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ABSTRACT A state-of-the-art Machine Learning (ML) based approach, by modeling the behavior of 

Gallium Nitride (GaN) power electronic devices, is presented in this paper. Switching voltage and current 

waveforms of these novel devices are accurately predicted using the developed supervised ML algorithm. 

This was utilised to build a more generic black-box model for these devices. Moreover, long short-term 

memory unit (LSTM) and gated recurrent unit (GRU) device models have been proposed to make the 

approach more user friendly. The performance of the developed approach is verified using a set of 

simulations and experimental tests under 450 V, 10 A test conditions. Model results demonstrate an error 

rate of 0.03 and convergence speed of 3s with excellent stability. Compared to the existing models, the 

developed ML-based model produces more accurate results, converges faster and has a better stability. 

Additionally, the developed ML-based GaN model offers the ability to select the best fit available GaN 

model (Panasonic, GaN Systems, Transphorm etc.). It automatically configures them into a system that 

would optimally yield the desired power conversion. This enables a shorter learning curve for the power 

electronics community, which would lead to acceptance and faster adoption of these devices by the power 

electronics industry. 

INDEX TERMS Gallium Nitride, power electronics, modelling, machine learning, neural networks. 

I. INTRODUCTION 

GaN-based devices have superior performance and material 

properties compared to those made of Si. However, before 

wider adoption by the power electronics industry, the 

behaviour of GaN devices must be fully understood. The 

steep learning curve involved is acting as a roadblock to the 

adoption of these devices by the industry [1]. To solve this 

problem, an in-depth understanding of the switching 

performance of different types of GaN devices (which are 

based on different structures) is required. Conventional 

modelling methods are derived from semiconductor physics, 

the property of materials and structure of the device, which 

usually are not available for the device users, resulting in 

difficulties in modelling the device [2], [3]. The authors have 

explored RF-based parasitic extraction to develop a 

behavioural model, but, it was observed that this method is 

not highly accurate [4]. This is because it is dependent on the 

accuracy of the measurement circuitry. 

Additionally, the RF model is developed, neglecting the 

effect of certain parasitic elements [5], [6]. Due to the 

complexity of the device structure, time involved in parasitic 

extraction and the analytical procedures involved, this model 

is not suitable for validating all applications [7], [8]. Thus, it 

cannot serve as a universal model for GaN. To solve this 

problem, GaN simulation models which are an accurate 

replica of the actual device is designed, built and 

demonstrated using ML techniques. 

GaN-based RF devices have been widely used for 

microwave applications, and CAD-based modelling 

techniques are generally used for modelling these devices 

[9]. To perform statistical CAD with current approaches is 

not feasible as a single analysis of a component may require 

several hours or days and hundreds of analyses are required. 
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It is because these techniques make use of computer-

intensive electromagnetic full-wave simulators. ML 

modelling algorithms, on the other hand, uses multi-

dimensional non-linear approximator, which maps the input 

parameters to the output ones. Hence, Neural networks (NN) 

appear to be the perfect candidate to perform this process.  

The rapidly evolving field of NN based modelling, 

especially in microwave CAD and optimization has led to 

several findings. With the increased proliferation of AI, 

researchers started investigating NN based modelling for 

microwave transistors. NN based RF transistor models can be 

developed through a computerized training process, and the 

models can be developed even if sophisticated device theory 

equations are unavailable. There are few papers in this regard 

to model microwave-based HEMT devices [10], [11]. But, 

there is not much progress for developing NN models that 

can reproduce their dynamic characteristics. While NN 

models have made inroads into wireless and communication 

areas, NN models for static and dynamic performance of 

power devices are still in its early stages of research [12], 

[13], [14]. 

Machine Learning techniques, particularly the Neural 

Networks, are recently starting to make an impact on power 

systems and motor drives. The underlying AI techniques 

such as fuzzy logic and genetic algorithms have been applied 

for elemental power electronic applications as shown in [15]. 

From all the different branches of AI, NN's barely penetrated 

the motor drives area that is evident by the publications in the 

literature, which are more than ten years old as listed in the 

above paper. Though there has been a lot of revolutionary 

strides in ML research and its application in many areas, 

there are only less than twenty-five literature /papers in the 

area of application of NN techniques for power electronics 

(PE). But some note-worthy papers are exploring neural 

network modelling for microwave devices as noted before. 

Similarly, few recent papers are currently exploring using 

NN for reliability assessment for improving the life of GaN 

power converters [16], [17]. Though reliability monitoring is 

out of the scope of this paper, the authors will be exploring 

this when the models are scaled up for commercialisation.  

Main contributions of this research work can be 

summarised as follows: 

1. ML models are used to predict the switching voltage and 

current waveforms; thus, making it possible to construct a 

black-box model of the GaN power device.  

2. The predicted waveforms are verified using experimental 

results and found to be in good agreement. Moreover, this 

was achieved at a faster convergence rate of 3s and error 

rate of 0.03 compared to existing simulation models 

which converged at 68s and more.  

3. This research demonstrates different types of GaN ML 

models. The developed voltage and current prediction 

models are based on long short-term memory unit 

(LSTM) and gated recurrent unit (GRU). Several 

parameters are quantified and compared for validating the 

models. They are the network architectures, parameters, 

training time, validation loss and error loss. 

