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Abstract: Target detection and tracking is important in military as well as in civilian applications.
In order to detect and track high-speed incoming threats, modern surveillance systems are
equipped with multiple sensors to overcome the limitations of single-sensor based tracking systems.
This research proposes the use of information from RADAR and Infrared sensors (IR) for tracking
and estimating target state dynamics. A new technique is developed for information fusion of the
two sensors in a way that enhances performance of the data association algorithm. The measurement
acquisition and processing time of these sensors is not the same; consequently the fusion center
measurements arrive out of sequence. To ensure the practicality of system, proposed algorithm
compensates the Out of Sequence Measurements (OOSMs) in cluttered environment. This is achieved
by a novel algorithm which incorporates a retrodiction based approach to compensate the effects
of OOSMs in a modified Bayesian technique. The proposed modification includes a new gating
strategy to fuse and select measurements from two sensors which originate from the same target.
The state estimation performance is evaluated in terms of Root Mean Squared Error (RMSE) for both
position and velocity, whereas, track retention statistics are evaluated to gauge the performance of
the proposed tracking algorithm. The results clearly show that the proposed technique improves
track retention and and false track discrimination (FTD).

Keywords: tracking; estimation; OOSM; false track discrimination; sensor fusion

1. Introduction

Detection and tracking of high-speed targets for interception or early warning is a challenging
problem [1]. Several types of sensors like RADAR, IR, LADAR are used to detect or engage any
threats. Some tracking techniques employ a single sensor, while, others may use a combination of two
or more sensors (depending on the application) that may or may not be similar. In order to obtain
information about targets dynamics most single sensor-based tracking systems rely on a RADAR.
A RADAR typically has high precision range measurement and narrow beam width. Alongside the
range, an active RADAR also measures the azimuth and elevation angles of the target. Due to the
active nature of a RADAR, it can easily be jammed or face performance degradation with Electronic
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Counter Measures (ECM) deployed by an adversary. The weakness of a RADAR based system against
ECM and the possibility of being detected due to its active nature, limit its use in many defense
applications [2,3]. Moreover, another drawback of radar based tracking systems is the course angular
(azimuth and elevation) measurements as compared to certain types of passive sensors.

An IR sensor is passive in nature, hence it is immune to electromagnetic interference [2–4].
However, it is quite sensitive to atmospheric conditions, which, limits its range but the angular
measurements are more precise as compared to RADAR. Owing to this passive nature the range
information (of target) is not provided by single IR sensor. Tracking accuracy of a system can be
improved by using multiple sensors, along with providing redundancy to the tracking system [5].
Due to the complementary characteristics of RADAR /IR, considerable research is done on their
fusion. In References [6,7], RADAR /IR fusion algorithms are discussed, fusion of these two sensors
improves the estimation accuracy. In Reference [6], authors compare two measurement fusion
techniques (RADAR/IR) for 3D target tracking but this study is limited to a non-cluttered environment.
In Reference [7], several multi sensor data fusion algorithms are discussed which are based on KF
based techniques in a non-cluttered environment. Some fusion algorithms with application to the
multiple passive sensor scenario with same characteristics are discussed in References [8–12]; whereas
complementary characteristics of LADAR/IR fusion is discussed in References [13,14]. Due to passive
sensing, multiple sensors are necessary to track a target in 3D, these sensors should be separated by
a certain baseline distance. The greater the baseline distance the greater will be the detection range.
The baseline distance makes this approach only suitable for close range targets, generally used in
civilian applications such as autonomous vehicle navigation or close-in weapon systems [15,16].

While dealing with the problem of multiple sensor fusion with complementary characteristics,
each sensor has different processing time as well as measurement acquisition rate, thus the
measurements may arrive at processing unit out of sequence [17], as depicted in Figure 1. In a realistic
tracking scenario, multiple measurements may be received due to cluttered environment. The clutter
measurements originate random sources other than target generated detections [18]. The issue
related to clutter can be resolved by a data association algorithm such as Integrated Probabilistic
Data Association (IPDA) [19]. It is implemented recursively and as a track quality measure, the
Probability of Track Existence (PTE) is estimated which makes it superior to other probabilistic data
association algorithms [20]. A feature known as False Track Discrimination (FTD) is used in IPDA for
confirmation and termination of tracks [21].

Figure 1. Out-of-sequence measurements (OOSMs) Scenario with different measurement arrival time.

Various techniques have been used in literature to solve the OOSM problem. One approach [22]
is to reprocess the OOSM measurements, where the target state estimate, sensor measurements and
associated error covariances are stored until the delayed measurement is detected. This approach
requires significant computer resources for data storage and filtering of measurements, but its
estimation accuracy is high, as for orderly measurements Kalman Filter (KF) is used. In another
approach [23], a buffer (of size greater than the maximum expected delay) is used to store the incoming
measurements. These time-ordered measurements are extracted from the buffer upon arrival of an
OOSM for filtering process. This approach requires significant memory, and storage management
also needs to be considered; however, re-filtering is not required, since all information is filtered once
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the delayed measurement has arrived. This approach is unsuitable for real-time applications because
filtering process lags behind the current time. Discarding of time delayed data is another approach,
when the central processor receives a delayed measurement it is simply discarded. It is the simplest
approach and requires the least amount of hardware resources, however, the estimation accuracy is
compromised, especially when the quantity of these delayed measurements is significant.

