A SB-NIDS cluster can be made up either by installing NIDS software package

on standalone PCs or by deploying high performance SB-NIDS packet analysis processing

technology commonly available in commercial market (Section 2.4.5).

The main reason for such a complex arrangement of hardware (Table 3.2) is to perform

network packet analysis on a very high throughput preferably gigabit per second rate of

network throughput. One of the important components that perform critical function

in attaining such a high speed packet analysis in NIDS cluster is the Load balancer. The

main function of the Load balancer is to distribute the network packets to the SB-NIDS

cluster. Such a distribution should be fair in terms of packet distribution and load,

and should also maintain the state of the network connections or flows which is critical

for detecting network attacks. Distributing network traffic in such a manner is not at

all simple. Therefore, the proposed SB-NIDS cluster systems main emphasises was on

strategies and techniques of equal, efficient and stateful distribution of network traffic

between SB-NIDS clusters [62–66].

Research contribution

One of the first ideas of distributed packet analysis using computer clusters proposed in

2002 by Kruegel et al. [62]. Their distributed NIDS architecture employed the cluster of

NIDS engines or sensors install on ordinary PC with general purpose processor. Each

NIDS sensor is responsible for the detection of specific attacks due to careful distribution

of attack rules between clusters of sensors in a manner that each sensor searches the

packet only for particular type of network threat or attack.

Chapter 3. Survey and Related Work 46

Table 3.2: NIDS cluster hardware specification

Authors Hardware Description

Kruegel et al [62]
Scatterer: (Intel Xeon 1.7 GHz Processor). Traffic Slicer and Re-
assembler: (Intel Pentium IV 1.5 GHz). Network Switch: (Cisco
Catalyst 3500XL).

Schaelicke et al [63]
Simulation Environment on general purpose processor: Hardware
specification not specified.

Xinidis et al [64]

Splitter prototyped on: (Radisys ENP 2506 board with Intel IXP1200
Network Processor: One ARM processor and six special purpose pro-
cessor (Microengines)). NIDS nodes: (Dell PowerEdge 500SC with
Intel Pentium III 1.13GHz) and (Dell PowerEdge 1600SC with Intel
Pentium IV Xeon Processor 2.66 GHz).

Vallentin et al [65]

Frontend and Backend nodes: (Intel Pentium D 3.6 GHz dual-CPU)
at LBNL. Frontend node: (Dell PowerEdge 850 with Intel Pentium
D 920 Dual-core) and Backend node: (Sun Fire X2100 with AMD
Opteron 180 Dual-core) at UC Berkeley.

Ficara et al [66]

Hardware Classifier: (Radisys ENP-2611 board with Intel IXP2400
Network Processor. Intel Xscale 32 bit RISC process and eight special
purpose processor (Microengine)). NIDS node: (Intel Xeon 2.8 GHz
Processor).

Table 3.3: Advantages and disadvantages of cluster based NIDS

Authors Advantages Disadvantages

Kruegel et
al [62]

Considered first proposed NIDS us-
ing computer cluster with Stateful
loadbalancing.

Expensive set of Loadbalacing
hardware

Schaelicke et
al [63]

Dynamic loadbalancing feedback
mechanism for equal load distribu-
tion.

Stateless loadbalancing.

Xinidis et
al [64]

An active loadbalancer (Splitter)
that also filter traffic as well as pro-
cess some NIDS function.

Packet distribution based on rules
groups provide a way to attack and
fail the system by overloading spe-
cific NIDS node with packets.

Vallentin et
al [65]

Spare hardware for on the fly re-
placement of failed NIDS sensor.

No fail recovery mechanism avail-
able for loadbalancer hardware fail-
ure.

Ficara et
al [66]

Loadbalancer (Classifier) performs
NIDS packet classification process
and offload some NIDS processing
load.

Unsupportive to stateful and proto-
col analysis because classifier hard-
ware forward only those packets
that match rule headers.

Their NIDS cluster architecture is comprises of an array of complex sets of hardware. The

packet distribution occurs with the help of these hardwares. In this architecture, first the

Scatterer hardware captures the network packet from the network interface and forward

them to the sets of Traffic Slicer hardware. Traffic slicers then further distributes these

packets to the appropriate NIDS sensor based on Snort on a general purpose processors.

These packets travels through the arrays of Reassembler hardware which are indirectly

connected to Slicer hardware via Network switch and directly connected to NIDS sensors.

Before packets finally passes on to the NIDS sensors for analysis, the Reassemblers

Chapter 3. Survey and Related Work 47

arranges the packet order on the basis of first-capture-first-forward basis. The main

idea of the slicing mechanism is to distribute the packets to multiple NIDS sensors

in order to gain packet analysis efficiency and support of higher rate throughput. This

architecture also supports SPI and can analyse packets at over 190 Mbps on each sensor.

One of the best features of this cluster based NIDS is scalability which can be achieved by

adding easily an extra NIDS sensors. The main disadvantage of this complex but highly

distributed cluster based NIDS are high first time investment and maintenance cost.

There is also an operational issue which is SB-NIDS sensors dependency on one and only

centralised packet Scatterer hardware that can make the complete SB-NIDS system non-

functional in case of scatterer hardware failure. Furthermore, this distributed SB-NIDS

architecture provides no Dynamic feedback mechanism, a mechanism that dynamically

adjust network traffic distribution due to network traffic flow change in order to avoid

particular SB-NIDS sensors overloaded with too much traffic1. In summary, this system

is a scalable SB-NIDS solution but requires high first time investment and maintenance

cost and also lack Dynamic feedback mechanism feature that is essential to take control

on uneven packet distribution flow.

In 2005, Schaelicke et al came up with a design of efficient Load balancer hardware

on FPGA for the cluster based SB-NIDS approach called SPANIDS [63]. This Load

balancer hardware has a gigabit Ethernet interface to capture the network packet and

distribute them in a stateless manner between the cluster of NIDS sensors using the

flow based network traffic distribution approach. When Load balancer captures the

packet, it extracts the IP addresses and port numbers from the network packet for flow

based distribution. The Load balancer then hashes these values into a table created in

the Load balancer local memory or RAM. Each table entry is associated with specific

NIDS sensor responsible for analysis of particular flow of packets. Figure 3.4 shows this

process.

Hash
calculator

Packet

NIDS
Sensors

Table

Figure 3.4: Loadbalancing using hash calculator

1flow based network traffic distribute traffic based on IP address and/or port number.

Chapter 3. Survey and Related Work 48

Network traffic distribution using this kind of hashing or flow based distribution can

easily overload any SB-NIDS sensor in cluster. In order to overcome this issue dynamic

feedback mechanism is incorporated into the design of this efficient Load balancer which

is the main contribution of their work not supported by Kruegel et al. [62]. The dy-

namic feedback mechanism is supported with the help of simple communication protocol

implementation. NIDS sensors communicates with the Load balancer with flow control

message to notify the traffic load on the SB-NIDS sensor. The Load balancer then ad-

justs the traffic on the loaded SB-NIDS sensor by diverting some of the flows to the

least loaded SB-NIDS sensor. Such an adjustment in response to a flow control message

disturbs the flow based analysis due to the movement to different sensors. The major

disadvantage of this proposed Load balancer is the heavy reliance on one Load balancer

hardware that in case of failure makes the complete SB-NIDS cluster non-functional,

the same problem shared by the SB-NIDS cluster design proposed by Kruegel et al. [62].

The simulation model of the cluster based system is created to evaluate the dynamic

feedback mechanism performance. It consist of 12 simulated sensors, each with packet

buffers of the Linux default size of 64 Kbytes and a Load balancer FPGA hardware. The

experiment conducted with the 21 hour network traffic trace shows that the dynamic

feedback mechanism is able to drastically improve the number of packets drop. Without

feedback mechanism, a total of 498,995 packets are dropped, while feedback mechanism

reduces the total to 46,208 packets drop which is the significant improvement. In sum-

mary, the efficient Load balanacer hardware design implemented in FPGA is presented

which has a advantage over Kruegel et al load balancing approach due to dynamic feed-

back mechanism features but both design share the same weakness of single centralised

Load balancer hardware with no support of failed recovery mechanism [62].

In 2006, Xinidis et al proposed the concept of active Load balancer for cluster based SB-

NIDS [64]. Unlike passive Load balancer that distributes only the network traffic between

NIDS nodes; active Load balancer proposed in this design performs not only the packet

distribution but also supports useful features to improve the packet analysis speed. This

include Packet filtering (Section 3.5.2), Locality buffering and SB-NIDS processing such

as TCP packet reassembly. Packet filtering involve the processing of header only attack

rules then forwarding rest towards the SB-NIDS sensor via the locality buffer. Locality

buffering is a technique that is applied by reordering the network packet using locality

buffer of SB-NIDS sensor. This result in improve packet analysis speed performance

due to reduction in cache misses. The packet reordering criteria is crucial for successful

implementation of locality buffering which is actually arrangement of stream of packets in

a way that each SB-NIDS sensor trigger the same set of attack rules everytime it received

network packet2. This active Load balancer is prototyped on Intel IXP1200 Network

2In Snort, rules are arranged based on matching headers forming rule-groups.

Chapter 3. Survey and Related Work 49

processor which performs flow based packet distribution by hashing key packet header

values (IP addresses and port numbers). Cluster of SB-NIDS sensors based on Snort (ver

2.0 and 2.0.2) with active Load balancer executed on PC with general purpose processor

and is tested with traces of network packets collected in September 2002 on NLANR

network shows the significant performance improvement in terms of reducing overall the

processing load on NIDS sensors. The test results demonstrated reduction of overall

8 % traffic by filtering and 10-17 % by locality buffering. The Load balancer throughput

measured for 64 bytes packet is 500 Mbps and for 1472 bytes packet is 980 Mbps. In

summary, the first ever active Load balanacer hardware design is presented on network

processor which performs packet distribution and actively engaged in other processing

to reduce the processing load from cluster of NIDS sensors. The overall capability of

the Load balancer is increased which is the novel contribution of this work but lacks in

features like dynamic feedback mechanism for flow control and failed recovery mechanism

necessary to coup with failure of one and only centralised active Load balancer.

In 2007, Vallentin et al proposed a design of cluster-based SB-NIDS architecture using

the combination of Frontend node and Backend node hardware [65]. SB-NIDS sensors

are represented as Backend nodes is the cluster of PCs with general purpose processors.

The Load balancer is represented as Frontend node has a gigabit Ethernet interface

to capture the network packet for distribution to SB-NIDS sensors for packet analysis.

This distribution is flow based which is performed by extracting IP addresses and port

numbers from packet and hashes them to generate hash value. This hash value is then

taken the modulus with the total number of SB-NIDS sensors for selecting the packet

destination sensor for packet analysis. Once the destination sensor identify, the Load

balancer writes the destination NIDS sensor MAC address and forwards the packet.

This cluster based system is very similar to other previously discussed cluster based

NIDS with the exception of failed recovery mechanism to enable recovery of SB-NIDS

sensor in case of failure. To perform this task an additional hardware called Hot Spare

hardware is installed in a system which monitors the NIDS sensor via a ping like method

known as heartbeat mechanism. If any SB-NIDS sensor found failed then the Hot spare

takes the charge of monitoring all the traffic flows destined to failed SB-NIDS sensor

MAC address. The single and most common issue is the centralised Load balancer with

no failed recovery mechanism for Load balancer. The most promising characteristic of

this system is the packet inspection support of 10 Gbps data rate throughput with the

FPGA based Load balancer. In summary, a cluster-based SB-NIDS is presented with

an added feature of failed recovery mechanism for SB-NIDS sensor which advances the

state of the art.

In 2008, Ficara et al proposed a cluster-based SB-NIDS architecture which comprise of

NIDS sensors deployed on cluster of PCs on general purpose processor and Load balancer

Chapter 3. Survey and Related Work 50

on Network Processor [66]. SB-NIDS sensors and Load balancer are connected directly

with gigabit Ethernet link. Load balancer is also connected with a network backbone.

Once it receives the packet, it then extracts key packet header values (IP addresses and

ports) and hashes them to generate hash values. This hash value is compared with

the pre-computed hash values of attack rule headers group stored in Network Processor

local memory [71]. If any rule group header hash values match with key packet header

hash values then the packet is forwarded to the NIDS sensor responsible to evaluate

the particular rule group on packet. In summary, this cluster-based SB-NIDS is a lower

cost PC based SB-NIDS; this SB-NIDS has no distinguished features like failed recovery

mechanism or dynamic feedback mechanism.

In summary, cluster-based SB-NIDS are efficient and provide high throughput SB-NIDS

packet analysis. Majority of cluster-based SB-NIDS requires high cost hardware invest-

ment and future maintenance.

3.4.2 Embedded Processing Platform for NIDS

High performance embedded processing and computing platform has also been used to

implement optimised SB-NIDS solutions. Most of these commercial solutions of SB-

NIDS is sold as a “Box solution” in a commercial market that are implemented with

embedded processing platform (Section 2.4.5).

Research Contribution

One of the earliest work that demonstrates the design and implementation of SB-NIDS

using high performance embedded processing platform is proposed by Clark et al in

2004 [67]. This NIDS is called Network Node Intrusion Detection System (NNIDS). It

is a SB-NIDS implementation using Snort on Network Processor for distributed packet

analysis. The unique idea of implementing the NNIDS on a network processor comes

from their believe that the Network Processors can be easily integrated into a Net-

work Interface Card (NIC) of any computer or node which will easily enable distributed

packet analysis on network. NNIDS is developed on Radisys ENP-2505 development

board. Main components of the board are Intel IXP1200 Network processor that has

a StrongARM processing core and six microengines (Processors) with a clock speed of

232 MHz and Xilinx Virtex-1000 FPGA co-processor attached with IXP1200 proces-

sor via PCI mezzanine connector (PMC). Snort apart from pattern matching is ported

on Intel IXP1200 network processor while the pattern matching is offloaded to FPGA

co-processor for high speed pattern matching. The test result of NNIDS shows that

the pattern matching component of the system is able analyse network traffic up to the

Chapter 3. Survey and Related Work 51

951 Mbps. NNIDS also only able to perform SPI but does not provide any facility to per-

form application level protocol (DNS, SMTP, FTP, HTTP etc.) analysis. In summary,

it is first ever Snort port on Network Processor architecture with FPGA based pattern

matching hardware acceleration unit that improves Snort slow speed search of attack

signatures nearly up to 2 to 3 times when compared with Snort’s pattern matching

throughput on general purpose processor but still lower in comparison to other state of

the art FPGA based Pattern Matching Hardware Accelerator (PMHA) which performs

packet analysis up to 1.85 Gbps throughput (Section 5.3). Also this system propose the

unique concept of enabling distributed packet analysis by integrating SB-NIDS in NIC

and so advances the state of the art.

In 2005, Clark and Ulmer proposed a Signature-based Network Intrusion Prevention Sys-

tem (SB-NIPS) design that performs inline packet processing in order to stop and prevent

network attacks [68]. It is implemented on a Xilinx Virtex II Pro (V2P7-6) FPGA de-

vice on a ML300 embedded development board. The unique feature of this system is the

support of packet analysis on multiple gigabit Ethernet links using Snort’s attack rules.

These attack rules are translated into hardware configurations for the FPGA by imple-

menting a program using JAVA Hardware Description Language (JHDL). This SB-NIPS

has two main units, a Network Interface (NI) unit and a Intrusion Detection (ID) unit.

Multiple NI units are connected to two different network links and supplies network

packets to an ID unit for network threat detection and prevention. Due to the limited

chip area of the V2P7 FPGA, this system was only tested with 21 rules and achieved

a maximum throughput of 8 Gbps. Clark and Ulmer also implemented this design to a

larger Xilinx XC2VP100 Virtex-II Pro FPGA chip with 1299 Snort attack rules (17514

characters) and utilised 36 % of the chip’s LUTs and 47 % of its slices. This design is

not very efficient in comparison to the FPGA based PMHA which is implemented with

more than 3 times Snort attack rules (9140) and utilised 56 % of FPGA logic blocks and

66 % of slices of a Xilinx XC2V6000 Virtex-II FPGA (Section 5.3). Also the ID unit

implementation of this SB-NIPS does not perform any protocol based analysis. In sum-

mary, it is the first SB-NIPS design with both packet capture and intrusion detection

and prevention components implemented on FPGA. Not fast enough in comparison to

PMHA presented in this thesis.

In 2006, Yoon et al proposed a NIPS architecture called Next Generation Security Sys-

tem (NGSS) [69]. NGSS is implemented on a Xilinx Virtex-II Pro XC2VP70 FPGA

with Verilog Hardware Description Language (HDL). NGSS is made up of two systems:

Security Gateway System (SGS) and Security Management System (SMS). SMS is just

a management system that updates security policy (Configuration and rules update).

SGS is the core network traffic analysis unit with three FPGA based hardware modules:

Anomaly Traffic Inspection Engine (ATIE), Pre-Processing Engine (PPE) and Intrusion

Chapter 3. Survey and Related Work 52

Detection Engine (IDE) implemented on Xilinx Virtex-II Pro XC2VP70 FPGA. PPE

module performs the SPI and maintains the session state table in CYNSE70256 9 Mbits

TCAM and 2 MBytes Cypress SRAM. IDE module performs the packet classification

for rule selection by comparing key packet header fields (Protocol, IP address and port

number) with rule headers stored in TCAM memory. IDE module also performs the pat-

tern searching in packet payload using on-chip FPGA memory in which Snort’s attack

patterns are stored. ATIE module generates alert messages and also performs intrusion

prevention actions. NGSS is tested with only 200 Snort rules which is a reason why

a system perform analysis with such a high throughput of 2.0 Gbps which is better

than the PMHA throughput presented in this thesis but much lower in number of at-

tack rules (Section 5.3). In fact this system provides high speed packet analysis but it

does not provide functionality to perform different application level protocol analysis

(HTTP, DNS, FTP, Telnet, DNS etc.). This makes it susceptible to perform different

kinds of protocol based attacks (Tiny fragment attack, DNS amplification attack etc).

In summary, NGSS advances the state of the art by providing NIPS design that able

to perform SPI as well as attack signatures checking at high throughput on a tightly

coupled embedded processing platform but lacks with feature of protocol analysis. This

feature is provided with a NIDS prototype on embedded processing platform presented

in this thesis (Section 5.2).

In 2008, Vasiliadis et al demonstrated the use of Graphical Processing Unit (GPU) to

speed up the packet analysis speed of SB-NIDS [70]. The SB-NIDS development on GPU

is carried out using Snort and so this SB-NIDS is named as Gnort. Gnort implementa-

tion involved offloading Snort’s computationally demanding packet processing operation

(pattern matching) from a CPU to GPU. This is carried out by executing Snort’s Packet

Capture, Packet Decoder, Preprocessor and Logging plug-in components on a PC with

general purpose processor and its only Detection Engine component which performs the

most computationally demanding operation is offloaded for execution from a CPU to

GPU. Packets when capture by the packet capture components on CPU first go through

Packet Decoder and Preprocessor components and then pass on to the Detection Engine

on GPU for attack signature search in packets. Packet transfer from CPU to GPU per-

formed in bulk rather than every single packet. This is due to the overhead associated

with every packet transfer. CPU use buffer to store packets before they transfer them

to GPU which helped attaining higher data transfer throughput between the CPU and

GPU. Also this transfer is supported by Direct Memory Access (DMA) feature. Once

the packets received by GPU it is searched for the presence of attack signatures by

Aho-Corasick (AC) multi-pattern matching algorithm executing on GPU stream pro-

cessors. If any pattern found in a packet then GPU pass the attack signature detection

Chapter 3. Survey and Related Work 53

information back to CPU for alerting administrator and logging. Detection Engine com-

ponent which performs pattern matching is implemented on NVIDIA GeForce 8600GT

card which contains 32 stream processors arranged in 4 multiprocessors, operating at

1.2 GHz frequency and has 512 MB memory. Rest of the components implemented on

Intel Pentium IV 3.40 GHz processor with 2 GB of memory. Test result shows that AC

on GPU consistently achieved 1.40 Gbps compared to 600 Mbps on PC with general

purpose processor. In summary, Gnort novel contribution is the use of implementation

platform that provides complete SB-NIDS solution with high speed pattern matching

on GPU. An integrated NIC on GPU would be a better option if ever available, to

implement high speed network packet processing applications. Gnort pattern matching

throughput is 1.40 Gbps which is lower in comparison to the FPGA based PMHA design

presented in this thesis that supports 1.85 Gbps throughput (Section 5.3).

In summary, SB-NIDS design using embedded processing platforms is cost effective solu-

tion in comparison to cluster based SB-NIDS. Therefore, embedded processing platform

is more appealing for developing and optimising SB-NIDS. Most state of the art apart

from Gnort also struggle to provide features necessary to detect wide range of attacks in

comparison to the solution presented in this thesis (Section 5.3). The pattern matching

optimisation carried out using FPGA as part of the state of the art solution also does

not support full attack rules due to limited FPGA resources in comparison to the PMHA

presented in this thesis (Section 5.3).

3.5 Pattern Matching for SB-NIDS

Numerous research work has been done in past to optimise the pattern matching speed

for SB-NIDS [72–79]. Some research work proposed novel pattern matching algorithms

for NIDS to improve the packet analysis speed [72, 73]. Others research work came

up with packet filtering technique in order to reduce the amount of traffic inspected

by pattern matching algorithm of Snort [74–80]. Current research focus is exploring

reconfigurable hardware [81–90] and network processors for pattern matching speed ac-

celeration [91–93]. Almost all proposed pattern matching design used Snort attack rules

for implementation and testing of their solutions. Out of these solutions, few proposed

solutions to specifically optimised packet analysis speed of Snort. These solutions actu-

ally optimised the rule evaluation process of Snort which involved packet classification

(Rule selection) and packet analysis (Packet header and payload check with rules). These

solutions can be named as Snort Rule evaluation system which has been implemented

with FPGA hardware, hybrid hardware/software platform and Network Processor for

the improvement of packet analysis speed [85, 87, 90–92, 94].

Chapter 3. Survey and Related Work 54

3.5.1 SB-NIDS Specific Pattern Matching Algorithms

These algorithms were proposed specifically to optimise the pattern matching of Snort

SB-NIDS. These algorithms came up with better results of search speed which is achieved

by designing an algorithm that utilise the best features of state of the art pattern

matching algorithms that include Boyer-Moore (BM), it’s variant by Horspool and Aho-

Corasick [54, 55, 95]. Due to this reason these two novel algorithms can be collectively

called as Hybrid Pattern Matching algorithms [72, 73].

Table 3.4: NIDS specific hybrid multi-pattern matching algorithms

Authors
Hybrid

Algorithm
Description

Fish and
Varghese [72]

SBMH
Hybrid features adapted from Horspool (Boyer-Moore
(BM) variant) and Aho-Corasick(AC) algorithms.

Coit et al [73] AC BM
Combined features in one algorithm adapted from
Boyer-Moore (BM) and Aho-Corasick (AC) algorithms.

Research Contribution

In 2001, Fish and Varghese proposed the first hybrid SB-NIDS specific pattern matching

algorithm called Set-wise Boyer-Moore-Horspool (SBMH) [72]. This hybrid algorithm

adapts the Horspool variant of the Boyer-Moore algorithm and Aho-Corasick algorithm.

This hybrid algorithm simultaneously match a set of patterns in just a single iteration or

loop by applying a multi-pattern matching search technique of Aho-Corasick algorithm3.

Also it adapt the Horspool bad-character heuristic search technique to skip character

during pattern comparison to optimise further the pattern matching4. The multi-pattern

search is applied by creating a suffix pattern tree and Horspool bad-character heuristic

is applied by creating a bad-character shift table. Both the suffix tree and bad-character

shift table is created by pre-processing the patterns. Figure 3.5 is an example that

shows the suffix tree and bad-character shift table constructed by pre-processing patterns

“xyz”, “rstyz” and “abcdeyz”. Figure 3.6 is an example of the search of a sample text

“patternrstyz” in a suffix tree.

To begin pattern matching, the shortest of all patterns is left-aligned with the left of

sample text (Before Shift) or packet data. The match is then started from right to

left character by character. When the test cannot match any character in sample text,

the algorithm uses the bad-character shift table for moving the text to the left which

may also result in skipping characters. SBMH, Aho-Corasick and Boyer-Moore Horspool

3Aho-Corasick pre-process patterns to create pattern search tree in order to support simultaneous
search of multiple number of patterns.

4Horspool algorithm pre-process patterns in order to gain pattern heuristic information for creating
search shift-table.

Chapter 3. Survey and Related Work 55

 r s t

x y z

 a b c d e

a b c d e r s t x y z *
6 5 4 3 2 4 3 2 2 1 1 4

Figure 3.5: Suffix tree and Bad-character shift table for SBMH

Before Shift Second Shift

 r s t r s t

 x y z x y z

 a b c d e a b c d e

 p a t t e r n r s t y z p a t t e r n r s t y z

First Shift Third Shift

 r s t r s t

 x y z x y z

 a b c d e a b c d e

 p a t t e r n r s t y z p a t t e r n r s t y z

 Final Shift:

 r s t

 x y z

 a b c d e

 p a t t e r n r s t y z

Figure 3.6: Example showing pattern search in a text “patternrstyz”. Pattern “rstyz”
is found in a text in final shift

algorithms performance is tested and compared with different set of Snort’s attack rules.

Based on the test results they suggested that NIDS like Snort should have different

algorithm implementation that trigger depending on the number of rules selected on a

packet for evaluation. Boyer-Moore-Horspool if there is only 1 rule, SBMH if there are

between 2 to 100 rules and Aho-Corasick if there more than 100 rules. Also for packet

traces of web traffic the SBMH algorithm is much better and improves overall Snort

performance by a factor of 5. In summary, the novel contribution of combining multi-

pattern search with character skipping resulted in improve pattern matching specially

for web traffic. However, any pattern matching implementation that uses pattern tree

Chapter 3. Survey and Related Work 56

for multi-pattern search consumes huge amount of memory.

In the same year of 2001, Coit et al also proposed hybrid multi-pattern matching algo-

rithm which they implemented independently in Snort [73]. They combine multi-pattern

search of Aho-Corasick and character skip feature of Boyer-Moore in a single algorithm

and so named as AC-BM (Aho-Corasick-Boyer-Moore). Like SBMH, AC-BM also pre-

process patterns to construct the pattern tree for multi-pattern search support and also

gained pattern heuristic information for constructing a search shift-table. However, un-

like SBMH which creates a suffix tree, AC-BM pre-process patterns to create prefix tree

and also search the packet data for patterns from right to left. Also AC-BM search is

supported by has two shift tables instead of one. These shift tables are bad-character

shift table and good-prefix shift table. Figure 3.5 is an example that shows the prefix

tree constructed by pre-processing patterns “brit”, “bribe”, “bring” and “brought” and

also shows the initial alignment of search text “searchthistext”. Figure 3.8 is an example

of the searching a text using AC-BM suffix tree applying only good-prefix heuristic.

 b e

 i t

 n g

 b r

 o u g h t

 s e a r c h t h i s t e x t
Figure 3.7: Prefix tree and text alignment to begin pattern search in AC-BM algo-

rithm

The bad-character heuristic works in the same way as in SBMH. However, the good-

prefix shift is a different and complicated process than bad-character heuristic. In fig-

ure 3.8 case (a), match test is failed at character ‘g’. Text symbol “to” has matched so

far with pattern in a tree. The text can be shifted until the next occurrence of “to” in

the pattern is aligned to the text symbols “to’. This is a good-prefix shift. Similarly,

for case (b) in figure 3.8, the comparison fails at character ‘o’ of text. There is no other

occurrence of “sit” in any pattern. However, since a prefix “si” of the match text “sit”

occurrence exists in pattern, the text can be shifted until the next occurrence of “si” in

the pattern is aligned to the text symbols “si”.

Chapter 3. Survey and Related Work 57

Before Shift Before Shift

 a l m p l e

 t o t s i t e

 i n g t e r

 m a t o t s i g n

 t o r n t o g o i s i t s i t o

 After Shift After Shift

 a l m p l e

 t o t s i t e

 i n g t i n g

 m a t o t s i g n

 t o r n t o g o i s i t s i t o

 Case (a) Case (b)

Figure 3.8: Search shows good-prefix shift

AC-BM performance is compared with the original implementation of Boyer-Moore.

For the combined content (keywords) and non-content attack rules search, Boyer-Moore

performed better than AC-BM algorithm. However, when the test were skewed by the

elimination of the non-content attack rules, the AC-BM algorithm found superior to

Boyer-Moore pattern matching algorithm. AC-BM found 1.31 times faster than Boyer-

Moore when tested with 200 Snort content only attack rules and 3.32 times faster than

Boyer-Moore when tested with 786 Snort content only attack rules. There is no study

identified that provide the test comparison between AC-BM and SBMH.

In summary, the two state of the art SB-NIDS specific algorithms AC-BM and SBMH

adopted multi-pattern matching and skip based search technique. The whole idea of

hybrid approached proved better search result. No effort has been made to reduce

the memory requirement of pattern search tree in these two proposed work. This was

addressed separately by Tuck et al. [96] and Marc Norton [97] in a separate study.

Chapter 3. Survey and Related Work 58

3.5.2 Packet Filtering Technique for Pattern Matching in SB-NIDS

The idea of filtering elements (Patterns) in order to reduce the search time first conceived

by Burton Bloom in 1970 [5] (See section 5.3.1). He proposed the use of bit-array for

quick filtering of the patterns prior triggering any exact pattern matching algorithm for

exact matching. If quick filter lookup indicates the pattern presence then it searches

with exact pattern matching algorithm, otherwise it simply discarded. This basic idea

of filtering is also exploited in other work for optimising pattern matching of SB-NIDS.

