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ABSTRACT 

Objective: To critically evaluate the effect of limb dominance on change of direction (COD) 

biomechanics associated with increased ACL injury-risk. 

Methods: A systematic review of the literature was conducted using Medline and Sport 

DISCUS databases. Studies that compared COD biomechanics (lower-limb/whole-body 

kinetics/kinematics) between limbs, contained an approach run, and included physically active 

participants were included. 

Results: Of the 456 articles identified, six were included. All studies investigated a cutting 

action, while the majority defined limb dominance as the preferred kicking limb, whereas one 

study defined limb dominance as preferred push-off cutting limb. Conflicting observations 

were found, with one study indicating the non-dominant and one study indicating the dominant 

limb displayed biomechanical deficits associated with increased non-contact ACL injury-risk 

during COD. Conversely, the remaining studies demonstrated no significant or substantial 

differences in COD biomechanics between limbs.  

Conclusions: Female soccer players, male rugby players, and female handball players exhibit 

subtle side-to-side differences when performing cutting manoeuvres. However, the limb 

displaying high-risk mechanics is inconsistent within and between studies and populations. 

Thus, it remains inconclusive for COD that limb dominance is an ACL injury-risk factor and 

whether a particular limb is of heightened injury-risk. 

Level of evidence: Level 2, Systematic review 

Keywords: asymmetries; anterior cruciate ligament; cutting; limb preference 

Highlights:  

• Female soccer players, male rugby players, and female handball players exhibit subtle side-

to-side differences when performing cutting manoeuvres. 

• The limb displaying “high-risk” mechanics is inconsistent within and between studies and 

populations. 

• It is inconclusive that limb dominance is an ACL injury-risk factor and whether a particular 

limb is of heightened injury-risk during cutting. 
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• Practitioners should screen change of direction biomechanics in both push-off limbs to 

identify biomechanical deficits associated with non-contact ACL injury risk, so informed 

individualised preventative training interventions can be created. 

1. INTRODUCTION 

Central to the success of many multidirectional sports, the ability for athletes to change 

direction quickly and safely is of great importance.12, 45, 71, 105, 123, 132, 142, 149 Change of direction 

(COD) actions such as side-steps, crossover cuts, and pivots are regularly performed in 

multidirectional sports,12, 50, 128, 142, 143, 148, 151 and are often linked to decisive moments such as, 

evading an opponent to penetrate the defensive line in rugby (tackle-break success in rugby),102, 

148, 151 getting into space to receive a pass in netball,48 or creating goals in soccer.45 However, 

of concern, directional changes are inciting events associated with non-contact anterior-

cruciate ligament (ACL) injury.13, 16, 23, 43, 76, 99, 108, 147 This occurrence could be explained by 

the fact that COD actions have the propensity to create hazardous multiplanar knee joint 

loading when the foot is planted, such as high knee abduction moments (KAMs) and internal 

rotation moments (IRMs); 7, 34, 35, 67 both of which can increase ACL strain.3, 73, 85, 107, 133 

Importantly, knee joint loading during directional changes is exacerbated when biomechanical 

deficits and ‘high-risk’ mechanics such as lateral trunk flexion, 35, 49, 64, 66 knee valgus, 66, 68, 77, 

92, 134 extended knee positions,32, 76 wide foot plants, 35, 59, 66, 77 and high GRFs67, 131, 134, 136 during 

weight acceptance of COD tasks are exhibited. As such, ensuring athletes have the capability 

to change direction safely (i.e.  optimal mechanics/fontal plane alignment) from both limbs by 

avoiding these ‘high-risk’ postures is a viable strategy to reduce ACL injury-risk.40, 47, 61, 109   

Anterior cruciate ligament injury is a serious, potentially career-threatening injury with 

negative health,61, 81 psychological,61, 79 and economic30, 61, 119 implications for athletes and the 

general population. Although the mechanisms of non-contact ACL injury are multifactorial,61, 

120 strength, neuromechanical, and dynamic control between-limb differences (side to side 

differences/asymmetries), and overall lower-limb dominance has been suggested to be a 

potential ACL injury risk factor.14, 62, 63, 89, 110, 111, 116 Limb dominance, also known as lateral 

preference or laterality,22, 82 refers to the concept that humans will preferentially use one side 

of the body when performing a motor task, typically resulting in a more skilful and therefore 

dominant side.22, 82 A preferred leg to kick a ball is typically used to indicate limb/skill 

dominance and as such, practitioners and researchers are interested whether a particular leg is 

at a heightened injury risk. For example, seminal work from Hewett et al62 found significantly 

greater asymmetries (dominant [D] vs non-dominant [ND]) in landing peak KAM in nine youth 
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females athletes (soccer, basketball, volleyball) who injured their ACL compared to uninjured. 

Notably, six of the nine athletes injured their D limb, defined as their preferred kicking leg. 

