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Abstract  
 

Diabetes Mellitus (DM) has been recognised as one of the most common chronic 

condition worldwide with a rise in number of young adults and children developing 

the condition. The common symptoms seen in DM are chronic inflammation and 

infections (e.g. diabetic foot ulcers (DFUs)). This is thought to be due to defects in the 

immune response. An alternative or possibly complementary strategy to treat 

infections is to develop novel therapies that stimulate the body’s own natural innate 

immune system. Dietary fibres such as MGN3 may help to increase the clearance of 

bacteria in DFUs whilst at the same time reducing inflammation. This study 

investigated the effect of MGN3 on the phagocytosis of MRSA by U937 macrophages 

and CD14 expression in U937 monocytes/macrophages under hyperglycaemic 

conditions. 

 

An in vitro host-pathogen assay (n=12) was carried out to test the effectiveness of 

MGN3 (2mg/ml) on bacterial (MRSA) clearance by U937 macrophages at different 

levels of glucose (11, 15, 20 and 30mM). CD14 protein expression in U937 

monocytes/macrophages was visualised by confocal microscopy and determined by 

flow cytometry following exposure to glucose (11 or 30mM) with/without MGN3 

(2mg/ml).   The study showed MGN3 increases bacterial clearance with increasing 

periods (2 to 5 hours) of host-interaction.  The phagocytosis of MRSA became 

increasingly impaired with rising glucose levels but this detrimental effect on U937 

macrophages could be significantly (P < 0.05) reversed in the presence of MGN3. 

MGN3-treated macrophages increased overall bacterial clearance under 

hyperglycaemic conditions, even at high (30mM) glucose levels. Lipopolysaccharide 

(LPS) significantly stimulated CD14 protein expression in U937 

monocytes/macrophages cultured in high (30mM) glucose. Moreover, CD14 analysis 

indicated there was competition taking place between LPS and MGN3, with a 

significant (P < 0.05) decrease in mean relative fluorescence (relative CD14 protein 

levels) after combined treatment of U937 monocytes/macrophages with both LPS 

and MGN3 compared to just LPS treatment alone.   
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In conclusion, this study indicated that MGN3 can reverse some detrimental effects 

of hyperglycaemia on monocyte/macrophage function, by inhibiting glucose-

mediated elevation of CD14 and reversing glucose-mediated inhibition of MRSA 

clearance. These findings can have a major impact for diabetic patients since MGN3 

may be a potential therapeutic strategy to dampen inflammation, stimulate healing 

and promote bacterial clearance in diabetic patients with infected wounds.    
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1. Introduction 
 

1.1 Diabetes Mellitus  
 

Diabetes mellitus (DM) refers to a group of diseases resulting from high levels of 

blood glucose (hyperglycaemia) (Chait and Bornfeldt, 2009) and is a common chronic 

disease recognised globally (Shaw et al, 2010). This is different to diabetes insipidus, 

which is caused by complications to the hypothalamo-neurohypophysial system, 

which could lead to defects in the synthesis of the vasopressin hormone (Di Iorgi et 

al, 2012). There are two types of DM; type 1 DM and type 2 DM. This distinction was 

first made in 1936 (Olokoba et al, 2012).  

 

Type 1 DM usually starts in childhood or early adolescence, and may be caused by an 

autoimmune response in which pancreatic β cells are destroyed by self-antibodies 

(Ozougwu et al, 2013). This results in very low levels of insulin or no insulin produced, 

and thus fluctuating glucose levels. As a result, chronic hyperglycaemia can cause 

cognitive dysfunction and visual impairments from an early age (McCrimmon et al, 

2012). Type 2 DM occurs in adults when insulin becomes ineffective or is produced 

at very low levels. This disease is linked with other diseases, mainly obesity 

(McCrimmon et al, 2012). One of the characteristics of type 2 DM is elevated levels 

of free fatty acids (FFA). FFAs are normally stored in adipose tissue in the form of 

triglycerides and can be used as an alternative source of energy to glucose. Insulin is 

involved in regulating this lipolysis process, resulting in the release of these 

triglycerides as energy (Hussain et al, 2010). Type 2 DM can be managed by a closely 

monitored diet and pharmacological interventions are used to control glucose levels, 

including sulfonylureas and thiazolidinediones that stimulate insulin secretion or in 

some cases direct insulin replacement (Olokoba et al, 2012).   

 

Globally diabetes is recognised as one of the most common chronic diseases, with 

type 2 DM being the most common (Shaw et al, 2010; Olokoba et al, 2012).  Around 

300 million people were living with diabetes worldwide a decade ago (Shaw et al, 

2010). This had risen to 360 million by 2011, with incidence rates being higher in poor 

countries compared to wealthy countries (Olakoba et al, 2012). It is estimated that 
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by 2030 numbers will rise to 440 million, with more children and younger adults 

becoming affected. These increases have been linked to factors such as increased 

physical inactivity, imbalanced diets and increased alcohol consumption that lead to 

higher obesity rates and thus higher incidence rates in type 2 DM (Olokoba et al, 

2012; Shaw et al, 2010). 

 

1.1.1 Health Risks Associated with Diabetes Mellitus 
 

There are many health risks associated with DM, with diabetic patients most likely to 

be susceptible to cancers as well as suffer from a number of psychiatric disorders. 

The risk of cancer is higher in diabetic patients and could be due to the link between 

obesity and hyperglycaemia (Suh and Kim, 2011). Diabetic patients indeed have a 

higher mortality rate of pancreatic, liver or kidney cancer (Harding et al, 2015). 

Patients suffering from type 1 DM have a higher tendency to have suicidal thoughts 

(de Ornelas Maia et al, 2012). 

 

It is widely agreed that type 2 DM is linked to obesity, which in turn is associated with 

chronic inflammation (McCrimmon et al, 2012; Dandona et al, 2005).  This chronic 

inflammation leads to pronounced and excessive synthesis of pro-inflammatory 

cytokines and destructive mediators (Idriss and Naismith, 2000). DM also impairs 

immunological functions such as clearance of pathogens and wound healing (Anas et 

al, 2010).  

 

1.1.2 Effect of Diabetes Mellitus on Inflammation 
 

Immune cells are recruited to sites of infection or injury (Grivennikov et al, 2012). 

Acute inflammation involves a limited and controlled influx of leukocytes from the 

peripheral blood to the site of infection/injury to clear pathogens and cellular debris 

(Buckley et al, 2001). Acute inflammation resolves once the infection and dead 

tissues are removed, thus preventing the inflammatory response becoming excessive 

and prolonged (Buckley et al, 2001).  

 

Immune cells are derived from the haemopoietic stem cells (HSCs). HSCs can 

differentiate into myeloid progenitor cells before turning into granulocyte monocyte 



16 
 

progenitor cells, and then becoming monocytes, dendritic cells (DCs) and 

macrophages (Höchst et al, 2013; Zimmermann et al, 2010). Monocytes are 

leukocytes that circulate in the blood (Geissmann et al, 2003). Monocytes display cell 

surface markers that can assist in their identification, including CD14 and CD16. In 

some cases, monocytes can display equal levels of CD14 and CD16, whereas in other 

situations CD14 levels are high and CD16 levels are low (Geissman et al, 2003). CD14 

are proteins which act as endotoxin receptors on most cells which express TLR4 (e.g. 

Monocytes and macrophages) and they regulate TLR4 endocytosis. CD14 is specific 

to LPS and is an example of a lipopolysaccharide binding protein (Zanoni et al, 2011; 

Zweigner et al, 2006). Monocytes differentiate into tissue macrophages (M0) that 

express CD11c and M0 can become polarised into either pro-inflammatory (M1) or 

anti-inflammatory (M2) macrophages (Savina and Amigorena, 2007; Raggi et al, 

2017). M1 are classically activated by microbial factors and pro-inflammatory 

cytokines, whilst M2 are alternatively activated by anti-inflammatory cytokines 

(Raggi et al, 2017; Espinoza-Jimenez et al, 2012).  

 

Chronic inflammation fails resolve, leading to an unabated influx of leukocytes to the 

site of infection/trauma, and subsequent tissue damage (Buckley et al, 2001). Chronic 

inflammation due to infection or autoimmune diseases has been linked to the growth 

of carcinogenic tumours (Grivennikov et al, 2010).  

 

The immune response is amplified in DM through elevated inflammatory cell 

expression of CD14 (Fernandez-Real et al, 2011; Anas et al, 2010; Sahay et al, 2009). 

Studies have shown that during prolonged periods of chronic inflammation, 

macrophages release large amounts of CD14 which results in elevated levels of 

proinflammatory markers (Fernandez-Real et al, 2011; Anas et al, 2010; Sahay et al, 

2009). In a murine study, chronic inflammation in adipose tissue following insulin 

resistance has been linked to obesity (Xu et al, 2003). In type 2 diabetes, chronic 

inflammation can occur due to increased apoptosis and tissue damage (Donath and 

Shoelson, 2011).  
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1.1.3 Diabetic Foot Ulcers 

 

Diabetic patients have been shown to have defects in wound healing (Daniel et al, 

2012). The peripheral neuropathy and ischemia associated with DM can lead to a type 

of chronic wound, called a diabetic foot ulcer (DFU). DFUs can develop as a result of 

diabetic neuropathy, which has been linked to chronic inflammation (Doupis et al, 

2009) or in some cases ischaemia. Diabetic patients may not feel the initial trauma 

which would result in continuous stress being applied to the wound. If the wound is 

left untreated it could become infected (Cavanagh et al, 2005). Chronic inflammation 

is a key histological feature of DFUs, yet the impaired inflammatory cell function in 

patients with DM increases the risk of infection (Leung, 2007) and developing other 

complications such as osteomyelitis (Dinh et al, 2008).  

