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ABSTRACT  

Various thresholds have been used to identify the onset of contraction during isometric mid-

thigh pull (IMTP) however, no agreed onset threshold exists for this assessment. The purpose 

of this study was to compare relative body weight (BW) and arbitrary onset thresholds to a 

criterion onset threshold 5 SD of BW for IMTP force-time variables; force at each threshold, 

peak force (PF), time-specific force values (100, 150 and 200 ms) and rate of force 

development (RFD) during 0-100 ms, 0-150 ms, 0-200 ms. Academy rugby league players (n 

= 9, age: 18.5 ± 0.4 years; height: 1.82 ± 0.09 m; mass: 91.2 ± 13.1 kg) performed two IMTP 

trials on a force platform sampling at 1000 Hz. The neutral force-time data pool (18 trials) 

was analyzed with five different thresholds and compared to criterion threshold to determine 

any variance in force-time variables. 5 SD of BW was significantly lower than 10% BW and 

75N for threshold force which led to significantly greater time specific force values at 100 

and 150 ms and unacceptable limits of agreements (LOA) for all force-time variables. No 

significant differences (p>0.05) were observed between 2.5% and 5 SD of BW; and between 

5% and 5 SD of BW for threshold force and all force-time variables with acceptable LOA. 

The 5 SD of BW and 2.5% BW onset thresholds consistently resulted in the lowest values for 

threshold force, time-specific force values and RFD, attributed to a lower onset bias. 

Therefore, scientists and practitioners are recommended to use a 5 SD of BW onset threshold 

for time-specific force values and RFD for accurate data because it accounts for signal noise 

during the weighing period. Subsequently, there is greater certainty that the onset of 

contraction identifies a true meaningful change in force, in contrast to relative BW 

thresholds.  

 

KEY WORDS: Time-specific Force; Rate of Force Development; Force-time data, Phase 

Identification; Onset bias 
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INTRODUCTION  

 

Neuromuscular performance of the lower limbs can be evaluated based on analysis of force-

time data generated during dynamic or isometric tasks such as vertical jumps (VJ) (26-28), 

isometric mid-thigh pulls (IMTP) (13, 27, 35)  or isometric squats (2, 16). Peak force (PF) 

and peak rate of force development (RFD) are commonly analyzed from force-time data (3, 

12, 22) and often demonstrate high reliability (12, 24) and low measurement error (6, 35). 

The IMTP induces minimal fatigue and is time efficient compared to dynamic one repetition 

maximum testing (1RM). Additionally, nearly perfect correlations (r≥ 0.96) have been 

reported between IMTP PF and 1RM back squat performance (24, 25). Importantly, the 

IMTP can be used to monitor the effectiveness of training interventions, fatigue and 

neuromuscular preparedness, but may also be used as a tool for talent identification (11).  

 

Distinctive advantages of IMTP assessments are that an athlete’s ability to express force 

rapidly can be assessed by examining time-specific force, RFD and impulse values during 

critical time periods (30-300 ms) (3, 6, 7, 12). Conversely, maximal dynamic strength 

assessments such as 1RM back squat and power cleans fail to provide this insight, 

highlighting the specific advantages of monitoring neuromuscular performance via the IMTP. 

Not only have time specific-force values, RFD and impulse during specific epochs 

demonstrated high reliability (6, 12, 34), these variables have also been associated with 

dynamic tasks including sprint (34, 36), change of direction speed (34) and jumping 

performance (21). This could be attributed to the similarity of the contact times and force 

application periods for these dynamic tasks (26, 32, 37). 
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One problem that currently compromises the accuracy of IMTP force-time data is how the 

start point of force-time data analysis is identified (8, 9, 23, 26). This is explained by noise 

associated with such analyses connected with electronic equipment, ambient noise from 

electromagnetic radiation, movement artifact and inherent stability of the signal (26). More 

importantly, participant posture and any associated movement, can potentially impact the 

noise during body weight (BW) weighing periods and therefore subsequent thresholds 

derived from such weighing periods (8, 23); although this can be minimized with strict 

instructions to participants and visual inspection of the force-time data during data collection. 

