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Abstract  

Spermatozoa are known to be a carrier of genetic materials and serve no other 

function; However, it appears that it has a complex population of RNA including 

small noncoding RNA (sncRNA) that can deliver to the oocyte during fertilization. 

sncRNAs contribute to cellular gene regulation, in terms of their role in pre and 

post-fertilization genomic code, which in turn participate in the embryonic 

development process and any deviations in the gene expression pattern may 

lead to development retardation or early embryonic death. Moreover, phenotypic 

or environmental changes of parents can alter the phenotype of the next 

generation via specific miRNA expression regulation changes.   

The present research investigated the profile of sperm mRNA and miRNA 

expression in both motile and immotile human sperm, in order to understand the 

role of sperm epigenetics in regulating genes that are involved in 

spermatogenesis and sperm function, in specific sperm motility, that has an 

impact on male fertility. Semen samples were collected from normo-spermic 

participants. RNA was extracted, and the mRNA profile in motile and non-motile 

sperm was investigated by Next Generation Sequencing. Results found that most 

transcripts expressed in motile sperm belonged to ribosomal mRNA.   

Secondly, the thesis investigated and the miRNA expression changes in motile 

and immotile sperm. Preamplification of miRNAs with miscript PreAmp PCR kit 

before quantitative RT-PCR was performed using misprint PCR custom plate for 

84 different sperm-specific miRNAs, in order to establish the miRNA profile in 

different motility grades. 
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The results suggested that miRNAs were differentially expressed in different 

sperm activity groups of the same sample and confirmed the role of miRNA in the 

physiological process of the spermatozoa. Data revealed that the miRNA 

expression profile in the sperm could serve as biomarkers for male fertility 

assessment.    

To further, elucidate the relative expression and the epigenetic control of the 

sperm specific microRNAs in high-fat diet (HFD) mice and age-matched controls 

(AMC) by study the miRNA expression via qRT-PCR and DNA methylation of the 

most significant miRNA through finding its promoter region.  The aim of this study 

was to explore the link between obesity and miRNA profile expression in a mouse 

model. We found that sperm-specific microRNAs from HFD mice were 

upregulated, with miR-21a-5p expression being highly significant and was 

regulated by methylation of the CpG islands on VMP1 promoter.   

In conclusion, the current study demonstrated a differential expression of miRNA 

in sperm from motile and immotile populations. In addition, this study revealed 

links with obesity and altered expression of sperm miRNAs in a mouse model. 

There was a change in the methylation status and expression of miR-21a-5p, 

which may indicate the impact that paternal high fat diet has on sperm miRNA 

expression and DNA methylation.  
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Chapter 1: General Introduction 

1.1 Male Infertility   

Infertility is a complex condition affecting around 15% of couples worldwide. It 

is well defined as an unsuccessful clinical pregnancy after 12 months or more 

of regular and unprotected intercourse (WHO, 2010; Hwang et al., 2011; 

Mascarenhas et al., 2012; HFEA, 2018). The main reasons for infertility in 

both male and female are varied due to endocrinopathies, infections, obesity, 

and genetic causes (for review see (O'Brien et al., 2010). Recent studies have 

reported a decline in male fertility and in particular sperm count (Levine et al, 

2017).  

Male infertility is due to sperm production or function defects. The main known 

causes could be a result of tubular obstruction, illness or injuries, cancer, 

mumps or inherited factors including Y chromosome microdeletions or 

Klinefelter (XXY) syndrome, and many other idiopathic aetiologies that cause 

genital tract disorders (Ferlin et al., 2006; Coward and Wells, 2013). 

Environmental and lifestyle factors also contribute to male infertility such as 

obesity that causes hormonal imbalance and sperm function defects (Vander 

et al., 2018). Low sperm count, poor sperm motility (asthenospermia), and 

high abnormal morphology percentage in the ejaculate are the most likely 

indicator for low fertilization rate, with an emphasis of the motility importance 

than other semen criteria (Donnelly et al., 1998; Shen et al., 2019).  

Another cause of decreasing sperm quality is obesity, which can alter sperm 

production and quality through increases scrotal temperature and increased 

oxidative stress, resulting in reduced sperm motility and increased sperm DNA 
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damage (Katib, 2015). The prevalence of obesity has increased substantially 

globally with the increased burden of obesity-related complications. In men, 

obesity in addition to being a major risk factor for serious chronic diseases, 

there is a growing concern on the affects of ferritility (Rybar, R., et al., 2011) 

and more particularly, the long term health of the offspring. Obesity-related 

impaired spermatogenesis is associated with a decrease in microscopic and 

molecular sperm characteristics and pregnancy success. Much work is 

needed to unravel the link between obesity and the impact on sperm 

molecular andrology, including changes to the epigenome, which may 

translate to the offspring. 

There has been a growing interest in the role of miRNAs and sperm function, 

in terms of sperm capacity to fertilize the oocyte. It is further suggested, that 

such sperm-specific miRNAs also drive the developing embryo and its 

differentiation (Ghorbian, 2012); although still relatively little is known about 

the mechanisms of action, as to how miRNAs exert their function. Regarding 

male infertility, several studies have found that some transcripts of miRNAs 

differ in expression between sperm from fertile and infertile men (Abu-Halima 

et al., 2013).  

 

1.2 Spermatogenesis 

Spermatogenesis is the process of sperm development within the seminiferous 

tubules in the testis after puberty. During embryogenesis, the activation of SRY 

gene (sex reversal Y) expression leads to the differentiation of seminiferous 

tubule from the genital cords in the gonadal medulla accompanied by 

differentiation of Sertoli cells from the epithelium layer of the tubules (Gilbert, 
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2000). The primordial germ cells then migrate from the genital ridge of the male 

embryo to enter the gonads under the control of TGF- beta 1, OCT 4, and alkaline 

phosphatase pathways and then give rise into sperm by spermatogenesis 

(Wilhelm et al., 2007). 

The testis has a dual function that is regulated by the hypothalamus and pituitary 

glands: The first function is an endocrine function to produce the androgen (male 

sexual hormone) by the interstitial Leydig cells. The second function of the testis 

is the sperm production in the seminiferous tubules from the undifferentiated 

spermatogonial stem cells (SSCs), these cells are capable of self-renewal and 

can generate the same cells to produce the spermatogenic lineage via mitotic 

division, SSCs migrate to the adlumin for cytodifferentiation or spermiogenesis 

(the last stage of spermatogenesis).  

Spermatogenesis requires 64 days and includes three phases: 

1. Mitosis: the proliferation and differentiation of the spermatogonium (diploid 

germ cells, 2n) into type A1…A4 spermatogonium then divided into type B 

spermatogonium. B cells are the last precursor cells undergoing mitosis to form 

the primary spermatocytes. 

 2. Meiosis: the division of each primary spermatocytes to form two haploid 

secondary spermatocytes (n) in the first meiotic division, and the production of 

four spermatids in the second meiotic division.  

3. Morphogenesis, in which the development and formation of the final elongated 

haploid spermatozoa with a condensed nucleus that is capable of fertilization 

within the testis. 
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Before the final stage, the spermatids are connected by cytoplasmic bridges that 

will be lost after moving toward the tubule’s lumen to form mature sperm. All 

developmental stages occur in close contact and support of Sertoli cells (Gilbert, 

2000). The testis is capable to produce about 300-600 cell per second per gram 

of testis (Cooke and Saunders, 2002; Coward and Wells, 2013). 

 At the molecular level, genetic and epigenetic, transcription and post-

transcription mechanisms are actively involved in the regulation of 

spermatogenesis. Perturbations in molecular control are known to be one of the 

critical causes of male infertility (Khalil and Wahlestedt, 2008; Zamudio et al., 

2008; Bettegowda and Wilkinson, 2010).  

Transcription in sperm is repressed due to chromatin remodeling and mRNA 

translation inhibition, the chromatin packaging changes of the round nuclear 

shape to an elongated one with a trace of cytoplasm content that accompanied 

by ribosome disappearance, as well as, 60% of histone is replaced first by 

intermediary transition proteins, then into protamines 1 and 2. In spite of 

chromatin loss and histone replacement, 15% of the chromatin stayed functional 

and provides a sperm transcriptional activity (McLay et al., 2003).  

1.3 Sperm structure:  

Sperm is a Greek word origin “sperma” (means ‘seed’). Sperm is a unique, highly 

specialized and differentiated cell, 60-70 μm in length with the principal oocyte 

fertilization purpose (Georgadaki et al., 2016). Sperm comprises of basic 

structures of the followings:  

The sperm head, which is typically void of cytoplasm, contains a nucleus filled 

with the haploid paternal DNA securely twisted around protamine. The acrosome 
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cap, which lies at the front of the sperm head, contains proteolytic enzymes 

including acrosin, trypsin, and hyaluronidase that aids in oocyte penetration and 

fertilization. The sperm-oocyte interaction is facilitated by acrosin through the 

process of sperm capacitation and acrosomal reaction, which is essential to 

support the sperm-oocyte penetration reaction (Schill et al., 1988; Harper et al., 

2008).  

The midpiece holds the centriole with the fundamental purpose for mitosis and 

meiosis, while the mitochondria are required for sperm survival and the 

spermatozoa locomotion by oxidative phosphorylation of ATP and energy 

production. 

The flagellum, or tail, that whips in motion to drive the sperm towards the oocyte. 

The tail functions through the central axoneme surrounded by two central singlet 

microtubules and nine doublet microtubules that are responsible for the motion 

by sliding past each other in the presence of ATP (Rauber, 2008; Chavarria et 

al., 1997), (Figure 1.1).  
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Figure 1.1 Structure of human sperm.   

Schematic represents the human sperm head (containing the acrosome), midpiece and tail 

(principal piece). (B) Sperm morphology stain (Papanicolaou stain, 1000 X oil).  

 

The sperm completes the first maturation process in the epididymis and acquires 

motility post emerging from the testis, with the aid of secondary glands secretion, 

which protects the sperm from the vaginal acidic environment. The second 

process called sperm capacitation in the female reproductive tract and acrosomal 

reaction activities when the two male and female pronuclei merged (Gervasi et 

al., 2018). The transport of a sperm-specific phospholipase C-ζ (PLC-ζ) to the 

female gamete during fertilization and initiation of the PLC-ζ signal and increase 

Ca++ influx which is essential for embryonic development (Saunders et al., 2002; 

Boerke et al., 2007).    

 

The molecular changes of the mature haploid sperm cells are regulated by gene 

expression and accompanied by biochemical and physiological changes such as 
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the formation of disulfide bonds and the increased level of saturated fatty acids, 

as well as Ca++ signaling pathway that promotes sperm capacitation and oocyte 

fusion (Carvacho et al., 2018).  Transcription in sperm is repressed due to the 

general concept that has been established previously of chromatin is an 

extremely compacted component and the protamines replace the histone content 

(chromatin remodeling process) and mRNA translation inhibition. The chromatin 

packaging changes of the round nuclear shape to an elongated one with a trace 

of cytoplasm content that accompanied by ribosome disappearance, as well as, 

60% of histone is replaced first by intermediary transition proteins, then into 

protamines 1 and 2. In spite of chromatin loss and histone replacement, 15% of 

the chromatin stayed functional and provides a sperm transcriptional activity 

(McLay et al., 2003).  

The protamine-DNA binding and compaction allow the DNA to fit into the 

relatively small spermatozoa head (Schagdarsurengin et al., 2012; Kanippayoor 

et al., 2013; Brunner et al., 2014). The interest of researchers in sperm biology 

has developed recently to decline the notion that sperm is the paternal genetic 

carrier only and serve no other function after fertilization, However, sperm 

molecular composition approved its importance post-fertilization and early 

embryonic development (Lin et al., 2013; Al-Gazi and Carroll 2015; Guo et al., 

2017). A series of small non-coding RNAs (snc-RNAs) is One of the biological 

key regulator molecules for male fertility, which include the microRNAs (miRNAs) 

that are found in sperm and seminal plasma (Peña 2015). 
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1.4 Assessing male infertility  

1.4.1 Semen Analysis 

Semen analysis is an essential diagnostic assay in the evaluation of male 

reproductive health.  There are a number of specific parameters important in 

evaluating male fertility according to WHO 2010 criteria:   

Sperm concentration and sperm count:  Normal sperm concentrations and counts 

range from 20 million/ml to over 200 million/ml. Concentrations lower than 15 

million/ml are referred to as oligozoospermia and azoospermia refer to a lack of 

sperm in the ejaculate. 

Sperm motility refers to the percentage of progressively motile sperm that is 

traveling in a straight-forward path or large circle with reasonable velocity. The 

immotile percentage describes sperm that shows no signs of movement; while 

non-progressive motility denotes an absence of progression, for example, 

swimming in small circles where the head is barely moving as the result of the 

flagellar movements (WHO, 2010), (Figure 1.2).   

Normal levels of sperm motility are defined as levels higher than 40% of sperm 

in a sample showing progressive motility. The term asthenozoospermia is used 

to describe samples in which there is reduced sperm motility below 32 %.   

Earlier editions of the WHO manual classified sperm motility into 4 grades:   

Grade A (A):  Rapid progressive motility (i.e. ≥25 µm/sec at 37°C, which is 

approximately equal to five heads length or half a tail length).   

Grade B (B):  Slow or sluggish progressive motility.  
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Grade C (C):  Non-progressive motility (<5 µm/sec).  

Grade D (D):  Immotile sperm that fails to move at all.  

A high percentage of active sperm is obviously important to ensure the transport 

of sperm and achieve successful fertilization (Agarwal and Allamaneni, 2011; 

WHO, 2010). The sperm reaches to the female ovulation tract with the aid of 

specific molecules that act as chemotactic agents for the sperm, in the presence 

of Ca++ ions, to enhance sperm hyperactivation and penetrates the oocyte 

cumulus oophorous. The sperm that is aggressively motile can resist the female 

oviduct turbulences close to cilia and enter the lumen of fallopian tubes, hence 

stimulates the prostaglandins secretion and utero muscular contraction that are 

vital for fertilization (Kölle et al., 2015).  

  

 

Figure 1.2 Sperm motility groups.  

A – fast progressive sperm, moves linearly or in large circles quicker than 25 µm/sec. B – 

slow progressive sperm, moves linearly or in large circles slower than 25 µm/sec. C – 

nonprogressive sperm, moves in small circles or ‘twitches’. D – immotile sperm, no 

movement.  
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Sperm morphology: The presence of a wide range of morphological 

discrepancies between sperm in a population can make it difficult to judge the 

sample provided in vitro. Although the level of the clinical importance of 

morphology to fertility is debated, the normal morphology percentage that 

correlates with the success of fertilization in vivo or in vitro defined as over 4%. 

The term teratozoospermia describes the presence of a high percentage of 

abnormal spermatozoa in the semen sample, that were classified into three 

different categories depending on the abnormality location: head (acephalic, giant 

head, or multiple head), midpiece (presence of cytoplasmic droplet) and/or tail 

(short, long, or double tail). The main abnormality causes may be due to genetic, 

high-temperature exposure to the testes, and chemical or toxic substances 

contact, as well as lifestyle, and infections (Coutton et al., 2018). 

Aspermia is another term that describes the lack of semen completely from the 

ejaculate as a result of the passing of semen into the bladder at ejaculation 

(WHO, 2010). 

  

1.4.2 Sperm RNA  

The concept that sperm carries only paternal DNA and the paternal RNA content 

in mature sperm were lost during spermatogenesis, and therefore served no 

function during fertilization has been challenged (Kramer and Krawetz, 1997). 

However, it is now established that spermatozoa contain a wide spectrum of RNA 

species including mRNAs, tRNAs and various non-coding RNAs (ncRNAs) such 

as miRNAs (Boerke et al., 2007). Studies have found that sperm RNA regulation 

provides a critical role in the process of fertilization when they are utilized to the 
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oocyte and participate in regulating the paternal genome and various biological 

events involved in early embryonic development (Miller et al., 2005; Lalancette 

et al., 2009; Kildemo, 2012). A cascade of paternal pathways may involve in 

regulating the events of postfertilization such as AKAP-4 and FOXG1B, and 

provide a level of control of the maternal genome transition into embryonic status 

(Ostermeier et al., 2005; Boeker et al., 2007).   

Importantly, sperm does not contain ribosomal (r)RNA (18S and 28S rRNA), 

which are essential for protein synthesis, and they were depleted during 

spermiogenesis. Therefore, sperm cells are transcriptionally and translationally 

quiescent (Johnson et al., 2011).  

mRNA and miRNA are RNAs that participate in gene regulation of sperm post-

transcriptionally by controlling cellular fate and development and can be 

transferred through germ cells to the next generation (Krawetz, 2005; Ivey and 

Srivastava, 2010).  

  

1.4.3 Sperm messenger RNA  

Pessot 1989, was first who described the Messenger RNA (mRNA) in 

transcriptional inactive sperm (Pessot et al., 1989). mRNA is one kind of long 

RNA (comprises about 5% of total RNA) that is transcribed from DNA strand to 

form antisense strand that is used as a template for translation and the encoding 

proteins through genetic codes (Kukurba and Montgomery, 2015).   

The translational ability of mRNA comes from the structure that contains 

methylated 5’cap end and 3’ polyA end units of non-coding sequence make it 

more stable and capable of translation into proteins. The coding region is the unit 
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of protein synthesis while the UTR region is for the expression regulation (Figure 

1.3), (Kozak, 2005). During transcription, the mRNA contains exon regions only, 

while the intron regions are removed from the primary transcript during the 

silencing process of gene transcription (Keren et al., 2010).  

  

 

Figure 1.3 mRNA regions. The figure is representing the five and three prime untranslated 

regions of mRNA transcript.  

Mature sperm contains more than 3000 kinds of functionally viable mRNAs that 

play a critical role in gene expression during spermatogenesis, capacitation, 

acrosomal reaction, and onwards when has been delivered to the oocytes post 

fertilization (Ostermeier et al., 2004; Gur and Breitbart, 2006). Spermatozoal 

mRNA are not all located in the nucleus, some of them are present in the flagellar 

fibrous sheath like SP17 transcript (ChirivaInternati et al., 2009), or on the sperm 

surface like SMCY (also known as KDM5D, HYA or JARIDID), which have a 

major role after fertilization (Anderson, 2013). SMCY encodes a protein of ZFD, 

from this protein is a minor histocompatibility antigen for a graft rejection of sperm 

donor in an oocyte recipient (Dhanoa, Mukhopadhyay et al., 2016). SMCY is 

mainly functioned during sperm prophase stage of meiosis and in chromatin 

remodeling, any mutation in this transcript can lead to sperm maturation arrest 

and chromosome condensation during meiosis (De Jonge and Barratt, 2006).  

Sperm becomes incapable of transcription during the second meiosis of 

spermatogenesis and decreases mRNA transcription together with a decrease in 

a repertoire of mRNA content and 18S and 5S rRNA in the nucleus or present in 
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a negligible amount and is not enough to support cytoplasmic mRNA translation 

(Miller and Ostermeier, 2006). These events include histone hyperacetylation 

subsequent by replacement of histones by transition proteins mainly TNP1/2 then 

by protamines (PRM1/2) that condensed in the sperm nucleus that results in RNA 

content reduction and loss of transcription in spermatids which demand mRNA 

transcription in a high level but translationally delayed to another period of 

genesis (Cullinane, 2014). New proteins are needed for sperm morphological 

changes during maturation. rRNA is depleted in sperm during spermatogenesis, 

however, 95% of RNA in other cells are containing rRNA, which needs rRNA 

depletion step to get rid of this kind of RNA during the mRNA sequencing process.  

  

1.5 Gene expression  

Regulation of gene expression is imperative for the control of cell function and 

fate (Smorag, 2013). The processes of gene expression are comprising of 

transcription, RNA splicing, protein synthesis or translation, and post-

translational modification of proteins. Gene expression may be modulated to alter 

the mRNA sequence level, which results in different protein structure, and can be 

studied to find out which genes are turned “on” to produce mRNA or “off” and 

enables to know the mRNA concentration can manipulate various cellular 

development phases. Different methods were used in studying the gene 

expression like Northern Blotting, SAGE (serial analysis of gene expression), 

microarrays, RT-PCR and RNA-Seq (Perdacher, 2011; Su et al., 2011).   

This can explain how similar cells can behave differently and explains the 

phenotypic changes between species. Apparently, proteins have got an important 
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characterization in regulating gene expression, however, the discovery of ncRNA 

including miRNA has found that they are the most abundant RNA in gene 

regulation process post-transcriptionally by repressing mRNA (Bartel, 2004).  

  

1.5.1 Sperm Epigenetics:  

Epigenetics (“epi” from the Greek: means outside or over) or non-Mendelian para-

mutation inheritance describes the alteration of gene expression without affecting 

the coding DNA sequence of the cell; therefore, it is relatively transient and 

potentially revised if the cause is corrected (Rassoulzadegan and Cuzin, 2015).   

Lifestyle and environment signals can promote diseases and health derivation 

via epigenetic mechanisms, such as histone modification, chromatin remodeling, 

DNA methylation, and non-coding RNA including miRNA expression (Lujambio 

and Esteller, 2009;   Marczylo et al., 2012). There is growing evidence indicating 

that epigenetics could have a significant role in subfertility and the link between 

fertility and health (Dada et al., 2012), and any epigenetic modification during 

spermatogenesis can cause deleterious effects on sperm epigenome and affect 

its function and the subsequent progeny health (Schagdarsurengin et al., 2012; 

Marshall, 2015).  

Small ncRNAs are epigenetic small molecules with a vast impact in regulating 

biological processes during mammalian development, non-coding refers to non-

translated transcripts and most of them are cellular homeostasis regulators 

substances that are classified to be epigenetic regulators at a transcriptional and 

translational level in general. In sperm, miRNA, Piwi-interacting RNA (piRNA) and 

siRNAs are some sorts of short snRNAs (Santosh et al., 2015).   
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siRNAs (20-30 nt length) are endogenous molecules resulted from the cleavage 

of the dsRNAs by Dicer enzyme and regulating cell functions by RNA interference 

phenomenon or RNAi to initiate gene silencing by destabilisation of mRNAs, 

hence controlling cellular growth and development as well as the formation of 

heterochromatin (Dana et al., 2017). siRNAs have been implicated 

therapeutically for some diseases like cancer through its antiapoptotic and anti-

proliferative action (Phillips, 2008).  

piRNAs (24-31 nt length) have been counted as the largest class of small RNAs 

in mammalian tissues, it has been reported that they have an RNA silencing 

regulating function in germ cells especially spermatogenesis and sustain male 

fertility via their interaction with piwi protein (Tosar et al., 2018; Siomi et al., 2011; 

Capra et al., 2017).  

Finally, miRNAs are considered as key regulators of all cellular functions. 

Regarding male gametes, a small amount of miRNA has been retained in sperm 

and are vital in the development of both sperm and embryos (Krawetz et al., 

2011).   

Another functional class called long noncoding RNA (lncRNA) which is known to 

have a function in chromatin remodeling, controlling the transcription and post-

transcription events (Guttman et al., 2009).  

  

1.5.2 miRNA  

miRNAs are a novel class of endogenous ~17-26 nucleotide length, which control 

post-transcriptional gene expression by targeting 3’UTR mRNA resulting in its 

degradation or later protein expression inhibition, thus involved in all biological 
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process of living organisms. miRNA was first discovered in C.elegans in 1993 

when lin-4  miRNA was detected with a conserved complementary site on the lin- 

14 mRNA transcript (Lee et al., 1993; Wightman et al., 1993; Schickel et al., 

2008). Later on, let-7 has been found to target the lin-41 and they have crucial 

effects on the developmental timing of C.elegans larvae (Reinhart et al., 2000). 

Lin4 and let-7 are highly conserved and have the same function in other species 

(Lagos-Quintana et al., 2001).   

It has been well established that miRNAs have an impact on the pathogenicity of 

common diseases such as cardiovascular diseases, tumourigenesis, immune-

inflammatory diseases, and metabolic disorders (Mogilyansky and Rigoutsos, 

2013).  

Studies on the relationship between miRNA and stress, which cause up or down-

regulation of miRNA expression have revealed the mRNA targets effects and 

cellular response. However, the absence of miRNA function can cause 

impairment in the whole process of cellular development (Mendell and Olson, 

2012).  

Thousands of miRNA have been discovered, and an online database with 

analysis was established first by Ambros laboratory 2003 (Ambros et al., 2003). 

miRNA annotation and registry including all information about published miRNAs 

data can be explored via miRBase database system (http://www.mirbase.org/) by 

Sanger Institute. miRBase contains more than 25141 mature miRNAs in about 

193 different organisms (Griffiths‐Jones 2004) or miRNA visa system database 

(www.cbrc.kaust.edu.sa/mirnavisa.org), (Kamanu et al., 2013). Development of 

deep sequencing techniques opened a new way of research of the miRNAs and 

the studying of the profile and function in normal and aberrant conditions as well 

http://www.mirbase.org/
http://www.cbrc.kaust.edu.sa/mirnavisa.org
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as prediction of new miRNAs which gave a hallmark of the miRNA importance 

(Kong et al., 2012). 

 

1.5.2.1 miRNAs families and functions  

miRNAs are situated in polycistronic (within one locus) miRNA “clusters” that 

have a similar functional role and are suitable for disease biomarkers such as 

cancer and cardiovascular disease (CVD). miRNAs families that have perfectly 

matching nucleotides in the seed region (2-7 nt) from 5’ end, as well as the 

complementary site for 3’UTR mRNA in this region, are highly conserved across 

species, therefore they are generated from a single primary transcript and 

regulating the same target genes (Guerra-Assunção and Enright, 2012). For 

example, miR 17~92 cluster, also known as oncomiR-1 because they are 

dysregulated in solid cancers, is located on chromosome 13 in human and 

include a range of different miRNAs that are important in normal development 

(Table 1.1), has been included a range of different miRNAs that are important in 

normal development. Also known as oncomiR-1 because they are dysregulated 

in solid cancers. miR-17-5p is highly expressed in some tumours while showing 

low expression pattern in the blood of non-small lung cancer patients. This family 

of miRNAs is also implicated in age-related conditions (Heegaard et al., 2012; 

Mogilyansky and Rigoutsos, 2013). A wide range of functions of miR-17 have 

been revealed such as enhancement of the prostate tumour invasion and growth 

through cellular proliferation exaggeration of tumour cells has approved by 

targeting TIMP3 (Concepcion et al., 2012). Furthermore, these miR-17 clusters 

have been involved in adipogenesis and found to have an inhibitory role and 
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adipogenesis promotion by targeting BMP2 mRNA along with miR-106a (Xu and 

Wong, 2008).  

 

Table 1.1 miR-17 family.   

The seed regions of 2-8 from 5’ end of miRNA sequences of miR-17 family are 

having the perfectly matching nucleotide (Hausser et al., 2013; Mogilyansky and 

Rigoutsos, 2013).  
 

miRNAs miRNA sequences and the shaded seed region 

hsa-miR-17-5p 5’CAAAGUGCUUAGUGCAGGUAGU 3’ 

hsa-miR-20A-5p 5’UAAAGUGCUUAUGUGCAGGUAG 3’ 

hsa-miR-20b-5p 5’CAAAGUGCUCAUAGUGCAGGUA 3’ 

hsa-miR-106b-5p 5’ UAAAGUGCUGACAGUGCAGAU 3’ 

hsa-miR-93-5p 5’CAAAGUGCUGUUCGUGCAGGUAG 3’ 

hsa-miR-106a-5p 5’CAAAGUGCUAACAGUGCAGGUA 3’ 

Another example, lethal-7 (let-7) miRNA family has similar sequences and only 

one nucleotide differs in order. To determine this difference, a letter at the end 

was added as let-7a, let-7b, let7c, etc. (Table 1.2). The most important function 

of let-7 family is to promote differentiation and timing of the development of 

organisms (Schulman et al., 2005; Roush and Slack, 2008). Let-7 dysregulation 

can cause cellular growth and development retardation and promotes diseases 

like cancer (Roush and Slack, 2008).  