 

1.1.4 The Effect of Diabetes Mellitus on Innate Immunity 

 

The role of the immune system is pivotal in providing protection and maintenance of 

the human body.  The immune system defends against invading pathogens through 

a process called phagocytosis (Hooper et al, 2012). Hyperglycaemic conditions found 

in DM cause polymorphonuclear leukocytes to become less responsive (Daniel et al, 

2012; Lin et al, 2006), suggesting DM is likely to impair phagocytosis and increase in 

the likelihood of infection. A murine study performed by Khanna et al (2010) 

concluded that hyperglycaemic conditions impair phagocytic function, resulting in 

insufficient clearance of apoptotic cells and causing elevated release of inflammatory 

cytokines. 

 

When a pathogen is first detected it triggers the non-specific (innate) response 

(Kumar et al, 2011). Invading pathogens present molecules, called pathogen-

associated molecular patterns (PAMPs), that are detected by the host through 

pathogen recognition receptors (PRRs) (Akira et al, 2006). There are multiple types of 

PRRs, one group being toll like receptors (TLRs). TLRs are membrane glycoproteins 

found on immune cells that are involved in gene expression within the innate immune 

system (Takeda and Akira, 2005; Akira et al, 2006). TLRs can recognise specific groups 

of pathogens; for example, LPS released from Gram negative bacteria is recognised 

by TLR4 whereas peptidoglycan from Gram positive bacteria is detected by TLR2 
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(Kumar et al, 2009; Takeda and Akira, 2005; Akira et al, 2006). Lipopolysaccharides 

(LPS) are endotoxins found on the outer cell membrane of gram negative (e.g. MRSA). 

These endotoxins can be secreted by the bacteria trigger an immune response. LPS 

attaches CD14 receptors and causes the production of cytokines (e.g. Tissue necrosis 

factor alpha (TNFα) and interleukin (IL) 6) (Meng and Lowell, 1997; Zweigner et al, 

2006; Komatsuzawa et al, 2006). Phagocytosis is carried out by macrophages, 

neutrophils and in some cases DCs (Savina and Amigorena, 2007). PAMPs released by 

the bacteria attach to PRRs on phagocytes (Kumar et al, 2011), leading to the 

pathogen being engulfed within a phagocytic vesicle called a phagosome (Greenberg 

and Grinstein, 2002) that binds to a lysosome within the phagocyte to form a 

phagolysosome. The lysosome contains hydrolytic enzymes that break down the 

pathogen, and debris is released via exocytosis from the phagosome (Greenberg and 

Grinstein, 2002; Aderem and Underhill, 1999). 

 

1.1.5 Methicillin Resistant Staphylococcus aureus (MRSA) Infection in Diabetic 

Patients 

  

DFUs can become infected by one or more bacteria, with methicillin-resistant 

Staphylococcus aureus (MRSA) being a common opportunistic pathogen in both 

hospital and community-acquired infections (Stanaway et al, 2007; Tentolouris et al, 

2005; Yates et al, 2009). Staphylococcus aureus is a gram-positive bacterium found 

as part of the natural, commensal microflora but it can become an opportunistic 

pathogen (Chambers, 2001). If MRSA infections are left untreated, they can cause 

bacteraemia with is often fatal (Pastagia et al, 2012; Kempker et al, 2010). MRSA has 

become resistant to many antibiotics from the penicillin and β lactam groups (Turos 

et al, 2007; Fisher et al, 2005) including methicillin, making it difficult to treat. 

Vancomycin has been shown to be the most effective antibiotic treatment for MRSA 

infections, but even some cases of vancomycin resistance have now been reported 

(Pastagia et al, 2012).   
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1.2 Dietary Fibres and Innate Immunity 

 

An alternative or complimentary strategy to using antibiotics for the treatment of 

DFU infections is to develop novel therapies that stimulate the body’s own natural 

innate immune system. Factors such as malnutrition and a poor diet can impair 

immune function (Gleeson, 2005; Plat and Mensik, 2005; Marketon and Glaser, 

2008). An effective way to prevent immune functions from declining may include the 

use of dietary supplements and some evidence suggests they can reduce the risk of 

infection and/or cancer (Kaminogawa and Nanno, 2004; Meoni et al, 2013). 

Moreover, dietary fibres have been shown to reduce inflammation in chronic 

diseases such as cardiovascular disease (CVD), kidney disease and diabetes (King, 

2005; Krishnamurthy et al, 2012). 

 

Fibre-derived substances such as β-glucan have been shown to stimulate immune 

activity in both animal models and humans when consumed in the diet (Tzianabos, 

2000; Volman et al, 2008).  Dietary fibres are organic components of foods that 

cannot be digested by humans in the small intestine (Mudgil and Barak, 2013). 

However, consumption of dietary fibres has shown to reduce the risk of developing 

coronary heart disease, hypertension and stroke (Yan et al, 2015), alter gut 

microbiota to control the symptoms of type 2 diabetes (Zhao et al, 2018) and lower 

cholesterol (Kristensen et al, 2012). Dietary fibres are found in many different plant-

derived foods, such as vegetables, cereals and nuts (Dhingra et al, 2012), as well as 

crustaceans and some fibre-enriched foodstuffs that contain synthetically-made 

dietary fibres (Fuentes-Zargoza et al, 2010).  Dietary fibres can be put into two 

subtypes based on their solubility; soluble and insoluble. This can be confirmed using 

a solution containing human digestive enzymes (Tosh and Yada, 2010; Tungland and 

Meyer, 2002). Dietary fibres are absorbed in different ways. Dietary fibres have the 

ability to resist hydrolysis (Lockyer and Nugent, 2017) due to the body’s inability to 

break down the glycosidic bonds within the fibres, allowing them to pass through the 

intestine undigested (Palafox-Carlos et al, 2011). 

 

Dietary fibres are typically plant-derived carbohydrate polymers, either 

oligosaccharides or polysaccharides. Examples of these include cellulose, pectin 
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substances and resistant starch (Elleuch et al, 2011). Celluloses are polysaccharides 

typically containing thousands of glucose molecules, whereas pectins are made up 

sugars and galacturonic acid and resistant starches are made up of linear alpha-

glucan chains (Fuentes-Zargoza et al, 2010). They have also been used as functional 

ingredients in meat-derived products to enhance their nutritional value (Biswas et al, 

2011).  

 

Plant cell walls contain polysaccharides known as hemicelluloses. This fibre group 

includes xyloglucans and xylans (Scheller and Ulvskov, 2010). Xylans can sometimes 

have arabinose sugars attached to their beta-glucose backbone, changing them to 

arabinoxylans (Scheller and Ulvskov, 2010; Tan et al, 2013). Arabinoxylans (AXs) 

derived from cereal hemicelluloses have been shown to modulate both innate and 

adaptive immune responses in animal models (Zhang et al, 2015). In mice, AXs have 

shown to induce macrophage activation and phagocytosis (Zhou et al, 2010; Kim et 

al, 2005). The arabinoxylan known as MGN3 or Biobran, has the ability to activate 

immune cells, including T cells and monocytes (Ghoneum and Agrawal, 2011). MGN3 

has shown to increase dendritic cell activation, making it a potential strategy to fight 

infections and possibly cancer (Ghoneum and Agrawal, 2011). MGN3 has also shown 

it can reduce the effects of immunosenescence in natural killer cells and possibly 

lowering the incidence rate of fatal diseases such as cancer in the elderly (Elsaid et al, 

2018). MGN3 was named using the surnames of the scientists who developed it in 

1992 (Maeda, Ghoneum and Ninomiya) with 3 indicating it is a third-generation 

product (Masood et al, 2013). 

  

1.2.1 Effects of Dietary Fibres on Type 2 Diabetes Mellitus 

 

Studies have shown that dietary fibres have the potential to reduce the effects of 

DM, possibly by targeting the high glucose levels or reducing its effects, or by 

mediating other related chronic illnesses such as obesity and CVD. It has been 

reported that consuming cereal fibre, wholegrain foods and bran products lowers the 

risk of CVD, obesity and type 2 DM (Cho et al, 2013). 

 



21 
 

It has been previously stated that diabetic patients have defects in collagen 

production, resulting in impaired wound healing (Daniel et al, 2012). Interestingly, 

studies have shown that the consumption of dietary fibres such as glucomannans, 

can help to promote collagen production, in addition to stimulating keratinocytes to 

move the site of trauma (Al-Ghazzewi et al, 2015). As well as reducing the number of 

inflammatory markers (Weickert and Pfeiffer, 2008), there is evidence to suggest 

dietary fibres can enhance gut associated lymphoid tissue (GALT), increasing the rate 

of phagocytosis (Schley and Field, 2002). This evidence suggests dietary fibres could 

be beneficial in assisting in the healing process of DFUs. Dietary fibres could either be 

ingested and/or applied directly to wounds via dressings, which has not yet been 

proposed to date.  