It is recommended that IMTP trials where there is an unstable baseline force during the 

weighing period (uncontrolled pre tension and visible countermovement) should be rejected 

and another trial performed (23). Selecting a start threshold too low may result in early 

triggering of the onset of contraction and may result in elevations of force-time variables, 

such as time to PF and movement time, which have been reported during countermovement 

jumps (8, 26). Similarly, selecting a threshold too high would result in a delayed onset of 

contraction known as onset bias (0 ms point) resulting in underestimations of variables such 

as movement time, time to PF and elevations of force-time variables such as force, RFD and 

impulse at pre-determined time points (8, 14, 23). Therefore, it is imperative that strict and 

well administered IMTP testing is completed and that onset of contraction threshold identifies 

and reflects the start of contraction for accurate measures of force-time variables. 

 

Various thresholds have been used to identify the onset of contraction and start point for 

force-time data analysis so that time-specific force values, RFD and impulse during various 

phases can be calculated. However, a generally accepted method to determine the onset of 

contraction in IMTP testing does not exist, which renders comparison of IMTP force-time 

values from different studies problematic. For example, previous studies have used arbitrary 
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values of 20 N (19), 40 N (6) and 75 N(7), when calculating force-time variables. Although it 

should be noted that higher thresholds to determine the onset of contraction may result in 

onset bias, where there is a time delay bias in the identification of the onset of contraction and 

could lead to misinterpreted and erroneous calculations of force-time variables (8, 23). Biases 

of approximately 20 ms (30) to as much as 330 ms (31) have been reported as a result of 

objective threshold determined onsets. West et al. (36) determined their starting threshold 

when 5 standard deviations (SD) of instantaneous rate of change of force with respect to time 

(1 second stationary) was exceeded. Conversely, many have failed to define how they 

identified the start of the contraction (0 ms) for force-time variables (3, 12, 20, 21, 29, 34), 

which makes it difficult to replicate force-time data analysis procedures and evaluating the 

accuracy of previous research findings (8).  

 

Various onset thresholds have been used for VJ assessments (9), including arbitrary force 

values (33), relative measures of BW (26), 5 SD of BW (28, 36),  manual selection (15) and 

relative change in power (10). Researchers have compared the effects of different start 

thresholds on kinetic and kinematic variables during jump assessments and shown that the 

different thresholds produce significantly different kinetic and kinematic values (9, 14, 26). 

The 5 SD of BW is considered the gold standard for onset of contraction identification in 

vertical jump assessments as this method takes into account the noise associated during the 

weighing period (28, 36). Body weight is defined as the average vertical ground reaction 

force (VGRF) during 1 second of stance (28). The onset of movement is defined as the point 

in which the VGR, after a signal to jump had been given, exceeded BW plus or minus 5 SD 

(28). As such, a deviation in force that exceeds 5 SD of BW is almost certainly a meaningful 

change in force which demonstrates the onset of contraction (start of jump). In light of this, 

the 5 SD of BW may be an appropriate method to determine the onset of contraction during 
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IMTP assessments, however this has yet to be investigated. Consequently, scientists and 

practitioners require information regarding the effect of different onset of contraction 

thresholds on IMTP force-time variables to allow accurate assessments of neuromuscular 

performance which reflect the athlete’s ability to apply force rapidly.  

 

The aim of this study was to examine whether commonly used onset thresholds, 2.5% BW 

[BW2.5], 5% BW [BW5], 10% BW [BW10] and (75N [BW75N]) agreed with the gold standard 

threshold of 5 SD of BW (BW5SD) for time-specific force values and RFD (0-100 [RFD100], 

0-150 [RFD150] and 0-200 [RFD200] ms). It was hypothesized that BW75N and BW10 

thresholds would result in significantly higher resultant values for all force-time variables 

than BW5SD and demonstrate unacceptable agreement. It was also hypothesized no significant 

differences in force-time variables would be found between BW5SD BW2.5, and BW5 

thresholds demonstrating acceptable agreement. 

