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A QUALITATIVE SCREENING TOOL TO IDENTIFY ATHLETES WITH ‘HIGH-RISK’ 
MOVEMENT MECHANICS DURING CUTTING:  THE CUTTING MOVEMENT 
ASSESSMENT SCORE (CMAS) 
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ABSTRACT 
Objective: To assess the validity of the cutting movement assessment score (CMAS) to estimate the 

magnitude of peak knee abduction moments (KAM) against three-dimensional (3D) motion analysis, 

while comparing whole-body kinetics and kinematics between subjects of low (bottom 33%) and high 

CMASs (top 33%).  

Design: Cross-sectional study. 

Setting: Laboratory. 

Participants: Forty-one participants (soccer, rugby, netball, and cricket). 

Main outcome measures: Association between peak KAM and CMAS during a 90° cut. Comparison 

of 3D whole-body kinetics and kinematics between subjects with low (bottom 33%) and high CMASs 

(top 33%).  

Results: A very large significant relationship (ρ = 0.796, p < 0.001) between CMAS and peak KAM 

was observed. Subjects with higher CMASs displayed higher-risk cutting postures, including greater 

peak knee abduction angles, internal foot progression angles, and lateral foot plant distances (p ≤ 0.032, 

effect size = 0.83-1.64). Additionally, greater cutting multiplanar knee joint loads (knee flexion, internal 

rotation, and abduction moments) were demonstrated by subjects with higher CMASs compared to 

lower (p ≤ 0.047, effect size = 0.77-2.24). 

Conclusion: The CMAS is a valid qualitative screening tool for evaluating cutting movement quality 

and is therefore a potential method to identify athletes who generate high KAMs and “high-risk” side-

step cutting mechanics. 

Keywords: Anterior cruciate ligament; knee abduction moment; injury screening; injury-risk profile 

 

Highlights: 

• CMAS is a valid and reliable screening tool for evaluating side-step cutting movement quality. 

• A very large significant relationship was observed between CMAS and peak KAM. 

• CMAS offers practitioners a cost-effective and easily applicable field-based screening tool to 

identify athletes who generate high peak KAMs. 

• CMAS allows practitioners to identify “high-risk” cutting mechanics in athletes 

• CMAS can be used as a potential technical framework for coaching “safer” cutting. 
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1. INTRODUCTION 
Side-step lateral foot plant-and-cut actions are frequently performed movements in numerous sports 

(25, 84) and are also linked to decisive moments in matches, such as evading an opponent to penetrate 

the defensive line in rugby (tackle-break success in rugby) (84), or getting into to space to receive a 

pass in netball (25). Side-step cutting, however, are also actions associated with non-contact anterior 

cruciate ligament (ACL) injuries in sports (39, 48, 62). Although ACL injury-risk factors are 

multifactorial (74) and a complex interaction of internal and external factors (i.e. anatomical, hormonal, 

environmental, shoe-surface interface, anticipation, and fatigue) (8, 34, 54), a large proportion of ACL 

injuries are non-contact in nature during high velocity and impact sporting tasks, such as side-stepping 

(9, 39, 54). This occurrence can be attributed to the tendency to generate large multiplanar knee joint 

loading, such as knee abduction moments (KAM) and internal rotation moments (KIRM) (7, 19, 41), 

which increase ACL strain (4, 57, 76). These potentially hazardous knee joint loads are amplified when 

poor initial postures and movement is demonstrated (biomechanical and neuromuscular control deficits) 

during cutting (24, 34, 65), but importantly these deficits are modifiable (34, 71). As such, 

understanding the mechanics, interventions, and screening tools that can reduce ACL injury-risk factors 

is of critical importance.  

The ability to identify athletes potentially at risk of injury is a critical step in effective ACL injury-

risk reduction (26, 34). Although it is inconclusive whether screening tools can predict non-contact 

ACL injury (3, 27), evaluating movement quality and identifying biomechanical and neuromuscular 

control deficits (high-risk movement patterns) can provide important information regarding an athlete’s 

“injury-risk profile” (33, 58, 61). These abnormal deficits include knee abduction angles (KAA) (40, 

42, 50, 59, 77), lateral trunk flexion (19, 28, 38, 40), extended knee postures (16, 48, 83), and hip 

internal rotation (29, 59, 77, 78). This information from movement screening can subsequently be used 

to inform the future prescription of training and conditioning so specific deficits can be targeted through 

appropriate training interventions to decrease the relative risk of injury (33, 35, 61). Therefore, the 

inclusion of valid and reliable screening tools that assess movement quality are an important component 

of sports medicine and strength and conditioning testing batteries to provide an  “injury-risk profile” 

for an athlete (33, 44). 

Three-dimension (3D) motion analysis is considered the gold standard for evaluating movement 

kinetics and kinematics (27, 34); however, this method can be susceptible to errors, with a diverse range 

of  data collection and analysis procedures available to practitioners which can impact outcome values, 

reliability, or subsequent evaluations of an athlete’s biomechanical profile (12, 52). Given these 

methodological considerations and issues, and the fact the 3D motion analysis is expensive, time-

consuming, requires expert and well trained assessors, and is usually restricted to testing one subject in 

laboratory setting, time- and cost-effective qualitative field-based screening tools have been developed, 

such as the landing error scoring system (LESS) (70, 72), tuck jump assessment (TJA) (32, 66), and 
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qualitative analysis of single leg loading (QASLS) (2, 31), to assess lower-limb and whole-body 

postures associated with increased potential risk of injury (high-risk movement patterns). However, the 

LESS is the only screening tool of that has been validated against 3D motion analysis (69, 72).  