Additionally, prospective research by Paterno et al116 reported athletes with a previous ACL 

injury that sustained a second ACL injury exhibited greater asymmetries (4.1 times) in landing 

knee extensor moments between limbs. Moreover, Kyritsis et al78 showed previously injured 

athletes that did not meet return to play criteria in 6 tests (three of which required >90% limb 

symmetry indexes in hopping tasks) were four times more likely to sustain a second ACL 

rupture. Therefore, reducing between-limb biomechanical deficits could be a potential training 

strategy to reduce the relative risk of non-contact ACL injury. 

Retrospective analysis of ACL injuries (i.e., questionnaires and interviews) report 

conflicting findings regarding whether the D or ND limb is at a greater risk of ACL injury. For 

example, previous studies have refuted the connection between limb dominance and ACL 

injury in athletes from multiple sports,88, 104 whereas limb dominance may serve as an 

aetiological risk factor regarding non-contact ACL injuries in soccer players and skiers.14, 126 

Previously, researchers reported a greater occurrence of ACL injuries in the D limb compared 

to the ND limb (18 vs 8) in female soccer players;44 however, they did not delineate between 

non-contact and contact ACL injuries. In contrast, Brophy et al14 demonstrated 74% (20/27) of 

males sustained a greater proportion of non-contact ACL injuries to the D limb, compared to 

32% (10/31) in females. Thus, female soccer players were more likely to injure their ACL in 

the ND (supporting/stance) limb, whereas males demonstrated the opposite and a greater trend 

in the kicking limb. Corroborating the aforementioned findings, Boden et al13 found 68% of 

female athletes from multiple sports sustained a non-contact ACL injury in their ND limb, with 

a similar trend documented for female skiers compared to males (63% vs. 45%, p = 0.020).126 

As such, arguably, limb dominance may play a gender-based role in non-contact ACL injury 

in soccer players and female skiers; however, it is important to note that the retrospective 

analysis ACL injuries do not imply cause and effect; thus, further prospective research is 

required to confirm the role of limb dominance as an ACL injury risk factor. 

While biomechanical investigations into COD biomechanics have considered the effect 

of sex,4, 29, 46, 92-94, 134, 135 approach velocity,31, 75, 77, 103, 146 anticipation,6, 24, 27, 34, 72, 74, 80, 112 and 

COD angle28, 52, 53, 58, 60, 129, 130, 134, an emerging area of research is the effect of limb dominance 

on COD biomechanics.5, 21, 51, 86, 98, 117 Research into between-limb differences during COD 

provides further insight into the potential mechanisms of non-contact ACL injury. From both 

performance and risk of injury perspectives, it would be advantageous for athletes to have the 
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capacity to change direction safely and quickly from both limbs, given the unpredictable nature 

of multidirectional sports.36, 37 However, as athletes can display strength, neuromechanical, and 

dynamic control deficits between limbs,10, 19, 33, 62, 63, 70, 90, 96, 116, 144 these deficits, hypothetically, 

could lead side to side asymmetries in COD biomechanics, whereby a particular limb could 

display ‘higher-risk’ mechanics, thus increased injury risk. Several studies have examined the 

effect of limb dominance on COD biomechanics5, 21, 51, 86, 98, 117 in an attempt to establish 

whether a particular limb displays greater biomechanical deficits associated with increased 

ACL injury risk. To the best of our knowledge, however, a systematic review and critical 

evaluation of the literature that has examined the effect of limb dominance on COD 

biomechanics does not exist.  

The purpose of this systematic review, therefore, was to critically evaluate the literature 

to date, which has examined the effect of limb dominance on COD biomechanics associated 

with increased risk of injury, and to highlight the limitations, considerations, and future 

directions for research to improve our understanding regarding the effect of limb dominance 

and biomechanical asymmetries during COD. For the purpose of the review, limb dominance 

is defined as the leg which an athlete would prefer to a kick a ball with (unless stated otherwise) 

and is synonymous with previous studies that used the terms limb preference,18, 145 leg 

preference,19, 21, 25 and leg dominance.51 Moreover, in this review, KAM and knee abduction 

angle (KAA) are synonymous with knee valgus moment and knee valgus.  

2. METHODS 

2.1 Literature search strategy 

A literature search was performed using Medline and Sport DISCUS databases. Figure 1 

provides a schematic of the search methodology in accordance to Prisma guidelines.97 Search 

terms were as follows:  

1; “limb dominance”, or “leg dominance”, or “leg preference”, or “limb preference”, or 

“asymmetries” or “side to side differences”, or “symmetry” AND  

2; “change of direction”, or “cutting”, or “cut”, or “sidestep”, or “turning”, or “side-step”, or 

“agility”, “or multidirectional speed” 

Bibliographies of potentially eligible studies were hand searched to identify any additional 

studies and citation tracking on Google Scholar was used to identify any additional material. 