Some of these work are explained in [74–79]. They can be collectively called as Pattern

Filtering Systems (Table 3.5).

Filtering
System

Incoming
Packet

Candidate
Rules

SB-NIDS
or

Pattern Matching
Engine

Figure 3.9: Block diagram showing typical position of Filtering System for SB-NIDS

Table 3.5: Pattern Filtering Systems

Implementation Authors

Markatos et al [74] (ExB)

Software (General Purpose Processor)
Anagnostakis et al [75] (E2xB)

Antonatos et al [76] (PIRANHA)

Attig et al [78] (SIFT)

Hardware (FPGA)
Song et al [79] (Snort Offloader)

Sourdis et al [77] (Prefiltering)

Gonzalez et al [80] (Shunting)

Initial filtering systems focussed to develop the algorithmic solution of filtering and

implemented as a software program (Table 3.5) for general purpose processors [74–76].

Subsequent work optimised filtering algorithms and exploited the processing power of

FPGA (Table 3.5) to provide high speed filtering system [77–79]. Table 3.6 shows the

details of hardware technologies used for the implementation of these filtering system.

Research Contribution

Markatos et al in 2002 proposed the pattern filtering idea for Snort SB-NIDS [74].

Their filtering system is known as “Exclusion-based signature matching or ExB” that

filters or excludes as many patterns as possible so only few remaining patterns are

Chapter 3. Survey and Related Work 59

Table 3.6: Details of Hardware technologies

Authors Hardware Description

Markatos et al [74])
Intel Pentium IV 1.7GHz, 8-KB of L1 cache, 256 KB of L2 cache

Anagnostakis et
al [75]

and 512MB RAM

Antonatos et
al [76]

Intel Pentium IV 2.8GHz, 8-KB of L1 cache, 512 KB of L2 cache
and 1GB RAM

Attig et al [78]
Xilinx Virtex XCV2000E-8 FPGA

Song et al [79]

Sourdis et al [77] Xilinx Virtex II 4000-6 FPGA and Xilinx Virtex IV 40-12 FPGA

Gonzalez et al [80] Xilinx Virtex-II Pro 30 FPGA

Table 3.7: Advantages and disadvantages of software based pattern matching filtering
system

Authors Advantages Disadvantages

Markatos et
al [74]

Recognised as first ever implemen-
tation of filtering technique in SB-
NIDS.

Easily become a victim of DoS at-
tack due to slow process of bit map-
ping in character array for every in-
coming packet.

Anagnostakis
et al [75]

Optimised ExB (E2XB) version
now supports the case insensitive
pattern filtering.

Still the optimised ExB (E2XB)
repeatedly create bit-mapped in
character array for every incoming
packet.

Antonatos et
al [76]

Process patterns only once to create
suitable data structure for filtering
that can easily implement in hard-
ware.

Provide no support to filter net-
work traffic for patterns less than
4-bytes.

Attig et
al [78]

Ability to achieve throughput of
20Gbps using a Xilinx Virtex-IV
FPGA.

No support to scan payload content
for length 1, 2 or 3-bytes pattern.

Song et al [79]

Packet filtering (Filter firewall),
header only rule checking and two
level bloom filter on average filters
87% of traffic.

Snort on external PC rather than
integrated embedded processor(s)
connected with filtering hardware
via Ethernet interface.

Sourdis et
al [77]

Filtering hardware and Intrusion
Detection System (IDS) on a single
embedded processing board.

Integrated IDS only performs the
rule evaluation on a packet.

Gonzalez et
al [80]

An inline filtering system (Shunt)
that acts as an Ethernet card to the
host that analyse packets using Bro
NIDS.

Bro on PC with shunt acting as its
gigabit Ethernet card experienced
a small fraction of packet drop but
drop can become worst on higher
data rate interface (10-Gbps).

search using pattern matching algorithm. ExB filtering algorithm is defined as, “For

any pattern P with i number of characters ci, if any ith character ci of pattern P does

not show up in packet payload content T, then the pattern P is not present in packet

payload content T.” To implement this algorithm, ExB creates the data structure or

bit-map of every incoming packet payload and perform the quick check of every pattern

character presence in this data structure. The bit-map is created in a character-array

Chapter 3. Survey and Related Work 60

of 256 indexes which always set to zero before bit-mapping using bzero() C-language

method. Figure 3.10 shows the ExB’s algorithm bit-mapping process of a sample text

“1000poundsinnetworkpacket” and figure 3.11 shows the filtering of patterns “100dollar”,

“1001pounds”, “1000pounds” and “nomoney” in a ExB created bit-map of a sample text

“1000poundsinnetworkpacket” in figure 3.10.

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1
 a c d e i k n o p r s t u w

0

0

0 29

30 59

60 89

90 119

120 149

225 255

0 1

Figure 3.10: Pre-processing in ExB of a text “1000poundsinnetworkpacket”

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1
 a c d e i k n o p r s t u w

0

Pattern1: 1 0 0 d o l l a r Pattern2: 1 0 0 1 p o u n d s

Pattern3: 1 0 0 0 p o u n d s Pattern4: n o m o n e y

0

0 29

30 59

60 89

90 119

120 149

225 255

0 1

Figure 3.11: ExB algorithm searching patterns in a text “1000poundsinnetwork-
packet”

Chapter 3. Survey and Related Work 61

In figure 3.10, character array index with a value 1 indicates the presence of particular

character in a sample text “1000poundsinnetworkpacket”. For example, ASCII value of

character ‘w’ is 119 so the algorithm sets the corresponding array index to 1. Figure 3.11

which shows the pattern filtering , the mark (/) on characters of patterns shows that the

corresponding character array index is not set to 1 during bit-mapping which indicates

the sample text does not contain that character. Therefore, this pattern will be excluded

for pattern matching in Snort using one of the pattern matching algorithms such as

Boyer-Moore. For patterns “1001pounds” and “1000pounds” all characters are found

in a bit-map so both pattern will be search in Snort with pattern matching algorithm.

Pattern “1001pounds” with pattern matching in Snort would result as a non-match

pattern which in other words is a false positive and a weakness of this filtering algorithm

also acknowledged by authors. Instead they suggested the use of 13 bits character array

which they consider a good trade-off between false positive and lower memory usage. The

novel contribution which advances the state of the art is the first ever filtering system for

SB-NIDS in order to lower the invocation of computationally demanding Boyer-Moore

pattern matching algorithm in Snort. The weakness of this work is the high compute

time require for bit-mapping, the method which execute for every incoming packet and

an easy target of DoS service attack such as smurf attack (Section 2.2.1). This weakness

is recognised and also improved by Anagnostakis et al in 2003 by introducing ExB

algorithm enhancement known as E2xB [75].

E2xB is an optimised version of ExB that provide the faster bit mapping process, support

for case-insensitive matching and is tested with wider set of experiments. The faster bit

mapping process is improved by removing the overhead associated with initialising a

character array or clearing of 256 bytes character array (all array index should set to 0

before processing packet data) using (bzero() C-language method). Now in E2xB, the

array index for corresponding character ASCII value is marked with unique packet-ID

instead of 1 which serves the purpose of indicating the presence of particular character

in a packet data. E2xB algorithm performance is also compared with state of the art

SBMH and Boyer-Moore pattern matching algorithm. It was concluded from the test

results that E2xB consumes less search time than Boyer-Moore and SBMH for all network

packet traces except one. Improvement of E2xB is nearly 25 % and in some cases can be

as high as 36.1 % over SBMH and Boyer-Moore. In only one case of experiments E2xB

found worse than Boyer-Moore by 8 %. In summary, ExB and E2xB are one of the first

pattern filtering system for Snort which advances the state of the art. Performance of

E2xB is better than two state of the art pattern matching algorithms, even optimised

E2xB processes every packet to create bit-map instead of one bit-map of pattern for all

packets which is more appealing and practical to get the better result.

Chapter 3. Survey and Related Work 62

Antonatos et al in 2005 proposed PIRANHA, a filtering system for Snort suitable to

implement in hardware [76]. PIRANHA filtering algorithm is optimised and better than

ExB. The algorithm searches only 4 bytes rarest substrings of patterns in a packet data

and if found in packet then only those patterns are fully search with Snort pattern

matching algorithm. Rarest substring of pattern reflects the least number of times that

a specific substring exists in all patterns. PIRANHA algorithm is implemented with

Hashtable that is more suitable for filtering. It first finds all the 4 bytes substring

in all patterns and selects only one rarest 4 byte substring to represent each pattern

in hash table. Figure 3.12 shows the examples of PIRANHA arranging the patterns

“filteringprocess” and “filterisneverbad” in a hashtable for filtering and figure 3.13 shows

the pattern filtering process for a sample text “verygoodfilteringprocess”.

f i l t

e r i n

g p r o

c e s s

g o o d

m i l k

g p r o

g o o d

P1 P1

P2

P1 P1 P2 P2

P2

P1 P2

Example of index table for two patterns

Example of optimised index table for two patterns

Figure 3.12: Example of pre-processing of patterns “filteringprocess” and “filterin-
goodmilk” in PIRAMHA

TEXT: v e r y g o o d f i l t e r i n g p r o c e s s

g p r o

g o o d

P1 P2

PATTERN1 (P1): filteringprocess PATTERN2 (P2): filteringoodmilk

Figure 3.13: Example of searching text “verygoodfilteringprocess” for patterns “fil-
teringprocess” and “filteringoodmilk” in PIRAMHA

Chapter 3. Survey and Related Work 63

The rarest substring selection and association to patterns in hashtable is a two stage

process. At first the un-optimised hashtable is created which would result in slow pattern

filtering performance due to high number of memory accesses but low false positive rate.

In the second stage, the optimised hashtable is created by selecting only one 4 byte

rarest substring to represent each pattern which would result in high speed pattern

filtering performance but high false positive rate. Filtering is more straight forward

process than hashtable setup. For every incoming packet, each 4 byte sequence of packet

payload content substring is checked in the optimised index table to find occurrence of

any rarest 4 byte pattern substring. If any 4 byte rarest pattern substring matches

with the 4 byte packet data substring then algorithm compares the last 2 bytes of

pattern with the corresponding 2 bytes of packet content. In case this also result in

match then pattern is send to Snort to compare it with a corresponding bytes of packet

content using pattern matching algorithm. PIRANHA performance is tested and then

compared with some state of the art algorithms which include Mu-Wanber multi-pattern

matching algorithm (MWM) and E2xB [98]. The test results show consistently better

performance than these two algorithms. With eight different network packet traces,

PIRANHA performance is between 10 % to 23.50 % better when compared to other two

algorithms. PIRANHA also has low memory requirement. For full Snort attack rules

(2500 number of Snort rules in 2005), PIRANHA only consumed 37 MB of memory while

MWM consumed 45 MB, Aho-Corasick (AC) consumed 140 MB, variants of AC like

Marc Norton [97] AC-BANDED consumed 96 MB, Tuck et al. [96] AC-Bitmap and AC-

Path needs 20 MB and 15 MB of memory respectively. In summary, PIRANHA pattern

filtering algorithm is more optimised than ExB algorithm because it only processes

patterns once for pattern filtering. Also it is easier to implement in hardware due to

simple Hashtable implementation. It also has better performance than other state of

the art algorithm but has a drawback of not supporting the patterns of less than 4 byte

length which are approximately 400 in numbers in June 2009 release of Snort attack

rules.

Song et al in 2005 proposed the Snort Offloader pattern filtering system using a com-

bination of hardware and software processing platform for improving packet analysis

speed of Snort [79]. The hardware side of hybrid platform is the reconfigurable hard-

ware (Xilinx Virtex XCV2000E-8 FPGA) on which high speed pattern filtering system

is implemented in order to reduce the number of pattern search using Snort pattern

matching algorithm which is executed on the general purpose processor. Figure 3.14

is the block diagram showing only two main FPGA based hardware filtering system

modules.

The two hardware modules are: Active packet filter (APF) and Passive packet filter

(PPF) is implemented on Xilinx XCV200E FPGA. APF is loaded with traffic flow

Chapter 3. Survey and Related Work 64

FPGA

 Bypass packet

Layer1

Active
Packet
filter

Layer2

Passive
Packet
filter

Drop Packet

Header
Packet to NIDS software

Packet

 Alert match
Payload

Figure 3.14: Block diagram of Snort offloader showing two main hardware modules

information for active bypassing or blocking of packet (Packet filter firewall 2.3.2) and

PPF is loaded with 2600 attack rules comprises of patterns and other packet header

values for the purpose of filtering. APF is the first layer or module that receives the

packets from the network interface and checks key header values (mainly IP addresses

and Port numbers) for bypassing or blocking for certain traffic flow. At the same time,

PPF inspect the packet header and payload against attack Snort rules with the help

of its two sub-modules: Header classification and Two-level Bloom filter. First packet

payload content is searched for pattern presence by computing eight hash values per

substring in just 2 clock cycles to check the corresponding index value of the first-level

16-Kbit Bloom filter which takes another 3 clock cycles. If Bloom filter report possible

presence of any pattern then this pattern combines with attack rule IDs from the header

classification module is hashed together for checking in second-level Bloom filter index.

If the second-level Bloom filter also reports match, then packet is forwarded towards the

software executing Snort matching pattern algorithm. PFF also match the 144 number

of header only attack rules (No patterns) in packet header classification hardware sub-

module, thus further reducing processing load on Snort. This pattern filtering system

is tested with traces taken from Washington University network shows on average 87 %

of network traffic is reduced or filter. Authors also claim that the filtering system can

successfully operate to scale its operation up to 10 Gbps but no such claim proof is

provided with the help of any experiment results. In summary, this is the first ever

FPGA hardware based filtering system which performs pattern filtering as well as the

header only attack rules processing in FPGA. Its processing speed is much higher due

to hardware based implementation and much better than previously discussed software

based pattern filtering system.

In 2005, Attig and Lockwood proposed SIFT: Snort Intrusion filter for TCP which

is very similar to Snort Offloader [78]. SIFT like Snort Offloader is developed with

a combination of hardware and software processing facility. The filtering system is

Chapter 3. Survey and Related Work 65

implemented on FPGA hardware with Xilinx Virtex XCV2000E-8 FPGA in order to

reduce the amount of network traffic forwarded to Snort SB-NIDS for pattern search in

packet payload. Snort is executed on general purpose processor (AMD Athlon MP 2600+

with 3 GB RAM). SIFT also performs the header only attack rules on a packet in FPGA

hardware. The difference in the approach is that SIFT uses five Bloom filter engines

(16 Kbits vectors in FPGA block memory) for checking substring of packet payload

content for the presence of attack patterns. These is carried out by calculating eight

hash values on every substring of packet data and perform Bloom filter index lookup

for corresponding hash values. If the corresponding Bloom filter indexes are all set to

1 that indicates the pattern presence with certain false positive probability, then the

packet is forwarded to the Snort for comparison using Snort pattern matching algorithm

such as Boyer-Moore or Aho-Corasick. The filtering system is implemented with 2464

Snort attack rules and able to operate at 80 MHz, provides a throughput of 2.5 Gbps. It

processes 4 bytes per clock cycle and also filters between 86 % to 96 % of network traffic

for common network protocols (TCP, UDP, ICMP, and IP). In summary, SIFT and Snort

Offloader provide very similar packet filter results. It’s only weakness is lack of support

to scan packet payload content for 1, 2 and 3-bytes patterns which constitute around

400 patterns of June 2008 release of Snort attack rules. In comparison to very similar

Bloom filter based pattern matching hardware design on FPGA presented in this thesis

(Section 5.3), SIFT operates with higher operating frequency and so provides higher

throughput. The lower pattern matching hardware operating frequency of the pattern

matching hardware design in this thesis limitation imposed by the hybrid hardware-

software processing platform which does not enable to synthesised the FPGA design

with MicroBlaze soft core processor of more than 50MHz frequency. Another reason

of attaining such a higher throughput by SIFT is that it offered only pattern filtering

system which does not perform any false positive patterns pruning. Furthermore, the

number of attack rules is nearly 3 times lower in this pattern filtering system which

directly affects the throughput.

In 2006, Sourdis et al proposed a FPGA based packet filtering system with integrated

Intrusion detection system (IDS) on the same FPGA [77]. This IDS consists of payload

matching and specialised processing engine. This specialised processing engine performs

regular expression and static pattern matching for Snort attack rules evaluation. The

filtering purpose in this system is to reduce the evaluation of number of rules search per

packet in IDS engine. Figure 3.15 shows the filtering process.

All packets first pass through the filtering hardware Field Extractor module where packet

header fields and payload content are extracted. Next the packet header is feed into the

filtering hardware Header matching module which perform key packet header field (Pro-

tocol, IP address and Port) match with rule header and reported the successfully match

Chapter 3. Survey and Related Work 66

Field Extractor

Header
Matching

Partial
Payload Match

Packet

Network
Interface card

PayloadHeader

Result:

Rule 1

Rule 3

Rule 4

Result:

Rule 4

Rule 10

AND
gate

Result:

Rule 4

Figure 3.15: Packet processing flow in filtering hardware

rules. Simultaneously, the packet payload content also feed into the filtering hardware

Partial payload match module which match the payload content constant number of

prefix bytes (Between 2 to 10 bytes) with patterns from attack rules and report the

successfully match rules. Output from both modules are then AND (The AND gate)

and then final list of rules are then reported to integrated IDS for full matching of at-

tack rules. The filtering system is implemented with 3191 Snort rules (2271 number of

patterns) using two different FPGA families: Xilinx Virtex2-4000-6 and Virtex4-40-12.

With Virtex2-4000-6, packet filtering hardware is able to synthesised up to a clock fre-

quency of 335MHz (8-bits/clock cycle) giving an effective throughput of 2.7 Gbps and

with a clock frequency of up to 303 MHz clock (32 bits/clock cycle) giving 9.7 Gbps

of throughout. With Virtex2-4000-6, the filtering hardware is able to synthesised with

a clock frequency of up to 335 MHz (8 bits/clock cycle) giving an effective throughput

of 4.0 Gbps and with clock frequency of up to 303 MHz (32 bits/clock cycle) providing

14.0 Gbps throughout. The IDS part which has a coprocessor for pattern matching is

able to support 2.0 Gbps which is also very high throughout. However, an IDS in this

system is just a rule evaluation system and an additional layer of packet analysis soft-

ware system is needed to perform protocol analysis and stateful packet inspection that

Chapter 3. Survey and Related Work 67

can only complement the lack of basic function of this IDS. In summary, it is the first

ever integrated FPGA filtering system with IDS which lacks in basic IDS functionality

but able to able to reduce the significant number of rules evaluation in IDS from 45 rules

on average per packet to 1.8 rules on average per packet.

Table 3.8: Hardware based pattern filtering

Authors
Number
of Rules

FPGA Throughput

Attig et al [78] 2464
Xilinx Virtex
XCV2000E-8

2.5 Gbps (4 bytes/cy-
cle at 80MHz

Song et al [79] 3600
Xilinx Virtex
XCV2000E-8

10.0 Gbps (Estimated
throughput)

Sourdis et al [77] 3191
Xilinx Virtex-II

4000-6
9.7 Gbps (4 bytes/cy-
cle at 303 MHz

Xilinx Virtex-IV
40-12

14.0 Gbps (4 bytes/cy-
cle at 303MHz

In 2007, Gonzalez et al proposed the first ever inline packet filtering system using

Net2FPGA 2.0 development platform. Net2FPGA platform has four gigabit Ethernet

interface connected to a Xilinx Virtex-II Pro 30 (XC2VP30) FPGA [80]. The filtering

system acts as an Ethernet card to the host machine that has a Bro IDS installed to

perform packet analysis. When a network packet arrives the filtering system chooses

from one of three possibilities: a) Forward the packet to the opposite interface (Pass

packet without inspection) b) Drop it (Packet is identified as an attack) or c) Divert

(Shunt) the packet towards the host (Performing packet analysis). The filtering system

carried out these operations with the help of Bloom filter which is programmed with

malicious packet key header values (IP addresses, port numbers and Protocols). First

the filtering system hashed every incoming packet header key values (IP addresses, port

numbers and Protocols) and perform Bloom filter index checking with corresponding

hash values. If Bloom filter lookup result in a match found then Hashtable is checked.

The hashtable entry may include an action (forward, drop or shunt) to take on packet

with a priority defined from 0 to 7. A priority encoder then selects the highest priority

action and performs the corresponding action on the packet. The test result of filtering

hardware with network traces taken from University of Berkeley network shows that the

in best case, 88 % packets are forwarded to pass through network without analysis and

in worst case, the percentage of network packets passed without analysis dropped to

43.8 %. In summary, this is the first ever inline packet filtering system that does not

simply forward the packet to IDS but take appropriate action and so advances the state

of the art.

In summary, the idea of filtering system seems convincing for reducing computationally

load on pattern matching in SB-NIDS. It is more effective when implemented in FPGA as

Chapter 3. Survey and Related Work 68

proposed by Song et al. [79] and Attig and Lockwood [78]. This is made further effective

and efficient by Sourdis et al. [77] and Gonzalez et al. [80] by presenting a FPGA based

filtering system with integrated NIDS on the same tightly coupled hardware architecture.

3.5.3 Pattern matching using High Performance Computing Platform

To optimise the pattern matching speed for Snort, the high performance computing

platform has been the subject of great interest for almost a decade. The two high per-

formance platform widely explored for this purpose are reconfigurable hardware (FPGA)

and Network Processor. ASIC has also been used for pattern matching optimisation,

such as Kumar et al ASIC based regular expression based pattern matching which is

implemented using finite state pattern machine approach [99]. Overall most of the ef-

fort is implemented with FPGA or Network Processor. These can classified further

by the chosen approaches of implementation, such as Hashing, Bloom filter and State

machine (Finite Automation or Non-Finite Automation)) that efficiently utilised the

high performance platforms processing power and resources. Table 3.9 summarise some

of these work implemented using FPGA [84, 86, 88, 89, 100–104] and network proces-

sors [93, 105]5.

All pattern matching design in table 3.9 have one thing in common that they imple-

mented and tested using Snort attack patterns. There are other pattern matching ap-

proach implemented using FPGA and more closely related to the work in this thesis

(Section 5.3). These work along with others closely related work to this thesis will

only be discussed in detail. These work are Bloom filter based pattern matching using

FPGA [81, 82, 106] and Snort rule processing optimisation which can be collectively

called as Snort Rule Processing System [85, 87, 90–92, 94]. Snort Rule Processing Sys-

tem involved packet processing that include packet classification (Rule selection) and

packet analysis (Packet header and payload check) which are implemented using FP-

GAs [85, 90, 94], hybrid hardware-software embedded processing platforms [87] and

Network Processors [91, 92]. (Table 3.10) shows the hardware used in these implemen-

tations.

Research contribution

In 2002, Gokhale et al proposed rule processing system for Snort using hybrid hardware-

software embedded processing platform [87]. They have written the Rule compiler soft-

ware module and the Rule processor hardware module. Rule compiler reads the subset

5This table illustrate few mostly cited work.

Chapter 3. Survey and Related Work 69

Table 3.9: Some pattern matching implementation on FPGA and Network Processor

Hardware
Architecture

Authors Summary

Sourdis and
Pnev-

matikatos [86]

Pattern matching implementation using Content
Addressable Memory (CAM) for searching pat-
terns in network packets.

Baker et al [100]
A pattern matching hardware architecture using
Brute-force search approach of pattern matching
for SB-NIDS.

Tan and
Sherwood [88]

A hardware design that search patterns in packets
in parallel with multiple state machines created
of malicious patterns.

FPGA
Jung et al [89]

An implementation that converts pattern state
machine into state transition table for parallel
pattern search in packets.

Brodie et
al [102]

A pattern matching of regular expression that
matches multiple patterns concurrently using
state machines.

Sourdis et
al [84]

A pattern matching using hashing tree and string
comparator hardware circuit.

Mitra et al [103]
PCRE (Perl Compatible Regular Expression) En-
gine implementation using state machine based
pattern search.

Kennedy et
al [104]

Modified Aho-Corasick (State machine) imple-
mentation resulting 98% reduction in memory
consumption small enough to fit in the on-chip
FPGA memory.

Network Processor
Bos and

Huang [93]

Aho-Corasick (State machine) implementation
for searching patterns in packet in parallel using
multiple processors.

Piyachon and
Luo [105]

An implementation that modify Aho-Corasick
(State machine) into multiple bit-level state ma-
chine for searching pattern in packets using mul-
tiple processors in parallel.

of Snort attack rules and creates a representation of rule fields suitable for hardware

implementation. Using these rule fields, the Rule compiler then initialises the Content

Addressable Memory (CAM) content for packet header and payload checking. This

checking is carried out by the Rule processor which compares packet header fields and

contents with the contents of rule using parallel comparison logic of CAM. Once the

Rule processor complete rule checking and output the comparison results then the Rule

compiler process carries out the rule match result by raising the alarm for the attention

of network. This system is implemented on two Xilinx Virtex-1000 (XCV1000) FPGA

on a SLAAC1V board. The hardware designed is able to synthesised up to 66 MHz,

giving an effective throughput of 2.0 Gbps when tested with DARPA Lincoln lab net-

work traces for intrusion detection and testing with unspecified number of rules [107].

However, it can estimate from the year of paper publication that the number of Snort

rules used for experiment might be around 1500 to 2000 which are very low in number.

Chapter 3. Survey and Related Work 70

Table 3.10: Hardware Details of development platform

Authors Hardware Description

Gokhale et
al [87]

2 * Xilinx Virtex 1000 XCV1000 FPGA on the SLAACIV board.

Liu et al [91]
Vitesse IQ2000 (VSC2100) Network Processor with four 200 MHz
RISC CPU packet processing engine.

Attig and
Loockwood [94]

Xilinx Virtex 2000E XCV2000E FPGA on the Field Programmable
Port extender platform.

Yusuf et al [85]
Xilinx Virtex-II Pro XC2VP30 FPGA on Xilinx University Program
board.

Caruso et al [92] Prototyped on Digilent Spartan-3 board with 3-picoCPU processor.

Cho et al [90] Xilinx Spartan-3 XC3S400 FPGA.

FPGA device utilisation summary for this design also shows that the complete rule pro-

cessing system occupies total 34 % of the FPGA logic slices of Xilinx Virtex XCV1000

FPGAs (8396 out 24576) which is acceptable because it comprises of rule header and

payload checking and on two FPGAs. In summary, this rule processing system is the

first ever proposal to addressed optimisation of Snort rule evaluation. A complete rule

evaluation system without integrated SB-NIDS is carefully designed to achieve a decent

throughput of 2.0 Gbps.

Liu et al in 2004 proposed a skip based prefix matching algorithm on Network Pro-

cessor [91]. This skip based algorithm which simplifies Snort rule processing is based

on simple reasoning: For any arbitrary pattern P, if packet stream with T number

of sequential bytes do not contain prefix of arbitrary pattern P, then the number of

bytes equal to the length of P can be skipped during searching. If in case prefix of

P found, then it is highly likely that the pattern is present in a packet stream. To

confirm the pattern presence a hashtable named as Rule Hashing Table (RHT) is im-

plemented that contains attack patterns and associated Rule IDs. The hash value is

computed on the suspected substring that previously matched with prefix pattern and

RHT is lookup in order to identify Rule. This algorithm implemented on Vitesse IQ2000

network processing board that has four 200 MHz RISC processors with each processor

has 2 KB of internal memory and a shared 512 MB Direct Rambus Dynamic Random

Access Memory (RDRAM). The algorithm performance is compared with the state of

the pattern matching algorithm which shows that this algorithm is more efficient than

set-wise Boyer-Moore Horspool [72], Aho-Corasick [55] and Wu-Manber [98] when length

of smallest pattern (LSP) search in the experiment is less than 4 (LSP ≤ 4) (35 % of

Snort pattern length were 4 or less when they tested the system.) out of the 1942 Snort

attack rules. In summary, it is a rule processing system that presents novel skip based

pattern matching algorithm. The experimental results show the algorithm performance

better than other state of the art algorithm only when pattern length 4 or less is search

Chapter 3. Survey and Related Work 71

in packets. This is not a promising result with respect to the current Snort attack rules

number which is around 9000 which comprises of approximately 6800 patterns with over

length 4 patterns.

Attig and Lockwood in 2005 developed a framework for implementing a Rule processing

system in FPGA on University of Washington field programmable port extender (FPX)

platform [94]. The rule processing framework main components are packet header pro-

cessing and packet content scanning modules which is implemented on a Xilinx Virtex

2000E (XCV2000E) FPGA. Their implementation details are not well defined because

the stress is put in presenting the framework architecture. This system is implemented

with 2464 Snort rules which is able synthesised up to 80.6 MHz operating frequency,

giving a rule processing throughput of 2.56 Gbps. The device utilisation summary shows

the usage of only 25 % FPGA slices (4,832 out of 19,328) which is an efficient design. In

summary, a rule framework completely implemented on FPGA is presented which claim

to support for up to 32,768 Snort rules but does not provide any proof in the form of

test results. Also, an experiment for worst case traffic the framework throughput falls

to below 500 Mbps which is a clearly a bottleneck on gigabit data rate network.

Yusuf et al in 2006 proposed UNITE which is a rule processing system or engine [85].

UNITE performs packet header classification (Rule selection) and packet payload anal-

ysis utilising CAM which provide parallel comparison logic for matching packet header

and payload for rule selection and pattern matching. This design is implemented on the

Xilinx University Program (XUP) board which has a Xilinx Virtex-II Pro XC2VP30

FPGA. UNITE is implemented with 74 Snort attack rules and achieved an operating

frequency of 350 MHz with a packet processing throughput of 2.84 Gbps. In summary,

UNITE is a rule processing system but no packet header checking part of rule processing

which is a crucial weakness with respect to network security. It provides higher through-

put but only when implemented with 75 attack rules which has now soared to around

9000 attack rules and would significantly reduced the overall throughput of UNITE.