A fundamental shortcoming of the LESS, TJA, and QASLS are these assessments generally assess 

landing mechanics during a vertical-orientated task. Although screening landing mechanics is indeed 

applicable to jump-landing sports (netball, basketball, volleyball) where the primary action associated 

with non-contact ACL injury is landing manoeuvres (36, 54, 79), these aforementioned assessments 

may lack specificity to the unilateral, multiplanar plant-and-cut manoeuvres observed when changing 

direction (27, 44, 61). This is particularly important when aiming to screen athletes who participate in 

sports such as soccer (82), handball (68), American football (39), badminton (46), and rugby (63), where 

directional changes are a primary action associated with-non contact ACL injuries. Furthermore, there 

are mixed findings whether examination of landing mechanics can identify athletes with poor cutting 

mechanics (1, 13, 51, 67), with evidence suggesting an athlete’s mechanics and “injury-risk profile” are 

task dependent (13, 45, 51, 64). As such, screening side-step cutting technique, which is specific to the 

actions associated with non-contact ACL injuries in cutting sports (i.e. rugby, handball, soccer, 

American football), could be a more effective strategy for identify poor cutting movement quality in 

athletes, which can help inform future injury-risk mitigation training.  

Unfortunately, there is a paucity of field-based cutting screening tools available for practitioners. 

McLean et al. (60) initially evaluated two-dimensional (2D) estimates of frontal plane knee motion 

during cutting against the gold standard of 3D, and found 2D estimates correlated well with side-step 

(r2 = 0.58) and side-jump (r2 = 0.64) 3D valgus angles, but poorer associations were observed with 180˚ 

turn knee valgus angle (r2 = 0.04); thus, highlighting the difficulty in assessing 2D valgus motion in the 

frontal plane using a single camera during sharp CODs. Weir et al. (83) has recently demonstrated that 

2D measures of dynamic knee valgus angle, knee flexion angle at foot-strike and ROM, trunk flexion 

ROM, when inserted in regression equations, can be used to predict 3D peak knee flexor, KAM and 

KIRMs during unanticipated side-steps. Despite these promising relationships, such 2D side-step 

screening methods are not widely adopted by practitioners and clinicians. This lack of adoption could 

be attributed to the 2D method requiring additional time and software to measure joint kinematics, thus 

potentially limiting its applicability in field settings. 

 In light of the issues associated with 2D analysis, Jones et al. (44) have recently developed the 

cutting movement assessment score (CMAS), which is a qualitative screening tool that assesses cutting 

movement quality and specific lower-limb and trunk characteristics that are associated with (24, 50, 83) 

peak KAMs (Supplement 1), such as penultimate foot contact (PFC) braking strategy, and trunk, hip, 

knee, and foot positioning and motions. In this preliminary study, a strong relationship between CMAS 

and peak KAM (ρ = 0.633; p < 0.001) was demonstrated, while moderate to excellent intra-and inter-



P a g e  | 5 
 

rater agreements for all CMAS variables (Intra-rater: k = 0.60-1.00, 75-100% agreements; inter-rater: k 

= 0.71-1.00, 87.5-100% agreements) were observed, although lower inter-rater agreements for trunk 

positioning were observed (k = 0.40, 62.5% agreement). In light of these findings, the CMAS may have 

the potential to identify athletes displaying “high-risk” cutting mechanics but more importantly, could 

be used as a technical framework for coaching safer cutting mechanics. It should be noted, however, 

that the preliminary study contained a small sample size (n = 8 subjects, 36 trials) and must be expanded 

with a greater sample size to confirm its validity and reliability. Furthermore, the authors recommended 

an additional camera to be placed at 45° relative to the COD and using a higher video capture rate (≥100 

Hz) to permit more accurate and reliable assessments for frontal and transverse plane technique deficits 

(i.e. trunk positioning, knee valgus).  

The aim of this this study, therefore, was to assess the validity of the CMAS tool to estimate the 

potential peak KAMs against the gold standard of 3D motion analysis, expanding on the work of Jones 

et al. (44) by examining a larger sample size and using an additional camera recording at a higher 

sampling rate. A further aim to was to determine whether “higher-risk” movement mechanics were 

displayed by subjects with higher CMASs compared to subjects with lower CMASs. Firstly, it was 

hypothesised that excellent inter- and intra-rater reliability would be demonstrated for CMAS items. 

Secondly, in line with Jones et al. (44), it was hypothesised that a strong relationship would be 

demonstrated between CMAS and peak KAM, and the CMAS would be able to discriminate between 

“low” and “high” CMASs in terms of “high-risk” whole-body kinetics and kinematics.  

2. METHODS 
2.1 Experimental approach 

This study used a cross-sectional design to determine the relationship between CMAS and peak KAMs 

during cutting over one session. Participants performed six 90° cuts (70-90°) whereby 3D motion and 

2D video footage data were simultaneously captured to permit qualitative screening and comparisons 

to 3D motion data, similar to the procedures of previous research  (44, 72). 