Table 1.2 Lists of isoform sequences of let-7 miRNAs family, the shaded area is 

representing the miRNA seed region  

 

miRNAs miRNA sequences and the seed shaded region 

hsa-let-7a 5’ UGAGGUAGUAGGUUGUAUAGUU 3’ 

hsa-let-7b 5’ UGAGGUAGUAGGUUGUGUGGUU 3’ 

hsa-let-7d 5’ UGAGGUAGUAGGUUGUAUGGUU 3’ 
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hsa-let-7e 5’ UGAGGUAGGAGGUUGUAUAGUU 3’ 

hsa-let-7f 5’ UGAGGUAGUAGAUUGUAUAGUU 3’ 

 

1.5.2.2 miRNA biogenesis: synthesis and functions  

miRNAs are transcribed from specific genes by RNA polymerase II in the nucleus. 

They are first formed as primary transcripts (pri-miRNA) about 70nt, then folded 

into hairpin structures that are successively processed by several enzymes in the 

nucleus called Drosha and DGCR8 then transported to the cytoplasm by 

Expotin5 to be processed by Dicer enzyme (Almeida et al., 2011; Al-Gazi and 

Carroll, 2015), (Figure 1.4). A 22 nucleotide duplex, mature miRNA is then 

produced in which one strand assembles into a protein-RNA complex called 

RISC (RNA induced silencing complex) as a part of gene silencing process called 

interference RNA (RNAi) (Leung and Sharp, 2010). The small size of miRNA 

made them less prone to degradation and more stable than other types of long 

RNAs and mediates post-transcriptional gene suppression (MacRae et al., 2008; 

Zubakov et al., 2010). A single miRNA species can base pair to its target on 

multiple sites within a single mRNA transcript to cause their degradation. 

Additionally, one miRNA can regulate the expression of multiple gene targets and 

furthermore a single mRNA transcript can be targeted by more than one miRNAs 

(Smorag, 2013). miRNA and protein-coding genes expression regulation occur 

post-transcriptionally. Basically, DNA binding proteins like P53 and other 

transcription factors bind to the miRNA promoter region and regulate their 

expression (Boominathan, 2010). miRNA can reduce the protein output by 

inhibiting their translation without changes in the level of mRNA targets (Bagga 

et al., 2005; Curry et al., 2011).  
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Figure 1.4 Schematic representation of miRNA biogenesis.  

a) miRNAs transcription is conducted via RNA polymerase II; b) A double-stranded hairpin 

called primary miRNA (pri-miRNA) is then is formed. c) pri-miRNA then cleaved by the 

help of Drosha, a member of superfamily RNase III endonuclease to form pre-miRNA 

molecule. d) exportin-5 is then assisted in pre-miRNA transport to the cytoplasm. e) 

Another enzyme called Dicer is then involved in processing pre-miRNA in the cytoplasm 

to produce short and double-stranded miRNA. f) The pre-miRNA act together with AGO 

(Argonaute) and other proteins to form the RISC component, and finally, the formation of 

a single-stranded mature miRNA. and g) mature miRNA targets the mRNA ( adapted from 

(Al-Gazi and Carroll, 2015).  

miRNAs have a critical biological function upon binding at nucleotides 2-8 seed 

region to a complementary 3'UTR sequence of specific mRNA, leading to either 

mRNA degradation or protein translation arrest thus, influencing cell functions 

including gene expression mediation during development, differentiation, cell 

proliferation, cell fate decision, and stress response, apoptosis and death 

(Yerramilli et al., 2013). The half population of miRNA is encoded independently 

within noncoding gene transcripts while the others within intronic protein-coding 

genes (Guerra-Assunção and Enright, 2012). An individual miRNA could target 
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more than one protein coding mRNA post-transcriptionally through multiple 

pathways or act upon a single target to mediate a disease phenotype (Aurora et 

al., 2012). Nevertheless, until now little is known about their mechanism of action 

and how they exert their function. Regarding male infertility, the sperm contains 

an abundant profile of miRNA together with a set of mRNA targets also expressed 

in fertilized metaphase II oocyte, suggesting miRNA regulatory functions (Amanai 

et al., 2006). For instance, miR 143 (Esau et al., 2004), miR-27b (Karbiener et 

al., 2009), miR-375 (Ling et al., 2011), and miR-14 were involved in adipogenesis 

in mice. They act as a modulator for adipocytes differentiation, as well as miR-

122, miR-370 (Iliopoulos et al., 2010), miR-335, miR-378/378*, and  miR125a-5p 

all have a function in fatty acid and cholesterol metabolism regulation 

(Fernández-Hernando et al., 2011).  

  

1.5.2.3 The relationship of miRNA and motility in male fertility:  

Sperm motility is a critical factor in assessing male fertility. Several studies have 

reported differential miRNA expression between impaired and normal semen 

samples implying that miRNAs are key regulating players in spermatogenesis 

and production of a new, viable sperm in males (Wang et al., 2004; Reza et al., 

2019). Some studies have established that some gene transcripts are regulated 

by miRNAs related to sperm structure, sperm morphology, motility, and 

metabolism. miRNAs studies were conducted on human sperm miRNAs with 

abnormal motility outcomes have found a positive relationship between the 

miRNAs expression level and semen quality which significantly affects 

reproduction patency (Ghorbian 2012; Abu-Halima et al., 2013). In addition, gene 

transcripts related to sperm motility are regulated by miRNAs. They have a role 
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during spermatogenesis, chromatin packaging, and early embryonic 

development, when delivered to the oocyte after fertilization, it can be passed 

down to the further generations (Wang et al., 2004; Jedrzejczak et al., 2007; 

Jodar et al., 2012; Kawano et al., 2012; Liu, Cheng et al., 2012; Abu-Halima et 

al., 2013).   

miRNAs have different expression patterns between fertile and infertile men 

(Khazaie and Esfahani, 2014). Altered expression levels of sperm-specific 

miRNAs have been implicated with abnormal sperm parameters (Abu-Halima et 

al., 2013) and the propensity for transgenerational amplification of some 

conditions such as obesity and type-2 diabetes (Fullston et al., 2013). Marczylo 

2012, reported that environmental changes targeted histone modification and 

miRNAs (for instance, altered the expression of hsa-mir-146b-5p, hsa-mir509-5p, 

hsa-mir-519d, and hsa-mir-652) profile in the sperm of infertile men as well as 

leading to alter next generation phenotype through impairment of male germ cells 

functions (Marczylo et al., 2012). Sperm function is influenced by miRNA 

expression changes. miR-122 is a specific sperm motility-related transcripts that 

have a role in male fertility via targeting TNP2, a testis-specific gene that involved 

in chromatin remodeling during spermatogenesis (Yu et al., 2005; Jodar et al., 

2012; Lin et al., 2012). Hence, miR-122 inhibits the expression of proteins that 

have a significant impact on sperm development process (Liu et al., 2013). Sperm 

miRNAs are responsible for early embryonic development in mice (Liu et al., 

2012). miR-34c was found in the sperm and it is important for cellular maturation, 

its inhibition causes detrimental development in mouse zygote (Choi et al., 2011) 

and expressed in human sperm by targeting DLL1 and NOTCH1 genes important 

for spermatogenesis (Krawetz et al., 2011). It is obvious that the lack of specific 
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miRNA can result in spermatogenesis impairment and infertility (Belleannée, 

2015). miR-18 has a significant role in spermatogenesis by targeting Hsf2 gene 

(Björk et al., 2010).  

miRNA function in spermatogenesis is still unclear. However, previous studies 

have compared normal fertile with impaired infertile cohorts (Figure 1.5), but to 

our understanding, there have not been any studies verifying miRNA expression 

in the same group of spermatozoa, i.e. actively motile and non-motile groups of 

spermatozoan according to the grading system of motility.  

 

 

  

 

Figure 1.5  Historical miRNA discovery through a timeline since the first miRNA has 

been discovered in 1993.   

Different studies of miRNAs in spermatozoa. 1 (Almeida et al., 2011), 2 (Wild and 

Roudebush, 2000), 3 (Garrido et al., 2004), 4 (Amanai et al., 2006), 5 (Yan et al., 2008), 

6 (Bouhallier et al., 2010), and 7 (Abu-Halima et al., 2013).  
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1.5.2.4 miRNA and early embryonic development  

miRNAs are important for normal human and animal development. Changes or 

loss of the miRNA expression can cause embryonic death through the 

posttranscriptional mediation of pluripotent cells (Berardi et al., 2012). Different 

miRNAs can be specific targets of different pathways and transcripts during 

spermatogenesis and early embryonic development. miR-122 and miR-34c are 

spermatids specific miRNAs and maintain cell development by targeting c-Kit and 

Tnp2 genes (Figure 1.6) (Smorag, 2013).  

 

  

Figure 1.6 miRNA and spermatogenesis.  

miRNA targets different genes during spermatogenesis and after fertilization (Smorag, 2013).  

  

Let-7 was the first miRNA that have found related to the development of C. 

elegans larvae by suppression of lin-28 and controls the transition of the larval 

stage into an adult (Reinhart et al., 2000). Lin (2013) reported that miRNA is 

highly expressed in the human embryos and some specific miRNAs are 
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upregulated at various stages of development as well as in tumorigenesis, which 

was confirmed using the microarray technique (Lin et al., 2013).  

 

miR-17-192 cluster also was downregulated in week 6 of human embryogenesis 

and have oncogenic features at the same time by targeting CDKN1A (p21) and 

RUNX1 which is very important in controlling cell cycle and apoptosis. miR-290-

295 cluster in mouse similar to 371-373 cluster in human and miR-302 clusters 

have a vital role during embryogenesis,  also important in the cell cycle of 

embryonic stem cells and pluripotency phase by manipulating the expression of 

some cell cycle gene inhibitors like Rb1, RbI1 (Yuan et al., 2017), (Figure 1.6). 

they regulate embryonic stem cells by repressing mRNA embryonic stem cells 

regulators transcripts such as Nanog, Oct4, and Sox2 transcripts (Figure 1.7). 
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Figure 1.7 miRNAs and embryogenesis signaling pathway schematic diagram. 

The miRNAs target genes involved in the up-regulation of core pluripotency factors that 

have an impact in embryogenesis and pluripotency.Let-7 repress differentiation 

transcripts (lin-28 and MYUC) and lin-28 conversely repress let-7 to maintain embryonic 

stem cell development. miRNAs on the right are suppressing other transcript and 

involved in the process of development also by repressing Casp3 leads to apoptosis. 

Pointed arrows representing activation while blunted arrows for repression. (adapted 

from (Berardi et al., 2012).  

  

  

1.5.2.5 Methods of miRNA quantification  

To study the cellular performance of miRNAs, mature miRNAs profile is the 

main target in normal and disease condition of different organs (Wark et al., 

2008). Because of the miRNA short nucleotides length and limited 

expression level in a confined cell at a particular stage, as well as large 

sequence similarities make it a difficult molecule to isolate. Numerous 

quantification techniques were identified to quantify the miRNA expression 

with some limitations of advantages for each method (Baker, 2010).   

1.5.2.5.1 Quantitative real-time PCR (qRT-PCR)  

The polymerase chain reaction (PCR) is one of quantification method that allows 

a specific known region of DNA amplification using oligonucleotide primer 

complementary to the known sequence of DNA template. The DNA polymerase 

then used to make an extension of the primers on single strand DNA (ssDNA) in 

the presence of dNTPs under specific conditions, after that heat denaturation of 

double strand DNA (dsDNA) and cooling annealing (primer binding) to synthesize 

new DNA strands. The data output of quantification of gene expression using RT-

PCR by cDNA amplification and transcription from RNA samples is expressed as 

a fold change or a fold difference of expression levels (Newton and Graham, 
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1994). qRT-PCR needs normalization of cDNA with the same RNA input to 

ensure the actual output obtaining using fluorescent reporter molecules emitted 

following each PCR cycle (Bustin et al., 2005).  

  

1.5.2.5.2 Microarray  

The microarray is a potent high-throughput implement to profile a large number 

of miRNA in parallel. Around 1000 miRNAs simultaneously can be detected in 

one run using a flexible probe and fluorescent dye, in order to label the specific 

gene of interest then dsDNA was formed by hybridization. Finally, the genes and 

their expression level were detected (Liu et al., 2008; Yang et al., 2008). 

However, it has several limitations like requisite of a previous understanding of 

the sequence being investigated, also the cross-hybridization of similar 

sequences, besides the inability to identify low or high expression level genes 

(Shendure, 2008). 

1.5.2.5.3  Illumina High Through-put Next-generation sequencing  

High Throughput Next-Generation Sequencing (NGS) is an advanced technology 

that allowed DNA and RNA sequencing directly by the synthesis in situ and dNTP 

can be detected simultaneously by Illumina sequencer system on a flow cell 

cartridge at millions of specific positions to provide an inclusive understanding of 

gene nature and function (Corney, 2013).  RNA sequencing also known as RNA-

Seq is a procedure of transcriptome analysis including mRNA analysis using 

various methods to study the presence and quantity of RNA in biological samples 

and to investigate gene expression profiling of the organisms. Simply, RNA 

samples are converted into cDNA library fragments to obtain short reads between 

200-500 bp to be sequenced on Next-Seq 500 (an Illumina Genome analyzer 
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with a high throughput sequencing platform), which then aligned to a reference 

genome to generate a base-resolution expression profile (Datta and Nettleton, 

2014).  

 

1.5.2.6 miRNA therapy  

miRNA are now well approved as biological pathways and functions regulators, 

and participating in the disease development. Various research has tried to 

modify miRNA to renovate therapeutics to be offered in the markets especially 

cancer therapeutic. With the unique miRNA conserved sequence among species 

that made it easy to synthesize to produce anti-miRs that have a high affinity to 

bind to miRNAs target and causing degradation of over-expressed miRNA 

(Christopher et al., 2016). Inactivating the pathological miRNAs and correcting 

the imbalance in genetic pathways caused by miRNA dysregulation can be 

achieved via introducing artificial miRNA, which will lead to increase the miRNA 

amounts and functional inhibition will be initiated (Negrini et al., 2007).  

  

1.6 Summary  

miRNA emerges to participate in many cellular function and biology and 

needs further investigations. This chapter of current research will emphasize 

the potential RNAs specific for progressively motile sperm, non-

progressively motile sperm, and immotile sperm and may lead to identifying 

novel pathways and biomarkers associated with male infertility.  
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1.7 Hypothesis  

Expresisons of mRNA and subpopulations of sperm micro RNAs responsible for 

sperm function and fertility is of increasing interst both in terms of sperm biology 

and potential fertility biomarkers.  

 

 

The main aim of this research is to explore the relative epxresion of RNA in the 

sperm contains a myriad of RNA that expressed differentially in term of sperm 

activity. 

The second aim is to explore the relative expression of mRNA and miRNA 

from different populations of isolated sperm cells from humans and to 

investigate the relative expression of sperm-specific miRNAs in an obese 

mouse model.   

To achieve this, two main objectives of our research were:  

1. Isolate and sequence humam sperm mRNA from motile and immotile 

sperm, establish optimal sperm RNA isolation [mRNA dan miRNA] and 

amplificaiton methodology from sperm samples – and sequence using 

the Ilumina platform.  

2. To investigate the impact of highfat diet and obesity on the differtntial 

expression and epigenetic regulation of miRNA populations – an obese 

mouse model was utilised.  
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Chapter 2: General Materials and Methods  

2.1 Exploring the relative mRNA expression in motile 

and immotile human sperm  

In order to explore the transcriptome content of motile and immotile human 

sperm, RNA sequencing (RNA-Seq) was performed using the Illumina Next-

generation sequencing (NGS) platform (NextSeq 500 sequencer, Illumina, UK). 

 

2.1.1 Procurement of semen    

All sample participant consent and percurmment adhered to faculty ethics 

approval [SE111 229A Appendix 2]. Semen samples were obtained from 

recruited donors (aged 19-30 years) by masturbation after 2-5 days of 

abstinence. Donors were asked to fill a questionnaire detailing for health, lifestyle, 

and medications (Appendix 2). All participants have consented following faculty 

ethical approval at Manchester Metropolitan University (Appendix 2). Semen 

samples were produced on site in a designated, secure room were collected in 

sterile plastic containers (Sterilin, UK). Samples were divided into two portions for 

motile and immotile sperm from the same sample. Motility was assessed using 

the CASA system (Sperminator,® Procreative, UK).  
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2.1.2  Sperm preparation from human semen samples:  

Isolating motile sperm from seminal plasma is a routine procedure in assisted 

reproduction technology (ART). These techniques are based on isolating 

viable, normal and motile sperm capable of fertilizing the oocyte. In order to 

separate different motility grades (Grade A - fast progressive motility, Grade B 

- slower progressive motility, Grade C- nonprogressive and Grade D immotile 

– referred to as A, B, C, and D henceforth). Conventional swim up methods 

was used to such isolation (Grunewald and Paasch 2012), (Figure 2.1).   

Samples of interest were assessed regarding sperm concentration, motility and 

the presence of round cells in semen sample according to WHO semen 

analysis criteria (2010) using CASA system software (Sperminator®, 

Procreative, UK). To select motile and immotile sperm from non-sperm and 

remove contaminants, a 55:80% discontinuous density gradient was 

performed.  

Samples were allowed to liquefy for 30 min at 37oC before further analysis to 

enable sperm to acquire swimming ability. Semen was analysed for volume, 

sperm concentration, and motility according to WHO guidelines (2010). Sperm 

concentration and grade motility were then assessed on a pre-warmed (37◦C) 

stage using CASA software (Sperminator®, Procreative, UK). Samples with more 

than 1x106 round cells/ml were excluded from the study.  

Sperm preparation was done using two swim-up purification methods (WHO, 

2010). Firstly, sperm was separated by a discontinuous density gradient, a 

separation method based on cellular density separation.  Briefly, 1 ml of semen 

samples were gently layered on top of 2 ml 55:80% Supra SpermTM media 
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(SPM) (Origio, Denmark), then centrifuged at 300 xg for 20 min at room 

temperature, then sperm pellets were washed twice in sperm preparation 

mediumTM (Origio, Denmark) at 300 xg for 10 min. The sperm was then 

suspended in 1 ml of SPM for motile sperm portion and counted. While immotile 

sperm (D) was isolated from the intermediate layers of the gradient (Figure 2.1). 

The immotile portion washed twice with 1ml PBS at 300 xg for 10 min to ensure 

that sperm are free from seminal plasma and any other decapacitated 

contaminants. Finally, the washed portion was suspended with 0.5 ml PBS.  

 

  

Figure 2.1 Schematic illustration of Discontinuous Density gradient method in vitro.  

  

Secondly, the simple layer technique was done by gently placing 1 ml of semen 

sample underneath 2 ml of SPM (Origio, Denmark) at the bottom of a conical 

Falcon test tube, and placed in a 6.0% CO2 gassed incubator at 37°C at an 

angle of 45o with a loose cap. The entire supernatant contains the active motile 
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sperm was isolated after 30-60 min and 0.5 ml of supernatant was taken for 

motile active sperm (A) after examined for no somatic cell contamination under 

X400 light microscope (Bongso et al., 1993). All samples were cryopreserved 

by adding Sperm freezing medium (FertiPro, Belgium) dropwise in a 1:1 volume 

to the samples and stored at -80oC until further use.   

   

2.1.3  Total RNA isolation  

Isolation of RNA from sperm population is challenging as RNA can quickly 

degrade due to RNase activity present in various contaminants. Therefore, to 

avoid RNA degradation and to optimize the yield of RNA; all work was carried 

out on a bespoke RNAase-free workstation only. Furthermore, the sperm has 

a very little total RNA content (10-20 fg of RNA in haploid spermatozoon, 450 

fg of RNA in a haploid spermatid while diploid somatic cells contain 10-20 pg) 

and even less of small RNAs, especially miRNA.  Another point, the sperm 

nucleus is highly condensed that adds more difficulties to isolate its content 

(Das et al., 2010). For that reason, we chose to compare different kits.  

Three different kits were tested to isolate RNA from the eight human semen 

samples contain 2550 m/ ml spermatozoa of different motility grades to find out 

the best one regarding RNA quantity and quality. The kits were:  

1. Total RNA purification kit (Norgenbiotek, Canada).  

2. Mini-miRNeasy kit (Qiagen, UK).  

3. Trisure kit (TRIsure™, bioline, UK).  

Samples were centrifuged at 300 xg for 10 min after thawing and washed twice 

with 1X PBS. Cells were counted using Neubauer improved counting cell 

chamber, under x200 microscope. 80 µl of ß-mercaptoethanol was added to an 
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adjusted 20-40 m/ml of sperm to lyse the cells with vortexing for 30 sec. 

Samples were incubated for 30 min on ice before proceeding with each kit.  

2.1.3.1 Total RNA purification kit (Norgen biotek, Canada):   

This protocol isolates total RNA including miRNA without phenol-chloroform 

contamination. The purification is based on a spin column chromatography using  

Norgen’s proprietary resin as the separation matrix. The sperm cells were first 

lysed using the provided lysis solution and vortexed for 15 min. Ethanol (100%) 

was added and vortexed for 10 min. The lysate was added to the spin column 

provided with the kit and centrifuged for 1 min at high speed. Then, the column 

was washed with wash solution, centrifuged for 1 min and the flow through was 

discarded. Lastly, RNA was eluted into 30 µl of the provided elution buffer.  

2.1.3.2    Mini miRNeasy kit (Qiagen, UK):   

The RNA isolation was performed according to the manufacturer’s instructions, 

Qiazol was added to the samples and vortexed to mix, then incubated at RT 

for 5 min. Chloroform was added to the tube containing the homogenate, 

vortexed for 15 sec and centrifuged at 12,000 xg for 15 min at 4°C. The upper 

colourless portion was transferred to a new collection tube. Ethanol (70%) was 

added and centrifuged at ≥8000 xg for 15 sec at RT. The flow-through was 

discarded and RWT buffer was added then centrifuged at ≥8000 xg for 15 sec, 

another wash buffer RPF was added, centrifuged at ≥8000 xg for 15 sec, and 

discarded the flow-through, this was repeated twice. This step is important to 

remove phenols, salts, and other contaminants during the centrifugation. 

Finally, RNA was eluted in 40 µl of RNase-free water.  
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2.1.3.3     Trisure RNA extraction method (TRIsure™, bioline):   

RNA extracted following the manufacturer’s protocol. 1 ml of Trisure added to the 

samples and incubated for 5 min at RT, followed by the addition of 200 µl of 

chloroform. Samples were shaken vigorously for 15 sec and incubated for 5 min 

at RT then centrifuged at 12,000 xg for 15 min at 4°C. Three phases appeared; 

the upper colourless portion that contains RNA was transferred into RNase free 

tubes; the pellet containing the DNA and other insoluble constituents like 

polysaccharides and membranes (Rauber, 2008). RNA was precipitated by 

adding 500 µl of cold isopropanol followed by sample incubation for 10 min at RT 

then centrifuged at 12,000 xg for 10 min at 4°C. The supernatant was removed 

and RNA wash was performed by adding 1 ml of 75% ethanol to the pellet and 

vortexed then centrifuged at 7500 xg for 5 min at 4°C. Finally, the pellet was air 

dried and dissolved in 25 µl DEPC-treated water.  

All isolated RNA from tested kits were stored at –80°C until further use.  

  

2.1.4  RNA library generation methods  

mRNA library preparation was performed using NextflexTM Rapid RNA-Seq kit  

(Illumina compatible/ Bioo Scientific, USA) paired with the Agencourt® AMPure® 

XP magnetic beads (Beckman Coulter, USA). To qualify gene expression levels, 

target 3’ poly (A) mRNAs sequence selection method was approached via a 

magnetic beads-conjugated oligo (dt), and depletion of other sorts of RNA occurs 

at this point in order to enrich the RNA sequence of interest.  

RNA library preparation consists of seven basic steps to prepare RNA for 

sequencing: RNA fragmentation, Reverse transcription, Adaptor ligation, Library 
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clean up, Amplification, and Library quantification, finally, Quality control and 

sequencing as illustrated in Figure 2.2.  

  

  

Figure 2.2 Basic flow chart of RNA sequencing preparation steps from sperm 

samples.  

  

The RNA library preparation was done according to the manufacturer’s instruction 

as the followings:   
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Step 1: RNA fragmentation  

The first step of RNA fragmentation into smaller strands fragment of 200-500 bp 

length was done by adding 5 µl of Nextflex fragmentation buffer to 14 µl of RNA 

in the nuclease-free water on ice. The mixture then heated for 10 min at 95°C 

before proceeding to the second step of first strand synthesis.  

 

 

Step 2: First strand synthesis  

To convert mRNA into cDNA, reverse transcription was done for each reaction of 

the fragmented RNA. 1 µl of NextflexTM first strand synthesis primer (5’ AATGAT 

ACGGCGACCACCGAGATCTACAC) was added and incubated for 5 min at 

65°C then placed on ice. Next, 4 µl of Nextflex first strand buffer mix and 1µl of 

Nextflex rapid reverse transcriptase were added to the samples and incubated 

on a thermocycler (SureCycler 8800; Agilent Technologies Inc., Santa Clara, 

USA) as shown in Table 2.1, after has been thoroughly mixed.  

 

Table 2.1 Cycling conditions of the first strand  

Time  Temperature°C  

10 min  25  

50 min  50  

10 min  70  
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Step 3: Second strand synthesis  

Second strand cDNA was generated by adding 25 µl of Nextflex second strand 

synthesis mix to the reaction tubes from step2, mixed well and incubated for 60 

min at 16°C.  

Step 4: First Bead Cleanup  

Agencourt® AMPure® XP magnetic beads (Beckman Coulter, USA) was used 

for the clean-up step. It consists of first bead binding, beads regeneration, 

second bead binding and final elution as described in Figure 2.3. After this 

stage, the product can be stored safely at -20°C before proceeding to the next 

step of adenylation of the purified ssDNA product.   

 

 

Figure 2.3 Brief description of beads clean-up step.  
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Step 5: Adenylation  

For each sample of purified second strand synthesis product from step 4, 4.5 µl 

of Nextflex Adenylation mix was added on ice. The mixture was then incubated 

on a thermocycler (SureCycler 8800; Agilent Technologies Inc., Santa Clara, 

USA) for 30 min at 37°C. 

Step 6: Adapter ligation  

The 5’ and 3’ ends of cDNA fragments were repaired and adaptors were ligated 

(thus providing a unique label for different samples being pooled in a single 

sequencing reaction and allowing the hybridization of the sequences on a flow 

cell). 20 µl poly A beads were used as recommended for batch purification of 

pure intact mRNA upstream of RNA-Seq library preparation. Therefore, mRNA 

was expected to compromise 100 ng (~80 nm) as polyA is 1-5% of total RNA 

content. On ice, a mixture of 20.5 µl of adenylated DNA, 27.5 µl of Nextflex 

ligation mix and 2.0 µl Nextflex RNA-Seq barcodes or called indices of six random 

bases (random hexamer) to bind to a random position of the template  (Table 2.2) 

were mixed thoroughly and incubated for 15 min at 22°C.  
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             Table 2.2 Nextflex RNA-seq Indices  

Barcode adaptor (n)     Sequences  

Barcode adaptor1  CGATGT  

Barcode adaptor2     TGACCA  

Barcode adaptor3      ACAGTG  

Barcode adaptor4      GCCAAT  

Barcode adaptor5      CAGATC  

Barcode adaptor6      CTTGTA  
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Step 7: Second Bead Clean-up  

Two bead-binding steps were needed to ensure maximum removal of 

Ribosomal and non-messenger RNA contaminants where magnetic beads are 

incubated with total RNA in the presence of a binding buffer. Magnetic based 

separation is used to retain poly(A) mRNA while removing all other transcripts. 