Caruso et al in 2007 proposed SPP-NIDS which performs parallel search of Snort attack

rule using clusters of processors [92]. This system is prototyped on Digilent Spartan-3

embedded processing board which has 3-picoCPUs (Processors). In SPP-NIDS, attack

rules are distributed and stored in picoCPU internal RAM. On receipt of packet in

picoCPU, each processor analyses the packet for the subset of rules stored in its local

memory. The prototype system performance is tested with 2124 Snort attack rules.

It shows that SPP-NIDS is able to analyse up to 100 Mbps network data rate which

is very low. The theoretical performance estimation of SPP-NIDS with 30-picoCPU

operating in parallel at 200 MHz frequency and with 1600 Snort rules shows maximum

achievable throughput of 53 Mbps. In summary SPP-NIDS is the lower performance

Chapter 3. Survey and Related Work 72

rule processing system which is not feasible to be deployed on gigabit data rate network.

Its performance may further degrade if implemented with 9000 number of Snort rules

which would significantly increases the average number of rules checking per packet.

Cho et al in 2008 observed that most of the pattern of Snort attack rules can be searched

in a packet content in parallel and ideal to implement using FPGA parallel logic re-

source [90]. They developed a parallel search engine which comprises of a hardware

module called rule units. Each rule units implement the logic for a single Snort rule sig-

nature which comprises of rule header matching unit and comparator unit to compare

pattern with the packet payload content. Their pattern matching system was unable

to synthesise successfully only 2000 Snort attack rule. This is due to the inefficient

design which creates the static pattern comparator which requires atleast 66,000 LUTs

for 8 bit and over 260,000 LUTs for a 32 bit comparator. They improve this design

by leveraging on the hardware architecture and the data-specific optimisations. The

optimisation decreased 50 % of the logic area which is achieved by changing a design

to the memory based pattern tree search approach. Their final design implementation

on Xilinx Spartan-3 XC3S400 FPGA with 2000 Snort attack rules achieved a sustained

throughput of 1.6 Gbps. In summary, this rule processing system is an efficient design

but provide no header check facility which is considered an incomplete implementation.

It provides decent throughput 1.6 Gbps suitable for gigabit Ethernet data rate traffic.

Table 3.11: Snort Rule Evaluation Systems summary

Authors
Rule

Selection
Header
Check

Payload
Check

Snort Rules
(Number)

Throughput

Gokhale et al [87] X X X 1500-2000 2.0 Gbps

Liu et al [91] X X X 1942 Unspecified

Attig and
Loockwood [94]

X X X 2464 2.5 Gbps

Yusuf et al [85] X X X 74 2.8 Gbps

Caruso et al [92] X X X 2124 100 Mbps

Cho et al [90] X X X 2000 1.6 Gbps

In summary, state of the art rule processing systems are discussed. All rule processing

system are discussed are not part of SB-NIDS and so are incomplete systems. The

issue has been addressed in this thesis which proposed an integrated rule processing

system with NIDS on the embedded processing platform which advances the state of

the art (Section 5.3). The proposed designed also gives throughput of 1.85 Gbps for

pattern matching in FPGA which is lower in comparison to the design presented by

Yusuf et al. [85], Attig and Lockwood [94] and Gokhale et al. [87]. The main reason of

lower throughput is due to the restriction imposed by the embedded processing platform

used in development which does not allow synthesising FPGA hardware design along

with MicroBlaze soft core processor for more than 50 MHz operating frequency. This

Chapter 3. Survey and Related Work 73

limitation can easily be overcome by synthesising a design to higher grade FPGA like

Xilinx Virtex 7 which would easily support much higher operating frequency. The rule

processing implementation presented in this thesis occupies 26357 FPGA slices (26357

out of 33792 slices) which is higher in comparison to the hardware design discussed above

but performs 16 parallel rule searches and supports around 9120 attack patterns which

supersede every implementation.

There are some other systems which are not a rule processing systems but are related to

this thesis work in a way that those work also used the Bloom filter [5] data structure

for pattern matching implementation. These FPFA hardware design are now discussed.

Dharmapurikar et al. [81] in 2003 proposed a Bloom filter engine for deep packet inspec-

tion (Pattern matching) on FPGA. Each engine has a separate Bloom filter programmed

with patterns of Snort attack rules for quick pattern checking in packet payload. When

packet payload content is streamed through the system, the hash values are computed

on each substring of packet content and corresponding Bloom filter index are checked. If

Bloom filter lookup result in a pattern presence then it is further checked with analyser

hardware module. The analyser module is comprises of Hashtable where patterns are

stored for comparison with a substring using hardware comparator circuit. This step is

necessary as Bloom filter gives matching result with some probability of false positive.

The functional prototype with a single Bloom filter engine is implemented on Xilinx

XCV2000E FPGA on the field programmable port extender (FPX) platform with only

up to 32 bytes pattern is able to achieve an operating frequency of 81 MHz. The FPGA

logic resources summary also shows that this design is efficient which only occupies

14 % of available FPGA logic resources and 35 block RAM. The test results show that

this system performs packet analysis of up to 2.46Gbps throughput. The test results

also revealed the implementation weakness which inefficiently searches any pattern over

16 bytes length. To overcome this issue and add support for longer patterns, Dharma-

purikar and Lockwood in 2006 extend this design with Aho-Corsaick based multi-pattern

matching algorthm [106]. In summary, this is considered the first ever implementation

of pattern matching for SB-NIDS using Bloom filter which advanced the state of the

art. The hardware architecture is also an efficient implementation apart of the design

inefficiency to deal effectively with longer patterns.

Nourani and Katta in 2007 proposed a Bloom filter based hardware architecture for

pattern matching on ASIC [82]. Streaming data is passed through the Bloom filter

accelerator hardware module which computes the hash value on substring and query

the Bloom filter index which may result in false positive match. In case of match the

dispatcher hardware module pass the substring to parallel hash engine that perform

the false positive check by comparing the matched pattern with the pattern stored in

Chapter 3. Survey and Related Work 74

hashtable. The design was synthesized using Synopsys design compiler using library files

from Artisan targeting the 180 nm Taiwan Semiconductor (TSMC) fabrication process

and can operate at speed of 250 MHz given an effective throughput of 1000 Gbps that

is very higher than all other implementations. In summary, it is a high speed ASIC

pattern matching system which supports extremely high throughput.

In summary, the Bloom filter based pattern matching approach is ideal for excluding

major part of network traffic for full analysis using computationally demanding pattern

matching algorithms. Its straight forward implementation also consumes less memory

and enable high speed pattern searching on FPGAs. The only implementation issue is

the high number of hash value computation which affects the overall throughput of the

system. This issue has addressed in this thesis (Section 5.3).

3.6 Chapter Summary

This chapter began with an introduction of state of the art SB-NIDS implementations

which are explained in great detail in section 3.3. The state of the art is divided into

categories for clear understanding of state of the art implementations and contributions

made to advance the state of the art.

Chapter 4

Proposed System Architecture

Intrusion Detection System (IDS) is currently considered the most reliable and stan-

dard solution of the internet security. One of its best examples is the EINSTEIN-2 [108]

project of the United States of America (USA) government to protect the government

infrastructure of computer networks hosting crucial data. EINSTEIN-2 is a Signature-

based Network Intrusion Detection system (SB-NIDS) that uses the set of attack signa-

tures or patterns to detect malicious activity on a network. Developing such a sophisti-

cated solution is a complex task and requires in depth understanding of network security

issues, network defence technology and processing technology requirement. This chapter

looks into some of these issues in order to lay the foundation of SB-NIDS prototyping

and optimisation (Chapter 5).

4.1 Chapter Roadmap

The rest of the chapter is divided into two major sections which are outlined as follows:

• In section 4.2, an overview of SB-NIDS is presented with a focus on its packet

analysis architecture and features in order to estimate requirements of developing

an improved SB-NIDS prototype.

• In final section 4.3 Snort SB-NIDS software architecture is discussed in detail

which helped in outlining prototyping challenges. These challenges also helped to

determine the appropriate processing technology for prototyping.

75

Chapter 4. Requirements and Analysis 76

4.2 System Description

This section includes description of SB-NIDS architecture and SB-NIDS features neces-

sary to understand the requirements of SB-NIDS prototyping.

4.2.1 Overview

The SB-NIDS prototype should be capable of performing real-time network traffic anal-

ysis on Internet Protocol (IP) network. This analysis should at least involve looking

for attack signatures in network packets, Stateful Packet Inspection (SPI) and protocol

analysis. If SB-NIDS detects any attack in packet it should also raise alarm and inform

the administrator. It should also easily deploy on a network point or network backbone.

4.2.2 Architecture

SB-NIDS can be visualised as collection of software components or modules where each

component performs different tasks as shown in figure 4.1.

Capture Analysis Process

Result

Packet Queue Packet

Figure 4.1: NIDS Modules

SB-NIDS first captures the data or network packets from network interface in promis-

cuous packet capture mode. The raw packet data is decode and store into SB-NIDS

application memory for carrying out analysis. The analysis is a complex process per-

form in stages on the dissected data. This include search of attack signatures in packet

payload data, SPI to keep track of legitimate network traffic and protocol analysis to

detect any protocol based attacks which usually carries out by exploiting vulnerabilities

in internet protocols (Section 2.2.1).

In SB-NIDS software the packet analysis is usually perform by multiple analyser com-

ponents which are configurable in order to enable it to customise and configure for

different types of network environment. This configuration involves disable/enable par-

ticular type of analysis component, changes in size of memory requires for analysis and

updates attack signature database with newly release copy of attack signatures. To

apply this configurations SB-NIDS should provide at least simple user interface.

Chapter 4. Requirements and Analysis 77

4.2.3 Deployment

SB-NIDS is deployed at a point in network where all network traffic is visible and can

be capture for analysis. The general deployment of SB-NIDS is shown in figure 4.2.

Internet

NIDS

Network of Servers

Network of PC’s

Network Administrator

Figure 4.2: NIDS Deployment

The machine on which SB-NIDS is installed should have at least two network interface

card so it can be connected to a suitable network point or network backbone for network

traffic capture and another interface for configurations and management. SB-NIDS is

usually connected through a network switch which supports port mirroring which is

actually copying of network packets from all ports of switch to the analysis port on

which SB-NIDS connects.

4.2.4 Features

SB-NIDS should provide several network security services. Some of the major services

are now discussed:

Deep Packet Inspection

Deep Packet Inspection (DPI) is a method that enables inspection of every single byte

of every network packet that passes through the network. This means every single byte

of packet header as well as packet content from layer-2 through layer-7 (Open System

Interconnection (OSI) model) is analyse for attack signature presence using DPI in real

time. DPI ensures to detect common attack signatures of malware and therefore essential

SB-NIDS features.

Chapter 4. Requirements and Analysis 78

Network Protocol Analysis

Network protocol analysis is a process to understand the data and information inside

the network packet encapsulated by the network protocols. A typical protocol analysis

involved capturing a network packet in real time, decoding of network protocols and

analyses of the decoded network packets data. Protocol analysis is perform to detect

common network attacks which are carries out by the misuse of network protocols (Sec-

tion 2.2.1). SB-NIDS should perform network protocol analysis for common protocols

whose manipulation can crash network applications and devices. Some protocol based

attacks could crashes the SB-NIDS itself such as TCP SYN packet flooding attack on

SB-NIDS force it to trigger hundreds of alert every seconds which would result in exhaust

of SB-NIDS processing resource (Section 2.2.1).

Stateful Packet Inspection

SPI is crucial for internet traffic monitoring where 90% of traffic is stateful or based

on TCP protocol. Lack of SPI feature means SB-NIDS is unable to detect stateful

attacks which may present in majority of network traffic. It is therefore essential that

SPI should be a part of SB-NIDS. For example SPI enables the SB-NIDS to detect state

based attacks such as TCP RST attack (Section 2.2.1).

Configuration Interface

SB-NIDS is sophisticated software that has multiple software analysis components to

carry out packet analysis in order to detect many types of complex network attacks.

Such SB-NIDS software needs configurable options to customise analysis components

and to enable them to operate on different types of network environment. It is essential

that NIDS should have some kind of interface to apply configurations and customise the

analysis components according to network environment.

Alert Reporting

NIDS or SB-NIDS should accurately and promptly notifies the network administrator if

any intrusions or attacks are discover during real time network packet analysis. The re-

porting should include accurate information about attack such as attacker IP addresses,

ports, protocol and timing of attacks. It is therefore essential that NIDS should pro-

vide a feature of real time reporting of network intrusion and attacks with basic attack

information.

Chapter 4. Requirements and Analysis 79

Prevention Capability

NIDS or SB-NIDS softwares only able to detect network intrusions and alert the net-

work administrator to take the appropraite actions. An automatic prevention facility

is desirable to prevent attacks without the need of human or network administrator

intervention.

4.3 System Prototyping

SB-NIDS prototyping with all desired features is an extremely complex software engi-

neering task which would easily require more than couple of years to create just a basic

SB-NIDS prototype model. An alternative technique is a software porting1. Porting

is comparatively easier and less complex than software development and saved vital

prototyping time. However, an in depth understanding of software package internal ar-

chitecture and other necessary features is required for successfully porting any software.

There were not many choices of good and freely available open-source SB-NIDS packages

(Section 2.4.5) that could select for prototyping. The two popular with most of the

essential and desirable features are Snort and Bro. Snort is prefer over Bro on the basis

of following two reasons:

• Bro is purely experimental NIDS for fine-tuning or improving the packet analy-

sis features whereas, Snort is a widely used open source free available SB-NIDS

software package for real time packet analysis.

• Snort in comparison to Bro is the chosen SB-NIDS for research and development

in academia mainly for optimising packet analysis speed performance.

4.3.1 Snort

Snort is a SB-NIDS software package capable of real-time detection of network intrusions

and attacks using attack signature, SPI and protocol analysis.

History: Snort first became available on December 22, 1998 on Packet Storm web-

site (http://www.packetstormsecurity.com) as network Packet Sniffer application. This

consists of 1,600 lines of C-programming language source code.

1Porting is a process of making the software to execute on a computing architecture that is different
from the one for which it was originally designed

Chapter 4. Requirements and Analysis 80

Features: Snort in just first 3 years emerged to full fledged SB-NIDS. It emerged as to

have all the essential and desirable features outlined in section 4.2.4. The main features

of Snort are:

• Deep Packet Inspection (DPI) which is a packet analysis involving each and every

byte of packet analysis using attack signatures specified in Snort attack rules.

• Protocol analysis from layer-2 to layer-7 protocols (OSI model) including port

scanning.

• Stateful Packet Inspection (SPI) which involves keeping the track of the state of

network connections in order to detect stateful protocol attacks.

• Real-time attack alert and log facility for the analysis by network administrator.

4.3.2 Snort Architecture

Snort core component is the Packet Sniffer, the other components were added on top

of the core component as plug-ins to process the sniffed packet. These components

are the Preprocessor, the Detection Engine and the Decision Engine added as plug-ins.

Figure 4.3 is the Snort architecture showing packet processing flow in plug-ins.

Internet

1) Packet
Sniffer

3) Detection
Engine

4) Decision
Engine

Database

2) Preprocessors

Rules

Figure 4.3: Snort architecture showing packet processing flow

Snort sniffed the packet through sniffer component and then performs the packet analysis

in stages. First the sniffed packet protocol is decoded and the data is save to the

Snort application memory area. This data is then analyse by the Preprocessor which

check it for protocol based attacks. Once this complete this data is then check for

attack signatures using Snort attack rules in the Detection Engine component which also

Chapter 4. Requirements and Analysis 81

generates the detection results. This result is process by the Decision Engine component

which also raises the alarm and logs the detection result.

Packet Sniffer and Decoder: A Packet Sniffer allows to tap into the data network

in order to capture packets for troubleshooting and analysis. It captures them from the

hardware (network interface card) in promiscuous mode using the third party packet

capture library called libpcap. If packet sniffing is perform on the Internet facing net-

work then it is most probably the IP traffic encapsulating many different higher-layer

protocols (TCP, UDP, ICMP, OSPF etc). Packet Sniffer also decodes packet protocols

with the help of its Packet Decoder component. The decoding results in arrangement of

packet protocol data separately in Snort run-time memory so packet can analyse easily.

Figure 4.4 shows the Packet Sniffer function.

Packets

Network
Interface Card

libpcap

Decoder

FTP

HTTP

SMTP

TELNET

TCP

UDP

ICMP

Figure 4.4: Packet Sniffer function

Preprocessor: Preprocessor component has a plug-in architecture covering many pro-

tocols from layer-3 to layer-7 (OSI layers). The plug-in architecture is a very useful

function as it allows enable/disable the Preprocessor through the simple text file inter-

face. For example each Preprocessor is designated to analyse specific protocol and if

certain protocol requires exclusion then this can be disabled through a simple command

in text file. Preprocessor performes detail protocol analysis to detect protocol based

attacks in network packets (Section 2.2.1). Data normalisation is also carries out for

certain protocol such as HTTP in order to make the data refined for quick signature

searching in Detection Engine component. Figure 4.5 shows the packet processing flow

through Snort Preprocessors.

Packet Decoder decodes the packet protocols and arranges all the packet protocol data

separately in Snort run-time memory. Now the IP defragmentation Preprocessor re-

assembles fragmented packets and also look for any malicious fragmentation purposely

done hackers to launch DoS attack (Section 2.2.1). The SPI Preprocessor then verifies

if the TCP packets are a part of an established connection and if not then packet is

treated as malicious. It also reassembles the packet to detect attacks that spans to

Chapter 4. Requirements and Analysis 82

FTP

HTTP

SMTP

TELNET

TCP

UDP

ICMP

Decoded protocols

IP
Defragmentation

(frag 2, frag3)

Stateful
Inspection

(Stream4, Stream5)

2 (a)

Stateful
Reassembly

(Stream4, Stream5)

Application layer
Preprocessors

HTTP

FTP

SMTP

Telnet

DNS

1

2 (b)

3

Figure 4.5: Packet processing flow through Preprocessors

multiple packet or extends to the sequence of packet exchanges. The collection of appli-

cation layer Preprocessors normalises protocol data and also checks misuse of protocols

by hackers for launching attacks. Finally, packet data passes on to the Snort Detection

Engine component for further analysis.

Detection Engine: Detection Engine is the brain of Snort. This is where packet data

are searched for attack signatures specified in the set of Snort attack rules and makes

this brain functional. So effectively Snort search the packet data through the set of rules.

If the rules match the packet data then Decision Engine takes the action. Figure 4.6

shows the flowchart of packet analysis in Detection Engine using attack rules.

Snort rules: Without rules there is no purpose of Detection Engine and hence no

signature detection. So what exactly the attack rules purpose in Snort Detection Engine?

The simple answer of the exact question is it is an instruction to Detection Engine. But

what those instructions are? Now consider the way human language is used to describe

everyday acts and instructions, this will help to understand the concepts behind Snort

rules. Consider the instruction,

Chapter 4. Requirements and Analysis 83

Detection Engine

Rules

Any rule
match?

if YES,
take action

if NO,
discard

Packet

Figure 4.6: Packet checking in Detection Engine

“If the landlord elder son turns up to listen the complaint then make sure to give him

the exact information and request for an immediate action”.

This instruction contains a state, and then an action to perform if the state is true.

Like “complaint” and “immediate action request” can only be made to the “landlord

elder son”. Snort rules are also this type of instructions but more specific and exact

instructions supported by Snort rule language. Figure 4.7 is the Snort rule of CGI-PHF

attack specified in Snort rule language syntax.

alert tcp any any → 192.168.1.0/24 80 (content: “cgi-bin/phf”; offset: 3;
depth: 22; msg:“CGI-PHF attack”;)

Figure 4.7: Snort rule of CGI-PHF attack

This Snort rule clearly specifies state and the required action if the state is true. It gives

the instructions to the Detection Engine that if it encounter any TCP packet header

originating from any valid source IP address/port destined to IP address 192.168.1.0/24

and at port 80, and packet payload content string cgi-bin/phf is present anywhere be-

tween byte number-2 to byte number-25 then take an action on a packet by alerting the

administrator with a message of “CGI-PHF attack”. The packet payload content for

malicious pattern is searched using pattern matching algorithm. All Snort rules specifies

the instruction in a similar manner. Logically they are divided into two sections: Rule

Chapter 4. Requirements and Analysis 84

header and Rule option. Rule contents up to the first parenthesis belong to the rule

header and the contents of the parenthesis belong to the rule option.

Rule Headers: It specifies seven items as shown in figure 4.8. First item from the

left is action. There are five default actions in Snort:- alert, log, pass, activate and

dynamic. The 5 rule actions are available when Snort runs in Intrusion Detection Mode.

Other rule options are also available when Snort is configured to operate inline (Intrusion

Prevention mode). Next to action is protocol. Snort currently inspects TCP, UDP, IP

and ICMP protocols for suspicious activity and in the future protocols such as IGRP,

GRE, ARP, IPX, and RIP will be supported. Snort’s coverage of network attacks will

be extended at the cost of further increases in the Detection Engine’s (See section 5.3.1)

computational overheads. The remaining portion of a Snort rule deals with packet IP

address, port and packet flow direction information for a given rule. The first item after

protocol indicates the source IP address and after this the next item is the source port.

In the above example Snort rule (figure 4.7), keyword Any is used to specify any valid

IP address and port. Specific valid IP address and port ranges for destination system

just next to –> operator can also be specifies, this makes it possible to easily customise

the Snort rules for a particular network providing or consuming specific internet services

identified by IP addresses and ports. Next the direction operator –> indicates traffic

flow from source to destination, or another operator <> indicates bi-directional traffic

flow. There is no <– operator in the Snort rule description language. The item after the

direction operator indicates the destination IP address and port number, which can be

specified to match any address/port or specific single or ranges of both IP address and

port numbers. In summary, any incoming packet that matches the rule header items

(IP, Port and Direction) is selected to be analysed against the rule options. These rule

header items collectively called the rule selection criterion.

 Rule Header

(a) (b) (c) (d) (e) (f) (g)

ACTION PROTOCOL SRC-IP SRC-PORT PACKET-FLOW-DIRECTION DEST-IP DEST-PORT

alert ip any any -> any 3455

Figure 4.8: Snort rule header

Rule Options: Rule options define the structure of a malicious packet that include

packet header and payload. These options are made up of option/value pair like in

Hypertext Markup Language (HTML) options/tags. The values mentioned with these

options are actually checked against the packet. When all values found in a packet then

it is declared a malicious packet.

Rule option types: There are two types of rule options: header options (non-payload

options) and payload options. Some header options are Time to Live (TTL), Type of

Chapter 4. Requirements and Analysis 85

Service (TOS). These two options specify numeric values which are searched in packet

headers. Two important and mostly defined payload options are Content and URI-

Content. The values of these options are attack patterns comprise of strings. Payload

options are search at arbitrary or defined positions in packet payload content.

Content Modifier options: Content modifier options define where and how many

bytes to look into packet for attack pattern defined with the Content and URIContent

options. Some main modifier options are summarised in table 4.1.

Table 4.1: Modifier Keywords

Modifier
Keyword

Description

Depth
The depth keyword specify how far into a packet Snort should search for
the specified pattern

Offset
The textitoffset keyword specify where to start searching for a pattern
within a packet.

Distance
The distance keyword specify how far into a packet Snort should ignore
before starting to search for the specified pattern relative to the end of
the previous pattern match.

Within
The within keyword is a content modifier that makes sure that at most
N bytes are between pattern matches using the Content. It is designed
to be used in conjunction with the distance rule option.

Decision Engine: This component is the exit point for packet data that entered for

processing through Packet Sniffer component. The component purpose is to take action

in case of rule matches on a packet specified in Snort rule header. For example: In

figure 4.7 this rule specifies that in case of rule match alert is sent to network admin-

istrator. It depends on Decision Engine configuration how the alert would be sent. It

can be configured to send alert through a network connection or UNIX socket or can be

stored in an SQL database server such as MYSQL or simply log the alert to hardisk.

4.3.3 Prototyping Challenges

Porting such a complex SB-NIDS software package poses several challenges. These

challenges need to be met so that the objectives are achieved. These challenges are now

discussed briefly:

Analysis

The three types of network packet analysis in Snort carries out in real-time are: Signature

analysis, SPI and protocol analysis. All of these tasks require sufficient packet processing

facility and amount of memory to make sure it should be drop free packet analysis.

Chapter 4. Requirements and Analysis 86

Speed

Snort is a bottleneck when executes on a general purpose processor [2]. This is one of

the most challenging tasks and requires detail analysis of packet analysis process as well

as careful consideration of selecting appropriate processing technology.

Memory

Snort primary analysis technique is attack signature checking of known attacks in every

network packet appearing on a network for the possible signs of intrusion and attacks.

The signature database is in thousands in numbers and that occupy significantly large

chunk of SB-NIDS runtime memory. If the Snort decides to be ported on an embedded

processing architecture that has limited memory then this problem needs tackling by

considering a suitable data structure of compactly storing the signature without com-

promising on packet analysis speed.

4.3.4 Prototyping Requirements

To meet the SB-NIDS prototyping challenges (Section 4.3.3) an appropriate development

tools and processing platform is chosen which is now discussed.

Processing Platform

Speed and Storage are two major prototyping challenges that can be meet by choosing

the right processing technology which should be ideal for network packet processing.

Following processing technology are identified for prototyping:

• Network Processing Unit (NPU)

• Cluster of PC’s on general purpose processor

• Graphical Processor Unit (GPU)

• Hybrid Hardware-Software (FPGA/Processor) embedded processing platform

Out of these four processing technology hybrid hardware-software embedded processing

platform is more viable for SB-NIDS prototyping due to the following characteristics

which has clear advantages over other three technologies:

Chapter 4. Requirements and Analysis 87

• It has a dedicated processing unit tightly coupled to the network interface which

are neither available with cluster of PC’s nor with GPU unit.

• Custom hardware accelerator for offloading computationally demanding SB-NIDS

sub-tasks from CPU to FPGA which are not available in NPUs.

• Multiple processing cores for parallel processing.

• Single cycle access of high speed on-chip FPGA memory for storing most frequently

access data.

The processing power of FPGA is enormous in comparison to processors. It also sup-

ports instruction pipelining, parallel processing and bit-level computing which are not

supported on general purpose processors instruction sets. It also has the ability to

quickly reprogram and consider as shorter time to develop application than Application

Specific Integrated Circuit (ASIC). Following section has a detail explanation of hybrid

hardware-software embedded processing platform for SB-NIDS prototyping.

Hybrid Hardware-Software Embedded Processing Platform

Hybrid hardware-software embedded processing platform is not only available at afford-

able cost but it has adequate processing power, ease of hybrid hardware-software devel-

opment interface and also scalable in terms of processing resources. Hybrid HandelC/Mi-

croBlaze based embedded processing platform is also of this kind which is available by the

manufacturer Mentor Graphics (Formerly Celoxica) that provide all essential features

of hybrid hardware-software embedded processing platform outlined in section 4.3.4.

HandelC/MicroBlaze Hybrid Processing Technology: The HandelC/MicroBlaze

based hybrid processing platform is shown in figure 4.9.

This platform is available on Celoxica RC series board (RC300) [109]. The main com-

ponents of the board are Xilinx XC2V6000 -4 Virtex-II FPGA, 2 Gigabit Ethernet

interfaces, 4 banks of 8 MB ZBT SRAM and 1 bank of 128 MB DRAM. Clearly, it is

important to note that the FPGA device used in this study is only a VirtexII whereas Vir-

tex7 device families are the current state of the art for Xilinx products. Virtex7 devices

offer significantly higher clock rates and enhanced non-configurable on-chip functional

units that offer the potential of corresponding improvements in performance merely by

pushing the design through the Xilinx and Mentor Graphics synthesis tools for a Virtex7

device target.

MicroBlaze Soft-core processor: MicroBlaze is a 32 bit RISC based architecture

optimised for Xilinx devices. It is a soft-core processor and is therefore implemented

Chapter 4. Requirements and Analysis 88

 OPB Bus in Handel-C

FSL BUS in Handel-C

 Microblaze Processor

IOPB DOPB

 FSL0 FSL1

ILMB DLMB

OPB-HC
Bridge

Handel-C
generated
Hardware

Handel-C
generated
Hardware

Dual Port FPGA Block
RAM

Xilinx UART

Handel-C
generated
hardware

Figure 4.9: HandelC and MicroBlaze design system

entirely using FPGA logic resources. MicroBlaze programs are developed using the C-

language compiled with a Xilinx port of the GCC compiler called MicroBlaze-gcc(mb-

gcc). MicroBlaze also supports instruction and data caches. These two caches are

maintained in FPGA block RAM. MicroBlaze also supports three bus interfaces (FSL,

OPB and LMB). These busses are Local Memory Bus (LMB), Fast Simplex Link (FSL),

and On-chip Peripheral Bus (OPB).

LMB is a dedicated and low latency (memory mapped) addressable bus. In most cases

small sizes of memory modules (Scratch or Cache memory) are attached to this bus.

Some processors also allow custom hardware units to attach with this bus. In this

system, LMB provides a link to dedicated local on-chip memory (FPGA BRAM).

OPB is a shared MicroBlaze bus which is a part of IBM’s CoreConnect specification.

Due to the shared nature of the OPB, reading and writing into peripheral usually takes

around 10 or 11 cycles [110].