 

METHODS 

Experimental approach to the problem 

A repeated measures, within-subjects design was used to determine the effect that the onset 

threshold had on PF, force at and RFD during 100, 150 and 200 ms. Subjects performed two 

maximum effort IMTPs while standing on a force plate sampling at 1000 Hz.  Force-time 

data were pooled (18 trials), analyzed using a customized analysis spreadsheet, and the effect 

of the different onset thresholds in force-time variables were studied. 

 

Subjects 

Professional academy rugby league players (n = 9, age: 18.5 ± 0.4 years; height: 1.82 ± 0.09 

m; mass: 91.2 ± 13.1 kg) provided informed consent to participate in this study, which was 
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approved by the university ethics committee. Subjects were familiar with the IMTP and were 

experienced with weightlifting movements (≥2 years weight training experience); all IMTP 

trials were assessed by certified strength and conditioning specialists. At the time of testing 

subjects were in the second week of their preseason mesocycle. 

 

Procedures 

 

Pre-isometric assessment warm up 

All subjects performed a standardized warm up comprised of five minutes of dynamic 

stretching before advancing to dynamic mid-thigh clean pulls. One set of five repetitions was 

performed with an empty barbell (Werksan Olympic Bar, Werksan, Moorsetown, NJ, USA) 

followed by three isometric efforts at a perceived intensity of 50, 70, and 90% of maximum 

effort, interspersed with a one-minute recovery.  

 

Isometric mid-thigh pull protocol 

The IMTP procedures were in accordance to previous research and have been reported  

previously(7). Briefly, subjects performed a total of two maximal effort trials lasting five 

seconds and interspersed with a two-minute rest period (34); if the difference between the 

two trials exceeded 250 N then a third trial was performed (3). Verbal encouragement was 

given for all trials and subjects. Subjects were instructed to be as still as possible, without 

initiating a pull on the bar for at least 1 second prior to the instructions to ‘pull’, to permit 

calculation of body weight based on the associated force-time data.  Trials that did not have a 

stable baseline force trace (peak deviation > 50 N from average BW) were rejected along 

with trials with a visible countermovement, subsequently another trial was performed (23). 

Ground reaction force data was sampled at 1000 Hz for eight seconds via a portable force 
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platform (Kistler, Switzerland, Model 9286AA, SN 1209740) interfaced with a laptop and 

recorded using Bioware software (Version 5.11; Kistler Instrument Corporation, 

Switzerland). 

 

Isometric force-time curve assessment 

All force-time data recorded during the IMTP were analyzed using a customized analysis 

spreadsheet to determine specific force-time characteristics. The maximum force generated 

during the five second maximum effort IMTP was reported as the absolute PF (12). 

Additionally, time-specific force values (Force100, Force150 and Force200) and RFD during 0-

100, 0-150 and 0-200 ms (RFD100, RFD150 and RFD200) from the onset thresholds (onset of 

the contraction/pull) were determined for each trial. This was in accordance with previous 

studies that have utilized similar pre-determined time bands when calculating force and RFD 

while demonstrating high reliability (3, 12, 21). Specifically, RFD was calculated using the 

equation: RFD = ∆force/∆time interval. This equation was applied to the time bands 0-100, 

0-150 and 0-200 ms, respectively (3, 12).  These time intervals were selected based on typical 

ground contact times experienced during dynamic movements such as jumping, sprinting and 

changing direction (26, 32, 37). For this reason time bands <100 ms were not selected. 

 

Five onset thresholds were implemented and compared to explore the effects of different 

thresholds on IMTP force-time variables. The criterion onset threshold and onset of the 

contraction (referred as time point 0 ms) was defined as force exceeded 1) 5 SD from BW 

(BW5SD) (28, 36). The other onset thresholds were compared against the criterion method and 

were defined as point when 2) force exceeded 2.5% from BW (BW2.5) (26), 3) force 

exceeded 5% from BW (BW5) (26), 4) force exceeded 10% from BW (BW10) (26) and 5) 

force exceeded 75N from BW (BW75N). The combined residual force and BW were 
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calculated as the average force over a 1 second stationary weighing period (in mid-thigh pull 

position posture) prior to the initiation of the IMTP, similar to the weighing period 

calculations of BW during VJ assessments (28, 36).  