This paper is organised as follows: Section II describes the 

practical need for ML-based modelling for GaN power 

devices. Section III details the data collection set up and 

section IV introduces the GaN power device behaviour 

modelling using ML. In section V, RNN models are 

designed, developed and demonstrated. The models are then 

validated with existing manufacturer simulation parametric 

models. Section VI discusses the contribution of this research 

work. Section VII includes conclusions and future work.  

II. PROBLEM DEFINITION: GAN HEMT BEHAVIOURAL 
MODELLING USING ML  

This work uses both single and multi-recurrent neural 

networks (RNNs) to quicken the design process of GaN 

circuits and devices. It is done using supervised training to 

predict the switching voltage waveforms. Thus, a NN based 

GaN model is developed using ML techniques. This model 

has been compared to other conventional LT-Spice 

behavioural models to compare accuracy and convergence. 

The voltage between drain and source and device current at 

both conducting and switching states can be modelled by 

using the ML process. This is done using measurement data 

of these variables along with their corresponding gate 

voltage. The data required is acquired through recording a 

large number of switching events which are then used as the 

training and testing data.  

Let x represent an Mx vector containing dynamic 

characteristics of the GaN device obtained from the double 

pulse test (DPT) circuit, like, input voltage, gate voltage, 

digital control signal and gate current. Let y represent a 

vector containing the output of the device switching 

behaviour under consideration such as device switching 

voltage and device switching current. The physical-

mathematical relationship between y and x can be 

represented as y = f(x). This relationship for GaN device is 

highly non-linear and multi-dimensional. GaN being a nearly 

ideal device, this relationship is influenced by the parasitic of 

the circuit, unlike its Si counterparts where such effects can 

be neglected. The effect of these on the device behaviour is 

challenging to measure. Additionally, the analytical physics-

based model is computationally intensive for online 

implementation.  

So, this research aims to develop a fast and accurate 

generic neural network model for GaN. This is done by 

training a neural network to learn the GaN-based switching 

circuit problem through a set of the measured and simulated 

sample set of data called training data were: [(Xs, Ds)s ∈ Tr], 
where Ds represents the measured/simulated output y for the 

input Xs and Tr represents the overall set of training data. 

Now, the neural network model can be defined as y = y(x, 

w), where w represents the parameters inside the neural 

network generally termed the weight vector. 
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In this modelling, to make sure that the neural network 

makes predictions that are close to the actual value of the 

output voltages, a loss function Mean Absolute Error (MAE) 

that will be able to reduce the distance between the predicted 

and real values and in effect increase the accuracy is used. 

The Mean Absolute Error (MAE) is the sum of the absolute 

differences between predictions and actual values. It gives an 

idea of by how much wrong the predictions are. It gives an 

idea of the magnitude of the error, but no idea of the 

direction (e.g. over or under predicting). It is defined as the 

average error over the test sample of the absolute differences 

between prediction and actual values, where all discrete 

differences have equal weight.  
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n
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'
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   , where yj is the 

prediction, and dsj is the measured value from the 

experimental results/simulation.  

The objective of the neural network training is to find ’w’ 

such that E(w) is minimized. The structure/architecture of the 

NN is defined by the definition of w, the methodology by 

which yj is computed through x and w. Since the switching 

waveforms are a continuous function, it can be predicted 

with reasonable accuracy using ML. The 6-step ML-based 

GaN modelling process used is as follows:  

1. Problem Definition: Building an accurate 600 V 

black-box model of GaN device using ML.  

2. Analyse Data: Gate voltage and input voltage are used 

as inputs; device current and switching voltage used 

as outputs for training; test data is collected from the 

double pulse test measurements and simulations.  

3. Prepare Data: Normalization is done to convert data 

for training the neural networks.  

4. Choose Model: Regression-based feed-forward and  

recurrent models are used, and the process is as 

shown in Figure 1.  

5. Training: Training data is used to incrementally 

improve the model’s ability to predict the switching 

waveforms of GaN.  

6. Present Results: The output of the device switching 

voltage and the switching current is predicted.  

 

FIGURE 1. Block diagram of GaN device behavioural modelling using 
ML  

III. DATA COLLECTION AND PREPROCESSING 

The first step in NN model development is the 

identification of inputs and outputs. Once the inputs and 

outputs are identified, the device/ circuit/ experimental data 

needs to be gathered or generated depending on the 

problem definition. For PE-based applications, there can be 

two or three types of data generation: measurement, 

analytical calculation and software simulation. In the case 

of PE applications, experimental data is collected via 

appropriate measurement techniques; simulation results are 

generated and exported to compatible formats that can be 

processed by the NN model.  

For this modelling, data is collected via experiments and 

simulation using double pulse test (DPT). Both switching 

experiments and simulation were done using the available 

GaN power devices to collect as much data as possible. Due 

to the ease of recording simulation data, more set of such 

data could be collected. In this work, approximately 70 per 

cent of training data is from simulation, and the remaining 

30 per cent is experimental data.  