In most of the cases, OOSM estimation techniques use a retrodiction based approach, that is, the
current state is predicted backwards to the originating time of the measurement which is now out
of sequence. Such an approach is proposed in Reference [24], which compresses the information of
the updates into a single one by updating the estimate between tK−d to tk, where, tk represents the
current time and tk−d denotes the OOSM arrival time. The proposed approach is an optimal one,
but it works when the in-sequence measurements arriving prior to the OOSM, are both in sequence
and consecutive. Reference [24] also provides a suboptimal solution for this particular problem and
is referred to as the B1 algorithm. A new algorithm based on the framework of B1 algorithm is
proposed in Reference [25]. The proposed algorithm provides a solution for the l-lag OOSM problem,
where the associated covariances are stored for filter gain computation from the past sampling
intervals. A one step solution to multiple lag OOSM problem is proposed in Reference [26], the authors
proposed two algorithms with one being optimal and the other one suboptimal, known as Al1 and Bl1
algorithms, respectively. The aforementioned OOSM filtering algorithms can incorporate single as
well multiple-lag OOSMs with a considerable reduction in estimation error and roughly are based on
the framework of A1 and B1 algorithms. The Bl1 algorithm was incorporated in the proposed research
because of its ability to solve multiple lag OOSMs in one step.

There are other techniques discussed in References [25–27] which require more memory and
computational resources, making them impractical for real time applications, another issue with these
techniques is that they are only applicable in non-cluttered environment. The result section shows a
comparison of the proposed algorithm with algorithm presented in Reference [3], which uses the NN
technique to resolve the clutter problem but considers measurement origination from target only for
the supplementary sensor. Several algorithms for OOSM update are presented in References [28–30],
in which pseudo measurements, Kalman filtering, optimal and sub-optimal approaches are discussed,
however, these approaches solve the problem of OOSMs in non-cluttered environment.

Data association algorithms are used in cluttered environment, where measurement not only
originate from the target but also from other sources (thermal noise, obstacles, clouds, terrain) [11,31].
A Bayesian data association technique, Probabilistic data association (PDA), uses all the latest validated
measurements with different weights for associating any validated measurements with the track [32].
It is a proven single target tracking algorithm in cluttered environment [33], however, at each scan it
assumes track existence with a probability of one, that is, target existence information is not considered,
in reality target may or may not exist. A novel algorithm, built around the PDA filter framework was
proposed in References [34,35] known as the IPDA. It re-derives the PDA algorithm without any initial
assumption of track existence and provides expressions for both PTE and data association probability,
simultaneously and recursively. These techniques have been developed in the literature, with some of
them specifically designed for a non-cluttered environemnt whereas others for cluttered environment.

The authors were not able to find any algorithm which solved the OOSM fusion problem for
multiple sensors with complimentary characteristics in cluttered environment using a Bayesian
framework with FTD. So, there exists a gap in the literature which is of significant value and has
a broad range of applications. This research tries to narrow down this gap by proposing a novel
algorithm for multiple sensor data fusion in cluttered environment. The algorithm is further modified
to incorporate the OOSM scenarios. The resulting algorithm is built around the IPDA filter framework
and is capable of tracking single target for OOSM case in cluttered environment. A novel angle on
gating strategy is used for the OOSMs from the IR sensor by using estimates from the existing tracks
only. The pseudo measurements are generated and are followed by a NN method of measurement
selection for further processing. This is fed to the track maintenance algorithm thus refining the
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overall target trajectory performance. The performance analysis proves that the proposed algorithm is
superior in terms of RMSE of the estimated target dynamics and FTD, when, compared to the single
sensor case as well as multiple sensor case with OOSM [3].

Section 2 provides the details about the proposed framework and mathematical modeling.
Detailed simulations were carried out for performance evaluation of the proposed algorithm with and
without OOSMs and are discussed in Section 3 along with the comparison of proposed techniques with
single sensor approach. Section 4 provides results and discussion which is followed by the conclusion
in Section 5.

2. Modified Bayesian Algorithm for OOSM Incorporation

Figure 2 shows block diagram of the proposed algorithm, as can be seen there, the proposed
algorithm consists of three parts: firstly, employ the integrated probabilistic data association (IPDA)
approach for radar tracking in the presence of target mis-detection and clutter disturbance, as a result,
a set of radar-updated tracks are obtained;then, an angle only gating technique is carried out to select
a subset of IR measurements based on the radar-updated track estimates, which are used to generate a
set of pseudo measurement aimed at eliminating bias, then the nearest neighbor technique is deployed
to associate a feasible pseudo measurement to be fused with the radar-updated track state; at last,
the track management procedure is implemented by using the fused PTE as a track quality measure
and output the target kinematic state estimates.

Figure 2. Block diagram of the Proposed algorithm.

2.1. System Models

This paper considers the incoming target tracking in the environment of target mis-detection and
clutter disturbance using multiple heterogeneous sensor information. The multi-sensor information
concerns here are mainly referred to the position measurements from radar and angle measurements
from IR sensor, with the IR sensor data potentially arriving at the fusion center with out of temporal
sequence. In order to focus on the main tracking challenges, the targets considered here are assumed
to be point target, and both the radar and IR sensor are assumed to be with infinite sensor resolution.
The necessary system models are mathematically formulated in this section.

