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Abstract 

 
Introduction: Alzheimer’s disease (AD) is a neurodegenerative condition that is prevalent in today’s 

society and is on the rise. A disturbance of the circadian rhythm is an early symptom and is associated 

with disrupted sleep/wake cycles. CLOCK genes, important in regulating the circadian rhythm, have 

been hypothesised to regulate important factors in neurodegeneration. These CLOCK genes control 

circadian timekeeping by regulating their own expression over 24hours via a series of interacting 

positive & negative feedback loops; with BMAL1 being a key gene that drives the circadian cycle. 

Sleep disturbances are observed in AD and the reasons for this may be multifactorial and involve 

beta-amyloid (Aβ), light exposure and sleep disordered breathing (SDB), which are all related to the 

circadian cycle. Circadian dysfunction is hypothesised to contribute to AD pathogenesis and previous 

studies show a link between the circadian clock, AD neuropathology, sleep regulation and cognition; 

particularly fluid intelligence, processing speed, memory and vocabulary. However, it is unclear if 

circadian dysfunction within AD is causal or consequential to the development of neuropathology.  

Aim: To investigate if BMAL1 methylation is epigenetically regulated in brains in relation to AD 

neuropathology, longitudinal changes in cognition, sleep quality and depressive symptoms. This 

study is designed to assess the hypothesis that BMAL1 methylation will directly affect 

neuropathology, cognition, sleep quality and depression. 

Methods: Prefrontal cortex (n=96) samples were acquired from Manchester Brain Bank. DNA 

methylation at six individual CpG sites on BMAL1 was determined using bisulphite pyrosequencing 

that was statistically tested for associations with AD neuropathology, longitudinal changes in 

cognition, sleep quality and depressive symptoms (BDI score).  

Results: Methylation across all the CpGs strongly correlated with each other. We found increased 

CpG2 methylation with higher Braak (F (1, 92)=6.1, p=0.015) stages. No significance was found 

between longitudinal fluid intelligence, processing speed and memory tests, but methylation at CpG1 

(r=0.20, p=0.05) and CpG4 (r=0.20, p=0.05) positively correlated with vocabulary. When testing for 

age-adjusted cross-sectional data, CpG2 positively correlated with cross-sectional fluid intelligence 

(r=0.20 p=0.05) and vocabulary (r=0.22 p=0.03). Though longitudinal analysis revealed no 

significance between sleep duration, midsleep and efficiency for any of the CpG sites, CpG3 (B=0.03, 

95%CI=0.00/0.06, p=0.03) and CpG5 (B=0.04, 95%CI=0.01,0.07, p=0.01) significantly correlated with 

night wake. CpG4 correlated with depressive symptoms (B=-0.27, 95%CI=0.49/-0.05, p=0.02).  

Discussion: The results of this study indicate that DNA methylation of BMAL1 is positively associated 

with AD neuropathology, longitudinal changes in cognition, sleep quality and depression; suggesting 

that the circadian cycle plays a linking role in regulating these key factors in the development of AD. 

Further research is needed to understand the dynamics of this relationship. 

Keywords: Alzheimer’s disease, circadian cycle, BMAL1, cognition, sleep quality, depressive 
symptoms.  
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1.0 Introduction 
 

1.1 Epidemiology of Dementia/Alzheimer’s Disease 

Dementia is the umbrella term used to describe a set of symptoms that affect memory, 

behaviour, thinking and emotion and currently in the UK, 1 in 14 people aged over 65 

have dementia (Prince et al., 2014). There are over 100 different forms of dementia, 

with Alzheimer’s Disease (AD) being the most prevalent and accounting for 60-80% of 

all cases of dementia (Alzheimer’s, 2016). AD is a neurodegenerative condition which is 

clinically characterised by a gradual, insidious onset of memory loss which then expands 

into multi-domain cognitive impairment (Musiek, 2017). Pathological hallmarks of AD 

are beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFT), formed from the 

aggregation of misfolded tau protein. Aβ plaques occur when the two major enzymes 

neprilysin (NEP) and insulin degrading enzyme (IDE) decrease with normal ageing and in 

disease-affected regions (Caccamo et al., 2005). Additionally, NEP has been shown to 

decrease in cerebral spinal fluid (CSF) in early AD (Maruyama et al., 2005).  

Amongst the symptoms listed above, disturbances to sleep and day-night rhythms are 

also very common. Sleep problems in AD patients are observed with over 60% of 

individuals with mild cognitive impairment (MCI) or dementia experiencing sleep 

disturbances (Guarnieri et al., 2012), as well as circadian rhythm disruption and 

misalignment (Phan & Malkani, 2019). Sleep and circadian rhythms are very closely 

correlated, but they have separate neuroanatomical and molecular substrates. 

Circadian dysfunction may contribute to AD pathogenesis and this will be discussed 

further in this study. 

 

1.2 The Circadian Clock 

Circadian rhythm, also known as sleep/wake cycle, is a biological system that acts as a 

24-hour internal clock and regulates feelings of sleepiness and wakefulness throughout 

this time.  Circadian rhythms exist in the majority of living organisms and are responsible 

for many behavioural and biochemical processes. The primary aim of the circadian 

system is to synchronise internal functions with the external environment; with 

particular focus on the light-dark cycle (Musiek, 2017). The circadian system that 

generates circadian rhythms in mammals, which consists of a central clock, is located in 
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the suprachiasmatic nucleus (SCN) of the hypothalamus with peripheral clocks in 

majority of other cells (Tomita & Onishi, 2018). The SCN sends signals to other brain 

areas, including sleep-wake centres, the pineal gland to regulate melatonin and to 

regions that regulate autonomic function and hormone secretion (Colwell, 2011).  

 

The circadian clock consists of a transcription-translation feedback loop, which is 

regulated by clock genes. These genes include, brain and muscle Aryl Hydrocarbon 

Receptor Nuclear Translator-Like 1 (ARNTL, also known as BMAL1), clock circadian 

regulator (CLOCK), cryptochrome (CRY1 & CRY2) and period circadian clock (PER1, PER2 

& PER3) and these are the core circadian genes in peripheral or central tissues (Kelsbeek 

et al., 2014). It is the interlocked transcriptional and post-translational negative 

feedback loops which are responsible for both the generation and preservation of 

circadian rhythms. BMAL1 and CLOCK are transcription factors that act as positive 

regulators of circadian gene expression, which in turn activates the expression of the 

negative regulators CRY1 and CRY2, PER1, PER2 and PER3 and REV-ERB (Nr1d1 & Nr1d2) 

(Kelsbeek et al., 2014). Nr1d1 & Nr1d2, which is a nuclear receptor that regulates lipid 

metabolism and adipogenesis, directly and indirectly represses BMAL1/CLOCK-

mediated transcription. Additionally, Retinoic Acid Receptor-related Orphan Receptors 

(RORs) which are made up of RORα, RORβ and RORγ are all involved in the functioning 

of circadian rhythm and RORα is a positive regulator of BMAL1. A new transcriptional 

cycle starts through the proteolytic degradation of PER and CRY, when the 

CLOCK:BMAL1 complex becomes de-repressed (Figure 1). 
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Figure 1: Molecular core clock mechanism. CLOCK:BMAL1, PER1-3 & CRY1&2 form the core loop 
with CLOCK:BMAL1 heterodimers driving PER1-2 & CRY1&2 transcription. PERs & CRYs 
heterodimers move to the nucleus which inhibits CLOCK:BMAL1 activity; thus the transcriptional 
activity of CLOCK:BMAL1 drops. This reduces the transcription of PER and CRY genes, which in turn 
activates CLOCK:BMAL1. REV-ERB and RORs enhance the efficiency of the core loop. Adapted from 
Spek et al., (2012). 

 

The circadian system has a large influence on multiple aspects of physiology with the 

rhythmic clock gene expression being characterised in peripheral tissues, such as skin 

(Bjarnason et al., 2001), bone marrow (Kusanagi et al., 2008) white blood cells (Archer 

et al., 2008) and the heart (Leibetseder et al., 2009). However, due to the nature of the 

human brain and only being able to examine these oscillators in post-mortem, it is very 

difficult to look at the circadian rhythm in the brain. As the circadian system is 

implemented in many physiology processes, a severe disruption in this regulation is 

associated with the heightened and worsening of many disease states; including 

neurodegeneration in mice, (Musiek et al., 2013), coronary heart disease (Vetter et al, 

2016) and breast cancer (Davis et al., 2001) in humans, and other metabolic problems 

(Cribbet et al, 2016).  

 

Circadian dysfunction has been previously linked to neurodegeneration in AD, with 

different studies hypothesising it as both a consequence of and a potential contributor 

to the pathogenesis of AD (Hastings & Goedert, 2013; Musiek & Holtzman, 2016). This 

issue is the subject of this study. 

  

1.3 Neuropathology of Circadian Dysfunction in Alzheimer’s Disease 

The brain changes associated with AD are thought to begin 20 years or more before 

clinical symptoms appear (Reiman et al., 2012). Circadian disruption in AD patients is 

partly mediated by changes and degeneration of the SCN. The SCN experiences neuronal 

loss during normal aging, however AD patients exhibit significantly higher neuronal loss 

(Stopa et al., 1999). Circadian rhythm is portrayed in which levels of a particular measure 

(BMAL1 methylation), varies depending on the time. The difference between peak and 

trough values is called the amplitude of the rhythm. The phase of the rhythm is the 

timing of the referred to point in the cycle, for example the peak, relative to the fixed 

event, for example entering the night phase. The period of the rhythm is the time 
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interval between phase referred to points, for example between the two peaks 

(Vitaterna et al., 2000). Studies show a correlation between circadian rhythm amplitude 

of motor activity and SCN neuronal loss when comparing AD and cognitively healthy 

subjects (Wang et al, 2015). Wang et al., (2015) studied the loss of vasoactive intestinal 

peptide (VIP) and found it to be correlated with a decline in the amplitude of behavioural 

circadian rhythms. This is due to VIP and neuronal expression of Arginine Vasopressin 

(AVP) playing key roles in SCN synchronization and circadian rhythm output (Aton et al., 

2005; Meida et al., 2016). Additionally, several studies show blunted circadian 

oscillations in melatonin secretion in AD patients (Mishima et al., 1999; Skene & Swaab, 

2003). This is down to the pineal gland receiving output from the SCN which generates 

circadian oscillations in melatonin secretion (Wu et al., 2006). Furthermore, significant 

changes in methylation have been reported in AD patients (De Jager et al., 2014), 

particularly in the frontal cortex (Lim et al., 2014). However, the pathways that cause 

this still remain unexplored.  