 

Double pulse test - To be able to validate the model, it is 

necessary to compare the performance of the simulation 

using the proposed model with the performance of the 

actual device in the experimental rig, i.e. the double pulse 

test in this case. The prototype, as shown in Figure 2 is used 

for the double pulse testing and has been supplied by 

Sanken Inc as part of the team’s collaborative work with 

them. The circuit can be customized to use TO, and other 

SMD packages and is thus used for accurate measurement, 

convenience and flexibility. The double-pulse switch test is 

set at 500 V DC with a switched load current of 15 A (half 

the device rated current). The driving current is set at 

around 800 mA. The supply voltages for gate drive are 

adjusted according to the specification of the device being 

tested.  

 

The test set up and simulation system used is as per the 

following specifications:  

a. 500Vdc-bus, 15A from the inductive load. 

b. In-built and customised measurement set-up. 

c. Agilent oscilloscope with double pulse signal from 

Agilent waveform generator.  

d. Electrical power from benchtop power supplies. 

 

The current device measurement was done using a current 

probe. Whereas, the voltage measurements are checked 

using a precision probe. The circuit was tested using GaN 

Systems, Transphorm, Panasonic and Sanken devices. 

Since the author did not have further access to the datasheet 

of the discrete Sanken devices, it is not investigated further 

in this work and is not used for the model design. 
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FIGURE 2. Double Pulse Test Circuit Prototype (Sanken Inc) 

Generally, NN modelling requires the following sets of 

data: 

1. Training data (TR),  

2. Validation data (V),  

3. Test data (TE) 

TR is used to govern the training process, i.e. to update the 

NN weights during training. During training, validation 

data is used to track the error of the model and test data is 

used to evaluate the final accuracy/error of the developed 

model. There are no requirements for the sizes of the 

partitions, based on the practical methodology for data 

partitioning; the percentage depends on the available data 

size. In general, 50 per cent or more of the data is allocated 

to the training set, 25 per cent to the test set, and the 

remainder is set apart for the validation set. When the 

sample size is small like in this case, machine learning 

experts and literature point out that a good practice would 

be to leave out the validation data and use a 60 - 40 or 70 - 

30 ratio. As can be seen, a 70 - 30 ratio is the most 

commonly used split. The authors have hence used the 70-

30 ratio split between training and testing data for this 

work. 

IV. GAN HEMT BASED MODELLING USING RNNs  

One of the most popular ML algorithms is NNs [18], [19]. 

Neural Networks gained much popularity recently owing to 

their effectiveness in many difficult tasks like image 

classification and natural language processing [20], [21]. 

NNs are a connected system of computational units that can 

be trained from examples rather than being explicitly 

programmed. They are modelled loosely after biological 

neurons and can be used to solve a variety of tasks that are 

hard to solve using rule-based programming [22], [23], [24]. 

An NN consists of an input layer, hidden layers and output 

layers. Hence, each layer performs calculations based on its 

weights, inputs, biases and activations and gives an output. A 

combination of a different number of neurons and hidden 

layers forms an architecture. A simple feed-forward neural 

network works by multiplying the inputs to the neurons with 

the respective weights of the connections, adding bias and 

then applying a non-linearity like tanh. Simple neural 

networks like these have proved to be very useful in solving 

complicated problems like image classification and language 

generation.  

NN is a consequence of inter-linkage of artificial neurons 

to mimic the operation of a human brain to solve scientific, 

engineering, industrial and many other real-life problems. 

The architecture of the biological neural network is not yet 

well-understood, and therefore, many NN models have been 

proposed till date and research is still ongoing [25], [26], 

[27], [28], [29].  

Neural networks where the output from one layer is used 

as input to the next layer are called feed-forward neural 

networks. These networks define a mapping function y = 

f(x,w), the function y learns the value of the parameters w 

that result in the best function approximation. Conventional 

feed-forward neural networks are regarded for their learning 

and generalization capabilities. However, they can only map 

static input and output co-relation network; information is 

always fed forward, never fed back. To model a non-linear 

circuit, responses such as behavioural responses of devices in 

the time domain, a NN that can incorporate temporal 

information is necessary and is possible via feedback loops. 

Such models are called Recurrent Neural Networks (RNNs) 

[25] [26].  

One of the significant drawbacks with traditional NN is 

that it cannot connect information from one instant to another 

past or present event. It only learns from a particular event. It 

is a massive problem while dealing with PE problems, 

especially with the dynamic behaviour of devices. Hence a 

relatively new NN model called Long short-term memory 

units (LSTM) and Gated Recurrent Unit (GRU) is first 

explored in this work which can learn from previous 

experience and can remember information for more extended 

periods, unlike RNNs. These are preferred in behavioural 

modelling due to their inherent capability to connect the 

output dependencies at previous instants to other instants by 

comparing the information stored over a more extended 

period of time.  

LSTM unit: Due to the unstable gradient problem, early 

RNNs models were challenging to train [27]. Hochreiter and 

Schmidhuber introduced the LSTM units in 1997 with the 

explicit purpose of helping address the unstable gradient 

problem. The LSTM, as shown in Figure 2, can erase or 

augment information using ‘forget gate’ and ‘input gate’ to 

the cell state, coordinated by structures called gates. Using 

LSTMs when training RNNs makes it easier to get good 

results and is used in this work for building one of the GaN 

ML models.  