Following the search, two authors from the current review independently screened each article 
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for inclusion. The screening process consisted of: 1, screening for duplicates; 2, screening the 

title; 3, screening the abstract; and 4, screening the full paper using the inclusion and exclusion 

criteria. If the two authors were not in agreement with the inclusion/exclusion criterion of the 

study, a third author independently reviewed the study and a discussion occurred until 

consensus was reached. The final search date was January 10th, 2019. 

2.2 Study selection 

Studies were included if they met the following criteria: 

1. Investigated preplanned or unplanned cutting or turning tasks that contained an 

approach run 

2. Compared COD biomechanics between D and ND limbs 

3. Investigated lower-limb and/or whole-body kinetics/kinematics 

4. Included participants who participated in sport or physical activity 

5. Full-text in a peer reviewed journal, in English 

Studies that failed to meet the abovementioned criteria were subsequently removed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow diagram illustrating the different phases of the systematic review; based on 

PRISMA recommendations. 3D: Three-dimensional; GRF: Ground reaction force 
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2.3 Assessment of study quality 

Following the article search and examination, a methodological quality assessment was 

performed based on the scale (Table 1) created by Brown et al20 which conducted a similar 

systematic review regarding the effect of anticipation on knee mechanics during side-stepping. 

The scale by Brown et al20 is argued to be more specific for evaluating COD biomechanical 

studies in contrast to the Delphi, Physiotherapy Evidence Database, or Cochrane scales, 

because a large proportion of studies would fail to achieve many of the criteria of the 

aforementioned scales such as random allocation, assessor blinding, and subject blinding. As 

such, each article was assessed against a nine-item scale (Table 1) comprising of an 18 point-

scoring system (ranging from 0 to 18) where 0 = clearly no; 1 = maybe or inadequate 

information; and 2 = clearly yes.   
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Table 1.  Methodological quality assessment of limb dominance COD studies 

Question Criteria Bencke et al.5 Brown et al.21 Marshall et al.86 Greska et al.51 Pollard et al.117 Mok et al.98 

1 Power analysis was performed and justification of study sample 
size 0 2 0 2 0 0 

2 Athlete demographics were clearly defined: gender, age, body 
height, and body mass at time of test 2 2 2 2 2 2 

3 Athlete characteristics were clearly defined: sport, experience or 
activity level and level of play 1 2 2 2 2 2 

4 Inclusion and exclusion criteria were clearly stated for athletes 0 2 1 2 2 0 

5 Proper training and practice trials of the test were given to the 
athletes allowing for adequate familiarisation 1 2 1 1 1 2 

6 
Methods were described in great detail to allow replication of 

the test. Testing devices, n of trials, n and duration of rest, 
speed, angle of COD 

1 2 2 2 2 1 

7 Test-retest reliability of measurement device reported 0 0 2 0 0 2 

8 Outcome variables clearly defined 1 2 2 2 2 1 

9 Statistical analyses were appropriate 1 2 2 2 1 1 

 Total score (maximum 18) 7 (39%) 16 (89%) 14 (78%) 15 (83%) 12 (67%) 11 (61%) 

Key: n: number; COD: Change of direction; 0: clearly no; 1: maybe or inadequate information; 2: clearly yes 
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3. RESULTS 

Initial database searches resulted in the identification of 451 articles, with an additional 5 

articles through bibliographies, citation tracking, and hand searching (Figure 1). After 

removing duplicates, 419 articles were retained for initial screening. Title and abstract 

screening resulted in 354 articles excluded. The remaining 65 articles were further examined 

using the inclusion/ exclusion criteria, and 59 studies were excluded, resulting in six studies 

included to examine the effect of limb dominance on COD biomechanics5, 21, 51, 86, 98, 117 (Figure 

1 and Table 1). Methodology quality scores ranged from seven (39%) to sixteen (89%) (Table 

1). 

Four studies examined female athletes,5, 21, 51, 98 one study examined male athletes,86 

and one study used a mixed cohort.117 In addition, sporting populations varied with two studies 

investigating female collegiate soccer players,21, 51 one study investigating male international 

rugby players,86 one study investigating (mixed) recreationally active,117 one study in female 

handball,5 while one study examined a mixture of elite female soccer and handball players.98 

The most common angle of COD was 45°,21, 51, 117 followed by 75°,86 while two studies used a 

sports-specific cut5, 98 but did not specify COD angle. The majority defined limb dominance as 

the preferred kicking limb, whereas one study5 defined limb dominance as preferred push-off 

cutting limb  (Table 2). 