A hallmark of AD are deficits in executive functioning affecting skills such as working 

memory, fluid intelligence and processing speed and the frontal cortex has been widely 

associated with these functions. The frontal cortex is also highly sensitive to sleep 

changes (Wu et al., 2006).  A PET study found that changes in this region, including the 

superior frontal gyrus, were present in patients with MCI that progressed to Alzheimer's 

disease (AD) compared to those that did not (Valdés et al., 2018). Accumulating 

evidence, especially in animal models, suggests that circadian clock dysfunction could 

promote neurodegeneration and contribute to AD pathogenesis. Studies in transgenic 

AD mice models have found that chronic sleep restriction and deprivation exacerbates 

AD pathology in brains, including increased amyloid-β (Aβ) and phosphorylated tau 

(Rothman et al., 2013; Qui et al., 2016; Di Meco et al., 2014). 

 

To summarise, it is hypothesised that both the degeneration of the SCN and 

dysregulation of pineal melatonin secretion cause clock gene rhythms to be altered and 

in turn, disrupt the circadian clock. Not much is known about DNA methylation in AD 

brains and circadian dysfunction, however it is a possibility that DNA methylation 

contributes to the dysregulation of the circadian cycle.  
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1.4 Neuropathology and Braak Score 

Braak & Braak, (1991) found that neurofibrillary tangles and neuropil threads exhibit a 

characteristic distribution pattern permitting the differentiation of six stages. Stages 1-

2 were characterised by an either mild or severe change to the transentorhinal layer 

Pre-α. Stages 3-4 (limbic stages) were characterised by a conspicuous affection of layer 

Pre-α in both transentorhinal region and proper entorhinal cortex. Stages 5-6 

(isocortical stages) refers to the destruction of the majority of the isocortical association 

areas. 

 

1.5 Sleep and Alzheimer’s Disease 

Disturbances in sleep and disruptions in circadian rhythms are common in AD patients 

and studies report that up to 45% of patients have sleep disturbances (Moran et al., 

2005). AD patients exhibit disturbances in sleep-wake cycles and rest-activity 

dysfunction which is primarily due to a higher level of wakefulness at night; caused by 

an increase in nocturnal awakenings (Hatfield et al., 2004). Consequentially, this further 

leads to an increase in sleep during the day, causing a disruption of day-night variation. 

Therefore, though the main cause of sleep disturbances in AD is hypothesised to be 

multi-factorial without a main effect, it appears sleep has some role.  

 

There are several factors that could influence sleep disorders in AD. For example, lack 

of daylight exposure, which is common in AD patients, can directly affect circadian 

rhythms (Figueiro, 2017). AD patients have a higher risk for showing obstructive sleep 

apnoea (OSA) with an estimated ~70-80% of AD patients presenting with this (Wennberg 

et al., 2017). Sleep disordered breathing (SDB) which is also common in AD affects 

circadian rhythm (Hermann & Bassetti, 2016) and is associated with increases as 

dementia symptoms worsen. For example, SDB was found to be associated with an 

increased risk of developing cognitive impairment when compared against those 

without SDB (Yaffe et al., 2011). As many of these all are present in AD, it could pose the 

question whether these factors, particularly SDB, could contribute to the cognitive 

impairment that accompanies AD. 
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Additionally, it has been suggested, that one cause of disrupted sleep in AD patients, is 

Aβ accumulation. Studies in transgenic mice demonstrate that the amyloid precursor 

protein (APP) which is processed into Aβ deposition in the brain, causes an increase in 

wakefulness and an overall decrease in sleep. This initiates when the amyloid plaques 

began to accumulate in the cortex and hippocampus (~ 6 months of age), and then a 

significant disruption in sleep pattern was observed when the plaques became more 

widespread (~9 months of age) (Roh et al., 2012). Other Aβ studies in mice show an 

abnormality in altered nocturnal activity levels (Sterniczuk et al., 2010), phase delay 

(Duncan et al., 2012) and decreased non rapid-eye movement (REM) sleep (Jyoti et al., 

2010). Hence, it could be hypothesised that these Aβ accumulations cause sleep 

disturbances in mice and could mimic potential aspects of AD in humans. 

 

Another aspect to Aβ dynamics is the alterations and degradation of BMAL1 and PER2. 

Song et al., (2015) found the changes in circadian rhythm caused by Aβ, correlated with 

the accelerated degradation of BMAL1 in mice that express 5 familial AD mutations. 

Furthermore, the degradation of BMAL1, induced circadian rhythm disruption by 

dysregulating PER2 expression. This would suggest that BMAL1 is critically correlated 

with circadian rhythm and AD and thus is the focus of this study. 

 

1.6 BMAL1 Gene Methylation 

Epigenetic regulation has been linked to the pathogenesis of neurodegenerative 

diseases due to the vital role it plays in regulating genes involved in neuronal function 

(Cholewa-Waclaw et al., 2016; Aarons et al., 2019). Epigenetics refers to potentially 

heritable and non-heritable changes in gene expression caused by environmental 

factors, independent of the DNA base sequences (Murgatroyd & Spengler, 2011).  

 

DNA methylation is the most common epigenetic modification and consists of a covalent 

chemical modification of a base that plays a crucial role in many biological processes 

where alteration has been linked in AD pathology (Irier & Jin, 2012). In mammals, DNA 

methylation occurs almost entirely in the symmetric CG context and is estimated to 

occur at ~70-80% of CG dinucleotides throughout the genome (Ehrlich et al., 1982). The 
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remaining non-CG methylation is found in embryonic stem cells, and unmethylated CG 

dinucleotides which are mostly found near gene promoters in dense clusters; called CpG 

islands (Suzuki & Bird, 2008). CpG islands are short interspersed DNA sequences that 

deviate significantly from the typical genomic pattern by being CpG-rich, GC-rich and 

generally nonmethylated (Deaton & Bird, 2011). CpG islands are DNA methylations 

regions situated in promoters which are known to regulate gene expression by 

transcriptional silencing of the corresponding gene (Lim et al., 2019). CpG methylation 

is tightly regulated and any changes in methylation profiles are associated with diseases. 

This indicates a close relationship among DNA methylation sites, the mechanism of 

methylation and biological functions (Tomita & Onishi, 2018). 24-hour methylation 

rhythms have recently been described in the frontal cortex and these cycles appear to 

be correlated with age and dementia (Lim et al, 2013). Studies suggest that global 

methylation levels are higher in the prefrontal cortex in individuals with AD, when 

compared with control (Coppieters et al., 2014; Rao et al., 2012).  

 

 

The BMAL1 gene itself is a core gene in the circadian rhythm and has been linked to 

haematological malignancies. The CpG islands in the promoter of BMAL1 are 

hypermethylated, which silences the expression in haematological malignancies, such 

as acute lymphocytic and myeloid leukaemia’s (Taniguchi et al., 2009). Taniguchi et al., 

(2009), found epigenetic inactivation of BMAL1 prevented the activation of CLOCK 

protein to targeted areas; enhancing the disrupted circadian rhythm in malignant cells. 

These findings suggest the epigenetic inactivation of BMAL1 contributes to disruption 

of the cellular circadian clock.  

 

Additionally, altered circadian transcription of BMAL1 in the mid frontal cortex and 

fibroblasts of humans, have been associated with abnormal BMAL1 methylation in AD 

when compared with controls (Cronin et al., 2017). Cronin et al., (2017) found that in 

post mortem mid frontal cortex samples, oscillatory patterns had significant differences 

in methylation at peak times when comparing between early and late AD cases; 

potentially representing underlying changes to the phase and amplitude to circadian 



 16 

rhythm. This difference across the disease states suggest that this may be a molecule 

marker of progression. 

 

The above studies suggest that the epigenetic regulation of BMAL1 plays an important 

role in AD via deregulation of circadian rhythms, however the link between the two has 

yet to be fully explored. 

 

1.7 Depression and Alzheimer’s Disease 

Depression occurs in up to 20% of patients with AD (Valkanova et al., 2017) but the 

relationship is still not fully understood. It has been hypothesised that depression is a 

risk factor for AD (Diniz et al., 2013; Gao et al., 2013), however the underlying molecular 

mechanisms have not been fully explored. Ganguli (2009), came to the conclusion that 

there was no single cause but more a series of factors that interact with each other in 

various ways at different points during the course of life. However, depression has been 

found to damage neurons and one way it does this is amyloid deposition and 

neurofibrillary formation (Rapp et al., 2006). In particular, a lifetime history of 

depression is linked to an increase in Aβ plaques. Disruptions in circadian rhythms has 

been associated with depression (Abarca et al., 2002) and individuals with an arrhythmic 

biological clock have been associated with a higher risk of developing depression 

(McClung, 2007).  

 

Additionally, BMAL1 was found to be hypermethylation in patients with bipolar disorder 

when compared against healthy control (Bengesser et al., 2016). It was also 

hypothesised that a decrease in BMAL1 methylation may lead to an increase in BMAL1 

gene expression and increase in the dopamine (DA) breakdown seen in depression. 