 

A randomized trial was performed in patients with type 2 DM, to compare diets 

consisting of low glycaemic index foods with a high cereal fibre diet. The results 

showed that both diets reduced the mean baseline glycated haemoglobin A1c 

(HbA1c) concentration but the effect was more prominent in the diet containing 

foods that have a low glycaemic index (Jenkins et al, 2008). A study has been done to 

test the effectiveness of diet and the need of supplementary insulin in type 2 DM 

patients. Patients were given diets consisting of low glycaemic foods, with or without 

wheat bran. The results showed that 80% of patients who consumed wheat bran 

needed insulin supplementation whereas only 40% of patients who consumed wheat 

bran needed supplementary insulin (Afaghi et al, 2013).  

 

1.3 Uptake of Dietary Fibres 

 

Research on the dietary uptake of β-glucans and arabinoxylans, such as MGN3, has 

confirmed that ingested fibres are transported throughout the body, including the 

spleen and bone marrow (Hong et al, 2004). Studies have shown that oral intake of 

dietary fibres has an influence on the mucosal membranes of the intestine, in 

particular the Peyer’s patches and also the intestinal intraepithelial lymphocytes in 

mice (Suzuki et al, 1990; Tsukada et al, 2003). Fluorescently labelled β glucan taken 

orally and later isolated from the intestinal epithelium and Peyer’s patch were found 

to be transported from the intestine to specialised lymphoid tissue by Microfold (M) 
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cells (Rice et al, 2005). DCs within the mucosal membrane are also responsible for 

taking up polysaccharides, including dietary fibres (Sandvik et al, 2007). It has been 

shown that DCs project their dendrites through the epithelium lining and sample the 

gut contents by endocytosis (Rescigno et al, 2001). Hong et al, (2004) have shown 

that dietary fibres, administrated orally at 400μg/day, are transported to multiple 

tissues including the spleen, lymph and bone marrow by gastrointestinal 

macrophages. 

 

The intestine is covered with long finger-like structures called villi containing a large 

network of blood cells and epithelial cells with microvilli. These work together to 

increase the intestinal surface area by 60 - 120 times to maximise the absorbtion of 

nutrients (Helander and Fändriks, 2014). The lymph fluid, containing immune cells 

from the Peyer’s patches, filters into the mesenteric lymph node (Tamoutounour et 

al, 2012; Schenk and Mueller, 2008). Within the villi there are areas of connective 

tissue called lamina propria that separate epithelial cells from smooth muscle layers 

(Schenk and Mueller, 2008). The intestinal epithelium has a specialised lymphoid 

layer, known as the GALT, which contains up to 70% of the body’s immune cells (Jung 

et al, 2010). Abnormal immune responses within the GI tract can lead to chronic 

inflammatory diseases. This could be due pathogenic bacteria, e.g. Escherichia coli 

seen in Crohn’s disease (Chassaing et al, 2011; Gullberg and Söderholm, 2006) or 

protein intolerances as seen in coeliac disease (Dewar et al, 2003). Changes in the 

intestinal microbiota are detected by macrophages and DCs, as well as other 

lymphocytes (Kumar et al, 2011; Akira et al, 2006).   

 

It is known that dietary fibres, including β-glucans and arabinoxylans, taken orally 

come in contact with the mucosal immune system (Volman et al, 2008). Within the 

intestinal mucosa there are dome shaped lymphoid structures called Peyer’s patches, 

named after the scientist who discovered them in 1677 (Jung et al, 2010). The Peyer’s 

patch is covered in lymphoid tissue that is involved in immune responses (Parsons et 

al, 1991). This lymphoid tissue is known as the follicle associated epithelium (FAE) 

which is where the microfold (M) cells are located (Jung et al, 2010; Chassaing et al, 

2011; Gullberg and Söderholm 2006; Kanaya et al, 2018). The role of M cells is to 
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sample intestinal antigens (Kanaya et al, 2018; Schenk and Mueller, 2008). M cells 

transport antigens across the FAE into the Peyer’s patch via a process called 

transcytosis (Hase et al, 2009). DCs derived from monocytes are able to extend and 

sample the antigens from M cells and present them to lymphocytes for phagocytosis 

(Schenck and Mueller, 2008; Salim et al, 2009). The dendritic cells move to regions of 

the Peyer’s patch containing T cells, where they convert the T cells in 

immunomodulatory cells called regulatory T cells (Treg) that move to the lamina 

propria and secrete interleukins to signal an immune response (Tamoutounour et al, 

2012; Gullberg and Söderholm 2006).    

 

In summary, the key principal mechanisms for dietary fibre uptake and transportation 

across the mucosal epithelial membrane are by gastrointestinal M cells and DCs. After 

transportation to the spleen, lymphatics and bone marrow, AXs (e.g. MGN3) can 

modulate inflammatory responses in non-intestinal/peripheral tissues by interacting 

with inflammatory cells (such as macrophages). 

 

1.4 Hypothesis  

 

An alternative or complimentary strategy to using antibiotics for the treatment of 

DFU infections is to develop novel therapies that stimulate the body’s own natural 

innate immune system. In theory, dietary fibres such as MGN3 may help to increase 

the clearance of bacteria in DFUs whilst at the same time reducing inflammation. This 

study investigated the effect of MGN3 on the phagocytosis of MRSA by U937 

macrophages and CD14 expression in U937 monocytes/macrophages under 

hyperglycaemic conditions. 

 

Alternative Hypothesis – MGN3 significantly reduces the CD14 marker expression of 

inflammation in U937 monocytes/macrophages but promotes the phagocytosis of 

MRSA by U937 macrophages under hyperglycaemic conditions. 

 

Null Hypothesis – MGN3 has no significant effect on the CD14 marker of inflammation 

in U937 monocytes/macrophages but promotes phagocytosis of MRSA by U937 

macrophages under hyperglycaemic conditions. 
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1.5 Aim 

 

To investigate the effect of MGN3 on the CD14 marker expression of inflammation in 

U937 monocytes/macrophages and the phagocytosis of MRSA by U937 macrophages 

under hyperglycaemic conditions. 

 

1.6 Objectives 

  

1) To confirm the differentiation of U937 monocytic cells into U937 

macrophages via detection and quantification of CD11c levels by flow 

cytometry. 

2) To evaluate the effect of LPS and MGN3 on the clearance of MRSA during 

phagocytosis by U937 macrophages under hyperglycaemic conditions. 

3) To measure the CD14 marker expression by flow cytometry in U937 

monocytes/macrophages under hyperglycaemic conditions. 

4) To confirm CD14 detection by fluorescence microscopy in U937 

monocytes/macrophages following treatment with LPS or MGN3 under 

hyperglycaemic conditions. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



25 
 

2. Methodology 
 

2.1 Materials 
 

U937 Human Monocyte cell line – sample isolated from a male patient (37 years old), 

histiocytic lymphoma (Health Protection Agency Culture Collections, Salisbury)  

 

RPMI-1640 media (with L-glutamine and 25mM HEPES) (Thermo Fisher Scientific, 

Loughborough)  

 

Foetal Bovine Serum [FBS] (Sigma-Aldrich, Dorset) 

 

Penicillin-Streptomycin (5,000 U/mL) (Thermo Fisher Scientific, Loughborough) 

 

Phorbol12-Myristate 13-Acetate [PMA] (Applichem, Darmstadt) 

 

Trypan Blue (Sigma-Aldrich, Dorset) 

 

D-(+)-Glucose (Sigma-Aldrich, Dorset) 

 

MGN-3/Biobran (Revital, Middlesex)  

 

Nutrient Broth (Oxoid, Basingstoke) 

 

Nutrient Agar (Oxoid, Basingstoke) 

 

Saline (Sigma-Aldrich, Dorset) 

 

Methicillin Resistant Staphylococcus aureus [MRSA] Strain II – Patient specimen 

(Withington Hospital, Manchester) 

 

Lipopolysaccharide [LPS] (Sigma-Aldrich, Dorset) 

 

Trypsin EDTA (Thermo Fisher Scientific, Loughborough) 

 

Bovine Serum Albumin [BSA] (Sigma-Aldrich, Dorset) 

 

Ethanol (70%) (Sigma-Aldrich, Dorset) 

 

Dulbecco's phosphate-buffered saline [DPBS] (Thermo Fisher Scientific, 

Loughborough) 
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Silicon wafers (Sigma-Aldrich, Dorset) 

 

Paraformaldehyde (Sigma-Aldrich, Dorset) 

 

Triton X-100 (Sigma-Aldrich, Dorset) 

 

FITC-conjugated anti-human CD11c antibody (Abcam, Cambridge)  

 

FITC-conjugated anti-human CD14 antibody (Abcam, Cambridge)  

 

Unconjugated anti-human CD14 antibody (Abcam, Cambridge) 

 

2.2 Ethics  

 

An ethical application (Review reference number: 2019-3255-4589) was submitted 

for this project.  No ethical issues were raised in relation to the project and ethical 

approval was granted. 

 

2.3 Media 

 

Complete medium (CM): RPMI-1640 media with L-Glutamine, 11mM glucose and 

25mM HEPES, supplemented with 10% FBS and 2% (v/v) penicillin-streptomycin. 

 

Antibiotic-free (AB-free) medium: RPMI-1640 media with L-Glutamine, 11mM 

glucose and 25mM HEPES, supplemented with 10% FBS. 