In terms of the effect of limb dominance on COD biomechanics associated with 

increased injury-risk, conflicting observations were found (Table 2). One study indicated that 

the ND21 limb and one study indicated the D86 limb displayed biomechanical deficits associated 

with increased non-contact ACL injury risk during COD. Conversely, the remaining studies5, 

51, 98, 117 demonstrated no significant or substantial differences in COD biomechanics between 

limbs (Table 2). 
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Table 2. Summary of research that has examined the effect of limb dominance on COD biomechanics in multidirectional athletes 
Study Subjects COD task Results 

Bencke et 
al.5 

24 young female 
handball athletes 

Handball specific cut – 5 
step run up 
(COD angle not provided) 
 
D limb – based on 
preferred push- off limb 

D vs ND  
• ↔ (p > 0.05) hip and knee joint angles at IC; but small differences in D GCT (ES = 0.22), hip adduction angle (ES = -0.33), hip internal rotation angle (ES = 

0.30), and knee flexion (ES = -0.33)  
• ↔ (p > 0.05) hip and knee joint moments 100 ms after IC; but small differences in hip flexion moment (ES = 0.20), hip extension moment (ES = 0.27), hip 

adduction moment (ES = 0.54), and knee flexion moment (ES = -0.20) 
• Trivial differences (ES = 0.00) for hip internal rotation, KAM, and knee internal rotation moment (only 1 d.p provided)  
 

Brown et 
al.21 

16 female 
collegiate soccer  
NCAA Division 1   

Pre-planned 45˚ cut  
 
5-m approach distance 
 
4.5±0.5m.s-1 approach 
velocity 
 
D limb – kicking 

ND vs D 
• Knee flexion angles: slightly smaller at IC (ES = 0.19, -5.3%), WA (ES = 0.28, -4.5%), PPO (ES = 0.36, -3.5%) 
• KAA: slightly greater WA (ES = 0.10, +9.8%) 
• Knee internal rotation angle:  greater WA (ES = 0.64, + 32%), slightly greater peak PO (ES = 0.58, + 25%), and final PO (ES = 0.22, + 20%) 
• Knee extensor moments: slightly lower during peak PO (ES = 0.31, -5.8%) and final push-off (ES = 0.30, -22%) 
• KAMs slightly greater WA (ES = 0.22, + 19%) 
• Knee IRM slightly lower during PPO (ES = 0.42, -19%) and final PO (ES = 0.18, -11%) 
• Peak power absorption and peak knee flexion velocity slightly greater (ES = 0.14, + 5.1% and ES = 0.09, + 2.7%) 
• Peak power production and peak knee extension velocity were slightly lower (ES = 0.34, -8.3% and ES = 0.21, -5.2%) 

Marshall et 
al.86 

Twenty elite injury 
free international 
male rugby union 
players  (11 
forwards and 9 
backs) 

Pre-planned 75˚ cut  
(approach distance not 
provided) 

 

• ↔ 27/28 variables, but AI values ranged from 1–49 % (ES = 0.02-0.60)  
• ND ↑ ankle IRM (p = 0.04, 67%, ES = 0.75) 
• D ↑ KAA (ES = 0.23, AI = 21%), ↑ KAM (ES = 0.23, AI = 8%), ↑ knee IRM (ES = 0.43, AI = 29%), ↓ knee flexion angle (ES = 0.35, AI = 5%), and ↓ GCT 

(ES = 0.60, AI = 9%)  
• ND ↑ vGRF (ES = 0.48, AI = 11%), ↑ mlGRF (ES = 0.25, AI =14%), ↑ longitudinal GRF (ES = 0.31, AI = 7%) 

ACP – across the whole waveform: 
• ND ↑ ankle IRM (p = 0.02 – 0.04, ES = 0.52) from 23-38% of the movement.  
• ND ↑ dorsi-flexion during the latter stages (78–94 %) of the cut PO (p = 0.011, ES = 0.57) 

Greska et 
al.51 

20 Female 
collegiate soccer 
players 
 
 

Unanticipated 45˚ cut –  
6-m approach distance 
 
Minimum 3m.s-1 approach 
velocity 
 
D limb – kicking  
 
 

• D ↑ peak knee flexion angle (p = 0.034, ES = 0.69) 
↔ (p > 0.05) in hip and knee kinetics or kinematics, GRF, or EMG, but:  
• D ↑ peak vGRF (ES = 0.39), but ND ↑vGRF at peak KAM (ES = 0.60) 
• ND ↑ KAA at IC and peak (ES = 0.21-0.23)   
• D ↑ peak KAM (ES = 0.26) 
• GCT between limbs (p > 0.004), D ↑ (ES = 0.45) 
• ↔ Approach velocities (ES = 0.06) 
• Trivial to small differences to EMG activation (%MVIC) pre-contact (ES = 0.02-0.55) and IC (ES = 0.04-0.40) 
• Trivial to small differences to EMG activation time course pre-contact (ES = 0.13-0.30) and peak stance (ES = 0.10-0.56) 

 
Pollard et 
al.117 

31 healthy 
participants (15 
males and 16 
females) 

Pre-planned 45˚ cut  
 
(approach distance and 
velocity not provided) 