 

Statistical Analyses  

Statistical analyses were performed using SPSS software version 22 (SPSS, Chicago, Ill, 

USA) and a custom reliability spreadsheet (17). Normality for all variables was confirmed 

using a Shapiro Wilks-test. Within-session reliability was assessed via intra class coefficients 

(ICC), 95% confidence intervals (CI) and coefficient of variation (CV) using a custom 

spreadsheet (17). The CV was calculated based on the mean square error term of 

logarithmically transformed data (17). Minimum acceptable reliability was determined with 

an ICC >0.7 and CV <15% (1, 12).  Standardized differences were calculated using Cohen’s 

d = M1 - M2/σ pooled (5) and the scale presented by Hopkins et al. (18) used to quantify 

magnitude. Cohen’s d effect sizes (ES) were interpreted as trivial (< 0.19), small (0.20 – 

0.59), moderate (0.60 – 1.19), large (1.20 – 1.99), and very large (2.0 – 4.0) (18). The mean 

of the difference (bias) was expressed absolutely and as a percentage, ratio (criterion 

threshold / alternative threshold) and the 95% limits of agreement (LOA) (LOA: mean of the 

difference ± 1.96 standard deviations) were calculated between onset thresholds using 

methods described by Bland and Altman (4). Unacceptable LOA were determined a priori as 

bias percentage difference greater than ±3%. Multiple one way repeated measures analysis of 

variance (RMANOVA) and Bonferonni post hoc comparisons were conducted to determine if 

there were significant differences in the values of PF, force at and RFD over 100, 150 and 

200 ms between the different onset thresholds. Statistical significance was defined p≤0.05 for 

all tests, with resultant p values corrected, using Bonferroni correction, to reduce the risk of a 

family-wise error.  
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RESULTS 

Body weight and threshold force values demonstrated high within-session reliability 

measures across thresholds (Table 1). High within-session reliability was observed for all 

time-specific force values across all thresholds, meeting minimum acceptable reliability 

criteria (Table 1).  The highest ICC and lowest level of variances for all RFD values were 

produced with a BW2.5; all meeting minimum acceptable reliability criteria (Table 1). 

Conversely, greater level of variances were observed with the other thresholds for RFD150 

and RFD200 exceeding the thresholds for acceptable CV (Table 1). 

 

Descriptive statistics and observed power for all force-time variables for each threshold are 

presented in Table 2.  Pairwise comparisons between thresholds for force-time variables are 

presented in Table 3. In addition, bias, ratio and LOAs are presented for all variables in 

Tables 4 & 5. 

 

**Insert Table 1 around here** 

**Insert Table 2 around here** 

 

The onset threshold used to identify the start of force-time data analysis did not affect body 

weight or peak force (p=1.000). Conversely, onset threshold had a significant effect on 

threshold force (p<0.05) (Table 3). BW5SD threshold force was significantly lower (p<0.05) 

than BW10 threshold force and BW75N with very large differences and unacceptable LOA 

(Tables 3 & 4). Conversely, no significant differences for BW2.5 and BW5 when compared to 

BW5SD were observed (p>0.05) however higher threshold forces value were observed in 

comparison to BW2.5 with large effect sizes and unacceptable LOA (Tables 3 & 4). BW5SD 
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produced lower threshold force values in comparison to BW5 with small effect sizes and 

unacceptable LOA. 

 

No significant differences were observed for BW5SD when compared to BW2.5 and BW5 for 

all time-specific force values and RFD with trivial effect sizes and acceptable LOA (Tables 3 

& 4). BW5SD was Significantly different to BW10; and BW75N for all time-specific force values 

with trivial to small effect sizes (Table 3). Unacceptable LOA for Force100 and Force150 

was also demonstrated (Table 4). 

