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1. Introduction  

The auditory system is unique amongst mammalian sensory systems in having pre-cortical commissural 

connections that interconnect homologous structures on either side of the brain.  In the 

somatosensory and visual systems, crossing fibres occur at the spinal cord and optic chiasm 

respectively, but these are decussations, where fibres travel obliquely to terminate in structures at a 

level above their origin. True commissural interactions in most sensory and motor systems are found 

within the cerebral cortex, where the two hemispheres are interconnected by the corpus callosum and 

the other major commissures. However, as in several aspects of its functional organisation, the 

auditory system proves to be the maverick amongst sensory systems, operating according to its own 

distinct requirements.  

The first commissural connections in the auditory pathway occur between the cochlear nuclei, the 

direct recipients of input from the cochlea.  There are two systems: one glycinergic that originates 

mainly in the core of the ventral cochlear nucleus (VCN) and another, excitatory, which arises from 

neurons in the small cell cap of the VCN (Cant and Gaston 1982; Shore et al. 1992; Schofield and Cant 

1996a; Alibardi 1998; Arnott et al. 2004; Doucet et al. 2009; Brown et al. 2013).  Given their different 

organisation, these two systems likely serve several functions, including balancing binaural interactions 

between the cochlear nuclei (Needham and Paolini 2006; Doucet et al. 2009).   

Commissural projections are absent between the nuclei of the superior olivary complex, and next occur 

near the head of the brainstem where the commissure of Probst, a primarily GABAergic pathway, 

interconnects the binaurally responsive neurons of the dorsal nucleus of the lateral lemniscus (Adams 

and Mugnaini 1984; Shneiderman et al. 1988; Chen et al. 1999; van Adel et al. 1999).  Interestingly, the 

mainly monaural neurons in the ventral nucleus of the lateral lemniscus, which receive inputs 

predominantly from the contralateral cochlear nucleus, are not commissurally interconnected - an 

observation again consistent with the idea that commissural connections are important in binaural 

processing.   

Of all the subcortical auditory commissures, the most substantial interconnects the inferior colliculi. 

The significance of this reciprocal innervation is evidenced by the fact that the commissure of the 

inferior colliculus (CoIC) is likely the largest single external source of input received by the IC (Moore 

1988).  This chapter explores what is currently known about the organisation and function of the CoIC, 

and speculates as to its role in sound analysis.  

1.1 Structure of the review 

The chapter begins by considering the anatomy of the CoIC, including the sources and connections of 

its fibre. These sections are followed by a discussion of experiments that have investigated the function 

of the CoIC, and we conclude with a consideration of the putative role of the CoIC, and identify the 

major gaps in our knowledge. The aim is not to be historically exhaustive, but rather to highlight the 

major principles of CoIC organisation. 

2. Anatomical organisation of the CoIC 

2.1 Gross structure of the commissure 

The CoIC principally interconnects neurons in the two ICs, although, as discussed later, some of its 

fibres originate in, or target, other centres in the auditory pathway. In appearance, the CoIC is a 

curvilinear tract comprised of heavily myelinated fibres that interconnect the ICs dorsal to the cerebral 

aqueduct (Figure. 1A) (Faye Lund and Osen 1985; Saldaña and Merchán 2005). The number of CoIC 

fibres increases dorsally, medially and rostrally as they coalesce to cross the midline, forming the 
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caudal part of the tectal commissure, a fibre bundle that also contains the commissural fibres of the 

superior colliculus (Faye Lund and Osen 1985). The CoIC courses symmetrically about the midline, 

forming a direct projection from neurons in one IC to those opposite. Intermingled between the 

commissural fibres are neurons that form a commissural nucleus, located between the dorsal cortex 

of the IC (ICD) and the periaquaductal grey in cat (Morest and Oliver 1984) and rat (Faye Lund and Osen 

1985). This structure is now considered to be the caudal portion of a more extensive, tectal longitudinal 

column that receives collaterals of commissural fibres (Saldaña et al. 2007; Aparicio et al. 2010). Lateral 

to the commissural nuclei, CoIC fibres splay across the entirety of the IC and their fascicles decrease in 

density as they project toward their targets. 

Figure 1 near here 

 

Figure 1  

A. Coronal section (50-µm thick) of the tectal midbrain in guinea pig stained for myelin with osmium 

tetroxide to show the commissure of the inferior colliculus (CoIC). Commissural fibres can be seen 
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crossing the midline and fanning out into each IC.  Fibres of the lateral lemniscus can be seen entering 

the ICs from below.  B. Photomicrograph showing injections of two different tracers into the same 

frequency band lamina in the IC of rat.  The best frequency at the injection sites was determined by 

electrophysiological recording to sound to be 10-10.5 kHz.  The injection of tetramethyl-rhodamine 

dextran (TRD) in the dorsal cortex (ICD, yellow circle) and biotinylated dextran amine (BDA) into the 

central nucleus (ICC, red circle). A V-shaped plexus of intrinsic axons is labelled ipsilateral to the 

injections with a central wing in ICC that extends into ICD, and a lateral wing that turns into the lateral 

cortex (ICL). C. In the contralateral IC, commissural fibres are labelled in mirror image distribution to 

those ipsilateral, with retrogradely labelled neuronal somata scattered amongst them. D. Camera 

lucida drawings from sections at different locations along the rostro-caudal axis, showing the locations 

of somata labelled by the injection in the central nucleus (red dots) and the dorsal cortex (black dots) 

respectively.  E.  Three dimensional reconstructions in the coronal plane of the locations of the injection 

sites (left) and of retrogradely labelled somata (right) for the case shown in B-D.  The injection in the 

ICC labels somata (red points) in the contralateral ICC and ICD. Somata labelled following an injection 

in the ICD (yellow points) are restricted to the cortical regions. (Some of the latter appear in this view 

to be in the ICC, but viewing from other orientations shows them to be in the cortex rostral and caudal 

to the ICC.)  Neurons in the ICL do not give rise to commissural projections.  D, dorsal; L, lateral. (B-E 

adapted from Malmierca et al., 2009). 

2.2 Connectivity of commissural fibres between the ICs 

The overall of schema of intercollicular connectivity is highly conserved across mammalian species. 

The patterns of connections formed by the intercollicular fibres were first demonstrated in a variety 

of species using degeneration techniques (Woollard and Harpman 1940; Moore and Goldberg 1966; 

Powell and Hatton 1969; van Noort 1969). More recent studies using anterograde and retrograde 

tracers have added detail and clarity to those earlier findings, demonstrating that there are 

commissural neurons in IC that project contralaterally to all its subdivisions (Adams 1980; Gonzalez 

Hernandez et al. 1986; Coleman and Clerici 1987; Saldana and Merchan 1992; Malmierca et al. 1995; 

Malmierca et al. 2009).   