Beads are subsequently washed and mRNA is eluted, releasing purified 

poly(A) mRNA as detailed in Figure 2.4.   

  

  

Figure 2.4 Brief description of second beads clean-up step  
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After that, 50 µl of AMPure XP beads was added to each sample and incubated 

for 5 min at RT. The mixture was then placed on a magnetic stand for 5 min at 

RT. The supernatant was removed and 80% freshly prepared 200 µl ethanol was 

added and incubated for 30 sec at RT, this was repeated twice. After that, the 

dried beads were re-suspended in 37 µl of resuspension buffer, mixed well and 

incubated for 2 min at RT. The suspended beads were placed on a magnetic 

stand for 5 min at RT. Lastly, the clear supernatant was transferred to a new 

microcentrifuge for a further step of PCR amplification.  

 Step 8:  PCR amplification  

PCR amplification was achieved in order to obtain enough material to be 

sequenced. In a nuclease-free microcentrifuge tube, a total of 36 µl of Adapter-

ligated DNA, 12 µl of Nextflex PCR master mix, and 2 µl of Nextflex primer mix 

to bring a total volume of 50 µl, and then incubated according to Table 2.3:  

  

          Table 2.3 Cycling condition for real-time PCR  

Steps  Time  Temperature°C  Cycle  

  PCR initial activation 2 min  98    

Denaturation 30 sec  98    

Annealing 30 sec  65  15 

cycle  

Extension 60 sec  72    

Final extension 4 min  72    
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Step 9: Third Beads Clean-up  

Samples were mixed with Ampure XP beads after removing the tube from the 

magnetic stand. Then were proceeded to the first bead binding, beads 

regeneration, second bead binding and final elution of 32 µl resuspension buffer 

which was incubated for 2 min, placed on a magnetic stand for 5 min at RT. 

Eventually, 30 µl of clear supernatant was transferred to a new fresh 

microcentrifuge tube before library validation (Figure 2.5).  

  
  

  

Figure 2.5 Brief description of third beads clean-up step  
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2.1.5  Library quantification  

Non-multiplexed libraries were validated with a Bioanalyzer 2100 fluorimeter 

(Agilent technology, USA) tracing the size and quality of the libraries. Libraries 

were normalized using standard normalization method then pooled into an 

equimolar ratio (4 nM) and stored at -20°C before proceeding to cluster 

generation process and being ready for sequencing.  

  

2.1.6 Cluster generation   

The critical step of NGS is when the DNA is attached to a flow cell cartridge which 

contains 8 lanes but only a single or pooled libraries can be sequenced on it with 

the adaptors on both ends of sheared cDNA and performing bridge amplification 

to generate millions of strands from one molecule then annealing of sequencing 

primer will occur. To start, libraries were normalized using a standard 

normalization protocol then uploaded onto the reagent cartridge from a single 

reservoir, which transferred automatically to the flow cell to all lanes. Following 

the manufacturer’s protocol cluster generation was done as the following steps:  

  

2.1.7  Library denaturation and dilution  

The pooled and diluted library of 4 nM final concentration (5 µl) was combined 

with 5 µl of freshly prepared 0.2 N of NaOH in a microcentrifuge tube, vortexed 

and centrifuged briefly then were incubated at RT for 5 min.  
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After that, 5 µl of 200 mMTris-HCl (pH7) was added, vortexed and centrifuged 

again. The denatured libraries were then diluted to 20 pM by adding pre-chilled 

HT1 and centrifuged briefly.  

  

2.1.8  Loading concentration preparation  

The final library volume was 1.3 ml at 1.8 pM was achieved by combining 117 µl 

of denatured library solution with 1183 µl of pre-chilled HT1, was mixed and 

centrifuged.  

          • PhiX control preparation  

10 nM Phix (10 µl) was used as sequencing control and was combined with 15 µl 

RBS to achieve 4 nM PhiX which was mixed and centrifuged briefly.  

          • PhiX denaturation  

The following were combined in a microcentrifuge tube to denature the diluted  

PhiX  

           4 nM PhiX (5 µl)  

          0.2 N NaOH, freshly diluted (5 µl)  

The mixture was vortexed and centrifuged, then 5 µl  200 mMTris-HCl, PH 7.0 

was added and mixed well.  

          • Denatured PhiX dilution   

In order  to prepare loading concentration of denatured PhiX,  985 µl of prechilled 

HT1 was added to the denatured PhiX to bring the total volume 1 ml at 20 pM, to 

dilute the denatured PhiX to 1.8 pM, the followings were mixed :  
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117 µl Denatured PhiX  

1183 µl Pre-chilled HT1  

The mixture was mixed and centrifuged at 280 x g for 1 min.  

2.1.9 Library and PhiX control combination  

13 µl of denatured and diluted PhiX was combined with 1287 µl of the denatured 

and diluted library from step 2.2.7 and was placed on ice for downstream 

workflow.  

2.1.10  Library loading on the cartridge  

1.3 ml was added to the Next Seq Mid output reagent cartridge V2 (Illumina, USA) 

of 150 cycles on the well number 10 (Figure 2.6)-, which then introduced to the 

Illumina genome analyser, the Next-Seq 500 (Illumina Genome analyser, UK).  

  

  

Figure 2.6 The Illumina reagent cartridge. All reagents required for sequencing and the library 

loading well number 10 of the cartridge.   
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2.1.11  Data analysis   

Computational data analysis pipeline and bioinformatics study of selected 

mRNA sequences were done. The analysis was comprised of downstream 

quality control like trimming of adapter’s sequencing and poor quality scores 

reads (Q<20) removal. Next, mapping reads sequences to a reference 

genome, counting the mapped reads, statistical analysis of differential 

expression, identification of novel transcripts, and finally pathway analysis. 

Three software packages have been developed for data analysis (Illumina base 

space software (http://basespace.illumina.com/): RNASeq Alignment using 

TopHat for reads alignment and mapping, Cufflinks for transcripts assembly 

and quantification and DESeq2 for differential expression.  

2.1.11.1  RNA-Seq Experimental Design (Figure 2.7)  

Paired-end 70bp reads have been generated from human sperm dscDNA using 

high through-put Illumina Next-seq 500 (Illumina Genome Analyser, UK), 

(Trapnell et al., 2012).  

Our data was performed without technical or biological replicates to explore the 

differential gene expression (DGE) because of the cost of sequencing 

consumables. For sequencing multiple libraries in a single run, barcodes for each 

library were introduced to allow all libraries to be sequenced simultaneously over 

a single flow cell lane. The Illumina flow cell cartridge with four lanes and samples 

were spread equally over the four lanes. Next, demultiplexing of reads based 

upon barcode sequence was performed and analyzed the resulting short-read 

sequences accordingly.  
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Figure 2.7 The experimental design of RNA sequencing.  

 

   

As shown in Figure 2.8 Illumina libraries of ssDNA are bound to the surface of 

flow cell channels that contain a lawn of dense bound oligonucleotides 

complementary to the sequencing adapters, which have introduced during the 

library preparation. In Illumina sequencing by synthesis, all four dNTPs are 

fluorescently labelled and blocked with 3’-OH group. During each cycle of the 

sequencing procedure, the dNTPs are concurrently introduced into the flow cell 

cartridge. This allowed only one nucleotide incorporation per one cycle. Clusters 

then build on the flow cell via PCR bridge amplification were initiated by adding 

unlabelled nucleotides and polymerase enzyme to produce separate clones of 1 

μm in diameter. The original strand is then washed away leaving only the strands 

that had been synthesized to the oligos attached to the flow cell, multiple copies 

of the same sequence of fragmented RNA was then formed through PCR 

amplification by synthesis and denaturation of the dsDNA. The first base is 

incorporated after adding sequencing reagents, and signals were detected in an 

imaging phase, then a new cycle added after deblocking (removal of 3’-OH 

group) and removal of previous fluorescent signal that can read as sequential 
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images of a cluster (Figure 2.8). The next step is to find the original sequence of 

the large sequence by alignment to a reference genome.  

 

 

  

Figure 2.8 RNA-NGS experiment flows.  

Cluster generation and read sequencing of mRNA where fragmented mRNA attached to the 

primers on the flow cell cartridge then are detected by fluorescent-labeled nucleotides.  

 

 

 

2.1.11.2 Quality control  

In order to evaluate and normalize the sequenced raw data for the length and the 

total number of reads, we conducted NGS-QC generator application of Galaxy 

platform (http://www.galaxyproject.org, htt://www.usegalaxy.org) to display the 

basic statistics and allow quick evaluation of the resulting sequence. BAM file 

format output was generated from FASTQ- format sequence files that include all 

reads sequenced from the NGS platform, and QC analysis including counting the 

number of reads presented and translated into base call quality. The GC content 

percentage per the followings: a base sequence quality score (a measure of 
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confidence of correct base calling), (Figure 2.9), per base sequence content (a 

representation of each nucleotide at each base position to visualize position/ 

sequence bias), per base N content (a plot of uncalled nucleotides (N’s) at each 

base position), duplicated reads (typically a result of PCR over amplification 

during library preparation), and overrepresented sequence Kmer (Corney, 2013).  

  

Figure 2.9 graph illustrating the Kmer content.  

[Reads per Kilobase of transcripts per million mapped reads (PRKM)], is showing the abundance 

of mRNA using Galaxy software.  

  

The RPKM metric reads normalize a gene’s read count by both transcripts length 

and the total number of mapped reads in the sample (Kukurba and Montgomery, 

2015).  

The FASTQ file is a text-based format for sorting biological sequences and its 

corresponding quality scores. Files contain nucleotide sequencing read data and 
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associated per-base quality scores together with read identifier while BAM file is 

a tab-delimited text file containing read alignment data, flags to indicate the 

numbers of matches, mismatches, and presence of correct mate read (in the 

case of paired-end reads). BAM is a binary version of SAM-format file (a tab-

delimited text format) which is a standard format generated from all mappers 

(Cock et al., 2009).   

2.1.11.3 Reads Alignment  

RNA-Seq Alignment software (FASTQ Generation | version: 1.1.0 engine) has 

been launched to align to the annotated reference genome, called Homo sapiens  

(PAR-masked) /hg19 (RefSeq) or Homo sapiens (UCSC hg 19) via the aligner 

TopHat (version: 2.1.0). Bowtie2 read mapping algorithms (version: 2.2.6) based 

on BWT (Burrows-Wheeler index transform) was used for alignment and resolve 

spliced reads by splitting reads mapping (Trapnell et al., 2009). The reference 

genome provides the position from which the reads initiated. Mapping RNA-Seq 

reads with the STAR aligner and assigns aligned reads to RNA-Seq data, 

followed by differential expression quantification with DESeq2 software  

(version: 1.6.3), which is an exon-based approach built on beta negative binomial 

(BN) distribution to model read counts across samples and to capture the 

overdispersion (Robinson et al., 2010). The main advantages of alignment are to 

generate reads, post alignment statistical summary, and to eliminate the 

contaminating reads. The aligners can align reads across intron-axon 

boundaries.  
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2.1.11.4 Gene quantification and differential gene expression testing  

The analysis DESeq2 software package has been used to study the 

differentially expressed genes and their biological functions in the motile and 

immotile human sperm samples of our study, the number of reads is mapped 

to each gene to find the level of expression between different conditions in 

terms of their read counts, when transcripts reconstructed from short-read data. 

Cufflinks Assembly software (version: 2.2.1) has been used for reads counting 

that mapped to the full-length transcripts, as well as, for both gene assembly 

and quantification. The cufflinks are a graph based programme, the aligned 

reads were assembled into transcripts, isoforms, and genes simultaneously 

identifying transcriptional start sites (TSSs) where expression statistical 

significance can be recorded (Trapnell et al., 2010).  

2.1.11.5 Transcripts pathways and functions  

Networks of transcripts that were differentially expressed in motile and immotile  

sperm were identified via online resource GeneMania system (http://www.gene 

mania.org) in order to identify some of the genetic architecture of human sperm 

and associated network function of the gene lists that have been identified.  

 

2.1.12 Statistical analysis  

The statistical significance for gene expression analysis was calculated through 

a Fisher's exact test, using a 2x2 contingency table, but instead of assuming that 

the probabilities follow a hypergeometric distribution, they follow a negative 

binomial distribution parametrized from the mean and the estimated dispersion 

http://www.genemania.org/
http://www.genemania.org/
http://www.genemania.org/
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(Auer and Doerge, 2010). Bonferroni cut-off was used to define probability 

significance values. All other analysis was carried out using computational apps  

provided by Illumina Base space software analysis (http://basespace. 

illumina.com/).  

2.2 Exploring miRNA in human sperm  

2.2.1 Sperm preparation  

Semen samples were collected from consenting donors (n= 12, mean age: 24.58 

± 0.86) under Faculty approved ethics. Samples were produced by masturbation 

after 2-5 days of sexual abstinence. Samples of interest were assessed 

according to WHO semen analysis criteria (2010) using CASA system software 

(Sperminator®, Procreative, UK). To select motile and immotile sperm from non-

sperm contaminates, a 55: 80% discontinuous density gradient was performed. 

Also, sperm was gained by the simple layer method as discussed in details in 

section 2.1.1. Sperm samples were kept at -80°C until further analysis.  

  

2.2.2  Total RNA isolation  

Total RNA was extracted and purified from each sample using the Total RNA 

isolation kit (Norgen Biotek, Canada) as per section 2.1.2.1.  

  

2.2.3  RNA integrity assessment:  

The RNA quality and quantity were measured via the Nano-Drop 2000c 

spectrophotometer (Thermo Scientific, Wilmington, USA), by assessing the ratio 

http://basespace.illumina.com/
http://basespace.illumina.com/
http://basespace.illumina.com/
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of absorbance at 260/280 and 260/230 nm. Bioanalyzer 2100 Agilent (Agilent 

technology, Santa Clara, USA) was used to evaluate the RNA integrity and 

looking for the presence of small RNAs in sperm samples using Total RNA 6000 

pico kit, Agilent small RNA analysis kit, RNA ladder and Agilent analysis software  

(Agilent technology, Santa Clara, CA, USA).  Samples were then kept at -80°C 

until further use.  

  

2.2.4  miRNA expression - qPCR for motile and immotile human 

sperm  

Eighty-four sets of mature miRNAs- specific forward primers (miscript primer 

assay) were selected. The isolated total RNA was adjusted at 250 ng/ 5 µl of total 

RNA enriched with miRNA for further PCR Array analysis.  

2.2.5  Reverse Transcription:   

Isolated RNA was poly-adenylated and reverse transcribed into cDNA using 

oligo(dt) primer and miScript HiSpec buffer on ice prior to Preamplification 

process using miScript II RT Kit (Qiagen, UK), (Table 2.4). Following the 

manufacturer’s protocol, a PCR thermal cycler used for the synthesis of the first 

strand cDNA, by incubating samples for 60 min at 37°C, then 5 min at 95°C to 

inactivate miScript Reverse Transcriptase and stored at -20°C until use. 
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          Table 2.4 Reverse transcription reaction components mixture  

Components 

  

Volume/ 

reaction 

5x miScript HiSpec Buffer  2 µl 

10x miScript Nucleic Mix  1 µl 

RNase-free water  4 µl 

miScript Reverse Transcription Mix  1 µl 

Template RNA  2 µl 

Total volume  10 µl 

  

 

 

2.2.6  cDNA Pre-amplification  

In order to obtain a reliable amount of miRNA, the array was tested with sample 

kit provided by Qiagen with and without pre-amplification using the misprint 

PreAMP PCR Kit (Qiagen, UK), which performed before proceeding on miRNA 

quantification method.  

Briefly, 10 µl of template cDNA from reverse transcription reaction was diluted in 

40 µl, and then 5 µl of diluted cDNA was used in the reaction volume at RT for 

pre-amplification reaction mixed with another master mix as shown in Table 2.5. 

The mixture was mixed, briefly centrifuged, and then placed on ice. 
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           Table 2.5 Pre-amplification reaction components  

Components 

  

Volume/ 

reaction 

5x miScript PreAmp Buffer  5 µl 

Hotstar-Taq DNA Polymerase  2 µl 

miScriptPreAMP Primer Mix  5 µl 

RNase-free water  7 µl 

miScript PreAMP Universal Primer  1 µl 

Template cDNA  5 µl 

Total volume  25 µl 

  

The 25 µl of preamplified cDNA was incubated at 95°C for 15 min to activate 

HotStar-Taq DNA polymerase, then 12 cycles of amplification (30 sec at 94°C, 3 

min at 60°C) was done on a thermal cycler (SureCycler 8800; Agilent 

Technologies Inc., Santa Clara, USA), (Table 2.6).   

  

     Table 2.6 Cycling conditions for the Pre-amplification reaction  

Step           Time  Temperature  

 PCR initial activation  15 min  95 °C  

      

  

2-step cycling  

  

Denaturation  

  

  

30 sec  

  

94 °C  

  

Annealing/ Extension   3 min  60 °C  

  

Cycle number  12 Cycles    
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After the run, the pre-amplified cDNA product was diluted in 475 µl RNase free 

water to obtain a 20-fold dilution factor to ensure an equal amount of PreAmplified 

cDNA, which will be used as a template for the next step of real-time PCR miRNA 

analysis.  

2.2.7  Real-Time PCR for mature miRNA expression profiling:   

Pathway-focused miScript miRNA PCR array assay (Custom miScript PCR Array 

system, Qiagen, UK) was chosen for mature miRNA profiling. The Array included 

all steps of RNA conversion into cDNA and subsequent RT-PCR detection of 

miRNA using miScript-Syber green PCR kit that contains QuantiTect Syber 

Green master mix, the miscript Universal primer was used to allow detection of 

miRNAs, the PreAMP PCR kit, and the 84 different miRNAs primers (Table 2.7). 

A custom 96-well format was used in order to profile the 84 different miRNAs that 

can be expressed in the sperm. A replicate of endogenous reference RNA 

including: Cel-miR-39-3p (C.elegans miR-39 miScript Primer assay), which is 

used as an alternative data normalizer, 5 different SNOR (snoRNA misript PCR  

controls defined as SNORD61, SNORD68, SNORD72, SNORD95, and 

SNORD96A), and the snRNA RNU6B (RNU6-2) were used for data normalization 

using the ∆∆CT method of relative quantification using the miScript PCR system. 

miRTC primer assay (miRNA reverse transcription control) is for the assessment 

of reverse transcription (RT) performance. Finally, the PPC (positive PCR 

control), which is used for quality assessment of PCR performance.  
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  Table 2.7 miRNome miScript miRNA PCR Array layout  

miRNA 

ID 

miRNA 

ID 

miRNA 

ID 

miRNA 

ID 

miRNA 

ID 

miRNA 

ID 

miRNA 

ID 

miRNA 

ID 

miRNA 

ID 

miRNA 

ID 

miRNA 

ID 

miRNA 

ID 

hsa-let-

7a-5p 
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let-7b-
5p 

hsa-
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5p 

hsa-
let-7d-

5p 
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5p 
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5p 
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let-7i-

5p 
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5p 
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miR-
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miR-
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miR-
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miR-
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miR-
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miR-
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miR-
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miR-
142-3p 

hsa-

miR-
142-5p 
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miR-
145-5p 

hsa-

miR-
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5p 

hsa-

miR-
146b-
5p ** 

hsa-

miR-
147a-

5p 

hsa-

miR-
148a-

3p 

hsa-

miR-
150-5p 

hsa-

miR-
155-5p 

hsa-

miR-
15a-5p 

hsa-

miR-
15a-3p 

hsa-

miR-
15b-5p 
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miR-
16-5p 

hsa-

miR-
17-5p 
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miR-
17-3p 
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miR-
18a-5p 

hsa-
miR-
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5p 

hsa-

miR-
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5p 
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miR-
181d-

5p 
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miR-

182-5p 
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miR-
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miR-
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miR-
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miR-
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miR-
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** 
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miR-
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miR-
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** 
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27a-3p 
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Real-time qPCR array Master mix multiplied by the number of samples was 

prepared using the diluted preamplified cDNA as in Table 2.8, according to the 

manufacturer’s protocol. 
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          Table 2.8 Reaction mix for pathway-Focused miScript miRNA PCR 

          Custom array (96-well) 

Components  Volume / µl  

2x Quanti Tect Syber Green PCR master mix  1375  

10x miScript Universal primer  275  

RNase-free water  1000  

Template Preamplified cDNA  100  

Total volume  2750  

  

Finally, 25 µl of the reaction mixture was added to each well of the plate, the PCR 

plate was tightly sealed with optical adhesive film and was centrifuged for 1 min 

at 1000 xg at RT and the programme of the qPCR cycler  was performed via 

Applied Biosystems Step one analysis (StepOneTM  Real-Time PCR System, 

Thermo Fisher Scientific), (Table 2.9).  

 

           Table 2.9 Cycling condition for real-time qPCR analysis  

Step          Time Temperature 

PCR initial activation 
 

 
15 min 

 
 

95 °C 
 

3-step cycling 
 

  

Denaturation 
 

15 sec 94 °C 
 

Annealing 30 sec 55 °C 
 

Extension 30 sec 70 °C 
 

Cycle number 40 Cycles  
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Data analysis was carried out using the ∆∆Ct method of relative quantification for 

miScript miRNA PCR Arrays available at http://pcrdataanalysis.saiosciences. 

com/ mina, (miscript® miRNA PCR Array, Qiagen, UK).  

 

  

2.3 Illumina sequencing for miRNA for motile & 

immotile human  sperm                    

In order to explore the miRNA expression from motile and immotile human sperm, 

High throughput NGS technology using Illumina sequencer platform (sequencing 

by synthesis) was adopted, a protocol used to selectively targets the small RNA 

molecules by size fractionation through gel electrophoresis, because they lack 

polyadenylation and has a short size (15-30 nt) length. The incorporation of 

dNTPs is being detected simultaneously on flow cells after preparation of RNA-

Seq libraries contains sequencing adaptors complementary to an oligo(nt) 

positioned on a lawn of the flow cell. Once hybridization of sequences on the flow 

cell occurs, the activity of DNA polymerase extension commences and copies of 

cDNA are made when subjected to several rounds of PCR amplification.   

  

2.3.1  Sample collection:  

Sperm was isolated from 12 semen samples from MMU volunteers and sperm 

kinetics was examined using CASA (Sperminator®, Procreative, UK) to prove 

sample normozoospermia according to WHO 2010 guidelines, all samples that 

have round cells more than 1x106/ml were excluded from the study in order to 

http://pcrdataanalysis.saiosciences/
http://pcrdataanalysis.saiosciences/
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avoid somatic cell contaminations. Samples were processed, sperm with 25-50 

m/ml density was used to separate motile (A) sperm by simple layer swim-up 

method and the isolation of immotile (D) sperm from the same individual was 

done by density gradient swim-up method as previously mentioned in section 

2.1.1, samples then kept in -80°C for downstream RNA extraction. 

2.3.2 RNA isolation and validation of isolation methodology:   

RNA isolation was done using Total RNA isolation kit (NorgenBiotek, Canada) 

according to manufacturer’s protocol, after thawing the frozen samples, 

centrifugation with fresh sperm preparation medium (Origio, Denmark) at 500 xg 

for 10 minutes was performed twice, 80 µl of β-mercaptoethanol was added, then 

the same workflow steps  from previously discussed in section 2.1.2.1 were 

followed. 

Testing of RNA quantity and purity:  

Obtaining a good yield and quality of RNA free of contaminating proteins, salts, 

and DNA that could hinder downstream analysis was another major goal of this 

study. Great care had to be taken when isolating the sperm RNA, as sperm 

contains a thousand times less RNA than other somatic cells (Marczylo et al., 

2012). To establish the best method for RNA isolation from sperm, three different 

protocols were tested. Table 4.3 compares the results of RNA yields and quality 

from the different kits, Total RNA Purification Kit (Norgenbiotek, Canada) 

recorded higher values when compared with the miniRNeasy kit (Qiagen, UK) 

and Trisure (TRIsure™, bioline, UK).  

  

Table 4.3 Comparisons of Total RNA isolated from human sperm using different 

procedures  
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RNA purification 

method 

RNA 

concentration ng/µl 

260/280 260/230 

Trisure kit 

N=4 

50.35±39.65 

(  5.4-70  ) 

 

1.28±0.28 

 

 

0.38±0.15 

 

Total RNA 

purification kit 

N=12 

 

57.94±65.64 

(14  -242) 

 

1.83±0.14 0.82±0.66 

Mini MiRNeasy kit 

N=4 

34.5±32.51 

(2.3-70.5) 
1.58±0.06 0.28±0.22 

Data are mean ± SD, N=numbers of recruited men.  

Sperm is known to have many strong disulfide bonds, making RNA extraction 

difficult (Gilbert et al., 2007). Therefore, β-mercaptoethanol was used during the 

lysis step in the kits to reduce disulfide bonds and maximize the RNA yield. 

Importantly, as sperm contains far less RNA than other cells (Marczylo et al., 

2012), pre-amplification step using miScript PreAMP PCR Kit (Qiagen, UK) was 

included before the microRNA PCR analysis.   

A total cell number of 30 million sperm was used for RNA extraction. The quantity 

of RNA determined using a Nanodrop 2000c spectrophotometer (Thermo Fisher 

Scientific, USA) showed a range of yields from 50- 200 ng/µl from the different 

groups of study(Table 4.3). An absorbance ratio at 260/280 nm of 1.8-2.0 is 

considered to be acceptable for RNA purity and it is free from proteins, DNA, and 

organic contaminants. The 260/230 ratio was also measured; this should be 

higher than the 260/280 ratio, i.e. ~ 2 with lower values suggesting 

contaminations through organic factors.   

The quality of the isolated RNA was also measured using the Agilent 2100 

Bioanalyzer system (Agilent Technologies, Santa Clara- US). This platform is 
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based on the microfluidic system and allows the detection and visualization of 

low RNA concentrations as well as quantitative analysis of the detected RNAs. 

Normally, the RIN (RNA integrity number) value given by the Bioanalyzer is the 

cell integrity quality control value, as it confirms the presence of 18S rRNA and 

28S rRNA. However, sperm does not contain rRNA (Johnson et al., 2011), so the 

RIN value was used to confirm that the samples were somatic cell-free.   

In sum, testing methods for extraction showed that it was possible to produce 

RNA of high quality, quantity, and purity, particularly using the Total RNA 

Purification Kit (Norgenbiotek) together with ß-mercaptoethanol.  

2.3.3  miRNA libraries preparation and sequencing:   

Small RNA libraries were constructed using Illumina TrueSeq small RNA Library 

Preparation kit (Illumina, USA) to study the differences between motile and 

immotile sperm miRNA profile and to find some novel miRNAs in sperm then 

study their target genes and their relation to male infertility.  

According to manufacturer’s guidelines, the input of purified RNA was converted 

into cDNA after adapter ligation to attach to the 3’ hydroxyl group on both ends 

of miRNA (most mature miRNAs have 3’ hydroxyl and 5’ phosphate group 

because of cellular pathways). The RNA 3’ adapter is modified to target miRNA 

and other small RNAs that have 3’ hydroxyl group which produced by Dicer 

enzymatic cleavage. Then, small RNA was isolated by denaturing PAGE gel in 

the 14-30 nt region, then purifying the gel slice, sample barcoding followed by an 

equal amount of barcoded samples were pooled to generate the library product 

as detailed below:  
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2.3.3.1 Adaptor ligation  

In the first step of miRNA library preparation, adaptors were ligated to each end 

of RNA to attach to the 3’ and 5’ end of the miRNA and allow its amplification. In 

brief, on ice, 500 ng/µl of total RNA was ligated to 1 µl RA3’ (5’ 

TGGAATTCTCGGGTGCCAAGG) in 5 µl nuclease-free water (Table 2.10), then 

was placed on preheated PCR thermal cycler (SureCycler 8800; Agilent 

Technologies Inc., Santa Clara, USA) at 70 °C for 2 min.  