**Insert table 3 around here** 

**Insert table 4 around here** 

 

 

RFD was not significantly different for all onset thresholds when compared to the criterion 

threshold BW5SD (p>0.05). Trivial effect sizes and acceptable LOA were demonstrated with 

thresholds BW2.5 and BW5 when compared to the criterion method (Table 5). Trivial to small 

effect sizes and greater biases were revealed with thresholds BW10 and BW75N when 

compared to the criterion method with unacceptable LOA observed for RFD150 (Table 5) 

**Insert table 5 around here** 

**Insert Figure1around here** 

 

 

DISCUSSION 

 

The aims of the study were to assess the agreement of commonly used onset thresholds in 

comparison to a criterion threshold for force-time variables. Firstly, all threshold force, and 
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time specific-force values achieved minimum acceptable reliability criteria with all onset 

thresholds comparable to previous research (3, 7, 21). However, RFD150 and RFD200 values 

demonstrated acceptable reliability criteria with BW2.5 only (Table 1). The results of this 

study revealed significant large to very large differences (Table 3) in force threshold values 

for onset thresholds BW10 and BW75N when compared to the criterion method. Subsequently, 

this led to trivial to small significant differences in time-specific force values and 

unacceptable LOA (Tables 3 & 4). Conversely, BW2.5 and BW5 demonstrated acceptable 

LOA in comparison to the criterion onset threshold with differences between values trivial 

and non-significant (Tables 3 & 4). No significant differences were observed for BW, PF and 

RFD between onset thresholds compared to criterion threshold, however trivial to small 

differences in RFD values were found (Table 3) for BW10 and BW75N and larger biases which 

could still be practically meaningful to practitioners and scientists when monitoring changes 

in RFD. Moreover, the onset threshold impacts the threshold force value and subsequent 

time-specific force and RFD values, with table 3 demonstrating differences in values ranging 

from trivial to small for force-time variables and small to very large for the threshold force 

value. These findings are in agreement with previous research which have shown the method 

to identify the start of a movement or contraction subsequently influences force-time values 

(8, 9, 14, 23, 26). Scientists and practitioners are therefore encouraged to keep the threshold 

of determining the onset of contraction consistent across testing sessions to allow valid 

comparisons of force-time variables when monitoring and tracking changes in neuromuscular 

performance. 

**Insert Figure 2 around here** 

**Insert Figure 3 around here** 
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Various thresholds have been stated for IMTP assessments (6, 7, 19, 36) whereas previous 

studies have failed to state how they defined the start for force-time variable analysis (3, 12, 

20, 21, 29, 34) making it difficult to replicate force-time data analysis procedures. This study 

to our knowledge is the first to examine the effect of different onset thresholds on IMTP 

force-time variables. A consistent observation from our study was the BW10 and BW75N 

threshold produced higher force-time values, demonstrated greater bias and subsequently 

elevated values in contrast to the other onset thresholds (Tables 3-5). These elevations in 

time-specific force values from the BW10 and BW75N method can be attributed to the 

significantly higher force threshold value and subsequent greater onset bias in comparison to 

BW2.5, BW5SD and BW5 force threshold values as illustrated in Figure 1. Researchers have 

suggested that a higher relative or absolute threshold to determine the onset of a contraction 

may result in onset bias, where there is a time delay bias from the actual true contraction 

which can lead to misinterpreted and erroneous calculations of kinetic variables (8, 23). 

Subsequently, from our findings, the other onset thresholds methods in contrast to BW5SD, 

BW2.5 and BW5 result in greater onset bias and this delay in force-time analysis for time-

specific force values results in calculation and analysis of these values on a higher portion of 

the force-time curve as illustrated in Figure 1. Consequently, this resulted in inaccuracies and 

erroneous calculations of time-specific force values and RFD, causing the inflated values and 

unacceptable LOA with the criterion threshold force at 100 and 150 ms.  