D limb – kicking 

D vs ND 
• D ↓ knee internal rotation angle from IC to 40% (p < 0.05, ES = 0.74) and IC to pk knee flexion (p < 0.05, ES = 0.61)  
• ↔ hip and knee kinematics (sagittal, transverse, and frontal) (p > 0.05, ES ≤ 0.18) 
• ↔ hip and knee kinematics (sagittal, transverse, and frontal) (p > 0.05, ES ≤ 0.39) (note some variables are presented  to only1 d.p) 
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Mok et al.98 19 elite Female 
handball and 22 
female soccer 

Sports- specific cut 
6-m approach distance 
(COD angle not provided) 
 
Limb D - kicking 

• 4/33 variables significantly different (p < 0.05) 
• Significant difference for peak hip abduction angle, peak knee internal rotation angle, peak knee valgus moment and peak knee flexion moment 

(Does not provide descriptive data for ND limb, thus direction of asymmetry cannot be established) 

Key: ↔: no significant differences; ↑: greater; ↓: lower; D: Dominant; ND: Non-dominant; KAM: Knee abduction moment; KAA: Knee abduction angle: GRF: Ground reaction force; vGRF: Vertical GRF; hGRF: Horizontal GRF; 
mlGRF: Medio-lateral GRF; IC: Initial contact; PFC: Penultimate foot contact; FFC: Final foot contact; SS: Sidestep; ES: Effect size; WA: Weight acceptance; PO: Push-off; GCT: Ground contact time; EMG: Electromyography: 
MVIC: Maximum voluntary isometric contraction; COD: Change of direction; AI: Asymmetry index; ACP: Analysis of characterising phases; IC: Initial contact; d.p: decimal place; IRM: Internal rotation moment 



P a g e  | 12 
 

4. DISCUSSION 

The aim of this systematic review was to critically evaluate the literature to date, which has 

examined the effect of limb dominance on COD biomechanics associated with increased risk 

of injury. A secondary aim was and to highlight the limitations, considerations, and future 

directions for research to improve our understanding regarding the effect of limb dominance 

and biomechanical asymmetries during COD. As six studies were included in the final analysis, 

the effect of limb dominance on COD biomechanics will be discussed in sport-specific 

sections, relative to the sample in the included studies.  

 4.1 Soccer players  

Given the findings from Brophy et al14 that limb dominance may play a gender-based role in 

non-contact ACL injury risk in soccer players, two studies have compared COD biomechanics 

between limbs for a greater understanding into the potential mechanisms of ACL injury which 

met the criteria for this review (Table 2). Brown et al21 conducted a comprehensive comparison 

of knee kinetics and kinematics between limbs during a pre-planned 45° cut in female 

collegiate soccer players. The authors observed subtle differences in knee kinematics and 

kinetics (Table 2) between limbs, reporting small differences in knee flexion angle, and slightly 

greater KAAs, knee internal rotation angle, and KAMs during weight acceptance in the ND 

limb. In addition, slightly lower knee extensor moments and knee IRMs were reported in the 

ND limb, while peak power absorption and peak knee flexion velocity in the ND leg were 

slightly greater than the D limb (Table 2). Moreover, peak power production and peak knee 

extension velocity in the ND limb were slightly lower than those in the D limb (Table 2), 

indicating that the push-off was executed faster in the D limb. Unfortunately, the authors did 

not examine centre of mass velocity at toe-off; therefore, it is uncertain whether the athletes 

displayed superior exit velocity, thus performance from the D limb. Collectively, these results 

indicate that the ND limb exhibits biomechanical deficits associated with greater risk of non-

contact ACL injury, which may partially support the greater ND limb ACL incidence rates in 

female soccer players reported by Brophy et al.14 

Investigating an unanticipated 45° cut in female collegiate soccer players, Greska et 

al51 demonstrated no significant differences between limbs in hip and knee moments, GRFs, 

and peak electromyography activation (Table 2). Interestingly, based on the effect sizes (Table 

2), differences in neuromechanical characteristics were inconsistent between limbs. For 

example, the D limb displayed greater peak knee flexion angles, greater peak KAMs, and 
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greater peak vertical GRFs, while the ND limb exhibited greater KAAs (IC and peak) and 

greater vertical GRF at peak KAM (Table 2). Moreover, the authors found the time course of 

muscle activation was also different between limbs (Table 2). These findings contrast to Brown 

et al21 that found the ND to display potentially more hazardous knee kinetics and kinematics. 