 

                          Table 2.10 1st step of RNA ligation  

Reagent  Volume (µl)  

RNA3’ adapter  1  

RNA in nuclease free-water  5  

Total volume  6  

  

Then, in the presence of T4 RNA ligase2, Deletion Mutant (Epicentre, VWR, UK), 

the following mixture multiplied by the number of samples was made on ice (Table 

2.11). this step allows adaptor ligation to the ends of the miRNA population of the 

samples.  
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                         Table 2.11 T4 RNA ligation reaction  

Reagent  Volume (µl)  

Ligation buffer (HML)  2  

RNase inhibitor  1  

T4 RNA Ligase 2, Deletion Mutant  1  

Total volume  4  

  

The above mixtures were mixed together thoroughly with the RA3’ adaptor, in 

order to bring the volume to 10 µl. The mixture was then placed in a preheated 

PCR thermocycler (SureCycler 8800; Agilent Technologies Inc., Santa Clara, 

USA) at 28 °C for 1 hr. After that, 1 µl of STP solution was added and mixed well 

before has been incubated at 28 °C for 15 min.  

 The second step of ligation was performed by placing 1.1 x N µl of RNA5’ 

adaptors (5’ GUUCAGAGUUCUACAGUCCGACGAUC) into preheated PCR 

thermal cycler at 70 °C for 2 mins.  A total of 1.1 x N µl of 10mM ATP was added 

to the RNA 5’’ adaptor aliquot with N (where N is the number of samples being 

prepared) and were mixed very well, then 1.1 x N µl T4 RNA ligase was added 

and was mixed. 3 µl of the above mixture then added to the mix of RNA 5’ adaptor 

that was prepared previously to have a total of 14 µl mixture. The latest mixture 

was put into preheated PCR thermal cycler at 28 °C for 1 hr and placed on ice 

until further use.  

  

2.3.3.2 Reverse transcription   

Reverse transcription followed by amplification was adopted to create cDNA 

molecules based on the previous step and enrich RNA fragments selectively with 
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adaptors on both ends, this step is critical for de novo transcripts detection. First, 

the dNTP concentration was diluted into 12.5 mM on ice. 

Then, 6 µl of both adaptors of each sample was mixed with 1 µl of RNA RT primer 

and was placed on preheated thermal cycler at 70 °C then 6 µl of the adaptors of 

each sample was mixed with 1 µl of RNA RT primer at 70 °C for 2 mins and 

placed on ice. 

The reverse transcription was prepared using the Superscript II Reverse 

transcriptase kit (Invitrogen, Life Technology, UK) according toTable 2.12 

 

               Table 2.12 Reverse transcription reagents  

Reagent  Volume (µl)  

5x First strand buffer   2  

12.5 mM dNTP Mix  0.5  

100 mM DTT  1  

RNase inhibitor  1  

Superscript II RTase  1  

Total volume  5.5  

  

2.3.3.3 PCR amplification  

PCR was applied to amplify the libraries and create a double-stranded DNA from 

single-stranded miRNA transcripts by universal RT primer that binds to the 

Illumina adapters to create single-strand cDNA. After that, dsDNA has been 

amplified and an index tag is added using universal PCR primer and a 3’ index 

specific PCR primer to be analysed in a single sequencing lane. PCR 

amplification was then conducted on cDNA using a common primer (F) and one 

of the 6-bp indices called “barcodes” sequences primers (R), this will allow all 
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libraries to be sequenced after pooling in the same sequencing reaction because 

the barcode can identify the reads from each sample (Blencowe et al., 2009). In 

addition, all samples are processed as parallel through RT-PCR amplification 

process, according to Table 2.13.  

 

  
                     Table 2.13 PCR amplification reagents mixture 

Reagent  Volume (µl)  

Ultra-pure water   8.5  

PCR mix (PML)  25  

RNA PCR primer (RP1)  2  

RNA PCR primer index (RP1X)  2  

Total volume per sample  37.5  

  

The reagents were mixed thoroughly on ice and then mixed with the 12.5 µl RT 

mixture from the previous reaction to make a total volume of 50 µl. Finally, the 

amplification was done in a thermal cycler following Table 2.14 steps.  

 

             Table 2.14 PCR amplification cycle   

Temperature °C Time Number of 

cycles 

98 30 sec  

98 10 sec  

60 30 sec 11 cycle 

72 15 sec  

72 10 min  

4 hold  
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2.3.3.4 Library validation 

To validate the amplified libraries, high sensitivity DNA kit (Agilent Technologies, 

USA) was run to each sample before proceeding to the gel purification step and 

subsequent cluster generation. After that, samples were pooled by mixing 4 µl of 

each sample together to make a total volume of 48 µl which enables to run in a 

single run lane on a flow cell, this allows separating the amplified small RNA 

libraries from adaptors, adaptor dimers, non-small RNA library molecules, and 

other undesired products. Finally, samples are ready to be loaded onto the gel in 

the next step of purification. 

  

2.3.4  Gel purification of the cDNA construct  

To prepare the cDNA construct for cluster generation, a ready to use 6% Novex 

TBE page gel, 1.0 mm, 10 wells (Thermo Fisher Scientific, UK) were used to 

perform purification after samples have been pooled. The gel was loaded as 

shown in Figure 2.10 and positioned in a minicell electrophoresis unit.  

  

Figure 2.10 Schematic figure illustrating the distribution of reagents on the gel.  

 H (High-resolution ladder), C (custom RNA ladder), and the pre-purified miRNAs in the middle 

are loaded on the 6% Novex TBE gel and run on the mini cell electrophoresis.  
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Lastly, the gel was run for 60 mins at 145 V with 1X Novex TBE running buffer 

(Invitrogen, UK) and 0.5 µg/ml of Midori Green (Nippon Genetics) was added to 

the gel for 2-3 mins, the resulted bands were viewed with UV transilluminator 

(Genetics, Taiwan).  

After gel purification, bands should appear at the top of 160 bp CRL ladder and 

the end of 145 bp CRL band, which contains 22 nt bp of mature miRNA fragment 

with both adaptors in a total band length of 147 nt. The 147 nt bands were cut 

with razor blades and transferred individually into a gel breaker tube (0.5 ml tube 

with three holes that was made with a 21 gauge needle placed into a sterile, 

round bottom, nuclease-free, 2 ml microcentrifuge tube). Centrifugation at 20,000 

x g for 2 mins at RT was done after 200 µl was added to the gel debris in the 2 

ml tube. DNA elution was performed via overnight shaking at RT with 100 µl 

RNase free water on a thermo-shaker (TS-100; PEQLAB Ltd, Sarisbury Green, 

UK). The final eluate was transferred on top of 5 µm filter tubes (Merk, UK) and 

centrifuged at 600 x g for 10 sec and proceed to library validation.  

 

2.3.5 Library quality control measurement:  

Validation of the miRNA libraries was done with Bioanalyzer 2100 Agilent 

(Agilent Technology, USA) using the high sensitivity DNA kit (Agilent 

technology, USA) to estimate the libraries yield and purity.  

2.3.6 Library sequencing  

Unfortunately, the study could not develop the miRNA libraries size successfully, 

which should be 145bp and we could only get 113bp libraries length which mostly 
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of primer dimer rather than actual miRNAs as shown in Figure 2.11, for that 

reason the experiment was terminated here. This might be due to low miRNA 

contents in the sperm or RNA samples been degraded during processing 

samples. 

  

Figure 2.11 Electropherogram of pooled purified cDNA libraries from the human sperm,   

Motile and immotile samples libraries appeared <113 bp length size at wavelength 55.48 using 

Agilent 2100 Bioanalyzer system.  
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Chapter 3: Exploring Relative expression of mRNA in 

motile and immotile Humam sperm  

3.1 Background  

Male infertility is in decline with a decrease in sperm count (oligospermia), (Levine 

et al., 2017) and motility (asthenozoospermia) (Mehra et al., 2017). This decline 

may be associated with environmental and lifestyle effects (Virtanen et al., 2017), 

which may influence spermatogenesis and sperm-specific transcripts that are 

vital to produce functional human sperm and early embryo development (Boerke 

et al, 2007). Several studies support the conclusion that sperma contain a 

complex repertoire of mRNAs, where these mRNAs are provide some insight into 

past events of spermatogenesis,  and potentiallty offer avenues to explore 

potential fertility biomarkers. Sperm form differnet subpopulaitons  - such as 

motile and immotile sperm – may contain a differential expression of transcripts.  

Although mature sperm is considered transcriptionally quiescent (Betlach and 

Erickson 1976; Yang et al., 2009; Johnson et al., 2011), it has also been reported 

that there is a low but detectable level of transcription in mature sperm cells 

(Miteva et al., 1995; Martins and Krawetz, 2005). Other studies have 

demonstrated the existence of transcriptional and translational activities in human 

sperm, events are known during capacitation and acrosome reaction (Dierich, 

Sairam et al., 1998). Additionally, it has been suggested that mRNAs are residues 

of post-meiotic genes in early spermatogenesis events, which are activated again 

in mature sperm or after fertilization leading to the hypothesis that sperm is 

required for more than just providing paternal DNA to the oocyte during 
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fertilization and embryonic development (Nanassy and Carrell, 2008; Faucette, 

2012). These studies may explain the presence and functional activities of mRNA 

in mature sperm. Thus, sperm-specific mRNAs may play important roles during 

the early stages of fertilization and contribute to paternal printing (Gekas et al., 

2001).   

Furthermore, analysing mRNA profiles in human sperm can be used as a 

diagnostic tool to evaluate male fertility, since they reflect spermatogenesis gene 

expression, and/or a prognosis value for fertilization and embryonic development, 

as sperm-specific RNAs are delivered to the oocytes.   

 

The aim of this study was to explore the relative expression of mRNA in  relation 

to sperm motility. Subpoplations of motile and immotile sperm  were isolated and 

the relartive transcriptome investigated through NexSeg sequencing.  

 

. 
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3.1.1   Motile and immotile Sperm isolation  

Swim up techniques were used to isolate motile and immotile sperm successfully 

without somatic cell contaminations from the eight participants as mentioned 

previously in section 2.1.1. Motile and immotile sperm were recovered from the 

same sample for each participant. Sperm concentration was adjusted to 25-50 

m/ml for the next step of RNA isolation. 

  

3.1.2  The motile and immotile Sperm RNA quantity and quality    

Sperm contains a very small amount of 5-10 fg mRNA/sperm (Anderson, 2013). 

Using the Total RNA Purification kit (NorgenBiotek, UK), total RNA was isolated 

from eight normospermic semen samples contain 25-50 m/ ml sperm, two of the 

samples were excluded due to a technical error during processing the samples 

and only six samples were processed for RNA-seq technique. All semen samples 

were examined to be free of leucocytes and round or epithelial cells using a 400 

X light microscope. The purity and specificity of the RNA were measured using 

the Nanodrop 2000c (Thermo Scientific, Wilmington, USA). The 260/280 and 

260/230 UV/VIS ratio were measured to reflect whether the samples were free of 

protein, salt, and organic chemical- contamination.  
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3.1.3  mRNA quality  

Total RNA adjusted to 500 ng from each sample was used to generate mRNA-

specific cDNA libraries for the next-generation RNA sequencing on the Illumina 

NextSeq500 system (Illumina Genome Analyzer, UK). mRNA was isolated from 

the total RNA using the Nextflex TM Rapid RNA-Seq kit (Illumina compatible, Bioo 

Scientific, UK). NEXTflexTM PolyA beads (Bioo Scientific Corporation, Catalog 

number: 512979, UK) were used to bind the mRNA. First and second strand 

synthesis was performed and a specific set of oligonucleotides with different 

sequences (NEBNext® Multiplex Oligos for Illumina® (Index Primers Set 1), New 

England Biolabs, UK) were used to allow specific individual adaptors to be added 

to each sample for multiplex Illumina library production. This “barcoding” enables 

the mRNA from different samples to be pooled and multiplex-sequenced at the 

same time.   

The quality of the extracted mRNA was assessed using the bioanalyzer 2100 

(Agilent technology, US). The final library peak was around 450 bp for 70 bp 

paired-end read libraries, this confirms the efficient single-read sequencing using 

Illumina sequencing technology without peaks of primer dimer (Figure 3.1).  
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Figure 3.1 A representative bioanalyzer electropherogram of a human sperm mRNA 

library preparation.  

A sample is shown alongside a gel-like image. The 35 bp and 10380 bp peaks corresponded 

to the size standard between the two markers with peaks of 43 and 113 bp for the lower and 

upper marker consequently. FU is the fluorescence units. At the right side, an agarose gel 

electrophoresis-like image of the good quality analysed mRNA is presented.  

 

  

3.1.4  mRNA Illumina Sequencing Mapping and Analysis of 

motile and immotile human sperm   

High throughput Illumina NGS platform of the spermatozoal mRNA was 

performed via  Illumina NGS platform (NextSeq 500 sequencer, Illumina Genome 

analyser, UK).  Reads x2 paired-end 70 bp sequencing with cycles of 6 

multiplexed samples from spermatozoal ds-cDNA were generated for 

bioinformatics analysis. Sequence analysis was conducted with RNA-Seq 

alignment software version 1.1.0 from Illumina base space software 

(http://basespace.illumina.com/) to confirm the percentage of mapped reads.  

Interestingly, motile sperm samples were generated higher sequence reads 

number ranged from 8,816554 -14,186,321 while immotile sperm was recorded 
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lower reads number ranged from 305,966 – 3,085,229 reads except from sample 

2 where immotile sperm recorded higher reads count (12.485.32) than motile 

sperm (2.034.379) from the same sample, (Table 3.1).  
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Table 3.1 Summary of the total reads coverage data from motile and immotile sperm  

mRNA samples 

Sample 

ID 

Read 

length 

Number of 

Reads 

% Total 

Aligned 

% 

Abundant 

% 

unaligned 

Median CV 

coverage 

uniformity 

% 

Stranded 

Motile1 70/70 14,186,32 57.43 2.81 42.57 1.15 50.19 

Motile2 70/70 2,034,379 47.73 8.81 52.27 1.30 49.26 

Motile3 70/70 8,816,554 37.83 17.13 62.17 1.43 49.55 

Immotile1 70/70 305,966 31..49 24.29 68.51 0.69 52.20 

Immotile2 70/70 12,485,32 51.74 6.58 48.26 1.27 49.99 

Immotile3 70/70 3,085,229 48.44 6.88 51.56 1.42 50.94 

 

Sequence reads were converted with FASTAQ generation software Version 1.1.0 

before the library alignment step. The distribution of reads according to the 

regions of coding, non-coding or intergenic, UTR or intronic is shown in Figure 

3.2. The majority of the reads distributed between intronic and intergenic regions 

around 40 and 50% respectively. These results exclude any bias when we 

performed trimming of the reads ends and other poor quality score reads to 

improve the quality of the read, so we choose only the sequence of interest and 

high quality reads more than 30% sores GC content.  

Sequence reads were converted with FASTAQ generation software Version 1.1.0 

before the library alignment step. The distribution of reads according to the 

regions of coding, non-coding or intergenic, UTR or intronic is shown in Figure 

3.2. The majority of the reads were distributed between intronic and intergenic 

regions, around 40 and 50% respectively. These results exclude any bias when 

we performed trimming of the reads ends and other poor quality score reads to 

get better quality of the reads, so we choose only the sequence of interest and 

high quality reads more than 30% sores GC content.  
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Figure 3.2 The distribution of alignments yields,  

Percentages of sequenced or simulated read pairs by the number of bases, to the genomic 

regions including coding, UTR, intron, or intergenic/ non-targeted of the motile and immotile 

human sperm samples.   

  

Galaxy software (https//galaxyproject.org) was used for quality assessment. 

Figure 3.3 shows the quality score of the sperm RNA sequencing output to be 

more than 30% with a GC% content of 39% and a total sequence of more than 

350,000 reads. This indicates that FASTQ-format reads have a high-quality 

library and can proceed to the next step of analysis.  
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Figure 3.3 Per sequence quality scores using Galaxy software for quality control.  

The illustration is showing a high-quality score per read of the mRNA multiplexed library of motile 

and immotile sperm samples.  

  

3.1.5 Library alignment  

RNA-Seq Alignment software version: 1.1.0 was conducted to align the 

FASTQformat reads into BAM-format against Homo sapiens (PAR-masked)/ 

hg19 (RefSeq) or Homo sapiens (UCSC hg 19) as a Reference genome and 

aligner of TopHat (Bowtie2) at the base space Illumina sequence hub 

(https://basespace.illumina.com/). After that, RNA-Seq reads were aligned with 

the STAR aligner and was assigned aligned reads to genes, followed by 

differential expression with DESeq2 software analysis (Figure 3.4).  
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Figure 3.4 An insert length distribution boxplot,   

The insert length distribution for the different sperm samples using DeSeq2 App is displayed.  

 

3.1.6  Spermatozoal Transcripts profile  

A total of 26,228 aligned transcripts were found in sperm mRNA from the motile 

and immotile groups. Those sequence alignments flagged as poor quality (using 

Galaxy software) were excluded from the results. Transcripts of 19 different 

genes were seen significantly (P<0.05) differentially expressed between the 

motile and immotile sperm samples, (Table 3.2).  Interestingly, thirteen of the total 

19 genes are coding for ribosomal RNA proteins were recognised, the majority 

specifically coding for either the large 60S (RPL) or small 40S (RPS) subunit 

ribosomal proteins gene family. The remaining transcripts coded for the 

Eukaryotic Translation Elongation Factors 1A1 and 1G (EEF1A1 and EEF1G 

respectively), Tumour Protein Translationally-controlled 1 (TPT1), Heat Shock 

Protein90kDa Alpha (Cytosolic), class A Member1 (HSP90A) and NK3 

homeobox1 (NKX3-1). 



 

 

Table 3.2 List of genes that are significantly different between the motile and immotile sperm groups.   

Base means refers to the mean expression level of the identified genes; fold changes refers to the measurement of changing 

magnitude as FC=base mean of the motile/ base mean of immotile. An adjusted P value is given using the Bonferroni correction 

method  

Gene 

Name  

Base Mean  log2Fold Change  IfcSE  stat  P value  P adj  status  

EEF1A1  112.15516  -1.98629861  0.662673  -2.9974  0.002723  0.03516  OK  

EEF1G  15.0280264  -1.98129255  0.89644  -2.21018  0.027093  0.09204  OK  

FTH1  14.8500056  -3.08653374  0.92376  -3.34127  0.000834  0.03035  OK  

HSP90A  11.0341971  -1.64434698  0.821741  -2.00105  0.045387  0.13129  OK  

NKX3-1  28.4326288  -2.71096618  0.956829  -2.83328  0.004607  0.04012  OK  

RPL10  12.2745443  -2.08959362  0.946536  -2.20762  0.027271  0.09203  OK  

RPL13  17.2673608  -2.09440441  1.004617  -2.08478  0.037089  0.11554  OK  

RPL37  13.2437691  -1.92178536  0.918766  -2.0917  0.036465  0.11554  OK  

RPL4  12.9069897  -1.64437411  0.880879  -1.86674  0.061937  0.17299  OK  

RPL9  15.2353153  -2.33969927  0.962367  -2.43119  0.015049  0.07618  OK  

RPLP0  12.7243196  -2.54134785  0.914422  -2.77918  0.00545  0.04012  OK  

RPLP1  12.2316628  -2.69665265  0.993539  -2.71419  0.006644  0.04139  OK  

RPS20  13.3281112  -2.64164032  1.048655  -2.51907  0.011766  0.06353  OK  

RPS24  15.4260628  -2.95201735  0.968939  -3.04665  0.002314  0.03516  OK  

RPS27  17.6073851  -2.89799967  0.999345  -2.8999  0.003733  0.03779  OK  

RPS3A  14.8840981  -2.1662346  0.909973  -2.38055  0.017287  0.07790  OK  

RPS4X  19.5065877  -2.89542136  1.064824  -2.71916  0.006545  0.04139  OK  

RPS6  13.7425243  -2.09103976  0.886597  -2.3585  0.018349  0.07822  OK  

TPT1  53.0915813  -2.70706791  0.913378  -2.9638  0.003039  0.03516  OK  
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3.1.7  DESeq2 App Analysis  

The DESeq2 software was used to analyse the differential expression and 

differential post-translational processes such as translational elongation and 

termination, cytosolic ribosome, multi-organism metabolic process, nuclear-

transcribed mRNA catabolic process, nonsense-mediated decay, ribosome and 

mRNA catabolic process, and many other processes. Results were represented 

as an MA plot of normalized mean counts of samples reads (A- values) against 

log2 fold change (M-values) of the motile versus immotile sperm (Figure 3.5).   

 

Figure 3.5 MA plot of the differentially expressed genes   

Transcripts that are represented by red dots using DESeq2 package analysis. Log2 fold 

 change values for motile vs immotile sperm samples are plotted against normalized mean count.  

  

Expression heat map of the differentially expressed genes (genes highly 

expressed in the motile group compared to the immotile), from the samples, is 

showing the relationship between sample/genes (Figure 3.6). This analysis 

confirmed the previous outcomes of sperm transcripts contents of a wide range 

of Ribosomal mRNA content and confirms the significant expression differences 
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in motile A sperm when compared to immotile D sperm. The 19 expressed genes 

from 19,000 transcripts were included NKX3-1, RPS4X, RPLP0, EEF1A1, 

RPLP1, KLK2, RPS27, RPL5, RPL26, RPL3, FTH1, TPT1, and RPL7 were then 

further employed to Genemania analysis (Figure 3.8) to study their functions.  

 

 

Figure 3.6 Comparison of expression of 14 selected genes based on the Illumina 

sequencing data using DeSeq2 analysis.  

 The heat map shows the expression of 14 regulated mRNA transcripts in the sperm. The 

highlighted key visualizes the colour coded of up and down-regulation. 
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The DeSeq2 analysis also provides a multidimensional scaling (MDS) in order to 

represent the (dis)similarities or distance among different samples, in order to 

measure the variance of dataset distribution according to the Principal 

component analysis (PCA) tool (Figure 3.7). A three-dimensional space 

containing PC1, PC2, and PC3 were plotted for samples, which demonstrates 

the greatest data separation according to PCA analysis tool as they were 

separated depending on the variation in gene expression among samples.  

 

Figure 3.7 DESeq2 programme 3D analysis   

The graph is displaying the cluster distribution of the motile (red) and immotile (blue) human 

sperm samples against the reference genome and the percent of variance explained by each 

principal component on each axis. The 3D PCA plot of RNA-Seq was generated using 

normalized and variance transcript expression data (DeSeq2).   
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3.1.8  Germania analysis   

Further analysis was performed using the online Genmania software 

(http://www.genemania.org), in order to search the interaction of pathways and 

co-expression between significant transcripts that were recognized from the high-

throughput sequencing analysis with other adjacent genes. Predictive functional 

relationships between genes were also indicated in the analysis of the transcripts 

from sequencing data (Figure 3.8). The results identified a network of Ribosomal 

Protein L (RPL) gene family that was more upregulated in motile sperm compared 

to immotile sperm. These were grouped into five classifications: co-expression, 

pathway, genetic interaction, physical interactions and predicted (Von Mering et 

al., 2002; Wang et al., 2015).  

   

http://www.genemania.org/
http://www.genemania.org/
http://www.genemania.org/
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3Figure 3.8 A gene regulatory network of signaling pathways for transcripts   

Genes that are significantly different between motile and immotile sperm showing functionally 

related pathways and genetic interactions. Image from GeneMania 

(http://www.genemania.org).  

 

http://www.genemania.org/
http://www.genemania.org/
http://www.genemania.org/
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Another transcript, glandular kallikrein protein family (KLKs), which was shown to 

be linked to RPS27 in motile sperm. KLK is expressed in the prostate gland, and 

responsible for semen liquefaction and is essential for sperm motility 

(Sotiropoulou et al., 2009; Li et al., 2017). Kallikreins are a subgroup of serine 

proteases that cluster on chromosome19. Members of this gene family are 

involved in a diverse array of biological functions. The protein encoded by this 

gene is a highly active trypsin-like serine protease that selectively cleaves at 

arginine residues (Fuhrman-Luck et al., 2014). By submitting KLK gene in Target 

scan software (http://www.targetscan.org), it appeared that KLK2 has multiple 

target sites for miRNAs like hsa-let7a-5p, has-let7b-5p, hsa-let7e-5p, hsa-let7f-

5p, hsa-miR-124-3p, hsa-miR-30a-3p and has-miR-214-3p. This suggests a 

possible role of miRNA in the regulation of KLK transcript post-transcriptional 

expression in the human sperm. The other expressed transcripts were also 

submitted through Targetscan software to show the miRNA targets and were 

listed in Table 3.3.  

 

 

 

 

 

 

 

 

http://www.targetscan.org/vert_72/
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Table 3.3 mRNA transcripts and their miRNA targets from Target scan  

No.  Gene 

symbol  

miRNA targets  

1  NKX3-1  has-miR-142-5p, has-miR-26-5p, has-miR-129-5p, has-miR- 

302-3p/ 372-3p/ 373-3p/ 520-3p, has-miR-155-5p  

2  RPS4X  has-miR-125a/b-5p, has-miR-23a/b/c-5p, has-miR-130a-5p  

3  RPLP0  Poorly conserved   

4  EEF1A1  33-5pa/b, 143a-5p, 133a/b-3p  

5  RPLP26  miR-216a/b-5p  

6  RPL27  miR-143-3p, miR-141-3p, miR200a-3p, miR365a/b-3p  

7  RPLP1  miR-129-5p, miR-216-5p, miR-141-3p, miR-200a-3p, 

miR148a-3p, miR-152-3p, miR-148b-3p, miR-199a-5p, miR-

181a-5p, miR-150-5p, miR-205-5p,miR-182-5p, miR-22-3p,   

8  TPT1  miR-520c/b/d-3p, miR-302a/b/d, miR-372-3p, miR-150-5p  

9  KLK2  miR-33a/b, miR-26a/b, miR-143, miR-9, miR-135a/b, 

miR216b, miR-15a/b, miR-16, miR-21-5p, miR-590, miR-

212,miR-132  

10  FTH1  miR-142-3p, miR-365a/b-3p, miR-590-5p, miR-21-5p  
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3.2  Discussion  

The current study was carried out to explore the potential transcript markers of 

motile and immotile human sperm; human semen samples were divided into two 

portions for motile and immotile sperm from the same sample. Motility was 

assessed using the CASA system (Sperminator,® Procreative, UK). 

The reported decline in male fertility is a concern, with sperm counts decreased 

by ~60% over the past 40 years (Levine et al., 2017). In the UK, the most common 

reasons for IVF treatment cycles being carried out were male infertility, with 37% 

of recorded reasons (HFEA.gov). Routine semen analysis is the first step of male 

infertility examination, which includes cell count, vitality, morphology, and motility 

(WHO, 2010). However, almost 50% of patients are diagnosed with idiopathic 

infertility, where genetic factors are likely contributors (Association and Medicine, 

2006; De Jonge and Barratt, 2006; Lipshultz and Lamb, 2007; Yanagimachi, 

2017).   