Furthermore, DA levels in the brain are suspected to influence mood in human & mice 

(Andretic & Hirsh, 2000; Nestler & Carlezon, 2006; Roybal et al., 2007) and DA levels 

drop with aging. This supports the hypothesis that altered epigenetic regulation of 

BMAL1 may provide a mechanistic basis for circadian rhythms and mood swings and 

depression (Hampp et al., 2008). 
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The relationship between BMAL1 and neuropathology (Braak score), cognition, sleep 

and depression will be explored in this study using DNA methylation. It is hypothesised 

that BMAL1 could be regulated differently in the brain of AD patients and this study will 

be looking at this by using AD brains and controls and observing any correlations 

between neuropathology, cognition, sleep and depression.  
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2.0 Aims & Objectives 
 

2.1 Aims 

The experimental hypotheses are to determine epigenetic DNA methylation levels of 

BMAL1 in the brain and relate to neuropathology, cognitive decline, sleep quality and 

depression. 

 

2.2 Objectives 

 

The molecular mechanisms surrounding the important clock gene BMAL1 and its role in 

neuropathology, cognition, sleep and depression in regard to AD, still remains relatively 

unknown. A collection of prefrontal cortex brains (n=96) were assessed using their 

predetermined Braak score (determined by the brain bank), assessed longitudinally for 

both change in cognition, and using past sleep data (night wake, sleep duration, mid-

sleep and sleep efficiency) and assessed cross-sectionally for depression (BDI score).  

 

DNA methylation levels of BMAL1 in the brains were determined using bisulphite 

pyrosequencing and these were tested for any correlations between the CpG sites on 

BMAL1 and neuropathology, cognition, sleep and depression data.  
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3.0 Methodology 

 

3.1 Reagents and Supplies 

All the kits, reagents, chemicals and any other laboratory equipment used in this project 

can be found in the appendix. 

 

3.2 Study Population and Questionnaires 

The prefrontal cortex samples used in this project were obtained from the Manchester 

Brain Bank which were from The University of Manchester Longitudinal Study of 

Cognition in Normal Healthy Old Age cohort (Rabbitt et al., 2004).  

 

This study started in 1983 and 6375 participants were recruited from Greater 

Manchester and Newcastle upon Tyne for 10 years. Before the study started, written 

informed consent was gained from all participants and the self-report and questionnaire 

data was collected under the approval of The University of Manchester research ethics 

committee. The study consisted of five waves which were assessed between 1982 and 

2010 and in which Personal Details Questionnaire (PDQ) were performed. The first PDQ 

questionnaire was performed in recruitment until 1995; along with a depression survey. 

The second PDQ questionnaire was performed between 1984 and 1996 and the third 

PDQ was performed between 2001 and 2003. The fourth and fifth PDQ were completed 

in 2007 and 2010, respectively (Didikoglu et al., 2019). The fifth wave also included 

validated sleep questionnaires, including Pittsburgh Sleep Quality Index (PSQI).  

 

A total of 3477 participants attended a minimum of two test session whilst 212 people 

completed PDQs at all time points. The average age at the first visit was 65.19 ± 7.45 

years and a total of 69.9% of the cohort was female. This project investigated n=96 of 

these samples; 64 females & 32 males with females making up 66.7%. Vocabulary, fluid 

intelligence, processing speed and memory cognitive tests were collected longitudinally 

biennial in waves and these are included in the analysis. The methods of these cognitive 

assessments were previously described by Rabbitt et al., (2004).  
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The time at which the tests were completed was not noted so could not be accounted 

for during statistical analysis. Additionally, time of death and post mortem delay was 

also not noted or accounted for.  

 

Brain samples were acquired from donors through the Manchester Brain Bank. Ethical 

approval was granted from the Manchester Brain Bank Committee. All participants had 

provided written consent to donating their post-mortem samples to the brain bank for 

research purposes.  

 

COSHH forms and risk assessments were completed prior to the beginning of this study 

to ensure that all necessary precautions were taken to ensure safety and security, when 

in the laboratory.  

 

3.3 Brain Pathology Assessments 

The brain samples had been assessed and scored at the brain bank by experienced 

pathologists using the ‘ABC score’ which is recommended by National Institute on 

ageing – Alzheimer’s Association (Hyman et al., 2012). Only the Braak – neurofibrillary 

tangles stage (Braak & Braak, 1991) score was used in this analysis. Braak is the 

assessment of AD-related neurofibrillary pathology that allows the differentiation 

between initial, intermediate and late stages of AD. This is done by looking at the gradual 

deposition of hyperphosphorylated tau protein within selected neuronal types in 

specific nuclei or areas central to the disease process.  

 

3.4 DNA Extraction 

Fresh, frozen tissue was taken from superior frontal gyrus (Brodmann area 8) of the 

frontal cortex from 96 donors. These were extracted using Bioline Isolate II genomic DNA 

kit (Bioline, UK), following the manufacturers protocol. Throughout the cutting process, 

the samples were kept on dry ice to ensure no thawing of the tissues.  

 

Once DNA had been extracted, purity and concentration were both measured using 

Nanodrop 2000c spectrophotometer (Thermo Scientific, Wilmington, USA). Purity ratios 
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of A260/A280 were used to assess DNA purity and to ensure the DNA was free from 

protein contamination. The mean ratio of the absorbance at 260 and 280 nm (A260/280) 

of the 96 samples was 1.89 (StdDev .118). 

 

3.5 Bisulphite Conversion 

The DNA samples were diluted with water in separate Eppendorf tubes, in order to 

achieve an equal concentration of 500 ng/μL and working mix of 40 μl, following the 

guidelines from Qiagen EpiTect Fast Bisulphite Conversion Handbook Table (table 1). 

 
 
 Table 1: Bisulphite reaction components 

 

 
 
 
 
 
 
 
 
 
 

The samples turned from green 

to blue when DNA Protect 

Buffer was added, indicating sufficient mixing and correct pH for the bisulphite 

conversion reaction. The Eppendorf tubes were then incubated in the Eppendorf 

Mastercycler, using thermal conditions specified according to the Handbook (table 2). 

 

Table 2: Bisulphite conversion thermal cycler conditions 

 

 
 
 
 
 
 
 
 
 

 
 
Component 

Low Concentration samples 
(1-500ng) 
Volume per reaction (μl) 

DNA 
 

Variable (Maximum 40 μl) 

RNase-free water Variable 
 

Bisulphite Solution 
 

85 

DNA Protect Buffer 
 

15 
 

Total Volume 
 

140 
 

Step Description  Time Temperature [°C]  

1 Denaturation  5 minutes  95  

2 Incubation  10 minutes  60  

3 Denaturation 5 minutes  95  

4 Incubation  10 minutes  60  

5 Hold  indefinite  20  
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After the PCR finished, the rest of the protocol was followed according to the Qiagen 

Handbook. A total of 15 μl of DNA was eluted and stored at -20° C until used for analysis. 

 

3.6 Designing of BMAL1 primer 

 

The genomic browser (https://genome-euro.ucsc.edu/index.html), was used to search 

the gene BMAL1. The primers were designed using Pyromark Assay Design SW 2.0 

(Qiagen Pyromark Assay Design). The assay was shown with different sets of forward, 

reverse and sequencing primers with a score out of 100. The forward, reverse, 

sequencing primers and sequence to analyse are shown in table 3. 

 

Table 3: Primer Information for BMAL1 gene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

3.7 BMAL1 Schematic Diagram of Target Region 
 

 

 

 

 

 

 BMAL1 gene 

 
Forward Primer 

 
GTGGGATATTTGGAGGTTATGATG 

 

 
Reverse Primer 
 

 
ACAATTCCTAACTCCCTCTCT  
Biotin labelled  

 
Sequencing Primer 
 

 
ATATTTGGAGGTTATGATGA  

 
 
Sequence to Analyse 

 
AYGTAAAGAA YGTGAGAATA TTTGTAGTTT 
TYGGGGTGGA AATGTTTTTT AGAAATATTA 
AGTATTYGTT TTTTYGTTGA GATTTTGGTA 
AATTAGGGAT TTTAGGAAGG GTTTGGTATT 
TAAYGTTTTT AAAATTGGTT TTTTAGATG 

/\ 

BMAL1     
 

Sequence analysed 

A 

https://genome-euro.ucsc.edu/index.html
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Figure 2: A - Genomic Map of BMAL1. Squares represent gene exons. Transcription of gene occurs 

from left to right as shown by arrow. Schematic representation – not to scale. B- BMAL1 sequence 
to analyse. Highlighted with the forward, sequence and reverse primers and each CpG site location 
in the sequence.   
 

 

3.8 Polymerase chain reaction (PCR) 

To avoid foreign DNA contamination, the following was prepared in a PCR workstation. 

Master mix was prepared on ice using the reagents and volumes in table 4 and 18 μl 

added to a 96-well PCR plate. 2μl of DNA was then added but outside of the workstation 

to avoid risk of contamination and to create a total volume of 20 μl. The plate was 

covered with an adhesive seal to secure the contents and once secured, it was vortexed 

and then amplified using the Eppendorf Mastercycler thermal cycler with the steps 

shown in table 5. 

 

PCR Reagents 
 

Amount (1 reaction) 

MyTaqHS (DNA Polymerase) 

 

10 μl 

Forward Primer 
 

1 μl 

Reverse Primer 
 

1 μl 

B 



 24 

Table 4: PCR for 1 reaction 

 

 

 

 

 

 

 

 

Table 5: DNA amplification PCR thermal cycling conditions 

Step Description Temperature (o C) Time Number of 
Cycles Per 
Step 

1 Hot Start (DNA 
Polymerase 
Activation) 

95 
 

5 minutes 1 cycle 

 
2 

Denaturation 95 30 seconds  
50 cycles 

Annealing 56 30 seconds 

Extension 72 30 seconds 

3 Hold 4 Indefinite 1 cycle 

The PCR products were stored at -20 o C until samples were used for analysis.  