MicroBlaze Fast Simplex Link (FSL) provides a point-to-point interconnect to co-processing

unit. MicroBlaze supports up to 8 FSL links that provide flexibility to attach up to 8

co-processing units. These co-processing units can be either another MicroBlaze core

or a custom hardware accelerator. Dedicated instructions are also available to write

into and read from this interface. The two macros for reading and writing via FSL are

getfsl() and putfsl(). Reading and writing via FSL takes only up to 2 cycles per word

(32-bits) on average [111].

Chapter 4. Requirements and Analysis 89

Hardware Development: Custom hardware design on this platform can be imple-

mented using standard RTL flows, or they can utilise Mentor Graphics hardware descrip-

tion language HandelC. Celoxica’s Integrated Development Environment (IDE) called

DK can compile HandelC based designs into EDIF or VHDL/Verilog. The Celoxica

board-support libraries for the RC300 enable fast design prototyping. The key to achiev-

ing higher performance is to offload the functionality of computationally intensive NIDS

program components from CPU to HandelC specified hardware accelerator which can

be attached to MicroBlaze via FSL or OPB bus interfaces.

OPB provides a memory mapped interface to peripheral components. For example the

address space occupied by the HandelC interface on OPB is between 0xF0000000 and

0xFFFFFFFF. This address space is used for all OPB slaves created in the HandelC

design. This address space is specified in MicroBlaze Hardware Specification file sys-

tem.mhs as shown in figure 4.10.

BEGIN opb_hcbridge
PARAMETER INSTANCE = opb_hc_bridge
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xF0000000
PARAMETER C_HIGHADDR = 0xFFFFFFFF
BUS_INTERFACE SOPB = opb_bus
END

Figure 4.10: OPB slave memory space in system.mhs file

The address space between 0xF0000000 and 0xFFFFFFFF is also defined in shared.h

file can be created manually. This file is shared between hardware and software design.

This address space is used to split up the address space for different OPB slaves defined

in HandelC.

To attach HandelC hardware accelerator on OPB bus, HandelC source file should imple-

ment read and write callback macro for hardware-software communication or message

passing and another macro for defining the processing functionality of the hardware ac-

celerator. This source file should also include opb slave tl.hch header file which specifies

all the macro procedures required to implement hardware accelerator on OPB bus. Fol-

lowing are the required information the HandelC hardware accelerator source code file

should contain,

• a data structure for the HandelC hardware accelerator

• a macro procedure to define functionality of the HandelC hardware accelerator

• a macro procedure to run the HandelC hardware accelerator

• a callback macro procedure to write data to the HandelC hardware accelerator

Chapter 4. Requirements and Analysis 90

• a callback macro procedure to read data from the HandelC hardware accelerator

The data structure of HandelC hardware accelerator may consists of registers for ex-

changing data between accelerator and program on MicroBlaze. The four HandelC

macro procedures provide the hardware accelerator functionality. Two macro proce-

dures are callback macro for reading and writing data between hardware accelerator

and program on MicroBlaze. Another macro for running the hardware accelerator in

parallel with other HandelC hardware accelerator in the same design. One other macro

contains the core logic for HandelC hardware accelerator.

Unlike OPB, FSL bus is not memory mapped. FSL bus is a direct link to MicroBlaze.

FSL needs to be explicitly declared in MicroBlaze Hardware Specification file system.mhs

as shown in figure 4.11.

BEGIN microblaze
PARAMETER INSTANCE = mblaze
PARAMETER HW_VER = 2.00.a
PARAMETER C_USE_BARREL = 1
BUS_INTERFACE ILMB = i_lmb
BUS_INTERFACE DLMB = d_lmb
BUS_INTERFACE IOPB = opb_bus

#FSL Bus description
PARAMETER C_FSL_LINKS = 1
PORT FSL0_S_READ = fsl0_s_read
PORT FSL0_S_DATA = fsl0_s_data
PORT FSL0_S_CONTROL = fsl0_s_control
PORT FSL0_S_EXISTS = fsl0_s_exists
PORT FSL0_S_WRITE = fsl0_s_write
PORT FSL0_M_DATA = fsl0_m_data
PORT FSL0_M_CONTROL = fsl0_m_control
PORT FSL0_M_FULL = fsl0_m_full
END

Figure 4.11: OPB slave memory space in system.mhs file

To attach HandelC hardware accelerator to FSL bus, HandelC source file should imple-

ment read and write callback macro for hardware-software communication or message

passing and another macro for defining the processing functionality of the hardware ac-

celerator. This source file should also include fsl t1.hch header file which specifies all the

macro procedures required to implement hardware accelerator on OPB bus. Following

are the required information the HandelC hardware accelerator source code file should

contain,

• a data structure for the HandelC hardware accelerator

• a macro procedure to run the HandelC hardware accelerator

Chapter 4. Requirements and Analysis 91

• a callback macro procedure to write data to the HandelC hardware accelerator

• a callback macro procedure to read data from the HandelC hardware accelerator

The data structure of HandelC hardware accelerator on FSL may consists of registers

for exchanging data between accelerator and program on MicroBlaze. The three macro

procedure provides the functionality of hardware accelerator. Two macro procedures are

callback macro for reading and writing data between hardware accelerator and program

on MicroBlaze. Another macro for running the hardware functional unit in parallel with

other HandelC hardware accelerators in design. The core logic for HandelC hardware

accelerator can be provided separately in another macro procedure.

4.4 Chapter Summary

This chapter began by looking SB-NIDS architecture and features which helped to es-

timates the requirements of prototyping an optimised SB-NIDS. This is followed by

in-depth discussion of Snort SB-NIDS software package which is a system chosen to

prototype a SB-NIDS. Snort internal architecture and features are discussed in detail

which helped to understand the requirements of processing and computing platform for

SB-NIDS prototyping and optimisation. In the end hybrid hardware-software embed-

ded processing platform that is chosen to developed the SB-NIDS prototype is discussed

which would enable to develop an improved a scalable SB-NIDS prototype solution. In

the following chapters the series of algorithms and hardware architectures are discussed

as part of the SB-NIDS prototype development and optimisation.

Chapter 5

Design and Implementation

Sir Frederick Henry Royce was an engineer and one of the founders of Rolls-Royce Ltd

said:

“Strive for perfection in everything you do. Take the best that

exists and make it better. When it does not exist, design it.”

This engineering philosophy is followed in the development of Signature based Network

Intrusion Detection System (SB-NIDS) prototype. Strive for perfection is the core prin-

ciple of engineering and is also applied in SB-NIDS prototyping. This is practically

achieved by choosing the best available hardware and software tools such as hybrid

hardware-software processing platform and Snort SB-NIDS software package. There are

few cores SB-NIDS features that are necessary and needs development to make SB-NIDS

packet analysis speed better. These features are carefully designed and implemented by

considering the development challenges outlined in section 4.3.3.

5.1 Chapter Roadmap

The rest of the chapter is outlined as follows:

• In section 5.2, MMU-Snort I or SB-NIDS prototype development using hybrid

HandelC-MicroBlaze embedded processing platform is presented. This involve

a brief analysis of Snort SB-NIDS software execution to understand SB-NIDS

processing requirement, Snort SB-NIDS software architecture restructuring and

mapping details to processing platform.

92

Chapter 5. Design and Implementation 93

• In section 5.3, MMU-Snort II or Pattern Matching Hardware Asccelerator (PMHA)

development is presented. This involve an analysis of Snort’s Detection Engine

component that performs pattern matching and an analysis of Bloom filter data

structure for compactly storing large number of attack patterns. This is followed

by detail PMHA design and implementation description.

• In final section 5.4, MMU-Snort III or further improvement of PMHA is presented.

This include algorithmic and architectural improvement of PMHA to speed up

pattern false positive pruning process and efficiently search longer patterns (>

64 bytes).

5.2 Snort Port on Hybrid Hardware-Software Processing

Platform (MMU-Snort I)

This section contains detail description of MMU-Snort I development using hybrid

hardware-software embedded processing platform and Snort SB-NIDS software package.

This novel development platform and Snort SB-NIDS helped to come up with much

improved SB-NIDS solution in a significantly shorter time with all required features

(Section 4.2.4).

5.2.1 Analysis

The application execution analysis is the profiling of Snort. The profiling result of

Snort (ver 2.6.1.5) on Personal Computer (PC) using a GNU gprof profiler (v 2.16)

was obtained. Snort was executed on Intel 2.0 GHz processor on Debian Linux 2.6.18.

It was configured with five Preprocessor components (Stream4, frag2, HTTP Inspect,

Telnet decode and sfportscan) and 6565 number of rules. The network packet trace used

to obtain the profiling result was MIT Lincoln Lab’s 1998 DARPA Intrusion Detection

Evaluation dataset (Network trace file (tcpdump format)) [107]. Table 5.1 shows the

percentage of the total execution time used by each component1.

Table 5.1: Profile of Snort on PC

Component Execution %

Detection Engine 49%

Packet Decoder 19%

Preprocessors 21%

Decision Engine 11%

1Profiling results depend on Snort configuration and test data.

Chapter 5. Design and Implementation 94

The Detection Engine component consumes the highest number of Central Processing

Unit (CPU) cycles. In this component most of the CPU time is spent on testing the

condition of rules (Protocol and packet content). It was observed that 35% of overall

execution time is spent in the Detection Engine method (acsmSearch2()). This method

is an implementation of the Aho-Corasick [55] pattern matching algorithm. In the Pre-

processor component the bulk of the CPU computational time is spent in preparing the

packet for evaluation. These computations involve frequent memory accesses such as

tasks related to fragmented packet assembly, storage and retrieval of TCP connection

information (IP addresses, sequence number, port numbers) from memory and modifica-

tion of HTTP packet content for further inspection. In the Packet Decoder component,

the bulk of the CPU time is spent in extracting data from the packet for further in-

spection. Decoding also involves computations such as bit manipulation for the Packet

Checksum calculation. Logically simple bit manipulation operations are typically inef-

ficiently supported by general purpose processor instruction sets and such operations

must be mapped onto a series of shift and mask instructions. Decision Engine perfor-

mance is entirely dependent on the way the detection result is processed. If the Decision

Engine stores results to a database/disk for later analysis then it may consume a high

number of CPU cycles to access and write detection results to databases/disk. In this

experiment Snort was configured to send alerts to the console.

5.2.2 Design

Snort on RC300 development board is ported by mapping Snort components on HandelC-

MicroBlaze based environment. This mapping involve restructuring the Snort architec-

ture which is carried out by considering the followings point:-

1. The modified version of Snort for hybrid HandelC-MicroBlaze based processing

platform and the standard software distribution of Snort should produce the same

detection results.

2. The modified version should also be easily customised via the same simple interface

as the original Snort distribution in which features can be easily added/removed

via a simple text file.

3. Snort dependencies on external software libraries/Operating System (OS) features

should be removed in order that there are no difficulties in porting to embedded

target that for example does not possess libpcap for packet capture and that is

not running any OS.

Chapter 5. Design and Implementation 95

4. Gain efficiency by offloading processing load from processor to Field Programmable

Gate Array (FPGA) hardware without consuming too much FPGA area/resources.

Careful design is required to avoid the inadvertent introduction of performance

bottlenecks due to communication between hardware and software components.

All these points were considered carefully for porting along with application execution

analysis result. The main goal of the design and implementation was set to successfully

execute the Snort on new HandelC-MicroBlaze environment (Point 1 above). File based

customisation of Snort was achieved easily with the help of MicroBlaze memory file sys-

tem (Point 2 above). The last two points (above) are significantly hard and required lot

of time and efforts because they involved careful design and implementation. Following

changes were proposed in Snort:-

• Remove Snort Packet Sniffer component reliance on 3rd party packet capture li-

brary (libpcap) because the OS call trap and return overhead, coupled with the

buffer copies of packets contribute to unnecessary overhead in Snort systems. This

was done by implementing a packet capture HandelC hardware accelerator that

captures raw packets from gigabit Ethernet interface tightly coupled to the FPGA

and the MicroBlaze providing high speed and low latency access for packet cap-

turing.

• Snort core components the Detection Engine and the Preprocessor decided to port

initially on MicroBlaze core by removing their dependency on external libraries

(arpa, socket, pcre)2. This porting decision was based on the idea that in future

MicroBlaze cores can be used to deploy critical Preprocessor component on individ-

ual processor and Detection Engine component which executes pattern matching

to offload from MicroBlaze to FPGA.

• Snort’s Decision Engine functionality is reduced to alert the administrator if packet

matches any rules. This was achieved by offloading Decision Engine from MicroB-

laze to FPGA which sends the alert through gigabit Ethernet interface. A separate

application would be developed in future to provide the logging/saving of the detec-

tion results to the database or disk and to present the result in a more interactive

Graphical User Interface (GUI).

The design of the modified Snort ported on RC300 board is shown in figure 5.1. A Han-

delC Packet Capture Hardware Accelerator (PCHA) directly captures packets without

any delay from gigabit Ethernet interface-0 and stores it in Static Random Access Mem-

ory (SRAM) BANK3 for further inspection. The gigabit Ethernet interface is tightly

2the current prototype does not support regular expression (pcre)

Chapter 5. Design and Implementation 96

OPB Bus in Handel-C

 Microblaze System

 Data Data OPB Bus

Local Memory Bus

Packet
Reader

Decision
Engine

Mblaze
OPB-Bridge

Ethernet
Port 1

Ethernet
Port 0

8M
ZBT

RAM3

Packet
Decoder

Preprocessor

Preprocessor

Detection
Engine

Microblaze
Block RAM

8M
ZBT

RAM0

8M
ZBT

RAM1

8M
ZBT

RAM2

ZBT SRAM
Controller

128M
SDRAM

SDRAM
Controller

Figure 5.1: Snort on RC300 board

coupled to the FPGA and the MicroBlaze providing high speed and low latency access

for packet capturing. The hardware implementation of packet capturing is a significant

improvement over the use of a software-based libpcap library as it does not require any

operating system interrupt calls, nor the copying of data from kernel to application

buffers. This design can still be further improved by creating a ring buffer for received

packets in SRAM/SDRAM (Static Dynamic Random Access Memory) or altering the

design to attach the PCHA via the high-speed FSL bus in order to provide a direct data

transfer link between packet capturing custom hardware and processor.

Snort’s three components with major roles in packet analysis are the Packet Sniffer,

Preprocessor and Detection Engine are ported on MicroBlaze. These components are

collectively called the Core Engine. The Core Engine is the heart of this SB-NIDS and

it involves the computationally significant operations such as pattern matching, packet

classification and stateful inspection that are the operations for further optimisation

ideally using FPGA logic resources or parallel processing of multiple processor cores.

In the original distribution of Snort, detection results produce by the Decision Engine

after packet analysis are typically log or store in database systems, displayed on a console

or sent over a network. In this system detection results are written first to SRAM

BANK3. This is then read by Decision Engine Hardware Accelerator (DEHA) that

sends the detection result over a network via gigabit Ethernet interface-I. A separate

application is decided to be developed in future that will use this result to log/store

remotely which would enable the detection result available for later analysis by Network

Administrators.

Chapter 5. Design and Implementation 97

5.2.3 Implementation

Snort porting on hybrid HandelC-MicroBlaze based embedded processing environment

required source code level changes in Snort application. These changes include remov-

ing methods not required on processing platform and providing implementations for

functions/methods that are not available in MicroBlaze-C (mb-gcc) library. Some of

these methods are Internet address manipulation methods (htonl(), ntohs() etc.) and

socket library methods (accept(), connect() etc.). Apart from these changes the two

new hardware accelerators are added to Snort port for optimising Snort’s packet anal-

ysis performance. The two hardware accelerators are: Packet Capture and Decision

Engine. Packet capturing facility is a part of Snort sniffer component in original Snort

package which in this prototype offloaded to hardware for bottleneck free packet capture

(Section 4.3.2). Decision Engine in original Snort package is also a separate Snort com-

ponent which also offloaded to FPGA. These two hardware accelerators are attached to

MicroBlaze On-chip peripheral bus (OPB). The communication between these hardware

accelerators on OPB bus and rest of the Snort core engine on MicroBlaze is facilitated

with the help of HandelC library (opb slave t1.hcl) methods which has a code for control-

ling OPB bus and enabling communication between hardware accelerators and software

on MicroBlaze.

Packet Capture Hardware Accelerator (PCHA)

PCHA is implemented using the necessary data structure and macro procedures (Sec-

tion 4.3.4). Its data structure consists of two 1-bit status registers (busy and start

register) and a 32 bit packet length register to store captured packet size in bytes. A

packet length register along with status register initially set to clear or zero. Figure 5.2

shows the PCHA architecture.

Packet Capture Functional Unit

Status Registers

Lenght Register

OPB
Control
Logic

Address
Decoder

OPB Bus

OPB Address Slave_DBus

Start Busy

OPB_DBus32

32 1 1

Figure 5.2: Packet Capture Hardware Accelerator (PCHA) architecture

Chapter 5. Design and Implementation 98

The communication between PCHA and rest of the Snort port on MicroBlaze is synchro-

nised and supported by HandelC status registers, and HandelC methods and macro pro-

cedures. Snort on MicroBlaze calls the OPBWriteUINT32(START REG BASEADDR)

register write method with start register base address as a parameter. A callback write

macro procedure OPBEthernetWrite() of PCHA activated which then writes the con-

tents of the OPB data bus to the start register. This status register update signals the

core packet capture logic in OPBEthernet() to capture the packets from RC300 board

gigabit Ethernet interface-0. It first sets the busy status flag to 1 and begins the packet

capture. The complete packet capturing time depends mainly on the packet length. It

takes 1-clock cycle for reading 1-byte of packet data from Ethernet interface and another

2-clock cycle to store every 4-byte of packet data to store in SRAM BANK-0. Once the

packet completely captured, the macro procedure writes the packet length to the length

register and clears the busy status register to zero.

During packet capture in accelerator hardware, Snort on MicroBlaze read the busy sta-

tus register on every clock cycles using a OPBReadUINT32(BUSY REG BASEADDR)

register read method with busy register base address as a parameter. This triggers a

callback read macro procedure OPBEthernetRead() in HandelC PCHA that reads the

contents of the busy register and pass it through OPB bus signals to Snort on MicroB-

laze. If Snort found busy flag cleared then it reads the packet length and analysis on

the captured packet begins with protocol decoding.

Decision Engine Hardware Accelerator (DEHA)

HandelC DEHA is also implemented using the necessary data structure and macro

procedure (Section 4.3.4). It comprises of a 1-bit busy register and 4-byte alert register

to represents the number of attack rules successfully matched on a packet. Figure 5.3

shows the DEHA architecture.

Decision Engine Functional Unit

Status Register

Num_Alert

OPB
Control
Logic

Address
Decoder

OPB Bus

OPB Address Slave_DBus

Busy

OPB_DBus32

32 1 1

Figure 5.3: Decision Engine Hardware Accelerator (DEHA) architecture

Chapter 5. Design and Implementation 99

DEHA functions in a very similar manner like PCHA. Busy and an alert register initially

sets to 0 to indicate that DEHA is not busy and there is no attack rules alert to process.

Complete functionality of Decision Engine is defined in four HandelC macro procedures.

When all Snort components on MicroBlaze finished packet analysis then detection result

is wrote to SRAM BANK-3 and total number of attack rules matched on a packet wrote

to alert register. This is carried out by calling a OPBWriteUINT32-

(NUMALERTS-REG-BASEADDR) and OPBWriteUINT32(BUSY-REG-BASEAD-

DR) register write method with alert and busy register base address as a parame-

ter respectively. These methods call triggers callback write macro procedure OPBRe-

sultWrite() in hardware accelerator which then writes the contents of the OPB data bus

to the alert and busy register respectively. At the same time the core logic in macro pro-

cedure OPBDecisionEngine() that runs in infinite loops checks the busy register status

in every clock cycle and on finding that it’s status is set to 1, it starts reading detection

results from SRAM BANK-3 and sends them through gigabit Ethernet interface-1. This

Ethernet interface can be connected to network administrator console or PC where a

real time software application can read this detection result and displayed it on screen

for analysis.

In summary, MMU-Snort I or prototype SB-NIDS design and implementation is de-

scribed which is carried out by porting Snort SB-NIDS software package on hybrid

HandelC-MicroBlaze based embedded processing platform. The novelty of this effort is

the first ever SB-NIDS on hybrid hardware-software embedded processing platform. This

SB-NIDS performance is also tested to identify any packet analysis speed performance

improvement and any possible performance bottlenecks (Section 6.3). The performance

bottlenecks is then improved by further research and development (Section 5.3 and Sec-

tion 5.4).

5.3 Pattern Matching Hardware Accelerator (MMU-Snort II)

SB-NIDS prototype testing results shows packet analysis speed improvement and also

indicated some packet processing bottlenecks (Section 6.3). One of the bottlenecks

identified is the pattern matching algorithm which performs attack signature search in

packet payload. Another issue is the large number of attack signatures that does not

fit completely on embedded processing platform memory. To deal with two these issues

and design a solution a brief analysis is carried out first.

Chapter 5. Design and Implementation 100

5.3.1 Analysis

This analysis involved understanding the internal structure and working of Snort’s De-

tection Engine component which performs pattern matching. This is followed by a

discussion on Bloom filter data structure for understanding how it can make possible to

compactly store large number of members or attack patterns in embedded processing

platform memory for fast lookup [5].

Detection Engine Functions

Detection Engine and Snort attack rules were discusses before briefly (Section 4.3.2).

Their functions are now discussed in detail.

Each and every packet in Snort is pass through the series of processing stages as shown

in figure 5.4. The numbering shows the flow of packet from one processing stage to

another.

1) Packet Decoder

2(b) Preprocessor (HTTP) 2(a) Preprocessor (SMTP) 2 (c) Preprocessor (FTP)

4) Decision Engine

3) Detection Engine

Captured
Packet

Figure 5.4: Key Stages of Snort

Packets are firstly captured from network interface(s), and then decoded and analysed

by Preprocessor component(s). Next, packets are passed onto the Detection Engine

component, where Snort attack rule are selected and evaluate on packet. In brief, the

Detection Engine performed three main operations: Rule Parsing, Rule Selection and

Rule Evaluation.

Rule Parsing

At Snort application initialisation stage, the Detection Engine component reads and

parses all the rules found in a Snort configuration text file (Snort.conf) in order to

Chapter 5. Design and Implementation 101

generate a data structure for rule evaluation, as depicted in figure 5.5 known as the

Snort rule tree (SRT) [1].

RTN: Rule tree node
source IP
dest IP
source port, dest port
etc…

RTN: Rule tree node
source IP
dest IP
source port, dest port
etc…

RTN: Rule tree node
source IP
dest IP
source port, dest port
etc…

OTN: Option tree node
Rule #: 1
metadata, msg,
length=20
etc…

OTN: Option tree node
Rule #: 2
metadata, msg,
flag
etc…

flow_to_server
content=”abckill-now”
offset=10
sid=10000
etc…

OTN: Option tree node
Rule #: 3
metadata,
msg, rev
etc…

OTN: Option tree node
Rule #: 4
metadata, msg,
ssid
etc…

Figure 5.5: Parsed structure of Snort rules in memory (SRT)

SRT is made up of Rule tree nodes (RTN) and Option tree nodes (OTN). An RTN con-

tains the data associated with a rule header, whereas an OTN contains data associated

with rule options that include rule meta-data and detection options such as offset, depth

(Section 4.3.2). The SRT groups all OTNs with the same rule header under a single

RTN in order to facilitate fast rule evaluation on packets.

Rule evaluation

Rule evaluation in Snort involves checking packet header for invalid protocol values and

packet payload for malicious pattern. Header checking is straight forward process of

checking numeric values where as payload checking involves pattern matching algorithm.

Early Snort versions used Boyer-Moore [54] pattern matching algorithm with relatively

small memory requirements. It is very inefficient with larger number of attack pattern

search because each pattern search in packet payload occurs one-by-one. Thus, Boyer-

Moore algorithm for pattern search in SB-NIDS can easily become a victim of DoS

attack on high data rate network [112]. Subsequent releases of Snort versions exploited

the power of Aho-Corasick based multi-pattern matching algorithms [55] which search

the whole number of patterns in packets in one go using finite state machine that it

creates in Snort run-time application memory (Figure 5.6).

This algorithm is a significant improvement in terms of speed over Boyer-Moore pattern

matching algorithm at the cost of large amount of run-time pattern memory for finite

state machine. Even finite state machine memory optimisation does not result in any

Chapter 5. Design and Implementation 102

0

¬{h,s}

h
1

3

2

s

e

4
h

6
e

7
i

8
m

s
9

Figure 5.6: A state machine concept constructed using patterns “he, she, him, her,
his”

significant reduction of run-time memory requirement for Aho-Corasick [97] (Figure 6.6).

This same issue also caused problem to execute Snort port on embedded processing

platform with all Snort attack rules (Section 6.3)). Still Aho-Corasick multi-pattern

search algorithm performance is much better than Boyer-Moore single pattern search

both in terms of speed and its worst-case performance. Therefore, in recent versions of

Snort (such as Snort version 2.0 and after), Aho-Corasick is the default pattern matching

algorithm to search packet content for attack patterns. This search is supported by SRT

which helped to drive the pattern search in packet content as well as invalid protocol

values search in packet header both specified in Snort attack rules. This search is called

Rule Evaluation on packet involved packet header check and packet payload search using

rules. Before the rule evaluation SRT also helps to select rules for evaluation using packet

classification (Section 2.4.7) process commonly referred as Rule Selection in the context

of SB-NIDS.

SRT also contains the Snort rule content modifier options specified for some 45% of

attack rules. These options identified as crucial for pattern search performance because

it reduced the overall pattern search time in packet content by specifically mentioning the

number of bytes and offset to search into packet contents instead of all packet content

(Section 4.3.2). For example, consider the Snort rule as shown in figure 5.7, which

specifies that an alert should be sent to the network administrator if the ttl value of

the IP packet under inspection is less than three and the pattern Kill Now is found in

the packet payload between byte four to twenty-four. Pattern search is performed very

quickly for this rule due to the depth and offset Snort rule content modifier options which

specifies the exact location to search instead of all packet content. If these modifiers are

Chapter 5. Design and Implementation 103

not present in rule then Detection Engine has to search all packet payload which may

be around 1500-bytes (Ethernet MTU).

 Rule Header

alert ip any any -> any 3455 (ttl:<3;content:

 "Kill Now”;offset:4;de pth:20;)

 Rule Option

Figure 5.7: Example Snort rule

Bloom Filter

A Bloom filter is a space-efficient probabilistic set membership data structure. It allows

set members insertion and query but does not allow deletion (deletion is possible with a

Counting Bloom Filter [113]). An insert operation on a new set member is implemented

using multiple hash functions applied to an integer value (representing the member). A

character string such as “FAT” can be represented as an unsigned integer value that

is created by concatenating the ASCII character codes (bit patterns), see figure 5.8.

The results of applying hash functions to the integer value representing each and every

keyword string are bit-wise OR-ed together in order to create the stored Bloom filter bit-

pattern value. Bloom filters have been successfully applied to computer security based

applications such as Email Spam Filters [114], Network Intrusion Detection Systems [81]

and Computer Worm Detection Systems [115].

>>>> (ord('F') << 16) + (ord('A') << 8) + ord('T')

Figure 5.8: Python code: 3 character string to integer conversion

Bloom Filter Algorithm

An empty Bloom filter is a bit-array (B = 0,...,m-1) (also known as bit-vector) of m

number of bits, all set to 0 initially as shown in figure 5.9. It is used to efficiently and

compactly represent a set of bit-strings S, with n number of members (S = x1,x2,...xn).

A Bloom filter can be programmed (Insert) for a bit-string x of a set S using k number

of hash functions (h1()...hk()). textitk hash functions are computed on any bit-string x

resulting in k hash values. Each of these k hash values represent a single bit position

B[k]) set to 1 in a bit-vector of size m. Hence each hash value computed on any bit-

string x is used for setting k number of bits to 1 in the size m bit-vector. Each one of

the k hash values can be interpreted as an integer in the range from 20 to 2m−1.

Figure 5.10 illustrates the Bloom filter programming. Two bit-strings x1 and x2 are

programmed in the bit-vector B of m = 10 number of bits with k = 3 number of hash

Chapter 5. Design and Implementation 104

 9 m-bit-array 0

0 0 0 0 0 0 0 0 0 0

Figure 5.9: Empty Bloom Filter

functions. It can be noticed that two different bit-strings (x1 and x2) set the same bit

positions in bit-vector index of B[2] corresponding to a hash value of 22, this is known

as a hash collision.

 x1 x2
 h3(x1) h1(x2) h3(x2)

 h1(x1) h2(x1) h2(x2)

 9 m-bit array 0

0 0 0 1 0 1 0 1 1 1

Figure 5.10: Insert bit-strings (x1) and (x2)

Querying the bit-vector B for a bit-string x is similar as insert operation. Using the same

k number of hash functions h1()...hk(), k hash values are computed for any bit-string

x of a set member S. The k hash values are checked against the stored Bloom filter bit

position values B[k]. If atleast one of the k bit position B[k] is 0, the member is declared

to be a non-member of a set S or not programmed in a bit-vector. If all k bit positions

B[k] in bit-vector B are found to be 1, the member is declared to be a member of set S

or found programmed in a bit-vector with certain probability. If all k bit positions B[k]

in bit-vector B are found to be set 1 for bit-string x but it is not a member in a set S

or not programmed in a Bloom filter, then it is said to be a false positive.

 x3 x4
 h3(x3) h3(x4)

 h1(x3) h2(x3) h1(x4) h2(x4)

 9 m-bit array 0

0 0 0 1 0 1 0 1 1 1

Figure 5.11: Query bit-strings (x3) and (x4)

Figure 5.11 illustrates the Bloom filter query. Membership query for bit-string x3 shows

it is not a member of a set S or not programmed in bit-vector as two k bit positions B[3]

Chapter 5. Design and Implementation 105

and B[7] found to be 0. However, membership query for bit-string x4 is false positive

as k hash values maps to bit positions B[6], B[2] and B[0] set by bit-strings x1 and x2

of a set S (See figure 5.10). The advantages of Bloom filter is that they can efficiently

search to see if a given bit-string contains one or more members of a set of keywords,

unfortunately false positive results must be resolved and these require further pattern

matching.