At fertilization, spermatozoa provide the paternal genomic DNA, as well as a set 

of RNAs and proteins that have distinct roles in development. However, the role 

of spermatozoal RNAs was originally questioned based on the assumption that 

since transcription ceases in the round spermatid stage, where the cytoplasm is 

lost and thus with it, the components necessary for translational activity and any 

remaining male haploid RNA would be insignificant (Ramakrishna and Surani, 

2018). It is now appreciated that spermatozoa contain a suite of unique RNAs 

that are delivered to the oocyte upon fertilization, which play important functional 

roles in many different processes including genome recognition, early embryonic 

development, and epigenetic transgenerational inherence. Furthermore, the 
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potential of spermatozoal RNAs to be used as a prognostic of live birth has been 

shown  (Jodar et al., 2015).  

Of increasing interest is the identification of molecular markers for sperm function 

and fertility potential, and gene expression profiling of spermatozoa has been 

proposed as a novel non-invasive tool to evaluate male fertility and testicular 

function (Bettegowda and Wilkinson, 2010; Dere et al., 2016).   

Two swim-up techniques have been chosen in order to sort out motile sperm (A) 

and immotile sperm (D) from the same sample, simple swim up to isolate the 

motile sperm and density gradient for immotile sperm after ensuring the samples 

are normal and no more 1% of round cells in the semen samples. Both methods 

were proficient and reproducible to liberate of other seminal plasma and cellular 

debris in the ejaculate. This technique was previously used by other studies   

(Weng et al., 2002; May‐Panloup et al., 2003; Mengual et al., 2003; Lambard et 

al., 2004).   

RNA isolation from the sperm is a challenging procedure due to the 

heterogeneous population of cells present in the ejaculate and the low yield of 

RNA per spermatozoon. Isolation of sperm RNA in other studies demonstrated a 

low yield, most research used low sperm number to extract the RNA (Lambard 

et al., 2004; Abu-Halima et al., 2013). In the present study- high sperm 

concentrations (20-50 m/ml) was required to enhance the sperm RNA recovery, 

with a yield of 50 ng/µl of total RNA. In previous studies, human sperm can yield 

about 15 ng of RNA per one million sperm (Miller et al., 2005; Lalancette et al., 

2008). The reason that mammalian sperm has low RNA content (10-400 fg/ 

sperm) comparing to other somatic cells, as well as, disulfide bonds in the sperm 
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plasma membrane and between protamine and minimal cytoplasmic space 

(Krawetz, 2005). The head of the sperm also has very dense chromatin due to 

its replacement by protamine during spermatogenesis,  which makes the nucleic 

acids highly condensed in the nucleus of mature sperm and difficult to extract the 

nucleic acid in contrast to mammalian somatic cells (Jodar et al., 2015). Some 

studies have used pooled semen samples in the interest to increase the RNA 

yield (Mao et al., 2014; Bansal et al., 2015). However, we found that using a 

single sample can give the approached result of sperm RNA content.   

To achieve good RNA yield, ß-mercaptoethanol (ß –ME) was added to the sperm 

samples to lyses cells (Mengual et al., 2003). Sperm has strong sulfide bond 

making the lysis procedure demanding. ß-ME is a reducing agent that can 

denature the RNases activity via inhibition of bisulfite bonds of the sperm and 

prevent RNA degradation with a combination of denaturing power of the 

guanidinium isothiocyanate (GITC) in the lysis buffer of Norgen kit. In this study 

– it was demonstrated that RNA integrity could not confirm by Bioanalyzer. This 

may owe to the fact that RNA contributes only a small overall proportion and the 

absence of 18SrRNA and 28SrRNA in sperm that are normally used to calculate 

the RIN value means that this value is not available to estimate the RNA integrity 

(Kawano et al., 2012).   

To explore the relative expression of mRNA in human sperm from motile and 

immotile populations – it was imperative to isolate good quality and yield. This 

study demonstrated the ability to separate motile from immotile sperm and obtain 

a good RNA quality in an adequate amount for downstream analysis.   
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High Throughput Next-generation sequencing (NGS) was applied to allow DNA 

and RNA sequencing directly by the synthesis in situ and dNTP that can be 

detected simultaneously by Illumina system at millions of fixed positions on a flow 

cell cartridge (Figure 2.8). RNA sequencing (also identified as RNA-Seq) is a 

procedure of diverse populations’ transcriptome analysis including, mRNA 

analysis. Various software methods have been used to renovate the genomewide 

existence and number of transcriptomes in biological samples and to investigate 

the gene expression profiling of the organisms, hence, providing a 

comprehensive tool to study the key functions of genes (Auer and Doerge, 2010; 

Kukurba and Montgomery, 2015). RNA-seq analysis has much considerations 

and cautions should be taken into account to avoid bias sources through the 

experiment comprising the RNA isolation and library sequencing then data 

analysis to detect the candidate transcripts that linked to sperm function 

regulation.  

This study revealed that different mRNAs were expressed in motile sperm 

comparing to immotile sperm from MMU recruited participants, providing data 

from previous studies that found the presence of mRNA in the sperm and 

involvement in sperm quality and embryonic development (Ostermeier et al., 

2004; Martins and Krawetz, 2005; Nanassy and Carrell, 2008).   

Sperm fractionation and RNA extraction have been mentioned previously and 

mRNA library from sperm has prepared via the NextflexTM Rapid RNA-Seq kit 

(Illumina compatible, Bioo Scientific, UK) based on magnetic beads isolation and 

polyA enrichment method with a gel-free technique. The computational analysis 

results confirmed high quality reads score (>30) of FASTQ-format file that was 

produced from BAM format files without any discrepancies. TopHat and Cufflinks 
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are highly performed apps due to its high revealing rate for multi-intron alignment 

for transcripts restoration. The alignment sequences of this study use the cis 

alignment (cDNA libraries of alignment sequences) and trans alignment (cDNA 

from homologous genes) to generate the whole genome sequence in order to 

identify the protein-coding transcripts within the genome of interest (Steijger et 

al., 2013). High throughput RNA-Seq found a challenging quantification process 

to identify the transcripts with low expression level and needs a more in-depth 

computational approach. Therefore, this study focused on the highly expressed 

transcripts for further analysis. The alignment was used because the sequences 

were mapped to a reference genome, the absence of introns refers to the 

transcribed RNA being sequenced that contains exons only (Zhao and Hamilton, 

2007).  

Overall, this study revealed that several diverse mRNA transcripts are 

differentially expressed between immotile and motile human spermatozoa. 

Transcripts such as, ribosomal transcripts (RPLs and RPSs) family group, 

HSP90A, EEF1A, and NKX3-1, were the most abundant  genes in the human 

sperm, which have been related to each other functions when applied to 

Genemania analysis (http://www.genemania.org), these transcripts are found 

vital in apoptosis and regulation of physiological processes for reproduction and 

spermatogenesis (Anderson, 2013). HSPs are transcripts that involved in 

apoptosis and cytoprotection by inhibition actions, it can be linked to molecular 

markers of spermatogenesis and male fertility (Purandhar et al., 2014). HSP90 

expression level increases in spermatogenic cells at meiotic prophase in mice 

also expressed during sperm capacitation (Du et al., 2019).  

http://www.genemania.org/
http://www.genemania.org/
http://www.genemania.org/


 

93  

  

Differences between samples were also noted, which may be due to a large 

variation between individual’s samples. However, due to the limitations of the 

small sample size - these variations might overcome by increasing sample size.  

Although the introns are missing in the reads sequences from mature mRNA 

transcripts of the eukaryotic genome, which add another challenge when 

mapping the reads with intronic gaps, the mammalian introns account extensive 

lengths. Thus, the fixed length K-mers matches to the genome use small local 

regions for mapping (Kim et al., 2013). Differences in the level of expression 

suggesting that the sperm transcripts contents are varied according to its status 

and affected by sperm activity.   

In spite of the absence of rRNA in sperm, the significant role of diverse types of 

RNA has been on focus to prove in term of its contribution to pregnancy outcomes 

and the health of the progenies. Also serves as a diagnostic tool for male fertility 

parallel to non-coding RNAs activities in reproduction. Diverse functions of mRNA 

transcripts in sperm including nuclear condensation (Prm1/2), capacitation 

(eNOS), cmyc and nNOS have found related to sperm motility (Lambard et al., 

2004). Most of these transcripts have been hypothesised that they are remnant 

transcripts deposited throughout sperm transition period from diploid to haploid 

spermatids. The process of replacing histones protein by transition proteins (Tnp-

1 and Tnp2) and protamines (Prm-1 and Prm-2) resulting in chromatin 

condensation and stability in the nucleus leaving the sperm transcriptionally silent 

in consequence (Zhao et al., 2004; Balhorn, 2007; Sillaste et al., 2017).  

This study found that most of the ribosomal (RPLs and RPSs) genes exert a 

significant function in sperm activity. This has been confirmed by a study in 2012 

by Bonache et al., when they found some of these transcripts (RPL23A, RPL4, 
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RPS27A, RPS3, RPS8, RPLI 0A, and RPS6) have a significant role in sperm from 

fertile and non-fertile male with pregnancy loss and success rate could be 

predicted according to the sperm content of these transcripts (Bonache et al., 

2012). Ribosomal transcripts in the sperm have known to be translated de novo 

by mitochondrial type ribosomes (Zhao et al., 2009). To date, no previous study 

has elucidated them with the motile and immotile sperm. 

HSP90A also expressed in our analysis. In previous studies, there was reported 

a wide expression in mammalian sperm, testes, and epididymis (Lambard et al., 

2003; Lachance et al., 2010), where they reported to be residues of stored mRNA 

from earlier spermatogenesis and during the sperm-egg fusion process. 

Abnormal expression of HSP transcript can lead to aberrant sperm quality such 

as concentration, motility, and sperm morphology due to the fact that this 

transcript is upregulated in stress conditions as a protection mechanism (Beere, 

2004).  

To conclude, the sperm transcriptome has yet to be fully elucidated. This study 

attempted to identify sperm-specific mRNA in sperm from motile and immotile 

populations with the aim to provide potential avenues for diagnostic andrology.   

Further analysis and a more in-depth bioinformatic approach are required to fully 

appreciate the sperm transcriptome in motile and immotile sperm.   

Strenghts and Limitations  

Next generation sequencing offers as powerful tool to explore expression data in 

any cells type. This approach has tremendous potential to reveal both functional 

and diagnostic data in human sperm. The main limitation is quality RNA isolation 
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from sperm and library preparation, additionally participant recruitment was also 

a limitaiton to this study.  
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Chapter 4: Exploring the relative expression of miRNA 

in Subpopulations of Human Sperm 

4.1 Results 

Dysregulation of sperm-specific miRNAs has been shown to be one contributing 

factor in male infertility. Lian et al., (2009) demonstrated 154 differentially down-

regulated and 19 up-regulated miRNAs were found between a non-obstructive 

azoospermic group and a control group. (Lian et al., 2009). A more recent study 

has demonstrated that 50 miRNAs were up-regulated and 27 miRNAs were 

down-regulated in asthenozoospermic males. In oligo-asthenozoospermic 

males, 42 miRNAs were up-regulated and 44 miRNAs down-regulated when 

compared with normozoospermic males (Wang et al., 2011). They showed 

miRNAs that exhibited the highest fold changes were miR-34b, miR-122, and 

miR-1973 in samples from asthenozoospermic men and miR-34b, miR-34b, miR-

15b, miR-34c-5p, miR-122, miR-449a, miR-1973, miR-16, and miR-19a in 

samples from oligo-asthenozoospermic men. These data revealed a 

comprehensive number of miRNAs that were differentially expressed in 

asthenozoospermic and oligo-asthenozoospermic men compared with 

normozoospermic men.  Human sperm contains a unique family of miRNA, which 

is responsible for normal spermatogenesis and sperm function and their 

expression profile may serve as a sensitive, selective and non-invasive 

diagnostic tests for male infertility (Al-Gazi and Carroll, 2015).  
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The aim of this study was to explore the relative expression of sperm-specific 

miRNA in human sperm from motile and immotile sperm from a panel of sperm-

specific miRNAs.   

4.1.1  Study population:  

Semen samples were procured from 12 consenting normospermic donors (18-30 

years) and were processed as per section 2.1.1. Participants fulfilled WHO 

criteria (WHO 10th ed.) for semen parameters such as concentration, and motility 

(Table 4.1). Volunteers were asked to complete a questionnaire (Appendix 1) 

about their general health, lifestyle and any medications being taken.  

Table 4.1 Semen parameter outcomes. A, B, C, and D are refers to sperm motility 

grades 

Volume (mL) 
Conc. 

m/ml 
A B C D 

Velocity 

Micron/ s 

3.57± 

0.34 

76.50± 

2.46 

36.00± 

5.09 

20.42± 

2.16 

13.61± 

1.13 

31.39± 

4.38 

24.56± 

6.93 

Data are mean of study parameters ± SEM  

 

4.1.2  Identification and qualification of sperm motility  

One of the main aims for this part of the study involved the isolation of sperm of 

different motility grades (grades A, B, C, and D) from the same semen sample. 

To achieve this, the swim up technique was performed. Briefly, grade A was 

obtained from simple layer techniques following 30- 60 mins of incubation with 

sperm preparation medium and using density gradient (55%-80%, vol. /vol.) 

technique. Immotile grade D sperm was extracted from the intermediate layer of 

the gradient after confirmation that there were no somatic cell contaminations 
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using microscopic examination (Lambard et al., 2003). Variations between 

individual samples affected semen sample sperm sorting. Low motile sperm, B 

and C samples were quite difficult to separate, due to some motility changes 

during sperm preparation procedure, which resulted in some of the cells 

becoming either motile A or immotile D. This further resulted in low cell numbers 

of B and C after preparation. For this reason, the study did not include sperm B 

and C grades for the microRNA analysis.   

Table 4.2 illustrates the percentages of the means ± standard errors of the means 

(SEM) of the semen parameters after sperm preparation. The results showed that 

sperm isolated from motile (A) sperm contained the highest concentration in 

million/ml (66.58±12.31) and higher velocity (45.96±26.96) micron/sec. Sperm 

(B) showed a higher percentage of (Bs) (28.14±16.00) compared to other (B) in 

another group, but (A) recorded a higher percentage (48.64±17.9) in the same B 

group. Sperm (C) percentage was 14.26±2.94 and sperm (D) was a higher 

percentage (35.53±14.4) compared to A, B, and C in the same group.  D sperm 

has shown a higher percentage (60.28±16.95) and a lower velocity (0.50±7.06 

micron/sec) compared with the other groups.  

     Table 4.2 Semen parameters outcomes after preparation of sperm in vitro  

Group s  N Conc. 

m/ml  

A %  B %  C %  D %  Velocity 

Micron/sec  

Group A 1 29.16± 
9.92 

66.58± 
12.3 

13.83± 
8.82 

3.65± 
2.28 

15.89± 
4.8 

45.96± 
26.96 

Group B 3 
21.86± 
41.18 

48.64± 
17.9 

28.14± 
16.0 

7.92± 
3.36 

15.3± 
3.17 

44.38± 
31.42 

Group C 3 
17.17± 
14.83 

24.00± 
9.61 

14.26± 
2.94 

14.26± 
11.20 

35.53± 
14.4 

43.733± 
14.6 

Group D 12 
19.16± 
11.35 

13.97± 
10.07 

10.91± 
5.31 

14.85± 
7.33 

60.28± 
16.9 

0.50± 
7.06 

Data are mean ± SD, N= the number of samples  
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All analyses were assessed using the CASA system (Sperminator®, Procreative, 

UK) prior to the sperm preparation by swim-up technique and a video frame 

capture of sperm tracks motion analysis (kinematics) were obtained (Figure 4.1) 

that confirms the presence of motile sperm in vast proportion.   

  

  

Figure 4.1 The videomicrography captured by in Sperminator® CASA system  

The images are showing the original sample on the right where it is free of round cell 

contamination and the motile sperm after sperm preparation by simple layer method.  

  

Figure 4.2 demonstrates the sensitivity and specificity of the sperm-separation 

showing the percentages of group D (Figure 4.1a) and group A (Figure 4.1b) in 

the separately prepared samples using CASA. It is clear that this is an effective 

method for isolating sperm as over 80% A or D sperm cells were successfully 

obtained from the samples of the study.  
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Figure 4.2 The images illustrating the percentages of each motility grade   

A (red), B (green), C (blue) and D (yellow) in sperm that has purified by swim-up for D (a) and 

A (b) as appeared in Sperminator® CASA report.  

  

4.1.3 miRNA expression profiles analysis of human sperm with 

different motilities  

Running the miScript miRNA PCR array custom plates (Qiagen, UK) for motile 

(A) and immotile (D) sperm with and without Pre-amplification analysis using 

miScript PreAMP PCR kit (Qiagen, UK). Data from the PreAmp kit were more 

acceptable regarding the amplification profiles of the cDNAs. After preAMP, it 

was found that sufficient amount of miRNA, the preAMP cDNA, and the reverse 

transcription products were not affected by the quality or amount of the original 

RNA samples, which can affect the reverse transcription reaction and the miRNA 

expression profile.  

The miRNA expression data were presented as normalized threshold cycle (Ct) 

values (2-∆Ct), related to RNU6-6P reference gene and all miRNA Ct values 
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examined against the positive PCR control (PPC) gave values of 19±2 suggesting 

the samples contained cDNA of high abundance. Data analysis was performed 

via online software (https://www.qiagen.com/dk/shop/genes-and-pathways/data-

analysis-center-overview-page/).  

The Ct values of the reverse transcription miRTC (CtmiRTC) values of our samples 

were less than 7 and showed no RT reaction inhibition, this was calculated by the 

following equation;  

ΔCt = AVG CtmiRTC) - AVG Ctppc 

For the miRNA significant expression level (p <0.05), the fold changes were 

calculated as log base 2-fold change ≥ 1 or ≤ -1. Data analysis was performed 

via http:// pcrdataanalysis. saiosciences.com/mirna online software.  

Firstly, results from the analysis of miRNAs between the motility group of motile 

and immotile sperm revealed that all the 84 candidate miRNAs were tested were 

present within both motile and immotile sperm. Importantly, however, some of the 

miRNAs were expressed differently between the two extremes of motility.   

The PCR data analysis revealed that among the 84 mature miRNAs identified in 

human sperm, eight miRNAs were down-regulated (fold change less than 1) 

significantly P<0.05 in immotile sperm (has-19a-3p, hsa-28-5p, has-miR-2233p, 

hsa-miR-27a-3p, hsa-miR-34a-5p, hsa-miR-106b-5p, hsa-miR-195-5p, hsamiR-

191-5p). has-miR-19a-3p revealed the highest significant (P=0.000019) 

downregulation, in immotile sperm compared to motile sperm.  

 In addition, twenty of the miRNA species were up regulated (fold change greater 

than 1) in the same group of immotile sperm. These specifically included 

(hsalet7a-5p, hsa-let7b-5p, hsa-let7f-5p, hsa-let7g-5p, hsa-miR-150-5p, hsa-

https://www.qiagen.com/dk/shop/genes-and-pathways/data-analysis-center-overview-page/
https://www.qiagen.com/dk/shop/genes-and-pathways/data-analysis-center-overview-page/
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miR-17-5p, hsa-mir21-5p, hsa-mir18a-5p, hsa-mir23b-3p, hsa-mir29b-3p, hsa-

mir29c3p, hsa-mir30b-5p, hsa-mir30e-5p) compared to motile sperm. The 

microRNAs hsa-miR-222-3p and hsa-miR-326 showed the highest significant 

(P=0.000044 and 0.000047 respectively) upregulation (Figure 4.2 and Table 4.3).   

The other mature miRNAs , hsa-miR-101-3P, hsa-miR-126-3p, hsa-miR-139-5p, 

hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-154-5p, hsa-miR-146a-5p, hsa-

miR155-5p, hsa-miR-181a-5p, hsa-miR-182-5p, hsa-miR-204-5p, hsa-miR-20b-

5p showed no significant expression difference between the motile and immotile 

sperm.  
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Table 4.4 Mature miRNA expressed significantly (P<0.05) in human sperm  

Mature ID  Fold 

Regulation 
p-value  Mature miRNA sequence  Chromosome 

location  
hsa-let-7a-

5p 
9.4759 0.01216 UGAGGUAGUAGGUUGUAUAGUU 9 

hsa-let-7b-

5p 
6.3484 0.012181 UGAGGUAGUAGGUUGUGUGGUU 22 

hsa-let-7f-

5p 
8.5267 0.010771 UGAGGUAGUAGAUUGUAUAGUU 9 

hsa-let-7g-

5p 
9.6825 0.009698 UGAGGUAGUAGUUUGUACAGUU 3 

hsa-miR-

150-5p 
10.8343 0.000309 UCUCCCAACCCUUGUACCAGUG 19 

hsa-miR-17-

5p 
36.1945 0.232031 CAAAGUGCUUACAGUGCAGGUAG 13 

hsa-miR-

18a-5p 
39.5785 0.000497 CAAGGUGCAUCUAGUGCAGAUAG 13 

hsa-miR-21-

5p 
6.2609 0.000804 UAGCUUAUCAGACUGAUGUUGA 17 

hsa-miR-

221-3p 
11.5157 0.000601 AGCUACAUUGUCUGCUGGGUUU X 

hsa-miR-

222-3p 

8.5087 0.000044 AGCUACAUCUGGCUACUGGGU X 

hsa-miR-

23b-3p 
5.0626 0.010292 AUCACAUUGCCAGGGAUUACC 9 

hsa-miR-

29b-3p 
8.0132 0.0034 UAGCACCAUUUGAAAUCAGUGUU 7 

hsa-miR-

29c-3p 
4.0141 0.014316 UAGCACCAUUUGAAAUCGGUUA 1 

hsa-miR-

30b-5p 
5.0918 0.018172 UGUAAACAUCCUACACUCAGCU 8 

hsa-miR-

30d-5p 
4.746 0.040947 UGUAAACAUCCCCGACUGGAAG 8 

hsa-miR-

30e-5p 
8.154 0.0225 UGUAAACAUCCUUGACUGGAAG 1 

hsa-miR-

326 
5.0486 0.000047 CCUCUGGGCCCUUCCUCCAG 11 

hsa-miR-

574-3p 
106.0918 0.000066 CACGCUCAUGCACACACCCACA 4 

hsa-miR-

92a-3p 
14.5077 0.000105 UAUUGCACUUGUCCCGGCCUGU 13 

hsa-miR-93-

5p 
4.6391 0.096511 CAAAGUGCUGUUCGUGCAGGUAG 7 

hsa-miR-

106b-5p 
-4.3938 0.005379 UAAAGUGCUGACAGUGCAGAU 7 

hsa-miR-

191-5p 
-4.8533 0.01764 CAACGGAAUCCCAAAAGCAGCUG 3 

hsa-miR-

195-5p 
-23.8299 0.006456 UAGCAGCACAGAAAUAUUGGC 17 

hsa-miR-

19a-3p 
-37.0229 0.000019 UGUGCAAAUCUAUGCAAAACUGA 13 

hsa-miR-

223-3p 
-58.3326 0.001021 UGUCAGUUUGUCAAAUACCCCA X 
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hsa-miR-

27a-3p 
-7.0139 0.003014 UUCACAGUGGCUAAGUUCCGC 19 

hsa-miR-28-

5p 
-35.4105 0.000117 AAGGAGCUCACAGUCUAUUGAG 3 

hsa-miR-

34a-5p 

-30.66 0.005267 UGGCAGUGUCUUAGCUGGUUGU 1 

  

  

The overall qRT-PCR results were confirmed by the Volcano plot, 8 miRNAs were 

down-regulated while 22 up-regulated and the rest show non-significant changes 

(Figure 4.3).  

   

  

Figure 4.3 Volcano plot of miRNA differential expression in immotile sperm and motile 

sperm. 

Red circles represent miRNAs that are upregulated. The green circles represent miRNAs 

that are downregulated. Black circles denote miRNAs that show no differences in 

regulation between motile and immotile human sperm (p-value 0.05).  
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The hierarchical clustering diagram measurements show up (red) and down 

(green) regulation relationship of these microRNAs in immotile sperm in 

comparison with the motile sperm, which appeared as a heat map analysis 

(Figure 4.4). Most of these miRNAs have been associated with reproductive 

system malfunctions, embryonic development, and cellular differentiation 

(Judson et al., 2009). 
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Figure 4.4 Hierarchical clustering analysis diagram of the PCR array.   

The level of clustering of 84 miRNA expressed as relative signal intensities in immotile D (N=10) and 

motile A (N=10) human sperm from normalized high expression level of miRNAs in red colour bars to 

the low expression level in green colour bars, while dark colours are showing average expression. The 

miRNAs and the samples are shown in rows and columns respectively. 
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4.2 Discussion   

4.2.1 Sperm miRNA Expression and motility  

Since the first discovery in C. elegans, miRNAs have been established to play an 

integral part in organizing cellular functions and diseases post-transcriptionally 

by regulating target genes and suppressing transcription (Friedman et al., 2009; 

Johnson et al., 2011). miRNAs processed from hairpin loops in an ssDNA via 

RISC and DICER pathways and appeared that its expression is highly featured 

by tissue-specific and developmental stage (Ludwig et al., 2016). In reproduction, 

miRNAs can regulate gametogenesis and play a role in early embryonic 

development (Bettegowda and Wilkinson, 2010).   

This study investigated the miRNA expression in sperm and has found that there 

is miRNA differential expression relating to sperm motility. To establish efficient 

miRNA expression data, we performed a qPCR array on the isolated RNA for a 

high-throughput sperm-specific miRNA expression profiling. RT-qPCR was used 

to quantify the mature miRNAs using the miscript primer as a forward primer and 

a universal primer as a reverse one, as well as, RNU6B primer assay as a control. 

These primers along with the oligo dts will ensure that mature miRNAs do not 

detect any genomic DNA.  

Despite the notion that sperm is transcriptionally inert because of rRNA (18S and 

28S), which are responsible for preventing the translational event, is depleted 

with cytoplasmic droplet during or post spermiogenesis (Kierszenbaum and Tres, 

1975; Jodar et al., 2015). Many studies now demonstrate that sperm contains a 

profile of miRNAs that contribute to sperm development and function (Engel et 

al., 2003; De Gannes, 2014). Gene expression is controlled post-transcriptionally 
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in sperm either during pachytene spermatocyte or post meiosis stage before 

nuclear silencing, then most of the genes are stored for later spermatogenesis 

transcripts translation (McIver et al., 2011). Although the sperm miRNAs content 

(about 3% of total RNA) is lower than in oocyte, it appears that any abnormal 

sperm miRNA expression could be transferred after fertilization and cause 

aberrant embryonic development (Johnson et al., 2011; Bohacek and Mansuy, 

2015; Pratap et al., 2017).  

Pre-Amplification for cDNA samples was done in order to improve the miRNA 

input. Pre-Amp reaction contains primers and controls to selectively pre-amplify 

the miRNAs of interest by the PCR array to obtain an adequate amount of cDNA 

for further analysis and provide unbiased miRNA target amplifications, to ensure 

that there is enough target for quantification for the subsequent RT-PCR. Mature 

miRNA is not polyadenylated unlike mRNA, it contains 3’ universal tag at one end 

and 5’ degenerated anchor at the other end for that reason, using the polyA tails 

were used in reverse transcription reaction to allow the amplification of miRNAs 

in PCR reaction (Cirera et al., 2011).  