2.2 Participants   

Based on the work of Jones et al. (44) who determined the relationship between CMAS and peak KAM, 

a minimum sample size of 29 was determined from an a priori power analysis using G*Power (Version 

3.1, University  of Dusseldorf, Germany) (22). This was based upon a correlation value of ρ = 0.633, a 

power of 0.95, and type 1 error or alpha level of 0.05. As such, 41 athletes (28 males/13 females) from 

multiple sports (soccer, rugby, netball, and cricket) (mean ± SD; age:  21.3 ± 4.0 years, height: 1.75 ± 

0.08 m, mass: 72.8 ± 11.8 kg) participated in this study. For inclusion in the study, all athletes had 

played their respective sport for a minimum of 5 years and regularly participated in one game and 

performed two structured skill-based training sessions per week. All athletes were free from injury and 

had never suffered a prior traumatic knee injury such as an ACL injury. At the time of testing, players 
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were currently in-season (competition phase). The investigation was approved by the institutional ethics 

review board, and all participants were informed of the benefits and risks of the investigation prior to 

signing an institutionally approved consent and parental assent documents to participate in the study. 

2.3 Cutting Movement Assessment Score 

Table 1 presents the CMAS qualitative screening analysis tool to estimate the magnitude of KAMs 

during cutting, which has been slightly modified from the preliminary investigation by Jones et al. (44) 

(i.e. extra description provided to some criteria). The CMAS is based on research pertaining to technical 

determinants of peak KAMs during 30-90° side-step cutting (24, 50, 83) and visual observations  of 

non-contact ACL injuries (39, 48, 68). Supplement 1 contains operation definitions and a biomechanical 

rationale of the CMAS. If an athlete exhibits any of the characteristics in Table 1 they are awarded a 

score, with a higher score representative of poorer technique and potentially greater peak KAM (44). 

Table 1. Cutting movement assessment score tool  

Camera Variable Observation Score 

Penultimate contact 

Side / 45° 

Clear PFC braking strategy (at initial contact) 

• Backward inclination of the trunk  

• Large COM to COP position – anterior placement of the foot 

• Effective deceleration – heel contact PFC 

Y/N Y=0/ N=1 

Final Contact 

Front / 45° 
Wide lateral leg plant (approx. > 0.35 m – dependent on subject anthropometrics) (at initial 

contact) 
Y/N Y=2/N=0 

Front / 45° Hip in an initial internally rotated position (at initial contact) Y/N Y=1/N=0 

Front / 45° Initial knee ‘valgus’ position (at initial contact) Y/N Y=1/N=0 

All 3 

Foot not in neutral foot position (at initial contact) 

Inwardly rotated foot position or externally rotated foot position (relative to original direction of 

travel) 

Y/N Y=1/N=0 

Front / 45° 
Frontal plane trunk position relative to intended direction; Lateral or trunk rotated towards 

stance limb, Upright, or Medial (at initial contact and over WA) 
L/TR/U/M 

L/TR=2/ 

U = 1, 

/M=0 

Side / 45° 
Trunk upright or leaning back throughout contact (not adequate trunk flexion displacement) (at 

initial contact and over WA) 
Y/N Y=1/N=0 

Side / 45° Limited Knee flexion during final contact (stiff) ≤ 30˚ (over WA) Y/N Y=1/N=0 

Front / 45° Excessive Knee ‘valgus’ motion during contact (over WA) Y/N Y=1/N=0 

  Total Score 0 /11 

Key: PFC: Penultimate foot contact; COM: Centre of mass; COP: Centre of pressure; WA: weight acceptance; TR: Trunk rotation; Y: Yes; N: No; L: 

Lateral; TR: Trunk rotation; U: Upright; M: Medial. 
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2.4 Procedures 

The warm up, 90° cut (21), marker placement (21, 41, 44), and 3D motion analysis (21, 41, 44), and 

CMAS (44) procedures were based on previously published methodologies (21, 44), thus a brief 

overview is provided here.  

Participants performed six trials of a 90° cut as fast as possible (70-90°) (Figure 1). Completion 

time (2.11 ± 0.14 seconds, coefficient of variation = 2.71%) was measured to standardise performance 

between trials, and was assessed using two sets of Brower timing lights placed at hip height (Draper, 

UT, USA). Marker and force data were collected over the penultimate and final foot contact using ten 

Qualisys Oqus 7 (Gothenburg, Sweden) infrared cameras (240Hz) operating through Qualisys Track 

Manager software (Qualisys, version 2.16 (Build 3520), Gothenburg, Sweden) and GRF’s were 

collected from two 600 mm × 900 mm AMTI (Advanced Mechanical Technology, Inc, Watertown, 

MA, USA) force platforms (Model number: 600900) embedded into the running track sampling at 

1200Hz, respectively.  

Using the pipeline function in visual 3D, joint coordinate (marker) and force data were 

smoothed using a Butterworth low-pass digital filter with cut-off frequencies of 15 and 25 Hz, based 

on a priori residual analysis (86), visual inspection of motion data, and recommendations by Roewer et 

al. (75). Lower limb joint moments were calculated using an inverse dynamics approach (85) through 

Visual 3D software (C-motion, version 6.01.12, Germantown, USA) and were defined as external 

moments and normalised to body mass. Joint kinematics and GRF were also calculated using visual 

3D, with Supplement 2 providing the variables examined, definitions, and calculations. Briefly, the 

following kinetic and kinematics were examined to provide insight into potentially “high-risk” cutting 

mechanics: vertical and horizontal GRF, knee flexion, rotation, and abduction angles and moments, hip 

rotation angle, trunk inclination angle, lateral foot plant distance, lateral trunk flexion, initial foot 

progression angle, and knee flexion angle. These aforementioned kinetic and kinematics were evaluated 

because they have been shown to be associated with greater multiplanar knee joint loads (24, 50, 83), 

and have also been identified as visual characteristics of non-contact ACL injury during cutting (39, 48, 

68). A more detailed rationale for investigation of these variables is presented in Supplement 1.  