3.9 Agarose Gel Electrophoresis 

2% agarose gels were used in gel electrophoresis. To make these, 100 ml of 1 x TBE 

buffer (tris, boric acid and EDTA) is mixed with 2 g of agarose powder and heated in the 

microwave for 1-2 minutes, until completely clear; being mixed every 15-20 seconds to 

ensure the solution does not erupt. Once cool enough, 5 μl Midori Green Advance DNA 

Stain (NIPPON Genetics Europe) is added and mixed in the beaker. The gel was poured 

into a tray with combs already placed for the wells and waited to set for 20-30 minutes.  

The gel was placed into a Biorad tank with 1 x TBE buffer and a 50bp DNA hyperladder 

(Bioline), was added to the first well. The amplified samples were then prepared with 2 

μl loading dye per 6 μl of PCR DNA sample and added into the wells and the gel was 

Nuclease free H20 

 

6 μl 

DNA 
 

2 μl 

Total concentration 
 

20 μl 
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electrophoresed at 90V for 30-60 minutes. Once finished, the gel images were viewed 

using the Odyssey® Fc imaging system (LI-COR Biotechnology, UK).  

 

3.10 Bisulphite Pyrosequencing 

DNA methylation analysis for BMAL1 was carried out using the bisulphite 

pyrosequencing method on the Pyromark Q24 System (Qiagen, Hilden, Germany) 

following the manufacturer’s protocol. The workstation was prepared, using 70% 

ethanol, denaturing solution, wash buffer and distilled water and placing them in the 

correct locations and the heat block (DB-2D, Dri-Block®, Techne) set to 85oC with the 

Q24 plate holder placed on top. A master mix was made containing Streptavidin 

Sepharose High Performance Beads (GE Healthcare Biosciences), Pyromark Binding 

Buffer and PCR-grade water to the ratio of 1:40:29 respectively. In a 24-well PCR plate, 

70 μL of this master mix was combined with 10 μL of PCR product in each well and 

covered with a film then placed on a TS-100 Thermo-shaker (Biosan) at 1400RPM for 10 

minutes. The sequencing primer was diluted to 0.3μM by adding 2.2 μL of primer stock 

to 712.8μL of Annealing Buffer and vortexed. 25 μL of this was then added to each well 

of a Pyromark Q24 Plate and then placed in the appropriate place on the work station.  

After the 10 minutes of shaking, the samples were placed on the workstation to be 

processed with the lid removed carefully and the vacuum turned on. To process the 

samples, the vacuum was placed into the samples for 15 seconds to ensure all the liquid 

had gone and was in the probes filter. The vacuum was then placed into the 70% ethanol 

for 5 seconds, denaturing buffer for 5 seconds and then the wash buffer for 10 seconds. 

Next, the vacuum was tilted vertically for a few seconds to allow any excess wash buffer 

to pass through, then was placed onto the Q24 plate containing the diluted primer with 

the vacuum switched off and shaken from side to side to dislodge the beads. The Q24 

plate was transferred onto the heat block (DB-2D, Dri-Block®, Techne) and incubated for 

2 minutes at ~85o C.  

 

The cartridge was cleaned using distilled water to ensure the channels were clear and 

not blocked from previous use. The cartridge was then loaded with enzyme mix, 

substrate mix and PyroMark deoxy nucleotide triphosphates (dNTPs) in proportions to 

pre run information for the specific run determined by the PyroMark Advanced 
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software. Both this cartridge and the Q24 plate were loaded into the machine and the 

run started.  

 

Once the run was completed, analysis of the methylation levels were determined using 

the PyroMark Q24 analysis feature.   

 

 Figure 3: Pyrogram showing the methylation % of CpG sites analysed on BMAL1. 

 

 

3.11 Pyrosequencing Assay Optimization & Troubleshooting  

The main issue that was experienced with the pyrosequencing method was the initial 

signal strength at 0 which would cause a negative number for the rest of the sample. To 

troubleshoot this, the volume of PCR product added into the sequencing reaction was 

increased from 10 μL to 15 μL, and the volume of water was reduced accordingly; 

ensuring the concentration of other reagents remained constant. This increased the 

signal strength and stopped any negative numbers; allowing all samples to be 

sequenced. This was the case with 29 of the samples and all are included in this analysis.  

 

For quality control purposes, five samples per each 24 samples sequenced, were chosen 

at random and sequenced twice. The mean was then taken for both results to get a final 

methylation result. Six CPG sites on the BMAL1 gene were successfully assessed for 

methylation levels. 

 

     CpG1      CpG2               CpG3                            CpG4  CpG5                                      CpG6 
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3.12 Cognitive Scores 

All the cognitive data used for the analysis in this study were obtained previously by 

Rabbitt et al., (2004). Longitudinal scores for fluid intelligence, processing speed, 

memory and vocabulary were used for analysis and each were taken biennially. 

 

For fluid intelligence, the tests were Alice Heim Tests (1970), also called AH4-1 and AH4-

2, and the Cattell and Cattell (1960) “Culture Fair” Test overall total correct score. AH4-

1 consists of logic, arithmetic and completion of number series and verbal comparisons. 

AH4-2 consists of non-verbal problems in which participants must select alternative 

solutions to the correct completions of logical series that are defined by either 

progressive mental rotation, addition and subtraction or other comparisons of line-

drawn shapes (Rabbitt et al., 2004) - both intelligence tests were 65 problems long and 

volunteers were encouraged to solve as many of the 65 problems as they could in 10 

minutes. The score was calculated with the total number of correct answers and the 

total number of items attempted.  

All four parts of the Cattell and Cattell (1960) “Culture Fair” non-verbal test of general 

fluid intelligence were included. This test incorporates 46 non-verbal problems with 

each part only lasting 2.5-4 minutes each. It involves a sequence of pictures with one 

missing and a specific question relating to the images. The participant must select which 

one is missing out of a possible 5 images. The score was the total correct score  

 

For the processing speed factor, the contributing measures were the Visual Search task 

and Letter Search Tests. The Visual Search Task consisted of capital letters printed on 

pages appearing in random orders, with the participants being given 8 minutes to detect 

all occurrences of the letters I and O. Scores were the numbers of targets detected and 

omitted, for example to measure both scanning rate and a direct measure of accuracy 

also. The Letter Search Test was the Savage (1984) Alphabet Coding Task that is a 

letter/letter coding task. The participants encoded random sequences of 15 different 

letters of the alphabet as quickly as possible, using a guide printed as a heading on each 

score sheet. This was run 4 consecutive times with each lasting 2 minutes during which 

the code remained constant. This was scored with the numbers of letters correctly 



 28 

coded during each of these runs and also, the numbers of code letters correctly recalled 

after all runs had been completed. 

 

For the memory factor, there were 8 available measures: the 10-item free recall test, 

the coding/letter-letter substitution test, the propositions about people test, the 

memory circle test (total correct object and position), the 30-item free recall test, the 

verbal free recall test, cumulative free recall test and delayed recall test. All tests were 

designed specifically to test different aspects and areas of the brain and scores were 

recorded accordingly (Rabbitt et al., 2004). 

 

For vocabulary, the Raven (1965) Mill Hill A and Raven (1965) B vocabulary tests were 

used. A vocabulary test required a selection of the most exact synonym for 33 words 

from a possible 6 and B vocabulary test required generation of an exact definition of the 

meaning of each 33 words and there were no time limits. The score was calculated with 

the total number of correct answers and the total number of items attempted. In 

addition to these tests, The Wechsler Adult Intelligence Scale (WAIS) (Wechsler, 1986), 

was also used. WAIS produces scores on four separate subsets of adult intelligence. 

These are: the Perceptual Reasoning Index (PRI), the Verbal Comprehension Index (VCI), 

the Working Memory Index (WMI) and the Processing Speed Index (PSI). Scores are 

calculated based on each of these and then combined to create a Full-Scale IQ (FSIQ).  

 

Participants with severe auditory or visual handicaps were excluded from the 

longitudinal study. 

 

3.13 Cognition Used Model 

Cognitive g factors (vocabulary, fluid intelligence, processing speed and memory) 

derived from longitudinal biennial measures were included in the analysis. The methods 

of these cognitive assessments were previously described by Rabbitt et al., (2004); they 

included an intercept and slope per fluid, vocabulary, speed and memory which 

represent two different perspectives. Intercept is estimate of function at age 70 years 

from the longitudinal model while slope is the measure of change over time from model. 
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3.14 Sleep Data 

Sleep questions within the PDQ included “Generally, at what time do you go to bed at 

night?”, “Generally, at what time do you get up in the morning?”, “On average, how 

many hours sleep do you get every night?”, “How many times during the night do you 

wake up?” and “Do you have any difficulty in getting to sleep?”. Sleep efficiency (%) was 

calculated as “sleep duration x 100/(getting up time-going to bed time)” – sleep 

efficiency above 100% was accepted as 100%. Before analysis, data was cleaned from 

outliners for sleep times (Didikoglu et al., 2019). 

 

3.15 Depression Data 

The Beck Depression Inventory (BDI) (Beck et al., 1988) was used to measure depression 

and the scores for this were continuous. The self-score questionnaire included “I do not 

feel sad”, “I am not particularly discouraged about the future”, “I don’t cry any more 

than usual” and “I have lost interest in other people”. Each has three options to how 

much the participant agrees with the statement and they must choose one.  

 

 

3.16 Statistical Analysis 

All statistical analyses were performed using Stata Statistical Software (Release 14. 

College Station, TX: StataCorp LP). The significance threshold was accepted at p<0.05. 