 

Glucose-supplemented media: D-(+)-glucose dissolved in CM or AB-free medium to 

give a final concentration of 30mM glucose and then used to prepare additional 

glucose-supplemented media with final glucose concentrations of 15, 20 or 25mM by 

serial dilution.   

 

MGN-3 supplemented medium: MGN-3 dissolved in CM or AB-free medium to a 

concentration of 2mg/ml. 

 

All media were sterile filtered (0.5 µm) prior to use in cell culture experiments. 

 
 

2.4 Cell Culture 

 

U937 monocytes were cultured at 0.5x10⁶ viable cells/ml in CM at 37°C and 5% CO2, 

with medium changes and cell viability checks performed every 2 days on a Biorad 
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TC10 automated cell counter using the trypan blue staining method (Tran et al, 2011). 

In this method trypan blue enters dead (non-viable) cells via gated cell membrane 

channels due to its negative charge. Cell viability was maintained at 85% or greater 

for experimental assays. 

 

To model prolonged hyperglycaemia the glucose concentration was increased in an 

incremental (step-wise) manner from 11mM to 15, 20, 25 or 30mM in subsets of 

U937 cells every 7 days using glucose-supplemented media until the highest glucose 

concentration (30mM) was reached. This process generated five sets of U937 cells 

(each with viability at 85% or higher) growing under different glucose concentrations 

(11, 15, 20, 25 or 30mM). Glucose-supplemented U937 cells were utilised in 

experiments after growing for 3 weeks at the appropriate elevated glucose 

concentration. 

 

2.5 U937 Monocyte Differentiation into Macrophages 

 

U937 monocytes were re-suspended at 1x10⁶ cells/ml in CM or glucose-

supplemented (11, 15, 20 or 30mM glucose) medium.  PMA (50ng/mL) was added to 

differentiate the U937 monocytes into adherent U937 macrophages following 

incubation at 37°C and 5% CO₂ for 72 hours. PMA induces differentiation into 

macrophage-like cells by activating protein kinase receptors and altering cell gene 

expression of transcription factors such as activator protein-1 (Song et al., 2015; Le 

et al., 2015). 

 

2.5.1 CD11c Analysis 

 

In order to confirm that the U937 monocytes had been successfully differentiated 

into M0 macrophages, flow cytometry was carried out to assess the expression of the 

CD11c cell surface marker. The U937 cells were differentiated (Section 2.5) and 

compared to negative control (NC) U937 cells lacking PMA treatment. Once 

differentiated, cells were washed 3 times in DPBS and 50µl of trypsin EDTA was added 

to each well for 5 minutes at 37°C and 5% CO2. The trypsin was then neutralised by 

adding 50µl of RPMI media. The cells were then centrifuged at 500g for 5 minute and 
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the cell pellet washed 3 times in DPBS. After centrifugation, cells were fixed with 

200µl of 4% paraformaldehyde at room temperature for 10 minutes. The cells were 

washed three times in DPBS before incubating in FITC-conjugated CD11c antibody 

diluted 1:5 with wash buffer [1:10 FBS in DPBS] at room temperature for 1 hour in 

the dark. 

 

The cells were washed three times in DPBS and analysed on a BD Accuri C6F1 flow 

cytometer to determine the expression of the CD11c cell surface marker. The 

cytometer analysed 10,000 individual cell events using BD Accuri C6 Software in the 

FSC and FL1-A. The data collected were displayed as the mean fluorescence intensity 

(MFI) compared to the NC (undifferentiated U937 monocytes). 

 

2.6 Effect of MGN3 on CD14 in U937 Monocytes and Macrophages under 

Hyperglycaemic Conditions 

 

U937 monocytes were cultured as described in Section 2.4 without subsequent 

differentiation into the U937 macrophages.  Half the monocytes were retained in CM 

and the other half in glucose-supplemented (30mM glucose) medium as appropriate 

throughout the experiment. Monocytes were resuspended at 1x10⁶ cells/ml in CM or 

glucose-supplemented media (30mM glucose), and then treated in plate format (n=4) 

for 24 hours with/without LPS (5µg/ml) in the presence or absence of MGN3 or BSA 

(2mg/ml). Following treatment, U937 monocytes were pelleted by centrifugation for 

5 minutes at 500g and then washed 3 times in 200µl of DPBS. The localisation of CD14 

in the U937 monocytes was investigated by confocal microscopy, whilst CD14 levels 

were determined by flow cytometry. 

 

Another set of U937 monocytes was resuspended at 1x10⁶ cells/ml in CM or glucose-

supplemented media (30mM glucose) at 37°C and 5% CO₂. Two sets of U937 

macrophages were then generated from the U937 monocytes using PMA treatment 

as previously described (Section 2.5). One set was prepared on sterile silicon wafers 

and a second set in plate format lacking silicon wafers. Half the macrophages were 

retained in CM and the other half in glucose-supplemented (30mM glucose) medium 

as appropriate throughout the experiment. The macrophages were then treated for 
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24 hours with/without LPS (5µg/ml) in the presence or absence of MGN3 or BSA 

(2mg/ml). The localisation of CD14 in macrophages cultured on silicon wafers was 

investigated by confocal microscopy (n=4), whilst CD14 levels in macrophages 

prepared in plate format were determined by flow cytometry (n=4).   

 

2.6.1 CD14 Localisation by Confocal Microscopy 

 

Following treatments (Section 2.6) U937 monocytes were stained with FITC-

conjugated anti-human CD14 antibody. After pelleting the cells by centrifugation at 

500g for 5 minutes and washing 3 times in DPBS, cells were fixed with 200µl of 4% 

paraformaldehyde at room temperature for 10 minutes. The cells were washed 3 

times in DPBS before adding 100µl 0.1% triton X-100 for 5 minutes. The cells were 

washed 3 times with DPBS before incubating in blocking buffer (3% BSA in DPBS) at 

room temperature for 1 hour. Cells were pelleted by centrifugation at 500g for 5 

minutes before incubating in FITC-conjugated CD14 antibody diluted 1:5 with wash 

buffer [1:10 FBS in DPBS] at 4°C overnight in the dark.  A small 20µl aliquot of each 

sample was placed on a microscope slide, covered with a coverslip and observed 

under a Nikon E600 epifluorescence microscope at 100X magnification and analysed 

using AxioVision 2.0 software. 

 

 U937 macrophages adhered to silicon wafers were treated as described in Section 

2.6 before being fixed and stained with FITC-conjugated anti-human CD14 antibody 

using a method similar to that described for monocytes but without requiring 

centrifugation between sequential steps during the staining process. Silicon wafers 

were washed 3 times in DPBS and cells were then fixed with 200µl of 4% 

paraformaldehyde at room temperature for 10 minutes. Silicon wafers were washed 

3 times in DPBS before incubating in 100µl 0.1% triton X-100 for 5 minutes. Silicon 

wafers were washed 3 times with DPBS before incubating in blocking buffer (3% BSA 

in DPBS) at room temperature for 1 hour. Silicon wafers were then incubated in FITC-

conjugated CD14 antibody diluted 1:5 with wash buffer [1:10 FBS in DPBS] at 4°C 

overnight in the dark. The silicon wafers were placed onto microscope slides and 

observed by confocal microscopy.  
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2.6.2 CD14 Analysis by Flow Cytometry 

 

Following treatments (Section 2.6), U937 monocytes or adherent U937 macrophages 

in plate format were retrieved for CD14 analysis by flow cytometry. For U937 

macrophages, 50µl of trypsin EDTA was added to all of the wells for 5 minutes to 

detach the cells. After 5 minutes, the trypsin EDTA was neutralised by adding 50µl of 

CM or glucose-supplemented (30mM glucose) medium. The detached U937 

macrophages cells were then centrifuged at 500g for 5 minutes and the cell pellet 

washed 3 times in DPBS. For non-adherent U937 monocytes, cells were pelleted by 

centrifugation for 5 minutes at 500g and then washed 3 times in DPBS.   

 

Macrophage or monocyte pellets were then fixed using 200µl 4% paraformaldehyde 

in DPBS before being washed 3 times in DPBS. The cells were then centrifuged at 500g 

for 5 minutes and the cell pellet incubated in 100µl 0.1% triton X-100 added for 5 

minutes. The cells were then centrifuged and washed 3 times with DPBS. Cell pellets 

were then incubated in blocking buffer (3% BSA in DPBS) at room temperature for 1 

hour. The blocking buffer was removed and cells were incubated at 4°C in the dark 

with FITC-conjugated anti-human CD14 antibody diluted 1:5 with wash buffer [1:10 

FBS in DPBS] or wash buffer (unstained control). 

 

Samples were centrifuged, washed 3 times with DPBS and CD14 assessed by flow 

cytometry on a BD Accuri C6FI cytometer. The cytometer analysed 10,000 events 

using BD Accuri C6 Software in the FSC FL1-A. The data collected were displayed as 

the total and MFI compared to the untreated negative control (NC). 