The first detailed study of commissural projections, using the anterograde tracer Phaseolus vulgaris-

leucoagglutinin (PHA-L), was conducted in rat (Saldana and Merchan 1992). Tracer deposits in ICc 

labelled, in the coronal plane, two bands of fibres that coursed through rostral part of the ipsilateral 

IC; one through the dorsal cortex (ICD) and central nucleus (ICc), the other through the lateral cortex 

(ICL) (save for the most superficial layer). Caudally, the two bands converged to form one continuous 

laminar plexus. A mirror symmetric, though less extensive, distribution of axon terminal fibres was 

revealed in the contralateral IC. Intercollicular connections therefore follow a reciprocal topographic 

pattern, with terminals distributed throughout the contralateral fibrodendritic lamina in all 

subdivisions (Saldana and Merchan 1992; Saldaña and Merchán 2005).    

A similar distribution of intercollicular projections was demonstrated in guinea pig using biocytin 

injections combined with electrophysiological recording (Malmierca et al. 1995). This approach 

allowed the injection sites and the resulting labelled laminae to be characterised with respect to the 

frequency organisation of the IC. In the IC contralateral to the tracer injection, electrolytic lesions 

placed at sites with the same best frequency as the tracer injection confirmed the precise symmetry 

of these intercollicular connections.   

Thus, the consistent finding from studies using anterograde tracers is a mirror symmetric pattern of 

labelling in each IC defining the arc of the fibrodendritic laminae (Figure. 1B and C) (Saldana and 

Merchan 1992; Malmierca et al. 1995; Malmierca et al. 2009). These laminae are the underlying 
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structural substrate for the tonotopic representation of sound frequency in the IC (Rose et al. 1963; 

Merzenich and Reid 1974) 

Although these studies show the general organisation of commissural connections between the ICs, 

they do not address the intricacies of the circuitry involved. Particularly pertinent is whether the 

ipsilateral and contralateral laminae are connected in a point-to-point fashion, or whether neurons at 

a single location on a lamina send divergent connections across the lamina surface? A partial answer 

to this question was obtained using retrograde labelling from small injections of two dextran tracers.   

Malmierca et al. (2009) placed tracers at different frequency locations and subdivisions in rat IC and 

reconstructed in 3D the locations of retrograde labelled neurons on the contralateral side. Labelled 

somata were distributed throughout the contralateral lamina from an injection in ICC, but the number 

of labelled somata in the contralateral IC was maximal at a point mirror symmetric to the injection site 

(Figure 1B-E).  

The caveats of tracer studies notwithstanding, the observed pattern of labelling suggests that 

commissural neurons make divergent connections. Thus a single point on a lamina receives convergent 

connections from neurons distributed over the surface of the homologous lamina in the contralateral 

side, but the greater weight of connections occurs between homotopic points (Figure 2A). Such an 

organisation may provide the basis for complex convergent and divergent information processing 

between the ICs. However, we do not know whether different classes of neurons contribute to these 

different projection patterns. The answer to this question awaits the detailed connectivity mapping of 

individual commissural neurons. 

In addition to interconnecting neurons in the contralateral ICC, neurons in the ICC also receive 

projections from the contralateral ICD. An injection in ICC retrogradely labelled neurons in contralateral 

ICD whose distribution followed the axis of the lamina in ICC. In contrast, an injection in ICD resulted in 

a diffuse pattern of labelled somata in contralateral ICD (Malmierca et al. 2009).  These distributions 

suggest there are two distinct populations of neurons within ICD giving rise to commissural 

connections:  neurons in the ventral part of ICD, a region into which the frequency band laminae 

extend, project to the contralateral ICc and ventral ICD, whereas neurons in the dorsal part of ICD 

connect more widely throughout the contralateral ICD (Figure 2B).  Neurons in ICL were rarely labelled 

following injections in ICC or ICD, indicating that although commissural projections terminate in this 

subdivision, it is not a source of commissural connections.  
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Figure 2  

Schematic diagrams to illustrate the patterns of commissural connections between the different 

subdivisions of the inferior colliculus (IC) based on retrograde labelling following tracer injections like 

those in Fig 1.    

A.  An injection (dotted circle) into the central nucleus (ICC) results in fibro-dendritic labelling of a V-

shaped axonal plexus (grey) in both ICs (see Fig 1B). Retrogradely labelled somata (filled dots) are 

observed over the length of the lamina in the contralateral (right) IC, consistent with each of these 

neurons making divergent commissural projections (thin arrows) to the injection site and sites along 

the lamina. Cell counts show the projection is weighted (broad arrow) to a point on the lamina (solid 

circle) corresponding to that of injection site. B. Neurons in the dorsal cortex make two types of 

projection: an injection in ICC retrogradely labels neurons in the deeper layers of the dorsal cortex (open 

squares) in line with the lamina, while an injection in ICD labels neurons distributed more diffusely in 

the dorsal cortex (solid squares).  

Figure 2 near here 

Together, these findings suggest that different populations of commissural neurons interconnect the 

two ICs in distinct ways, perhaps in a manner analogous to the functional zones identified for the 

multiple sources of afferent input to the IC (Cant and Benson 2006; Loftus et al. 2010; Cant 2013). The 

search for the organising principles of interactions within and between the fibrodendritic laminae of 

the IC remains an important, but unanswered, challenge.  

2.3 Commissural fibres arising outside the ICs 
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Not all fibres passing through the commissure originate in the IC.  A subset of ascending lemniscal 

fibres cross via the commissure to the contralateral IC (Barnes et al. 1943; Hutson et al. 1991). These 

originate from the ventral (Whitley and Henkel 1984), intermediate (Hutson et al. 1991), and dorsal 

nuclei of the lateral lemniscus (Bajo et al. 1993), as well as the sagulum (Henkel and Shneiderman 

1988).  Some neurons in the paraolivary nucleus of the superior olivary complex similarly send 

collaterals to dorsal cortex of the contralateral colliculus via the commissure (Saldaña et al. 2009). A 

recent report finds even fibres originating from a location as peripheral as the DCN may reach the 

ipsilateral IC by traversing the brainstem to the contralateral IC before crossing back through the CoIC 

to terminate in ipsilateral ICD (Milinkeviciute et al. 2015). Cells in the fusiform layer of the DCN can 

project to both ICs (Schofield and Cant 1996b) and this finding suggests a possible route via the CoIC.   

The CoIC also likely contains an ascending projection from IC to the ventral nucleus of the contralateral 

MGB (Kudo and Niimi 1978; Oliver 1984; González-Hernández et al. 1991; Coomes and Schofield 2004). 