Bloom Filter Characteristics

The Bloom filter helps to overcome Aho-Corasick multi-pattern matching algorithm two

main computational factors: Memory space and Search time by observing its following

characteristics.

• Bloom filter membership query does not involve any bit-to-bit members matching

unlike similar hashing coding techniques (Hash table). Membership tests involved

checking k bits status (set to 1) in a pre-computed bit-vector. Thus providing

mechanism to lookup any length or size member with constant lookup-time O(n).

• Unlike other data structures (arrays, linked lists, hash tables) and popular pattern

matching algorithms (Boyer-Moore and Aho-Corasick), the members of a set S

are not stored in the bit-vector B, instead each member is represented only by k

number of bits position in a bit-vector B[k] (Bits are shared between members).

Thus making it suitable for compactly storing large number of members in a bit-

vector B.

This space and time advantage in a Bloom filter is achieved at the cost of allowable

errors. In other words, querying bit-pattern x in a bit-vector may return a false positive

true result even when bit-pattern x is not in the set or not programmed in a bit-vector

(Figure 5.11). This happens when k number of hash values for a bit-pattern x coincide

with bit-vector B positions corresponding to the hash values set to 1. The probability

of such allowable errors occurring for any bit-pattern x query is called the false positive

probability. Bloom in his work [5] defined the false positive probability as,

f = (1− (1− 1

m
)nk)k ≈ (1− e−

nk
m)k (5.1)

Where m is a size of a bit-vector, n is the total number of bit-patterns in a set S and

k is the number of hash functions to be computed on a bit-pattern. It can be noticed

from the equation that m, n, S and k all affect the false positive rate. For n number of

Chapter 5. Design and Implementation 106

bit-patterns the false positive can be reduced by choosing appropriate values of m and

k. The value of m needs to be large compared to the value of n, whereas, the optimal

value of k achieving a low false positive rate depends on the ratio m/n, i.e. the average

number of bits occupied by single member. This optimal k is calculated by minimising

equation 5.1 as,

k = (
m

n
)× ln2 (5.2)

k is an integer and this value of k produce lowest possible false positive rate with respect

to the values of m and n.

From this analysis it can now be concluded that the Detection Engine component of

Snort port on RC300 board requires major code level changes in order to integrate the

PMHA because part of Detection Engine component performs pattern matching not

the whole component. Also Snort application specific knowledge (attack rule content

modifier options) inclusion to PMHA can improve the pattern matching performance due

to lower number of byte search. It can also be deduced from the Bloom filter discussion

that its characteristics are suitable for compactly storing the attack patterns in FPGA

memory as well as to support quick pattern matching in packet content. Keeping the

lower false positive rate is also crucial for PMHA performance which can be lower by bit-

vector lookup with higher number of hash values per member or pattern. However, this

may easily affect optimisation effort due to higher number of hash value computations

per pattern. This issue can be overcome by implementing hardware friendly optimal

hash function as well as using a simple mathematical calculation to quickly compute

large number of hash values per pattern (Section 5.3.3).

5.3.2 Design

The three core operations performed by Detection Engine are:– Rule Parsing, Rule

Selection and Rule Evaluation. All three core operations required source code level

modification in order to design, develop and integrate PMHA to come up with MMU-

SnortII prototype. Rule evaluation which involved packet header and payload check

with rules required major source code level modification in which the packet payload

check (pattern matching) is offloaded from MicroBlaze to FPGA. Figure 5.12 is the top

level diagram of modified Detection Engine component partitioned between hardware

and software and communicating or passing data using MicroBlaze Fast Simplex Link

(FSL) bus.

Chapter 5. Design and Implementation 107

MICROBLAZE
I) Rule parsing.
II) Rule selection.
III) Packet non-
payload checking
for each rule.

MicroBlaze BUS

Virtex-II FPGA

I) Packet payload
checking (String
matching) for each
rule.

Figure 5.12: Top level diagram showing modified Detection Engine

Software Design

On MicroBlaze, the modified Detection Engine now performs:– rule parsing, rule selec-

tion and packet header check (Part of rule evaluation). The rule parsing is modified

and it no longer creates the Aho-Corasick finite state machine. Rule selection opera-

tion remains unchanged while rule evaluation went through major modification in which

packet payload check (part of rule evaluation) is offloaded from MicroBlaze to FPGA.

Hardware Design

On FPGA, packet payload search (part of rule evaluation) for attack pattern in packet

payload is performed. This search is based on Bloom filter based pattern search ap-

proach. Figure 5.13 shows the block diagram of PMHA.

BLOOM ARRAY LOOKUP UNIT

RULE
UNIT 1

RULE
UNIT 2

RULE
UNIT N

RULE PROCESSING ENGINE

RULE
UNIT 3

J
O
B

M
A
N
A
G
E
R Data Window

Nbytes

HASH TABLE IN SDRAM

Match table

Rule Table

FALSE

POSITIVE
ANALYSER

Address

Load (addr)

Store

Store

Match (Info)

FSL
Bus

M
I
C
R
O
B
L
A
Z
E

Selected
Rule(s)

Data Stream

Figure 5.13: Block diagram of pattern matching hardware function unit

The PMHA has four main modules: Job Manager, Rule Processing Engine, Bloom Fil-

ter Lookup Module, False Positive Analyser that actively function together as pipelined

Chapter 5. Design and Implementation 108

pattern matching hardware modules. This design is better and has advantages over pre-

vious Bloom filter based pattern matching hardware solutions and Snort Rule Processing

System (Section 3.5.3) due to following reasons:

Application specific knowledge: It is the first time ever Snort rules content modifier

options are integrated into pattern search algorithm that specifies clearly the part of

packet content to search for attack patterns. This results in less computation and lower

number of clock cycles due to:

• Less number of hash computation.

• Low numbers of Bloom filter lookup or block memory access.

• Few pattern for pruning in false positive analyser.

In comparison, the previous Bloom filter implementations fully search or every byte of

the packet payload for locating attack patterns [81].

Hash computation technique: The conventional way of computing any number of

hash values in hardware or FPGA is hash computational unit. The same hash computa-

tional unit can be used to compute multiple numbers of hash values. But for computing

ten hash values or more this will cost high computation time. To fix this problem an-

other approach is to have multiple numbers of hash computation units which will cost

more FPGA logic resource and power and thus also result in performance degradation.

To overcome this problem a novel mathematical technique by Kirsch [6] is used to imple-

ment the 2-to-N hash module that uses two hash values to compute another eight hash

values in just 2 clock cycles without any increase in asymptotic false positive probability

of Bloom filter. The advantages of implementing 2-to-N hash module in comparison to

multiple hash computation units are summarised as:

• Lower FPGA logic area usage and minimal power consumption

• Large number (eight) of hash values computation in just two clock cycles

Integrated Rule Processing System: Snort Rule Processing Systems were either

implemented as standalone systems on FPGAs or on Network Processors (Section 3.5.3).

The standalone solutions aim were to present optimised rule processing solutions but did

not clearly demonstrate how these Snort Rule Processing Systems would be integrated

to function or process attack rules for SB-NIDS. This design presents an integrated

Rule Processing System to snort SB-NIDS port (MMU-Snort I) using hybrid hardware-

software processing platform which never done ever before and so advances the start

Chapter 5. Design and Implementation 109

of art. This state of the art also supports the highest number of attack rules and

compactly stores the attack pattern in FPGA local memory. Figure 5.14 shows this rule

processing/evaluation on packet.

Packet Capture
(FPGA)

Rule Selection
(MicroBlaze)

Packet header
check

Packet Payload
Search

Process Result
(MicroBlaze)

Network
Interface card

Database

ResultResult

Packet

Header Payload

MicroBlaze FPGA

Alert

Figure 5.14: Packet processing flow for Snort rule evaluation

Each rectangle in the figure represent a processing component. Packet capture and

Packet payload search components are HandelC hardware accelerators attached with

MicroBlaze on OPB bus and FSL bus respectively. The rest of the components execute

on MicroBlaze3.

Packet is captured by the packet capture component from RC300 gigabit Ethernet port-0

and stored in off-chip SRAM BANK-0. Next the key packet header values are compared

with rule header in the rule selection component on MicroBlaze that returns the subset

of rules for evaluation on packet as shown in figure 5.15.

3Figure 5.14 highlights only rule evaluation in Detection Engine and does not show other Snort
processing component

Chapter 5. Design and Implementation 110

Rule1: IP, Port, Protocol…etc.

Rule2: IP, Port, Protocol…etc.

Rule3: IP, Port, Protocol…etc.

-
-
-

Rule N: IP, Port, Protocol…etc.

Rule1:
“blastworm”

Rule2:
“iloveuvirus”

-
-
-

RuleN:
“0101invispy”

Src. IP

Dest. IP

Src. port

Dest. port

Protocol

Key packet header values

Rules headers in Memory

Rule
Selection Match Result

List of selected Rules

Figure 5.15: Rule selection

Next the rule evaluation is started on packet in packet header check and payload search

component. Packet header check component evaluates only the header options (Non-

payload options) of the subset of rules on packet header using SRT. On successful match-

ing of header options it writes in SRAM the Rule ID of matching rule. Packet payload

search component evaluates payload options of the subset of rules which involve search-

ing attack patterns in packet payload using payload content modifier options. Before any

payload option evaluation these content modifier options, any other options and packet

payload are passed from MicroBlaze to packet payload search component via FSL bus.

The complete rule evaluation process on packet is now explained to get the greater

understanding of operations performed by each component of hardware accelerator.

Packet Header check

Consider an example Snort rule in figure 5.7 for understanding its evaluation on packet

payload with content: abckill nowabdhgyppt. First the payload options from this rule are

extracted separately for passing on to PMHA. Only header option in this rule for packet

header check is ttl:<3;. Packet header check component search the IP packet header ttl

value. If the ttl value in a packet is less than 3 then the packet header check component

writes the Snort Rule ID in SRAM and wait for the payload options evaluation result.

Chapter 5. Design and Implementation 111

Packet Payload search

For Snort rule in figure 5.7, the only payload options to evaluate on packet payload

is (content:“kill now”;) which involves the search of attack pattern kill now in packet

payload (abckill nowabdhgyppt). Content keyword modifier depth and offset of this

rule indicates search for kill now only between byte-4 to byte-20 of packet payload. This

search is carried by four modules of hardware accelerators with the support of Bloom

filter pre-programmed with all attack patterns from Snort rules including the sort rule

in figure 5.7 4. Figure 5.16 shows the payload search processing flow involving these four

hardware modules and now explained in further detail.

Job Manager
Payload

Payload
Options

Rule Processing
Engine

Payload

Payload
Options

Bloom Filer Lookup
Unit

Hash
Values

False Positive
Analyser

Hash
Value

Pattern

Pattern

Result

Figure 5.16: Hardware modules performing packet payload searching

Job Manager: Packet payload content and payload options are passed from MicroBlaze

to Job manager module of PMHA. It is the first hardware that receives the payload

4A software program written in JAVA to extract attack patterns from Snort rules to create the
hardware representation of Bloom filter

Chapter 5. Design and Implementation 112

options and packet payload from MicroBlaze via FSL. Its main purpose is to manage

the complete packet payload search process. It performs this by initiating packet payload

search in the Rule Processing Engine and streaming the packet payload. Job manager

not only initiates the packet payload search but also aid in pruning false positive match.

All these functions are performed by Job Manager with the help of its five sub-modules:

Rule loader, Rule dispatcher, Match loader, Match dispatcher and Data feeder.

Rule Processing Engine: This is where the actual payload search starts. Rule pro-

cessing engine has sixteen rule units that are able to perform packet payload search for

sixteen Snort rules in parallel. This is carried out with the help of its sub-modules: hash

module which compute the hash values on substring of streaming packet payload for

checking it’s presence in Bloom filter.

Figure 5.17 shows the hash computation process on every 8-bytes substring of packet

payload abckill nowabdhgyppt in rule unit for Bloom filter lookup.

Hash Modules

Rule Unit
abck...

abck...

abck...
Data Feeder

8-bytes Data Register

abckillnow

abc

kill

now

abdh

gyp

pt..

..

..

hash-1

hash-2

abck...

Off-chip SRAM

abck...
bcki...
ckil...
kill...

Figure 5.17: Rule units computing hash values

Packet payload bytes abckill nowabdhgyppt is streamed through 8-byte data register by

Data feeder module which is synchronised with rule units. Rule unit then copies 8-bytes

(kill now) of data register, signals the data feeder that data has copied. It then copied

those 8-bytes to two hash modules operating in parallel. These Hash modules computes

two hash values in just 2 clock cycles using hardware efficient XOR-based hash function.

This hash value is passed on to the Bloom filter lookup unit for checking Bloom filter

index for corresponding hash values. This process of hash computation is repeated until

all 8-bytes substrings are processed up to packet payload byte-20.

Chapter 5. Design and Implementation 113

Bloom Filter Lookup Unit: Assume that this module receives two hash values of kill

now substring. Before any Bloom filter lookup this module actually computes further

eight hash values using two hash values. This is carried out with the help of 2-to-N hash

module in just 2 clock cycles. Figure 5.18 shows the hash computation process.

Hash Modules

Rule Unit
abck...

abck... hash-1

hash-2

Hash Values

2-to-N Hash module

Figure 5.18: 2-to-N hash module computing ten hash values using two hash values

All hash values are now copied to Bloom filter probe unit for checking Bloom filter index

for corresponding hash values. The Bloom filter is constructed in dual port FPGA Block

RAM. The boom filter lookup process for 10 hash values takes further 5 clock cycles as

shown in figure 5.19.

Hash Values

2-to-N Hash module Filter Lookup unit

Bloom Filter (FPGA Dual-Port Block RAM)

Figure 5.19: Bloom filter index checking with corresponding hash values

For all ten kill now hash values, Bloom filter index corresponding to hash value is found

to be 1 because the pattern kill now in Snort rule 5.7 is parsed and programmed in

Bloom filter. This match however may be a false positive due to nature of Bloom filter.

A hash value of kill now is then copied to False Positive Analyser Module to verify the

match.

False Positive Analyser Module: This module prune the false positive match. It

performs this pruning with the help it’s two sub-modules: Hash table lookup unit and

comparator circuit and hash table in SDRAM where all patterns and associated Snort

Rule IDs are stored. To check kill now is true match, the hash table lookup unit uses

the hash value of kill now to fetch content of hash table index for corresponding hash

value. It then passed the content to the comparator. If comparator found any Rule ID

then it start comparing payload substring kill now with a pattern from hash table. The

Chapter 5. Design and Implementation 114

pattern comparison process is a simple brute-force pattern matching that performs four

bytes comparison per clock cycles. If all kill now bytes matches the pattern then it is

declared as a match. The Snort Rule ID of this pattern is then written to SRAM for

processing of detection result on MicroBlaze. Figure 5.20 shows this process.

SRAM

Hashtable (SDRAM)

Comparator

Packet
Data

PatternHashtable
Lookup Unit

False Positive Analyser

Match
Flag

100

287 291

23

PAT

55

MaT

223

FAt

RuleID &
PatternHash value

(address)

abc 10b Mat

Figure 5.20: False positive analyser with hash table lookup unit and comparator
circuit

Snort Rule Match

Packet header check and packet payload search write the Rule IDs of matching header

options and payload options of Snort rules. Only those Snort rule is declared a match

when the same Rule ID of rule is found in packet header check result as well as in packet

payload search result.

5.3.3 Implementation

Packet payload search or PMHA are attached to high speed FSL bus. The communi-

cation between hardware accelerators on FSL bus and rest of the Snort detect engine

component on MicroBlaze is facilitated with the help of HandelC library (fsl t1.hcl)

which contains the source code for controlling FSL bus and enabling communication

between hardware accelerators and software on MicroBlaze processor.

Chapter 5. Design and Implementation 115

Pattern Matching Hardware Accelerator (PMHA)

HandelC PMHA is implemented using the necessary data structure and macro procedure

(Section 4.3.4). Its data structure comprises of only one 1-bit status registers (busy

register). A busy status register initially set to clear or zero to indicate that no Snort

rules are needed processing in hardware accelerator. Figure 5.21 shows the architecture

of PMHA.

Pattern Matching Hardware Accelerator

Status Register

FSL
Control
Logic

FSL Bus

FSL Port

Busy

1 1

Figure 5.21: Pattern Matching Hardware Accelerator (PMHA) architecture

The communication between packet capture hardware accelerator and the Packet Snif-

fer part on MicroBlaze is synchronised and supported by 1-bit status registers, methods

and macro procedures containing hardware accelerator logic. Snort modified Detection

Engine component on MicroBlaze first calls the get fsl nbread(int fslport,int bitvalue)

read method with FSL port number and variable to read in the content of register.

This invoked the callback read macro procedure FslSlaveRead() hardware accelerator

that reads the content of status register and writes it’s contents to the FSL data bus.

If the check on variable found the register contents zero then Detection Engine com-

ponent starts sending the payload options of rule and packet payload content towards

the accelerator hardware. The hardware accelerator then evaluates the payload options

on packet payload and once finished write the detection result in SRAM BANK-0 and

clears the status register content by writing 0.

One of the important parts of Bloom filter based pattern matching hardware implemen-

tation is the hash function. Oncoming section contains the detail discussion on hash

function implementation and explanation on computing large number of hash values

readily and efficiently in hardware.

Chapter 5. Design and Implementation 116

Optimal hash function

One of the main considerations of the Bloom filter based pattern matching implemen-

tation in hardware/FPGA is the selection of appropriate hash function. Ideal hash

function should consume minimal FPGA power and resource as well as produced lower

or atleast theoretical false positive rate (Section 6.4). To achieve this effectively a class

of universal hash function called H3 that exploits bit-wise logical operations [116, 117]

is selected for implementation. Such a hash function is efficient in terms of hardware

resource consumption and due to simple bit-wise logical operation it can be readily and

efficiently implemented in FPGA. Dharmapurikar et al. [81] also implemented this hash

function for their Bloom filter based pattern matching hardware implementation on

FPGA [81]. Figure 5.22 illustrates the equivalent hash function circuit implementation

of HandelC code.

Figure 5.22: Hash calculator circuit design

This shows that for any input bit-pattern X with i number of bits represented as,

Xi = [x1, x2, x3, ...x8] (5.3)

The kth hash value Hk for Xi is calculated as,

Hk = [(q0 · x1)⊕ (q1 · x2)⊕, (q2 · x3)⊕ ...⊕ (q7 · x8)] (5.4)

Where · denotes the binary AND operation and ⊕ the exclusive OR operation. q(0..j−1) is

a vector of random integer values in the range of 1 to m. The vector values are generated

Chapter 5. Design and Implementation 117

by a software program that developed in JAVA programming language. The vector

values then copied from software program into the index of HandelC array (registers).

Similarly, another kth hash value Hk for bit-pattern Xi can be calculated with another

vector p(0..j−1) of random integer values in the range of 1 to m as,

Hk = [(p0 · x1)⊕ (p1 · x2)⊕, (p2 · x3)⊕ ...⊕ (p7 · x8)] (5.5)

This vector p(0..j−1) of random integer values is also generated by the same software

program and copied into the index of another HandelC array (registers).

Two Hash Function Solution

Equation 5.2 suggested that the ratio of the number of bit-pattern n to program in a

Bloom filter to the total number of bits m in Bloom filter is the number of bits allocated

to each bit-pattern in a Bloom filter. Taking ln2 of this value decides the optimal

number of k hash functions needed to compute for each bit-pattern to insert/query

them into Bloom filter. Let suppose if there are n = 2385 number of bit-patterns

and the number of bits in Bloom filter is m = 32768, then on average ≈ 14-bits per

keyword is allocated in Bloom filter (m/n = 13.73 ≈ 14). For this ratio (m/n) value,

the number of hash functions needed to compute per bit-pattern for insert/query is k =

13.73 × ln2 ≈ 10 (where, ln2 = 0.69314). This number of hash function is difficult to

implement in FPGA and for query intensive application like SB-NIDS pattern matching

it may become bottleneck. Simple solution to this problem is to reduce the number

of hash functions by reducing the number of bits allocation per keyword in Bloom

filter. However, this simple solution would cause increase in false positive probability

that also result in comparing large number of bit-patterns with brute-force (bit-by-bit)

pattern matching. For example: false positive probability according to equation 5.1 is,

1-e−
2385×10
32768 ≈ 0.001365, if lower value of k is chosen by reducing the number of bits

allocation per bit-pattern in Bloom filter to m/n 6.85 ≈ 7 by lowering the number of

bits in Bloom filter to m = 16384, then value of k would be, k = 7 × ln2 ≈ 5 (where ln2

= 0.69314). This will increase the false positive probability of Bloom filter to 1-e−
2385×7
16384

≈ 0.03695.

To compute such a large number of hash values, a very different technique is used that

can yield an effective speed up of pattern matching in hardware for SB-NIDS. It is the

first time this technique is use for SB-NIDS pattern matching in hardware which is

originally proposed by Kirsch [6] for Bloom filter and related data structures. According

to this technique, only two hash functions are necessary to effectively implement a Bloom

Chapter 5. Design and Implementation 118

filter without any increase in asymptotic false positive probability. With this idea two

hash functions h1(x) and h2(x) can simulate more than two hash functions of the form,

gi(x) = (h1(x) + ih2(x)) mod m (5.6)

i ranges from 0 to k-1 for k number of hash values. For example: if i = 9, then this will

produce ten hash values. Every hash value is taken modulo of the Bloom filter size (m

number of bits) to ensure the values within the range of m.

In summary, it is the first time ever a PMHA for SB-NIDS implemented with Snort

application specific knowledge and with efficient hash function computation technique.

Also unlike other Snort Rule Processing System (Section 3.5.3), this PMHA is integrated

with the Snort SB-NIDS prototype on hybrid HandelC-MicroBlaze embedded processing

platform to perform a complete rule processing. It is also this hardware accelerator

that is implemented with the largest number of patterns (7176) from Snort rules and

compactly stores them in FPGA block RAM.

5.4 Final Optimisation of Snort Port (MMU-Snort III)

This section contains explanation of further improvements to the hardware accelera-

tors which resulted in MMU-Snort III prototype. This involved hardware accelerator

architecture and algorithm improvement:

• An algorithmic and architectural improvement of PMHA algorithm to optimise

pattern pruning process.

• An extension to existing PMHA algorithm to efficiently search longer size patterns

(> 64 bytes).

A brief analysis is presented that shows the issue with the PMHA algorithm. This anal-

ysis also covers how the longer patterns can be efficiently search with PMHA algorithm.

5.4.1 Analysis

This analysis reviewed the need of algorithmic changes of existing PMHA algorithm.

This will result in increasing the speed of PMHA algorithm and improved longer patterns

search in packet.

Chapter 5. Design and Implementation 119

Rule Evaluation revisit

The modified Snort Detection Engine on hybrid HandelC-MicroBlaze processing plat-

form performs rule evaluation which is summarised as follows:

• Snort rule selection by matching key packet header values (IP, Port, and Protocol

etc.) with all rule headers on MicroBlaze.

• Selected rule evaluations, this involve rule header options evaluation on packet

header on MicroBlaze and rule payload options evaluation on packet payload on

FPGA.

The header options evaluation is trivial which involve checking numeric values in packet

header. In case all header options match, the Snort Rule ID is recorded. The payload

options evaluation which is the packet payload search of attack pattern is complicated

and computationally demanding process. It involved hash value computation of sub-

string from packet payload and Bloom filter index lookup for corresponding hash value.

If substring found to be programmed in Bloom filter and also matches with a pattern

from hash table, its Snort Rule ID is recorded. The header options and payload options

result is then processed on MicroBlaze.

Algorithm

Section 5.3.2 contains the detail explanation of payload options evaluation on packet

payload using four of the PMHA modules. It is observed that payload option evaluation

in False Positive Analyser module performing lot of unnecessary substring comparison

with patterns stored in hash table. This is highly susceptible to DoS attacks because

if attacker sends a carefully crafted packet with patterns that repeatedly triggers the

brute-force searches. This can become further worst with longer length patterns. The

main reason of excessive number of pattern comparison is that there is no mechanism

exists to further prune the result before full pattern comparison. Figure 5.23 shows this

issue.

Only Rule IDs found on both sides of the rule evaluation (header options and payload

options) are the only rule match, so some of the payload search is resulting in waste of

clock cycle or time.

Example: Following example further clears this problem. Consider two Snort rules

(Figure 5.24) which is parsed by Detection Engine to construct the SRT like the one in

Chapter 5. Design and Implementation 120

Rule Selection

Rule Evaluation

Packet Payload
Check

Packet Header
Check

RESULT:

RuleID:23

RuleID:948

...

..

.

RuleID:10

RESULT:

RuleID:23

RuleID:948

RuleID:9

RuleID:17

RuleID:75

...

..

.

RuleID:10

RESULT:

RuleID:23

RuleID:948

RuleID:21

RuleID:100

...

..

.

RuleID:10

Process Result

Figure 5.23: Rule selection and evaluation result

 Rule Header

 alert ip any any -> any any (Rid:1;ttl:<3;conten t:”kill”;

 length:4;offset:4;depth:20;)

 Rule Option

 Rule Header

 alert ip any any -> any 2334 (Rid:2;tos:!4;conten t:”will”;

 length:4;)

 Rule Option

Figure 5.24: Example Snort rules

figure 5.5, the patterns are programmed in Bloom filter and the Rule ID (Rid) along

with pattern are added to hash table.

Imagine only the first rule (RuleID:1) header match with key packet header values and

selected for evaluation on packet. Rule header options (ttl:<3) evaluation for this rule

using SRT also found the packet IP header has ttl values <3. This means that this rule

header options is declared a match and it’s RuleID:1 is recorded. Now the remaining part

of rule evaluation which is a packet payload search or payload options evaluation carried

Chapter 5. Design and Implementation 121

out in PMHA using Bloom filter. It has to search all four bytes substring in packet data

from byte 4 to byte 20. If the packet payload is “abcdkillsushd688willfhfjhk10” then

packet payload search will find both “kill” and “will” substring programmed in a Bloom

filter. For false positive check, it will also find the Rule ID and pattern in hash table

which will trigger the brute force pattern matching for both substrings with pattern.

The brute-force matching involves fetching the patterns from hash table in SDRAM and

comparing it with substring found in Bloom filter. The packet payload search result

in the end declared both patterns a match and mentioned the associated Rule IDs.

Although both substring are found in Bloom filter and also match with pattern using

brute-force matching, but the reality is it is only “kill” in the end that is match. The

reason is simple, as ‘kill” belongs to the first rule and it is only first rule that was selected

for evaluation as well as first rule header option check on a packet also result in a match.

The second rule (RuleID:2) was not selected at all for evaluation on a packet and so

“will” is not a match.

In summary, algorithm successfully able to perform rule evaluation but has issues which

resulting in lot of unnecessary brute-force matching. A design changes in pattern match-

ing algorithm was suggested to remove this issue and boost up algorithm performance

(Section 5.4.2). Another issue of the pattern matching algorithm is the poor perfor-

mance with longer pattern (> 64 bytes). An analysis is now present which explains how

to efficiently search longer length patterns with PMHA.

Snort rules

First an analysis on Snort rules is presented here to find out the number of over 64 bytes

pattern that the PMHA does not search efficiently.

There are total 7876 unique patterns in Snort rules released in June 2008. Out of 7876

patterns, 7170 patterns are 64 bytes and less which hardware accelerator can search

efficiently using Bloom filter. The rest of the 706 patterns are over 64 bytes which

hardware accelerator does not search efficiently. A clear spike in the graph in figure 5.25

at x-axis (180) value can be notice which indicates that there are 439 (y-axis) patterns

of 180 bytes (x-axis) in length.

Now the total number of over 64 bytes pattern is identified and solution is needed to

search them efficiently.

Chapter 5. Design and Implementation 122

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475

N
um

be
r

of
 P

at
te

rn
s

Pattern Length

Figure 5.25: Patterns from Snort rules with their length

Longer patterns (> 64 bytes)

A software program was written in JAVA using JDK 1.6.0 to analyse the longer patterns

in Snort rule. This analysis concentrated on finding out how many more patterns would

result if patterns over 64 bytes are broken down in 64 bytes chunks. Figure 5.26 shows

the graph that demonstrate this.

This graph clearly shows the effective increase in number of pattern as a result of

breakup. Table 5.2 shows the exact summary of the total number of increase in patterns

as a result of over 64 bytes pattern breakup.

Table 5.2: Total number of patterns

Summary

Total Pattern 7876

> 64 bytes (Before breakup) 706

> 64 bytes (After breakup) 1980

New Total 9150

The breakup of longer patterns into 64 bytes chunks would be used to optimise the

search of longer pattern. This will require only minor changes in PMHA algorithm.

Before this is explained, pruning optimisation in False positive analyser module will be

explained which required minor algorithmic and architectural changes of PMHA.

Chapter 5. Design and Implementation 123

 0

 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480

Pattern Length

Before breakup
After breakup

Figure 5.26: A line graph showing the increase of patterns after breakup

5.4.2 Design

This design changes is carried out in PMHA (Section 5.3.2). These design changes

involved minor algorithmic and architectural changes mainly concerned improving the

performance of PMHA.