2.1.1. Target Model

The target randomly appears and disappears in the surveillance space, consequently, its existence
is a random event and modeled by a binary random variable. Denoting the target existences at time tk
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by χk, which evolves as a first order Markov Chain in the time domain, and the probability that the
target exists at time tk conditioned on it did exist at time tk−1 is mathematically described by

p11 = P (χk|χk−1) ≈ 1−
∆Tk,k−1

Tave
, (1)

where ∆Tk,k−1 is the time interval of two consecutive scans, Tave denotes the average target existence
duration and usually Tave >> Tk,k−1. In this paper, that the possibility of target birth has been treated
by the random track initialization procedure, the probability that target exists at time tk given that it
did not exist at time tk−1 is assumed to be zero, that is,

p12 = P (χk|χ̄k−1) = 0. (2)

Once the target exists in the surveillance area, its kinematic state needs to be estimated. For the sake
of simplicity and clarity, the dynamic model of the target of interest is assumed to be linear and
described by

xk = Fk,k−1xk−1 + wk, (3)

where the target kinematic state consists of the 3D position and velocity, that is, xk = [xk yk zk ẋk ẏk żk]
T ,

and wk is the process noise, which is modeled by the additive white Gaussian noise, with zero mean
and covariance Qk,k−1,

Qk,k−1 = q

 T3
k,k−1
3

T2
k,k−1
2

T2
k,k−1
2 Tk,k−1

⊗ I3, (4)

where q denotes the power spectral density, ⊗ is the Kronecker product, I3 is the 3D identity matrix.
Fk,k−1 denotes the dynamic state transition matrix from time tk−1 to tk, and given as

Fk,k−1 =

[
1 ∆Tk,k−1
0 1

]
⊗ I3. (5)

The target state (χk, xk) modeled above is able to fully describe the statistics of the target behavior,
wherein, the probability of target existence χk is used as an efficient track quality measure for track
management, the kinematic state xk is only defined conditioning on the target existence χk.

2.1.2. Sensors Model

At each time, both the radar and IR sensor receive a set of origin-unknown measurements, with
their cardinality randomly varying. Let Zs

k and Zk,s denote the set of measurements collected by sensor
s at time tk, up to and including time tk, respectively, with s = r denoting radar returned measurements,
and s = IR referring to IR returned measurements. Denoting the ith measurement of Zs

k by Zs
k,i. Due to

imperfect detection, either radar or IR returns the target measurement with a detection probability
PD. At time tk, the radar measures the target range rk, azimuth ηr

k and elevation εr
k in the cylindrical

coordinate, which is a nonlinear function of the kinematic states of both the target and radar,

zr
k = [rk ηr

k εr
k]

T = hr (xk, pr
k) + vr

k =



√
(xk − xr

k)
2 + (yk − yr

k)
2 + (zk − zr

k)
2

tan−1 yk − yr
k

xk − xr
k

tan−1 zk − zr
k√

(xk − xr
k)

2 + (yk − yr
k)

2


+


vr

k

vηr
k

vεr
k

 , (6)

where pr
k is the radar position vector at time tk, vr

k denotes the radar measurement noise, which is
described as an additive white Gaussian, with zero mean and known covariance Rr

k. At time tk, the IR
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senor can only measure the angle information of target, that is, azimuth η IR
k and elevation εIR

k , which
is also a nonlinear function of the kinematic states of both the target and radar,

zIR
k =

[
η IR

k εIR
k

]T
= hIR

(
xk, pIR

k

)
+ vIR

k =


tan−1 yk − yIR

k
xk − xIR

k

tan−1 zk − zIR
k√

(xk − xIR
k )

2
+ (yk − yIR

k )
2

+

[
vηIR

k

vε IR
k

]
, (7)

where pIR
k denotes the IR sensor position vector at time tk, vIR

k is the IR measurement noise, which
is described as an additive white Gaussian, with zero mean and known covariance RIR

k . Apart from
target measurement, both the radar and IR sensor also return a set of clutter measurements originated
from either unwanted targets or thermal noise. The number of clutter measurements at each time
tk is random and follows a Poisson distribution, the intensity of each clutter measurement Zs

k,i in
the surveillance is termed as clutter measurement density and denoted by ρ(Zs

k,i), which is usually
assumed to be known or estimated.

The main concern of this paper is to fuse multiple source information to achieve an improved
tracking performance, that is, to obtain the posterior estimates of the target state p(χk, xk|Zk,r, Zl,IR)

based on measurements collecting from radar and IR at time tk, in which the IR measurements Zl,IR

may arrive at the fusion center with out of temporal sequence ( tl < tk).

2.2. Radar Tracking Using the Ipda Algorithm

Since radar is able to measure the complement position measurement (i.e., range, azimuth and
elevation) of targets of interest, the integrated probabilistic data association (IPDA) is utilized here
for radar tracking to estimate the target state in the presence of target mis-detection and clutter
disturbance. In order to reduce the estimation bias, the nonlinear radar measurements in cylindrical
coordinate are converted to the Cartesian coordinate. Based on the unbiased conversion method
proposed in Reference [36], the radar cylindrical measurement zr

k =
[
rk ηr

k εr
k
]T is converted to the

position measurement in the 3D Cartesian coordinate, that is, zr
k =

[
xr

k yr
k zr

k
]T , with its corresponded

measurement noise Rr,p
k , the detailed calculation to obtain them, please refer to Reference [36].