Double labelling experiments suggest that as many as 30% of IC neurons projecting to the ipsilateral 

MGB also project to the contralateral MGB (González-Hernández et al. 1991). Such projections may 

provide a means for further bilateral integration within MGB. 

In addition to conveying ascending and laterally directed fibres, the CoIC also mediates descending 

connections.  While cortico-collicular, and thalamo-collicular connections are predominantly 

ipsilateral, a small proportion reach the contralateral IC directly via the commissure.  Most terminals 

of such cortico-collicular fibres are found medially and dorsally, and in contrast to their ipsilateral 

equivalents, labelling in ICc only extends into its most dorsal part, and is absent in ICL (Rockel and Jones 

1973; Adams and Wenthold 1979; Saldana et al. 1996).  After tracer injections in both ICs, around 5% 

of cortico-collicular neurons were found to be double labelled in guinea pig and opossum (Willard and 

Martin 1984; Coomes et al. 2005). In contrast, Bajo and Moore (2005) failed to find any double-labelled 

cells in auditory cortex after large tracer injections in both left and right IC in gerbil. Nevertheless, it 

seems that, at least in some species, cortical neurons may send collateralised inputs to both ICs. 

We do not know the exact proportion of commissural fibres that originate outside the IC, but they are 

likely a small proportion of the total. It is also interesting, that, in contrast to the weight of 

intercollicular connections between the ICCs, commissural connections to the IC from extra-collicular 

sources are predominantly restricted to ICD. 

There are a few reports of non-auditory projections to IC which first project through the CoIC. Aside 

from the projection from auditory cortex, higher order areas such as insula (Winer et al. 2002) and 

orbitofrontal cortex (Mizuno et al. 1968) innervate IC via CoIC. Subcortical sources include the 

substantia nigra pars lateralis, a tonically firing GABAergic output of the basal ganglia (Afifi and Kaelber 

1965; Olazabal and Moore 1989), the cholinergic basolateral amygdala (Marsh et al. 2002), and 

bilateral projections from the hypothalamus (Adams 1980). These little considered sources of input 

suggest processing in the IC goes beyond the analysis of sound per se. 

2.4 The neurochemistry of commissural fibres  

Studies concur that the CoIC comprises both excitatory and inhibitory fibres. Saint Marie (1996) 

demonstrated an excitatory, glutamatergic, component based on the synaptic uptake and retrograde 

transport of tritiated D-aspartate. But combining retrograde labelling with immunohistochemistry for 

GABA or its synthesising enzyme GAD67 reveals a substantial minority of labelled neurons are 

GABAergic (González-Hernández et al. 1996; Nakamoto et al. 2013). In rat, 18% of retrogradely labelled 

commissural neurons in the IC were GABA positive (González-Hernández et al. 1996; Hernández et al. 

2006). Given that around 20-25% of neurons in the IC of rat are GABAergic (Merchán et al. 2005) the 

percentage of inhibitory commissural projections suggests the commissural projection is 
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representative of the population of GABAergic neurons in the IC.  In guinea pig, co-labelling of 

commissurally identified neurons with GAD67 found that approximately 10% of intercollicular 

projections were GABAergic, but the number differed between subdivisions from only 4% in ICC, to 

between 12-21% in the different cortical subdivisions (Nakamoto et al. 2013).  These numbers probably 

reflect species differences, but there also appears to be a gradient in the number of GABAergic neurons 

contributing commissural input from dorsal to ventral through ICD and ICC which might account for 

some of the differences observed between studies (González-Hernández et al. 1996). These authors 

report up to 68% of commissural neurons in ICD are GABAergic with fewer located in more ventral 

regions. Such a gradient may also explain why (Zhang et al. 1998) failed to find any GABAergic labelled 

cells among commissural neurons labelled with fluorogold following injections placed ventrally in ICC.  

The contribution of different proportions of GABAergic neurons between different regions of IC 

indicates disparate roles of fibres with the CoIC, related to their afferent sources and efferent targets.  

While glutamate or GABA are the neurotransmitters of most commissural neurons, a small number of 

neuropeptide Y and encephalin-labelled commissural neurons have been identified in the cortical 

subdivisions of the IC (Nakagawa et al. 1995). Further investigation of the diversity of the 

neurotransmitters expressed by CoIC fibres is required. 

2.5 Neuronal morphologies in IC contributing to commissural connections   

There is no systematic study of the neuronal types in IC that form the commissural projection. 

However, several reports using retrograde tracers or intracellular labelling show that IC neurons of 

widely differing morphologies are sources of commissural input (Adams 1980; Druga and Syka 1984; 

Gonzalez Hernandez et al. 1986; Coleman and Clerici 1987; Moore 1988; González-Hernández et al. 

1996; Saint Marie 1996; Okoyama et al. 2006).  The task of comparing these studies is somewhat 

hampered by the different terminologies applied in naming the neuronal types. However, it appears 

safe to say that the two major classes of neurons that feature in cytoarchitecture of the frequency-

band laminae of the ICC (neurons with flattened disc shaped dendritic fields and stellate neurons – also 

termed flat and less flat types (Oliver and Morest 1984; Malmierca et al. 1993; Oliver 2005; Malmierca 

and Hackett 2010) are both found in the commissural population in the central nucleus, together with 

mainly stellate types in ICD. 

In one of the few quantitative studies, Okoyama et al (2006) report that the most frequently 

encountered types were small- and medium-sized disc-shaped neurons (c.a. 10 and 15 µm soma 

diameter respectively) together with medium-sized stellate neurons. Neurons of both categories with 

large diameter soma (>20 µm) were observed, but much less frequently. These two major 

morphological classes are also present in studies that targeted the excitatory (Saint Marie 1996) or 

inhibitory (GABAergic) (González-Hernández et al. 1996; Nakamoto et al. 2013) components of the 

commissural projection. Following injection of tritiated aspartate to retrogradely label glutamatergic 

neurons, Saint Marie (1996) reported labelled neurons in ICC and ICD of the contralateral IC, including 

‘fusiform’ cells lying parallel to the orientation of the frequency band laminae, thus presumed disc-

shaped neurons.  Gonzalez-Hernandez et al. (1996) and Nakamoto et al. (2013) combined retrograde 

labelling with immunohistochemistry to identify GABAergic neurons projecting from one IC to the 

other.  Labelling was most pronounced in ICD and the dorsal part of ICC.  The labelled neurons 

constituted a heterogeneous population of morphologies and diameters with multipolar (stellate) and 

fusiform types representing soma diameters from 12 µm to over 20 µm. Comparison of these findings 

with the population analysis of GABAergic neuron size in the IC by Ito et al (Ito et al. 2009), suggests 

that GABAergic of all sizes contribute to the commissural projection.  
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Intracellular and juxtacellular labelling techniques in vivo or in vitro produce smaller samples of 

neurons than retrograde studies, but have the advantage that labelling of dendritic arbors is more 

complete, and axons can often be traced along at least part of their length.  Such studies have 

described labelled neurons with axons directed towards or into the commissure (Smith 1992; Reetz 

and Ehret 1999; Wallace et al. 2012).  Consistent with the retrograde studies discussed above, in the 

ICD, most of these neurons are ‘multipolar’ (putative stellate or less flat) cells (Smith 1992), but in the 

central nucleus, some have flattened dendritic arbors characteristic of neurons that aligned to form 

the frequency-band laminae (Reetz and Ehret 1999; Wallace et al. 2012).  