In contrast to previous studies using the microarray and TaqMan arrays to 

investigate the miRNA contents and expression in sperm (Wang, 2009; Abu- 

Halima et al., 2013; Nixon et al., 2015; Fullston et al., 2016), the current study 

used qRT-PCR for its simplicity and reliability. However, it is restricted to a set 

number of miRNAs. Despite this limitation, it is still widely used to validate 

miRNAs in a range of cell types. In this study, a known set of 84 sperm-specific 

miRNAs was explored via qRT-PCR analysis in motile and immotile sperm. The 

relative expression showed significant differential expressions of 18 miRNAs that 

were up-regulated (P< 0.05; fold regulation >2) in immotile sperm compared to 
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motile sperm. Furthermore, eight miRNAs were significantly down-regulated (P< 

0.05; fold regulation <2) in immotile sperm compared to motile sperm. Most of 

the differentially expressed miRNAs are related to spermatogenesis, which was 

noted in a study by SalasHuetos et al., (2014) in fertile and infertile individuals 

and there are different miRNAs related to different physiological and pathological 

circumstances (SalasHuetos et al., 2014). miRNAs are known to be expressed 

during different stages of spermatogenesis, for example, let-7b with miR-145 is 

known to be expressed in pachytene spermatocyte, but not in spermatids and 

they have different roles and expression depending on the type of cell type they 

are expressed (Sangiao-Alvarellos et al., 2015).  

Among upregulated miRNAs expression > +1 fold change in immotile sperm, let7 

family in sperm of the current results was approved previously as negative 

regulators of lin28 transcripts and targets HMG2 mRNAs, the wide expression of 

let-7 miRNAs have been implicated in the control of androgen signaling and the 

repression of cell proliferation and oncogenic pathways (Nixon et al., 2015). 

Whereas miR-150 involved in embryogenesis through targeting c-Myb proto-

oncogene (Lin et al., 2008).  

Upregulation of miR-17/92 cluster at chromosome 13 in sperm has been 

associated with spermatogenesis abnormalities and knockdown of the 

miR106/25 cluster during renewal spermatogonium differentiation (Tong et al., 

2012) by inhibiting PTEN signaling pathway important for sperm activation and 

development in low sperm motility (Capra et al., 2017).  

miR-18a upregulation has been demonstrated to be involved in spermatogenesis 

through HSF2 target inhibition (Björk et al., 2010). miR-21 is also known to 
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regulate spermatogonium renewal and is a dynamic miRNAs in regulating various 

pathways, cellular differentiation, and development  (Niu et al., 2011).  

Other miRNAs that significantly (p< 0.000044 and p< 0.000601) up-regulated in 

this study are miR-222 and miR-221 respectively, they are known to be 

expressed in human malignancy and regulate cell function and development via 

P27 / 57 pathways and enhance apoptosis by targeting BCl2 via PUMA/ BAX 

transcript inhibition (Zhang et al., 2010). miR-29 is found to be related to cell 

motility via the PTEN pathway (Yan et al., 2007).   

Some of the miRNAs are downregulated (fold changes< +1) in immotile sperm 

when compared with motile sperm, which agrees with some other previous 

studies when its inhibition reflect the cell stress condition through specific 

signaling pathway cascades and regulates genes that are activated or inhibited 

to cause cellular function modifications. Eight miRNAs showed significant 

(p<0.05) downregulation in the immotile sperm. miR-191 is known to be 

associated with sperm morphological changes in testis, also has found 

downregulated in teratozoospermia by targeting BNC2 transcript (Grinchuk et al., 

2009; McIver et al., 2011).  

miR-27a is inhibiting CRISP2 mRNA, motility fine-tune transcript and could be 

related to low sperm motility and are critical for pregnancy successful rate (Zhou  

et al., 2017).  

Down-regulation of miR-34a in our study was confirmed in previous studies to 

inhibit BCl2 and induce apoptosis (Yan et al., 2007). miR-34b/c and 449 are 

present in sperm but not in oocyte and approved that injection of those miRNA 

prior ICSI treatments enhance success rates. A mouse knockout of these 
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miRNAs leads to semen abnormalities postulating that they are critical for 

spermatogenesis and early embryonic development (Yuan et al., 2015).   

miR-34c has a role in early cleavage and belongs to a family member of miR34b/c 

and miR-449a/b/c, which have the same seed region and share the same target 

genes (He et al., 2007). miR-34c is also known to be involved in the inhibition of 

second meiotic spermatogenesis by targeting tgif2  mRNA (Damestoy et al., 

2005) or participate in early-stage sperm development by inhibiting NOCH2 

transcript (Kostereva and Hofmann, 2008).  

One possible pathway using Genemania analysis (Figure 4.5), which is crucial 

for spermatogenesis and induce apoptosis is when up or down-regulation of 

miRNA will target  PTEN pathway via suppressing AKT pathway  and STAT it 

could lead to male infertility by increasing ROS level and modification of 

mitochondrial ATP levels that end up with sperm apoptosis (Lachance et al., 

2013).  

Profiling sperm-specific miRNAs are important in understanding how they may 

regulate spermatogenesis and contribute to the early embryonic development 

and offspring health (Llancette et al., 2008). Some studies have shown that 

exogenously added miRNAs can markedly affect fetal development and impact 

subsequent development (Grandjean et al., 2009).  
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Figure 4.5  Illustration of different 20 related genes in sperm with 39 total genes of 364 

total links, the colours are indicating gene functions from Genemania (http://www.Geneman   

ia.org).  

http://www.genemania.org/
http://www.genemania.org/
http://www.genemania.org/
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4.3 Conclusion  

The data presented here demonstrate the differential miRNA profiles in motile 

and immotile human sperm, suggesting that changes in sperm transcriptomes 

are related to sperm motility. It remains to determine whether the presence of 

these miRNAs in mature sperm may simply reflect earlier spermatogenesis 

pathways affecting sperm motility.   

However, this study found some miRNA expression from early spermatogenesis 

are present in mature sperm that may indicate other roles for these miRNAs in 

later sperm development or in a subsequent process, such as fertilization and 

pregnancy outcomes.   

Part of this study was to explore novel miRNA in motile and immotile human 

sperm using the Illumina platform for RNA sequencing (see section 2.3 for 

methodology) that could provide potential biomarkers of sperm function and 

infertility. However, due to repeated technical issues and time constraints, this 

part of the study had to be abandoned. The main technical bottleneck was the 

gel purification for library preparation, where sufficient and quality cDNA could 

not be obtained.  
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Chapter 5:   

Investigating the relative expression and the epigenetic 

control of sperm-specific microRNAs in high-fat diet mice and 

age-matched controls.  

5.1 Introduction   

Obesity has reached epidemic proportions globally and is predicted to rise in both 

developed and developing countries worldwide. Recent studies have reported 

that in the UK, about 27% of adults are obese, another 36% are overweight, and 

the trend is continuously rising with the advance time as shown in Figure 5.1 

(Baker, 2017).   

  

 

Figure 5.1 The progression of obesity trend in 1993, 2004 and 2015  

Increasing the level of the obese population with time in the UK according to the UN Food and 

Agriculture Organization.  
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Obesity can be measured according to body mass index (BMI), which is based 

on the weight and height of the individual and is defined as the body mass divided 

by the square of the height  (BMI = Kg/m2), (de Castro Barbosa et al., 2016). 

Normal and abnormal ranges are presented in Table 5.1.  

                  Table 5.1 obesity category according to BMI measurements  

Category  BMI (Kg/m2)  

Normal  18.5-24.9  

Overweight  25.0-29.9  

Obese  30.0-34.9  

Morbidity obese  40.0+  

  

The primary reason for increased body weight is the high-calories food 

consumption that leads to the imbalance between energy intake and expenditure. 

Consequently, fat accumulation in particular parts of the body causes serious 

human health risks such as cardiovascular diseases, type II diabetes, and 

cancer, which results in increased morbidity and mortality (Pi-Sunyer, 2009). 

Furthermore, disorders of endocrine homeostasis can contribute to decreased 

fecundity (Jensen et al., 2004). Both the size and number of fat cells (adipocytes) 

increase and most pre-adipocytes proliferate into mature adipocytes, which have 

the ability to store a large amount of fat (A McGregor and S Choi, 2011).  

Obesity leads to changes in the distribution of adipocytes, their differentiation, 

and apoptosis via excess fatty acid synthesis (Spalding et al., 2008). This is 

concomitant to the dysregulation of adiponectin and resistin, which is involved in 

the development of type2 diabetes, increased oxidative stress, and increase the 

level of adipokines (Al-Suhaimi and Scehzad, 2013). On the molecular level, 
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obesity can lead to epigenetic modification, which alters the gene expression 

level of some genes like PPAR family, a member of genes that regulate 

adipogenesis and obesity, and metabolism of tissues by increasing insulin 

resistance via different pathways like Akt, PDK-1, P53, and P85. Hence, the 

dysregulation of lipogenesis and lipolysis occurs (Samuelsson et al., 2008; 

Alfaradhi and Ozanne, 2011).  

Epigenetic mechanisms have also been known to have an impact on obesity via 

processes such as DNA methylation, histone modification, and the action of 

noncoding small RNAs (Palmer et al., 2014). It has also been demonstrated that 

some epigenetic alterations are passed to further generations (transgenerational 

epigenetics), which can impact on the offspring health (de Castro Barbosa et al., 

2016). Furthermore, mouse studies have shown that gametes from obese 

parents can negatively impact preimplantation embryo development, 

morphology, and metabolism (Finger et al., 2015; Wu et al., 2015). The known 

mechanism that can alter the gene expression accompanied with obesity, is due 

to DNA damage that occurs in the mutant cells because of oxidative stress and 

cell inflammation due to genome instability caused by obesity (Włodarczyk and 

Grażyna, 2019). 

  

5.1.1   Male obesity and Infertility  

According to the UN Food and Agriculture Organization, one in four British men 

are obese and it has been projected to be more than half the population obese 

by 2050.   
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Male reproductive potential is coincident with obesity, not only by impairing sperm 

function but in particular, alters the physical and molecular composition of germ 

cells in the testes and ultimately affects the maturity of sperm and its capacity 

(Shukla et al., 2014; Palmer et al., 2012). Obesity is also correlated with 

reductions in normal semen parameters such as sperm concentration and 

motility. In addition, obesity is correlated with increased sperm DNA damage 

(Dupont et al., 2013) and changes in reproductive hormones (Dulloo and 

Montani, 2012). Several mechanisms have been attributed to the obesity effects 

on sperm functions and male subfertility, such as the excessive conversion of 

androgens into estrogens. Changes resulting in sexual hormone imbalance and 

hypogonadism; adipokines produced by adipose tissue, which induce 

inflammation and oxidative stress in the male reproductive tract, thus impairing 

testicular and epididymal tissues (Aggerholm et al., 2008; Huang et al, 2016). 

However, more studies are needed to be elucidated to understand the obesity 

effects on male reproduction.  

Sperm is known to be susceptible to oxidative stress that leads to sperm DNA 

damage and impairment to the sperm function (Aitken et al., 2014). Excessive 

oxidative stress is one of the potential mechanisms leading to poor sperm quality 

in obese males and studies have shown that oxidative stress in semen and testis 

were correlated to the increase in BMI and sperm DNA damage (Bakos et al. 

2011).  

Obesity can also induce insulin and glucose disturbances and result in sperm 

dysfunction.  Hyperglycemia or insulin insufficiency decreased the level of GLUT9 

in sperm and affect the sperm motility and fertilization rates (Kim and Moley, 

2008).  
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Studies have demonstrated increased pregnancy loss rate in obese couples 

undergoing ART, which is attributed to reduced fertilization rate after IVF 

including sperm binding ability and blastocyst development (Bakos et al., 2011). 

However, other studies found no relation between BMI and IVF outcomes 

(Jungheim et al., 2013). Moreover, some reports have shown a decrease in the 

pregnancy rate and blastocysts development during ART of obese or overweight 

male partner (Bakos et al., 2011; Hammoud et al., 2008).  

Furthermore, recent studies indicate that epigenetic changes may be a 

consequence of increased adiposity. A major effort to identify epigenetic 

determinants of obesity revealed that sperm DNA methylation and non-coding 

RNA modification are associated with BMI modifications and proposed to inherit 

metabolic comorbidities (Ornellas et al., 2017). Obesity causes sperm miRNA 

changes and germ cell hypomethylation of the genetic material (Fullston et al., 

2013).  

 

5.1.2  miRNA regulation and  obesity:  

The identified list of miRNAs is enormous; most of them are sharing similar 

functions. Target genes express themselves in different organs to be involved in 

cellular differentiation and proliferation, growth, apoptosis and in most common 

diseases. miRNA genes are located in intronic, non-coding exonic or intergenic 

regions (Schmittgen et al., 2008). The binding sites of miRNAs for RNA the 

polymerase and transcription factors were located in the core, while a proximal 

promoter consists of regulatory binding sites for transcription factors and CpG 
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islands for methylation a distal promoter for secondary regulatory factors (Berardi 

et al., 2012).  

miRNA is one of an essential epigenetic mechanism post-transcriptionally that 

participate crucially in most of the biological and metabolic processes associated 

with obesity like, insulin and glucose homeostasis, cholesterol and lipid 

metabolism, that could be initiated by  targeting mRNA transcripts that leads to 

molecular cascade changes which, ultimate with metabolic and reproductive 

disorders (Curry, 2010). Some of the miRNAs regulate fat accumulation through 

the action as fat cell maturation accelerator (proadipogenic factor) or inhibitor 

(antiadipogenic factor) by targeting different genes and pathways.    

The function of miRNAs in adipose tissue is found to be regulation of 

differentiation through stimulation or inhibition of adipocytes and to regulate 

specific metabolic and endocrine functions. the miR-14 role has been found in 

adipogenesis from the genetic screening of Drosophila. miR-14 deletion leads to 

fat cell mass enlargement and apoptosis (Xu et al., 2003). Another miRNA, miR-

278 has a significant expression difference in adipose tissue and regulates body 

metabolic rate through insulin signal transduction pathway in mammals and flies 

by control the level of circulating glucose and fat distribution. Mutant miR-278 

cause obesity in Drosophila by changing glucose homeostasis and the production 

of insulin (Teleman and Cohen, 2006). 

The human adipose tissue has multiple miRNAs content; however, few of them 

are expressed and may be changed in obese and type2 diabetes mellitus 

individuals, or differentially expressed miRNAs in various adipose depots. 

Obesity is accompanying with low-grade inflammation that is regulated by signal 

transduction systems, in which miRNAs, either directly or indirectly (by regulatory 
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transcription factors components), affect the inflammatory protein expression and 

secretion. Moreover, to their signalling multiple effects, miRNA and transcription 

elements can network to augment the influence of the inflammation. In spite of 

additional miRNA, signal links in human adipose tissue are not known yet; similar 

regulatory circuits have been designated in brown adipose tissue in mice. miRNA 

can also be secreted from fat cells into the circulation and serve as markers of 

disturbed adipose tissue might offer tangible targets for treating metabolic 

disorders (Arner and Kulyté, 2015).  

The role of miRNA in obesity and type 2 diabetes in the pancreas, liver, and 

adipose tissue has been well reviewed, and attempts have been made to 

diagnosis the chronic diseases and therapeutic targets via miRNAs (Zhao et al., 

2009), however, its role in sperm still not well understood.  

miRNAs expression level has been approved changes in spermatozoa of a male 

with high BMI. Inhibition of miRNAs in the male pronucleus of fertilized oocytes 

leads to the production of a phenotypic variant of progeny that depends on 

miRNAs ratios. That means sperm RNAs are vital for the embryonic 

development, survival and progeny phenotypes (Shukla et al., 2014).   

Various studies have been applied on HFD mice to induce obesity in order to 

study paternal or maternal phenotypic alteration that can perturb sperm function 

and transmitted via sperm transcriptome to further generations (Nishimura et al., 

2007; McPherson et al., 2014; Navya and Yajurvedi, 2017).  

In mice, experimental high-fat diet (HFD) can revise the molecular patterns or 

gene expression of the testes and sperm specifically miRNA-21 abundance by 

changing IGF-IR/Akt/P13k pathway (Esau et al., 2004; Fullston et al., 2013).  
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Phenotypic alteration of obesity can be transferred to the next generation via 

miRNAs and evidence showed that diet-induced paternal obesity has been 

shown to alter sperm miRNA content (Leibel et al., 2006). For instance, miR-133b 

and its target Igf-1R (insulin growth factor 1 receptor) are key regulators of 

proliferation and differentiation, Igf-1R dysfunction can cause early embryonic 

death in mice (Bedzhov et al., 2012). miR-133b has found to be overexpressed 

in HFD sperm, repressing Igf-1R and contributes to embryonic development 

failure (Mitchell et al., 2011). miR-196 has another role in regulating 

spermatogenesis and male infertility (Madison-Villar and Michalak, 2011). miR-

196a-5p is a vital regulator during early embryonic development and infertility, it 

has found to be upregulated in HFD sperm and testes in mice by targeting HOX-

A, B and C in mammals (Iimura and Pourquié, 2007) and repress NOBOX mRNA, 

a maternal transcript critical for EED (Wang and Yao, 2014). miRNA involved in 

lipid metabolism and glucose homeostasis, miR-375 in mice is significant in 

developing normal endocrine pancreas in mice, and mice lacking miR-375 

(375KO) were hyperglycemic, increase the number of α-pancreatic cells and 

increase glucagon blood level, which in turns leads to increase gluconeogenesis, 

then insulin resistance will develop leading to severe diabetes (Poy et al., 2009). 

Obesity is induced by miR-143 expression differences in adipose tissue of high-

fat diet mice by targeting Fgf7 gene ( fibroblast growth factor 7) (Peng et al., 

2014), and through ERK5 gene in human pre-adipocytes (Esau et al., 2004). 

Chartoumpekis et al., (2012) reported the difference in the expression of several 

miRNAs accompanied obesity development, miR-342-3p, miR-142-3p, miR-

1425p, miR-21, miR-146a, miR-146b, miR-379 were up-regulated, while miR-

122, miR-133b, miR-1, miR-30a, miR-192, and miR-203 were downregulated 
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(Chartoumpekis  et al., 2012). miR-205 and miR-340 expression have been 

changed in the testis and sperm in males fed on HFD, miR-205 has a principal 

role in cell cycle regulation and apoptosis (Madison-Villar and Michalak, 2011). 

the miR17/92 cluster also contributed to adipocyte differentiation acceleration by 

targeting Rb2 and p130 genes vital for adipogenesis (Wang et al., 2008) also 

targeting mTOR pathway signaling, which is important for sperm activity (Xie et 

al., 2016).  

Evidence that inheriting obesity after HFD exposure has proved that testes 

transcriptome and miRNA profile of sperm in male mice and the causes of the 

miRNA dysregulation in germ cells of the testes, which contain multiple kinds of 

both germ and somatic cells. Additionally, paternal obesity in mice can cause 

perturbation of pathways signalling enriched for metabolic disease, cell death, 

production of ROS, DNA replication, NF-κB signalling, p53 signalling, 

recombination and repair, lipid metabolism, spermatogenesis and embryonic 

development  (Fullston et al., 2013).  

Furthermore, HFD mice produce phenotypic sub-fertile males that are heritable 

further two subsequent generations of offspring (Fullston et al., 2012). Thus, 

sperm miRNA that is downregulated by an HFD modulate or are predicted to 

modulate genomic integrity, epigenetic state, and embryonic development and 

provide a possible mechanism for paternal transmission of obesity and impaired 

metabolic health to the next generation by altering the epigenetic signature of the 

sperm (Fullston et al., 2013).  
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5.1.3  miR-21 genomic structure and regulation  

miR-21 (Figure 5.2) is one of the highly significant miRNAs that has been 

identified at chromosome 17q23.1 in human (on chromosome 11qc in mice) 

overlaps with the eleventh intron of the 3’UTR  TMEM49 (transmembrane 

protein9) gene or called VmP1 (vacuole membrane protein) (Ribas et al., 2012). 

It gets its own promoter transcription sites called VMP1and pri-miR-21, and is 

highly conserved among species, also identified as an oncomir and upregulated 

in response to malignancy by targeting BCL2 protein and promotes apoptosis 

(Yang et al., 2015). The expression of miR-21 has found RNA polymeraseII 

dependent on pri-miRNA precursor that are both capped and polyadenylated (Cai 

et al., 2004). It is also highly expressed in hepatocytes associated with insulin 

resistance and related to cellular differentiation, metabolism, and apoptosis (Calo 

et al., 2016; Palmer et al., 2014).  
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Figure 5.2 miR-21 conservation site   

Different species of mice, human, and rats miR-21, the conserved seed area are shaded, and the 

promoter at -197 base pairs upstream of pri-miRNA-21 (stem-loop structure) is presented.  

miR-21 is crucial for metabolism by regulating glucose and lipid uptake by 

targeting various mRNA including apoptosis regulators of BCl2 and the adipocyte 

differentiation inhibition pathway called, TGF-β (Kim et al., 2009), tumour 

suppressors PDCD4 and PTEN pathways. Downregulation of miR-21 can inhibit 

cancer proliferation via PTEN pathway (Meng et al., 2007). miR-21 has been 

found to be the best hit in the detection of miRNA regulation in cancer and cardiac 

diseases (Zhang et al., 2011).  

Decreased expression of insulin signaling pathways such as GLUT4 (glucose 

transporter) is one of the major factors of insulin resistance and metabolic 

disorder that are regulated by miRNA-21 (Cai et al., 2004; Chakraborty et al., 

2014). While,  miR-21 overexpression was known to enhance insulin-induced 

phosphorylation in GLUT4 and IR adipocytes to control glucose motion across 

cell membranes (Ling et al., 2012).  
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5.1.4  DNA methylation  

Epigenetics is simply known as the modification of non-genetic marks on DNA 

without changing the DNA sequence because of environmental changes, 

therefore, regulating gene expression and cellular development and 

differentiation (Chaligné and Heard, 2014). DNA methylation occurs in eukaryotic 

DNA by adding the methyl group in the 5th position of cytosine that followed by 

guanine base known as CpG dinucleotides to form 5-methylcytosine  

(5-mC) in the presence of DNA methyltransferases (DNMTs) enzymes like 

DNMT1, DNMT3b, and DNMT3a (Figure 5.3). Cytosine methylation can also 

occur at non- CpG locations like CpC, CpT, and CpA sites, but are restricted to 

some type of cells such as oocyte and pluripotent stem cells to participate in 

epigenetic regulation (Maunakea et al., 2010; Jang et al., 2017). This usually 

results in gene silencing via active demethylation from 5hmC and converted into 

thymine driven by enzymatic deamination and leads to gene expression inhibition 

(dos Santos et al., 2015).  
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Figure 5.3 Methylation of cytosine as part of the main key of the epigenetic mechanism.  

DNA epigenetic marks occur on CpG sites by adding methyl group (green circles) to the 

Cytosine base at position 5 of the DNA at promoter regions to form 5-methylcytosine in the 

presence of methyltransferases.  

Most genes in vertebrates contain more than 50% of CpG rich regions defined as 

CpG islands. Exogenic factors can imply a potent impact on the methylation 

status of an individual, which originally came from gametes (Norouzitallab et al., 

2018). Many types of research were conducted on animals and proved that 

paternal lifestyle can be transmitted via the epigenetic landscape to the next 

generation and causes metabolic disorders and infertility (Donkin et al., 2018). 

Experimentally, 5mC can be detected by treating DNA with bisulfite, the 

unmethylated cytosine will converted into uracil and then into thymine via PCR 

amplification while methylated one will resist that conversion and remained intact 

as cytosine (Soubry et al., 2016). Over a period, all methylated cytosine, turn into 

thymine because of spontaneous deamination process unless there is another 

reason for keeping them as cytosine (Table 5.2).  

Table 5.2 DNA Sequences after bisulfite treatment and PCR amplification 

  
Original sequence  

After bisulfite 

treatment  
After PCR 

amplification 

Unmethylated 

DNA 

C-A-A-T-C-G-T-C-G U-A-A-T-U-G-T-U-G T-A-A-T-T-G-T-T-G 

Methylated 

DNA 

C-A-A-T-C-G-T-C-G  C-A-A-T-C-G-T-C-G  C-A-A-T-C-G-T-C-G  

  

 Simply, DNA methylation is the addition of a methyl group from the DNA 

sequence and any disturbance may lead to embryogenesis interruption also 

incorporated in other diseases and cancer development. Active genes at 
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transcription start site of a specific gene usually unmethylated and controlled by 

transcriptional factors (Lin and Zhang, 2014).   

Here we hypothesise that epigenetic processes such miRNA expression 

differences and DNA methylation can be a non-invasive diagnostic method of 

male infertility due to high- fat diet.  

5.1.5  Aims  

The aim of this study is to identify the relative expression of sperm-specific 

miRNA in an obese mouse model and explore the epigenetic regulation of this 

expression.   

To achieve this, objectives are to:  

• Extract sperm from mice fed on a high-fat diet [and controls]   

• Isolate total sperm RNA and miRNA for array analysis   

• Explore any epigenetic regulation of miRNA expression through 

pyrosequencing.  

  

  

  

5.2  Materials and methods  

5.2.1  Study Design  

C57BL/6 mice (n = 12) were fed on rodent high-fat diet (HDF) with 60% kcal% fat 

and age-matched controls (AMC) were fed on rodent diet with 10% kcal% fat (n 

= 12) for 24-28 weeks postweaning, with water ad libitum [all animals were 

supplied by Dr A. Greenstien, Univeristy of Manchester, as carcasses surplus to 
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use]. Mice were sacrificed by cervical dislocation by an experienced technician 

following home licence procedures [Project licence number: PPL40_3558]. 

5.2.2  Mouse sperm collection  

Both testes were removed and the epididymis was dissected after being washed 

with PBS to avoid blood contamination, carefully separated from adipose and 

overlying connective tissues and immediately expressed into PBS and kept on 

ice for downstream extraction of sperm, total RNA, DNA, and protein. The 

epididymis was then transferred into sperm preparation media (SPMTM; Origio, 

Denmark) and sperm was recovered by a simple layer technique. Simply, the 

epididymis was placed into a 15 ml Falcon tubes containing 1 ml of SPM, multiple 

incisions with razor blades and micro scissor were applied in the epididymis wall. 

Samples were kept for at least one hour in 6% CO2-5% O2 at 37◦C incubator to 

allow actively motile sperm swim-up freely into the medium. The sperm was then 

collected from the top layer and washed twice with PBS to remove contaminating 

cells, and the epididymis with other contaminated tissues was left in the bottom 

of the tube to be discarded (Huang et al., 2007; Anderson et al., 2015). Finally, 

sperm pellet was mixed with 50 μl PBS and counted using Neubauer chamber 

counter as per WHO references guidelines 2010 for human sperm examination 

(WHO 5th edition), and kept in Eppendorf tubes at -80◦C after mix it with sperm 

freeze medium 1:1 dropwise until further RNA, DNA and protein processing.  

  

5.2.3  Total RNA extraction  

Total RNA isolation from purified mouse sperm was carried out as per section 2.2 

using the Norgen biotek kits. Briefly, the cell membrane that contains a high 
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amount of disulfide bonds in the sperm head was broken down by adding β-ME 

as a strong antioxidant after two steps of wash with 1% dPBS. The cells were 

vigorously shaken for 30 seconds and allowed to stand for 30 minutes on ice to 

release the nucleic acids and keep the RNA content intact and efficient, then 

proceed to RNA extraction using Total RNA Isolation (miRNA enriched) kit, 

(Norgen biotek, UK), (refer to section 2.1.2.1). Purity and concentration of RNA 

samples were assessed by the NanoDrop 1000 spectrophotometer 

(ThermoScientific, Wilmington, USA). Only those samples that contain a 

concentration between 250- 500 ng and a 260/280 ratio of 1.8 - 2.0, a reflection 

of protein-free RNA, were only considered for further analysis.  

5.2.4  Reverse transcription and Pre-Amplification  

Approximately 125-250 µg of RNA samples were converted into single strand 

cDNA using miScript II RT kit (Qiagen, UK), followed by Pre-Amplification 

reaction using miScript Pre-AmP kit following the same procedure mentioned in 

section 2.2.7.  