 

2.7 Effect of MGN-3 on Bacterial Clearance under Hyperglycaemic Conditions 

 

2.7.1 Bacteria preparation 

 

Methicillin resistant Staphylococcus aureus (MRSA) strain II was grown on nutrient 

agar (NA) via the plate streak method to obtain single MRSA colonies. The plate was 

incubated at 37°C for 24 hours. After incubation one single bacterial colony was 

selected and added to nutrient broth (NB) which was incubated at 37°C on a shaker 

for 24 hours. 
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2.7.2 Serial dilutions 

 

The serial dilution technique is often used to calculate the number of bacterial 

colonies, measured in colony forming units (CFUs) (Brugger et al, 2012).  Ten-fold 

serial dilutions of the cultured broth were made using sterile saline down to 10 -⁸. The 

serial dilutions were plated out onto duplicate NA plates and incubated at 37°C for 

24 hours. Plate counts were used to determine the concentration of MRSA in the 

original broth solution. 

 

2.7.3 MGN3/LPS treatments   

 

U937 monocytes were cultured in CM (11mM glucose) or glucose-supplemented CM 

medium at various glucose concentrations (15, 20, 25 or 30mM) as previously 

described (Section 2.4). A 24-well plate (apart from one row of controls) containing 

adherent U937 macrophage was created from U937 monocytes using PMA (Section 

2.5).  Treatments were applied with/without LPS (5µg/ml) in the presence or absence 

of MGN3 or BSA (2mg/ml) to each row using AB-free medium containing the 

appropriate glucose concentration. The plate was incubated for 24 hours at 37°C and 

5% CO₂.  The supernatants were discarded and 1x10⁴ CFU of MRSA in AB-free medium 

at the appropriate glucose concentration were added to each well on the plate. The 

plate was incubated for 2, 3, 4 or 5 hours at 37°C and 5% CO₂ to enable phagocytosis 

to take place. 

 

The supernatant was removed and retained before adding 450µl of trypsin to each 

well for 5 minutes followed by 450µl of AB free media. The appropriate supernatant 

was added back to each well and mixed thoroughly before spreading 100µl onto 

duplicate nutrient gar plates and incubating for 24 hours at 37°C. MRSA recovery was 

then determined using the bacterial counts on the agar plates.  

 

2.7.4 Direct effect of MGN3 on MRSA  

 

MRSA (1x10⁴ CFU) were prepared in AB-free medium and incubated at 37°C for 3 and 

5 hours in a 24 well-plate following treatment with/without 2mg/ml MGN3.  The 

supernatant was removed and retained before adding 450µl of trypsin to each well 
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for 5 minutes followed by 450µl of AB free media. The appropriate supernatant was 

added back to each well and mixed thoroughly before spreading 100µl onto duplicate 

nutrient agar plates and incubating for 24 hours at 37°C. MRSA recovery was then 

determined using the bacterial counts of the incubated agar plates.  

 

2.8 Statistical analysis 

 

Data was analysed using IBM SPSS Statistics (version 25) software. The data sets were 

compared between each other using one-way analysis of variance (ANOVA) followed 

by either Tukey Post Hoc comparison tests or student’s t-tests. Significant differences 

were indicated by a probability (P value) < 0.05 in all cases. 
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3. Results 
 

3.1 Differentiation of U937 Monocytes 
 

U937 monocytes were cultured and differentiated into macrophages (M0) using PMA 

(50ng/mL). The differentiation of monocytes into M0 was confirmed by detection of 

CD11c by flow cytometry (Figure 1 and 2).  

 

Flow cytometry showed successful differentiation of U937 monocytes into U937-

derived macrophages (M0) following treatment with PMA. Flow cytometry 

demonstrated a significant (*: P<0.0001) increase in MRF of CD11c (Figure 1) in PMA-

differentiated U937 cells (MRF = 3.20) compared to untreated U937 monocytes (MRF 

= 1.00). This upregulation of the CD11c marker (Figure 2), reflected by the percentage 

of CD11c positive cells increasing in PMA-differentiated macrophages (76.0%) 

compared to monocytes (0.9%), confirmed the differentiation of U937 monocytes to 

macrophage-like cells following PMA treatment. 

  

Figure 1: Generation of CD11c-positive U937 Macrophages. The mean relative fluorescence (MRF) of CD11c was 

significantly (*: P<0.05; n = 3) elevated in CD11c-poitive U937-derived macrophages (M0) compared to non-

differentiated U937 monocytes that were CD11c-negative. The MRF values are relative to levels detected in 

unstained monocytes (MRF =1).  Columns and error bars indicate the MRF ± standard error of the mean (SEM) in 

all cases. 
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Unstained monocytes 

Unstained macrophages CD11c + macrophages 

CD11c + monocytes 

Figure 2: CD11c protein expression in U937 monocytes and macrophages (M0). Flow cytometry charts showed the percentage 

of CD11c positive cells increases in PMA-differentiated macrophages (76.0%) compared to monocytes (0.9%). 
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3.2 Effect of MGN3 on the Phagocytosis of MRSA 
 

U937 macrophages were cultured in glucose (11mM) prior and during treatment 

with/without BSA or MGN3 (2mg/mL) for 24 hours, and then incubated with MRSA 

for different periods (2, 3, 4 or 5hrs) of host-pathogen interaction (Figure 3). 

 

MRSA recovery (CFU/ml) per million viable macrophages progressively decreased 

with increasing periods of host-pathogen interaction, indicative of macrophages 

carrying out successful bacterial clearance. Statistical analysis confirmed a significant 

decrease (P = 0.0001; n = 12) in MRSA recovery (CFU/ml) per million viable 

macrophages compared to the corresponding negative control (NC) following 

treatment of macrophages with MGN3 (but not the BSA control), regardless of the 

period of host-pathogen interaction.  This was understandable as the BSA treatment 

was a control molecule not expected to have any activity on bacterial clearance. 

These findings demonstrated MGN3 enhances the phagocytosis of MRSA by U937 

Figure 3 Effect of MGN3 on the Phagocytosis of MRSA. Mean MRSA recovery (CFU/ml) per million viable 

macrophages cultured in 11mM glucose was determined following a period (2, 3, 4 and 5 hours) of host-pathogen 

interaction with/without prior treatment of macrophages with MGN3. Significant (*: P < 0.05; n = 12) changes in 

MRSA recovery (CFU/ml) per million viable macrophages compared to the untreated negative control (NC) were 

observed following treatment with MGN3 but not BSA. Columns and error bars indicate the mean MRSA recovery 

(CFU/ml) per million viable macrophages ± the standard error of the mean (SEM) in all cases. 
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macrophages. Moreover, the absolute difference in bacterial clearance between the 

corresponding NC and MGN3 treated macrophages was maintained as the host-

pathogen incubation period increased from 2 to 5 hours. 

  

3.3 Direct Effect of MGN3 on MRSA Growth  

 
MRSA was grown in 11mM glucose with/without direct treatment with MGN3 (2mg/mL) to 

span similar periods (3 or 5hrs) of host-pathogen interaction outlined in Section 3.2. There 

was no significant difference (P = 0.981, 3hrs and P = 0.87, 5 hrs; n = 12) noted between 

MGN3-treated bacteria and corresponding negative controls consisting of MRSA grown in 

the absence of MGN3 (Figure 4).  

  

 

Figure 4: Direct Effect of MGN3 on MRSA Growth. Mean MRSA recovery (CFU/ml) after incubation in 11mM 

glucose with/without MGN3 treatment for 3 or 5 hours. Columns and error bars indicate the mean MRSA recovery 

(CFU/ml) ± the standard error of the mean (SEM) in all cases. No significant differences (P > 0.05; n = 15) were 

detected between MRSA growth during MGN3 treatment and the corresponding negative control (NC) consisting 

of MRSA grown in the absence of MGN3. 
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These findings suggest that MGN3 has no direct effect on MRSA growth and confirm 

the enhanced bacterial clearance observed in Figure 2 was due to the effect of MGN3 

on macrophage (host) phagocytic activity rather than trace amounts of MGN3 having 

any direct inhibitory effect on bacterial growth.  

 

3.4 Effect of Glucose Concentration on MGN3-Induced Phagocytosis  
 

U937 macrophages were cultured in different glucose concentrations (11, 15, 20, 

30mM) and treated with or without MGN3 (2mg/mL) for 24 hours prior to a 3-hour 

period of host-pathogen interaction (Figure 5). Statistical analysis using a one-way 

ANOVA confirmed a significant difference (P < 0.0001) between the treatment 

groups.  

 
 

Figure 5: Mean MRSA recovery (CFU/ml) per million viable macrophages cultured in progressively increasing 

glucose concentrations (11, 15, 20, 30mM) was determined following treatment with or without MGN3 and a 3-

hour period of host-pathogen interaction. Bacterial clearance was significantly (P<0.05; n = 15) impaired by 

increasing glucose concentration in both the negative control (NC) and MGN3-treated macrophages. However, 

MRSA recovery (CFU/ml) per million viable macrophages was significantly (*: P < 0.05; n = 15) reduced following 

treatment with MGN3 compared to the corresponding NC, regardless of the glucose concentration. Columns and 

error bars indicate the mean MRSA recovery (CFU/ml) per million viable macrophages ± the standard error of the 

mean (SEM) in all cases. 
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The phagocytic ability of U937 macrophages was significantly (P < 0.0001) impaired 

by increasing glucose concentration in both the negative control (NC) and MGN3-

treated macrophages, indicated by increased MRSA recovery following the 3-hour 

host-pathogen interaction. However, MGN3 significantly increased phagocytosis 

compared to the corresponding NC, regardless of the glucose concentration. This 

suggests that MGN3 can negate the detrimental effects of glucose on macrophage-

mediated bacterial clearance, even at very high glucose concentrations of 30mM. 