2.6 Inputs and outputs of commissural neurons 

Knowledge of the inputs and outputs of commissural neurons is essential to delineate their 

microcircuitry. Although we know relatively little about their sources of inputs, given their number and 

distribution in IC, it would be surprising if commissural neurons were not the recipients of extensive 

input from both intrinsic and external sources.  

One significant source of input to commissural neurons comes from the auditory cortex. Nakamoto et 

al. (2013) in guinea pig used anterograde and retrograde tracers in combination to demonstrate that 

commissurally projecting neurons receive extensive input from the ipsilateral auditory cortex. These 

contacts were seen on neurons in ICD and ICC, and cortico-collicular endings were found on both 

presumed excitatory and identified inhibitory commissural neurons. Intriguingly, as suggested by 

Nakamoto et al. (2013), cortical input to commissural neurons might provide the primary route 

whereby the IC is influenced by the contralateral auditory cortex.  

In support of this hypothesis, spontaneous and sound evoked firing in IC were found to be influenced 

by electrical stimulation of either contralateral or ipsilateral auditory cortex, but the latency of the 

contralateral effect was longer than that for ipsilateral stimulation (11.4 vs 7.2ms) (Torterolo et al. 

1998). The longer latency of the contralateral response is consistent with the possibility that the 

auditory cortex influences the contralateral IC indirectly via the commissure. 

With respect to the output connections of commissural neurons, studies in vitro show that the majority 

of ICC neurons activated by stimulating the commissure are also driven by stimulation of the lateral 

lemniscus (Moore et al. 1998; Reetz and Ehret 1999). In contrast, neurons in ICD receiving commissural 

input were not, or only weakly, driven by the stimulation of the lateral lemniscus (Smith 1992).  These 

data support the notion of different populations of commissural neurons suggested by the anatomical 

findings discussed above (see Figure 2).   

GABAergic neurons projecting to GABAergic neurons in the contralateral IC have been demonstrated 

(Lee et al. 2015), and cell-dependent monosynaptic tracing in mouse has extended this finding. Chen 

et al. (2018) report differences in the proportions of inhibitory neurons projecting to glutamatergic 

and GABAergic neurons in the other IC.  About a third of GABAergic neurons projected to glutamatergic 

neurons, and this proportion was similar for GABAergic neurons located in either ICC or ICD. However, 

there was a marked, location-dependent difference in the proportion of GABAergic neurons projecting 

to GABAergic neurons, with about 60% of those in ICD projecting to GABAergic neurons compared with 

only 20% of those in ICC.  These data suggest that commissural connections predominantly drive dis-

inhibitory circuits in the ICD.   

Amongst the GABAergic neurons targeted by commissural connections are the large GABAergic 

neurons with diameters >16.5 µm.  These neurons, characterised by their dense axosomatic synapses 

associated with terminals expressing vesicular glutamate transporter 2 (VGLuT2) (Altschuler et al. 

2008; Ito et al. 2009), constitute the inhibitory connection from the IC to MGB (Winer et al. 1996; Ito 
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et al. 2009). These neurons receive excitatory inputs from several external and intrinsic sources, 

including from the contralateral IC, although these inputs are considerably sparser than from ipsilateral 

intrinsic neurons (Ito and Oliver 2014; Ito et al. 2015).   

Intracellular labelling demonstrates that some neurons that send axons toward the commissure also 

make axon collaterals that head towards the brachium or the lateral lemniscus. Although it was not 

possible to trace them to their terminals, this observation is consistent with commissural neurons also 

making ascending or descending connections external to the IC (Reetz and Ehret 1999).  More 

definitive double labelling tracer studies have also addressed this question. González-Hernández et al. 

(1991) observed that around 10% of neurons that project to MGB also project to the contralateral IC 

in rat, but suggested that this number increases to 25-30% in areas where neurons labelled each or 

the tracers most overlap.  In contrast, Okoyama et al. (2006) report only around 1% of double labelled 

neurons in the IC in the same species following injections into both the contralateral colliculus and the 

ipsilateral MGB.  Furthermore, the latter study showed a complete absence of neurons contributing to 

both the commissural and the descending pathways from the IC to the cochlear nucleus or the superior 

olive.  These conflicting findings await to be resolved. 

 

 

Figure 3   

Summary of the sources and terminal sites of fibres projecting through the commissure of the IC. By far 

the largest part of the projection originates in the contralateral IC from the central nucleus (ICC) and 
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the dorsal cortex (ICD). Other centres in the brainstem, diencephalon and cerebral cortex make up 

smaller part of the projection and primarily terminate in the ICD.  Coloured stippling in the subdivisions 

of the IC, corresponding to the colour of the incoming projections, indicates the regions where these 

inputs terminate.  Inset top right shows that the IC also sends a minor projection to the contralateral 

medial geniculate body (MGB) and auditory cortex via the CoIC. 

Figure 3 near here 

2. 7 Overview of anatomical findings 

The sources and projections of commissural fibres are summarised in Figure 3. Together, the 

anatomical findings discussed emphasise several points about the organisation of the commissure.  

Commissural connections are responsible for extensive interaction between the two ICs.  The 

commissure mediates excitatory and inhibitory connections roughly in proportion to the percentages 

in which those neuronal types are found in the IC, and cells with a wide variety of morphologies project 

from one side to the other.  These projections, if not connecting point-to-point, are at least weighted 

towards the interconnection of homologous points on the fibrodendritic lamina of the ICC, while in ICD 

there appear to be two populations of commissural neurons with distinct patterns of connections.  

Our knowledge of the micro-circuitry of the IC is rudimentary. The extent to which commissural 

neurons also project to the main external targets of the IC, the brainstem and the thalamus, is 

controversial, but within the IC their projections to output neurons converge with other inputs. It is 

not known if commissural neurons are directly reciprocal, though this seems likely.  Commissural 

neurons receive feedback from the auditory cortex, providing a route for the contralateral auditory 

cortex to influence the IC, over and above the relatively sparse direct projections from the contralateral 

cortex. 