 

BW2.5 and BW5SD produced the lowest force-time values with no significant differences 

(p>0.05) in values for all kinetic variables and trivial effect sizes (Table 3). However, based 

on the means of this data set BW5SD produced slighter greater values than BW2.5 with biases 

of 34.8 - 41.2N (2.0-2.4%) observed for Force100, Force150 and Force200 (Table 4), achieving 
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acceptable LOA criteria. Conversely, Bland and Altman plots illustrated in Figure 2 indicate 

some individual variation in relation to the agreement between the two methods. For 

example, Figure 2 illustrates some BW5SD trials produced lower onset threshold force and 

subsequent time-specific force values in comparison to BW2.5. The individual cases where the 

BW5SD produced lower kinetic values (Figure 2) are likely to be explained by the low noise 

(low standard deviation) from pre-tension/contraction and posture or residual noise during the 

weighing period. Conversely, the Bland and Altman plots (Figure 2) also reveal that greater 

values across all variables can be attained with a BW5SD onset threshold which can be 

attributed to a greater onset threshold because of greater noise during the weighing period. A 

BW2.5 threshold is not influenced by the noise associated during the weighing period which 

may explain the better reliability measures between trials (Table 1). Therefore, these findings 

suggest that a BW5SD onset threshold can produce lower onset lower threshold forces and 

kinetic values when noise during the weighing period is minimized. 

 

No significant differences (p>0.05) were observed between BW5SD and BW5 for all kinetic 

variables with trivial effect sizes (Table 3). Additionally, low mean bias was found between 

these two onset thresholds for all kinetics (Table 4 & 5); based on the mean of the data BW5 

produced slightly higher time-specific force values with mean biases of <24.4N (<1.4%) 

reported achieving acceptable LOA criteria (Table 4). It should be noted that narrower LOAs 

for all force-time variables were observed for BW5 in contrast BW2.5 against the criterion 

threshold, suggesting a better agreement (Figure 3 and Tables 4 & 5). Conversely greater 

mean biases were observed when comparing BW5SD to BW10 and BW75N which did not meet 

acceptable LOA criteria for force at and RFD during 100 and 150 ms (Tables 4 & 5). 

Scientists and practitioners are therefore advised not to use BW10 relative threshold and 
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BW75N arbitrary onset threshold as these result in inflated values for time-specific force and 

RFD. 

 

A problem that currently compromises the accuracy of IMTP force-time data is how the start 

point of force-time data analysis is identified (8, 9, 23, 26). A stable baseline force and 

minimal noise is desired during the weighing periods to allow accurate identification of the 

onset of contraction for IMTP testing (23). However, this will be largely dependent on the 

administration of strict IMTP protocols and impacted by the participant’s pre-

tension/contraction and posture and residual noise during the weighing period. Thus, arbitrary 

and relative onset thresholds should be just high enough to overcome the highest noise level 

in the participants baseline force to reduce the onset bias and delay in force-time variables 

analysis (8).  In light of this, when using objective automated arbitrary or relative thresholds 

to determine the onset of the contraction during IMTP, scientists and practitioners should 

select a threshold which results in low onset bias. The results from this study suggest that 

BW5SD, BW2.5 and BW5 are the most suitable objective and relative onset thresholds for 

calculations of time-specific and RFD values during IMTP testing. However, practitioners 

should be aware that relative thresholds such as BW2.5 and BW5 do not consider the noise 

associated during the weighing periods in contrast to using BW5SD. As such practitioners, can 

have greater certainty that a deviation in force which exceeds 5 SD of BW is a meaningful 

change in force (onset of contraction) and not influenced by noise. 

 

The results of this study show that the different onset thresholds influence the force-time 

variables derived during force-time data analysis which is agreement with previous research 

(8, 9, 26). Meylan et al. (26) reported similar findings for CMJ kinetic and kinematic 

variables suggesting that the method of identifying that start of the movement (BW2.5, BW5 
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and BW10) can result in lower or higher of kinematic and kinetic variables. The authors 

recommended using a BW2.5 threshold to preserve as much of the signal as possible; higher 

thresholds resulted in significant amounts of the eccentric phase being lost in the analysis 

subsequently impacting kinetic and kinematic variables. Consequently, underestimations of 

eccentric variables including time to PF, ground contact time, and time to peak power 

(p<0.05) were observed and elevations of concentric variables. Furthermore, Dotan et al. (8) 

revealed visual, arbitrary and relative determined onset thresholds produced significantly 

different time to rate of torque development and torque-time plots during an isometric knee 

extension. The authors also revealed when comparing male boys and men isometric knee 

extension, the results and magnitude of differences were further influenced by the onset 

threshold used. Therefore, scientists and practitioners should be aware of the influence of the 

method used to determine the onset of contraction during isometric assessments and other 

testing protocols as different force-time kinetics can be attained which subsequently impacts 

the accuracy of the evaluations of the athlete’s contractile properties. Furthermore, caution 

should be made when interpreting and comparing results between studies who have used 

different onset thresholds (8, 23). 