 

3.5 Effect of Glucose on Monocyte/Macrophage CD14 Protein Levels 
 

3.5.1 Monocyte CD14 Protein Levels 
 

 
 

The effect of glucose on CD14 protein levels in U937 monocytes was assessed by flow 

cytometry (Figure 6). Findings showed high (30mM) glucose only significantly (*: P < 

0.0001, n = 4) increased CD14 levels in U937 monocytes following treatment with  

Figure 6: Effect of High Glucose on CD14 Levels in U937 Monocytes. MGN3 and particularly LPS-activation of U937 

monocytes significantly (*:P < 0.0001; n = 4) increased levels of CD14, measured as mean relative fluorescence 

(MRF) by flow cytometry, following exposure to high (30mM) glucose levels compared to corresponding lower 

(11mM) glucose conditions. MGN3 was able to significantly (#: P < 0.0001; n = 4) reverse the effects of high glucose 

on LPS-mediated induction of CD14 protein expression. Columns and error bars indicate the MRF ± the standard 

error of the mean (SEM) in all cases. 

 



39 
 

MGN3 or LPS, when comparing to corresponding CD14 levels found at 11mM glucose. 

In contrast, high (30mM) glucose had no significant (P>0.05) effect on CD14 levels 

(mean relative fluorescence (MRF) = 1.47) in inactivated negative control (NC) 

monocytes compared to CD14 levels found at 11mM glucose (MRF = 1.00) in NC 

monocytes. Although both MGN3- and LPS-activation appeared to mediate the 

response of monocytes to high (30mM) glucose concentration, the induction of CD14 

protein levels by MGN3 (MRF = 2.51) was relatively modest compared to levels 

induced by LPS (MRF = 3.38). Moreover, MGN3 was able to significantly (#: P = 0.005) 

reverse the effects of high (30mM) glucose on LPS-mediated CD14 levels, reducing 

the MRF by 20.1% (from 3.38 to 2.70). 

 

Figure 7: Effect of High Glucose on CD14 Levels in U937 Monocytes. MGN3 and particularly LPS-activation of 

U937 monocytes significantly (*:P < 0.0001; n = 4) increased levels of CD14, measured as mean relative 

fluorescence (MRF) by flow cytometry, following exposure to high (30mM) glucose levels compared to 

corresponding lower (11mM) glucose conditions. MGN3 was able to significantly (#: P < 0.0001; n = 4) reverse 

the effects of high glucose on LPS-mediated induction of CD14 protein expression. Columns and error bars 

indicate the MRF ± the standard error of the mean (SEM) in all cases. 
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By determining the mean relative fluorescence (MRF) compared to the appropriate 

glucose-matched negative control (NC), CD14 flow cytometry data (Figure 7) showed 

that at lower glucose conditions (11mM), neither LPS (MRF = 1.28) or MGN3 (MRF = 

0.76) had significant effects on CD14 levels relative to the glucose-matched NC (MRF 

= 1.00). Similarly, at high glucose (30mM), MGN3 had no significant effect on CD14 

levels (MRF = 1.30) compared to the glucose-matched NC (MRF = 1.00). In stark 

contrast, CD14 levels were significantly (*: P < 0.0001; n = 4) stimulated by LPS (MRF 

= 2.95) at high glucose (30mM) conditions compared to the glucose-matched NC 

(MRF = 1.00). However, concomitant treatment of MGN3 with LPS (MGN3+LPS) could 

significantly (#: P <0.0001; n = 4) dampen the elevation of CD14 levels (MRF = 1.63) 

induced by LPS activation (MRF = 2.95).  

Figure 8: Expression of CD14 in monocytes. Example of flow cytometry charts showing percentage of CD14-positive 

cells increased in LPS-treated monocytes after exposure to high (30mM) glucose compared to the negative control 

(NC). MGN3 inhibited the effect of LPS on CD14, with combined (LPS+MGN3) treatments resulting in intermediate 

levels of CD14 in monocytes. 
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It was noted that there was an increase in percentage of CD14-positive U937 

monocytes in all treatment groups after exposure to high (30mM) glucose (Figure 8). 

However, MGN3 was seen to reduce the effect of LPS on CD14, bringing CD14 down 

to an intermediate level with the combined (LPS+MGN3) treatments.  

 

3.5.2 Macrophage CD14 Protein Levels  

 

The effect of glucose on CD14 protein levels in U937 macrophages was assessed by 

flow cytometry (Figure 9).  Compared to corresponding CD14 levels at low (11mM) 

glucose conditions, only LPS-activation significantly (*: P = 0.043; n = 4) increased 

CD14 levels in U937 macrophages cultured under high (30mM) glucose conditions, 

increasing MRF from 1.0 to 1.4. All other treatments and the negative control (NC) 

showed no significant difference (P > 0.05) between CD14 protein levels at high 

(30mM) glucose compared to corresponding low (11mM) glucose conditions.  

Similarly, to findings found with U937 monocytes, MGN3 significantly (#: P = 0.03; n 

= 4) reversed LPS-mediated elevation of CD14 levels in macrophages at high (30mM) 

glucose, reducing MRF by 17.9% (from 1.40 following LPS-activation to 1.15 in 

macrophages receiving combined LPS and MGN3 treatment). 
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By determining the mean relative fluorescence (MRF) compared to the appropriate 

glucose-matched negative control (NC), CD14 flow cytometry data (Figure 10) 

showed that at lower (11mM) glucose conditions, neither LPS (MRF = 1.50) or MGN3 

(MRF = 0.98) had significant (P > 0.05) effects on CD14 levels in U937 macrophages 

relative to the glucose-matched NC (MRF = 1.00). These findings in U937 

macrophages mirrored those observed in U937 monocytes. Similar to U937 

monocytes, MGN3 had no significant (P > 0.05) effect on CD14 levels at high (30mM) 

glucose (MRF = 1.02) compared to the glucose-matched NC (MRF = 1.00). In 

concordance with findings observed in U937 monocytes, CD14 levels were 

significantly (*: P = 0.001; n = 4) stimulated in U937 macrophages by LPS (MRF = 2.09) 

at high glucose (30mM) conditions when compared to the glucose-matched NC (MRF 

= 1.00). Furthermore, concomitant treatment of MGN3 with LPS (MGN3+LPS) could 

again significantly (#: P = 0.012; n = 4) dampen the elevation of CD14 levels induced 

by LPS activation (reducing MRF = 2.09 to 1.63).    

 

Figure 9: Effect of High Glucose on CD14 Levels in U937 Macrophages. LPS activation of U937 macrophages 
significantly (*:P < 0.05; n = 4) increased levels of CD14, measured as mean relative fluorescence (MRF) by flow 
cytometry, following exposure to high (30mM) glucose compared to corresponding lower (11mM) glucose 
conditions. MGN3 was able to significantly (#: P < 0.05; n = 4) reverse the effects of high glucose on LPS-
mediated CD14 protein expression. Columns and error bars indicate the MRF ± the standard error of the mean 
(SEM) in all cases. 
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CD14 levels for corresponding treatments closely mirrored each other in U937 

monocytes and U937 macrophages, although the stimulation of CD14 in high (30mM) 

glucose conditions was moderately more pronounced in monocytes (MRF = 2.95) 

than macrophages (MRF = 2.09).  

 

 

 

 

  

Figure 10: LPS-Activation of U937 Macrophages Mediates High Glucose Induction of CD14 Protein Expression. 

LPS-activation of U937 macrophages significantly (*:P < 0.01; n = 4) increased mean levels of CD14 relative to 

the glucose-matched negative control (NC), measured as mean relative fluorescence (MRF) by flow cytometry, 

following exposure to high (30mM) glucose. MGN3 significantly (#: P < 0.05; n = 4) reversed the LPS-mediated 

induction of CD14 at high glucose (30mM) conditions. Columns and error bars indicate the MRF ± the standard 

error of the mean (SEM) in all cases. 
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It was noted that there was an increase in CD14 expression by macrophages in all 

treatment groups after exposure to high (30mM) glucose (Section 3.5.2). MGN3 was 

seen to reduce the effect of LPS on CD14, reducing CD14 levels by 9.2% with the 

combined (LPS+MGN3) treatments (Figure 11). 

 

 

 

 

Figure 11: Expression of CD14 in U937-derived macrophages (M0). Example of flow cytometry charts showing 

CD14 increased in LPS-treated macrophages after exposure to high (30mM) glucose compared to the negative 

control (NC). MGN3 inhibited the effect of LPS on CD14, with combined (LPS+MGN3) treatments resulting in 

intermediate levels of CD14. 
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3.6 Confocal Microscopy  
 

3.6.1 Effect of Glucose on CD14 Levels in U937 Monocytes 
 

U937 monocytes were cultured in 11mM or 30mM glucose and stained using a FITC-

labelled anti-human CD14 antibody, following treatment with/without LPS and/or 

MGN3 (n = 4).  

 

CD14 protein expression in U937 monocytes was very similar following all treatments 

(Figure 12) at lower (11mM) glucose conditions.  
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Figure 12: CD14 Protein Expression in U937 Monocytes Cultured in 11mM Glucose. CD14 Protein expression was 

detected by confocal microscopy using FITC-staining of CD14 protein expression, indicated by green fluorescence. 