The trials were time normalised for each subject to 101 data points with each point representing 

1% of the weight acceptance (WA) phase (0 to 100% of WA) of the cutting task. Initial contact was 

defined as the instant after ground contact that the vertical GRF was higher than 20 N, and end of contact 

was defined as the point where the vertical GRF subsided past 20 N (42, 50, 52). The WA phase was 

defined as the instant of initial contact to the point of maximum knee flexion (29, 40, 41). Approach 

velocities were 4.5 ± 0.5 m·s-1 at initial contact (touch-down) of the PFC, by calculating the horizontal 

centre off mass velocity using the combined lower-limb and trunk model, as recommended by 

Vanrenterghem et al. (80) and used previously in our laboratory (43). 



P a g e  | 8 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Plan view of the experimental set-up. The task involved subjects approaching 5-m 

towards turning point on 2nd force platform. At the turning point, subjects cut to the left 90˚ using 

their right limb between timing gates placed 3-m away. Marker, GRF, and 2D camera data were 

collected simultaneously. 

 

2.5 Qualitative assessment: CMAS 

While marker and GRF data were collected, three Panasonic Lumix FZ-200 high speed cameras 

sampling at 100 Hz simultaneously filmed the cutting trials. These cameras were positioned on tripods 

3-m away from the force plates at a height of 0.60 m and were placed in the sagittal and frontal plane, 

with a camera also placed 45˚ relative the cut, in accordance with previous recommendations (44) 

(Figure 1). Video footage was subsequently viewed in Kinovea software (0.8.15 for Windows), which 

is free, and was used for qualitative screening using the CMAS (Table 1). This software allowed videos 

to be played at various speeds and frame-by-frame. The three raters were allowed to independently 

watch the videos as many times as necessary (23, 69), at  whatever  speeds  they  needed  to  score  each  

test, and could also pause footage for evaluative purposes (23). On average, qualitative screening of one 

trial took ~3 minutes.  

Prior to qualitative screening, all raters attended a one-hour training session outlining how to 

grade the cutting trials using the CMAS, and to establish and uniformly agree on low-risk and high-risk 

movement patterns using pilot video footage. Subsequently, the lead researcher created a manual for all 

raters which contained guidelines, operational definitions (Supplement 1 and 3), and example images 

of low-risk and high-risk motions of each screening criteria to assist CMAS screening. 
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2.6. Statistical analyses 
Thirty-two trials were discarded due to technical issues with camera footage, 3D data, or subjects slid 

or missed the platform that went unnoticed during data collection, thus resulting in 214 trials (minimum 

4 trials from 41 athletes) screened and used for further analysis. All statistical analyses were performed 

in SPSS v 24 (SPSS Inc., Chicago, IL, USA) and Microsoft Excel (version 2016, Microsoft Corp., 

Redmond, WA, USA). To determine inter- and intra-rater reliability, 41 trials (one trial from each 

subject) were randomly selected by the lead researcher, similar to the procedures of previous research 

(44). The lead researcher, who has seven years’ strength and conditioning and biomechanics experience, 

viewed and graded each trial on two separate occasions separated by 7 days, in line with previous 

research (23, 72) to examine intra-rater reliability. Another researcher (experienced biomechanist; 17 

years’ biomechanics and strength and conditioning experience), viewed and graded each trial once and 

these scores were compared to the lead researcher to establish inter-rater reliability. In addition, a recent 

sports science graduate also viewed and graded each trial once and these scores were compared to the 

lead researcher to establish inter-rater reliability. 

Intra-class correlation coefficients (ICC) (two-way mixed effects, average measures, absolute 

agreement) for total score were determined. Intraclass correlations were interpreted based on the 

following scale presented by Koo and Li (49): poor (< 0.50), moderate (0.50-0.75), good (0.75-0.90), 

and excellent (> 0.90). For each item within the CMAS (Table 1), percentage agreements (agreements 

/agreements + disagreements × 100) and Kappa co-efficients were calculated. Kappa co-efficients were 

calculated using the formula; k = Pr(a) – Pr(e) / 1 – Pr(e), where Pr(a) = relative observed agreement 

between raters; Pr(e) = hypothetic probability of chance agreement, which describes the proportion of 

agreement between the two methods after any agreement by chance has been removed (81). The kappa 

co-efficient was interpreted based on the following scale of Landis and Koch (55): slight (0.01-0.20), 

fair (0.21-0.40), moderate (0.41-0.60), good (0.61-0.80), and excellent (0.81-1.00). Percentage 

agreements were interpreted in line with previous research (15, 69) and the scale was as follows: 

excellent (>80%), moderate (51-79%), and poor (< 50%) (15, 69). 