GRU unit: Gated Recurrent Unit introduced by Cho [28] is 

a more powerful variation on the LSTM. It merges the 

’forget’ and ’input’ gates into a single ’update gate’. It also 

fuses the cell state and hidden state and makes some other 

changes making the resulting model more understandable 

than standard LSTM models. Its performance is 

commensurate with LSTM but computationally more 

efficient (less complicated structure) and hence is beginning 

to be more widely used. Since its more comfortable to 
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generate one output for a NN model, inputs have been 

initially used to predict the output voltage. 

  

 
FIGURE 3. LSTM NN 

Then a second model was trained using output voltage as 

another input to predict the output switching current. It is 

done to allow the model to learn the dependencies and co-

relation of switching voltage and current on each other and 

with other inputs.  

To understand the working of the NN modelling process 

and to start off with a much simpler and more manageable 

data processing, shallow NN (one hidden layer) based 

models are used at the start. The complete set of simulation 

results obtained from the double pulse test circuit is used for 

training. The DPT simulation is done using the manufacturer 

model for the following devices: GaN Systems (650 V, 30 

A), Panasonic (600 V, 15 A) and Transphorm (600 V, 15 A).  

1) Developing the NN Model using TensorFlow: One of 

the popular numerical platforms in Python that provide the 

basis for the deep learning research and development is the 

TensorFlow. This system has compelling libraries but can be 

difficult to use directly for creating deep learning models. For 

this research, Keras Python library is used. It provides a clean 

and convenient way to create a range of learning models on 

top of TensorFlow.  

TensorFlow is the most famous library used in production 

for deep learning models. It has an extensive and active 

community. However, TensorFlow is not that easy to use. On 

the other hand, Keras is a high-level API built on 

TensorFlow (and can be used on top of Theano too, which 

has been recently shut-down).  

Reasons for choosing Keras for this research work are the 

following:  

(i) Rapid prototyping: In this work, there is a need to 

quickly build and test a neural network with minimal 

lines of code, and so Keras was the first choice. With 

Keras, one can build simple or very complex neural 

networks within a few minutes.  

(ii) Modularity: Keras is very user-friendly and hence more 

pythonic. Everything in Keras can be represented as 

modules which can further be combined as per the 

user’s requirements.  

(iii) Simple coding: There is not much code required, and 

the steps involved are: 1) Data Loading 2) Data Pre- 

Processing 3) Data Preparation 4) Defining a Model  

Models in Keras are defined as a sequence of layers. A 

Sequential model is created first, and layers are added one at 

a time until the right network topology. The number of layers 

and structure is difficult to decide from the beginning. There 

are some guidelines and rubric that can be used, but often the 

best network structure is found through a process of trial and 

error experimentation. Generally, we need a network large 

enough to capture the structure of the problem. In this work, 

a fully connected network structure with single and multiple 

layers are designed and demonstrated.  

Once the model is defined, it can be compiled. Compiling 

the model uses the existing numerical libraries under the 

covers (called backend). In this work, TensorFlow is used as 

the backend. It automatically chooses the best way to 

represent the network for training and making predictions to 

run on the hardware. When compiling, there is a need to 

specify some additional properties required when training the 

network.  

Training a network is to find the best set of weights to 

make predictions for the problem. So, there is a need to 

specify the loss function to evaluate a set of weights, the 

optimizer to search through different weights for the network 

and any optional metrics to collect and report during training. 

In this work, we have used mean absolute percentage error as 

the loss function, Adam as the optimizer and accuracy as the 

metrics of performance. These are best fit for this problem 

which has time-series data. Adam is used as it is best for 

handling sparse and noisy data. Additionally, it is easy to use 

and fast.  

GRU model: For training the dynamic behaviour, the 

following inputs and outputs are selected.  

1) Inputs: Gate voltage, Input voltage, Digital voltage 

(ON/OFF), Device switching current. 

2) Output: Device switching voltage. 

3) No. of data sets used: 30 (training: 25; testing: 5) 

[experimental data: simulation data split = 30:70]. 

4) Epochs:500. 

5) Type of NN used: GRU. 

6) 4 inputs, 1 output, 1 hidden layer and 65 nodes are used. 

7) Gate voltage and device switching current is scaled by a 

factor of 10 while plotting. 

Table. 1 shows the architecture that lists the trainable 

parameters and related info of the GRU NN used for 

developing the GRU based behavioural model for GaN 

power devices.  

For begin with, in this model, the switching current is also 

used as an input. It is to generalize the model to be able to 

process both voltages and currents so that this can be used for 

current-controlled devices as well. 

TABLE 1: GaN GRU model architecture  
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Layer (type) Output Shape Parameters 

gru_5(GRU) (None, 1002, 64) 12864 

dense_5(Dense) (None, 1002, 1) 65 

Total 

params:12,929 

Trainable Params: 

12,929 

Non-Trainable 

Params:0 

 

The ability of the model to use voltages and currents to be 

able to predict the output voltage is a clear indication that this 

model can carefully map the inter-relationship between 

switching voltage, gate voltage and current. It is an essential 

improvement over the NN models for microwave devices 

which can only be voltage controlled.  Firstly, the GRU 

model was trained using data from the DPT results and from 

the simulations done using manufacturer models. The data 

contained values for switch OFF and ON instants. After the 

initial data-processing was done, the data was normalized. 