The IPDA algorithm recursively updates the target state estimate based on system models defined
in last subsection and radar measurements received at time tk. The target state (χk−1, xk−1) at time
tk−1 is mathematically described by a posterior probability density function (pdf) p(χk−1, xk−1|Zk−1,r),
consisting of the probability of target existence p(χk−1|Zk−1,r) and the posterior pdf of the target
kinematic state p(xk−1|χk−1, Zk−1,r) at time tk−1. For simplicity, in the rest of this paper, the pdf of
target kinematic state is implicitly conditioned on the target existence, that is, p(xk−1|χk−1, Zk−1) ≡
p(xk−1|Zk−1,r).

p(χk−1, xk−1|Zk−1,r) = p(xk−1|Zk−1,r)P(χk−1|Zk−1,r), (8)

with the posterior pdf of kinematic state at time tk−1 approximated by a Gaussian,

p(xk−1|Zk−1,r) ≈ N (xk−1; x̂k−1|k−1, Pk−1|k−1). (9)

In order to start the tracking recursion, the two-pointing differencing is implemented for initialize
tentative tracks at every two scan using effective radar measurements that satisfy the maximum target
moving velocity constraint. The probability of target existence of tentative track is initialized by given
a small positive value, that is, P(χ0|Z0,r) = ψ0, and its initialized kinematic state is assumed to be a
Gaussian, that is, p(x0|Z0,r) ≈ N(x0; x̂0|0, P0|0), with its mean and covariance calculated by
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x̂0|0 =

 zr
k

zr
k − zr

k−1
∆Tk,k−1


T

, (10)

P0|0 =


Rr,p

k
Rr,p

k
∆Tk,k−1

Rr,p
k

∆Tk,k−1

2Rr,p
k

(∆Tk,k−1)
2

 . (11)

One IPDA tracking recursion usually consists of track state prediction, gating and likelihood, data
association, track state update, each of them is introduced in detail at the rest of this subsection.

2.2.1. Track State Prediction

The predicted track state at time tk consists of two parts

p
(

χk, xk|Zk−1,r
)
= p

(
xk|Zk−1,r

)
P
(

χk|Zk−1,r
)

, (12)

where the predicted probability of target existence is obtained by

P
(

χk|Zk−1,r
)
= p11P

(
χk−1|Zk−1,r

)
, (13)

and the predicted target kinematic state pdf is described by a Gaussian, that is, p
(

xk|Zk−1
)

=

N
(

xk; x̂k|k−1, Pk|k−1

)
, with its mean and corresponded error covariance calculated by

[
x̂k|k−1, Pk|k−1

]
= KFP

(
x̂k−1|k−1, Pk−1|k−1, Fk,k−1, Qk,k−1

)
, (14)

where KFP denotes the standard prediction process of Kalman filter.

2.2.2. Gating and Likelihood

In order to release computation and storage burden, an ellipsoid gating technique is utilized to
select a subset of feasible radar measurements for track update, that is,(

zr
k,i − h(x̂k|k−1, pr

k)
)T

(Sk)
−1
(

zr
k,i − h(x̂k|k−1, pr

k)
)
≤ g, (15)

with the innovation covariance equals

Sk = HkPk|k−1HT
k + Rr,p

k , (16)

where Hk denotes the measurement Jacobian matrix evaluated at the x̂k|k−1, g is a gating threshold
predefined based on the probability that measurements will lie inside the ellipsoid validation gate.
Consequently, a subset of radar measurements Zr

k at time tk is selected and denoted by zr
k, with its

cardinality mk. The likelihood of ith measurement of zr
k is thus calculated by

pk,i = p
(

zk,i|Zk−1,r
)
=
N
(

zk,i; hr
(

x̂k|k−1, pr
k

)
, Sk

)
PG

, (17)

where PG is the gating probability that measurements will lie inside the validation gate.
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2.2.3. Data Association

Origins of the set of validated measurements zr
k is unknown, either from targets of interest or from

clutter. Therefore, one needs to enumerate and evaluate all possibilities that validated measurements
originate from targets. Let θk,i, i ≥ 0 denote a measurement-to-target association event at time tk, with
i = 0 denoting none of zr

k originates from targets, i > 0 denoting the ith measurement of zr
k is the

detection of target at time tk. Denoting the posterior probability of association event θk,i conditioned
on the target existence at time tk by βk,i, which is calculated by [19],

βk,i ≡ P(θk,i|χk, Zk,r) =
1
δk


PDPG pk,i

ρk,i
, i > 0

1− PDPG i = 0,
(18)

with the likelihood ratio calculated by

δk = 1− PDPG + PDPG

mk

∑
i=1

pk,i

ρk,i
. (19)

2.2.4. Track State Update

The updated track state estimate can be decomposed into two parts,

p
(

χk, xk|Zk,r
)
= p

(
xk|Zk,r

)
P
(

χk|Zk,r
)

, (20)

where the updated probability of target existence is calculated by

P
(

χk|Zk,r
)
=

δkP
(

χk|Zk−1,r
)