The relationship between CMAS and the “gold standard” determination of peak KAM during 

the final foot contact (FFC) of the cutting task from 3D motion analysis using the means of each subject 

was explored using Spearman’s rank correlation, with 95% confidence intervals (CI), due to the non-

parametric nature of the qualitative data. Correlations were evaluated as follows: trivial (0.00-0.09), 

small (0.10–0.29), moderate (0.30–0.49), large (0.50–0.69), very large (0.70–0.89), nearly perfect 

(0.90–0.99), and perfect (1.00) (37). This analysis was performed using the 214 trials screened by the 

lead researcher. 

Subjects were classified into low CMAS (bottom 33%, n = 14) and high CMAS (top 33%, n = 

14) groups based on their mean CMASs. Subsequently, cutting 3D kinetics and kinematics were 

compared between the two groups (subject mean data) using independent sample t tests for parametric 
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data and Mann-Whitney U tests for non-parametric data. To explore the magnitude of differences 

between groups, mean differences with 95% CIs and Hedges’ g effect sizes with 95% CIs were also 

calculated as described previously (30), and interpreted as trivial (< 0.19), small (0.20–0.59), moderate 

(0.60–1.19), large (1.20–1.99), very large (2.0–3.99), and extremely large (≥ 4.00) (37). Statistical 

significance was defined p ≤ 0.05 for all tests. 

3. RESULTS 
3.1 Intra- and inter-rater reliability 

Excellent intra-rater reliability was observed for CMAS total score (ICC = 0.946). Intra- and inter-rater 

percentage agreements and Kappa coefficients are presented in Table 2. Excellent intra-rater 

percentage-agreements and kappa-coefficients were demonstrated for all CMAS variables (Table 2), 

with two variables scoring 100% agreement. For inter-rater reliability, most items displayed moderate 

to excellent percentage agreements (Table 2), while most items displayed moderate to good kappa 

coefficients between the lead researcher and experienced biomechanist. Conversely, kappa coefficients 

ranged from slight to good between the lead researcher and recent graduate, and most items displayed 

moderate to excellent percentage agreements (Table 2). Moderate inter-rater reliability was observed 

for CMAS total score between raters (ICC = 0.690) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  



P a g e  | 11 
 

 

3.2 Relationships between CMAS and peak KAM 

Mean ± SD from each trial of the 41 subjects were 5.1 ± 1.8 CMAS and peak KAM 1.00 ± 0.44 Nm/kg. 

CMASs and KAMs for males and females were 5.1 ± 1.7, 1.07 ± 0.45 Nm/kg and 5.2 ± 2.1, KAM 0.81 

± 0.35 Nm/kg, respectively. Figure 2 shows a linear and positive relationship between CMAS and peak 

KAMs. Spearman’s correlation revealed a significant and very large (ρ = 0.796, 95% CI = 0.647-0.887, 

p < 0.001) association between CMAS and peak KAMs. 

 

 

 

 

 

 

 

 
  

Table 2. Intra- and inter-rater reliability for CMAS criteria and total score 

Variable/ CMAS tool criteria 
Intra-rater reliability  

(Lead researcher) 

Inter-rater reliability - Lead 
research vs experienced 

biomechanist 

Inter-rater reliability - Lead 
researcher vs recent graduate  

% agreement k % agreement k % agreement k 

Clear PFC braking 97.6 0.940 82.9 0.633 82.9 0.633 

Wide lateral leg plant 95.1 0.900 82.9 0.629 87.8 0.747 

Hip in an initial internally rotated 
position 100.0 1.000 63.4 0.194 43.9 0.067 

Initial knee ‘valgus’ position 90.2 0.805 75.6 0.512 75.6 0.512 

Inwardly rotated foot position 100.0 1.000 80.5 0.599 90.2 0.784 

Frontal plane trunk position relative 
to intended direction 90.2 0.805 73.2 0.551 87.8 0.767 

       

Trunk upright or leaning back 
throughout contact 100.0 1.000 90.2 0.554 78.0 0.220 

Limited Knee Flexion during final 
contact 97.6 0.932 80.5 0.431 80.5 0.381 

Excessive Knee ‘valgus’ motion 
during contact 95.1 0.898 80.5 0.605 70.7 0.376 

Average 96.2 0.920 78.9 0.52 77.5 0.50 

Key: CMAS: Cutting movement assessment score; PFC: Penultimate foot contact 
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Figure 2. Relationship between CMAS and peak KAMs (pKAM) subject mean data. 

 

3.3 Comparisons in cutting 3D kinetics and kinematics between subjects with low and high CMASs 

Descriptive statistics, p values, and effect sizes for kinetic and kinematic measures for subjects with 

low and high CMASs are presented in Table 3. Subjects with higher CMASs displayed significantly 

greater FFC mean VBFs, HBFs, and mean HBF ratios, and greater peak knee abduction angles, internal 

foot progression angles, and lateral foot plant distances (Table 3), with moderate to large effect sizes. 