Overall, the anatomical findings reveal the ICs so intimately bound to one another by the commissure, 

it is hard to avoid the conclusion that they function as a single entity.  

3.0 Functional properties of commissural projections 

What might be the function of such interconnections?  In comparison to our knowledge of the 

anatomical organisation of the CoIC, our understanding of its function is far more limited. The 

interconnection of the left and right sides of the brain points to a commissural role in binaural 

interactions, including the neural representation of sounds in azimuth. However, the extent of coupling 

between the two ICs suggests equally extensive and wide-ranging effects on auditory processing. What 

knowledge we have about the functional role of commissural connections derives primarily from 

electrophysiological studies in vitro, and in vivo. 

3.1 In vitro studies 

Electrical stimulation in brain slices, has been used to study the effects of commissural fibres on their 

contralateral neuronal targets. Interestingly, for neurons recorded in the central nucleus, the 

predominant response with stimulation of the commissure is a short latency EPSP followed by a short 

or, more often, long latency IPSP (Moore et al. 1998; Reetz and Ehret 1999). In contrast, although some 

neurons in ICD and ICL had only a short latency EPSP or ISPS, a short latency IPSP followed by an EPSP 

and often a second, long latency, IPSP was the dominant pattern (Smith 1992; Li et al. 1999). The short 

latency responses are consistent with monosynaptic excitatory and inhibitory connections, while the 

longer latency inhibitory effects indicate at least a di-synaptic pathway.    Admittedly, the number of 

neurons studied in this way is relatively small, but these findings support the suggestion made earlier 
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that there are different patterns of synaptic organisation for commissural connections between the 

cortices of the IC, and those of the central nucleus.   

Pharmacological approaches in these studies showed that the long latency component of the inhibition 

was blocked by the perfusion of AMPA glutamatergic-receptor antagonists, confirming that the long-

latency inhibitory component is mediated by di- or poly-synaptic pathways in which GABAergic 

neurons are driven by excitatory commissural fibres (Smith 1992; Moore et al. 1998). Thus, although 

excitatory fibres in the commissure outnumber inhibitory fibres by around 4:1, inhibitory effects 

arising from commissural activation could occur more frequently than expected by this ratio. For some 

commissurally activated neurons in ICD, it was also possible to uncover an NMDA-receptor mediated 

component, suggesting that these inputs may play a role in processing involving learning and plasticity 

(Smith 1992; Li et al. 1999), as might be expected given the role of the ICD in learning-induced auditory 

plasticity (Bajo et al. 2010). 

 

 

3.2 In vivo studies 

The main advantage of in vivo recording for auditory studies is it can be combined with physiologically 

relevant sound stimulation.  In the current context, such recordings have been combined with 

stimulating or inactivating the commissural pathway.   

In principle, inactivating commissural inputs, and thus removing their normative influence, might be 

more informative for understanding the physiology of commissural connections. Two approaches have 

been used: the application of drugs, either by pressure injection (Malmierca et al. 2003; Malmierca et 

al. 2005), or microdialysis (Orton and Rees 2014; Orton et al. 2016) into one IC, or local cooling of one 

IC (Orton et al. 2012; Orton and Rees 2014; Orton et al. 2016). A limitation of pressure injection is the 

proximity of the recording site to the site of injection and the mechanical instability that often 

accompanies the injection.  This is a particular problem for single unit studies where the recording is 

highly sensitive to mechanical disturbance. Micro-iontophoresis avoids these issues, but the volume 

of drug delivered, and therefore the region of influence of the drug, is small, and, given the 

organisation of commissural connections, requires positioning the pipette to match the location of the 

recording site in the other IC.  A better combination of mechanical stability and extended region of 

influence is obtained by delivering a drug via a microdialysis cannula (Orton and Rees 2014; Orton et 

al. 2016).  An alternative to blocking commissural activity is to activate the commissure via electrical 

stimulation of the contralateral IC (Mei et al. 2012b). This method allows direct activation of 

commissural fibres with control over the pattern of stimulation. However, it may not mimic 

physiological activity, and could result in effects arising from the antidromic activation of neurons in 

the contralateral IC.    

In vivo studies demonstrate that modulating commissural input has wide-ranging effects on neurons 

in the contralateral IC, with evidence for effects on frequency response areas, rate level functions and 

the processing binaural cues.   

Frequency response areas or receptive field in the IC can be subdivided into several categories 

according to their shape.  Many neurons have a V-shaped response area, redolent of auditory nerve 

fibres (LeBeau et al. 2001; Palmer et al. 2013).  The other broad group, termed non-V, contains several 

patterns, some of which appear to have been sculpted by inhibition from a V-type response (Egorova 

et al. 2001; LeBeau et al. 2001; Alkhatib et al. 2006; Palmer et al. 2013). While distinct sub-types appear 

to occur within this group, detailed analysis of thousands of response areas suggest they do not 
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constitute discrete classes, but lie on a continuum (Palmer et al.). Experiments where recording is 

combined with iontophoresis of GABAergic antagonists shows differential effects on these two groups:  

V-shaped response areas show increased firing rate over the whole response area, with little change 

in receptive field area. In contrast neurons in the non-V group often show changes in receptive field 

shape, often reverting to a more V-like appearance (LeBeau et al. 2001).       

Interestingly, inactivation of the commissural connections produces changes in frequency response 

areas reminiscent of those seen with inhibitory blockade (LeBeau et al. 2001; Malmierca et al. 2003; 

Orton and Rees 2014). V-shaped response areas typically showed an increase or reduction in firing 

over the whole response area, whereas in non-V type responses changes in firing rate were 

accompanied by an increase or decrease in receptive field area and shape (Figure 4) (Orton and Rees 

2014). The parallels between these observations and those in which inhibitory inputs to the recorded 

neuron are blocked by GABAergic antagonists, suggest that commissural connections contribute to the 

inputs defining receptive field shape, and these can be facilitatory or inhibitory in their action.  
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Figure 4   

Influence of commissural input on frequency responses in the IC. V-shaped (A) and nonV-shaped (B) 

response areas for single neurons recorded in the IC of guinea pig.  Control (top), during inactivation of 

the contralateral IC by procaine infusion or cooling (middle), and after recovery (bottom). Responses in 

each example normalised to the maximum value across conditions. On deactivation of the contralateral 

IC, the V-shaped response area showed an elevation in firing, but little change in area or shape. In 

contrast, the nonV-shaped response area expanded, and firing increased at frequencies to which the 

neuron responded in the control condition.  Comparison of firing (C, total number of spikes) and area 

(D, above threshold bins) in the control and deactivated conditions for the populations of V-shaped 

(black) and nonV-shaped (red) frequency response areas (FRAs). Cumulative distributions for change in 

firing (E) and area (F) for V and nonV groups. While the range of change in firing was similar between 

the two groups, the nonV group showed a larger range of area change than the V group. (Modified 

from Orton and Rees, 2014.) 