1− (1− δk) P
(
χk|Zk−1,r

) , (21)

and the updated kinematic state pdf is represented by a single Gaussian, that is, p
(

xk|Zk,r
)
≈

N
(

xk; x̂k|k, Pk|k

)
, which is a Gaussian mixture of kinematic state estimates updated using the validated

measurements zr
k, [

x̂k|k, Pk|k

]
= Gmix

(
x̂k|k,i, Pk|k,i, βk,i

)mk

i=0
, (22)

where Gmix denotes the standard Gaussian mixture operation. The mean and corresponding error
covariance of the kinematic state estimate updated using zr

k,i is obtained by[
x̂k|k,i, Pk|k,i

]
= KFU

(
x̂k|k−1, Pk|k−1, zr

k,i, RP
k,i, Hk

)
, (23)

where KFU is the standard update process of Kalman filter. As a consequence, the output
of radar tracking at time tk is a set of updated track estimates, with each track state estimate
including updated PTE and the posterior pdf of kinematic state represented by a Gaussian, that
is,
{

P(χk|Zk,r), (x̂k|k, Pk|k)
}

.

2.3. Track Fusion with IR Information

The track estimates already updated using radar measurements Zk,r at time tk is then fused
with the IR information Zl,IR received in the fusion center, with time stamp tl ≤ tk, aimed at further
improving the tracking results. When tl = tk, it means the IR information arrives at the fusion center
with in sequence temporal order and becomes an in-sequence measurements (ISMs) fusion problem,
while, when tl < tk, the IR information arrives at fusion center with out of temporal sequence and
one needs to deal with the out-of-sequence measurements (OOSMs) fusion problem. Additionally,
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origins of the received IR measurements are unknown, and the IR sensor can only measure the angle
information from targets, which is highly nonlinear of the target kinematic state, both of these issues
challenge the fusion system.

As shown in Figure 2, the proposed fusion mechanism includes four parts: angle only gating,
pseudo measurement generation, nearest neighbor association as well as the IR information fusion,
each part is described in detail in the rest of this subsection.

2.3.1. Angle Only Gating

Since the IR sensor returns not only target measurements but also plenty of clutter measurements,
in order to exclude clutter disturbance meanwhile reduce computation and storage burden, an elliptical
angle only gating technique is implemented for each track to select feasible IR measurements for
subsequent fusion. (

zIR
l,i − hIR

(
x̂l|k, pIR

l

))T(
S̃l
)−1

(
zIR

l,i − hIR
(

x̂l|k, pIR
l

))
≤ γ, (24)

where γ is the gating probability that IR measurement falls inside the elliptical gate, the innovation
covariance S̃l is obtained by

S̃l = H̃lPl|kH̃T
l + RIR

l , (25)

with H̃l denoting the IR measurement Jacobian matrix evaluated at x̂l|k, pIR
l is the IR sensor position at

time tl , RIR
l is the IR sensor measurements noise covariance. When tl < tk, the track kinematic state

estimate x̂l|k and its corresponding error covariance Pl|k are obtained by

x̂l|k = Fl,k x̂k|k, (26)

Pl|k = Fl,kPk|kFT
l,k + Ql,k, (27)

where Fl,k denotes the backward state transition matrix from time tk to tl , Ql,k is the backward state
process noise between time tk to tl . When tl = tk, one has x̂l|k = x̂k|k and Pl|k = Pk|k. After gating, a
subset of IR angle only measurements are selected and denoted as zIR

l , with cardinality m̃k.

2.3.2. Pseudo Measurement Generation

As IR measurements are highly nonlinear and during conversion process multiple biases are
added, therefore, pseudo measurements are generated based on IR angle only measurements and the
track estimates in order to reduce any bias introduced. Here, pseudo measurements are defined in

terms of the ith measurement of zIR
l , that is, zIR

l,i =
[
η IR

l,i εIR
l,i

]T
, and the track kinematic state estimate

x̂l|k and its corresponding error covariance Pl|k. Let a = sin η IR
l,i , b = cos η IR

l,i , c = sin εIR
l,i and d = cos εIR

l,i ,
then the pseudo measurement is defined as,

yl,i = Hs
l,i(η

IR
l,i εIR

l,i )x̂l|k
∆
=

(
ys1
ys2

)
, (28)

where

Hs
l,i =

[
a −b 0 0 0 0
cb ca −d 0 0 0

]
(29)

x̂τ = yτ
k|k(1, 1) ; (30)

ŷτ = yτ
k|k(2, 1) . (31)
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To form pseudo measurement (ys), the approach used here takes actual measurements (ηIR, ε IR)
and combines it with physical constraints (i.e., tan(η) = y/x). This pseudo measurement is the
measurement input to tracking system that will lead to more accurate tracking. Thus, for scan
k, using the measured angles [ηIR(k), ε IR(k)] for that scan and the state predictions x̂(k|k − 1), a
measurement residual (ỹτ

s ) can be defined as,

ỹτ
s = 0− ys

τ = −
[

ax̂τ − bŷτ

cbx̂τ + caŷτ − dẑτ .