However, it is worth noting that the conflicting and inconsistent findings between studies could 

be attributed to task differences because Brown et al21 examined a pre-planned 45° cut, 

compared to an unanticipated 45° cut investigated by Greska et al.51 Furthermore, greater 

approach velocities were reported by Brown et al21 compared to Greska et al51 (4.5 ± 0.5 m.s-1 

vs. 3.26 ± 0.18 m.s-1), whereby velocities ≥ 4 m.s-1 have been recommended to screening and 

evaluating COD biomechanics in female athletes.146 As such, further research is required 

examining between-limb differences in COD biomechanics during unanticipated cuts ≥ 4 m.s-

1, in line with recommendations from Vanrenterghem et al.146 

4.2 Rugby players 

Five of the six studies (Tables 1 & 2) have compared between-limb COD biomechanics based 

on discrete point analysis (DPA) (i.e. peak value during weight acceptance or push-off) (Table 

2). This approach, however, leads to regional focus bias (focusing only on one aspect of the 

waveform),101, 113-115, 124 does not provide information regarding temporal differences (timing 

differences),121, 122, 138 and a large proportion of potentially valuable and meaningful 

information of the waveform (i.e. moment, GRF, angle waveform) is left unexamined.17, 118  

In light of the issues with DPA, Marshall et al86 compared between-limb biomechanics 

in male international rugby players during a 75˚ cut using not only DPA, but also compared 

the continuous data between limbs using a method known as analysis of characterising phases 

(ACP: a continuous data analysis techniques that detects and examines phases of variance 

within a sample a sample of curves utilising the time, magnitude, and magnitude-time 

domains).121, 122 Interestingly, based on DPA, ankle IRM was the only variable (1/28) that 

showed a significant difference between limbs (Table 2). Notably, however, when the full 

waveform for variables were compared between D and ND limbs, ACP revealed ankle IRM 

was significantly greater for the ND limb from 23-38% of the movement, while significantly 

greater ankle dorsi-flexion angles during the latter stages of push off (78-94%) were also 

observed for the ND limb. Although not significantly different, based on DPA, slightly greater 

KAAs (asymmetry index (AI = 8%), knee IRMs (AI = 29%), and lower knee flexion angles 

(AI = 5%), and greater vertical GRF (AI = 11%) were observed for the D limb (Table 2). These 

findings are concerning because multiplanar joint loading can increase ACL strain,3, 73, 85, 107, 
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133 while model-based image-matching has revealed knee valgus, extended knee postures, and 

high vertical GRFs as characteristics of non-contact ACL injury during COD.76 Furthermore, 

Marshall et al86 observed a slightly longer ground contact time (GCT) for the ND limb (ES = 

0.60, AI = 9%), potentially indicating slower performance from that push-off limb.38, 84, 87, 127 

Therefore, rugby players may benefit from improving their unilateral reactive strength to 

improve COD speed performance from their ND limb,11, 83 though it is imperative that athletes 

have a solid foundation of strength to fully reap the benefits of unilateral reactive strength 

training.40, 140, 141 

4.3 Handball players and mixed cohorts 

Only two studies have examined asymmetries in COD biomechanics in handball players (Table 

2). Bencke et al5 reported no significant asymmetries in knee and hip joint angles, and no 

significant differences in hip and knee moments (flexion, extension, abduction, and internal 

rotation) during a sports-specific cut in female handball players (Table 2). However, it should 

be noted that Bencke et al5 failed to calculate AI values or effect sizes for the between-limb 

comparisons. Based on the descriptive data provided, though some data were presented only to 

one decimal place, small effect sizes would have been observed (Table 2), with the D limb 

displaying a slightly longer GCT, smaller knee and hip adduction angles, and a greater hip 

internal rotation angle. Furthermore, the D limb displayed slightly greater hip flexion, hip 

extension, hip adduction, and lower knee flexor moments; however, notably, trivial differences 

in KAM and knee internal rotation moments were observed. It is important to note, however, 

that Bencke et al5 defined limb dominance as the preferred push-off leg which may not 

necessarily correspond to the D kicking limb41 as used by the other limb dominance studies 

(Tables 2).   

Similarly, Mok et al98 also compared between-limb biomechanics during a sports-

specific cut in elite female handball and soccer players, finding four of 33 variables displayed 

a significant difference (peak hip abduction angle, peak knee internal rotation angle, peak 

KAM, and peak knee flexion moment) between limbs. Unfortunately, the authors failed to 

provide the descriptive data for the ND limb; thus, it is unclear which limb displayed the greater 

biomechanical deficits, and the magnitude of the differences could not be established. Recently, 

Pollard et al117 reported knee internal rotation angle at 40% of stance and internal rotation angle 

displayed significant difference between limbs during a 45° cut in a mixed cohort (Table 2). 

Although effect sizes were not calculated, the ND limb displayed greater knee internal rotation 
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angles (ES = 0.61-0.74), while non-significant and trivial differences between limbs were 

observed for all other knee and hip kinematics (Table 2). In addition, the authors observed no 

significant differences in knee kinetics between limbs, though effect sizes ranged from trivial 

to small (Table 2); however, it is worth noting that values were only presented to one decimal 

place which may slightly alter effect size calculations. 