Figure 4 near here 

Electrical stimulation of one IC leads to changes in firing rate and broadening or narrowing of V-shaped 

tuning curves for neurons in the other IC, in some cases accompanied by a change in best frequency 

(Mei et al. 2012a; Cheng et al. 2013). The direction of such changes depended on the difference 

between the frequency represented by the stimulation site in one IC and the recording site in the 

other. Where such a difference existed the best frequency shifted towards that of the stimulation site 

(Mei et al. 2012b; Cheng et al. 2013). These effects appear to involve plasticity, since they are sustained 

for 1-2 hours following 30 mins of stimulation. It is not clear to what extent these effects implicate 

commissural interactions between different frequency-band laminae.  

As expected given changes in frequency response areas, stimulation or inactivation in the IC also 

influences the relationship between firing rate and sound level of neurons in the opposite side, as 

exemplified by rate-level functions (RLFs).  Electrical stimulation can elicit increases or decreases in 

firing rate, although the majority of neurons were inhibited by stimulation of the contralateral IC 

(Cheng 2016; Mei 2012).  Facilitation was generally only observed with small BF differences whereas 

inhibition occurred over a wider range of best frequency differences, again raising the possibility of 

interactions between within and between laminae.  In general, rate level responses were suppressed 

by electrical stimulation with increased slope, and a reduction in dynamic range, but no change in the 

degree of monotonicity. As with the effects on frequency responses, there was evidence of the 

involvement of short-term plasticity.  

Blockade of commissural inputs, either by cooling or microdialysis of procaine, in guinea pig resulted 

in shifts in RLFs towards higher sound levels and reduced non-monotonicity, effects that were, in the 

main, due to changes in responsivity at supra-threshold sound levels (Orton and Rees 2014). As a 

consequence of these changes, there was an overall reduction in the ability of neurons to discriminate 

sound levels, suggesting that physiologically commissural input enhances the neural representation of 

sound level.   

Although in all these studies there was evidence for both excitatory and inhibitory commissural effects, 

inhibitory effects appear to occur disproportionately to the known distribution of glutamatergic and 

GABAergic fibres in the commissure (see Section 2.4) (Malmierca et al. 2005; Mei et al. 2013; Orton 

and Rees 2014).  This finding concurs with the findings of in vitro studies (see Section 3.1) 

demonstrating that inhibitory effects are mediated not only mono-synaptically, but also by di- or poly-

synaptic circuits in which excitatory commissural fibres target local inhibitory neurons in the 

contralateral IC. 
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As we suggested earlier, it seems intuitive that commissural interactions might impact binaural 

processing. Physiological studies in vivo lend some support to this view (Malmierca et al 2005; Orton 

et al 2016). Orton et al (2016) addressed this issue by inactivating the IC by cooling or procaine infusion 

while recording neuronal responses to stimuli of varying interaural time or level difference (ITD, ILD) 

in the opposite IC.  The dominant effect of IC inactivation was a reversible reduction or increase in 

firing rate at all values ITD or ILD. Across the population of recorded neurons, there was no evidence 

for a change in the range of ITD or ILDs encoded in the absence of commissural input.  Nevertheless, 

analysis of firing rates for the control and inactivated conditions (Figure 5) indicated, both for ITD and 

ILD, that response gain was reduced following commissural inactivation. Commensurate with this 

reduction in gain, discriminability of these binaural cues was also reduced. Taken together, these 

findings suggest that in normal operation, commissural inputs enhance the ability of IC neurons to 

discriminate changes in the position of sounds in azimuthal space.  

 

Figure 5  

The influence of commissural input on response gain to interaural time and level differences in the IC.  

A. Interaural level difference (ILD, sound level in ear ipsilateral to recorded IC relative to contralateral 

ear) functions for a single neuron: control (black), during deactivation of the contralateral IC (yellow) 

and after recovery (green). B Data in (A) replotted as firing rate in the inactivated (yellow) or recovery 

conditions (green) as a function of control.  The difference in slope and intercept between these two 

functions denotes a divisive and additive gain change in the inactivated condition. C & D Summary plots 

showing the change in slope and intercept as in (B) for units tested with ILD (C) and ITD (D) stimuli.  

Overall, for both cues of azimuthal location, removal of commissural input leads to a reduction in slope 

and a more positive intercept, consistent with normal commissural input enhancing response gain in a 

multiplicative and subtractive manner. (From Orton et al, 2016.) 

Figure 5 near here 
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An important caveat that applies to all the methodologies used thus far to manipulate commissural 

inputs is that they might influence the contralateral IC via routes other than the commissure. These 

alternative pathways could go via the auditory cortex, given that both ipsilateral and contralateral 

cortices influence the IC, the latter, in part, via a commissural projection (Nakamoto et al. 2013).  

Alternatively, the descending projections from the IC to the superior olivary complex or the cochlear 

nucleus could also modulate the ascending input into the IC. The possibility seems less likely in view of 

the fact that when the IC is inactivated through cooling, the effect on sound-evoked local field 

potentials recorded in the opposite IC is predominantly on the later potentials rather than on the initial 

afferent volley (Orton et al 2012).  

Some of the technical limitations of the methods used to investigate commissural function thus far 

could be surmounted with the application of optogenetics, which confers the possibility of targeting 

only those neurons that contribute to the commissural projection, a feat not possible with methods 

that globally modulate IC function.  Furthermore, given evidence that commissural neurons may be a 

distinct subset of IC neurons (Okoyama et al. 2006), the ability to manipulate them in the absence of 

influencing IC neurons that project to upstream or downstream targets would be a distinct advantage. 

3.3 Behavioural studies  

If commissural inputs are important for sound processing in the IC, then the loss of commissural input 

might be expected lead to behavioural deficits in sound processing. Transecting the commissure is 

difficult and not reversible, and there is only one study in the literature where this has been reported 

(Moore et al. 1974). In this behavioural study of sound localisation in cat, transection of the 

commissure of the IC was either performed alone, or preceded or followed by transections of the 

trapezoid body and/or the corpus callosum to demonstrate their cumulative effects. Only a lesion to 

the trapezoid body was reported to impact sound localisation. Unfortunately, the study has limited 

utility since only two sound sources were used, situated either side of the animal’s midline, thus it 

tested lateralisation rather than localisation. Subsequent studies have confirmed that following 

unilateral lesions within various structures in the ascending auditory pathway, animals can retain the 

ability to lateralise sound sources, but may not be able to localise them (Jenkins and Masterton 1982).  