]
(32)

The standard KF is used for state estimate given the measurement residual Equation (39).
The measurement matrix (H) in standard KF is replaced by Hs. A pseudo measurement covariance
matrix (Rs) is defined using the original angle measurement noise covariance matrix (R) and
transformation matrix (G) and can be written as,

Rs
l,i = GRG′, (33)

where,

G =

[
g11 g12

g21 g22

]
(34)

g11 =
∂yτ

s 1
∂ητ

IR
= bx̂τ + aŷτ (35)

g12 =
∂yτ

s 1
∂ετ

IR
= 0 (36)

g21 =
∂yτ

s 1
∂ητ

IR
= −cax̂τ + cbŷτ (37)

g22 =
∂yτ

s 1
∂ητ

IR
= dbx̂τ + daŷτ + cẑτ (38)

R =

[
σ2

ηIR
0

0 σ2
ε IR

.

]
(39)

σ2
ηIR

, σ2
ε IR

are angle measurement error variances. Measurements are linearized by converting
them to pseudo measurements and a measurement noise covariance matrix is introduced which
depends on the state estimate and the measurements themselves. Measurement matrix (Hs) and
measurement noise covariance matrix (Rs) are function of current measurements. By using the
predicted measurements formed from the state predictions in Hs and G, any coupling is eliminated.
KF is applied for pseudo measurements to evaluate state estimate ( y2k , P2k ) and prediction ( y

2k|k−1 ,
P

2k|k−1 ). The resulting measurements are now expressed in 3-dimensional Cartesian coordinates and
are fed to the NN algorithm for association with the proper track.

2.3.3. Nearest Neighbor Association

The nearest neighbor [37] technique is most widely used for measurement association due to its
low computational complexity and acceptable performance. Therefore, the nearest neighbor association
is utilized here to obtain the best pseudo measurement for track fusion. The technique selects only one
pseudo measurement which is nearest to the position estimate x̂p

l|k, denoted as yl,i, along with its noise
covariance Rs

l,i claculated in the previous step. The gating and selection procedure can be expressed
mathematically as,

i∗ = arg min
1≤i≤m̃k

(yl,i − x̂p
l|k)

T(Ss
l,i)
−1(yl,i − x̂p

l|k)
T , (40)
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with the pseudo measurement innovation covariance equals to

Ss
l,i = Hs

l,iP
p
l|k(H

s
l,i)

T + Rs
l,i, (41)

where, x̂p
l|k and Pp

l|k are the position component of the track estimate and its corresponding error
covariance a time tl , respectively.

2.3.4. Ir Information Fusion

After nearest neighbor association, the associated IR pseudo measurement (yl,i, Rs
l,i) is then

utilized to fuse with the track estimate
{
(x̂k|k, Pk|k)

}
at time tk. Based on the time stamp of pseudo

measurement yl,i, there exist two possibilities about its identity, it could be ISM when tl = tk, and
OOSM when tl < tk. Consequently, two different fusion strategies are carried out here. When yl,i is an
ISM, the Kalman filter is implemented to update the track kinematic state estimate using yl,i by[

x̂k|k( f ), Pk|k( f )
]
= KFU

(
x̂k|k, Pk|k, yl,i, Rs

l,i, Hs
l,i

)
. (42)

When yl,i is an OOSM, the Bl1 algorithm is deployed to to update the track kinematic state estimate
using yl,i. The Bl1 algorithm is a sub-optimal approach, it ignores the retrodicted process noise, by
ignoring the process noise thus providing an approximate solution. However, multi-step lag problem
is solved in single step using retrodiction based approach. The retrodicted state from current state at
time tk to td is represented as x̂B

l|k = x̂l|k, with x̂l|k calculated in Equation (26), associated covariances
with retrodicted state are defined as,

PB
vv = Ql,k, (43)

PτB
xv,i = Qk,d − Pτ

2k|k−l(S
∗
k )
−1Qk,d. (44)

The associated covariance with the retrodicted measurement will be defined as,

SτB
d = Hir

d (Y
τ
2k,i)PτB

d|k(Hir
d (Y

τ
2k,i))

T + Rir
d . (45)

At time k the covariance between current state and retrodicted measurement is expressed as,

PτB
xz = [Pτ

2k,k − PτB
xv,i]F

T
d,k(Hir

d (Y
τ
2k,i))

T . (46)

To update the state, gain is calculated by the equation,

WτB
d,k = PτB

xz (SτB
d )−1. (47)

The OOSM zd is used to update the state estimate’s current state by mathematical equation as,

YτB
k|d = Yτ

2k,i + WB
d,k[zd − zB

d|k]. (48)

The predicted OOSM zB
d|k is defined as,

zB
d|k = Hir

d (Y
τ
2k,i)Y

τB
k|d . (49)

With updated state, YτB
k|d , the associated covariance can be expressed as,

PτB
k|d = Pτ

k|k − PτB
zz (SτB

d )−1(PτB
zz )T . (50)

The superscript “B” is used for Bl1 algorithm, the innovation covariance of OOSM is calculated by

Sτ= H(Pτ
k|k−1)H

T+R (51)
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with the covariance computed in the Bl1 algorithm.