5.2.5 Quantitative Real-Time PCR for mature miRNA profiling:   

 qRT- amplification was conducted to measure the relative gene expression of 

different 84 miRNAs that were  chosen depending on previous studies (Krwatz et 

al., 2011; Nixon et al., 2015) via miScript miRNA PCR custom plate array kit 

(Qiagen, UK), for 24 male mice (12 from each group), (Table 5.3).  
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Table 5.3 Different 84 miRNAs included in the custom PCR array plate  

miRNA  

ID  

miRNA  

ID  

miRNA  

ID  

miRNA  

ID  

miRNA  

ID  

miRNA  

ID  

miRNA  

ID  

miRNA  

ID  

miRNA  

ID  

miRNA  

ID  

miRNA  

ID  

miRNA  

ID  

let-7a5p let-7b5p 
let-7c 

-5p 
let-7e5p let-7i3p 

miR- 

1a-3p 

miR- 

10b-5p 
miR101

b-3p 
miR106

a-5p 

miR- 

122-5p 

miR- 

124-3p 

miR- 

127-3p 

miR129-
2- 
3p 

miR130
a- 
3p 

miR133
a-3p 

miR133
b-3p 

miR- 

141-3p 
miR142

a-3p 
miR142

a-5p 

miR- 

143-3p 
miR145

a-5p 
miR146

a-5p 
miR146

b-5p 
miR148

a-3p 

miR- 

15a-5p 

miR- 

155-5p 
miR16-

1-3p 
miR16-

2-3p 

miR- 

17-5p 

miR- 

17-3p 

miR181
b- 
5p 

miR- 

18a-5p 

miR- 

19a-3p 

miR- 

192-5p 
miR193

a-3p 
miR196

b-5p 

miR- 

20a-5p 

miR- 

20b-5p 
miR200

b-3p 

miR- 

203-3p 

miR- 

204-5p 
miR208

b -3p 

miR- 

214-3p 

miR- 

21a-5p 

miR- 

22-3p 

miR- 

222-3p 

miR- 

223-3p 

miR- 

24-3p 

miR- 

27a-3p 

miR- 

29a-3p 

miR- 

300-3p 

miR- 

30a-5p 

miR- 

30e-5p 

miR- 

320-3p 

miR- 

34a-5p 

miR- 

34b-5p 

miR- 

34c-5p 

miR- 

340-5p 

miR- 

342-3p 

miR- 

375-3p 

miR378
a- 
5p 

miR- 

379-5p 

miR- 

409-5p 
miR465

a-5p 
miR465

b-5p 

miR- 

470-5p 
miR471-

5p ** 

miR- 

499-5p 

miR- 

539-5p 

miR- 

582-5p 
miR743

a-5p 

miR- 

871-5p 

miR- 

880-3p 

miR883
a- 
3p 

miR376 
b-5p 

miR- 

468-5p 

miR- 

93-5p 

miR- 

99a-5p 

miR19b- 
3p5p 

miR- 

183-5p 

miR- 

468-5p 
miR465

a-5p 
miR465

b-5p 
miR465c

-5p 

CelmiR3

9-3p  

CelmiR3

9-3p  

SNOR 

D61  

SNOR 

D68  

SNOR 

D68  

SNOR 

D72  

SNOR 

D95  RNU66P miRTC  miRTC  PPC  PPC  

 

5.2.5.1 miR-21 expression 

We were next interested in exploring any epigenetic regulation of the expression 

of miR21-a, which was found to be within the promoter region of VmP1 gene.   

Bonferroni correction was applied to find the miR-21 expression in the sperm of 

HFD mice and study the DNA methylation epigenetic of sperm in HFD and AMC 

mice model. 

 

5.2.5.2 Spermatozoa DNA isolation:  

DNA from the same sperm collected in section 5.2.2, 20-30 x 106 purified sperm 

was isolated following the protocol described by Weyrich (Weyrich, 2012). Briefly, 

previously frozen isolated sperm was thawed at room temperature, then washed 

twice with 1 ml of 1% dPBS, and sperm was counted using the Neubauer 
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chamber. Ethanol 70% (500 µl) was added and the samples were centrifuged for 

5 min at 13000 rpm after that the supernatant was removed. The pellet was then 

incubated overnight in lysis buffer containing 1M Tris-HCl (Sigma, UK) pH 8.0, 3 

M NaCl, 0.5 M EDTA (Lonza, Belgium) and 2.5 µl of 20% SDS. 2.5 µl Triton-X100 

(0.5%), 21 µl  DDT (1M) as a strong antioxidant, and 40 µl proteinase K (10 

mg/ml) (Sigma, UK) also added for complete cells lysis. Samples were incubated 

at 50°C overnight in a thermos-shaker (TS-100; PEQLAB Ltd, Sarisbury Green, 

UK), then were centrifuged for 10 min at 15000 xg. The supernatant containing 

the DNA was carefully transferred into a new Eppendorf tube. DNA precipitation 

was performed by adding 10 µl βME, 1/10 volume of 3M NaOAc and 2 volume of 

ice-cold 100% ethanol, mixed and left at 20°C overnight. The mixture was 

centrifuged for 20 min at 15000 rpm and the supernatant was carefully removed 

and subsequently cleaned twice with 500 µl 75% ethanol, spun for 10 min at 

12000 rpm. The pellet was dissolved in 100 µl Nuclease-free H2O and kept 

overnight at 4°C. DNA yield and quality were measured using NanoDrop 1000 

spectrophotometer (Thermo Scientific, Wilmington, USA) and was considered 

pure if the ratio of 260/280 was 1.8-2.0; samples were kept in -20°C for the next 

step of bisulfite conversion.  

 

5.2.5.3  Bisulfite Pyrosequencing assay design   

The sequencing primers for the methylation assay in the regions of interest of 

mouse, VmP1 including promoter for miR-21 was chosen based on a previous 

study (Zhang et al., 2011), which demonstrated to contain CpG regions for DNA 

methylation. One of the PCR primers was biotin labeled to isolate a single-

stranded DNA of the target product that serves as a template in the sequencing 
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reaction. The sequence was retrieved from the mouse genome assembly GRCm 

38/mm10 on the UCSC genome browser (Genome Bioinformatics Groups of UC 

Santa Cruz, 2015). We looked at the presence of CpG islands specifically close 

to promoters or regulatory regions. Sequences were introduced into EMBOSS 

CpG predictor software (Genome Bioinformatics Groups of US Santa Cruz) with 

a minimum CpG length of 100 bp in order to restrict the secondary structure 

formation in an ssDNA, which in turn inhibit the sequencing reaction or increase 

the background signals by 3’ end extension. PCR and sequencing primers of the 

proximal promoter region were designed as a custom oligonucleotide via the 

PyroMark Assay Design 2.0 software (Qiagen, Hilden, Germany), and purchased 

through Life Technologies (UK) (Table 5.4).   

Table 5.4 Pyrosequencing custom oligonucleotide for mouse VmP1 gene  

Gene  
Chromosome 

location  
Amplicon 

length bp  
Sequence to analyse  

( 5’- 3’)  
CpGs  

VmP1 

Exon 

11 

      Chr11:86,583, 
86586,683,822 

148 

AAGGATGACGCAGGGGTTGTCCTAATAAG 

GACTTAGATTGAGAAAGCACCTCCCACCCA 

CCCATCCCCCTGAGAAGACG  

2  

  

 

 

5.2.5.4 Bisulfite modification of DNA of interest  

A total of 500 ng of sperm genomic DNA in nuclease-free water was sodium 

bisulfite- treated to sulphonate unmethylated cytosine nucleotides into uracil with 

the EpiTec Fast Bisulfite Conversion kit (Qiagen, UK) following the 

manufacturer’s instructions.  DNA was added to each reaction tubes containing 

80 μl of bisulfite buffer and 15 μl of DNA protect buffer to a final volume of 140 μl. 

The reaction was carried out in a thermal cycler (Sure Cycler 8800; Agilent 
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Technologies Inc., Santa Clara, USA) under conditions detailed in Table 5.5. 

Table 5.5 Thermal cycler steps of Bisulfite conversion reaction  

Step   Temperature   

  C◦   

Time 

(min) 

Denaturation  95  5 

Incubation  60  10 

Denaturation  95  5 

Incubation  60  10 

Incubation  20  Hold 

 

 

Following PCR reaction, the samples were transferred into 1.5 mL 

microcentrifuge tubes and 310 μl of BL buffer was added to each of the bisulfite 

DNA and vortexed. Next, 250μl of 100% ethanol was added and mixed further. 

The mixture was then purified using the supplied spin columns. The flowthrough 

was discarded, followed by a  washing step with 500 μl BW buffer before 15 min 

incubation at room temperature in buffer BD for desulphonation step. Samples 

were centrifuged for 1 min at 12000 rpm and the flow-through was again 

discarded. After that two washes in 500 μl BW buffer with 1 min centrifugation at 

12000 rpm, followed by 250 μl ethanol 100% wash step, the mixture was spun at 

12000 rpm and incubated for 5 min at 60◦C Consequently. Samples were then 

incubated for 1 min after eluted in 15 μl of prewarmed elution buffer. ssDNA 

concentration was determined spectrophotocally at 260/280 nm and was stored 

at -20◦C before used for PCR amplification using the PyroMark PCR kit (Qiagen, 

UK).  
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5.2.5.5 PCR amplification of bisulfite DNA  

PCR amplification of the region of interest was carried out by the PyroMark 

PCR kit (Qiagen, UK). In order to generate a biotin-labeled amplicon on one 

of the two strands of the primer designed to target the bisulfite DNA, a master 

mix was prepared on ice according to the reaction mix in Table 5.6. 

Amplification was checked along with control of no template by agarose gel 

electrophoresis. Samples were kept at -20◦C until sequencing.  
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     Table 5.6 Reaction Composition for PyroMark PCR 

Components  
Volume 

μl 
Final 

concentration 

PyroMark PCR Master Mix  12.5  1x  

Coralload concentrate  2.5  1x  

Forward Primer:  

 GGGGGAGGTGTTTTTTTAATGT 

1  0.3 μM  

Reverse Primer:  

Biotin-CTACCCTCCCTCTCTCTAAC  

1  0.3μM  

NF-H2O  5  -  

 DNA  3  5 ng/μl  

 
  

The cycling conditions using the thermal cycler (SureCycler8800; Agilent 

Technologies Inc., Santa Clara, USA) directly applied to the above master mix as 

shown in Table 5.7.  All samples then were analysed by Pyrosequencing using 

the PyroMark Q24 system (Qiagen, UK).  

 

        Table 2.7 Cycling protocol of PyroMark PCR 

Steps Time Temperature ◦C Cycle 

number 

Initial activation                                        15 min 95 1 

 Denaturation 30s 94  

45 Annealing 30s 56 

Extension 30s 72 

Fiunal extension 10 min 72 1 

Hold - 2 - 

  

emitting a visible light, which is detected by the pyrosequencer and appears as a 

peak of the resulting data output of pyrogram trace (Figure 5.4). The production 

of light is directly proportional to the number of nucleotides incorporated and the 
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level of methylation is automatically counted by the PyroMark software and 

presented in the pyrogram as methylation percentage.  

  

  

Figure 5.4 enzymatic cascade involved in pyrosequencing process.  

Ppi is the pyrophosphate released after incorporation of dNTP (biotin-labeled) in a primer-

directed polymerase extension. The quantity of light ejected after ATP reacted to produce 

oxyluciferin is proportional to the number of nucleotides assimilated and will appear as the 

peak for each nucleotide integrated.  

  

Sequencing was done by binding the ssDNA to Streptavidin-coated Sepharose 

High-Performance beads (GE Healthcare Biosciences, UK). A master mix was 

made up of 1 μl of the beads into 40 μl binding buffer and 29 μl nuclease-free 

H2O (per sample volume). Then, 70 μl master mix was transferred to a 24 –well 

PCR strip and 10 μl of the PCR product was added bringing the total volume to  
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80 μl, and was shaken on a thermos-shaker (TS-100; PEQLAB Ltd, Saribury 

Green, UK) at maximum speed for 10 min at room temperature to maintain 

dispersion of the beads.  

After that, 0.3 μM of the sequencing primer was prepared in annealing buffer 

(Qiagen, UK) and 25 μl of diluted sequencing primer was dispensed into each 

well of a 24-well Q24 PyroMark reaction plate (Qiagen, UK).   

The PyroMark Q24 workstation was then run: using a vacuum tool, DNA-bound 

beads were sequentially washed into 70% ethanol (Sigma, UK) for 5 sec, 

denaturing buffer (Qiagen, UK) for 5 sec, wash buffer for 5 sec then on the 

sequencing primer plate for 10 sec. The plate was immediately transferred to a 

heat block set to 80◦C and incubated for 2 min. Following this, the plate was 

secured into the Pyrosequencerafter has been cooled for 5 min at room 

temperature.   

A new assay was generated on the PyroMark Q24 software for each specific site 

and the sequence to analyse was input to produce a nucleotide dispensation 

order. The required assay was selected for each run per each sample in the plate, 

which gave the volumes of enzyme and substrate mixtures, and dNTPs to load 

into the cartridge (Qiagen, UK) based on the length of the assay sequence. The 

cartridge was loaded and secured in place in the Pyrosequencer. Finally, the 

sequencing experiment was run and the Pyrosequencing output was in the form 

of a pyrogram and results were analysed using the PyroMark Q24 software.  

PyroMark Q24 software gave an accurate reading for each of the CpG sites 

analysed based on how correct the nucleotides in the surrounding sequence has 
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been sequenced: red (failed), yellow (check) and blue (passed). Red reads were 

repeated or excluded from the analysis.   

5.2.5.6 Statistical analysis  

Data analysis of gene (miRNA) expression profile of the study cohorts was done 

through miRNA PCR Array data analysis online software (Qiagen, UK) 

(http://pcrdataanalysis. sabiosciences.com/mirna). A t-test was applied to study 

the significant difference in miRNA expression profile between motile HFD and 

AMC groups of the study. Before analysis, all data were tested by Shapiro-Wilk 

statistic for normality distribution. Values of P <0.05 were considered significant. 

Bonferroni correction analysis was used to find the most significant miRNAs.   

IBM SPSS statistical software, independent t-test was performed for each 

variable of this study comparing means and standard deviation of the mean for 

methylation data observations at 95% CI.  

   

  

5.3 Results  

5.3.1   miRNA expression qRT-PCR  

To confirm the relative expression of sperm-specific miRNAs in HFD and AMC 

mice, a qRT-PCR (Applied Biosystem) was carried out on the isolated RNA. A 

set of 84 spermatozoal miRNAs were selected using custom miScript miRNA 

PCR array and Pre-Amplification protocol from Qiagen-UK.   
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Relative expression levels were normalized to a panel of six housekeeping genes 

(cel-miR-39-3p, SNORD 61, 68, 72, 95, 96A). miRTC was a gene for the reverse 

transcription reaction control and PPC as a positive PCR control. The other 

controls were used for data normalization. The analysis demonstrated that 29 of 

them were overexpressed (fold changes greater than 1) or significantly 

upregulated (p <0.05) in the sperm of HFD mice, while three miRNAs were 

downregulated (fold changes less than 1), but only miR-883a-3p was significant  

(p <0.05) as listed in Table 5.8, and highlighted in the scatter plot (Figure 5.5). 

The remaining 54 miRNAs showed no significant differences in the expression of 

miRNA in the sperm of HFD male mice when compared to controls.  

  

  

  

 

Table 5.8 Fold change and P values of miRNA miScript PCR Array in HFD 

comparing with AMC,  

All miRNAs are highly expressed significantly, only miR-883a-3p was downregulated. 

The underlined sequences are representing the miRNA seed regions  

miRNA  Fold 

Regulation  
P value  Mature miRNA Sequence  location  

let7a-5p  70.2859  0.005627  UGAGGUAGUAGGUUGUAUAGUU  ch13  

let7b-5p  54.3505  0.022252  UGAGGUAGUAGGUUGUGUGGUU  ch15  

let7c-5p  63.9943  0.005654  UGAGGUAGUAGGUUGUAUGGUU  ch16  

let7e-5p  9.9594  0.027242  UGAGGUAGGAGGUUGUAUAGUU  ch17  

miR-10b-5p  180.004  0.00995  UACCCUGUAGAACCGAAUUUGUG  ch2  

miR-145a-5p  146.8859  0.032656  GUCCAGUUUUCCCAGGAAUCCCU  ch18  

miR-148a-3p  291.5883  0.004335  UCAGUGCACUACAGAACUUUGU  ch6  

miR-17-5p  196.3796  0.040346  CAAAGUGCUUACAGUGCAGGUAG  ch14  

miR-19a-3p  146.7403  0.021939  UGUGCAAAUCUAUGCAAAACUGA  ch14  

miR-20a-5p  206.3355  0.018187  UAAAGUGCUUAUAGUGCAGGUA  ch14  

miR-20b-5p  176.3626  0.04279  CAAAGUGCUCAUAGUGCAGGUAG  chX  
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miR-200b-3p  21.262  0.003506  UAAUACUGCCUGGUAAUGAUGA  ch4  

miR-204-5p  122.5673  0.020412  UUCCCUUUGUCAUCCUAUGCCU  ch19  

miR-214-3p  39.8525  0.009967  ACAGCAGGCACAGACAGGCAGU  ch1  

* miR-21a-5p  61.3726  0.000643  UAGCUUAUCAGACUGAUGUUGA  ch11  

miR-22-3p  32.5092  0.039342  AAGCUGCCAGUUGAAGAACUGU  ch11  

miR-222-3p  55.6404  0.04257  AGCUACAUCUGGCUACUGGGU  chX  

miR-223-3p  60.5419  0.005702  UGUCAGUUUGUCAAAUACCCCA  chX  

miR-24-3p  111.0388  0.016333  UGGCUCAGUUCAGCAGGAACAG  ch13  

miR-27a-3p  86.0089  0.026101  UUCACAGUGGCUAAGUUCCGC  ch8  

miR-29a-3p  169.679  0.043498  UAGCACCAUCUGAAAUCGGUUA  ch6  

miR-30e-5p  95.771  0.024435  UGUAAACAUCCUUGACUGGAAG  ch4  

miR-320-3p  31.0873  0.00703  AAAAGCUGGGUUGAGAGGGCGA  ch14  

miR-34a-5p  99.449  0.03182  UGGCAGUGUCUUAGCUGGUUGU  ch4  

miR-34c-5p  80.3869  0.020111  AGGCAGUGUAGUUAGCUGAUUG  ch9  

miR-342-3p  23.2586  0.017736  UCUCACACAGAAAUCGCACCCGU  ch12  

miR-375-3p  47.665  0.010424  UUUGUUCGUUCGGCUCGCGUGA  ch1  

miR-465b-5p  23.6548  0.015052  UGCAAUGCCCUAUUUAGAA  chX  

miR-183-5p  92.3576  0.004631  UAUGGCACUGGUAGAAUUCACU  ch6  

miR-883a-3p  -4.233  0.045197  UAACUGCAACAGCUCUCAGUAU  chX  

*miR21 is highly significant upregulated via the Bonferroni correction method 

(p<0.0006).  

  

 

  

The scatter plot and cluster gram data analysis was performed to confirm the 

miRNA distribution depending on their expression changes in the sperm of HFD 

and controls (AMC) mice through http://pcrdataanalysis.sabiosciences.com/ 

mirna software (Figure 5.5 and Figure 5.6).  

http://pcrdataanalysis.sabiosciences.com/%20mirna
http://pcrdataanalysis.sabiosciences.com/%20mirna
http://pcrdataanalysis.sabiosciences.com/%20mirna
http://pcrdataanalysis.sabiosciences.com/%20mirna
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Figure 5.5 Scatter plot of miRNA expression:  

log 2 values of relative miRNA expression of mouse sperm versus-Log 10 of the p-value. The 

red colour is significant and non-significant highly expressed miRNAs, and the black colour is 

the downregulated miRNAs. The expression profile of 84 different miRNAs is as log10 (2^-

Delta Ct) of normalized gene expression level in the sperm of HFD group (X-axis) compared 

with AMC mice (Y-axis) at P = 0.05. (HDF: High-fat diet mice; AMC: Aged matched control 

fed mice).  



 

 

  

 
  

  

Figure 5.6  Hierarchical clustering heat map representation of the transcriptome analysis of miRNAs in the spermatozoa of mice.  

Changes in the expression of miRNA from HFD sperm compare to AMC sperm (p< 0.05). Each row is displaying the data from different samples. 

Samples are depicted in columns and miRNAs are clustering in rows. The different colours indicated the miRNAs species upregulation and 

downregulation of red and green colour indication respectively.   
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miRNA regulation in the early stages of spermatogenesis has been studied 

previously (Wang and Xu, 2014) but their role in the later stage of motile sperm 

remains to be fully appreciated.   

After Bonferroni correction, the expression of miR-21a-5p was highly significant 

(0.000643) in the sperm of HFD mice. The fold regulation is equal to the fold 

change of 2^ (- Delta Delta Ct) equals the normalized gene expression 2^ (- Delta  

Ct) in the sperm of HFD mice divided the normalized gene expression 2^ (- Delta 

Ct) in the sperm of AMC mice. It was decided to explore the epigenetic regulation 

of this miRNA further.   

miR-21a-5p is a ubiquitous oncogene or tumour suppressor;  miR-21a (mirBase 

Accession: MINAT0000530), and is broadly conserved among vertebrates. As 

this was highly upregulated in HFD mouse sperm, we were interested in 

investigating the epigenetic regulation of miR-21a by exploring any changes in 

the methylation of the promoter region responsible for its expression. The Primary 

transcript (Pri-miR-21a), which lies next to VmP1 (Vacuole Membrane Protein 1) 

promoter region, also known as Transmembrane Protein 49 (TMEM 49) gene are 

regulated by binding site “CCTAATAAGG” called CArG box transcription control 

element within the promoter region (Figure 5.7) according to a previous 

study(Zhang et al., 2011).   
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Figure 5.7 Putative region of miRNA-21a structure and function,  

The schematic is showing the transcription site of pri-miR-21 with the red arrow and other 

coloured different transcription sites. Modulated and cited by (Fujita et al., 2008). SRF or 

CArG is representing the transcription control element.  

  

pri-miR-21 and VmP1 regulate the mature miR-21 independently. Besides, it has 

been found overlapped with the upstream 3’UTR end of VmP1, of 

chromosome11qC in mice, in the last protein-coding exon (12 downstream) of 

the transcript (Figure 5.8).  
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Figure 5.8  Schematic structure of mouse sperm VmP1 transcript and miR-21a.  

a. Represents chromosome11 (99.9 /kb size) in mice where VmP1 transcript is located on 

qc11 between 86.615.0 and 86.685.00 position. b. VmP1 containing 12 highlighted exons, P 

is the promoter region, the active transcribed site of Pri-miR-21; exon12 adjacent to the 

promoter region and the site of CpG islands. C. the miRNA and the seed region showed 

underlined with green marks of the two CpG sites (from UCSC genome browser, genome-

euro.ucsc.edu).  

  

  

  

  

   

https://genome-euro.ucsc.edu/cgi-bin/hgGateway?redirect=manual&source=genome.ucsc.edu
https://genome-euro.ucsc.edu/cgi-bin/hgGateway?redirect=manual&source=genome.ucsc.edu
https://genome-euro.ucsc.edu/cgi-bin/hgGateway?redirect=manual&source=genome.ucsc.edu
https://genome-euro.ucsc.edu/cgi-bin/hgGateway?redirect=manual&source=genome.ucsc.edu
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5.3.2  DNA methylation analysis  

In this study, VmP1 has been found hypermethylated in the sperm of the control 

mouse sperm when compared to those from HFD mice. miR-21a is one of a small 

number of miRNAs that are located on exons 12 (Adams et al., 2007), it is a 

critical regulator of adipogenesis, gluconeogenesis, and glucose uptake (Calo et 

al., 2016). miR-21a expression level appears to be altered by consumption of 

obesogenic diet.   

  

5.3.3  VmP1 DNA methylation:   

The regulatory region that contains pre-mir-21a has confirmed the presence of 

two methylated CpG sites in this area (Figure 5.8) at chromosome11qC, a 

homolog of human chromosome 17q23 (Ribas et al., 2012). Figure 5.9 is 

exhibiting that site1 of CpG is highly methylated in AMC (89.43%); this site 

indicates the start of transcription activity of miR-21a, while showed lower 

methylation level in the HFD sperm (65.73 %). The second site was recorded a 

relatively low, non-significant methylation value (40-55%) in both groups.  
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Figure 5.9  CpG site-specific methylation is represented for VmP1 in the sperm of HFD 

and AMC male mice.  

A schematic representation of VmP1 CpG sites from HFD (n=12) and controls (AMC), (n=12). 

Xaxis is representing the sperm while the Y-axis is the methylation percentage of CpG sites 

of VmP1. The analysis was performed using one way ANOVA analysis. * P<0.05 compared 

to HFD from the same site.  
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5.4  Discussion  

The relationship between obesity and male infertility is still ambiguous. Some 

evidence of semen parameters including sperm density, motility and 

abnormalities could accompany paternal obesity (Rybar et al., 2011)  

The current study shows the miRNA expression differences in C57BL/6 male 

mice fed on HFD and AMC into gain an overview of how obesity could lead to an 

improper genes behavior or epigenetic changes on the sperm DNA sequence 

that may lead to impairing sperm development and function, then cause infertility.  

Different studies were carried out to prove the transmission of epigenetic marks 

from parents to the offspring that make phenotypic changes until the third or 

fourth generation. For example, let-7 and miR-124 have found to be transferred 

from the obese father’s sperm to the oocyte and reduce the body weight of the 

newborn (Grandjean et al., 2009; de Castro Barbosa et al., 2016; Fullston et al., 

2016; Ornellas et al., 2017). To date, little has been done to understand molecular 

changes that could take place in the ancestors.  

We used a mouse model to study the role of HFD in the male gamete epigenetic 

reprogramming and the information carried by the sperm that could be induced 

by dietary changes by interfering with chemical and molecular components of the 

testes germ cells and mature sperm (Palmer et al., 2012). 

We found that the best method of collecting epididymal sperm from mice by the 

simple swim-up technique that allows the lowest somatic cell contaminations 

and another artifact that could interfere with the RNA preparation. Good quality 

RNAs and DNAs from the same samples were isolated to study the miRNA 

expression and DNA methylation respectively.   



 

149  

  

PreAmplification for cDNA samples was done in order to improve the miRNA 

input, which is a low amount in the sperm. After preAMP, we found that we had 

sufficient miRNAs and also the preAMP did not affect the quality of original RNA 

samples, which can affect the reverse transcription reaction while the cDNA and 

the reverse transcription product is already preamplified and not affected.   

The expression of 84 mature sperm-specific miRNA can be detected by RTqPCR 

in all samples of the study and are ready to target pathways vital for sperm 

maturation, oocyte fertilization, and EED. miRNA were chosen based on previous 

studies, then some of them were correlated with miRNAs that were expressed 

and have a vital role in obesity (Appendix1). RT-qPCR confirms that most of 

sperm-specific miRNA is expressed in the sperm of HFD mice, but only 28 was 

significant upregulated (p<0.05) including let-7 family, miR-10b, miR-34 family 

and miR-21 family, the only miRNA that records a significant downregulation was 

miR-883a due to diet changes toward high-fat diet. miR-883a is very important 

for spermatogenesis by its repression function on the actin reflected protein 5 

mRNA (Arpc5) to repress 80S formation in Sertoli cells (Skinner and Griswold 

2004; Chang et al., 2012).  