Additionally, significantly greater cutting multiplanar knee joint loads (KFMs, KIRMs, and KAMs) 

were demonstrated by subjects with higher CMASs compared to lower (Table 3), with moderate to very 

large effect sizes. 
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Table 3. Comparisons in 3D cutting mechanics between subjects with lower and higher CMAS containing p values and effect size 

 Variable Foot 
contact  

Low CMAS (n = 14) High CMAS (n = 14) p g 95% g Mean 
difference 

Mean difference 95% CI 
Mean SD Mean SD LB UB LB UB 

 CMAS  3.34 0.70 6.95 0.63 <0.001 -5.29 -6.87 -3.72 -3.61 -4.13 -3.10 

G
R

F 

peak VBF (BW) PFC 2.67 0.55 2.72 0.63 0.855 -0.07 -0.81 0.67 -0.04 -0.50 0.42 

mean VBF (BW) PFC 0.95 0.16 0.97 0.20 0.879 -0.06 -0.80 0.68 -0.01 -0.15 0.13 

peak HBF /BW) PFC -1.53 0.52 -1.50 0.48 0.872 -0.06 -0.80 0.68 -0.03 -0.42 0.36 

mean HBF /BW) PFC -0.56 0.12 -0.53 0.14 0.617 -0.18 -0.92 0.56 -0.02 -0.12 0.07 

peak VBF (BW) FFC 2.55 0.53 2.64 0.46 0.632 -0.18 -0.92 0.56 -0.09 -0.48 0.30 

mean VBF (BW) FFC 1.54 0.18 1.71 0.21 0.029 -0.84 -1.61 -0.07 -0.17 -0.33 -0.02 

peak HBF (BW) FFC -1.44 0.35 -1.45 0.24 0.975 0.02 -0.73 0.76 0.00 -0.23 0.23 

mean HBF (BW) FFC -0.78 0.16 -0.94 0.13 0.009 1.03 0.24 1.82 0.16 0.04 0.27 

peak HBF ratio both 1.03 0.35 1.06 0.39 0.909 -0.09 -0.83 0.66 -0.03 -0.32 0.26 

mean HBF ratio both 1.42 0.29 1.88 0.65 0.018 -0.88 -1.66 -0.10 -0.45 -0.84 -0.06 

Jo
in

t k
in

em
at

ic
s 

peak KFA (°) FFC 66.6 9.0 62.5 7.5 0.209 0.47 -0.28 1.22 4.0 -2.4 10.5 

KFA - IC (°) FFC 23.1 5.1 23.6 4.9 0.766 -0.11 -0.85 0.63 -0.6 -4.5 3.3 

KFA ROM (°) FFC 43.5 7.3 38.9 5.9 0.080 0.67 -0.09 1.43 4.6 -0.6 9.8 

peak KAA (°) (- abduction, + adduction) FFC -7.8 6.5 -13.4 6.6 0.032 0.83 0.06 1.60 5.6 0.5 10.7 

KAA - IC (°) (- abduction, + adduction) FFC 4.3 4.8 0.6 4.7 0.052 0.75 -0.02 1.51 3.7 0.0 7.4 

KAA ROM (°) FFC -12.1 4.9 -14.0 5.4 0.321 0.37 -0.38 1.12 2.0 -2.0 5.9 

KRA - IC (°) (- internal, + external) FFC -10.7 6.9 -4.5 6.2 0.020 -0.91 -1.69 -0.13 -6.2 -11.3 -1.1 

peak KRA (°) (- internal, + external) FFC -9.6 7.4 -1.0 8.6 0.009 -1.04 -1.83 -0.25 -8.6 -14.8 -2.3 

Hip rotation angle - IC (°) (- internal, + external) FFC 11.0 7.1 7.9 10.6 0.377 0.33 -0.42 1.08 3.1 -3.9 10.1 

T
ec

hn
iq

ue
 

Trunk inclination angle - IC (°) (relative to vertical 
line, + forward, - backward) PFC 6.8 3.9 8.1 3.4 0.361 -0.34 -1.09 0.41 -1.3 -4.1 1.6 

Trunk inclination angle - IC (°) (relative to vertical 
line, + forward, - backward) FFC 17.2 31.3 10.4 6.0 0.437 0.29 -0.46 1.03 6.7 -10.8 24.2 

IFPA - IC (°) (- internal, + external) FFC 9.0 10.2 25.5 9.3 <0.001 -1.64 -2.49 -0.78 -16.5 -24.1 -8.9 
Lateral trunk flexion - IC (°) (- over stance leg, + 
direction of travel) FFC -18.4 8.0 -17.6 7.3 0.794 -0.10 -0.84 0.64 -0.8 -6.7 5.2 

Lateral foot plant distance - IC (m) FFC -0.299 0.041 -0.336 0.044 0.028 0.85 0.08 1.63 0.038 0.004 0.071 

Jo
in

t 
m

om
en

t peak KFM (Nm/kg) FFC 3.06 0.60 3.64 0.72 0.027 -0.86 -1.64 -0.09 -0.59 -1.10 -0.07 

peak KRM (Nm/kg) (- internal, + external) FFC -0.69 0.39 -1.10 0.61 0.047 0.77 0.01 1.54 0.41 0.01 0.81 

peak KAM (Nm/kg) (+ abduction, - adduction) FFC 0.73 0.27 1.37 0.28 <0.001 2.24 -3.18 -1.29 -0.63 -0.85 -0.42 
Key: VBF: Vertical braking force; HBF: Horizontal braking force; FFC: Final foot contact; PFC: Penultimate foot contact; IC: Initial contact; BW: Body weight; KFA: Knee flexion angle; ROM: Range of motion; KAA: Knee abduction angle; KRA: 