After normalization, the values were squashed in the range of 

(0,1). After data pre-processing and normalization, the 

dataset is split into input-output pairs.  

For example, plotting the prediction for a random set of 

training, the following waveforms are obtained as in Figure 3 

and Figure 4. It can be noted that the GRU model closely 

follows the training data in terms of the waveform shape, but 

not during turn off. It is interesting to note that in Figure 3, in 

the ML model, the predicted voltage turns-off immediately 

after the gate voltage goes negative as should be the case. So, 

it is clear that in this case, our model is trying to predict the 

ideal case switching behaviour. It is possibly because the 

model has been fed with a lot of manufacturer model 

simulation waveforms while training which was more or less 

ideal waveforms. 

TABLE II. GaN LSTM model architecture 

Layer (type) Output Shape Parameters 

Istm_11(LSTM) (None, 1250, 32) 12700 

dense_5(Dense) (None, 1250, 1) 33 

Total 

params:12,833 

Trainable Params: 

12,833 

Non-Trainable 

Params:0 

 

       0          200         400          600         800        1000     0          200         400          600         800        1000

500

400

300

200

100

0

500

400

300

200

100

0

Time (x10^-3 µs)

Gate Voltage 

Output Voltage 

Current

Pred Output Voltage 

Gate Voltage 

Output Voltage 

Current

Pred Output Voltage 

V
o

lt
a

g
e(

V
)

 

FIGURE 4. GaN GRU model training (Panasonic: left) (Transphorm: 
right)   
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FIGURE 5: GaN GRU model prediction (Panasonic: left) (Transphorm: 
right)  

 

LSTM Model: This testing was repeated using LSTM NN 

for the same set of data. The results obtained are very similar 

to the GRU model, with only minor differences in accuracy. 

The difference in accuracy is not much noticeable in the 

graphs due to the fact that we only have limited data for 

training and testing. For training this model, the following 

inputs and outputs are selected:  

1) Inputs: Gate voltage, Input voltage, Digital voltage 

(ON/OFF), Device switching current  

2) Output: Device switching voltage  

3) No. of data sets used: 30 (training: 25, testing: 5) 

[consisting of both experimental and simulation data 

with a ratio of 30:70]  

4) Epochs: 500 

5) Type of NN used: LSTM 

6) 4 inputs, 1 output, 1 hidden layer and 32 nodes are

 used  

7) Gate voltage and device switching current is scaled 

by a factor of 10 while plotting  
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FIGURE 6. GaN LSTM model (Panasonic: left) (Transphorm: right)  
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FIGURE 7. GaN LSTM model prediction (Panasonic: left) (Transphorm: 
right)  

 

Plotting the predictions gives the following results, as shown 

in Figure 5,6. It can be seen that the ML model has very 

accurately predicted the oscillations, turn-on and turn- off 

time. There is only a small deviation concerning the 

magnitude.  

It is seen from Table. II, this model has total trainable 

parameters of 12,833, which is less than the GRU model, all 

of which trains to learn how best to predict the GaN device 

switching. It can be noted that the ML model closely follows 

the training data in terms of the waveform shape, on and off 

timings, as seen in Figure 5 and Figure 6. For both model 1 

and model 2, there are not many noticeable differences in the 

prediction voltages.  

A. VALIDATION  

There is a need to validate the demonstrated ML models. 

The logic used here is as follows:  

1. The objective is to frame a model which is closer to 

actual test results than the ideal behaviour and with 

better accuracy than the proposed model behaviour.  

2. In this work, the MSE is calculated against the DPT 

data for all the three devices. A comparison between the 

prediction error, the manufacturer model error and the 

proposed model error is made as seen in Table. III.  

3. The lower the error, the better. 

Table. III shows the comparison between the prediction 

error of GRU models with the proposed model. As is evident 

from Table III, the proposed model error is the lowest and is 

much closer to the actual experimental data, which is as 

expected. The ML model is not very close to the 

experimental data results as it is trained with data from 

multiple GaN devices and DPT tests. Its outputs values are 

discounting the effect of measurement and human error. ML 

model tries to predict the actual output of the GaN device for 

the given circuit without accounting for the measurement 

errors. Table. IV below shows the comparison between the 

prediction error of LSTM with other simulation models. Due 

to the lower error rate and lesser number of trainable 

parameters which leads to speedy simulation, the next 

sections will use RNN-LSTM based models for training. 

Figure 7 and Figure 8 graphically depicts the validation and 

training loss which is used for calculating prediction error. 