Algorithm Modification

In section 5.4.1, the problem with the pruning process in False positive analyser hardware

module of PMHA is illustrated. This highlights the need to come up with some kind of

fix in false positive analysis hardware module that can reduce the unnecessary number

of pattern comparison with brute-force searching. The algorithm fix is now explained.

Figure 5.27 shows flowchart of old and new pattern search algorithm.

The changes in the new algorithm can be notice in the fourth processing stage. A new

check is inserted at this stage to prune further the substring match before actual brute-

force comparison. This new check make sure that only those substring are compare

with patterns in hash table using brute force comparator whose RuleID from hash table

matched with the RuleID of the rules selected for evaluation in Rule Selection component

(Figure 5.15). The modified algorithm will now result only with little number of RuleIDs

as shown in figure 5.28.

Chapter 5. Design and Implementation 124

Pattern
Search

Hash computation
on substring

Check bloom filter bits of
corresponding hash values

Are all bits
set to 1?

Lookup Hashtable for
RuleID and pattern

presence

Is Rule ID and
Pattern found?

Compare pattern
with substring

Is pattern match ?

Rule ID

Record of Decision
(Rule ID)

Yes

Stop Search

No

Yes

Yes

No

No

Pattern
Search

Hash computation
on substring

Check bloom filter bits of
corresponding hash values

Are all bits
set to 1?

Lookup Hashtable for
RuleID and pattern

presence

Is Rule ID and
Pattern found?

Compare Rule ID in
Hashtable with RuleID

of selected rule

Is RuleID match?

Rule ID

Record of Decision
(Rule ID)

Yes

Stop Search

No

Yes

Yes

No

No

Compare pattern
with substring

Yes

Is pattern match ?

Yes

No

Old
Algorithm

New
Algorithm

Figure 5.27: Old and new Pattern Matching algorithms on FPGA

The new modified algorithm can now be made clear further with the help of following

example.

Example: Consider the Snort rule in figure 5.24. Suppose the second Snort rule

(RuleID:2) header matched with key packet header values and so selected to carry out

evaluation on packet. Let suppose that header options (tos:!4) check in IP packet header

also found the tos value other than 4. This means the second rule is declared a match for

header options evaluation and its RuleID (RuleID:2) is recorded. Now the remaining part

of rule evaluation which is a pattern search or payload options evaluation is carried out in

FPGA using Bloom filter. Suppose the packet payload is “abcdkillsushd688willfhfjhk10”

then packet payload search will find both “kill” and “will” substring programmed in a

Bloom filter. On finding the first substring “kill” in Bloom filter an additional check is

Chapter 5. Design and Implementation 125

Rule Selection

Rule Evaluation

Packet Payload
Check

Packet Header
Check

RESULT:

RuleID:23

RuleID:948

...

..

.

RuleID:10

RESULT:

RuleID:23

RuleID:948

...

..

.

RuleID:10

RESULT:

RuleID:23

RuleID:948

RuleID:21

RuleID:100

...

..

.

RuleID:10

Process Result

Figure 5.28: Rule selection and evaluation result with modified algorithm

carried out now in this stage to confirm if the patterns found in Bloom filter that has as-

sociated RuleID in hash table which matches with RuleID of selected rule for evaluation.

This comparison result will not match as the RuleID associated with “kill” is RuleID:1

and the search is carrying out for second rule RuleID:2. This means a straightforward

single clock cycle check has removed the need to compare substring with the pattern from

hash table using brute-force matching with comparator. For pattern “will” the RuleID

comparison would result a match. This time the pattern is fetched from hash table in

SDRAM and the brute force pattern matching of substring and pattern is performed.

The comparison in this case would result in a match and Snort RuleID:2 is recorded.

As both header options and payload options evaluation result output the same RuleID:2

then this rule is declared a match.

Architecture Modification

An extra pruning step is implemented in the False positive analyser hardware module.

The false positive analyser module is comprises of hash table lookup unit and a com-

parator unit (Figure 5.20). The hash table lookup unit is the module in which the actual

architectural changes are made. This is carried out with a simple HandelC code snip-

pet which compares the RuleID from hash table with the RuleID of the rule selected

Chapter 5. Design and Implementation 126

in the rule selection component. Figure 5.29 shows this architectural modification in

which hash table lookup unit now has a RuleID comparator unit to carry the RuleIDs

comparison which takes only 1 clock cycle.

SRAM

Hashtable (SDRAM)

Comparator

Packet
Data

Pattern
Hashtable

Lookup Unit

False Positive Analyser

Match
Flag

100

287 291

23

PAT

55

MaT

223

FAt

RuleID &
PatternHash value

(address)

abc10bMat

RuleID

Pattern

Figure 5.29: Modified false positive analyser with Hash table lookup unit and Com-
parator circuit

Long Pattern

To optimise the pattern matching of total 706 longer patterns (> 64 bytes) a simple

solution is proposed instead of different algorithm. Any new algorithm to deal separately

with longer pattern would make system more complicated as well as it’s implementation

would require more FPGA resources (area/space) on current development board which

may exhaust all FPGA resources and does not synthesize the full design on FPGA.

Therefore, an extension to the current PMHA (Section 5.3) seems appropriate solution to

deal efficiently with larger pattern. This is achieved by breaking the patterns into smaller

chunks and searches them using the same pattern matching algorithm accordingly. This

would require only minor changes in PMHA algorithm which now explained.

Algorithm

The breakup of pattern will not only increase the number of patterns but also slightly

increases the Bloom filter false positive rate. However, the pattern breakup would result

in increase of the overall throughput of the PMHA so considered and accepted to extend

the pattern search algorithm to search differently the longer patterns.

Chapter 5. Design and Implementation 127

PMHA remains unmodified. The main changes were carried out in pattern search algo-

rithm and hash table structure for dealing with longer pattern. Figure 5.30 shows the

flowchart of the algorithm that deals efficiently with longer patterns.

Pattern Search

Hash computation
on substring

Check bloom filter bits of
corresponding hash values

Are all bits
set to 1?

Lookup Hashtable for
RuleID and pattern

presence

Is Rule ID and
Pattern found?

Compare Rule ID in
Hashtable with RuleID

of selected rule

Is RuleID match?

Rule ID

Record of Decision
(Rule ID)

Yes

Stop Search

No

Yes

Yes

No

No

Compare pattern
with substring

Yes

Is pattern match?

Yes

No

Is part of substring
bytes left?

No

Yes

Figure 5.30: Pattern matching algorithm flowchart for longer (> 64 bytes) pattern

The pattern matching algorithm is slightly modified to deal with longer pattern search

in a packet differently. The modified algorithm makes sure to compute the hash value

of up to 64 bytes pattern. Pattern search longer than 64 bytes now search in chunks.

Chapter 5. Design and Implementation 128

An additional check is added to algorithm before declaring a substring search result.

This check makes sure that all chunks are processed before deciding the match result.

If during search any chunk does not found programmed in Bloom filter or declared false

positive in false positive analyser hardware module then the further chunks or remaining

bytes of substring is not search anymore.

The modified algorithm searches the longer pattern more quickly and also consumes

lesser number of clock cycles. This modification and pruning helped to increase the

overall throughput of pattern search in PMHA (Section 6.4)

5.5 Chapter Summary

This chapter began with the description of novel SB-NIDS prototype architecture or

MMU-Snort I which is designed and implemented by porting Snort (ver. 2.6.1.4) SB-

NIDS software package on hybrid HandelC-MicroBlaze based embedded processing plat-

form. This was followed by the description of the PMHA which is the most computation-

ally intensive operation of SB-NIDS. This novel PMHA design is based on Bloom filter

search approach and first time ever implemented with Snort application specific knowl-

edge and with efficient hash function computation technique. Unlike other Snort Rule

Processing Systems (Section 3.5.3), this PMHA is integrated with the Snort SB-NIDS

prototype on hybrid HandelC-MicroBlaze embedded processing platform to perform a

complete rule processing which result in MMU-SnortII prototype. This hardware ac-

celerator has been implemented with the largest number of patterns (7876) from Snort

rules and compactly stores them in FPGA block RAM (Section 3.5.3). Finally, a further

algorithmic and architectural improvement of PMHA is presented to improve pattern

pruning process and to add support to efficiently search of longer patterns (> 64 bytes).

Chapter 6

Results and Analysis

The basic goal of any software system testing and evaluation is to ensure that the

system works as per the functional requirements as well as meeting other requirements

(Section 1.3). Therefore, SB-NIDS prototype and its hardware accelerators are evaluated

to identify any improvements and issues in processing. The test results are also compared

with the state of the art systems to verify the improvements of the proposed design.

First the functional test is performed to verify error free execution of MMU-Snort I or

modified Snort port on hybrid HandelC-MicroBlaze embedded processing platform (Sec-

tion 5.2). Then the performance test is performed which involved comparing MicroBlaze

CPU cycles executing Snort port with general purpose processor CPU cycles executing

the same version of Snort.

Performance test of MMU-Snort II or Pattern Matching Hardware Accelerator (PMHA)

(Section 5.3) and MMU-Snort III (Section 6.4) is performed to determine the improve-

ment. This is carried out by obtaining the attack patterns memory space amount,

determining the effect of different hash functions and packet analysis throughput. The

memory space result and throughput results are compared with the state of the art

pattern matching systems (Section 6.4.2).

6.1 Chapter Roadmap

The rest of the chapter is outlined as follows:

• In section 6.2, the experimental testbed network topology is explained which is

used for the testing of the prototype SB-NIDS and hardware accelerators.

129

Chapter 6. Testing and Evaluation 130

• In section 6.3, the SB-NIDS prototype or MMU-Snort I testing and evaluation

results are presented. The prototype solution is tested for functional and per-

formance test. The functional test is carried out to determine the correction

functionality. The performance test is carried out to identify the performance

improvement. This is carried out by counting CPU clock cycles. In the end the

FPGA synthesis results summary is presented.

• In final section 6.4, PMHA or MMU-Snort II and MMU-Snort III performance test-

ing and evaluation results are presented. The performance test involved memory

requirement test, throughput test, false positive rate test and FPGA design/space

test. Finally, the throughput and memory test is compared with state of the art

pattern matching solutions.

6.2 Experimental Testbed

The experimental testbed was prepared to carry out the system testing. This test

network consists of two PCs and RC300 board connected together as shown in figure 6.1.

PC1
TCPReplay

PC2
Snort 2.6.1.5

RC300
Snort 2.6.1.5

Figure 6.1: Topology of experimental test network

PC1 with Debian Linux 2.6.18 was installed with the TCPreplay (version 3.3.2) traffic

generator software. TCPreplay reads logged packet from a network trace file (tcpdump

format) and sends the packet through an Ethernet interface. PC2 with Ubuntu Linux

8.04 (2.6.25) was installed with Snort version 2.6.1.5 and the Performance Application

Programming Interface (PAPI) [118] in order to obtain an accurate processor execution

cycle count. The prototype system based on Snort version 2.6.1.5 implemented on

an RC300 board was also connected to the test bed. On MicroBlaze, an execution

cycles count is obtained using method (XTmrCtr GetValue (TmrInstance, TIMER ID))

defined in xtmrctr.h header files. The test network is a 100MB subnet that is private

and isolated from all other networks. The system is tested throughput against network

trace files from MIT Lincoln Lab’s 1998 DARPA offline Intrusion Detection evaluation

and from shmoo group capture the flag project [107, 119].

Chapter 6. Testing and Evaluation 131

6.3 Testing and Evaluation of Snort Port (MMU-Snort I)

First the MMU-Snort I functional test is performed and then the performance test. The

testing environment for both test is the same as shown in figure 6.1.

6.3.1 Functional Test

The functional testing was performed in two phases with two different configurations.

In the first phase, both systems were configured with the same Preprocessor compo-

nents (frag2, Stream4, Telnet, DNS and sfPortscan) and number of rules. They were

then tested twice against two different network trace files from MIT Lincoln Lab’s 1998

DARPA offline Intrusion Detection evaluation. In the second phase, again both systems

were tested twice with the same network trace file but each time configured with different

parameters. The first time both were configured for 5 Preprocessor components (frag2,

Stream4, DNS, Telnet, and HTTP Inspect) and 5320 rules. On the second time both

systems were configured for 6 Preprocessor components (frag2, Stream4, sfPortscan,

FTP, Telnet, DNS) and 4747 different rules.

For both phases of experiments the detection result summary (Protocols breakdown)

and alert messages generated by both systems are compared. It was observed that

both NIDS produced the same alert messages (Rule Security ID (SID)). The detection

summary also demonstrates that the types of packets analysed and number of alerts

generated were identical. Thus, the prototype passes the operational test.

6.3.2 Performance Test

Performance test helped to determine exactly the computationally significant part of

Snort source code as well as help in determining the packet analysis speed improvements.

This is actually determined by CPU cycles count test.

CPU Cycles count

MicroBlaze cycle count executing Snort port on RC300 board and PC with general

purpose processor executing original Snort package is obtained. Both systems were

configured with the same parameters and number of rules.

The system was tested against three different network trace files. Two of these files are

from MIT Lincoln Lab’s 1998 DARPA offline Intrusion Detection evaluation and one

Chapter 6. Testing and Evaluation 132

from shmoo group capture the flag project. Results obtained on both systems for all

three data files are shown in figure 6.2.

Figure 6.2: Snort CPU cycles comparison

The average CPU cycle count on the PC per packet is much higher than prototyped

Snort system on RC300 board. This is mainly because of differences in how packets

are captured due to the close coupling of the network interface on the FPGA board to

the MicroBlaze core and also due to some restructuring in the design. Another main

reason of lower clock cycle in Snort port on RC300 is the differences of prototype system

architecture. For example, MicroBlaze method OPBREADUINT32() to read 32 bit

data from SRAM require only 16 clock cycles over OPB Bus and MicroBlaze method

OPBWRITEUINT32() to write 32 bit data to SRAM requires only 19 clock cycles over

OPB Bus.

Lost CPU cycles

The above test presents the average CPU cycles consumed for packet analysis on both

architectures with three different data files. In order to identify the Snort code sections

that consume computationally significant portions of CPU cycles methods related to

packet capture, pattern matching, packet classification and packet decoding on both

architectures are instrumented. This experiment is conducted only for DARPA data file

Chapter 6. Testing and Evaluation 133

1 6.2. Figure 6.3 and 6.4 shows the average number of CPU cycles required per packet

for these main methods that usedSnortt for packet analysis.

Figure 6.3: CPU cycles count of Snort on PC

In these results the only major difference in the number of CPU cycles was noticed for

packet capture method. Packet capturing on PC requires copying of packet from kernel

memory to a user-level application buffer that normally consumes large number of CPU

cycles due to buffering and user-kernel protection mode switching. In contrast to the PC,

the packet capture method of prototype system requires only 1 clock cycle to capture

a packet byte from the Gigabit Ethernet interface and another cycle to store that byte

in SRAM. The number of CPU cycles required accessing SRAM from MicroBlaze over

the OPB Bus and to copy that byte to Snort application buffer on average requires

accurately 16 clock cycles. This may vary depending on the number of peripherals on

OPB bus.

It also observed that other methods on both architectures do not show any major differ-

ence in computational requirement in terms of the number of CPU cycles. However, it

is clear from results that the number of CPU cycles consumed for the same methods on

MicroBlaze is slightly lesser in number than that of Snort on PC. It is highly likely that

this slight different is due to differences in their hardware architectures as MicroBlaze

soft processor core on RC300 board is executing on tightly coupled environment where

Chapter 6. Testing and Evaluation 134

Figure 6.4: CPU cycles count of Snort on MicroBlaze

memory accesses only require tens of cycles. In contrast Snort on Intel Pentium platform

takes hundreds of CPU cycles just for single memory access.

Summaries of synthesis and place and route reports are presented in order to indicate

the utilisation of the FPGA device and the potential hardware still available for the

provision of functional units. The synthesis results obtained for final design on a clock

speed of 50 MHz are in figure 6.5.

Device Utilization Summary:
Number of DCMs: 2 out of 12 16%
Number of External IOBs: 491 out of 824 59%
Number of MULT18X18s: 7 out of 144 4%
Number of Block RAM: 41 out of 144 28%
Number of occupied SLICES: 4092 out of 33792 14%

Figure 6.5: Synthesis result on Xilinx XC2V6000 -4 Virtex-II FPGA

This information shows that the current prototype on the FPGA only occupy 15% of

FPGA area, so more hardware such as pattern matching were easily fitted easily into

this design.

Chapter 6. Testing and Evaluation 135

6.4 Testing and Evaluation of Pattern Matching Hardware

Accelerator (MMU-Snort II and MMU-Snort III)

Only the performance test is carried out to determine the improvements of PMHA

developed for Snort-based SB-NIDS prototype or MMU-Snort I on RC300 board.

6.4.1 Performance Test

The performance test involved memory test, throughput test and false positive test. In

memory test the pattern memory space requirement is obtained and presented which

later also compared with state of the art solution (Section 6.4.2). The throughput test

is performed to identify the PMHA performance with/without application specific infor-

mation. This test result is also compared with state of the art solutions (Section 6.4.2).

False positive test involved determining false positive rate of Bloom filter. This included

measuring the hash function effect on actual false positive rate. Finally, FPGA design

space synthesis result is presented that shows the effect of efficient implementation of

hash function technique to compute large number of hash function.

Memory Test

The memory is the main component of the PMHA. Hence, it influences the acceler-

ator size and limits the throughput. Storing compactly all attack patterns is crucial

which can be achieved by either memory efficient data structure or by compression al-

gorithm. Instead of designing any new memory efficient algorithm a Bloom filter based

pattern matching filtering approach is used which results in significantly less memory

requirement as shown in the figure 6.6.

The Bloom filter approach resulted in compactly storing all 7876 patterns unique attack

pattern in just 0.0302 MB (247.50 Kbits) of FPGA block RAM (BRAM). So a large

number of patterns can be checked in packets with low latency access to FPGA local

memory which would increase the overall throughput of the system. In comparison to

the state machine based algorithm such as variants of Aho-Corasick that requires huge

amount of runtime memory. This occurs as their memory requirement increases linearly

with the number of characters in pattern set as shown in the figure 6.7.

This graph shows the linear increase of memory requirement of Aho-Corasick state

machine with the number of characters in pattern database. As the new unique pattern

added to the Snort database then it will result in increase of Aho-Corasick state machine

memory size and will also increase the pattern search time.

Chapter 6. Testing and Evaluation 136

Figure 6.6: Aho-Corasick state machine and pattern matching hardware accelerator
memory requirements

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 30000 60000 90000 120000 150000 180000 210000

B
lo

c
k
 R

A
M

 S
iz

e
 (

M
B

)

No. of Characters

Figure 6.7: Aho-Corasick (ac-standard) state machine memory size (MB) for different
character count

Clock Cycle count of MMU-Snort II

This test evaluates the PMHA performance in terms of number of clock cycles. The

clock cycles count results are then used to compute the throughput of the PMHA. This

system operates at 50 MHz clock frequency and tested with data from MIT Lincoln Lab

website and shmoo group capture the flag website. Table 6.1 shows the number of clock

cycles consumed by PMHA.

It is important to understand that the clock cycles count is heavily dependent on the

Chapter 6. Testing and Evaluation 137

Table 6.1: Clock cycle count of Pattern Matching Hardware Accelerator (PMHA)

Pattern Size
Total

Patterns
Packet
Trace

Bytes
Inspected

Clock Cycles
(Without Rule

Options)

Clock Cycles
(With Rule
Options)

< 16 bytes 3232
10 MBytes 597032 171683 148885

15 MBytes 980590 326902 277148

16 to 31 bytes 2590
27 MBytes 656432 193815 172745

30 MBytes 891343 237330 222835

32 to 64 bytes 1348
22 MBytes 234143 79323 71281

47 MBytes 959121 413232 361932

> 64 Bytes 706
62 MBytes 414010 162859 153337

35 MBytes 192121 80457 76848

Figure 6.8: PMHA throughput at 50 MHz for the test results in Table 6.1

nature of test data which may have high number of patterns with variable length. Due

to this reason the PMHA is tested each time for variable length patterns in order to

get the accurate performance results. From the test results it is observed that for

shorter size patterns (<16 bytes) search pattern matching algorithm consumes lesser

number of clock cycles. However, the performance of pattern matching degraded for

the longer size pattern (>64 bytes) search. The main reason of higher number of clock

cycle for longer patterns is the hash value computation and false positive pruning which

takes longer time for longer length pattern. This test result also revealed the effect of

application specific knowledge (Snort rule options). The inclusion of these Snort rule

Chapter 6. Testing and Evaluation 138

options specifies exactly the number of bytes of packet payload to search for patterns

instead of the whole packet payload. This means less number of hash computation,

Bloom filter lookup and false positive. The direct effect of all theses are lower number

of clock cycles and hence better throughput. Figure 6.8 shows the effective throughput

obtained for the clock cycles in table 6.1.

Pattern matching hardware throughput test results shows the best effective throughput

1.49 Gbps and the lowest throughput of 0.93 Gbps when PMHA operating at 50 MHz

clock frequency. Also it can be seen clearly that the PMHA with Snort rule options pro-

vide higher throughput pattern matching. Another performance test is carried out with

two MIT Lincoln lab data file and two defcon date file. This time the system is config-

ured/programmed with all 7876 Snort patterns and with rule options. Figure 6.9 shows

the throughput of pattern matching hardware operating at 50 MHz clock frequency.

Figure 6.9: Pattern Matching Hardware Accelerator (PMHA) throughput with total
7876 patterns

It can be notice that when the PMHA programmed with all 7876 Snort pattern and

with rule options provide much better throughput. The best throughput in this case is

obtained as 1.72 Gbps.

Clock Cycle count of MMU-Snort III

Another clock cycle count test is carried out to evaluate the performance of optimised

PMHA or MMU-Snort II (Section 5.4). This optimised hardware accelerator more effi-

ciently prune the false positive results and search the longer size patterns (> 64 bytes).

Chapter 6. Testing and Evaluation 139

Table 6.2 contains the comparison of the clock cycle count of pattern matching hardware

before optimisation (MMU-Snort II) and after optimisation (MMU-Snort III).

Table 6.2: Comparison of clock cycle count of PMHA before and after optimisation

Pattern Size
Total

Patterns
Packet
Trace

Bytes
Inspected

Clock Cycles
(Unoptimised)

Clock Cycles
(Optimised)

< 16 bytes 3232
10 MBytes 597032 148885 135193

15 MBytes 980590 277148 256932

16 to 31 bytes 2590
27 MBytes 656432 172745 169009

30 MBytes 891343 222835 200017

32 to 64 bytes 1348
22 MBytes 234143 304169 261121

47 MBytes 959121 217608 184678

It is observed from the test result that the MMU-Snort III improve the overall result

by searching variable size patterns with lesser number of clock cycles. This is mainly

due to efficient false positive pruning and faster optimised pattern matching for longer

size patterns. Throughput calculated based on these clock cycles clearly shows the

performance improvement as shown in figure 6.10.

Figure 6.10: PMHA throughput comparison before and after optimisation

There are not anymore longer size pattern (> 64 bytes) in this test as these patterns

has broken. Overall the throughput of PMHA shows the better performance for every

size patterns. Another test is carried to measure the throughput of pattern matching

Chapter 6. Testing and Evaluation 140

hardware after optimisation with total of 9150 Snort patterns which increases as a re-

sult of pattern breakup. This throughput is compared with the throughput obtained

previously with 7876 patterns as shown in figure 6.11.

Figure 6.11: PMHA throughput comparison before and after optimisation

Even with the increase in number of pattern and false positive rate the optimised PMHA

provide better pattern matching throughput. The best throughput observed in the

optimised PMHA for all 9150 Snort pattern is 1.85 Gbps.

False Positive Test

Two hash functions MD5 and XOR-based hardware hash function effect on Bloom filter

false positive rate are compared. MD5 is picked up for comparison as it produced well

distributed hash value. XOR-based hardware hash function is implemented in PMHA.

In order to test the effect of two different hash function on false positive rate a test

program is written in JAVA using jdk 1.6.0. The test program is executed on a computer

cluster at Manchester Metropolitan University for 48 hours. There were total of 7876

(n=7876) distinct patterns used to obtained false positive rate for different Bloom filter

sizes. Bloom filter sizes in this test range from 2 KiloBytes to 10 KiloBytes (m=16384

to m=81920 number of bits). For each Bloom filter, the test program randomly selected

the 90 % of patterns out of 7876 to insert/program into Bloom filters, and then the test

Chapter 6. Testing and Evaluation 141

program query the Bloom filters for the rest of 10 % patterns. This process is repeated

for 48 hours for each Bloom filter size for both hash functions. The final result shows

the comparison of false positive rate of each Bloom filter vector for both hash functions

and predicted false positive rate calculated with equation 5.1. Figure 6.12 shows the

result summary.

2K 3K 4K 5K 6K 7K 8K 9K 10K
0

5

10

15

20

25

30

35

Bloom Filter Size (Kilo Bytes)

F
al

se
 P

os
iti

ve
 (

P
er

ce
nt

ag
e)

Predicted False Positive
MD5−Hash False Positive
XOR−AND Hash False Positive

Figure 6.12: False Positive vs Bloom filter size

For each Bloom filter query, the XOR-based hash function produced lower false positive

rates than MD5 hash function. Also XOR-based hash function produced better false

positive rate than predicted false positive rate with the exception when Bloom filter size

is set to 3 Kilobytes.

Another false positive test is carried out to analyse the practical false positive rate of

Bloom filter lookup in pattern matching hardware. The 8 KiloBytes (m=65535 bits)

Bloom filter programmed with 7876 number of patterns (n=7876) with a predicted false

positive rate of 1.8390 % calculated from equation 5.1. Table 6.3 shows the false positive

rate obtained for different network trace files.

Table 6.3: False positive rate of PMHA (MMU-SnortII) with 7876 patterns

Packet Trace Total Data
Pattern
Lookup

False
Positives

False Posi-
tive Rate

MIT Lincoln Lab 50 MBytes 40050 537 1.3408 %

MIT Lincoln Lab 100 MBytes 52541 793 1.5092 %

MIT Lincoln Lab 250 MBytes 72012 1116 1.5497 %

Defcon 20 MBytes 20150 282 1.3995 %

Defcon 12 MBytes 21020 336 1.5984 %

The false positive rate obtained from the test is lower and better than predicted false

positive rate. The best case false positive rate is 1.34 % which is approximately 1.37

times better than predicted false positive rate.

Chapter 6. Testing and Evaluation 142

The Snort pattern number has increased due to the pattern breakup so the optimised

PMHA is also tested for practical false positive rate of Bloom filter. The optimised

pattern matching hardware acceleration has 8 KiloBytes (m=65535 bits) Bloom filter

programmed with 9150 number of patterns (n=9150) with a predicted false positive

rate of 3.1667 % calculated from equation 5.1. Table 6.3 shows the false positive rate

obtained for different network trace files.

Table 6.4: False positive rate of PMHA (MMU-Snort III) with 9150 patterns

Packet Trace Total Data
Pattern
Lookup

False
Positives

False Posi-
tive Rate

MIT Lincoln Lab 50 MBytes 40050 1069 2.6691 %

MIT Lincoln Lab 100 MBytes 52541 1508 2.8701 %

MIT Lincoln Lab 250 MBytes 72012 2102 2.9189 %

Defcon 20 MBytes 20150 556 2.7593 %

Defcon 12 MBytes 21020 621 2.9543 %

The false positive rate obtained from the test is lower and better than predicted false

positive rate. The best case false positive rate is 2.66 % which is approximately 1.18

times better than predicted false positive rate.

FPGA Synthesis Results

Six pipelined hash functions are implemented separately to identify the FPGA design

space requirement for computing six hash values in parallel. Summary of the FPGA

synthesis results is shown in figure 6.13.

Device Utilisation Summary:
Number of DCMs: 3 out of 12 25%
Number of External IOBs: 324 out of 824 39%
Number of MULTI8X18s: 7 out of 144 4%
Number of Block RAM: 38 out of 144 26%
Number of occupied SLICES: 13234 out of 33792 39%

Figure 6.13: Synthesis result of six hash module on Xilinx XC2V6000 -4 Virtex-II
FPGA

The synthesis result of implementation which can compute N number of hash function

using only two hash is shown in figure 6.14.

This implementation has two hardware hash modules and one 2-to-N hash modules

(Section 5.3.3) to generate N number of hash values using two hash values. The 2-to-N

hash module is implemented in the PMHA to reduce the FPGA design space requirement

of hash function modules. This implementation use less block RAM and occupy less than

17 % of FPGA slices than the six hash module implementation. The final synthesis

results of PMHA integrated with Snort port on RC300 is shown in figure 6.15.

Chapter 6. Testing and Evaluation 143

Device Utilisation Summary:
Number of DCMs: 2 out of 12 16%
Number of External IOBs: 290 out of 824 35%
Number of MULTI8X18s: 7 out of 144 4%
Number of Block RAM: 24 out of 144 16%
Number of occupied SLICES: 7591 out of 33792 22%

Figure 6.14: Synthesis result of two hash module and 2-to-N hash module on Xilinx
XC2V6000 -4 Virtex-II FPGA

Device Utilisation Summary:
Number of DCMs: 6 out of 12 50%
Number of External IOBs: 523 out of 824 63%
Number of MULTI8X18s: 7 out of 144 4%
Number of Block RAM: 121 out of 144 84%
Number of occupied SLICES: 27120 out of 33792 80%

Figure 6.15: Synthesis result of full SB-NIDS prototype (MMU-Snort III) on Xilinx
XC2V6000 -4 Virtex-II FPGA

This synthesis result is obtained for a full prototype system which consists of PMHA,

packet capture hardware accelerator and Decision Engine hardware accelerator inte-

grated with Snort port on RC300 board. This information shows that the full prototype

on the FPGA occupy 80 % of FPGA area, so more hardware such as stateful packet

inspection hardware accelerator can still fitted into this design.