Sτ
d = Hir

d (Y
τ
2k,i)Pτ

d|k(Hir
d (Y

τ
2k,i))

T + Rir
d (52)

and data association predicted measurement for IR,

Yτ
k|k−1 = FkYτ

k−1|k−1 + vk (53)

is replaced by the predicted OOSM;

zd|k = Hir
d (Y

τ
2k,i)Y

τ
d|k. (54)

2.4. Track Management and Output

After fusion with the IR sensor information, a set of improved track state estimates have been
obtained as

{
P(χk|Zk,r, Zl,IR), (x̂k|k( f ), Pk|k( f ))

}
. In which the fused PTE P(χk|Zk,r, Zl,IR) is utilized

as a track quality measure for track management. More specially, if the fused PTE exceeds a predefined
confirmation threshold, this track is upgraded to a confirmed status which indicates it is following
the target of interest and thus maintained to be confirmed. A confirmed track may become false track
and is terminated if its PTE falls below a predefined termination threshold, this may happen if the
confirmed track is misled to follow any clutter or targets of non-interest. Additionally, a tentative track
may straightforwardly become false track in a few scans after initialization. Once a track is declaimed
to be a false track, it is deleted from memory. As a result, the fusion system only outputs the kinematic
states of the confirmed tracks at each time.

3. Simulation Study

In target tracking applications, data association is used to deal with clutter. In this research,
the IPDA algorithm is modified to incorporate OOSMs using a sub-optimal approach. Results
are computed for single sensor approach, fusion of sensors in cluttered environment (In sequence
measurements) and fusion of sensors in cluttered environment with OOSMs. Results are compared
for 250 Monte Carlo runs with each run having 58 scans. All the algorithms were implemented in
MATLAB R© R2014a on system with Intel R© CoreTM i7-2600, 3.40 GHz processor, 8 GB memory and
Windows R© 7 platform.

The performance comparison is done in terms of RMSE, PTE and FTD. These results are computed
for a range of probabilities of detections that is, 0.6, 0.7, 0.8, and 0.9. The PD defines percentage of
measurements availability for tracking process, if PD = 0.6 then only 60 percent of measurements are
available for processing. RADAR and IR sensors are used for tracking, both sensors are located along z
axis at [0, 0, 10 m] and [0, 0, 10.5 m],respectively. Initial position of target is [0, 30,000 m] with a uniform
velocity of [0, −1000 m/s] along x and y-axis respectively . The uncertainty in the target measurements
is expressed in terms of standard deviation, 5 m in each axis for the case of RADAR and 220 mRad in
azimuth and elevation angles for the case of IR. Sampling time is 0.5 s and both sensors are assumed to
be perfectly synchronized. Clutter measurement density is uniform and equals to 5× 10−5/scan/m2.

Linear KF is used for estimation of state in the case of RADAR. RADAR measurements are first
converted to Cartesian coordinate system, then KF is applied to update the state estimate. To update
the IR information EKF is used, which uses estimate of KF as a posterior.

The euclidean distance is calculated between the actual track and the estimated track, if the
calculated euclidean distance is less than a predefined maximum threshold then the track is considered
a true track. For other track maintenance based statistics, different terms are used which are defined
next. The nCases are defined as the total number of cases of a target being followed by a confirmed
track at scan equal to 50 percent of the total scans. The nOK is defined as the total number of cases
of a track still following the original target at scan equal to 80 percent of the total number of scans.
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The nResults is defined as total number of cases of a target being followed by a confirmed track at the
last scan. Number of CFTs is also used as a performance metric of the proposed algorithm.

These stats and the number of CFTs show the overall performance of the proposed algorithm,
which is compared for multiple probabilities of detection and for single sensor case as well.

Comparison of RADAR only and RADAR/IR system with 250 Monte Carlo runs is provided in
terms of RMSE of position and velocity. Results are evaluated for the same CFTs, that is, CFT = 7 for
PD = 0.9 for single sensor approach and multiple sensor (In sequence approach and OOSM) then the
same thresholds are used in simulations of all PDs.

The lower threshold (inital value of PTE) is kept the same for all three approaches, that is, 0.0005,
while upper threshold (value of PTE for track confirmation) is set where 7 CFTs are observed in each
algorithm. The values of upper thresholds are 0.8, 0.999, 0.997 for single sensor, multiple sensor
(in sequence) and proposed algorithm, respectively.

The results for PD = 0.6 are presented in Figure 3a,c,e, it is evident from RMSE of position and
velocity that minimum RMSE is for proposed algorithm with in sequence measurements, for OOSMs
proposed algorithm’s RMSE is slightly high as compare to in sequence which is expected because
sequential measurements are not available for estimation. RMSE of single sensor is worst as compared
to multi-sensor approach. Algorithm used for single sensor approach is same as for the other two
cases, the only difference is number of sensors. In figures it is observed that PTE is not much improved
but it is a bit better in the case of multi-sensor approach although difference is not that considerable.

Figure 3b,d,f, show simulation results for PD = 0.9, almost same RMSE is observed for in sequence
and OOSM approach. It can be seen that the RMSE performance for position and velocity increases
with the proposed algorithm. The performance for in sequence as well as the OOSM case is better than
the single sensor approach, whereas the PTE is slightly better than that of the single sensor approach.

Comparison for multiple PDs are presented for the proposed algorithm in terms of RMSE and PTE
in Figure 4a–c. It is observed that performance improves as the PD improves that is, more estimation
errors are observed for lower PDs, which was the expected result.