Advantages of the shallow (one layer) model:  

1) Simple 

2) More comfortable to implement/run the 

simulation 

3) Good performance  

Disadvantages: 

1) Memorization 

2) Not good at generalizing  

3) Non-scalable 

FIGURE 8. Comparison of loss for RNN-GRU model  

 

Deep/Multi NNs have more than one hidden layer. The 

advantage of numerous layers is that they can learn attributes 

at distinctive stages of abstraction. Based on the other layer’s 

output, each layer of nodes trains on a distinct set of 

features/attributes. As we move deep into the neural net, they 

accumulate and re-join attributes from the previous layer and 

can recognize more complex attributes/features. This 

property termed as feature hierarchy makes deep-learning 

networks proficient of handling astronomical, high-

dimensional data sets with zillions of parameters that pass 

through non-linear operations. Thus, these nets are adept at 

unearthing interconnections within unlabelled/unstructured 

data. Therefore, one of the issues deep learning resolves well 

is the processing and clustering of the world’s raw data with 

insights into the similarities and variation in data in a 

relational database. For example, in this work, with each 

hidden layer, the model will learn specific features of the 

switching behaviour, in the next layer, it will learn about the 

DPT circuit, the next one about the parasitic etc. though not 

necessarily in this order. 

TABLE III: Comparison of the prediction error of RNN-GRU model  
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Device Model Prediction Error Manufacturer Model Error Proposed Model Error 

Transphorm 0.1017385612225869 0.026574740757534 0.012041490771542818 

Gansystems 0.05871962553303792 0.05913845983435681 4.989418096389726 e-6 

Panasonic 0.2274280878218421 0.026096969917324058 0.011259930029712931 

TABLE IV: Comparison of the prediction error of RNN-LSTM model  

Device Model Prediction Error Manufacturer Model Error Proposed Model Error 

Transphorm  0.1017385612225869  0.026574740757534 0.012041490771542818 

Gansystems  0.05871962553303792 0.05913845983435681 4.989418096389726 e-6 

Panasonic  0.2274280878218421  0.026096969917324058 0.011259930029712931 

 

 

FIGURE 9. Comparison of loss for RNN-LSTM model 

B. GAN HEMT BASED MODELLING USING MULTI 
NEURAL NETWORKS  

Shallow networks are neural networks with one hidden 

layer, as shown in Figure 9 (left). A sufficiently broad 

shallow NN can approximate any function if provided with 

enough training data. Since we are dealing with PE-based 

applications, the data available is not very large, unlike 

classification and pattern recognition problems. But there are 

some complexities while using an extremely wide-shallow 

network such as the one used in this work. The first 

complication is that wide-shallow networks are high at 

memorization, but not that good at generalization. So, to 

ensure generalization and to reduce the number of parameters 

used, we explore multi NN models, as shown in Figure 9 

(right).  

 

 
FIGURE 10. Shallow network (left) and multi feed-forward neural network (right)  

 

    In this part, training is done using RNN-LSTM network 

architecture to determine whether it can be used for 

predicting both the device voltages and currents. The input 

layer of all the models has 3 neurons, one for each feature. 

Since this is a regression problem, the output layer has one 

neuron with linear activation. All other layers have Rectified 

Linear Unit activations [30]. Adam optimizer was used 

during training [31], and the data were divided into batches 

of 500.  

 

Predicting device switching voltage: For training this model, 

the following inputs and outputs are selected:  

1) Inputs: Gate voltage, Input voltage, Device switching 

current  
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2) Output: Device switching voltage  

3) No. of data sets used: 35 (training: 25; testing: 5) 

[consisting of both experimental and simulation data 

with a ratio of 30:70]  

4) Epochs: 500  

5) Type of NN used: LSTM  

6) 3 inputs, 1 output, 2 hidden layers with 32 nodes each  

Thus, here, the neural network model can be defined as:  

 

Switching voltage = f (gate voltage, switching current)       

 

So, the RNN-LSTM is trained to predict the switching 

voltage as a function of the gate voltage and the switching 

current. The ability of the model to use voltages and currents 

to be able to predict the output which could either be 

voltage/current is crucial. Unlike the NN models for 

microwave devices which can only act as voltage-controlled 

having only voltage as input and output, the ML models in 

this work can predict both voltages and currents and deals 

with both voltage and current inputs and outputs.  

The RNN-LSTM model, with parameters shown in Table 

V, was trained using simulation and manufacturer test data. 

The data contained values for switch OFF and ON instants. 

The current measurements had noise issues, so, an extra set 

of 5 batches with improved current measurement was 

supplied for training. Besides, five batches of experimental 

data were set to part for validation.  

TABLE V. GaN MULTI LSTM model architecture 

Layer (type) Output Shape Parameters 

Istm_11(LSTM

) 
(None, 1250, 32) 4480 

Istm_2(LSTM) (None, 1250, 32) 8320 

dense_5(Dense) (None, 1250, 1) 33 

Total 

params:12,833 

Trainable Params: 

12,833 

Non-Trainable 

Params:0 

 

Plotting the voltage prediction for a set of training, the 

following waveforms, as shown in Figure 10, Figure 11 and 

Figure 12 are obtained for Transphorm, Panasonic and GaN 

Systems power devices.  

 

FIGURE 11. GaN ML model prediction for Transphorm Cascode HEMT 
 

The predicted waveforms lack the oscillatory behaviour 

since it is fed with many manufacturer model waveforms 

while training which is more or less ideal waveforms. But 

unlike the previous models, this model very closely follows 

the experimental waveforms in terms of the on and off the 

rise, fall time and magnitude.  