 

A potential issue regarding IMTP assessments is reducing the noise associated with 

participant’s pre-tension/contraction and posture during the weighing period to achieve a 

stable baseline force to subsequently determine BW (average force). Reducing the noise 

associated during the weighing period can be achieved in several ways including 

familiarizations with Olympic lifts and the IMTP protocol, visually inspecting the force trace 

during data collection, and discarding trials with clear fluctuations in force during the 

weighing period. Achieving a stable baseline force during the weighing period should result 

in lower standard deviations in BW and subsequently a lower onset threshold and lower onset 
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bias (8, 23). Conversely, relative thresholds fail to consider the noise associated during this 

weighing period and therefore decrease the certainty that a meaningful change in force has 

occurred.  Therefore, when determining the onset of contraction as a deviation from average 

BW during the weighing periods, scientists and practitioners are encouraged to familiarize 

subjects with the IMTP protocol and discard and repeat trials with large fluctuations (peak 

deviation > 50 N from average BW) and pre-tension/contraction during the weighing period. 

 

It should be noted that there are several limitations of the present study. Firstly, a small 

sample size (n = 9) resulting in 18 trials were used for comparisons between onset thresholds, 

while there were also a large number of statistical comparisons. In addition, the present study 

compared arbitrary and relative BW thresholds to determine the onset of contraction, 

however a visually and manually determined onset of contraction could produce different 

results and may reduce onset bias (8, 23). Furthermore, an onset threshold using rate of 

change in force has been previously used however we did not compare this method (36).  It is 

recommended that further research is required in larger sample sizes and number of trials 

determining the effect of different onset thresholds on IMTP force-time variables. Future 

research should compare the BW2.5 onset threshold, BW5SD onset threshold,  rate of change in 

force onset threshold as described by West et al. (36), and a manually determined onset 

threshold to the determine the most accurate and reliable assessment of  IMTP force-time 

variables.  

 

PRACTICAL APPLICATIONS 

 

Overall, this study demonstrated that five different onset thresholds produced different force-

time values within a neutral data pool. BW2.5 and BW5 achieved acceptable agreement with 
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BW5SD and consistently produced the lowest values for time specific-force values and RFD 

(during 0-100, 0-150 and 0-200 ms); although the best reliability measures were observed 

with BW2.5. Conversely, BW10 and BW75N onset thresholds resulted in inflated values for 

time-specific force values and RFD; while also demonstrating lower reliability measures. 

These discrepancies can be attributed to the lower onset bias observed with a BW2.5, BW5SD 

and BW5 threshold which results in the calculation and analysis of force–time variables on a 

lower portion of the slope of the force-time curve. Conversely, the other onset thresholds 

have larger onset bias which subsequently results in the erroneous calculations of force-time 

variables on a higher portion of the force-time curve, thus resulting in elevated values. 

Therefore, when using automated and objective onset thresholds during IMTP testing, 

scientists and practitioners are recommended to use BW5SD onset threshold for time-specific 

force values (Force100, Force150 and Force200) and RFD (RFD100, RFD150, RFD200) for 

accurate and reliable data, which eliminates the potential influence of noise. As such 

scientists and practitioners can have greater certainty that the onset of contraction identifies a 

true meaningful change in force when using this method compared to relative onset 

thresholds. It is further recommended to keep the threshold of determining the onset of 

contraction consistent across testing sessions to allow valid comparisons of force-time 

variables when monitoring and tracking changes in neuromuscular performance.  
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