Computational time for each run of the single sensor approach and the proposed algorithm is 178.9
and 169.6 ms, respectively. This was opposite to what was expected initially. Upon further investigation,
it was found that the size of the validation gate reduces when multi-sensor fusion is performed due
to the more accurate IR measurements. Since the number of measurements falling in each validation
gate are reduced, therefore, the execution time is also reduced due to less number of operations in
association as well as filtering. Equivalent measurements are estimated using Bl1 algorithm for 3 lag
case, due to complexity of Bl1 algorithm increase in computational time was expected but redundancy
provided by multiple sensor measurements and clutter rejection optimized it.

Figure 5 shows comparison of normalized accumulated CFTs, CFT rate is high for single sensor
approach as compared to the proposed algorithm.

Track retention Statistics are also presented in Figure 5, it shows approximately equivalent
statistics for proposed algorithm as well as the single sensor approach. The single sensor approach
is slightly better in terms of track retention as compared to the proposed algorithm at the cost of
increased RMSE in the estimated target state dynamics and the number of confirmed false tracks.

Table 1. Comparison of Track retention statistics for proposed algorithm and algorithm in Reference [3]
for OOSM in cluttered environment.

Techniques nResults % nOk % nCases % CFT % nLost % Execution Time/Run (s)

Algorithm in Reference [3] 88 - - 13.3 12 12.5 m

Our Algorithm 99.3 98.6 93 2.8 0.7 169.59 m
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(a) RMSE position for PD = 0.6.
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(b) RMSE position for PD = 0.9.
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(c) RMSE velocity for PD = 0.6.
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(d) RMSE velocity for PD = 0.9.
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(e) PTE for PD = 0.6.
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Figure 3. Comparison of RMSEs and Probability of Track Existence (PTE) for PD = 0.6 (Left) and
0.9 (Right).
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Figure 4. Comparison of RMSEs and PTE for multiple PDs (Proposed Algorithm).

Figure 5. Comparison of accumulated CFTs and Statistics Percentage (for same CFTs at PD = 0.9).
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4. Results and Discussions

Multiple sensor target tracking is implemented with few modifications in IPDA to improve
the results in terms of RMSE of position and velocity. Results for single sensor and multiple sensor
scenarios (both in sequence and out of sequence) are compared in Figure 3. It is evident from the
results that multiple sensor approach improves the position and velocity estimate in comparison
with the single sensor approach, to be exact, the position estimate is improved by 25% and 45% for
PD = 0.9 and PD = 0.6, respectively. When the same approach is implemented for OOSM problem,
the performance is slightly compromised in comparison with the in-sequence measurements but the
performance is better than the single sensor approach. In case of OOSM, performance is compromised
in terms of RMSE because equivalent state is estimated backward due to delayed measurements
while in-sequence measurements are processed sequentially. The results of the proposed algorithm
for OOSM are compared in Figure 4 for multiple PDs. From these comparisons, it is evident that the
performance of the algorithm improve as the PD improves. Normalized accumulated CFTs (for same
CFTs at PD = 0.9) are compared for single sensor approach and the proposed algorithm in Figure 5,
the proposed algorithm shows an improved CFT rate, where as single sensor approach shows better
performance in terms of track retention.

The track retention statistics for the proposed algorithm are compared with the one proposed in
Reference [3]. The algorithm was re-simulated in the current scenario with similar noise statistics as
used in the simulation of proposed algorithm for a fair comparison. The results depicted in Table 1
clearly depict the superiority of the proposed algorithm in terms of track retention and FTD statistics at
the cost of greater execution time, which, was obvious due to the choice of data association algorithm.
The execution time will have implications for any real-time application of the algorithm, however,
the results show that the proposed algorithm is suitable for such applications in the current form.
Generally, when implemented on a hardware platform for real-time applications, algorithms are further
optimized to use the available hardware resources more efficiently, this results in further reduction of
the execution time.

While the algorithm is designed to perform efficiently for most of the scenarios, tracking
performance will degrade in scenarios with higher clutter density at the IR sensor. This drawback in
the algorithm is the target of a future research, in which we plan to implement a more advanced data
association algorithm on the secondary tracker instead of the NN approach. Another important and
challenging modification to this algorithm, which we plan to include in a future research, is to modify
the existing algorithm for a multiple target tracking scenario.

5. Conclusions

This paper considers the fusion of RADAR and IR sensor data by incorporating OOSM in cluttered
environment. A framework is developed for tracking the target accurately while providing redundancy
to the system. A novel approach for incorporating OOSM is implemented in the framework of IPDA
to handle the target tracking problem in cluttered environment. The proposed algorithm is evaluated
for multiple sensor data fusion for both in-sequence and OOSM scenario. An improved estimation and
tracking performance is observed in terms of RMSE of position/velocity and FTD when compared to
other algorithms. The proposed algorithm for in sequence and OOSM case gives superior performance
as compared to the single sensor approach in terms of RMSE by aprroximately 25%. In the case with
less observable target that is, low PD, FTD and track maintenance statistics are also better as compared
to the single sensor approach where as the RMSE is superior by almost 45%. The proposed algorithm
outperforms the technique used in Reference [3] in terms of track retention, the number of false tracks
and the number of lost tracks by 11.3%, 10.5% and 11.3%, respectively.
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