FIGURE 12. GaN ML model prediction for GaNSystems HEMT  

FIGURE 13. GaN ML model prediction for Panasonic GIT 
 

Predicting device switching current: For training this model, 

the following inputs and outputs are selected:  

1. Inputs: Gate voltage, Input voltage, Device switching 

voltage  

2. Output: Device switching current  

3. No. of data sets used: 35 (training: 25, testing: 5) 

[consisting of both experimental and simulation data 

with a ratio of 30:70]  

4. Epochs: 1500  

5. Type of NN used: LSTM  

6. 3 inputs, 1 output, 2 hidden layers with 32 nodes each  

Thus, here, the neural network model can be defined as 

switching current = f (gate voltage, switching voltage)   

Here the RNN-LSTM model is trained to predict the 

switching current as a function of the gate voltage and the 

switching voltage. In the case of current, the noise in the 

DPT and with the waveform going negative, it was difficult 

to use the same logic of MSE used for validating the voltage 

prediction.  

Plotting the current prediction for a set of training data, the 

following waveforms as seen in Figure. 13, Figure. 14 and 

Figure. 15 are obtained. It can be noted that the ML model 

closely follows the training data in terms of the waveform 

shape, but there is a deviation in the magnitude of the 

predicted current. The predicted waveforms lack the 

oscillatory behaviour for the same reason as in the case of 
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voltage prediction. Also, unlike the previous voltage 

prediction model, the current model does not carefully follow 

the experimental waveforms in terms of both the amplitude 

and shape. So, it is likely that the model was not able to learn 

the behaviour of current switching properly due to lack of 

noise-free training data.  

Prediction of both Switching Voltage and Switching 

Current: For gaining familiarity with developing of NN 

based models for GaN, ease of programming and decreasing 

the training time involved, initially multiple-input, single-

output RNN-LSTM and RNN-GRU based GaN models were 

developed. Now, to develop a complete black box/generic 

GaN-based behavioural model, it is necessary to output both 

switching voltages and currents at the same time. So, this 

section demonstrates the development of a generic 

behavioural model of a GaN HEMT that outputs switching 

voltage and switching current. 

 

 
FIGURE 14. GaN ML model current prediction for Transphorm HEMT 

 

FIGURE 15. GaN ML model current prediction for GaNSystems HEMT 

 

 
FIGURE 16. GaN ML model current prediction for Panasonic GIT 

 

Since the current measurements obtained from DPT are 

slightly noisy and inaccurate, more accurate measurements of 

currents were taken and fed to this complete model for better 

training.  

For training this model, the following inputs and outputs 

are selected:  

1) Inputs: Gate voltage and Input voltage 

2) Output: Device switching current and switching 

voltage     

3) No. of data sets used: 35 (training: 25, testing: 5) 

[consisting of both experimental and simulation data 

with a ratio of 30:70] 

4) Epochs: 1500 

5) Type of NN used: Long short-term network (LSTM)  

6) 2 inputs, 2 output, 2 hidden layers with 32 nodes each  

Thus, here, the neural network model can be defined as:  

(switching voltage, switching current) = f (gate voltage, input 

voltage)    

TABLE VI. GaN RNN-LSTM model architecture 

Layer (type) Output Shape Parameters 

Istm_5(LSTM) (None, 1002, 32) 4736 

Istm_2(LSTM) (None, 1002, 32) 8320 

dense_3(Dense) (None, 1002, 2) 66 

Total 

params:13,122 

Trainable Params: 

13,122 

Non-Trainable 

Params:0 

 

RNN-LSTM model is trained to predict the switching 

voltage and current as a function of the gate voltage and 

input voltage. The architecture of the model employed is as 

shown in Table. VI.  The number of trainable parameters is 

13,122 and is slightly higher due to the extra node present for 

the output layer. From the predicted waveforms from Figure. 

16, Figure. 17 and Figure. 18, it is evident that there is a 

tendency to predict idealized waveforms which, as explained 

before, is due to the large number of simulation waveforms 

fed during training.  

 

 
FIGURE 17. GaN ML model current and voltage prediction for 
Transphorm HEMT 

 

As seen in Figure. 17, the prediction for current in case of 

GaN Systems HEMT is way below the measured magnitude. 

This is because of the volume of noisy current measurement 
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fed to the model as training data. Both of these limitations 

can be overcome if better DPT/experimental waveforms are 

fed during training. There is a limitation to gathering such a 

high volume of DPT results from a lab setting. Hence, the 

results are limited to the available data set for training and 

testing.  

 

 
FIGURE 18. GaN ML model current and voltage prediction for 
GaNSystems HEMT 

C. VALIDATION  

Table. VII below shows the comparison between the 

prediction error of GaN ML models with the manufacturer 

models. As is evident from Table VII and Figure. 19, the 

proposed model error is the lowest. It is much closer to the 

actual experimental data, which is as expected. The ML 

model will not be very close to the experimental data results 

as it is trained with data from multiple GaN devices and DPT 

tests. So, it learned to negate the effect of measurement and 

human error. ML model has tried to predict the actual output 

of the GaN device for the given circuit without accounting 

for the measurement errors.  