Knee rotation angle; IFPA: Initial foot progression angle; KFM: Knee flexor moment; KRM: Knee rotation moment; KAM: Knee abduction moment; ES: Effect size; CMAS: Cutting movement assessment scores; Sag: Sagittal. CI: Confidence interval; 
LB: Lower bound; UB: Upper bounds; ES: Effect size. Note: Bold denotes statistically significant difference (p < 0.05) and italic denotes non-parametric. 
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4. DISCUSSION 

The primary aim of this this study was to examine the validity and relationship between the CMAS 

attained from a qualitative screening tool and peak KAM quantified via 3D motion analysis. This study 

expanded on the preliminary work of Jones et al. (44) by using an additional camera filming at a higher 

sampling rate, and also investigating a larger sample size. In line with the study hypotheses, and 

substantiating Jones et al. (44), a very large (ρ = 0.796, p < 0.001)  (Figure 2) relationship was observed 

between CMAS and peak KAM. Moreover, “higher-risk” cutting mechanics associated with greater 

knee joint loading, thus ACL injury-risk, were displayed by subjects with higher CMASs (~7) compared 

to subjects with lower CMASs (~3) (Table 3). The CMAS also demonstrated excellent intra-rater 

reliability (Table 2), and generally moderate-to-excellent inter-rater reliability (Table 2). Therefore, 

these findings indicate that the CMAS qualitative screening tool can be considered a reliable and valid 

method to identify athletes who generate high KAMs and “high-risk” cutting mechanics. This tool 

offers practitioners a field-based screening method which can be included in testing and screening 

batteries for cutting sports so “high-risk” cutting deficits can be identified and “injury-risk profiles” can 

be created for athletes. 

In light of kinetic and kinematics (high-risk) cutting deficits associated with greater knee joint 

loads during side-step cutting (Supplement 1), Jones et al. (44) developed the CMAS screening tool and 

reported a large relationship CMAS and peak KAM (ρ = 0.633; p < 0.001). Expanding on the 

preliminary investigation by Jones et al. (44), the present study observed a stronger relationship between 

CMAS and peak KAMs (ρ = 0.796, p < 0.001, Figure 2), in a substantially greater sample size (41 vs. 

8 subjects). The stronger relationships observed in the present study, compared to Jones et al. (44), 

could be attributed to the additional camera placed at 45° and increased sampling rate of the cameras 

(100 vs. 30 Hz). These additions may have permitted more accurate screening and evaluations of frontal 

and transverse plane deficits, such as trunk positioning and knee valgus. Nevertheless, these findings 

confirm that the CMAS is able to identify athletes who generate high peak KAMs, which offers 

practitioners a cheaper, time-efficient, and field-based applicable screening tool compared to 3D motion 

analysis using only three high-speed cameras and free video-analysis software. 

While screening tools such as the LESS (70, 72), TJA (32, 66), and QASLS (2, 31) are useful for 

identifying abnormal and “high-risk” jump-landing mechanics, there is mixed evidence whether the 

examination of landing mechanics can identify athletes with poor cutting mechanics (1, 13, 51, 67). 

This issue is pertinent for practitioners who work with athletes who participate cutting dominant sports. 

In addition, the LESS is the only screening tool to have been validated and assessed against 3D motion 

analysis (69, 72), with no evidence to suggest that the TJA and QASLS is capable of identifying athletes 

who generate greater multiplanar knee joint loads. Conversely, in the present study, “higher-risk” 

cutting mechanics and greater multiplanar knee joint loads (Table 3) were demonstrated by subjects 
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with high CMASs compared to subjects with low CMASs. These “higher-risk” mechanics included 

greater mean VBF and HBFs, greater KAAs, greater lateral foot plant distances, greater internal foot 

progression angles, and lower knee flexion ROM (Table 3), with moderate to large effect sizes. 

Moreover, greater multiplanar knee joint loads (knee flexion, abduction, and internal rotation moments) 

were also demonstrated by subjects with high CMASs compared to low, with moderate to very large 

effect sizes (Table 3). This finding is important because combined multiplanar loads strain the ACL to 

a greater extent compared to uniplanar loading (4, 57, 76). Krosshaug et al. (53) has highlighted the 

potential difficulties in estimating 3D joint kinematics based on 2D video evaluations of cutting 

mechanics. Conversely, the results indicate that the raters in the present study were capable of accurately 

evaluating and identifying aberrant lower-limb and trunk postures during cutting, as confirmed by the 

measurable difference in 3D kinetics and kinematics between subjects with “high” and “low” CMASs 

related to the CMAS scoring system (Table 3). 

Supporting Jones et al. (44), higher CMASs were associated with greater peak KAMs (Figure 2), 

and “higher-risk” cutting mechanics were displayed by subjects with high CMASs (Table 3). These 

findings indicate that higher scores are representative of, in general, poorer cutting technique. The 

CMAS tool can therefore be useful for practitioners who want to screen and evaluate cutting movement 

quality to identify potentially “high-risk” athletes (33, 35, 58, 61), so these athletes can be targeted with 

biomechanical and neuromuscular informed training interventions to reduce potential injury-risk (33, 

35, 61). Qualitative screening tools such as the JTA (47), LESS (20, 73), and QASLS (17) have been 

used to monitor the effectiveness of training interventions on jump-landing or single leg control 

mechanics; therefore, the CMAS could be used to monitor pre-to-post changes in cutting movement 

quality in response to training interventions, and is subsequently a recommended future direction of 

research. However, it is emphasised that lower CMASs do not necessarily equate to optimal or “safe” 

technique, and practitioners should not only focus on total score, but focus on the CMAS criteria where 

athletes scored deficits (27, 44). For example, an athlete who scores 2-3 points may still display “high-

risk” cutting deficits such as knee valgus, lateral trunk flexion, limited knee flexion, or hip internal 

rotation and thus, would still warrant specific injury-risk mitigation training and conditioning. As such, 

practitioners should be cautious and are advised to look beyond the total CMAS score and use the 

CMAS tool to assist in the identification of potentially “high-risk” cutting deficits. The information 

attained from the CMAS may help inform the future prescription of training and conditioning to correct 

these deficits, and thus potential injury risk (33, 35, 61). 