Data obtained was tested for normal distribution using the Kolmogorov-Smirnov test. 

Data considered to be normally distributed is presented as Mean ± Standard Deviation 

(SD) and data not normally distributed is presented as Median ± Range unless otherwise 

stated. T tests were used for normally distributed data and Mann Whitney U tests for 

not normally distributed data to determine differences in methylation levels between 

the genders. Data was analysed using Pearson Correlation to determine association 

between pathology group (Braak score) and methylation amount per CpG sites, and one-

way analysis of variance (ANOVA) to determine differences between Alzheimer’s 

Groups. Pearson correlation was used to analyse methylation amounts and score of 

longitudinal cognition change; separately for men and women. For longitudinal sleep 

data analysis, linear mixed model was used to analyse methylation, adjusting for age 
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and sex. For cross-sectional depression data, linear regression was used to analyse 

methylation amounts adjusting for age and sex.  
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4.0 Results 
 

4.1 BMAL1 Methylation Levels 

The mean methylation percentages for all samples per each CpG site are presented in a 

bar graph (figure 4) to indicate the methylation % per each site CpG site. The mean 

methylation percentages for all samples per each CpG site were: CpG1 (5.77 ± 6.93), 

CpG2 (4.80 ± 6.18), CpG3 (7.76 ± 6.34), CpG4 (7.15 ± 5.69), CpG5 (8.40 ± 6.48) and CpG6 

(3.48 ± 3.50). Methylation levels were not significantly different between males (n=32) 

and females (n=64) at any CpG site (p= > 0.05).  

 

4.2 BMAL1 Methylation and Neuropathology 

In association with the Braak & Braak, (1991) criteria, control, intermediate and AD were 

split into groups by the Brain Bank defined by their Braak score. For control purposes, 

the highest score was used. For example, a Braak score of IV-V, meant V was taken and 

used. 2 samples could not be classified into a classification due to Braak score being 

unavailable, so these were omitted from the analysis.  

 

A Pearson Correlation test was used to analyse Braak stage and methylation revealing 

that CpG site 2 positively correlated with Braak stage (r=0.26, p=0.01) but lost 

significance when accounting for multiple analysis. CpG sites 1, 3, 4, 5 and 6 did not 

significantly associate. Samples were grouped into AD (Braak stage V-VI) and Non-AD 

(Braak stage 0-IV). Mean methylation of each CpG between the groups are shown in 

Figure 4 with CpG site 2 again showing a significant difference (t ( 92)=-2.47, p=0.015) 

with higher methylation in the AD group. When samples were grouped into control, 

intermediate and AD by Braak stage, Control (Braak 0-II) (n=46), Intermediate (Braak III-

IV) (n=36), AD (Braak V-VI) (n=12), AD group have more CpG2 methylation then 

intermediate and control groups (F(2,91)=3.02, p=0.05). This suggestive significance is 

still valid after adjusting for age of death and sex (B=4.60, 95%CI=-0.85/8.34, p=0.017).  
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Figure 4: Methylation of CpG sites comparing Braak stage. Mean ± 95% CI is presented. n=94; 
Control (Braak 0-II) n=46, Intermediate (Braak III-IV) n=36, AD (Braak V-VI) n=12.  *= significant 
at 0.05 level. 

 

 

 

4.3 BMAL1 Methylation and Longitudinal Change in Cognition 

A Pearson Correlation test was used to analyse longitudinal cognition scores and BMAL1 

methylation. No significance was found between fluid intelligence, processing speed 

and memory cognitive tests, though for vocabulary CpG 1 (r=0.20, p=0.05) and CpG4 

(r=0.20, p= 0.05) showed positive correlations that did not remain significant when 

accounting for multiple analysis. Average methylation across all CpGs showed a non-

significant association (p=0.06) with vocabulary.  When testing intercept (age-adjusted 

cross-sectional data), CpG2 showed positive correlations with fluid intelligence (r=0.20 

p= 0.05) and vocabulary (r=0.22 p=0.03) that again did not remain significant when 

accounting for multiple analysis (table 6).  
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Table 6: A Pearson Correlation test to analyse cognitive measures and CpG methylation.  

Variable  CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 

Longitudinal Fluid intelligence 0.05  0.06  0.06  0.14  0.10  0.15  

Longitudinal Processing Speed 0.16 -0.01 -0.08 0.01 -0.04  0.05 

Longitudinal Memory 0.06 0.08 0.11 0.13 0.10 0.12 

Longitudinal Vocabulary 0.20* 0.13 0.12 0.20* 0.12 0.15 

Intercept Fluid intelligence 0.11 0.20* 0.06 0.05 0.05 0.04 

Intercept Processing Speed 0.10  0.08 0.01 -0.03 -0.03 0.03 

Intercept Memory 0.10 0.07 0.09 0.09 0.07 0.08 

Intercept Vocabulary 0.18  0.22* 0.11 0.09 0.05  0.07 

 

Pearson correlation coefficients (r) *=correlation is significant at 0.05 level 

 
 

 

4.4 BMAL1 Methylation and Sleep  
 
Sleep characteristics of the samples used in this study are shown in table 10. A cross-

sectional analysis was performed using linear regression adjusted for age and sex to 

analyse methylation % per CpG and sleep data for the Pittsburgh Sleep Quality Index 

(PSQI). Data for PSQI was only available for 38 participants and there were no significant 

findings between any CpG island and PSQI total score (supplementary table 2). However, 

CpG4 showed a non-significant trend (F(3, 34)=1.92, p=0.06). 

 

Table 7: Sleep Characteristics of the samples used in this study. PDQ (Personal Detail 
Questionnaire), SD: standard deviation, h: hour, m: minute. %: percent/100. Mean ages at each 
wave were, respectively 1- 62.66 ± 5.32, 2- 66.24 ± 5.49, 3- 77.90 ± 5.4, 4- 83.03 ± 5.25, 5- 85.0 ± 
5.45 (mean ± SD). PDQ4 for night wake was not collected.    

 

 Night wake 
 
(number of times) 
 
n       mean ± SD 

Sleep duration 

(h) 
 
n       mean ± SD 

Midsleep 

(hh:mm) 
 
  n       mean ± SD 

Efficiency 

(%) 
 
  n       mean ± SD 

PDQ1 91 1.14 ± 1.08 93 7.13 ± 1.16 94 3.58 ± 0.65 93 86.23 ± 12.49 

PDQ2 70 1.24 ± 1.08 73 7.16 ± 1.18 73 3.6 ± 0.70 73 85.25 ± 12.37 

PDQ3 42 2.01 ± 1.06  42 6.95 ± 1.29  44 3.28 ± 0.68  42 80.66 ± 12.83 

PDQ4    70 6.64 ± 1.19  74 3.23 ± 0.74 69 77.38 ± 13.63 

PDQ5 42 2.31 ± 1.07  52 7.01 ± 1.43 51 3.14 ± 0.7 51 77.91 ± 14.1 
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A longitudinal analysis was performed using linear mixed model adjusted for age and 

sex to analyse sleep data and methylation percent per CpG site. Mixed-effects ML 

regression was used for n=95. No significance was found between sleep duration, 

midsleep and efficiency for any CpG sites (supplementary table 3). However, night wake 

was significant for CpG3 (p= 0.03) (figure 5) and CpG5 (p=0.01) (figure 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: A positive correlation between number of night wakes and % of methylation of CpG 
site 3 in the linear model adjusting for age and sex. The grey area represents 95% confidence 
intervals. 

 
 
Figure 6: A positive correlation between number of night wakes and % of methylation of CpG 
site 5 in the linear mixed model adjusting for age and sex. The grey area represents 95% confidence 
intervals. 
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4.5 BMAL1 Methylation and Depression  

A cross-sectional analysis was performed using linear regression adjusted for age and 

sex to analyse methylation % per CpG and depression score using Beck Depression 

Inventory score (BDI). No significance was found between CpG site 2, 3, 5 or 6 and BDI 

score. However, CpG4 was positively associated with BDI score (F(3, 89)= 5.64, p = 0.02) 

and CpG1 showed a non-significant trend F(3, 89)= 4.91, p = 0.06). 

Table 8: Methylation % and BDI score using linear regression adjusted for age and sex.*= 
significant at 0.05 level. 

BDI Score*CpG site (n=93) F P Value 

BDI Score * CpG1 (3, 89)=4.91 0.06 

BDI Score * CpG2 (3, 89)=3.50 0.96 

BDI Score * CpG3 (3, 89)=3.52 0.82 

BDI Score * CpG4 (3, 89)=5.64 0.02* 

BDI Score * CpG5 (3, 89)=3.53 0.75 

BDI Score * CpG6 (3, 89)=4.55 0.09 

 

4.6 Overview & Summary of CpG sites 
 
Table 9: Overview of CpG site results. The arrows indicate a positive &/or negative correlation. F 

= females (n=64); M = males (n=32). Almost significant correlations are also shown. 

 
 

This study found that: CpG1 associates with BDI score to a nearly significant level, CpG2 

associates with Braak score, CpG3 associates with night wake, CpG4 associates with fluid 

intelligence in males, vocabulary in females and BDI score, CpG5 also associates with 

night wake and CpG6 associates with fluid intelligence in males.   

 CpG 1 CpG 2 CpG 3 CpG 4 CpG 5 CpG 6 

Braak score       

Fluid intelligence    M  M 

Processing Speed       

Memory       

Vocabulary    F   

PSQI    0.06   

Night wake       

Sleep Duration       

Mid-sleep       

Efficiency        

BDI score 0.06      
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5.0 Discussion 

 

5.1 General findings 

The study investigated the associations between methylation on 6 CpG sites on the 

BMAL1 gene, with Braak score, cognition scores of fluid intelligence, processing speed, 

memory and vocabulary in males and females, sleep data including night wakes, sleep 

duration, midsleep and efficiency and BDI (depression) score. The results found that 

CpG2 was associated with Braak score, CpG3 was associated with night wake, CpG4 was 

associated with female vocabulary, male fluid intelligence and BDI score, CpG5 was 

associated with night wake and CpG6 was associated with male fluid intelligence.  