 

5.CONSIDERATIONS, LIMITATIONS, AND FUTURE DIRECTIONS FOR 

RESEARCH 

Collectively, it remains inconclusive whether limb dominance has a direct association with 

COD biomechanics connected with non-contact ACL injuries and whether a particular limb 

displays mechanics associated with greater ACL injury risk, with conflicted findings reported 

in female soccer, male rugby, and female handball athletes (Table 2). It is worth noting that the 

published literature to date are limited to female soccer, male rugby, female handball, and 

physically active populations (Tables 2); thus, these findings can only be extrapolated within 

this context and cannot be generalised to other athletic populations. Further research is required 

exploring the effect of limb dominance on COD biomechanics from different athletic 

populations, such as netball, American football, and Australian rules football given the 

importance of COD actions from both performance and risk of non-contact ACL injury 

perspectives.65, 99, 139, 142, 148 In addition, the published studies (Table 1) have only examined 

one COD task; thus, further research is required, investigating a greater range of COD tasks of 

different angles (i.e. 45˚ vs 90˚ vs 135 vs 180˚) because the biomechanical demands of 

directional changes are angle-dependent.28, 40, 52, 53, 58, 60, 129, 130, 134 

 Although failing to achieve the eligibility criteria for this systematic review, two 

studies,18, 145 presented as posters, observed greater KAAs in the ND limb during a 180˚ turn 

in female athletes (ES = 0.22-0.63), though trivial differences in peak KAMs (ES = 0.13) were 

observed. Furthermore, Brown et al19 compared sidestepping (COD angle not provided)  

biomechanics between D and ND limbs in thirty male academy rugby players. In contrast to 

Marshall et al,86 the ND limb displayed mechanics associated with increased risk of injury with 

8% less knee flexion (ES = -0.26), 17 % greater lateral trunk flexion (ES = 0.42), 11% greater 

COM distance relative to the joint centre (ES = 0.97), and 25% greater peak KAMs (ES = 0.43) 

observed.19 These results further highlight the inconsistency in ‘high-risk’ mechanics displayed 
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by the D and ND limb, and demonstrate the individual variation regarding the relationship 

between limb dominance and ACL injury risk. 

 Specifically, all eligible studies investigated a cutting action ≤ 75° (Table 2), while 

no published peer-reviewed study has examined the braking characteristics and braking 

strategy differences between limbs over the penultimate foot contact (PFC). The PFC has been 

recently highlighted as playing a pivotal role in deceleration prior to changing direction and is 

also considered a preparatory step in facilitating effective directional changes.38, 39, 67, 69 

Although published in poster format only, Thomas et al145 found female soccer players 

displayed different braking strategies during a 180° turn between directions. Greater 

magnitudes of PFC horizontal braking forces (i.e., earlier braking with the ND limb) when 

changing direction from the D limb were demonstrated by the female soccer players and this 

also resulted in faster turning performance. Conversely, slower performance and greater 

emphasis and magnitudes of braking forces were displayed during the final foot contact when 

changing direction from the ND limb. The better performance and PFC dominant braking 

strategy demonstrated by the soccer players may be attributed to the similarities of the kicking 

action with their preferred leg, whereby the ND limb (i.e., stance) would experience greater 

eccentric and braking demands,1, 2, 15, 56, 91 and may therefore be a more skilful and efficient 

limb for braking. Consequently, further research is required exploring the between-limb 

differences in braking strategies during sharper directional changes, considering the PFC. 

 It should also be acknowledged that  in order for an asymmetry to be deemed ‘real’, 

the between-limb difference must be greater than the variability for that variable.8, 42 A 

fundamental shortcoming of the COD limb dominance studies is the failure to report their 

variability statistics (i.e., coefficient of variation/ typical error) (Table 2). Moreover, only one 

study has directly calculated AI values,86 though the equation used was in contrast to the recent 

recommendations of Bishop et al8, 9 for quantifying asymmetries, and practitioners and 

researchers are encouraged to use these recommendations to correctly calculate between-limb 

percentage imbalances. Briefly, when calculating AI values, if imbalances are not calculated 

in respect to the maximum value, then the percentage is mathematically incorrect.8, 9 

Practitioners run the risk of incorrectly calculating AIs when defining the D limb as the kicking 

limb because the kicking limb may not necessarily be the limb that displays the greater value. 

Therefore, limb dominance should be defined as the limb that displays the highest value (i.e., 

highest peak KAM, KAA, vGRF, etc.) and subsequent AI and comparison between D and ND 
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limbs should be based on this approach to nullify the inconsistencies based on kicking limb 

preference. 