Panel 1 = untreated negative control (NC) U937 monocytes, Panel 2 = LPS-activated monocytes, Panel 3 = MGN3-

treated monocytes, Panel 4 = monocytes treated with both LPS and MGN3 (LPS + MGN3). Monocytes were cultured 

in 11mM glucose in all treatment groups. Images were captured at an objective magnification of 100x and scale bars 

represent 20µm. 
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Monocytes treated with MGN3 and cultured at high (30mM) glucose (Figure 13: Panel 

3) showed a similar level of fluorescence to untreated (NC) monocytes (Figure 13: 

Panel 1). In contrast, monocytes treated with LPS (Figure 13: Panel 2) showed the 

highest CD14 protein expression compared to the NC, in agreement with flow 

cytometry data (Section 3.5).  Moreover, intermediate fluorescence levels lying 

between those of the NC and LPS-treated cells were found (Figure 13: Panel 4) when 

U937 monocytes were treated with both LPS and MGN3 together (LPS + MGN3).  

 

 
 
 
 
 

Figure 13: CD14 Protein Expression in U937 Monocytes Cultured in 30mM Glucose. CD14 Protein expression was 

detected by confocal microscopy using FITC-staining of CD14 protein expression, indicated by green fluorescence. 

Panel 1 = untreated negative control (NC) U937 monocytes, Panel 2 = LPS-activated monocytes, Panel 3 = MGN3-

treated monocytes, Panel 4 = monocytes treated with both LPS and MGN3 (LPS + MGN3). Monocytes were cultured 

in 30mM glucose in all treatment groups. Images were captured at an objective magnification of 100x and scale 

bars represent 20µm. 
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3.6.2 Effect of Glucose on CD14 Levels in U937 Macrophages 
 

U937 macrophages were cultured in 11mM or 30mM glucose and stained with FITC-

labelled anti-human CD14 antibody, following treatment with/without LPS and/or 

MGN3 (n = 4).  

 

 CD14 protein expression in U937 macrophages was very similar following all 

treatments (Figure 14) at lower (11mM) glucose conditions.  

 

 

 

Figure 14: CD14 Protein Expression in U937 Macrophages Cultured in 11mM Glucose. CD14 Protein expression 

was detected by confocal microscopy using FITC-staining of CD14 protein expression, indicated by green 

fluorescence. Panel 1 = untreated negative control (NC) U937 macrophages, Panel 2 = LPS-activated 

macrophages, Panel 3 = MGN3-treated macrophages, Panel 4 = macrophages treated with both LPS and MGN3 

(LPS + MGN3). Macrophages were cultured in 11mM glucose in all treatment groups. Images were captured at 

an objective magnification of 100x and scale bars represent 20µm. 
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Macrophages treated with MGN3 and cultured at high (30mM) glucose (Figure 15: 

Panel 3) showed a similar level of fluorescence to untreated (NC) monocytes (Figure 

15: Panel 1). In contrast, macrophages treated with LPS (Figure 15: Panel 2) showed 

higher CD14 protein expression compared to the NC, in agreement with flow 

cytometry data (Section 3.5).  Moreover, intermediate fluorescence levels lying 

between those of the NC and LPS-treated cells were found (Figure 15: Panel 4) when 

U937 macrophages were treated with both LPS and MGN3 together (LPS + MGN3).  

 

 

 

 

 

 

 

  

Figure 15: CD14 Protein Expression in U937 Macrophages Cultured in 30mM Glucose. CD14 Protein expression 

was detected by confocal microscopy using FITC-staining of CD14 protein expression, indicated by green 

fluorescence. Panel 1 = untreated negative control (NC) U937 macrophages, Panel 2 = LPS-activated 

macrophages, Panel 3 = MGN3-treated macrophages, Panel 4 = macrophages treated with both LPS and 

MGN3 (LPS + MGN3). Macrophages were cultured in 30mM glucose in all treatment groups. Images were 

captured at an objective magnification of 100x and scale bars represent 20µm. 
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4. Discussion 
 

Consumption of dietary fibres such as MGN3 is associated with several health 

benefits, including reduced risk of diabetes (Mendis et al., 2016). The aim of this study 

was to determine the effect of MGN3 on a key monocyte/macrophage-associated 

marker of inflammation (CD14) associated with diabetes and macrophage-mediated 

phagocytosis under hyperglycaemic conditions. Phagocytosis was assessed by testing 

the effect of MGN3 on the clearance of MRSA by LPS-activated and unactivated U937 

macrophages cultured in high (30mM) and low (11mM) glucose. The inflammatory 

marker, CD14, was investigated in U937 monocytes/macrophages using a FITC-

labelled anti-human CD14 antibody via flow cytometry and visualised using confocal 

microscopy.  

 

4.1 U937 Monocyte Differentiation into Macrophages (M0)  
 

The differentiation of U937 monocytes into macrophages was confirmed by detecting 

the expression of CD11c proteins (Figure 1). It is known that monocytes and other 

leukocytes can be identified by looking at their cell surface markers (Geissman et al, 

2003). Macrophages display the cell surface marker CD11c (Li et al, 2015; Lumeng et 

al, 2007).  Other literature has shown under inflammatory conditions monocytes can 

express low levels of CD11c, however large amounts are linked with monocyte 

derived macrophages (Geissmann et al, 2003; Arndt et al, 2007).  

 

4.2 The effect of MGN3 on Immune Responses 

 

4.2.1 The effect of MGN3 on the Phagocytosis 
 

MGN3 significantly promoted phagocytosis of MRSA in a time-dependent manner 

during host pathogen interactions, with increasing phagocytosis occurring following 

increasing incubation times (2, 3, 4 or 5 hours) compared to the corresponding 

negative control (NC) or macrophages treated with a non-specific protein (BSA 

control). Published data has shown that MGN3 increases the rate of phagocytosis of 

yeast by murine macrophages treated with MGN3 (100 and 500µg/ml) for two days 

before incubation with yeast for 2 hours (Ghoneum and Matsuura, 2004).A later 
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study performed by Ghoneum et al (2008) showed MGN3 stimulates phagocytosis of 

Escherichia coli in human phagocytes (monocytes and neutrophils). Dietary fibre from 

Gracilaria algae is also effective at increasing the rate of phagocytosis in murine 

macrophages, as well as showing antioxidant properties (Ye et al, 2009). Another 

study showed extracted wheat bran has potent stimulatory effects on macrophage-

mediated phagocytosis (Zhou et al, 2010). 

 

However, to date the effect of MGN3 under hyperglycaemic conditions has not been 

investigated. Thus, the effect of MGN3 (2mg/mL) on the phagocytosis of MRSA by 

U937-derived macrophages under diabetic (hyperglycaemic) and non-diabetic 

conditions was investigated using host-pathogen assays with interaction periods of 

between 2-5 hours (Section 3.2 and 3.4: Figures 3 and 5).  Macrophages were cultured 

throughout in different glucose concentrations (11 – 30mM) with/without the 

addition of MGN3. 

 

In concordance with published research (Marhoffer et al, 1992; Yano et al, 2012; 

Peleg et al, 2007) the results showed MRSA clearance was significantly impaired by 

increasing glucose in a concentration-dependent manner. However, MGN3 

treatment significantly stimulated the phagocytosis of MRSA by U937 macrophages 

at all glucose concentrations, despite the detrimental effect of increasing 

hyperglycaemic conditions on bacterial clearance in the presence and particularly the 

absence of MGN3. MGN3 significantly (P < 0.05) reduced MRSA recovery compared 

to the negative control (NC) under both 11mM and 30mM glucose conditions, thus 

indicating MGN3 stimulates U937 macrophage-mediated phagocytosis and can 

reverse the detrimental effects of high (30mM) glucose on bacterial clearance.  

 

Moreover, MGN3 had no direct effect on MRSA growth, confirming MGN3 reduced 

MRSA recovery by enhancing the phagocytic function of macrophages. This finding is 

in agreement with the literature, with several other studies also showing MGN3 

enhances phagocytosis in macrophages and NK cells without having any effect on 

bacterial growth (Ghoneum and Matsuura, 2004; Ghoneum and Gollapudi, 2005; 

Perez-Martinez et al, 2015). 
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4.2.2 Effect of MGN3 and LPS on CD14 Levels under Diabetic and Non-Diabetic 

Conditions   
 

Monocyte and Macrophage CD14 expression was analysed using flow cytometry after 

activation with/without LPS and/or treatment with MGN3 (Section 3.5).  When 

monocytes or macrophages were cultured in high (30mM) but not low (11mM) 

glucose, LPS-activation induced CD14 protein expression (Figure 6), in agreement 

with published findings that suggest this elevation in CD14 leads to induces 

inflammation and is mediated through increased nuclear factor kB and AP-1 activities 

(Nareika et al 2008). Bacterial toxins such as LPS are detected by a specific cell surface 

receptors called TLRs (such as TLR4 that detects LPS) and the lipopolysaccharide 

binding protein CD14 that acts as a endotoxin receptor on monocytes and 

macrophages (Takeda and Akira; Akira et al, 2006; Zanoni et al, 2011; Zweigner et al, 

2006; Kumar et al, 2009). Indeed, CD14 appears to modulate adipose tissue 

inflammatory activity and inflammation-driven insulin resistance (Fernandez-Real et 

al, 2011). This finding also mirrors the activation of CD14+ monocytes that occurs in 

diabetic patients due to their hyperglycaemia (Cipolletta et al, 2005). 