 

5.2 Braak Score & Methylation 

It was found in this study that CpG2 was positively correlated with Braak score (p=0.01). 

Additionally, CpG2 was also nearly significant (p=0.05), when comparing the differences 

between the pathology groups and CpG sites. These results suggest that BMAL1 is 

regulated with Braak score to some extent and that levels of BMAL1 methylation is 

associated with higher levels of Aβ. 

 

The positive correlation between methylation with Braak stage suggests a reduced 

activity of BMAL1 with increased AD pathology, specifically tau and neurofibrillary 

tangles. Tau pathology has been shown to be the earliest observable AD-like change in 

human brain, with abnormal tau phosphorylation and aggregation beginning as early as 

young adulthood and extending to other connected regions even before Aβ is detected 

(Braak et al., 2011). Several animal studies find mechanistic links between tau pathology 

and circadian clock gene disruption. Koss et al., (2016) showed that transgenic mice with 

forebrain mutant human tau expression show increased wake and decreased NREM 

sleep, as well as more robust changes in EEG power than observed in transgenic mice 

with both tau and Aβ. A transgenic mouse model that develop progressive tau pathology 

leading to formation of neurofibrillary tangles, show a long free-running period 

indicating a disruption in the circadian rhythm. They further show disruption in the cyclic 
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expression of BMAL1 and other circadian clock genes in the hippocampus (Stevanovic 

et al., 2017).  

 

Additionally, the methylation rhythm of the BMAL1 promoter changes in the pre-frontal 

cortex of patients with AD. Lim et al., (2014) found that post-mortem human prefrontal 

cortex samples revealed attenuated methylation rhythms from samples with AD when 

compared with control. The rhythms of DNA methylation were then related with 

rhythms of RNA expression determined by RNA sequencing to support the evident of 

significant 24-hour rhythmicity of DNA methylation. These studies could explain why 

CpG2 was positively correlated with Braak score which could be due to the specific CpG 

islands tested on the BMAL1 gene. However, distinguishing the cause from effect in 

epigenetic epidemiology is difficult due to disorders such as AD manifesting in tissues 

that are inaccessible and are not capable of collecting for longitudinal study.  

 

Another study has shown that BMAL1 expression peaks at night (Cermakian et al., 2011) 

and along with PER1 & PER2, displayed significant 24-hour rhythmicity in the brains of 

AD patients. However, a desynchrony in oscillation was found between the cortex, Bed 

Nucleus of the Stria Terminalis (BNST) and pineal gland in AD patients (Cermakian et al., 

2011); possibly due to the degeneration of the SCN cells in AD brains. This suggests that 

BMAL1 methylation, as well as other CLOCK gene methylation, would have to be looked 

at in other parts of the brain and not just limited to the pre-frontal cortex. Due to the 

BNST and cingulate cortex being involved in decision-making, as well as the pineal gland 

being a major output of the SCN, the abnormal rhythms observed in these areas may 

contribute to cognitive and sleep-wake deficits in AD patients (Coogan et al., 2013).  

 

5.3 Cognition & Methylation 

AD is characterised by cognitive dysfunction. This includes thinking, reasoning and 

remembering. The tests used in this study were fluid intelligence, processing speed, 

memory and vocabulary and only longitudinal scores were used. It is widely reported 

that sleep deprivation is a major factor affecting cognitive performance. Multiple studies 

report this, with particular focus on tasks mediated by the prefrontal cortex function 
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(Harrison & Horne, 2000; Jones & Harrison, 2001). Additionally, it has been previously 

reported that memory and learning are regulated through the circadian timekeeper 

(Monk et al., 1997; Wright et al., 2002; Lyons et al., 2006). If memory and learning are 

regulated by the circadian clock and AD is characterised by disruption to the circadian 

rhythm, then it could be hypothesised and assumed that memory and learning would 

deteriorate as AD worsens and the circadian clock is further disrupted.  

 

In this study, a positive correlation was found for male fluid intelligence and CpG4 

methylation (p=0.04) and CpG6 methylation (p=0.04). Vocabulary and CpG4 methylation 

for females (p = 0.03) were also positively correlated. It is noted, within the central 

nervous system that clock timings were not restricted to the SCN, and ancillary 

oscillatory capacity has been detected in a variety of brain regions and cell types, 

including forebrain circuits that underlie complex cognitive processes (Snider et al., 

2016). Previous research in mice, suggest that essential signalling events in the 

hippocampus required for memory, depend on BMAL1 (Wardlaw et al., 2014). It was 

reported that mice who were completely arrhythmic in constant conditions, had 

impaired spatial learning and memory. This supports the theory that cognition 

performance is dependent on the circadian clock. Snider et al, (2016) also reported in 

mice, when BMAL1 was selectively deleted from excitatory forebrain neurons but the 

SCN clock remained the same, deficits in both acquisition and recall were observed. 

These studies suggest that both the clock timings and BMAL1, play a critical role in 

cognitive performance and for both learning, and memory retrieval.  

 

Only fluid intelligence and vocabulary were positively correlated to the CpG sites tested 

in this study. Due to testing for gender differences, this could be the reason why there 

are differences in correlations. It has been previously reported that men had relatively 

later rhythms of DNA methylation than women (Lim et al., 2014) and in particular, the 

expression of BMAL1, varied based on daily timings but was significantly earlier in 

women than in men (Lim et al., 2013). In addition to any gender differences, there are 

other aspects which could be very important. Burke et al., (2015) found that attention, 

mood and reaction time showed circadian variation when tested at different times 

throughout the day. This would suggest that other factors would have to be included, 
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for example, time at which the cognition tests were undertaken, and this could be 

adjusted for when completing the statistical analysis.  

 

5.4 Sleep Tests & Methylation 

Sleep disturbances and lack of sleep are extremely common within the general 

population; with sleep disturbances and disorders in the elderly affecting more than 

80% of people over 65 years old (Foley et al., 1995), but these numbers are even higher 

for people with AD (Van Someren, 2000). Severe lack of sleep contributes to increased 

risk of cardio-metabolic disorders like cardiovascular diseases and type 2 diabetes, as 

well as mental disorders (Porkka-Heiskanen et al., 2013). In this study, night wake had a 

positive correlation with CpG3 and CpG5 methylation, however, sleep duration, mid 

sleep and efficiency did not have a correlation to any of the CpG sites tested.  

 

Multiple regions in the brain are responsible for the regulation of sleep/wake states, 

however, the ventrolateral preoptic area (VLPO) in the anterior hypothalamus and the 

SCN are implemented in age related changes (Sherin et al., 1996). The VLPO contains 

galaninergic and GABAergic neurons which send inhibitory signals to arousal areas 

whilst asleep (Wennberg et al., 2017). Lesions to the VLPO have been associated with 

long-lasting insomnia in rats (Lu et al., 2000) which could also explain the mechanism in 

humans, and of which is observed in AD. 

 

Sleep deprivation on both the transcriptome and methylome has been studied and 

looked at in human samples and experimental animal models (Cirelli & Tononi, 2000; 

Benedict et al., 2014; Massart et al., 2014; Cedernaes et al., 2015). Cedernaes et al., 

found that a single night of wakefulness, or missing one nighs sleep, altered the 

epigenetic and transcriptional profile of core circadian clock genes (including BMAL1) in 

a number of key metabolic tissues; BMAL1 methylation in particular, decreased in 

skeletal muscle. When comparing against nightshift and dayshift workers, Bhatti et al., 

(2015) found a significant decrease in overall average methylation in the clock genes. 

Additionally, a CpG island near the transcription start site of BMAL1 was also 

hypomethylated, suggesting it be overexpressed amongst nightshift workers. An 

increase in BMAL1 expression has also been found amongst shift workers when 
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compared with night work, supporting this theory (Bracci et al., 2014). This could suggest 

why night wake was significant in this study. Work history, if known, would also have to 

be adjusted for when performing the statistical analysis as this could have a very 

prominent effect on BMAL1 methylation levels. 

 

AD patients tend to have disrupted sleep patterns and sleep disorders, as well as 

suffering from OSA (Wennberg et al., 2017) and SDB (Hermann & Bassetti, 2016) and an 

estimated 70-80% of people with dementia potentially suffer (Wennberg et al., 2017). 

SDB has been associated with several negative health problems, including 

cardiovascular disease (Young & Peppard, 2000) and diabetes (Punjabi et al., 2004) and 

the most common form is OSA. OSA is characterised by episodes of upper airway closure 

during sleep which results in intermittent hypoxia, impaired gas exchange and arousal 

from sleep (Shashri et al., 2015). OSA has also been found to be associated with poor 

executive functioning (Saloria et al., 2002; Sutton, 2008), a decline in verbal episodic 

memory (immediate recall, delayed recall, learning and recognition) and visuo-spatial 

episodic memory (immediate and delayed recall) (Wallace & Bucks, 2012). Ayalon et al., 

(2010) also found that performance for attention and recall was reduced with OSA and 

increasing age. Additionally, OSA has also been associated with MCI and dementia, with 

it being estimated in longitudinal studies that there is a 2-6 times greater risk of 

developing MCI or dementia (Yaffe et al., 2011; Chang et al., 2013). It has been 

suggested that OSA is associated with several brain changes, including loss of regional 

volume (Kumar et al., 2008), as well as white matter integrity in the cingulate cortex 

(Macey et al., 2008), hippocampus (Joo et al., 2013) and some cerebellar regions (Kim 

et al., 2013). As the majority of these are also symptoms of AD and OSA is also very 

common in AD, it is difficult to establish which is the cause and which is the 

consequence; OSA has associations with a decline in cognition which could be the 

decline that accompanies AD, or it could be the AD causing the OSA.  