The let-7 family has been shown to be targeting genes that have a role in the 

regulation of lipid, glucose metabolism, and insulin tolerance, miR let-7c is 

expressed differentially via its targets UcP2 and Ppap2a transcripts in the sperm 

in response to HFD (de Castro Barbosa et al., 2016). Let-7 family overexpression 

may relate to excess body fat distribution in the body and develop obesity by 

PI3K-mTOR signaling and inhibiting translation of multiple gene targets such as, 

Igf1r, Hmga2, and Igfrbp2, Thus, miR-let-7 are possibly associated with obesity 

and type2 diabetes (Zhu et al., 2011).   



 

150  

  

This miRNA expression differences between current and previous studies could 

be attributed to the concept that sperm miRNA is expressed in a different stage 

of development, the 29 highly expressed in our mature sperm during its presence 

in the epididymis and are needed to complete their maturation in the epididymis 

before being ejaculated. While the other 52 miRNA are also sperm-specific 

miRNAs but expressed in the different stage during spermatogenesis in the 

seminiferous tubules or afterward in the oocyte or at fertilization and EED. One 

example, let-7 was first discovered and needed for the early stage of 

development by targeting lin-14 mRNA (Bartel and Chen, 2004). Thus, each 

miRNA is important for a specific time of life and exert their functions by switching 

genes on or off.   

miRNAs have different expression pattern depends on the type of cells they are 

expressing in and its condition. Some miRNAs were downregulated during 

adipogenesis and others upregulated depending on the genes they are targeting. 

miR-27 significantly upregulated (p>0.02) in the current study, it is known to be 

downregulated with adipogenesis and it is increased in fat cells of HFD mice by 

targeting PPAR family. miR-126-3p has not expressed significantly in our study, 

however, it recorded a significant increase in the sperm of HFD mice by targeting 

DNMT1 and cause its hypomethylation in a previous study (Fullston et al., 2016). 

Another known mechanism that leads to P53 dysregulation in adiposity is when 

Six1 targets miR-27a and PRL26 that lead to cell cycle arrest and apoptosis 

(Towers et al., 2015).   

HFD activates the P53 pathway with target genes to cause DNA damage, P53 is 

known to regulate adipogenesis and enhance the expression and maturation of 

miR-145a and miR-143. miR-145 expression, mostly occurs in reproductive 
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organs like ovary and prostate, lead to mTOR signalling pathway inhibition which 

is for regulation of insulin, ATP, and amino acid secretion as well as for 

embryogenesis, this will cause a PI3K, AKt3 pathway important for most sperm 

activity and inhibition of RPS6 then apoptosis (Zhou et al., 2017; Twenter 2016).  

miR-34c is upregulated in our data, this miRNA has been proposed to be very 

critical for male fertility by impairing spermatogenesis to cause oligospermia (Wu 

et al., 2014) and required in mouse embryo for the first cleavage division (Liu et 

al., 2012) by targeting Bcl2 mRNA to start embryo development (Chen et al., 

2017).  

Our study has confirmed some of the miRNAs that are expressed a non-

significant differences in the sperm of HFD mice like miR-133b-3p, miR -196a-5p 

and miR -340-5p. This is in-line with a previous study by Fullston 2016 using 

Taqman assay and microarray analysis (Fullston et al., 2016) while we used the 

SyberGreen RT-PCR with PreAmp of acceptable Ct value less than 30 for miRNA 

detection. The miR-133 family is highly expressed in muscles and called 

myomiRNAs by targeting SFR, HDAC4, and cyclin D2 mRNA (Yu et al., 2014). 

miR-130 is upregulated in HFD mice by targeting the same mRNA PPARγ2 (A 

McGregor and S Choi, 2011; Peng et al., 2014) while it is not expressed in the 

sperm of our study.  

Also, we found the upregulation of miR-20, miR-21 and miR-106 which been 

approved that they target STAT3 and Ccnd1 to stimulate spermatogonial stem 

cells renewal in mice(He et al., 2013). Another overexpression of miR-34c, miR-

204, and miR-465b which found enriched in testicular cells (Niu et al., 2011). miR-

17/92 family (miR-17/18a,18b, 20b, 93, 106a and 106b) upregulation been found 

related to spermatogenesis and targeting bcl2 and its inhibition leads to male 
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infertility (Tong et al., 2012) also they have a role in adipogenesis (Wang et al., 

2008; An et al., 2016; Deiuliis 2016). The significant upregulation of miR-222 and 

miR-223 (P<0.04 and 0.005 respectively) in our data and both are located on 

chromosome X where they related to metabolic disorders were confirmed 

previously, miR-222 is regulating GLUT4, ERα and miR-223 is targeting Pknox1 

in the fat of mice epididymis (Deiuliis, 2016). miR-200 also significantly (P<0.003) 

overexpressed in our study have previously approved its regulation in obesity 

(Benoit et al., 2013). miR-29a (P<0.04) from mir-29 family (a,  b-1, b-2, and c) 

has been reported to target genes like FOXA2 in the insulin signaling pathway of 

fat cells (He et al., 2007). miR-375 (P< 0.01) has had a role as well in obesity via 

the ERK1/2 pathway (Ling et al., 2011). The highly significant (p< 0.045197) 

downregulated in the sperm of HFD mice was miR-883a, which was reported that 

it is vital in the gene expression of testicular germ cells (Song et al., 2009).  

miR-21a was highly upregulated (p>0.0006) in the sperm of HFD, this may be 

due to the hypomethylation of miRNA transcripts and its promoter, the 

transcription process is increasing as well. It has already been approved that 

miR21a is upregulated in different tissues when associated with HFD, our study 

revealed for the first time its upregulation in sperm (Zhang et al., 2014).  

To understand the miR-21a regulation and function we search the transcript 

regulators and its promoters to study the methylation pattern in the sperm of HFD 

and AMC mice. miR-21a in mice was found in the opposite direction on 

chromosome 11 on the antisense, not like the human which usually located on 

the sense DNA. Chromosome 11 has found that it contains genes that control 

high-fat diet-induced metabolic syndrome like STAT3/5 (Ermakova et al., 2011).  
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miR-21 abnormal expression may cause abnormal cell proliferation, invasion or 

growth and metastasis depending on the function of miR-21 in specific cells. It 

could be up or down-regulated by targeting several mRNAs, including MMP9, 

PTEN, PDCD4, and TGF-B suggesting that balancing miR-21 has importance in 

cell function, cell growth and proliferation (Krichevsky and Gabriely, 2009).  

miR-21 has been found to be the best hit in the detection of miRNA regulation in 

cancer and cardiac diseases (Zhang et al., 2011). Also has found it is a key 

regulator of PPARγ mRNA that direct metabolic diseases (Rodrigues et al., 

2017).   

miR-21a is targeting TGBR2 pathway which is the principal pathway for adipocyte 

differentiation and development (Kim et al., 2009) at the same time targeting 

SMAD3 to inhibit TGF-β pathway. On the other side, P53 pathway plays a role 

by signalling miR-27, miR-145a (Cui et al., 2014) and miR143 (Feng et al., 2011) 

to participate in adipocyte and sperm function through multiple targets and can 

cause apoptosis and affect early embryonic development (Napoletano et al., 

2017) (Figure 5.10). 
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Figure 5.10 miRNA pathways that affect spermatogenesis and sperm activity and 

related to hypertrophy of adipocytes  

  

DNA methylation has been evaluated using bisulfite conversion method to treat 

the DNA of interest and perform PCR analysis.  

The pattern of reprogramming in germ cells where demethylation followed by de 

novo methylation is fundamental for embryogenesis as well as plays a vital role 

in initiation and development of diseases and cancer (Piperi et al., 2008). The 

sperm DNA could be methylated or non-methylated depending on specific loci on 

the sperm that affected by environmental stimuli (Bohacek and Mansuy, 2015).   

The sperm genes are mostly methylated and the transcription sites are acting 

similarly to pluripotent cells genes like Nanog and Smarcd1 suggesting that the 
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sperm cells can highly reprogram and could change after fertilization (Farthing et 

al., 2008). The VmP1 is the promoter region of pri-miRNA-21a and found more 

methylated in AMC mice than obese male mice, which are accurate that most 

sperm genes are transcriptionally silent and increase methylation leads to gene 

transcription inhibition while miR-21a found highly expressed that also concludes 

that it is by targeting the VmP1 leads to translation inhibition.  

Some promoters are highly methylated in sperm like Nanog, Oct4, and Sox2 key 

regulators transcripts, while in other tissues were hypomethylated or not 

methylated. Changes in methylation level may refer to a reprogramming process 

at spermatogenesis and gene transcription sites, are protected from de novo 

methylation (Farthing et al., 2008; Jones, 2012). Also, the variation of sites of 

CpG that could be some of them methylated while the others are not may referred 

to a dynamic state of that sites or not maintained in EED or due to inheriting 

abnormalities (Jones, 2012).   

Here we provide clear evidence that obesity has an impact on the sperm 

epigenome in specific miRNAs expression and DNA methylation. Further 

investigation may need to confirm firstly, the relationship between these changes 

that we found with the pregnancy rate success and ART outcomes. Secondly, to 

investigate in depth miRNA targets in sperm and their role in sperm development 

and function with diseases and reproduction.  
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5.5 Conclusion and future directions  

In conclusion, miRNA expression is altered in an obese mouse model, which 

indicate that obesity may regulate miRNA expression. Additionally, changes in 

the methylation status at CpG islands within the promoter region of the gene 

coding miR-21 demonstrates that obesity can alter the epigenetic control of both 

DNA methylation and miRNA expression.  

Although this study revealed some interesting data concerning the relative 

expression of miRNA – only a pre-selected set of miRNAs were investigated. 

Further work would involve expanding miRNAs of interest and more shotgun 

sequencing to discover novel miRNAs. Additionally, more focus on the transcript 

and protein targets of these miRNAs would be explored. 

Strenghts and limintaitons of mouse models in reproductive biology 

The house mice (Mus musculus) is a commonly used animal model to study 

reproductive biology because of their phylogenetic kinship and physiological 

similarity to humans. Moreover, in light of the moral, ethical, and legal issues 

involved in working with human gametes, as well as their limited availability the 

mouse model has proven to be an appropriate replacement.  The mouse  has 

many favourable traits making it a suitable model – including  the ease of 

maintaining and breeding them in the laboratory, and the availability of many 

inbred strains. Mice have long served as models of human biology and disease 

including fertility studies. 

The mouse has been a useful model to study reproductive biology – in particular 

sperm-egg interactions and fertilisaiton studies. Mouse studies on sperm-egg 

binding (Clarke and Dell, 2006), egg activation (Saunders et al, 2002) and 
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embryogenesis, and in vitro culture (Ménézo and Hérubel, 2002) have been 

pivitol in our understanding of fundamental reproductive physiology and biology 

– many findings such as PLC zeta (Amdani, Jones Coward, 2013) and sperm 

binding protiens (Izumo / juno) (Young, Aitken and Baker, 2015) have been 

subsequently found active in human – with clinical relavence. Furthermore, the 

early work on mouse embryo culture by McLaren and Biggers (1958) paved the 

pathway for Assisted Reproductive Technology and IVF.  

The process of spermatogenesis in rodents and humans have features are 

conserved between the species. For example, spermatogenesis emerges from 

isolated spermatogonia that give rise to clones of interconnected of cells that 

become more differentiated with each successive division, to the final mature 

spermatozoon and as mentioned above many similar cellular precess of 

fertilisation are shared.  

However, differences exist between the two species that are limit the use o of the 

mouse system a poor model, for instance, methods of centrosome inheritance. 

During human fertilization the spermatozoon restores the zygotic centrosome 

whereas the mouse follows a maternal method of centrosome inheritance. Mouse 

sperm biology are very different to humans. Mouse sperm are more 

morphologically homogenous than human sperm (where the lower limits for 

normal forms are considered to be 4%: WHO, 2010).   

Furthermore, a potential bias when using mice is the use of epididymal 

spermatozoa in the mouse system and the use of ejaculated spermatozoa in the 

human system. Although the use of mouse models is ideal for in vivo 

physiological studies, caution with interpretation and extrapolation to human 



 

158  

  

reproductive biology is warrented. Having said that – the mouse has been an 

invaluable model for the study of reproction.  
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Chapter 6: General discussion 

Summary of findings 

The first findings of this thesis describe that sperm contains a myriad of a 

significant amount of RNA. mRNA expression in motile and immotile sperm of 

normal cohorts, in order to study the RNA contents that may be altered due to 

different sperm activity. mRNA pathways and different software were applied to 

study the expression differences and functions, as well as find the miRNAs 

involved in such pathways. Ribosomal RNAs were the most significant mRNA 

that expressed differentially between motile and immotile sperm. This confirms 

the importance of these transcripts in spermatogenesis and fertilization despite 

the notion that sperm is void of ribosomes during spermatogenesis (Johnson et 

al., 2011). However here we can confirm that sperm still contains some active 

transcripts that have an impact on its activity.  

Next, to study the miRNA that targeted the mRNA in the same cohorts, miRNA 

were studied and found that miRNAs were expressed differentially between 

different motility sperm groups. This could be used as a non-invasive method to 

diagnose male infertility. 

In chapter 5, we utilised mouse model of obesity to explored miRNA expression  

(Takao and Tsuyoshi, 2015; Perlman, 2016). This study would highlight potential 

modulations in miRNA expression in sperm from obese and control mice. In 

addition, miRNA are highly conserved between mice and human in most 

conditions (Chen et al., 2019). Here we find that miR-21 was the most abundant 

miRNA in the sperm of HFD mice, and it is located on the promoter region of 
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VmP1 gene. VmP1 was less methylated in the same group of study (sperm of 

HFD mice). Normally, miRNA targets mRNAs transcripts and cause degradation 

of that gene, but in abnormal conditions, they can be expressed differently 

causing genes switched on/ off depending on expression level. DNA methylation 

can interfere with transcription site of miRNA leading to repressing genes at that 

site (Li et al., 2019). These findings could explain how changes in diet toward fat 

content can modulate the genetic content in the sperm and lead to infertility.  

This is important research that correlates the sperm function, miRNA content and 

its targets, and the mRNA, and the region where they originate from that called 

promoter region where DNA methylation can augment the previous findings. 

 

 

Strenghts and Limitaitons 

 

The apllicaiton of cutting edge technology such as Next Generation sequencing 

(NGS) and the Illulumina platforms to explore the transcriptome and miRNA 

content of sperm has become more available and afforadable in recent years. 

These methods offers a rich resource for investigations in to the molecular 

andrology of fertility and reproductive biology. The present study applied this 

approach to investigate the relative expression of mRNA in human sperm. The 

use of NGS does however come with challenges, a significant one being to 

complete transcript analysis of low quantity and/or degraded samples is the 

amplification of minimal input RNA to enable sequencing library construction. The 

content of total RNA in sperm is small and the % of quality mRNA derived from 

sperm nuclear acid extracts limited. High quality sperm RNA extraction and the 

method of amplification strategy was an important limiting factor in this approach. 
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However, through testing a number of RNA isolation kits, suffiucient RNA was 

obtained to run a successful sequence analysis.  

In the attempt to isolate and amplify sperm miRNA form human sperm – the 

repeated technical challenges was the gel purification for library preparation, 

where sufficient and quality cDNA could not be obtained. Due to time contratints 

and cost, this approach had to be abandoned. With more time and resources, this 

approach could be improved through exploring the use of different RNA 

preparation protocols to improve miRNA yield and alternative cDNA isolation 

techniques.  

Sample size was another limitation of this study. Unlike clinical research 

programmes, where samples surplus to clinical use can be consented for 

research - alturistic donation of samples for reaearch provide resources, however 

the number of volunteers were limited.  

The use of animal models to study reproductive biology is a standard approach 

–due to the ease of controlled experimental conditions and tissue extraction. 

However, caution is warrented with extrapolations to human studies. The mouse 

model of offered a controlled approach to explore the epigenetic regulation of 

miRNA expression. Additionally, as the tissue dertrived from these mice were 

surplus to use, this approach was fitting with the 3Rs remit of reducing the use of 

animals in research.  
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Appendices  

Appendix1:   

Table 1  Previous studies of miRNA differential expressed in motile and 

immotile human sperm  

Mature 

miRNA  

Group D  Group A    
References  

  

  

  
comments  

Fold 
change  

  
P value  Fold 

change 

  
P value  

hsa-let-7a-5p  0.217 

↓  

0.0005* 

**  

0.437↓  0.685    

  

  

(Liu, 2012 )  

(Zhu, 2011) 

(Tong,  Mitchell  

et al., 2011)  

  

  

Involved  in  the  

regulation of insulin 

resistance genes,  

obesity, diabetes and 

aging.  

Highly expressed in 

sperm and important in  

early  development  

stages.  

hsa-let-7b-5p  0.68↓  0.759  0.94↑  0.435  

hsa-let-7c-5p  undetermined  

  

5.143↑  0.322  

hsa-let-7d-5p  undetermined  

  

4.50↑  0.361  

hsa-let-7e-5p  0.533 

↓  

0.0127* 

*  

1.48↑  0.431  

hsa-miR-100- 

5p  

0.589 

↓  

0.418  1.22↑  0.494  (Liu, 2012)  

(Abu  Halima,  

2013)  

Related to fertile and 

infertile cohorts  

hsa-miR-

125b- 

5p  

0.616 

↓  

0.55  1.931↑  0.362    

  

Not expressed in sperm in previous studies  hsa-miR-132- 

3p  

undetermined  

  

2.89↑  0.082  

hsa-miR-

148a- 

3p  

undetermined  

  

3.130↑  0.336  

hsa-miR-15b- 

5p  

0.389 

↓  

0.082  0.66↓      Highly  expressed  in  

astheno  and  

oligospermic patients  
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hsa-miR-16-

5p  
0.152 

↓  

0.001**  0.286↓  0.045*  (Abu-Halima,  

Hammadeh  et  

al., 2013)  

Highly  expressed  in  

asrheno  and  

oligospermic patients  

 
hsa-miR-191- 

5p  

undetermined  

  

3.759↑  0.020*    

Not expressed in sperm in previous studies  

hsa-miR-195- 

5p  

0.103 

↓  

0.0006* 

**  

0.218↓  0.0001* 

**  

hsa-miR-19a- 

3p  

0.084 

↓  

0.006  

**  

0.309↓  0.0039* 

**  

 (Abu-Halima  et  

al., 2013)  

 Highly  expressed  in  

 astheno  and  

oligospermic patients  

hsa-miR-19b- 

3p  

0.152 

↓  

0.030*  0.342↓  0.0009* 

**  

(Liu, 2012 )  

  

Related to fertile and 

infertile cohorts  

hsa-miR-21-5p  0.834 

↓  

0.528  1.848↑  0.391  (Zhang et al.,  

2011)  

  

hsa-miR-23a- 

3p  

0.665 

↓  

0.739  1.606↑  0.426  (Liu, 2012 )  

 (Krwatz et al.,  

2011)  

Related with fertile and 

infertile cohorts  

hsa-miR-23b- 

3p  

  

0.490 

↓  

  

  

0.079  

  

  

3.13↑  

  

  

0.623  

  

(Abhari,  

Zarghami et al.,  

2014)  

  

Expression of mir21 and 

mir 22 is much  

higher in oligospermic 

patients AKT1 gene been 

targeted by miRNAs and 

is  

important for survival and 

metabolism in cells.  

hsa-miR-24-3p  0.473 

↓  

0.389  

  

undetermined  

  

(Marcon et al.,  

2008  

/  

hsa-miR-25-3p  0.362 

↓  

0.107  undetermined  

  

 (Abu-Halima  et  

al., 2013)  

 Highly  expressed  in  

 astheno  and  

oligospermicpatients  

hsa-miR-26a- 

5p  

0.509 

↓  

0.0009* 

**  

1.361↑  0.459↑  (Liu, 2012 )  

  

Related to fertile and 

infertile cohorts  
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hsa-miR-26b- 

5p  

0.328 

↓  

0.0000 

3***  

0.811↑  0.656↑  Not expressed in sperm in previous studies  

hsa-miR-142- 

5p  

7.890 

↑  

0.241  undetermined  

  

 (Abu  Halima,  

2013)  

 Highly  expressed  in  

 astheno  and  

oligospermic patients  

hsa-miR-223- 

3p  

5.655 

↑  

0.149  undetermined  

  

Not expressed in sperm in previous studies  

hsa-miR-29c- 

3p  

undetermined  

  

1.506↑  0.438  (Yan et al., 2012)  

(Yan, Shah et al.,  

2012)  

/  

hsa-miR-30a- 

5p  

0.766 

↓  

0.803  1.511↑  0.438  (Liu, 2012 )  

  

Related to fertile and 

infertile cohorts  

hsa-miR-30c- 

5p  

0.511 

↓  

0.142  0.905↓  0.761  (Marczylo,  

Amoako et al.,  

2012)  

Expressed differentially 

in sperm of smokers 

compared with 

nonsmokers  

hsa-miR-30d- 

5p  

undetermined  

  

5.356↑  0.271  (Abu Halima et  

al., 2013)  

/    

hsa-miR-30e- 

5p  

0.781 

↓  

0.865  1.889↑  0.296  (Yan et al, 2012)  /    

hsa-miR-342- 

3p  

undetermined  

  

4.365  0.341    

Not expressed in  

sperm in previ ous st udies  

hsa-miR-92a- 

3p  

undetermined  

  

2.717  0.340  

hsa-miR-99a- 

5p  

undetermined  

  

  

1.99↑  

  

0.333  

  

Krwatz  et  al.,  

2011  

  

Enriched 

spermatogonial 

population  

in 

cell  
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Table 2 Some of applicable web- based tools analysis for miRNA prediction     

sites 

 Tool of   

s  

 Brief 

description 
   Web server   

analysi 
  

miROrtho   Computational catalogue analysis 

of miRNA sequence for multiple 

species  

(Gerlach, Kriventseva et al.,,, 

2008)  

(http://cegg.unige.ch/mirort ho)  

TargetSca n     http://www.targetscan.org/   

   

miRBAse   A database search of published 

miRNA sequences.  
ww.mirbase.org  

miRTar   An integrated web server for 

detecting miRNA-target 

interactions in human  

 http://mirtar.mbc.nctu.edu.t  

w/human/  

miRscan   A web server to allocate scores 

for sequence of hairpains based 

on their parallels to 50 pairs of 

experimentally confirmed 

C.elegans / C.briggsae miRNA 

hairpains  

http://genes.mit.edu/mirsca n/  

DIANA 

tool 
  To provide software of databases 

and algorithms to analyse the 

deep sequencing data expression  

and find targets involved in 

diverse diseases and pathways.   

 http://diana.imis.athena- n 

    innovation.gr/DianaTools/i 

dex.php  
 

miRanda   To recognise the miRNA targets in 

numerous mammalian cells  
 http://www.microrna.org/mi  

crorna/getGeneForm.do  

PicTar   An algorithm tool to detect miRNA 

targets  
 http://pictar.mdc-berlin.de/   

  

http://cegg.unige.ch/mirortho
http://cegg.unige.ch/mirortho
http://cegg.unige.ch/mirortho
http://cegg.unige.ch/mirortho
http://www.targetscan.org/
http://www.targetscan.org/
http://diana.imis.athena-innovation.gr/DianaTools/index.php
http://diana.imis.athena-innovation.gr/DianaTools/index.php
http://diana.imis.athena-innovation.gr/DianaTools/index.php
http://diana.imis.athena-innovation.gr/DianaTools/index.php
http://diana.imis.athena-innovation.gr/DianaTools/index.php
http://diana.imis.athena-innovation.gr/DianaTools/index.php
http://diana.imis.athena-innovation.gr/DianaTools/index.php
http://www.microrna.org/microrna/getGeneForm.do
http://www.microrna.org/microrna/getGeneForm.do
http://www.microrna.org/microrna/getGeneForm.do
http://pictar.mdc-berlin.de/
http://pictar.mdc-berlin.de/
http://pictar.mdc-berlin.de/
http://pictar.mdc-berlin.de/
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 Table.3 The expressed genes from both mRNA and miRNA in the 

current study via Target scan tool analysis  

No.  Gene symbol  miRNA targets  

1  NKX3-1  miR-142-5p, miR-26-5p, miR-129-5p, miR- 

302-3p/ 372-3p/ 373-3p/ 520-3p, miR-155-5p  

2  RPS4X  miR-125a/b-5p, miR-23a/b/c-5p, miR-130a- 

5p  

3  RPLP0  Poorly conserved  

4  EEF1A1  miR-33-5pa/b, miR-143a-5p, miR-133a/b-3p  

5  RPLP26  miR-216a/b-5p  

6  RPL27  miR-143-3p, miR-141-3p, miR200a-3p, 

miR365a/b-3p  

7  RPLP1    

8  TPT1  miR-520c/b/d-3p, miR-302a/b/d, miR-372-3p, 

miR-150-5p  

9  KLK2  miR-33a/b, miR-26a/b, miR-143, miR-9, miR- 

135a/b, miR-216b, miR-15a/b, miR-16, miR- 

21-5p, miR-590, miR-212,miR-132  

10  FTH1  miR-142-3p, miR-365a/b-3p, miR-590-5p, 

miR-21-5p  

11  HSP90  miR-23a  (Wenhao, De-Feng et al.,,, 2015)  

  

  



 

196  

  

 Appendix 2  

Faculty Ethics number: SE111229A03  

  



 

197  

  

 

6.1.1.1 Participant information Sheet  

Title of Study: Investigating the effects of lifestyle and environment on human sperm  

Study Background:   

Male factor infertility can account for 40% of infertility experienced by couples trying to 
conceive. As sperm is produced continuously in the testis through the process of 
spermatogenesis – the sperm cells are vulnerable to damage. This damage can occur 
in the sperm cell membrane and the DNA and RNA. In addition to damage to sperm 
nucleic acids, alterations in epigenetic status can occur, which include aberrant DNA 
methylation and microRNA expression.   
We will investigate how environmental compounds, various drugs and lifestyle 
exposures can cause this damage. The information will offer potential therapeutic 
options that may improve infertility.   
Who can take part?  

  

Any male aged over 18 years old.   

  

What is involved?  

  

You will be required to provide a semen sample either at home or within a 
secure room at the school of healthcare science. You will produce this semen 
via masturbation. A full sample is required. You will be provided with a sterile 
container from which to deposit your specimen.   
The semen sample will be assessed for parameters such as motility (how well 
the sperm are moving), morphology (the shape of the sperm cells) and 
concentration (the number of sperm per millilitre of seminal fluid). The sperm 
will then undergo a variety of biochemical and molecular biology tests. The 
samples will be stored at -80°C for further analysis.   

Your sperm sample will NOT, at any time, be used for any assisted reproductive 
techniques and will ONLY be used for research or teaching purposes.  You will 
also be asked to provide a blood sample and saliva (optional). The blood will 
be taken by an experienced phlebotomist and is a quick and painless 
procedure.   For the saliva sample, you will just spit in a sterile container. Both 
blood and saliva will be prepared and stored at -80°C until required. These 
samples will be used for biochemical and molecular analysis.   

  
Please note that this is not a diagnostic test and you will not be informed of the quality 
of your semen/sperm.   
  

Are there any risks in taking part in the study?  

  

There may be a slight risk of fainting due to the physical activity of semen 
production. If you are providing the sample on site, the secured room can be 
locked from the inside. After an allotted time has elapsed, a study team member 
will knock on the door to ensure you are OK. If there is no answer, they will 
enter the room using a key to establish your status.   
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Appendix 3: High-Fat mouse Diet formula  
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Appendix 4: Age-matched control mouse diet formula   
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Appendix 5 : Collaboration letter of HFD mouse study  

  

  

  