In the absence of studies involving commissural transection, we can look to studies in animals or 

human where there is a lesion in one IC. These reports vary in the tests conducted and the effects 

observed, but are consistent in reporting deficits in sound localisation in the spatial hemifield 

contralateral to the lesion (Kelly and Kavanagh 1994; Litovsky et al. 2002) (Jenkins and Masterton 1982; 

Champoux et al. 2007). The extent of the lesion varied from study to study, but the most marked 

deficits occurred where damage extended to the nuclei of the lateral lemniscus (Kelly and Kavanagh 

1994).  

For the current discussion, the question is whether such unilateral lesions had any impact on responses 

to stimuli presented in the hemifield ipsilateral to the lesion, the ‘intact hemifield’? Such effects would 

be expected if signals to the IC, via the commissure, from the lesioned side, were ordinarily important. 

Although the other IC is not necessary for localisation in the ‘intact hemifield’, there is evidence that 

performance in that hemifield is affected by a lesion to the other IC.  Litovsky et al.’s (2002) patient 

showed impaired performance, relative to controls, when localising targets close to the midline in the 

‘intact hemifield’, and in animal studies, pre-lesion performance was consistently worse than post-

lesion performance in the ‘intact hemifield’ (Kelly and Kavanagh 1994). Although these were small 

effects and could have alternative explanations, we should be cautious about ruling out the importance 

of the commissural pathway on the basis of these studies. Most behavioural studies tested localisation 

using clicks or brief noise bursts, in which the main interaural cue is stimulus onset time, rather than 
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on-going interaural time and level differences. Furthermore, tests were conducted in quiet conditions 

using constant intensity stimuli, and did not fully reflect the more demanding conditions of real-world 

listening.  

4 Speculations regarding the function of commissural projections   

The anatomical and physiological evidence accumulated so far suggest the CoIC’s extensive 

connections exert wide-ranging effects on sound processing that encompass at least the encoding of 

frequency, level and location.   

Insights into why the colliculi are interconnected may be gained by considering why is it important for 

one colliculus to know about the responses of its twin in response to events in the acoustic 

environment? One possibility is that the signal in one IC alone is insufficient to define the properties 

of a sound source unambiguously. For example, consider how the location of a sound source is 

represented in the two ICs.  Signals encoding interaural time and level differences reach the ICs having 

been extracted in the medial and lateral nuclei, respectively, of the superior olivary complex (Grothe 

et al. 2010).  The neural representation of these azimuthal cues is organised in mirror symmetric 

hemispheric channels. As a sound source moves from one extreme of azimuth to the other, the firing 

rate of neurons in one IC increases while those in the other decrease in a negatively correlated manner.  

However, when considering the neural activity in one IC alone, such a rate-coded representation might 

not code the stimulus invariantly. As represented schematically in Figure 6, the change in firing rate of 

neurons in the right IC to a sound that moves from the midline to the left side (green arrow and green 

dot) would be indistinguishable from that to a sound on the midline that increases in overall level (blue 

arrow, blue dot). These stimulus changes are distinguishable, however, if the firing rates in both ICs 

are compared. The increase in level results in an increased firing rate in both ICs, whereas the change 

in azimuth leads to a reduction in firing in the left IC and an increase in the right. Although such an 

analysis is doubtless an oversimplification of reality, it serves to demonstrate how signals sent back 

and forth across the commissure to signal the mutual state of each IC could be important for resolving 

such ambiguities.   
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Figure 6  

Schematic diagram demonstrating ambiguous stimulus representation when based on firing rates in 

one IC (see text for discussion).  The solid magenta curves represent the response functions of IC neurons 

to changes in stimulus azimuth in the hemispheric channel model for sound localisation. The dashed 

magenta curves represent the firing to similar stimuli, but at a higher sound pressure level.  As a 

stimulus moves from the midline to the left, the firing rate in the contralateral (right) IC increases (green 

arrow and green dot), but the same firing rate is obtained from a stimulus in the midline at higher level 

(blue arrow and blue dot).  This ambiguity is resolved if the firing in both ICs is considered. A shift in 

azimuth leads to firing in the two ICs changing in opposite directions (green arrows and green dots), 

whereas changes in level lead to firing rates changing in the same direction (blue arrows and blue dots).  

Connecting the two ICs via the CoIC could provide each IC with information about the status of the 

other.   

Figure 6 near here 

Other roles for the commissure are suggested by anatomical and physiological findings. One important 

aspect of real-world hearing is the need to adjust response properties of neurons to keep them within 

their operating range as overall sound levels in the acoustic environment changes. Stimulus-dependent 

gain control in the IC has been shown to keep neurons within their operating range so maintaining 

their responsiveness to tones as noise levels increase (Rees and Palmer 1988; Dean et al. 2005; 

Robinson and McAlpine 2009). It is interesting that modulation of commissural activity leads to shifts 

in the operating ranges of rate-level functions (Mei et al. 2012a; Orton and Rees 2014; Mei et al. 2016). 

Finally, there is increasing evidence of the important influence that corticofugal and other descending 

inputs have on auditory processing, including mediating various forms of plasticity (Suga and Ma 2003; 

Bajo et al. 2010; Bajo and King 2013). Such descending inputs might also mediate the types of feedback 

interactions postulated in predictive coding (Bastos et al. 2012). Particularly intriguing in this context 

is the evidence for a crossed cortical input to the contralateral IC mediated by commissural 

connections (Nakamoto et al. 2013).    

 

5. Conclusion 

This chapter has highlighted the extent to which the two inferior colliculi are tightly interconnected by 

commissural connections that closely integrate many aspects of their complex circuitry. The wide-

ranging effects of the commissural system on the coding of fundamental parameters of sound: 

frequency, level and spatial location, is consistent with the possibility that responses of virtually all 

neurons in one IC are influenced by those in the other. Thus, functionally, the two ICs appear to operate 

as a single entity. 

Existing studies have only scratched the surface in discovering the role of commissural connections, 

and it is important to avoid the fallacy of basing an understanding of commissural function on the 

answers to what might be the wrong questions!  And it is more than likely that the adequate stimulus 

(Sherrington 1906) necessary to reveal the critical contribution of the CoIC have yet to be identified. 