 

In order to regulate the circadian clock, the SCN receives input from various time cues 

such as daylight exposure. The level of light received is a very important factor in 

synchronising the circadian system and AD patients could exhibit reduced circadian 

rhythm amplitude due to the SCN becoming less responsive to light as it exhibits reduced 
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neuronal activity (Swaab et al., 2002). The first process of the light signals being 

converted into neural signals is naturally affected in the ageing population due to 

reduced optical transmission at short wavelengths (Turner & Mainster, 2008; Brondsted 

et al., 2013) resulting in less light reaching the back of the eye. Light exposure can either 

expand or compress the circadian period, potentially leading to a change in timing or 

phase, however, the degree of change varies depending on the intensity, timing and 

duration of light exposure (Phan & Malkani, 2018). Older people, particularly those 

institutionalised with AD, are more likely to lead an indoor lifestyle; resulting in a 

decrease in bright light during the day which could lead to circadian disruptions. Studies 

found that the light conditions in nursing or care homes were not sufficient for both 

visual and the non-visual aspects of light (Riemersma et al., 2008; Sloane et al., 2008). 

Figueiro et al., (2015) found that lighting intervention significantly increased circadian 

entrainment in AD, in regard to phasor magnitude and sleep efficiency, whilst also 

decreasing symptoms of depression. This disruption in circadian rhythm can lead to 

sleep problems with symptoms including daytime sleepiness, napping during the day 

and wandering during the night (Nolan et al., 2003); all of which are common in AD 

(Bliwise, 2004). Furthermore, studies also found Aβ deposits in the retina of AD mice 

(Ning et al., 2008; Koronyo-Hamaoui et al., 2011) and also in vivo in humans (Koronyo 

et al., 2017), suggesting that Aβ accumulation also affects the retina. 

 

This suggestion also leads to the hypothesis that the sleep-wake cycle directly influences 

levels of Aβ in the brain due to sleep deprivation being shown to increase the 

concentration of soluble Aβ in mice; resulting in the accumulation of Aβ (Kang et al., 

2009). In human cerebrospinal fluid, Huang et al., (2012) found that Aβ concentrations 

were correlated to total sleep time, providing the link between sleep and Aβ 

accumulation. There are also other aspects of sleep that links Aβ accumulation. For 

example, sleep is often characterised into two general states measured by 

polysomnography: non-rapid eye movement (non-REM) sleep and rapid eye movement 

(REM) sleep. Non-REM consists of three stages, N1, N2 and N3 with slow wave sleep 

(SWS) being the deepest point of N3 (Wennberg et al., 2017). The main physiological 

difference between SWS and being awake is down to changes in neuronal activity and 

these neuronal firings release Aβ into the brain interstitial fluid, thus leading to an 
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increase in concentration of Aβ in the interstitial fluid when awake (Cirrito et al., 2005). 

During SWS, the majority of the neurons are in the hyperpolarised silent state, which 

releases less Aβ than during other stages of sleep, or wakefulness (Ju et al., 2014). This 

means that if SWS is not reached during sleep, the cortical neurons will fire and 

depolarise, leading to an increase in the release of Aβ and thus, higher levels in the 

interstitial fluid. Kang et al., (2009) also found the levels of extracellular Aβ in mice was 

~25% higher during wakefulness compared with sleep, and persistently elevated Aβ 

levels in sleep deprivation conditions. These studies show the connection between sleep 

and Aβ accumulation, however it is difficult to establish whether the Aβ plaques seen in 

AD are the cause or consequence of sleep disturbances or if they exacerbate and 

accelerate the onset of AD pathology. If Aβ is accumulated due to lack of sleep, but AD 

is characterised by Aβ and lack of sleep, establishing the precursor remains difficult 

however, it is clear that they both influence each other to some extent. 

 

Poor sleep has also been linked to an increase in cognitive decline, which again is a 

hallmark of AD. Both short sleep duration (Kronholm et al., 2009; Xu et al., 2011; 

Stenberg et al., 2013) and long sleep duration (Schmutte et al., 2007; Kronholm et al., 

2009; Ramos et al., 2013) have been linked to poorer cognitive performance. Kronholm 

et al., (2009) found that both short and long sleep duration, as well as tiredness and 

fatigue were associated with a decrease in self-reported and objectively assessed 

cognitive functioning. Additionally, sleep duration has also been linked to poorer 

cognitive performance (Loerbroks et al., 2010; Ferrie et al., 2011) and a risk factor for 

dementia. Loerbroks et al., (2010) found a sleep duration of ≥9hours was associated 

with the impairment of verbal memory. Additionally, it was also found that increasing 

sleep duration from 7-8 hours to ≥9 hours was also associated with an increase in 

cognitive impairment. This again provides the link between AD pathology and sleep; 

however, the cause or consequence question still remains but it could be hypothesised 

that poor sleep helps contribute to AD pathology.  

 

The examples above are all factors of AD and sleep however for all it is hard to 

distinguish which is the cause and which is the consequence. As all are hallmarks of AD 

which lead to disruptions in sleep, it could be hypothesised that poor sleep is a result of 
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AD. However, there is significant evidence to support the hypothesis that poor sleep 

definitely contributes to AD pathology and potentially could lead to AD with a 

bidirectional link appearing between disturbed sleep and AD. 

 

 

5.5 Depression & Methylation 

Cognitive impairment is the hallmark of AD; however, depression is also common in a 

large number of AD patients with up to 50% of patients experiencing depression or 

clinically depressive symptoms (Starkstein et al., 2005). Additionally, between 80%-90% 

of depressed patients report insomnia, with insomnia also being a risk factor for 

developing depression (Reynolds & Kupfer, 1987). DNA methylation percentages were 

determined for each CpG site and tested for correlation against BDI score; CpG4 was 

positivity associated with BDI score (p=0.02) and CpG1 was nearly significantly 

associated (p=0.06). These results indicate that BMAL1 plays some role in depression.  

 

Disruptions in circadian rhythm have been previously associated with psychiatric 

illnesses such as depression (Sahar & Sassone-Corsi, 2012) and its different forms (Baird 

& Cauvin, 2000; Abarca et al., 2002); as well as Bipolar Disorder (Yang et al., 2008). The 

mechanism linking the two is likely represented by uncoupling of autonomous 

oscillators in the SCN or disruptions in the output from the SCN to other parts of the 

brain (Yang et al., 2008). Clock genes have been associated with depression and 

individuals with an abnormally-shifted or arrhythmic biological clock have been linked 

to a higher risk of developing depression (McClung, 2007). In animal models, 

Christiansen et al., (2016) found that BMAL1 in particular, along with PER2, was more 

susceptible to stress. Landgraf et al., (2016) also found that SCN-specific BMAL1-

knockdown mice exhibited depression-like behaviour. Polymorphisms in clock genes 

have also been investigated and reported to manifest in depressed patients (Partonen 

et al., 2007; Kovanen et al., 2013; Shi et al., 2016). These studies provide the link 

between the circadian cycle and depression; however, it is unclear if one or all are 

related. As BMAL1 is the main driver of the circadian cycle, it could be assumed that 

polymorphisms and degradation of this would in turn affect the other clock genes, 

potentially resulting in a higher risk of developing depression. 
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Additionally, there are other aspects that circadian timing controls, for example 

neurotransmitters. Studies have implicated the presence of a large number of 

neurotransmitters in the SCN (Rusak & Bina, 1990; Reghunandanan et al., 1991; 

Abrahamson & Moore, 2001). Dysregulated neurotransmission has been observed in AD 

(Selkoe, 2002; Martorana & Koch, 2014) and dopamine (DA) has been identified as a 

crucial neurotransmitter that is involved in long-term memory and motor activity. 

Martorana & Koch., (2014) found in AD-affected mice brains, that Aβ plaque-induced 

dopaminergic dysfunction was observed. The dopaminergic system has been studied as 

a key neurotransmitter system that is involved in cognition and emotion (Nardone et al., 

2014) because of the changes that it undergoes during the neuropathological ageing 

process. It has also been suggested that DA plays a key role in synaptic plasticity 

mechanisms (Hagena & Manahan-Vaughan, 2016). The disarrangement of synapses, 

impairment of neurotransmissions and cell losses promotes the presence of 

extracellular deposits of amyloid protein, plaques and intracellular fibrillary tangles 

which in turn, prompts the symptoms of predementia, like a decline in cognition (Pan et 

al., 2019). However, it is unclear whether the changes seen in AD patients is the cause, 

or effect of the disease, due to the changes to the dopaminergic pathways that occur 

naturally with age. Furthermore, changes in DA levels in the brain are suspected to 

influence mood in both humans and mice (Andretic & Hirsh, 2000; Nestler & Carlezon, 

2006; Roybal et al., 2007). As DA is an important neurotransmitter in depression and the 

DA system is disrupted with age and particularly with AD but is regulated with BMAL1 

and the circadian rhythm, then it could be hypothesised that depression is more a 

symptom of AD. However, it is unclear if depression comes before AD, or is rather a 

consequence of having AD.  

 

In addition to neurotransmitter dysfunction, another hallmark of AD is Aβ plaques and 

NFT, which have both also been linked to depression. It has been suggested that a 

lifetime history of depression is associated with Aβ deposition (Rapp et al., 2006; Wu et 

al., 2014; Chung et al., 2015). Rapp et al., (2006) found that AD patients with a lifetime 

history of depression corresponded to an increase in Aβ plaques and NFT when 

compared against AD patients without a history of depression. This suggests an 
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interaction between major depression and AD neuropathology. It has also been 

suggested that depressive symptoms in older age could be affected by Aβ pathology. 