 A problematic issue in the COD limb dominance literature (Table 1 & 2), is no study 

has accounted for the effect of variability when interpreting between-limb differences. This 

absence has large implications because it is uncertain the between-limb differences presented 

in the aforementioned literature can be interpreted as ‘real’8, 42 (Table 2). Additionally, no 

study, to the best of our knowledge, has comprehensively examined the between-session 

reliability of the between-limb differences in COD biomechanics. It is not yet understood 

whether the magnitudes and directions of asymmetries between limbs are consistent between 

sessions (i.e. left limb consistently displays 15% AI for both session 1 and 2). This is important 

because if the magnitudes and directions of asymmetries are inconsistent between sessions, this 

could lead to different clinical diagnoses which could influence the future training for that 

athlete. Going forward, future research that investigates between-limb differences and 

asymmetries in COD biomechanics should account for the variability to establish ‘significant’ 

and ‘real’ differences between limbs. 

 While five of the six published studies have compared between-limb differences in 

COD biomechanics based on limb dominance (i.e., preferred leg to kick a ball), the assumption 

that the preferred kicking leg is a more coordinated and potentially stronger limb is flawed 

because previous studies have shown that the kicking limb may not necessarily be the stronger 

limb,41, 70, 90 or lead to superior functional performance from that limb,10, 41, 90 with research 

indicating that the preferred kicking limb does not necessarily correspond to faster COD speed 

performance from the same push-off limb.41 The published COD limb dominance studies have 

pooled their data with respect to limb dominance which can mask and conceal potentially 

meaningful between-limb differences because some athletes may display greater 

biomechanical deficits in the kicking limb, while the ND limb will display biomechanical 

deficits for other athletes. Going forward, it could more suitable to compare COD biomechanics 

between limbs between preferred and non-preferred turning (push-off) limbs to identify if a 

particular limb is a greater risk of injury, as done by Bencke et al.5 This recommendation is 

extremely pertinent when wanting to examine the effect of limb dominance in athletes from 

sports where kicking is not a regularly performed action such as handball, basketball, netball, 

and rugby.  
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 To the best of our knowledge, no study has examined whether between-limb force 

asymmetries (muscle strength asymmetries) affect COD biomechanics. Moreover, it has been 

documented that athletes display faster performance, based on completion times, from a push-

off limb during cutting and turning tasks,36, 37, 41, 57, 84, 106, 125, 150 yet the underpinning kinetic 

and kinematic mechanisms which explain the differences between faster cutting or turning 

performance to a side are yet to be established and warrant further investigation. As such, 

comparing COD biomechanics between stronger and weaker limbs, or faster and slower sides, 

may provide different between-limb differences and subsequent evaluations regarding an 

athlete’s risk of injury and performance. Performing such investigations would improve our 

understanding regarding the effect of between-limb force asymmetries on COD biomechanics 

and mechanical differences that explain differences in COD performance between limbs. 

 Finally, the majority of studies have conducted DPA (Tables 2); however, this 

method fails to account for the whole waveform for angle, moments, and GRF data whereby 

valuable information if left unexamined.17, 118 Only one study86 has conducted statistical 

analysis across the whole waveform for kinetic and kinematic variables to provide greater 

insight into the temporal differences between-limbs. Thus, further research is warranted using 

temporal phase analysis,26, 95 ACP,121, 122 or one-dimensional statistical parametric mapping113, 

124, 146 to explore differences between limbs across the whole waveform  Furthermore, no study 

to our knowledge, has examined the joint-joint coordination differences (angle-angle plots) 

between-limbs during COD, which may provide insight into the coupling behaviours between 

multiple segments,54, 55, 100, 101, 118, 137 and thus, is a recommendation for future research.  

6. CONCLUSIONS 

In conclusion, female soccer players, male rugby players, and female handball players, in 

general, exhibit subtle side to side differences when performing cutting manoeuvres, though 

the magnitude and direction of the differences are inconsistent within and between studies and 

populations. Based on the published literature to date, it remains inconclusive whether limb 

dominance is a risk factor associated with non-contact ACL biomechanical risk factors during 

COD. Studies to date have demonstrated conflicting results, indicating that the ND21 or D86 

limb  may display biomechanical deficits associated with increased non-contact ACL injury 

risk, whereas previous research have demonstrated no significant or substantial differences 

between limbs during COD,5, 51, 117 refuting the notion of limb dominance as a risk factor of 

non-contact ACL injury. However, a fundamental flaw of the majority of the studies is that 
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limb dominance was defined as the preferred kicking limb, and thus the assumption that the 

kicking limb will be the more skilful and coordinated limb when changing direction is 

inherently incorrect. Nevertheless, practitioners are encouraged to screen COD biomechanics 

in both push-off limbs to identify biomechanical deficits associated with non-contact ACL 

injury risk, so informed individualised preventative training interventions can be created. 

Furthermore, as the aim of the sports medicine, sports science, and strength and conditioning 

is to improve athletic performance and minimise risk of injury, it would be advantageous that 

athletes have the capacity and are equally proficient in changing direction safely and quickly 

from both limbs, due to the unpredictable nature of multidirectional sport.  
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