6.4.2 Comparison with Previous Work

In comparison to other state of the art this PMHA is memory efficient as it provides high

speed pattern lookup in Bloom filter programmed in FPGA BRAM. This comparison is

shown in table 6.5.

Table 6.5: Pattern Matching Hardware Accelerator (PMHA) Memory Size (Kbits)

Related Work
Snort

Patterns
FPGA

BRAM Size
(Kbits)

BRAM Used
(Kbits)

Gokhale et al [87] 1500-2000
Xilinx Virtex

1000 XCV1000
128 23.04

Sarang et al [81] 1434
Xilinx Virtex
XCV2000E

640 140

Attig & Lockwood [94] 2464
Xilinx Virtex
XCV2000E

640 568

PMHA
(MMU-Snort III)

9150
Xilinx Virtex-II

XC2V6000
324 180

The performance of pattern matching hardware is also compared with state of the art

pattern matching hardware solution. The performance is compared in terms of through-

put and design space/area of FPGA. Table 6.6 shows the throughput of different state of

Chapter 6. Testing and Evaluation 144

the pattern matching hardware and pattern matching hardware architecture on RC300

board.

Table 6.6: Pattern matching hardware architecture on FPGA

Related Work Snort Patterns Throughput

Gokhale et al [87] 1500-2000 2.0 Gbps

Yusuf et al [85] 74 2.8 Gbps

Attig & Lockwood [94] 2464 2.5 Gbps

PMHA (MMU-Snort III) 9150 1.85 Gbps

The throughput recorded for the proposed pattern matching hardware on RC300 board

is lower that other similar state of the art pattern matching hardware architecture. How-

ever, the lower throughout is due to operating frequency of 50 MHz which is maximum

possible achievable with MicroBlaze on RC300 board. Another reason of lower through-

put is the number of rules the system is tested with which in compare to other systems

is much higher than other pattern matching hardware architecture.

6.5 Chapter Summary

This chapter presented the detail testing and evaluation of the SB-NIDS prototype and

hardware accelerator. This chapter began with the introduction of testbed network

topology. This is followed by the testing and evaluation of novel SB-NIDS prototype.

The testing and evaluation involved functional and performance test. The functional test

is carried out to make sure the SB-NIDS work error free. The performance test identifies

the bottleneck and improvement of porting a system on high performance computing

platform. Finally, the PMHA testing and evaluation is presented which involved mainly

performance testing and comparison with state of the art pattern matching hardware

solution.

Chapter 7

Conclusion and Future Work

The objective of this thesis is the optimisation of Signature-based Network Intrusion De-

tection System (SB-NIDS) packet analysis speed using the high performance embedded

processing platform.

7.1 Chapter Summary

Low speed packet analysis of SB-NIDS becomes bottleneck on high data rate network.

Due to this reason various SB-NIDS solutions has been proposed. Some of these so-

lutions use high performance 6processing technology to optimise the SB-NIDS. These

technologies mainly include cluster of processors and embedded processing platforms.

Cluster of processors are expensive in terms of cost. Their maintenance cost are also

very high. In comparison embedded processing technologies are compact size. They of-

fer high performance processing and easy to deploy for network monitoring and surveil-

lance. Their maintenance cost is also lower in comparison to cluster of processors.

Therefore, the embedded processing technology is viable and so chosen to develop and

optimise SB-NIDS. The embedded technology used is FPFA-MicroBlaze based hybrid

hardware-software processing platform. It is tightly coupled hardware architecture with

two gigabit Ethernet network interfaces. It also provide ways to offload processing from

processor to hardware and has multiple processing cores. Due to these features it is an

ideal platform for SB-NIDS prototyping and optimisation which is the subject of this

thesis research. In summary, Introduction chapter 1 introduces this research, contains

the problem statement, aims and objectives, outcome and contribution of this research.

Background chapter 2, is the study of the core concepts related to this research. This

includes an overview of network security issues and network defence technologies. The

145

Chapter 7. Conclusion and Future Work 146

main emphasise is on SB-NIDS network defence technology to highlight limitations and

issues concerning this technology which is the main motivation of this research.

Survey and Related Work chapter 3 is the detail survey of the related work to this

thesis. This survey is organised into two parts: i) High performance SB-NIDS architec-

ture and ii) Pattern matching for SB-NIDS. The first part is dedicated to the state of

the art SB-NIDS solutions proposed for performing high speed packet analysis. These

state of the art SB-NIDS solutions are implemented using cluster of processors and em-

bedded processing hardware architecture. The conclusion of this part of survey found

that SB-NIDS implementation using embedded processing platforms is viable solution

as compare to cluster of processors. They are lower cost and offer ease of deployment,

maintenance and further development. The second part is dedicated to state of the

art pattern matching algorithms and hardware architecture for SB-NIDS. The state of

the art pattern matching is logically organised into three categories: i) SB-NIDS spe-

cific pattern matching, ii) packet filtering technique and iii) High performance pattern

matching hardware architecture. SB-NIDS specific pattern matching algorithms are hy-

brid pattern matching algorithms developed by combining state machine and skip table

search technique. Packet filtering techniques are algorithms for filtering as much net-

work traffic as possible in order to reduce the amount of traffic to be sent for analysis in

SB-NIDS. Pattern matching is implemented using high performance embedded process-

ing architecture. Two high performance processing platforms used to implement pattern

matching are Network processors and Field Programmable Gate Arrays (FPGAs). In

all implementations FPGA based designs provide better and high throughout pattern

matching solutions. The average throughput observed is well over 1.0 Gbps.

Proposed System Architecture chapter 4 contains the study to identify the development

challenges and requirements. To pursue this effort SB-NIDS software package Snort and

high performance embedded processing hardware architecture HandelC-MicroBlaze is

studied and discussed. This study helped to understand the SB-NIDS internal working

and processing architecture. It also help identifying performance issue and formulating

plan for SB-NIDS development and performance optimisation as explained in chapter 5.

Design and Implementation chapter 5 contains the detail system design and imple-

mentation which is carried out in three stages resulted in three system prototypes: i)

Manchester Metropolitan University (MMU-Snort I), ii) MMU-Snort II and iii) MMU-

Snort III. MMU-Snort I is the novel SB-NIDS prototype based on Snort developed on

Mentor Graphics RC300 board. The prototyping involved Snort internal architecture

restructuring and mapping/porting to HandelC-MicroBlaze based architecture. This

prototyped executes only on single MicroBlaze core with two HandelC hardware ac-

celerator units: Packet Capture Hardware Accelerator (PCHA) and Decision Engine

Chapter 7. Conclusion and Future Work 147

Hardware Accelerator (DEHA). PCHA is the high speed and low latency packet cap-

turing facility that captures packets directly from one of the gigabit Ethernet interface

on RC300 board. DEHA is the replacement of Snort’s Decision Engine component. Its

job is to send the detection results through second gigabit Ethernet interface on RC300

board for reporting to Network Administrator. MMU-Snort I is the first ever such

SB-NIDS that utilises hybrid hardware-software embedded processing platform power.

It is faster when performance is compared with the Snort on general purpose proces-

sor. MMU-Snort II is the Pattern Matching Hardware Accelerator (PMHA). PMHA

is implemented with Bloom filter based pattern search approach. It is improved and

better pattern search algorithm design than other Bloom filter based pattern matching

implementations. PMHA novel features are integrated pattern matching hardware with

Snort port on MicroBlaze, compact storage of largest number of attack patterns (9150

patterns) in FPGA local memory, and lower number of pattern lookup in Bloom filter

achieved by using Snort application specific knowledge (Snort rule options). MMU-

Snort III is the PMHA optimised and extended version. This optimisation involved

an algorithmic and architectural improvement for efficient pattern pruning and faster

longer size patterns (> 64 bytes) search. Efficient patterns pruning technique is achieved

by utilising Snort attack rules unique identification number (Rule ID). Using Rule ID

for pattern pruning lowers the number of pattern comparisons and resulted in faster

pruning. For faster longer size pattern (> 64 bytes) search, all over 64 bytes pattern

is broken down. If the first part of the longer pattern is match with packet data after

comparing using pattern comparator then the second part is checked in Bloom filter,

otherwise the search is stop. Efficient pruning and faster longer pattern search result

in increase of pattern matching throughput. Finally, the testing of all prototypes are

carried out which is explained in Results and Analysis chapter 7.

Results and Analysis chapter 7 contains the testing and evaluation of all three pro-

totypes. MMU-Snort I is tested with publicly available test data (MIT Lincoln Lab

and Defcon Shmoo group) to identify any functional issues and performance improve-

ment. Functional test results showed the correction detection result of network packet

analysis. The performance result of MMU-Snort I on hybrid hardware-software embed-

ded processing platform is compared with the Snort performance on general purpose

processor on personal computer. It was concluded that Snort port on RC300 board

(MMU-Snort I) performance is 1.7 times better than original unmodified Snort software

package on general purpose processor. This difference is due to the tightly coupled

hardware architecture of embedded processing platform. Also PCHA and DEHA also

improved the overall speed of the packet analysis speed. The test results also indicated

the computationally intensive operations of Snort. These include pattern matching algo-

rithm, Stateful Packet Inspection (SPI) and packet classification. MMU-Snort II which

Chapter 7. Conclusion and Future Work 148

is the PMHA integrated with MMU-Snort I is tested with publicly available test data to

identify performance improvement. The test results showed that at 50 MHz operating

frequency the highest and lowest throughput of 1.72 Gbps and 1.23 Gbps respectively

when 7876 Snort attack pattern is searched in packet. Another throughput test for

varying length patterns indicated the lower throughput for pattern matching for longer

size pattern (> 64 bytes). The throughout dropped to 0.86 Gbps in this case. Fur-

ther throughput test is conducted to evaluate application specific knowledge inclusion

in search algorithm. The throughout result clearly indicated better results for pattern

matching algorithm with application specific knowledge (Snort rule options) which is one

of the major contribution of this research. The false positive test results also showed

the better performance of MMU-Snort II. The best false positive rate found was 1.34 %

which is 1.37 times lower than predicted rate of 1.83 %. MMU-Snort III which is the

final prototype with optimised PMHA is also evaluated with some series of test. The

optimised PMHA offers efficient pattern pruning and faster longer pattern search. The

throughput results with 9150 attack patterns at 50 MHz operating frequency shows the

increase in best case throughout from 1.72 Gbps to 1.85 Gbps. The lowest case through-

put also increased from 1.23 Gbps to 1.41 Gbps. This PMHA also supports highest

number of 9150 Snort attack patterns. All these patterns are compactly stored for quick

lookup in 8 KB (64 Kbits) of FPGA Block Random Access Memory (BRAM). Even

with such a high number of attacks pattern FPGA synthesis result summary of PMHA

shows only 180 Kbits of FPGA BRAM usage. The final prototype MMU-Snort III

FPGA synthesis result summary shows the whole design occupy 80 % of FPGA logic

resources and 84 % of BRAM (272 Kbits). MMU-Snort III comprises of PMHA, PCHA

and DEHA integrated with Snort port executing on MicroBlaze. The test results also

compared with the closely related work and appeared to have lower performance in

terms of throughput. Main reason is the lower operating frequency achievable on this

grade of FPGA with MicroBlaze. In comparison the FPGA used for pattern matching

implementation in closely related work are higher grade and so support higher frequency

and pattern matching throughput. Another reasons for lower operating frequency is the

HandelC hardware description language. It requires extensive source code level refine-

ment to reduce the hardware design complexity and to synthesise efficiently at higher

operating frequency. In summary, HandelC is slower than other lower level Hardware

description language like Verilog. It also demands extensive and time consuming source

code refinement in order to achieve modest operating frequency.

Chapter 7. Conclusion and Future Work 149

7.2 Overall Conclusion

The primary objective of this thesis is the development of optimised SB-NIDS design

which has been achieved and advanced the state of the art. The novel MMU-Snort III

developed on tightly coupled hybrid hardware-software embedded processing architec-

ture is the final version of SB-NIDS. It consists of three HandelC hardware accelerators:

PCHA, DEHA, PMHA, while the rest of the Snort port executes on single MicroBlaze

core. PCHA provides low latency and fast packet capturing facility. DEHA is the lighter

version and replacement of Snort’s Decision Engine component which provides fast in-

trusion analysis result reporting. PMHA is the high speed pattern matching solution

for faster attack pattern search in packet. Series of test results shows improved overall

performance indicating higher throughput and lower false positive rate. However, when

throughput compared with closely related state of the art work it is lower than most

them, but offers well above and one of the highest number of 9150 attack pattern search

which also compactly stored in FPGA BRAM. FPGA device utilisation summary shows

the MMU-Snort III prototype utilised 80 % of FPGA logic resources and 84 % of FPGA

BRAM leaving very limited resources for further optimisation.

Let suppose MMU-Snort III design has migrated to high end Xilinx Virtex-7 FPGA and

assume final FPGA device summary result shows only 50 % of FPGA logic resources

and FPGA BRAM usage providing opportunity for further optimisation. What could be

the next possible optimisation target? There are few attractive choices but the two most

useful candidates are offloading of Transmission Control Protocol (TCP) packet analy-

sis or Stateful Packet Inspection (SPI) from MicroBlaze to FPGA and exploitation of

multiple processing resources to increase the overall efficiency of packet processing. SPI

demands fast packet processing and frequent data memory access. It involve computing

hash values on key packet header values (IP addresses and ports) of every incoming

packet and using hash value it lookup on TCP connection table which normally stores

in application memory or Random Access Memory (RAM) in order to determine packet

association with established connection. Packet with the same IP address and ports

are hashed to the same memory location and in this way packet can be identified as

a part of connection. Offloading SPI to FPGA would benefit FPGA fast memory ac-

cess and parallel processing feature. This would significantly increase overall packet

analysis speed. Also SPI is comparatively simple process than pattern matching and

so SPI hardware accelerator would only consume very limited FPGA logic resources.

For example, hash value computation on FPGA is a straight forward operation which

can easily be computed on key packet header values (IP address and port number) in

around 5-10 clock cycles, while another 2 clock cycles for accessing off-chip memory on

Chapter 7. Conclusion and Future Work 150

this hybrid hardware-software platform to access TCP connection table for retrieving or

storing connection information.

Another option which is now going to be discussed is the usage of parallel processing

available in the form of multiple MicroBlaze core. The biggest question that arises is

which part of SB-NIDS and how to execute these parts on multiple MicroBlaze core.

According to SB-NIDS architecture and execution analysis it was identified that there

are some SB-NIDS components that are independently process the data without relying

on any other components. Each of these components can be assigned a separate Mi-

croblaze core for processing. These SB-NIDS components are SB-NIDS Preprocessor.

Some of these are Simple Mail Transfer Protocol (SMTP) Preprocessor, Domain Name

System (DNS) Preprocessor, Hypertext Transfer Protocol (HTTP) Preprocessor, File

Transfer Protocol (FTP) Preprocessor and Telnet Preprocessor. These Preprocessor

perform packet analysis only on particular part of decoded packet data. They simply

take input the decoded data, process them and give the output which is the detection re-

sult summary. Assigning these Preprocessor a separate MicroBlaze core would certainly

increase the overall efficiency of packet processing. The implementation of such effort

would be highly complex. It would require major architectural changes of the current

MMMU-Snort III prototype.

There are other limitation exists in final MMU-Snort III prototype. These are the

limitations that could also be the candidate for further research and development. These

now discuss in the following section 7.3.

7.3 Limitations and Future Directions

This section will briefly examine further future research directions resulting from the

work presented in this thesis.

7.3.1 Regular Expression Search

Mitra et al and Brodie et al presented the FPGA hardware architecture to perform

regular expression based search [102, 103]. These hardwares are designed to search

the malicious patterns in network packets up to gigabit rate throughput. Mitra et al

hardware architecture addressed the issue of regular expression search of Snort attack

rules. This idea can be applied to the PMHA for Snort presented in this thesis. This will

also enable the first full Snort port on hybrid hardware-software processing to perform

not only ordinary pattern matching in FPGA but also a regular expression search which

is an integral part of pattern search of Snort.

Chapter 7. Conclusion and Future Work 151

The regular expression search can be implemented using one of the same approaches

that have been applied consistently in previous work on ordinary pattern matching.

Implementing them in FPGA is rather challenging due to limited amount of memory and

design space. One of the widely used approach is state machine implementation where

regular expression based search can be based on and search is carried out in parallel

using FPGA parallel logic resources as proposed by Mitra et al. Bloom filter based

search approach can also be applied for regular expression search in which characters

that are specifically specified in regular expression are check in packet data using Bloom

filter. In case all specified characters in a pattern is found then in next step wild card

character search is carried out either with brute force searching or using state machine

based approach. Whatever the type of search technique is applied to regular expression

search in FPGA it should result in fast and high throughput solution provided it is

implemented efficiently so can be synthesized at high clock rate.

7.3.2 Non-Interruptible Update

In order for SB-NIDS to be effective it needs to have updated attack signature list. The

signature update requires copying of new signatures to SB-NIDS files and restarting a

SB-NIDS software package. During this process SB-NIDS does not able to inspect any

network traffic leaving large number of packets to enter into network without inspection.

An alternate is to have multiple SB-NIDS deployment on a network while one is being

updated then other inspects the network traffic. This is rather expensive solution and

the best option is to have non-interruptible update facility where the same SB-NIDS

continued the network traffic inspection while signature database is being updated with

new signatures.

Non-interruptible update facility is difficult to implement in SB-NIDS software. On

hybrid hardware-software processing platform this is further challenging as part of sig-

natures known as patterns stored in RC300 board off-chip Synchronous Dynamic Ran-

dom Access Memory (SDRAM) as well as in FPGA BRAM. Rest of the signature parts

are stored in MicroBlaze memory. Viable solution on this platform is FPGA hardware

functional unit which will promptly update the signature in both SDRAM and FPGA

BRAM. Also fundamental changes in MMU-Snort III would also be required, such as

Bloom filter needs to change to counting Bloom filter which allows pattern addition

and deletion. MicroBlaze memory or Static Random Access Memory (SRAM) is tricky

to perform signature update. Only way to do this successfully is to create a copy of

updated signatures data structure in memory and overwrite it to the original signature

memory. This is the complicated task and may cause SB-NIDS to stop search for a short

interval of time, possibly few seconds which would result few packets un-inspected.

Chapter 7. Conclusion and Future Work 152

7.3.3 Packet filtering

In chapter 3 3 some state of the art work are discussed that applied the packet filtering

techniques to SB-NIDS in order to optimised NIDS pattern matching algorithm perfor-

mance. Packet filtering can also be applied to the MMU-Snort III as well. Packet filter-

ing implementation is more appropriate and effective. For example, a filtering system

quickly checks the encapsulated protocols in packets and filter them if no network/ap-

plication/operating system is processing such packet. These packets do not required

analysis and cannot harm the network.

7.4 Final Comments

MMU-SnortIII is a complete SB-NIDS prototype developed on high performance hybrid

hardware-software embedded processing platform using state of the art Snort SB-NIDS

software package. Unlike previous state of the art solutions that have limited threat

detection features this SB-NIDS prototype has one of the effective detection facility

provided by Snort. It effectively analyses many different types of protocol (Layer-3

to Layer-7 of Open System Interconnection (OSI) layer) and able to detect many new

attacks due to regular signature database updates release. Also the processing platform

high performance processing facility has been exploited during prototype development

which resulted in improvement of packet analysis speed. A novel hardware accelerator

of pattern matching is also developed that boosted the packet analysis speed. The

novel feature of this hardware accelerator is the first ever integrated PMHA to full SB-

NIDS software package. Another novel feature which proved successful in improving the

packet analysis speed is the use of application specific knowledge (Snort rule options).

This reduces the number of pattern search and so lower the search computation time.

It also supports one of the largest databases of attack patterns (9150) search which

it stores compactly in FPGA BRAM for quick pattern search. It also offers a decent

throughput of 1.85 Gbps operating at 50 MHz of clock frequency. The lower frequency is

the limitation imposed by the development platform otherwise this hardware accelerator

itself without MicroBlaze on the same grade FPGA can be synthesized at 80 MHz.

The final MMMU-Snort III prototyped is far from perfect and has limitations (Sec-

tion 7.3). One of the concerns is related to the development platform which has lower

grade Xilinx Virtex-II FPGA and does not support higher operating frequency and lim-

ited FPGA design/space. MMU-Snort III performance can be boost up to 10 times

if design is migrated the high end Xilinx Virtex-7 FPGA which would easily able to

synthesise the design over 650 MHz operating frequency. In summary, MMU-Snort III

Chapter 7. Conclusion and Future Work 153

on hybrid hardware-software processing platform is found to be a well suited platform

for SB-NIDS performance optimisation and this prototype can serve as a platform for

further research and development for SB-NIDS performance optimisation.

Bibliography

[1] Andrew Baker Jay Beale and Joel Esler. Snort IDS and IPS toolkit, chapter 5

(Inner Workings), pages 177–178. Syngress press, 2007.

[2] Intel Cooperation. Supra-linear packet processing performance with intel multi-

core processors. Published online by Intel Cooperation (8-pages), 2006. URL

http://download.intel.com/technology/advanced_comm/31156601.pdf. Last

access: 24 Nov. 2009.

[3] A light weight network intrusion detection system. WWW page, 1998. URL

http://www.snort.com. Last accessed: 23/11/2009.

[4] IEEE. Ieee launches next generation of high-rate ethernet with new ieee 802.3ba

standard. WWW page, May 2010. URL http://standards.ieee.org/news/

2010/ratification8023ba.html. Last accessed: 21/12/10.

[5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, 1970. ISSN 0001-0782.

[6] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance: Build-

ing a better bloom filter. Random Struct. Algorithms, 33(2):187–218, 2008. ISSN

1042-9832.

[7] British Broadcasting Corporation (BBC). Online scams target the wealthy. WWW

page, Nov 2006. URL news.bbc.co.uk/news/1/hi/technology/6135246.stm.

Last accessed: 21/01/10.

[8] Dan Lothian of Cable News Network (CNN). Authorities investigate online

‘hitman’ scams. WWW page, June 2007. URL www.cnn.com/2007/US/06/18/

lothian.cybercrime/index.html. Last accessed: 21/01/10.

[9] British Broadcasting Corporation (BBC). Bank loses $1.1m to online fraud.

WWW page, Jan 2007. URL news.bbc.co.uk/news/1/hi/business/6279561.

stm. Last accessed: 21/01/10.

154

http://download.intel.com/technology/advanced_comm/31156601.pdf
http://www.snort.com
http://standards.ieee.org/news/2010/ratification8023ba.html
http://standards.ieee.org/news/2010/ratification8023ba.html
news.bbc.co.uk/news/1/hi/technology/6135246.stm
www.cnn.com/2007/US/06/18/lothian.cybercrime/index.html
www.cnn.com/2007/US/06/18/lothian.cybercrime/index.html
news.bbc.co.uk/news/1/hi/business/6279561.stm
news.bbc.co.uk/news/1/hi/business/6279561.stm

Bibliography 155

[10] British Broadcasting Corporation (BBC). Google ‘may pull out of china after

gmail cyber attack’. WWW page, Jan 2010. URL news.bbc.co.uk/news/1/hi/

business/8455712.stm. Last accessed: 21/01/10.

[11] thisisexeter. Computer virus shuts down exeter university system. WWW page,

Jan 2010. URL www.thisisexter.co.uk/news/hacker-shuts-university/

article-1729355-detail/article.html. Last accessed: 21/01/10.

[12] Ross Anderson. Security Engineering: A guide to building dependable distributed

systems. John Wiley and Sons, Inc, NY, USA, 1st edition edition, 2001.

[13] Alefiya Hussain, John Heidemann, and Christos Papadopoulos. A framework for

classifying denial of service attacks. In SIGCOMM ’03: Proceedings of the 2003

conference on Applications, technologies, architectures, and protocols for computer

communications, pages 99–110, New York, NY, USA, 2003. ACM. ISBN 1-58113-

735-4.

[14] CERT c©Coordination Center. Trends in denial of service attacks technology,

Oct 2001. URL http://www.cert.org/archive/pdf/DoS_trends.pdf. Last ac-

cessed: 27/01/10.

[15] W. Eddy. Memorandum on tcp syn flooding attacks and common mitigations.

WWW page, Aug 2007. URL http://tools.ietf.org/html/rfc4987. Last ac-

cessed: 26/01/10.

[16] Paul A. Watson. Slipping in the window: Tcp reset attacks. Technical re-

port, terrorist.net, Dec 2003. URL http://www.bandwidthco.com/whitepapers/

netforensics/tcpip/TCP%20Reset%%20Attacks.pdf. Last accessed:06/02/10.

[17] Computer Emergency Response Team (CERT). Cert advisory ca-1998-01 smurf

ip denial-of-service attacks. WWW page, Jan 1998. URL http://www.cert.org/

advisories/CA-1998-01.html. Last accessed: 07/02/10.

[18] Computer Emergency Response Team (CERT). Cert advisory ca-1998-01 smurf

ip denial-of-service attacks. WWW page, Dec 1996. URL http://www.cert.org/

advisories/CA-1996-26.html. Last accessed: 07/02/10.

[19] D. Senie. Changing the default for directed broadcasts in routers. WWW

page, Aug 1999. URL http://www.ietf.org/rfc/rfc2644.txt. Last accessed:

07/02/10.

[20] Computer Emergency Response Team (CERT). Cert advisory ca-1996-01 udp

port denial-of-service attack. WWW page, Feb 1996. URL http://www.cert.

org/advisories/CA-1996-01.html. Last accessed: 07/02/10.

news.bbc.co.uk/news/1/hi/business/8455712.stm
news.bbc.co.uk/news/1/hi/business/8455712.stm
www.thisisexter.co.uk/news/hacker-shuts-university/article-1729355-detail/article.html
www.thisisexter.co.uk/news/hacker-shuts-university/article-1729355-detail/article.html
http://www.cert.org/archive/pdf/DoS_trends.pdf
http://tools.ietf.org/html/rfc4987
http://www.bandwidthco.com/whitepapers/netforensics/tcpip/TCP%20Reset% %20Attacks.pdf
http://www.bandwidthco.com/whitepapers/netforensics/tcpip/TCP%20Reset% %20Attacks.pdf
http://www.cert.org/advisories/CA-1998-01.html
http://www.cert.org/advisories/CA-1998-01.html
http://www.cert.org/advisories/CA-1996-26.html
http://www.cert.org/advisories/CA-1996-26.html
http://www.ietf.org/rfc/rfc2644.txt
http://www.cert.org/advisories/CA-1996-01.html
http://www.cert.org/advisories/CA-1996-01.html

Bibliography 156

[21] Computer Emergency Response Team (CERT). Cert advisory ca-1997-28 ip

denial-of-service attack. WWW page, Dec 1997. URL http://www.cert.org/

advisories/CA-1997-28.html. Last accessed: 08/02/10.

[22] Office of the chief information commissioner. WWW page, 2010. URL http:

//www.doecirc.energy.gov/aboutus.html. Last accessed: 21/12/2010.

[23] Paul J. Criscuolo. Distributed denial of service trin00,tribe flood net-

work,tribe flood network 2000,and stacheldraht ciac-2310. WWW page, Feb

2000. URL http://doecirc.energy.gov/documents/CIRC-2319_Distributed_

Denial_of%_Service.pdf. Last accessed: 08/02/10.

[24] British Broadcasting Corporation (BBC). Yahoo attack exposes web weakness.

WWW page, Feb 2000. URL news.bbc.co.uk/news/1/hi/sci/tech/635444.

stm. Last accessed: 08/02/10.

[25] Patrick Mcdaniel Kevin Butler, Toni Farley and Jennifer Rexford. A survery of

bgp security. Technical report, AT&T Labs-Research, April 2005. URL www.

patrickmcdaniel.org/pubs/td-5ugj33.pdf. Last accessed: 10/02/10.

[26] SANS Institute InfoSec Reading Room. Icmp attacks illustrated. WWW

page, 2001. URL http://www.sans.org/reading_room/whitepapers/threats/

icmp_attacks_illustrated_477?show=477.php&cat=threats. Last accessed:

06/02/10.

[27] Simon Hansman and Ray Hunt. A taxonomy of network and computer attacks.

Computer & Security, 24(1):31–43, Feb 2005.

[28] B. Martin, M. Brown, A. paller, and S. Christy. 2009 cwe/sans top 25 most danger-

ous programming errors. WWW page, Oct 2009. URL http://cwe.mitre.org/

top25/archive/2009/2009_cwe_sans_top_25.pdf. Last accessed: 12/02/10.

[29] US Department of Homeland Security SRI International Identity Theft Technol-

ogy Council and the Anti-Phishing Working Group. The crimeware landscape:

Malware, phishing, identity theft and beyond. WWW page, Oct 2006. URL

http://www.antiphishing.org/reports/APWG_CrimewareReport.pdf. Last ac-

cessed: 12/02/10.

[30] Ken Dunham. Mobile Malware Attacks and Defense. Syngress Publishing, 2008.

ISBN 1597492981,9781597492980.