Furthermore, it is increasingly evident that the inferior colliculus does much more than just integrate 

ascending sensory information.  It receives a multitude of inputs from diverse sources, including those 

of corticofugal (Bajo and King 2013) and neuromodulatory origin (Hurley and Sullivan 2012; Gittelman 

et al. 2013), that have thus far received little attention. A more complete understanding of the function 

of the CoIC may require experiments in an awake behaving preparation where the full impact of these 

diverse inputs can be assessed.     
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Figure Legends 

Figure 1  

A. Coronal section (50-µm thick) of the tectal midbrain in guinea pig stained for myelin with osmium 

tetroxide to show the commissure of the inferior colliculus (CoIC). Commissural fibres can be seen 

crossing the midline and fanning out into each IC.  Fibres of the lateral lemniscus can be seen entering 

the ICs from below.  B. Photomicrograph showing injections of two different tracers into the same 

frequency band lamina in the IC of rat.  The best frequency at the injection sites was determined by 

electrophysiological recording to sound to be 10-10.5 kHz.  The injection of tetramethyl-rhodamine 

dextran (TRD) in the dorsal cortex (ICD, yellow circle) and biotinylated dextran amine (BDA) into the 

central nucleus (ICC, red circle). A V-shaped plexus of intrinsic axons is labelled ipsilateral to the 

injections with a central wing in ICC that extends into ICD, and a lateral wing that turns into the lateral 

cortex (ICL). C. In the contralateral IC, commissural fibres are labelled in mirror image distribution to 

those ipsilateral, with retrogradely labelled neuronal somata scattered amongst them. D. Camera 

lucida drawings from sections at different locations along the rostro-caudal axis, showing the locations 

of somata labelled by the injection in the central nucleus (red dots) and the dorsal cortex (black dots) 

respectively.  E.  Three dimensional reconstructions in the coronal plane of the locations of the injection 

sites (left) and of retrogradely labelled somata (right) for the case shown in B-D.  The injection in the 

ICC labels somata (red points) in the contralateral ICC and ICD. Somata labelled following an injection 

in the ICD (yellow points) are restricted to the cortical regions. (Some of the latter appear in this view 

to be in the ICC, but viewing from other orientations shows them to be in the cortex rostral and caudal 

to the ICC.)  Neurons in the ICL do not give rise to commissural projections.  D, dorsal; L, lateral. (B-E 

adapted from Malmierca et al., 2009). 

 

Figure 2  

Schematic diagrams to illustrate the patterns of commissural connections between the different 

subdivisions of the inferior colliculus (IC) based on retrograde labelling following tracer injections like 

those in Fig 1.    

A.  An injection (dotted circle) into the central nucleus (ICC) results in fibro-dendritic labelling of a V-

shaped axonal plexus (grey) in both ICs (see Fig 1B). Retrogradely labelled somata (filled dots) are 

observed over the length of the lamina in the contralateral (right) IC, consistent with each of these 

neurons making divergent commissural projections (thin arrows) to the injection site and sites along 

the lamina. Cell counts show the projection is weighted (broad arrow) to a point on the lamina (solid 

circle) corresponding to that of injection site. B. Neurons in the dorsal cortex make two types of 

projection: an injection in ICC retrogradely labels neurons in the deeper layers of the dorsal cortex (open 

squares) in line with the lamina, while an injection in ICD labels neurons distributed more diffusely in 

the dorsal cortex (solid squares).  
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Figure 3   

Summary of the sources and terminal sites of fibres projecting through the commissure of the IC. By far 

the largest part of the projection originates in the contralateral IC from the central nucleus (ICC) and 

the dorsal cortex (ICD). Other centres in the brainstem, diencephalon and cerebral cortex make up 

smaller part of the projection and primarily terminate in the ICD.  Coloured stippling in the subdivisions 

of the IC, corresponding to the colour of the incoming projections, indicates the regions where these 

inputs terminate.  Inset top right shows that the IC also sends a minor projection to the contralateral 

medial geniculate body (MGB) and auditory cortex via the CoIC. 

 

Figure 4   

Influence of commissural input on frequency responses in the IC. V-shaped (A) and nonV-shaped (B) 

response areas for single neurons recorded in the IC of guinea pig.  Control (top), during inactivation of 

the contralateral IC by procaine infusion or cooling (middle), and after recovery (bottom). Responses in 

each example normalised to the maximum value across conditions. On deactivation of the contralateral 

IC, the V-shaped response area showed an elevation in firing, but little change in area or shape. In 

contrast, the nonV-shaped response area expanded, and firing increased at frequencies to which the 

neuron responded in the control condition.  Comparison of firing (C, total number of spikes) and area 

(D, above threshold bins) in the control and deactivated conditions for the populations of V-shaped 

(black) and nonV-shaped (red) frequency response areas (FRAs). Cumulative distributions for change in 

firing (E) and area (F) for V and nonV groups. While the range of change in firing was similar between 

the two groups, the nonV group showed a larger range of area change than the V group. (Modified 

from Orton and Rees, 2014.) 

 

Figure 5  

The influence of commissural input on response gain to interaural time and level differences in the IC.  

A. Interaural level difference (ILD, sound level in ear ipsilateral to recorded IC relative to contralateral 

ear) functions for a single neuron: control (black), during deactivation of the contralateral IC (yellow) 

and after recovery (green). B Data in (A) replotted as firing rate in the inactivated (yellow) or recovery 

conditions (green) as a function of control.  The difference in slope and intercept between these two 

functions denotes a divisive and additive gain change in the inactivated condition. C & D Summary plots 

showing the change in slope and intercept as in (B) for units tested with ILD (C) and ITD (D) stimuli.  

Overall, for both cues of azimuthal location, removal of commissural input leads to a reduction in slope 

and a more positive intercept, consistent with normal commissural input enhancing response gain in a 

multiplicative and subtractive manner. (From Orton et al, 2016.) 

 

Figure 6  

Schematic diagram demonstrating ambiguous stimulus representation when based on firing rates in 

one IC (see text for discussion).  The solid magenta curves represent the response functions of IC neurons 

to changes in stimulus azimuth in the hemispheric channel model for sound localisation. The dashed 

magenta curves represent the firing to similar stimuli, but at a higher sound pressure level.  As a 

stimulus moves from the midline to the left, the firing rate in the contralateral (right) IC increases (green 

arrow and green dot), but the same firing rate is obtained from a stimulus in the midline at higher level 

(blue arrow and blue dot).  This ambiguity is resolved if the firing in both ICs is considered. A shift in 
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azimuth leads to firing in the two ICs changing in opposite directions (green arrows and green dots), 

whereas changes in level lead to firing rates changing in the same direction (blue arrows and blue dots).  

Connecting the two ICs via the CoIC could provide each IC with information about the status of the 

other.   
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