 

It is thought that arabinoxylans like MGN3 may compete with LPS for receptors such 

as TLR4 (Tan, 2018) and this potential mechanism of action explains the findings 

observed throughout Section 3.5 where combined treatment with LPS and MGN3 

(LPS+MGN3) dampened LPS-induced CD14 levels (Figure 5). It has been shown by 

previous studies that LPS greatly increases CD14 levels (Fernandez-Real et al, 2011; 

Nareika et al, 2008). These findings indicate MGN3 can supress LPS-induced CD14 

levels in monocytes and macrophages under hyperglycaemic conditions. 

Monocytes/macrophages that received combined treatment with LPS and MGN3 

(Figure 6) had intermediate levels of CD14 compared to the corresponding negative 

control (NC) and LPS-activated cells, supporting growing evidence that LPS and MGN3 

possibly compete for the same receptors (TLR4 and dectin-1 receptors) in 

monocytes/macrophages but MGN3 does not activate these receptors to the same 

level (Tan, 2018). This is probably due to the fact that LPS and arabinoxylans like 

MGN3 have many physical similarities including in their molecular weight and 

structure (Li et al, 2015; Ghoneum et al, 2013; Bowyer et al, 2010).  
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Murine studies (Zheng et al, 2012) have shown that sugars (e.g. D-galactosamine) 

increase TLR4 and CD14 expression whereas MGN3 inhibited mRNA expression of 

CD14. Another study (Son, 2014) showed after 4 weeks treatment of LPS, MGN3 was 

able reduce TLR4 expression in mice undergoing endurance exercise. A study done 

on chickens (Sato et al, 2012) showed that after 2hrs of endurance exercise followed 

by an injection of LPS, chickens given MGN3 supplementation had lower TLR4 and 

TLR7 expression than chickens which didn’t receive MGN3 supplements. 

 

MGN3 significantly (P<0.0001) increased CD14 levels in monocytes at high (30mM) 

glucose concentration when compared to 11mM glucose conditions. These findings 

support previous evidence that arabinoxylans such as MGN3 can stimulate cytokine 

and nitric oxide (NO) production in human monocytes in the absence of infection/LPS 

but this acute immuno-stimulatory effect is modest compared to the pro-

inflammatory and often excessive response observed in the presence of infection/LPS 

(Zhang et al, 2016; Zhang et al, 2018).  Studies have shown that MGN3 can also 

stimulate several other immune cells, including natural killer (NK), T and B 

lymphocytes (Ghoneum and Abedi, 2004; Ghoneum and Brown, 1999; Perez-

Martinez et al, 2015). MGN3 has been shown to enhance the binding capacity of NK 

cells to tumours in aged mice (Ghoneum and Abedi, 2004), as well as increasing NK 

activity against neuroblastomas (Perez-Martinez et al, 2015). 

 

However, several studies have shown MGN3 reduces inflammation. A murine study 

showed MGN3 reduces IL-18 protein expression in D-galactosamine-induced 

hepatitis (Zheng et al, 2012).  A further murine study (Son et al, 2012) found that mice 

treated with rice bran for 4 weeks had significantly reduced TNFα levels compared to 

mice treated without rice bran. MGN3 has been shown to reduce pro-inflammatory 

cytokine production in elderly humans (Elsaid et al, 2019). Studies have shown rice 

bran has immunomodulatory effects on natural killer (NK) cells and reduces pro-

inflammatory cytokine profiles (Ali et al, 2012; Lewis et al, 2018; Park et al, 2017). 
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4.3 Evaluation of MGN3 and Arabinoxylans for Diabetic Patients 
 

A common symptom of DM is chronic inflammation (McCrimmon et al, 2012; 

Dandona et al, 2005).  Chronic inflammation leads to an influx of leucocytes at sites 

of trauma or infection, resulting in an influx of CD14+ cells and pro-inflammatory 

cytokine production (Buckley et al, 2001; Fernandez-Real et al, 2011; Anas et al, 2010; 

Sahay et al, 2009). There is evidence to link constant pro-inflammatory cytokine 

production (e.g. IL-6 and TNF α) to insulin resistance, and this is especially observed 

in obese people (Zozulinska and Wierusz-Wysocka, 2006). Evidence suggests that 

dietary fibres like MGN3 may be able to reduce pro-inflammatory markers (Weickert 

and Pfeiffer, 2008), thereby dampening the effects of chronic inflammation.  

 

MGN3 has shown been to be a beneficial supplement as part of a balanced diet 

helping to reduce chronic inflammation, aiding wound repair as well decreasing the 

likelihood of developing other illnesses such as obesity and CVD. In relation to 

diabetic patients, dietary fibres have been shown to counteract some of the 

complications of type 2 DM. This includes impaired wound healing (in the form of 

DFUs) (Al-Ghazzewi et al, 2015) as well as reducing the risk of other diseases linked 

to type 2 DM, including obesity and CVD (Cho et al, 2013; King, 2005). It has been 

shown that dietary fibres can promote collagen production, reduce inflammation and 

stimulate keratinocytes to proliferate (Al-Ghazzewi et al, 2015), which may aid the 

healing process of DFUs.  

 

Type 2 DM and obesity have been linked together and dietary fibres could help to 

break this link. In terms of obesity, dietary fibres typically reduce hunger by having a 

long gut transit period (Kannan et al, 2012) and reduced food intake reduces blood 

glucose levels. Dietary fibres also reduce baseline glycated haemoglobin and high 

lipid profiles. A randomized trial assessing the effect of rice bran oil on 

hyperglycaemia and blood lipid profile showed that blood glucose levels significantly 

reduce in as little as 4 weeks when type 2 DM patients are treated with rice bran oil 

(Dervarjan et al, 2016). Soluble dietary fibres partially hydrolysed in guar gum as part 

of a balanced diet have been shown to reduce hyperglycaemia after meals (Kapoor 

et al, 2016). Dietary fibres extracted from mulberry leaves are effective at increasing 
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insulin levels and lowering high blood glucose levels (Jeszka-Skowron et al, 2014; 

Lown et al, 2017; Riche et al, 2017). 

 

To add to the growing weight of evidence of health benefits of dietary fibres, the 

findings from this study suggests that MGN3 can dampen LPS-induced inflammation 

(elevated CD14 levels) in monocytes/macrophages under hyperglycaemic conditions, 

whilst simultaneously promoting the effectiveness of macrophages to carry out 

bacterial clearance. The potential impact of these findings are substantial, 

particularly in the context of treatment for DFUs that affect many diabetic patients. 

Successful evidence of efficacy and development of treatments involving MGN3 

could promote the healing of DFUs, particularly those infected with bacteria. 

Moreover, DFUs infected with antibiotic-resistant bacteria may be susceptible to 

MGN3-mediated host clearance, thereby providing a strategy to overcome issues of 

antimicrobial resistance (AMR).       

 

4.4 Future Work  
 

MGN3 has been shown to stimulate phagocytosis in U937 macrophages and limit the 

detrimental effects of glucose on bacterial clearance. However, confirmation of these 

findings in ex vivo macrophages isolated from human peripheral blood and/or other 

phagocytic cells such as dendritic cells and neutrophils would provide further 

supporting evidence. Furthermore, studies should be continued to confirm whether 

MGN3 can stimulate bacterial clearance of a wider range of pathogens, including 

Gram negative bacteria. Moreover, the phagocytosis assay in this study assessed the 

effectiveness of MGN3 to promote macrophage-mediated eradication of planktonic 

bacteria but future work could consider biofilm arrangements that frequently 

colonise wounds and form environments that enable bacteria to evade host immune 

responses.  

 

The downstream effects of MGN3 in reversing the detrimental effects infection (LPS-

activation) under high glucose conditions in macrophages should be interrogated 

further using in vitro assays and animal models, considering CD14 and other 

inflammatory markers/pathways activated by hyperglycaemia to elucidate 
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mechanisms and key mediators by which MGN3 may dampen hyperglycaemic-

induced inflammation. 

    

Future clinical investigations following completion of in vitro and animal studies may 

ultimately determine whether arabinoxylans such as MGN3 could be applied with 

dressings directly to open wounds of diabetic patients (e.g. diabetic foot ulcers), 

instead of being taken as oral supplements. This local application of MGN3 could 

increase wound healing directly by stimulating phagocytes to clear bacteria whilst 

dampening excessive inflammation.  

 

5. Conclusion 
 

Overall, MGN3 reversed some detrimental effects of hyperglycaemia on monocyte 

/macrophage function, including inhibiting glucose-mediated elevation of CD14 in 

LPS-activated monocytes and macrophages, and reversing the glucose-mediated 

inhibition of bacterial (MRSA) clearance by macrophages. These findings have major 

potential impact for diabetic patients who typically have elevated inflammatory 

profiles and are at risk of developing diabetic foot ulcers that often become colonised 

(and in some cases infected) by bacteria. MGN3 may be a potential therapeutic 

strategy to concomitantly dampen inflammation, stimulate healing and promote 

bacterial clearance in diabetic patients with infected wounds.  This strategy to 

mediate host immune responses could be utilised alone or in conjunction with 

antibiotics as a combination (dual) therapy option for infected diabetic ulcers. 

Moreover, future therapies could focus on use of arabinoxylans such as MGN3 in 

wound dressings that can be applied directly to (infected) wounds rather than 

through consumption of dietary fibres.  
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