[31] Frederick B. Cohen. Computer viruses. PhD thesis, University of Southern Cali-

fornia, Los Angeles, CA, USA, 1986.

http://www.cert.org/advisories/CA-1997-28.html
http://www.cert.org/advisories/CA-1997-28.html
http://www.doecirc.energy.gov/aboutus.html
http://www.doecirc.energy.gov/aboutus.html
http://doecirc.energy.gov/documents/CIRC-2319_Distributed_Denial_of% _Service.pdf
http://doecirc.energy.gov/documents/CIRC-2319_Distributed_Denial_of% _Service.pdf
news.bbc.co.uk/news/1/hi/sci/tech/635444.stm
news.bbc.co.uk/news/1/hi/sci/tech/635444.stm
www.patrickmcdaniel.org/pubs/td-5ugj33.pdf
www.patrickmcdaniel.org/pubs/td-5ugj33.pdf
http://www.sans.org/reading_room/whitepapers/threats/icmp_attacks_illustrated_477?show=477.php&cat=threats
http://www.sans.org/reading_room/whitepapers/threats/icmp_attacks_illustrated_477?show=477.php&cat=threats
http://cwe.mitre.org/top25/archive/2009/2009_cwe_sans_top_25.pdf
http://cwe.mitre.org/top25/archive/2009/2009_cwe_sans_top_25.pdf
http://www.antiphishing.org/reports/APWG_CrimewareReport.pdf

Bibliography 157

[32] S.R Subramanya and N Lakshminarasimhan. Computer viruses. In IEEE poten-

tials, pages 16–19, Oct/Nov 2001.

[33] Samuel Mc Innes Bechard, Anita K. Jones, and Robert S. Sielken. Com-

puter system intrusion detection: A survey. Technical report, University

of Virginia, 1999. URL http://www.princeton.edu/~rblee/ELE572Papers/

Fall04Readings/IntrusionDetection_jones-sielken-survey-v11.pdf. Last

accessed: 22 Feb. 2010.

[34] Vern Paxson. Bro: A system for detecting network intruders in real-time. Com-

puter Networks, pages 2435 – 2463, 1999.

[35] J. P. Anderson. Computer security threat monitoring and surveillance. Techni-

cal report, James P Anderson Co., Fort Washington, Pennsylvania,USA, April

1980. URL http://csrc.nist.gov/publications/history/ande80.pdf. Last

accessed: 23 Feb. 2010.

[36] Gene H. Kim and Eugene H. Spafford. The design and implementation of trip-

wire: a file system integrity checker. In CCS ’94: Proceedings of the 2nd ACM

Conference on Computer and communications security, pages 18–29, New York,

NY, USA, 1994. ACM. ISBN 0-89791-732-4.

[37] Ossec: An open source host-based intrusion detection system. WWW page, 2004.

URL http://www.ossec.net/. Last accessed: 23/12/2010.

[38] Bro: Unix-based network intrusion detection system. WWW page, 1998. URL

http://www.bro-ids.com. Last accessed: 23/11/2009.

[39] Cisco network intrusion prevention system 4200 series. WWW page,

2009. URL http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5729/

ps5713/ps4077/ps9157/product_data_sheet09186a008014873c.pdf. Last ac-

cessed: 23/12/2010.

[40] Ibm proventia intrusion prevention system. WWW page, 2007. URL http://www.

ibm.com/ru/services/iss/pdf/ibmproventianetworkipscomparison.pdf.

Last accessed: 23/12/2010.

[41] Sourcefire ids sensor. WWW page, 2009. URL http://www.sourcefire.com/

resources/sourcefire-3d9900-sensor. Last accessed: 23/12/2010.

[42] Tippingpoint n platform. WWW page, 2009. URL http://h10163.www1.hp.com/

pdf/resources/datasheets/401221-002_N-PlatformTechSpecs.pdf. Last ac-

cessed: 23/12/2010.

http://www.princeton.edu/~rblee/ELE572Papers/Fall04Readings/IntrusionDetection_jones-sielken-survey-v11.pdf
http://www.princeton.edu/~rblee/ELE572Papers/Fall04Readings/IntrusionDetection_jones-sielken-survey-v11.pdf
http://csrc.nist.gov/publications/history/ande80.pdf
http://www.ossec.net/
http://www.bro-ids.com
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5729/ps5713/ps4077/ps9157/product_data_sheet09186a008014873c.pdf
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5729/ps5713/ps4077/ps9157/product_data_sheet09186a008014873c.pdf
http://www.ibm.com/ru/services/iss/pdf/ibmproventianetworkipscomparison.pdf
http://www.ibm.com/ru/services/iss/pdf/ibmproventianetworkipscomparison.pdf
http://www.sourcefire.com/resources/sourcefire-3d9900-sensor
http://www.sourcefire.com/resources/sourcefire-3d9900-sensor
http://h10163.www1.hp.com/pdf/resources/datasheets/401221-002_N-PlatformTechSpecs.pdf
http://h10163.www1.hp.com/pdf/resources/datasheets/401221-002_N-PlatformTechSpecs.pdf

Bibliography 158

[43] Mike Schiffman. Building Open Source Network Security Tools: Components and

Techniques. John Wiley and Sons, 2002. ISBN 0471205443.

[44] Nitesh Dhanjani and Justin Clarke. Network Security Tools. O’Reilly Media, 2005.

ISBN 0596007949.

[45] Chris McNab. Network Security Assessment: Know Your Network. O’Reilly Me-

dia, 2004. ISBN 059600611Z.

[46] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A

survey. ACM Computing Surveys, 41(3):1–58, 2009.

[47] Javier Verdú, Jorge Garćıa, Mario Nemirovsky, and Mateo Valero. The impact

of traffic aggregation on the memory performance of networking applications. In

MEDEA ’04: Proceedings of the 2004 workshop on MEmory performance, pages

57–62, New York, NY, USA, 2004. ACM.

[48] Javier Verdú, Jorge Garćı, Mario Nemirovsky, and Mateo Valero. Architectural

impact of stateful networking applications. In ANCS ’05: Proceedings of the 2005

ACM symposium on Architecture for networking and communications systems,

pages 11–18, New York, NY, USA, 2005. ACM. ISBN 1-59593-082-5.

[49] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding using

efficient multi-dimensional range matching. In SIGCOMM ’98: Proceedings of the

ACM SIGCOMM ’98 conference on Applications, technologies, architectures, and

protocols for computer communication, pages 203–214, New York, NY, USA, 1998.

ACM. ISBN 1-58113-003-1.

[50] Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. In

SIGCOMM ’99: Proceedings of the conference on Applications, technologies, ar-

chitectures, and protocols for computer communication, pages 147–160, New York,

NY, USA, 1999. ACM. ISBN 1-58113-135-6.

[51] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable layer

four switching. SIGCOMM Comput. Commun. Rev., 28(4):191–202, 1998. ISSN

0146-4833.

[52] Anthony J. Mcauley and Paul Francis. Fast routing table lookup using cams. In

IEEE INFOCOM, pages 1382–1391, 1993.

[53] Florin Baboescu, Sumeet Singh, and George Varghese. Packet classification for

core routers: Is there an alternative to cams? In INFOCOM, 2003.

[54] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Com-

mun. ACM, 20(10):762–772, 1977. ISSN 0001-0782.

Bibliography 159

[55] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to

bibliographic search. Commun. ACM, 18(6):333–340, 1975. ISSN 0001-0782.

[56] Stephen M. Specht and Ruby B. Lee. Distributed denial of service: taxonomies of

attacks, tools and countermeasures. In Proceedings of the International Workshop

on Security in Parallel and Distributed Systems, pages 543–550, 2004.

[57] Top 100 network security tools. WWW page, 2006. URL http://www.sectools.

org. Last accessed: 23/11/2009.

[58] Nmap security scanner version 5.00. WWW page, 2009. URL http://www.nmap.

org. Last accessed: 23/11/2009.

[59] The gnu netcat project. WWW page, January 2004. URL http://netcat.

sourceforge.net. Last accessed: 23/11/2009.

[60] The metasploit project. WWW page, 2003. URL http://www.metasploit.com.

Last accessed: 23/11/2009.

[61] Cisco network intrusion prevention system. WWW page, 2009. URL http://www.

cisco.com/cisco/web/UK/products/vpn.html. Last accessed: 23/11/2009.

[62] Christopher Kruegel, Fredrik Valeur, Giovanni Vigna, and Richard Kemmerer.

Stateful intrusion detection for high-speed networks. In Proceedings IEEE Sym-

posium on Security and Privacy, pages 285 –283, 2002.

[63] Lambert Schaelicke, Kyle Wheeler, and Curt Freeland. Spanids: a scalable network

intrusion detection loadbalancer. In CF ’05: Proceedings of the 2nd conference on

Computing frontiers, pages 315–322, New York, NY, USA, 2005. ACM. ISBN

1-59593-019-1.

[64] Konstantinos Xinidis, Ioannis Charitakis, Spiros Antonatos, Kostas G. Anagnos-

takis, and Evangelos P. Markatos. An active splitter architecture for intrusion

detection and prevention. IEEE Trans. Dependable Secur. Comput., 3(1):31, 2006.

ISSN 1545-5971.

[65] Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson, and

Brian Tierney. The nids cluster: Scalable, stateful network intrusion detection on

commodity hardware. In RAID, pages 107–126, 2007.

[66] D. Ficara, S. Giordano, F. Oppedisano, G. Procissi, and F. Vitucci. A coop-

erative pc/network-processor architecture for multi gigabit traffic analysis. In

Telecommunication Networking Workshop on QoS in Multiservice IP Networks,

2008. IT-NEWS 2008. 4th International, pages 123 –128, 2008.

http://www.sectools.org
http://www.sectools.org
http://www.nmap.org
http://www.nmap.org
http://netcat.sourceforge.net
http://netcat.sourceforge.net
http://www.metasploit.com
http://www.cisco.com/cisco/web/UK/products/vpn.html
http://www.cisco.com/cisco/web/UK/products/vpn.html

Bibliography 160

[67] Chris Clark, Wenke Lee, David Schimmel, Didier Contis, Mohamed Kon, and Ash-

ley Thomas. A hardware platform for network intrusion detection and prevention.

In In Proceedings of the 3rd Workshop on Network Processors and Applications

(NP3, 2004.

[68] Christopher R. Clark and Craig D. Ulmer. Network intrusion detection system on

fpgas with on-chip network interfaces. In In proceedings of International Workshop

on Applied Reconfigurable Computing (ARC), 02 2005.

[69] Byoungkoo Kim Seungyong Yoon and Jintae Oh. High-performance stateful in-

trusion detection system. In Computational Intelligence and Security, 2006 Inter-

national Conference, pages 574–579, 11 2006.

[70] Vasiliadis Giorgos, Antonatos Spiros, Polychronakis Michalis, Markatos Evangelos,

and Ioannidis Sotiris. Gnort: High performance network intrusion detection using

graphics processors. In RAID ’08: Proceedings of the 11th international symposium

on Recent Advances in Intrusion Detection, pages 116–134, Berlin, Heidelberg,

2008. Springer-Verlag. ISBN 978-3-540-87402-7.

[71] Domenico Ficara, Stefano Giordano, and Fabio Vitucci. Design and implemen-

tation of a multidimensional packet classifier on network processor. Technical

report, Department of Information Engineering, University of Pisa, Italy, 2007.

URL http://wwwtlc.iet.unipi.it/research/classifier.pdf. Last accessed:

21/06/2010.

[72] Mike Fisk and George Varghese. Fast content-based packet handling for in-

trusion detection. Technical report, Los Alamos National Laboratory, Univer-

sity of California San Diego, 2001. URL http://woozle.org/~mfisk/papers/

ucsd-tr-cs2001-0670.pdf. Last accessed: 02 Dec.09.

[73] C. Jason Coit, Stuart Staniford, and Joseph McAlerney. Towards faster string

matching for intrusion detection or exceeding the speed of snort. DARPA Infor-

mation Survivability Conference and Exposition, 1:0367, 2001.

[74] Evangelos P. Markatos, Spyros Antonatos, Michalis Polychronakis, and Kostas G.

Anagnostakis. Exclusion-based signature matching for intrusion detection. In

In Proceedings of the IASTED International Conference on Communications and

Computer Networks (CCN, pages 146–152. ACTA Press, 2002. URL http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.5035.

[75] Anagnostakis Antonatos Markatos, K. G. Anagnostakis, S. Antonatos, E. P.

Markatos, and M. Polychronakis. E2xb: A domain-specific string matching al-

gorithm for intrusion detection. In In Proceedings of the 18th IFIP International

http://wwwtlc.iet.unipi.it/research/classifier.pdf
http://woozle.org/~mfisk/papers/ucsd-tr-cs2001-0670.pdf
http://woozle.org/~mfisk/papers/ucsd-tr-cs2001-0670.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.5035
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.5035

Bibliography 161

Information Security Conference (SEC2003, 2003. URL http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.2.1456.

[76] S. Antonatos, M. Polychronakis, P. Akritidis, and K. G. Anagnostakis. Pi-

ranha: Fast and memory-efficient pattern matching for intrusion detection. In

In Proceedings 20th IFIP International Information Security Conference (SEC

2005, 2005. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.

1.1.74.1767.

[77] Ioannis Sourdis, Vasilis Dimopoulos, Dionisios Pnevmatikatos, and Stamatis Vas-

siliadis. Packet pre-filtering for network intrusion detection. In ANCS ’06: Pro-

ceedings of the 2006 ACM/IEEE symposium on Architecture for networking and

communications systems, pages 183–192, New York, NY, USA, 2006. ACM. ISBN

1-59593-580-0. URL http://portal.acm.org/citation.cfm?id=1185372.

[78] Michael Attig and John W. Lockwood. Sift: Snort intrusion filter for TCP. In

IEEE Symposium on High Performance Interconnects (HotI-13), Stanford, CA,

aug 2005. URL http://www.arl.wustl.edu/projects/fpx/references/SIFT_

Lockwood_Attig-Hot_Interconnects_2005.pdf.

[79] Haoyu Song, T. Sproull, M. Attig, and J. Lockwood. Snort offloader: a reconfig-

urable hardware nids filter. International Conference on Field Programmable Logic

and Applications, 0:493–498, 2005. doi: http://doi.ieeecomputersociety.org/10.

1109/FPL.2005.1515770. URL http://www2.computer.org/portal/web/csdl/

doi/10.1109/FPL.2005.1515770.

[80] José M. González, Vern Paxson, and Nicholas Weaver. Shunting: a hardware/-

software architecture for flexible, high-performance network intrusion prevention.

In ACM Conference on Computer and Communications Security, pages 139–149,

2007.

[81] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd S. Sproull, and John W.

Lockwood. Deep packet inspection using parallel bloom filters. IEEE Micro, 24

(1):52–61, 01 2004.

[82] M Nourani. and P Katta. Bloom filter accelerator for string matching. In Pro-

ceedings of 16th International Conference on Computer Communications and Net-

works, ICCCN 2007., pages 185–190, Honolulu, HI, 2007. IEEE. ISBN 978-1-4244-

1251-8.

[83] A. Yang Chen, Kumar and Jun Xu. A new design of bloom filter for packet in-

spection speedup. In Global Telecommunications Conference, 2007. GLOBECOM

’07. IEEE, pages 1–5, Washington, DC, 2007. IEEE. ISBN 978-1-4244-1043-9.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1456
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1456
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.1767
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.1767
http://portal.acm.org/citation.cfm?id=1185372
http://www.arl.wustl.edu/projects/fpx/references/SIFT_Lockwood_Attig-Hot_Interconnects_2005.pdf
http://www.arl.wustl.edu/projects/fpx/references/SIFT_Lockwood_Attig-Hot_Interconnects_2005.pdf
http://www2.computer.org/portal/web/csdl/doi/10.1109/FPL.2005.1515770
http://www2.computer.org/portal/web/csdl/doi/10.1109/FPL.2005.1515770

Bibliography 162

[84] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis. A reconfigurable perfect-

hashing scheme for packet inspection. International Conference on Field Pro-

grammable Logic and Applications, 0:644–647, 2005.

[85] Sherif Yusuf, Wayne Luk, M. K. N. Szeto, and William G. Osborne. Unite: Uni-

form hardware-based network intrusion detection engine. In International work-

shop on Applied Reconfigurable Computing., 2006.

[86] Ioannis Sourdis and Dionisios Pnevmatikatos. Pre-decoded cams for efficient and

high-speed nids pattern matching. In FCCM ’04: Proceedings of the 12th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines, pages

258–267, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-

2230-0.

[87] Maya Gokhale, Dave Dubois, Andy Dubois, Mike Boorman, Steve Poole, and Vic

Hogsett. Granidt: Towards gigabit rate network intrusion detection technology. In

FPL ’02: Proceedings of the Reconfigurable Computing Is Going Mainstream, 12th

International Conference on Field-Programmable Logic and Applications, pages

404–413, London, UK, 2002. Springer-Verlag. ISBN 3-540-44108-5.

[88] Lin Tan and Timothy Sherwood. A high throughput string matching architec-

ture for intrusion detection and prevention. In ISCA ’05: Proceedings of the 32nd

annual international symposium on Computer Architecture, pages 112–122, Wash-

ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2270-X.

[89] Hong-Jip Jung, Z.K. Baker, and V.K. Prasanna. Performance of fpga imple-

mentation of bit-split architecture for intrusion detection systems. Parallel and

Distributed Processing Symposium, International, 0:177, 2006.

[90] Young H. Cho and William H. Mangione-Smith. Deep network packet filter design

for reconfigurable devices. ACM Transaction Embedded Computing System, 7(2):

1–26, 2008. ISSN 1539-9087.

[91] Rong-Tai Liu, Nen-Fu Huang, Chia-Nan Kao, Chih-Hao Chen, and Chi-Chieh

Chou. A fast pattern-match engine for network processor-based network intrusion

detection system. In ITCC ’04: Proceedings of the International Conference on

Information Technology: Coding and Computing (ITCC’04) Volume 2, page 97,

Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2108-8.

[92] Luis Carlos Caruso, Guilherme Guindani, Hugo Schmitt, Ney Calazans, and Fer-

nando Moraes. Spp-nids - a sea of processors platform for network intrusion de-

tection systems. In RSP ’07: Proceedings of the 18th IEEE/IFIP International

Bibliography 163

Workshop on Rapid System Prototyping, pages 27–33, Washington, DC, USA,

2007. IEEE Computer Society. ISBN 0-7695-2834-1.

[93] Herbert Bos and Kaiming Huang. A network intrusion detection system on ixp1200

network processor. In Technical Report, LIACS, Leiden University, February 2004.

URL citeseer.ist.psu.edu/703003.html.

[94] Michael Attig and John Lockwood. A framework for rule processing in recon-

figurable network systems. Field-Programmable Custom Computing Machines,

Annual IEEE Symposium on, 0:225–234, 2005.

[95] R. Nigel Horspool. Practical fast searching in strings. Software Practice and

Experience, 10:501–506, 1980.

[96] Nathan Tuck, Timothy Sherwood, Brad Calder, and George Varghese. Determin-

istic memory-efficient string matching algorithms for intrusion detection. In In

proceedings of the IEEE Infocom, Hong Kong, pages 333–340, March 2004.

[97] Marc Norton. Optimizing pattern matching for intrusion detection.

Technical report, ., July 2004. URL http://docs.idsresearch.org/

OptimizingPatternMatchingForIDS.pdf. Last accessed: 24 Nov. 2009.

[98] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Tech-

nical Report TR-94-17, Department of Computer Science, University of Ari-

zona, 1994. URL http://citeseer.ist.psu.edu/wu94fast.html. Last accessed:

21/01/2010.

[99] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan

Turner. Algorithms to accelerate multiple regular expressions matching for deep

packet inspection. In SIGCOMM ’06: Proceedings of the 2006 conference on Ap-

plications, technologies, architectures, and protocols for computer communications,

pages 339–350, New York, NY, USA, 2006. ACM.

[100] Zachary K. Baker and Viktor K. Prasanna. High-throughput linked-pattern match-

ing for intrusion detection systems. In ANCS ’05: Proceedings of the 2005 ACM

symposium on Architecture for networking and communications systems, pages

193–202, New York, NY, USA, 2005. ACM. ISBN 1-59593-082-5.

[101] Giorgos Papadopoulos and Hardware Laboratory. Hashing + memory = low cost,

exact pattern matching. In In Proceedings of the 15th International Conference

on Field Programmable Logic and Applications, pages 39–44, 2005.

[102] B.C. Brodie, R.K. Cytron, and D.E. Taylor. A scalable architecture for high-

throughput regular-expression pattern matching. In Computer Architecture, 2006.

ISCA ’06. 33rd International Symposium on, pages 191–202, 2006.

citeseer.ist.psu.edu/703003.html
http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf
http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf
http://citeseer.ist.psu.edu/wu94fast.html

Bibliography 164

[103] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. Compiling pcre to fpga for ac-

celerating snort ids. In ANCS ’07: Proceedings of the 3rd ACM/IEEE Symposium

on Architecture for networking and communications systems, pages 127–136, New

York, NY, USA, 2007. ACM. ISBN 978-1-59593-945-6.

[104] A. Kennedy, Xiaojun Wang, Zhen Liu, and Bin Liu. Ultra-high throughput string

matching for deep packet inspection. In Design, Automation Test in Europe Con-

ference Exhibition (DATE), 2010, 8-12 2010.

[105] P. Piyachon and Yan Luo. Efficient memory utilization on network processors

for deep packet inspection. In Architecture for Networking and Communications

systems, 2006. ANCS 2006. ACM/IEEE Symposium on, pages 71–80, 3-5 2006.

[106] Sarang Dharmapurikar and John W. Lockwood. Fast and scalable pattern match-

ing for network intrusion detection systems. IEEE Journal, 24(10):1781–1792, 10

2006.

[107] David J. Fried, Isaac Graf, Joshua W. Haines, Kristopher R. Kendall, David Mc-

clung, Dan Weber, Seth E. Webster, Dan Wyschogrod, Robert K. Cunningham,

and Marc A. Zissman. Evaluating intrusion detection systems: The 1998 darpa

off-line intrusion detection evaluation. In in Proceedings of the 2000 DARPA In-

formation Survivability Conference and Exposition, pages 12–26, 2000.

[108] Hudo Teufel III. Computer security threat monitoring and surveillance. Tech-

nical report, U.S. Department of Homeland Security, May 2008. URL http:

//www.dhs.gov/xlibrary/assets/privacy/privacy_pia_einstein2.pdf. Last

accessed: 09 Mar. 2010.

[109] Metor graphics rc series. WWW page, 2010. URL http://www.mentor.com/

products/fpga/handel-c/rc-series-platforms/. Last accessed: 23/12/2010.

[110] Patrick Schaumont and Ingrid Verbauwhede. Hardware/software codesign for

stream ciphers. WWW page, 2007. URL http://www.ecrypt.eu.org/stream/

papersdir/2007/016.pdf. Last accessed: 17/04/2010.

[111] P. Huerta, J. Castillo, J. I. Mártinez, and V. López. Multi microblaze system for

parallel computing. In ICC’05: Proceedings of the 9th International Conference

on Circuits, pages 1–6, Stevens Point, Wisconsin, USA, 2005. World Scientific and

Engineering Academy and Society (WSEAS). ISBN 960-8457-29-7.

[112] Neil Desai. Increasing performance in high speed nids: A look at snort’s internals.

Technical report, ., 3 2002. URL http://www.linuxsecurity.com/resource_

files/intrusionvdetection/increasing_Performance_in_High_Speed_IDS.

pdf. Last accessed: 24 Nov. 2009.

http://www.dhs.gov/xlibrary/assets/privacy/privacy_pia_einstein2.pdf
http://www.dhs.gov/xlibrary/assets/privacy/privacy_pia_einstein2.pdf
http://www.mentor.com/products/fpga/handel-c/rc-series-platforms/
http://www.mentor.com/products/fpga/handel-c/rc-series-platforms/
http://www.ecrypt.eu.org/stream/papersdir/2007/016.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/016.pdf
http://www.linuxsecurity.com/resource_files/intrusionvdetection/increasing_Performance_in_High_Speed_IDS.pdf
http://www.linuxsecurity.com/resource_files/intrusionvdetection/increasing_Performance_in_High_Speed_IDS.pdf
http://www.linuxsecurity.com/resource_files/intrusionvdetection/increasing_Performance_in_High_Speed_IDS.pdf

Bibliography 165

[113] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: A

scalable wide-area web cache sharing protocol. In IEEE/ACM Transactions on

Networking, pages 254–265, 1998.

[114] Jeff Yan and Pook Leong Cho. Enhancing collaborative spam detection with bloom

filters. In ACSAC ’06: Proceedings of the 22nd Annual Computer Security Appli-

cations Conference, pages 414–428, Washington, DC, USA, 2006. IEEE Computer

Society. ISBN 0-7695-2716-7.

[115] Guofei Gu, Monirul Sharif, Xinzhou Qin, David Dagon, Wenke Lee, and George

Riley. Worm detection, early warning and response based on local victim informa-

tion. In ACSAC ’04: Proceedings of the 20th Annual Computer Security Applica-

tions Conference, pages 136–145, Washington, DC, USA, 2004. IEEE Computer

Society. ISBN 0-7695-2252-1.

[116] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions (ex-

tended abstract). In STOC ’77: Proceedings of the ninth annual ACM symposium

on Theory of computing, pages 106–112, New York, NY, USA, 1977. ACM.

[117] M.V. Ramakrishna, E. Fu, and E. Bahcekapili. A performance study of hashing

functions for hardware applications. In In Proc. of Int. Conf. on Computing and

Information, pages 1621–1636, 1994.

[118] S. Brown, C. Deane, G. Ho, and P. Mucci. Papi:a portable interface to hardware

performance counters. In Proceedings of Department of Defense HPCMP Users

Group Conference, 1999.

[119] The shmoo group. WWW page, 2010. URL http://cctf.shmoo.com/. Last

accessed: 23/12/2010.

http://cctf.shmoo.com/

APPENDIX A: Published

Research

Adeel Hashmi and Dr. Andy Nisbet. Hardware/Software Co-design Platform for Net-

work Intrusion Detection System. In Proceedings of the Third International Conference

on Internet Technologies and Applications, Wales, September, 2009.

Adeel Hashmi and Dr. Andy Nisbet. Hardware/Software Co-design Platform for Net-

work Intrusion Detection System. In Proceedings of the first MMU-RD-10 Science and

Engineering Research and Development Conference, Manchester, December, 2010.

166

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background and Problem Overview
	1.2 Solution Synopsis
	1.3 Aims and Objectives
	1.3.1 Objectives

	1.4 Contributions and Claims
	1.5 Thesis Outline

	2 Background
	2.1 Chapter Roadmap
	2.2 Network Security Issues
	2.2.1 Flawed Internet Protocol Design
	2.2.2 Vulnerabilities in Software
	2.2.3 Malicious Code

	2.3 Network Defence Mechanism
	2.3.1 Configuration Management
	2.3.2 Firewall
	2.3.3 Intrusion Detection System

	2.4 Intrusion Detection System: An Indepth Analysis
	2.4.1 Host Monitoring
	2.4.2 Network Monitoring
	2.4.3 Types of Intrusion Detection System
	2.4.4 Intrusion Detection Techniques
	2.4.5 Popular Intrusion Detection System Products
	2.4.6 Issues and Limitations of Intrusion Detection System
	2.4.7 NIDS Computationally Demanding Process

	2.5 Summary

	3 Survey and Related Work
	3.1 Chapter Roadmap
	3.2 Introduction to Literature Review
	3.3 Literature Explanation
	3.4 SB-NIDS using High Performance Computing Platform
	3.4.1 Computer Clusters for SB-NIDS
	3.4.2 Embedded Processing Platform for NIDS

	3.5 Pattern Matching for SB-NIDS
	3.5.1 SB-NIDS Specific Pattern Matching Algorithms
	3.5.2 Packet Filtering Technique for Pattern Matching in SB-NIDS
	3.5.3 Pattern matching using High Performance Computing Platform

	3.6 Chapter Summary

	4 Proposed System Architecture
	4.1 Chapter Roadmap
	4.2 System Description
	4.2.1 Overview
	4.2.2 Architecture
	4.2.3 Deployment
	4.2.4 Features

	4.3 System Prototyping
	4.3.1 Snort
	4.3.2 Snort Architecture
	4.3.3 Prototyping Challenges
	4.3.4 Prototyping Requirements

	4.4 Chapter Summary

	5 Design and Implementation
	5.1 Chapter Roadmap
	5.2 Snort Port on Hybrid Hardware-Software Processing Platform (MMU-Snort I)
	5.2.1 Analysis
	5.2.2 Design
	5.2.3 Implementation

	5.3 Pattern Matching Hardware Accelerator (MMU-Snort II)
	5.3.1 Analysis
	5.3.2 Design
	5.3.3 Implementation

	5.4 Final Optimisation of Snort Port (MMU-Snort III)
	5.4.1 Analysis
	5.4.2 Design

	5.5 Chapter Summary

	6 Results and Analysis
	6.1 Chapter Roadmap
	6.2 Experimental Testbed
	6.3 Testing and Evaluation of Snort Port (MMU-Snort I)
	6.3.1 Functional Test
	6.3.2 Performance Test

	6.4 Testing and Evaluation of Pattern Matching Hardware Accelerator (MMU-Snort II and MMU-Snort III)
	6.4.1 Performance Test
	6.4.2 Comparison with Previous Work

	6.5 Chapter Summary

	7 Conclusion and Future Work
	7.1 Chapter Summary
	7.2 Overall Conclusion
	7.3 Limitations and Future Directions
	7.3.1 Regular Expression Search
	7.3.2 Non-Interruptible Update
	7.3.3 Packet filtering

	7.4 Final Comments

	Bibliography
	APPENDIX A: Published Research