Harrington et al., (2016) found that elevated Aβ levels were associated with an increased 

risk of developing clinically significant depression symptoms during follow-up in 

preclinical AD. Furthermore, it has also been found that people with MCI and depression 

were more than twice at the risk of developing AD than those without depression 

(Modrego & Ferrandez, 2004). There are clear links between depression, Aβ and AD and 

it could be hypothesised that depressive symptomatology could be an early symptom of 

underlying AD neuropathology. 

 

The prefrontal cortex has also been associated with depression (Treadway et al., 2015). 

The prefrontal cortex consists of two sub-regions, the ventromedial prefrontal cortex 

(vmPFC) and dorsolateral sectors (dlPFC) (Koenigs & Grafman, 2009), with each one 

being involved in different aspects of human physiology. The vmPFC is responsible for 

the regulation of affection, which includes the generation of negative emotions and the 

dIPFC is responsible for cognitive functions, including intention formation, attentional 

control and goal-directed action (Miller & Cohen, 2001) and both have been linked to 

depression. It has been found that in lesion models, loss of dIPFC can provoke 

depression, but loss of vmPFC can cause a decrease in the severity of depression 

(Ellenbogen et al., 2005; Sachdev & Sachdev, 2005). Additionally, it has been suggested 

that the mechanism in the prefrontal cortex that’s associated with depression is due to 

lack of activation of oxygenated haemoglobin (Pu et al., 2015). As only the prefrontal 

cortex was looked at during this study, the positive correlation that was found between 

BDI score and BMAL1 methylation could be due to the nature of the prefrontal cortex 

and it would be advised to investigate other brain regions to confirm the association. 

 

Furthermore, DNA methylation itself has been shown to play an important role in the 

pathogenesis of various stress-related psychiatric disorders, such as depression due to 

its reaction to external stress (Januar et al., 2015). Byrne et al., (2013) found in female 

monozygotic twins that a history of depression was associated with a decrease in global 

methylation levels when compared with control. Additionally, Numata et al., (2015) 

found lower methylation levels in patients with MDD when compared against control in 
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393 CpG sites using an epigenome-wise approach. This would suggest that DNA 

methylation levels tend to be lower in depressed patients. 

 

Despite the evidence mentioned which links alterations in circadian rhythms to 

behavioural disturbances and psychiatric diseases, it is challenging to determine 

whether circadian rhythm disturbances are the underlying cause of diseases or simply 

symptoms of the disease process (Benca et al., 2009).  
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6.0 Limitations 

 

One limitation of this study is only BMAL1 methylation of one brain region (prefrontal 

cortex) was looked at. However, it is possible that DNA methylation varies across 

different brain regions. Further research should consider this possibility and investigate 

other regions of the brains and compare their DNA methylation variability on AD 

pathology. Additionally, the pre-frontal cortex samples used were from Manchester 

Brain Bank which, along with the data, were from The University of Manchester 

Longitudinal Study of Cognition in Normal Healthy Old Age cohort. As the samples were 

from here, the post-mortem delay was not known and could not be adjusted for when 

performing the statistical analysis.  

 

Another limitation to this study is sample size. Though 96 samples were investigated, all 

could not be used due to lack of relevant data. A larger sample size in which all the data 

could be used, would make for a more substantial statistical analysis. Furthermore, if 

the six CpG sites that were investigated were corrected for Bonferroni, as a conservative 

approach, significance would be lost due to limited samples with all the measures. 

 

An additional limitation is reporting error during PSQI/PDQ which are both self-reporting 

scales. Sleep data may be improved through use of wrist actigraphy studies. However 

due to this being a large cohort study, the PSQI/PDQ were deemed effective.  

 

A further limitation to this study would be the other factors that should be included. For 

example, time of death and time of tests undertaken. In the discussion, it was reviewed 

how these could have an effect on BMAL1 methylation and how it could change 

throughout the day. Due to this, these should be accounted for in the statistical analysis 

if possible and known throughout the longitudinal data analysis. 

 

However, the study also has several strengths. To my knowledge, this is the first study 

that has examined the association between BMAL1 methylation in post-mortem pre-

frontal cortexes’ and related it to AD neuropathology (Braak score), cognition, sleep and 

depression.  
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Additionally, this is the first study to use the data obtained from The University of 

Manchester Longitudinal Study of Cognition in Normal Healthy Old Age cohort and 

relate them to BMAL1 methylation and observe correlations with neuropathology, 

cognition decline, sleep data and depression scores.  
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7.0 Future Research 

 

This study has shown that BMAL1 methylation is linked to Braak score, cognitive decline, 

sleep waking and depression. However, the cause or consequence question still remains 

unanswered and it is still not known if BMAL1 methylation is the cause of these 

correlations or rather a consequence instead.  

 

Further research should consider longitudinal data if possible, for cognition tests, sleep 

and depression and relate to the different stages of AD. This would allow analyses to be 

conducted as AD progresses and relate to this. Additionally, further research needs to 

be conducted on gene regulation in cognitive decline and AD using human brain 

samples. This study should be repeated using another region of the brain, for example 

the hippocampus, to allow comparison to the prefrontal cortex and to assess if the levels 

are altered at all in different regions. Manipulating BMAL1 and studying effects in other 

brain regions will shed light on circadian clocks in brain regions that play a direct role in 

cognition function, sleep and mood regulation.  

 

Furthermore, this study has highlighted the importance of sleep on AD pathology and 

further work may be able to consider a longitudinal study of care home sleeping patterns 

against people in their own homes by looking at ways to help improve sleep. Also, a 

longitudinal study that focuses on sleep and AD but with light therapies would help 

support the data found in this study. 

 

Other clock genes should also be looked at and this study should be repeated but with 

PER1, PER2, & PER3 and CRY1 & CRY2 with the use of the same data. This will help form 

a mechanistic view of the circadian cycle and the role it plays in AD neuropathology, 

cognition, sleep and depression. 
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8.0 Conclusion 
 

The use of human brain samples from the prefrontal cortex in this study allowed us to 

develop a mechanistic view of how the DNA methylation of BMAL1 methylation, AD 

neuropathology, cognition, sleep and depression may all be linked together (figure 11).  

 

This study found that BMAL1 methylation was positively associated with Braak score, 

longitudinal fluid intelligence score for males, longitudinal vocabulary for females, night 

wakes and depression (BDI score). However, surprisingly, no significance or associations 

were found between BMAL1 and processing speed and memory tests, sleep duration, 

mid-sleep and sleep efficiency. These results suggest that BMAL1 methylation does play 

a role in sleep and AD neuropathology but to what extent needs further research. As the 

circadian cycle is linked to sleep and sleep highly linked to the circadian cycle, it could 

only be hypothesised that all play a role in AD neuropathology.  

 

Further studies should look at other important CLOCK genes and relate their 

methylation to sleep and AD. This will help create a more robust view of the circadian 

cycle and give insight into how much influence sleep has on CLOCK gene methylation 

and AD neuropathology.  

 

 

 

 

 

 

 

 

Figure 7: The proposed bidirectional relationship between BMAL1 methylation, AD and 
sleep. Potential positive-feedback mechanisms exist between BMAL1 methylation, Aβ 

accumulation, sleep quality, AD and cognitive decline. Aβ=Beta-amyloid; AD=Alzheimer’s Disease; 
OSA=Obstructive sleep Apnoea; SDB=Sleep disordered breathing.  
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10.0 Appendix: Supplementary Material 
 
 
Table 1: Chemical, reagents and kits used: 
 

96 well plate  Starline  

Q24 sequence plate  Quigen  

0.2ml PCR tubes  Starline  

Pipette tips 10ul,20ul,200ul,1000ul  
 

PCR plate cover slips  
 

Nuclease free water  
 

PCR grade water  
 

Isolate 2 genomic DNA extraction kit  Bio line  

EpiTec fast Bisulphite kit  Quigen  

Pyromark q24 regents  Quigen  

Agarose powder  
 

Tris base  
 

EDTA  
 

DNA ladder 100bp  Bioline  

MyTaqHS  Bioline  

70% ethanol  
 

Denaturing buffer  
 

Washing buffer  
 

BMAL1 forward primer  Invergion  

BMAL1 reverse primer  Invergion 

BMAL1 sequence primer  Invergion  

Biorad RT PCR Machine Biorad 

Eppendorf master cycler  

Pyromark sequencer Quigen 

Biorad power pack and tank Biorad 
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Table 2: PSQI Score and CpG site using linear regression adjusted for age and sex. No CpG sites 
were significant at 0.05 level, however, CpG 4 was nearly significant. N=38. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Table 3: Sleep data and CpG site usng linear mixed model adjusted for age and sex. *= 
significant at 0.05 level; **=significant at 0.01 level. N=95. 

 

Sleep 
Data*CpG site 
(n=95) 

Sleep Duration 
 
(P value) 

Midsleep 
 
(P value) 

Efficiency 
 
(P value) 

Night Wake 
 
(P value) 

CpG1 0.92 0.97 0.47 0.84 

CpG2 1.0 0.28 0.89 0.86 

CpG3 0.33 0.71 0.90 0.03* 

CpG4 0.17 0.94 0.28 0.76 

CpG5 0.21 0.99 0.69 0.01** 

CpG6 0.35 0.49 0.40 0.82 

 

PSQI * CpG site (n=38) 
 

F P Value 

PSQI * CpG1 
 

(3, 34)=0.64 0.96 

PSQI * CpG2 
 

(3, 34)=0.64 0.94 

PSQI * CpG3 
 

(3, 34)=0.64 0.93 

PSQI * CpG4 
 

(3, 34)=1.92 0.06 

PSQI * CpG5 
 

(3, 34)=0.70 0.68 

PSQI * CpG6 
 

(3, 34)=1.79 0.08 