As is evident from Figure. 20 and Table. VIII, the training 

loss is high for current prediction. The prediction values were 

also not close enough to the expected values as detailed in 

the earlier section. It can be avoided by training the model 

with accurate and less variant current waveforms.  

 

 

FIGURE 19. GaN ML model current and voltage prediction for Panasonic 
GIT    

 

FIGURE 20. GaN Comparison of loss for LSTM voltage 

prediction model 

 

The black box GaN ML model has a small loss. Training 

and validation loss are very close, and the model is fast and 

accurate. Thus, it is apparent that with a large volume of data, 

this model can be scaled up efficiently and made highly 

accurate and fast for speedy simulation and convergence 

time. 

TABLE VII. GaN RNN-LSTM model architecture 

Device Model Prediction Error Manufacturer Model Error Proposed Model Error 

Transphorm 0.17824583887744233 0.03329356763051398 0.040253270403163184 

Gansystems 0.08003233255423499 0.019392490852331388 0.005827762329102095 

Panasonic 0.07988175598975399 0.002823714782894578 0.0031721715965811028 

TABLE VIII. Comparison of the current prediction error of LSTM model  

Device Model Prediction Error Manufacturer Model Error Proposed Model Error 

Transphorm 0.16167914107258552 0.03329356763051398 0.040253270403163184 

Gansystems 0.03633400042308652 0.019392490852331388 0.005827762329102095 

Panasonic 0.07466878545118938 0.002823714782894578 0.0031721715965811028 
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IV. DISCUSSIONS – CONTRIBUTION 

1) The proposed modelling using machine learning 

techniques are accurate, fast and more practical for power 

design engineers.  

2) The total training computation time for LSTM took 

around 120 minutes with 4s for each epoch. For GRU it 

took 75 minutes with 3s for each epoch. The simulation 

running time for validation data took around (238- 240) 

ms/step for each sample input. This computation time is 

for an Intel(R), Core (TM), i5-6600 CPU at 3.30GHz 

with 48GB RAM.  

3) ML modelling does not require detailed knowledge of the 

physics nor geometry of the device and is independent of 

any intrinsic device measurement errors.  

4) It is noted that the predicted voltages are tending towards 

ideal behaviour prediction. It is due to the presence of a 

large number of simulated waveforms from manufacturer 

models which don’t capture the parasitic of the circuit.  

5) The variation in current is due to the inaccuracy 

associated with the measurement circuitry.  

6)  The demonstrated model has been explored using 

recurrent neural network models such as LSTM and 

GRU. It is found that LSTM models are accurate, but 

GRU models are faster.  

7) Verification of the proposed models is performed by 

checking the ability of the NN model to generalize, i.e. to 

output targeted responses to values not used during 

training.  

8) Shallow and multi-layer NNs are both used to model 

GaN to find the best fit.  

9) Single output and multi-output models are demonstrated 

and validated.  

10) The ability of the model to use both voltages and currents 

to be able to predict the outputs map the interrelationship 

between switching voltage, gate voltage and current. Its 

significant achievement compared to the existing NN 

models for microwave devices which are exclusively 

voltage prediction models.  

11)  This paper designs develops and demonstrates a generic 

universal black box behavioural model for different GaN 

devices using ML. The benefits include simplicity, 

accuracy and speedy simulation with fast convergence 

time.  

12) The observed variation of the proposed model from the 

actual device is due to the lack of a considerable volume 

of data that is generally required for ML training. 

Nevertheless, this model is the best approximation for an 

accurate generic GaN behavioural model. These models 

can be scaled up and accuracy improved with training 

compared to currently available models.  

V. CONCLUSIONS 

This research demonstrates ML-based modelling for GaN 

power electronics. Different types of GaN ML models are 

derived, and their performance is demonstrated using state of 

the art neural network architectures. The developed voltage 

and current prediction models are based on long short-term 

memory unit (LSTM) and gated recurrent unit (GRU) 

models. Several parameters are quantified and compared for 

validating the models. They are the network architectures, 

parameters, training time, validation loss and error loss. The 

ML models are also compared with existing LT-Spice 

manufacturer models. Results show that a faster GaN ML 

model with an error rate of 0.03, and convergence at 3s with 

excellent stability can be developed.  

The proposed ML models can be trained and scaled up for 

better accuracy using a larger volume of switching data. This 

research work is limited by the use of output voltage at 400 

V, 200V and 100V and loads current at10-15A for GaN 

Systems, Transphorm and Panasonic GaN devices. However, 

this can be expanded by using a range of input voltages, load 

voltages and output voltages which can be recorded in steps 

and fed in for training. It helps the model better understand 

the device switching behaviour and increase prediction 

accuracy.  

Having ML-based manufacturer models help speed up the 

learning curve, device simulation time and enable faster 

adoption of these novel devices by the power electronics 

engineers. Additionally, the ML-based GaN circuit models 

can also be scaled up by feeding data from different types of 

GaN power circuits used for different applications. Having 

accurate GaN device and circuit models help identify the 

suitability of a GaN device structure for a particular 

application. This would be highly beneficial for power 

designers in reducing the circuit simulation and prototyping 

time frames.  
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