Although a plethora of investigations have focused on COD biomechanics associated with 

increased risk of injury and have identified a range of factors linked to knee joint loading (Table 1) (19, 

28, 29, 38, 40, 41, 50, 59, 77, 78, 83), technical guidelines for coaching safer side-step cutting are 

limited. A unique aspect of the CMAS is that the criteria (Table 1) can be used as a technical framework 

for coaching safer side-step cutting which practitioners can use when  working with their athletes (44). 
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COD technique modification has been shown to be an effective modality for reducing high-risk 

mechanics and knee joint loading during COD (16, 18). Consequently, using the CMAS as a screening 

tool and a technical framework for safer cutting could be a viable strategy which coaches and 

practitioners could use to identify specific “high-risk” cutting deficits (i.e. lateral trunk flexion, knee 

valgus) to help inform preventative COD technique modification training.  

It is worth noting, however, that some of the “high-risk” cutting deficits may be needed for faster 

cutting performance (16, 24, 29). For example, a wide lateral foot plant is needed to generate medio-

lateral propulsive force and impulse (29, 40), thus subsequent exit velocity; however, this technique 

concurrently elevates peak KAMs (19, 40, 50). Limited knee flexion and motion is associated with 

potentially shorter GCTs (16, 24), but this posture increases KAMs (50, 83), knee flexor joint loads and 

GRFs (16, 87), thus potential injury-risk (24). Moreover, lateral trunk flexion, from an attacking and 

evasive perspective, may be performed to feint and deceive opponents (10), but is a critical factor that 

augments potentially hazardous KAMs (19, 36). Consequently, practitioners should acknowledge the 

trade-off between knee joint loading (injury-risk) and performance when screening cutting mechanics, 

because some of the high-risk deficits demonstrated could be effective for performance. Nonetheless, 

practitioners should ensure that their athletes’ have the physical capacity (i.e. neuromuscular control, 

co-contraction, and rapid force production) to tolerate the knee joint loading demands of side-steps (40, 

56, 71). Further research is required to improve our understanding of the potential performance-injury 

conflict during cutting (24).  

5. LIMITATIONS 

It should be acknowledged that, due to the multiplanar nature of side-step cutting (7), some athletes 

pre-rotate towards the direction of travel during weight acceptance of the cut (77). This pre-rotation can 

potentially result in parallax error because the athlete is not perpendicular to the cameras which can 

restrict evaluations of particular CMAS criteria using the frontal plane and 45° cameras. Additionally, 

the current study only investigated a side-step cutting action; thus, the CMAS screening tool is specific 

to side-step cutting only. Specific screening tools must be developed and validated for assessing other 

COD actions, such as crossover cuts and pivots, which are also performed and associated with injury in 

multidirectional sport (14, 39). However, side-step cutting appears to be the predominant COD action 

associated with non-contact ACL injury (14, 62); therefore, highlighting the importance and inclusion 

of side-step cutting screening tools (CMAS) in testing batteries for athletes who participate in cutting 

sports, such as soccer, rugby, handball, American football, and badminton. Furthermore, the intra- and 

inter-rater reliability, generally, was moderate to excellent (Table 2), but limited to biomechanists and 

strength and conditioning coaches. Further work is required to establish agreements and reliability 

between different applied practitioners, such as sports rehabilitators, physiotherapists, AND sports 

coaches, in order to confirm its efficacy in the field. Finally, a pre-planned cutting task was used in the 
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present study; however, results of previous research have shown that unplanned side-stepping results in 

greater knee joint loads, more abnormal mechanics, and less muscle support to counteract the greater 

loads compared to pre-planned side-stepping (5, 6, 11).  

6. CONCLUSION 

In conclusion, a very large significant relationship was observed between CMAS and peak KAM, and 

“higher-risk” cutting mechanics associated with greater knee joint loading were displayed by subjects 

with “high” CMASs (~7) compared to subjects with “low” CMASs (~3). As such, the CMAS is a valid 

and reliable screening tool for evaluating side-step cutting movement quality and offers practitioners a 

cost-effective and easily applicable field-based screening tool to identify athletes who generate high 

peak KAMs during side-step cutting. Practitioners should therefore consider including the CMAS in 

their fitness and testing batteries when screening and profiling athletes who participate in 

multidirectional sports. Equally, the CMAS allows practitioners to identify “high-risk” cutting deficits 

in athletes and subsequently create an “injury-risk profile”. These identified deficits can be targeted and 

addressed through biomechanical and neuromuscular informed training interventions. Finally, the 

CMAS can be used as a potential technical framework for coaching “safer” cutting. 
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