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ABSTRACT 

Background: In elite football (soccer), periodic health examination (PHE) could provide 
prognostic factors to predict injury risk. 

 
Objective: To develop and internally validate a prognostic model to predict individualised 
indirect (non-contact) muscle injury (IMI) risk during a season in elite footballers, only using 
PHE-derived candidate prognostic factors.  
 
Methods: Routinely collected preseason PHE and injury data were used from 152 players 
over 5 seasons (1st July 2013 to 19th May 2018). Ten candidate prognostic factors (12 
parameters) were included in model development. Multiple imputation was used to handle 
missing values. The outcome was any time-loss, index indirect muscle injury (I-IMI) 
affecting the lower extremity. A full logistic regression model was fitted, and a parsimonious 
model developed using backward-selection to remove factors that exceeded a threshold that 
was equivalent to Akaike’s Information Criterion (alpha 0.157). Predictive performance was 
assessed through calibration, discrimination and decision-curve analysis, averaged across all 
imputed datasets. The model was internally validated using bootstrapping and adjusted for 
overfitting. 

Results: During 317 participant-seasons, 138 I-IMIs were recorded. The parsimonious model 
included only age and frequency of previous IMIs; apparent calibration was perfect but 
discrimination was modest (C-index = 0.641, 95% confidence interval (CI) = 0.580 to 0.703), 
with clinical utility evident between risk thresholds of 37-71%. After validation and 
overfitting adjustment, performance deteriorated (C-index = 0.589 (95% CI = 0.528 to 
0.651); calibration-in-the-large = -0.009 (95% CI = -0.239 to 0.239); calibration slope =0.718 
(95% CI= 0.275 to 1.161). 

Conclusion: The selected PHE data were insufficient prognostic factors from which to 
develop a useful model for predicting IMI risk in elite footballers. Further research should 
prioritise identifying novel prognostic factors to improve future risk prediction models in this 
field. 

 

Trial registration number = NCT03782389 

 

Keywords: Athlete, Athletic Injury, Injury prevention, Risk, Sport, Sprains and strains. 
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KEY POINTS 

 

• Factors measured through preseason screening generally have weak prognostic 

strength for future indirect muscle injuries and further research is needed to identify 

novel, robust prognostic factors.  

• Because of sample size restrictions and until the evidence base improves, it is likely 

that any further attempts at creating a prognostic model at individual club level would 

also suffer from poor performance. 

• The value of using preseason screening data to make injury predictions or to select 

bespoke injury prevention strategies remains to be demonstrated, so screening should 

only be considered as useful for detection of salient pathology or for rehabilitation/ 

performance monitoring purposes at this time.    
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BACKGROUND 

In elite football (soccer), indirect (non-contact) muscle injuries (IMIs) predominantly affect 

the lower extremities and account for 30.3% to 47.9% of all injuries that result in time lost to 

training or competition [1-5]. Reduced player availability negatively impacts upon medical 

[6] and financial resources [7, 8], and has implications for team performance [9]. Therefore, 

injury prevention strategies are important to professional teams [9]. 

 

Periodic health examination (PHE), or screening, is a key component of injury prevention 

practice in elite sport [10]. Specifically, in elite football, PHE is used by 94% of teams and 

consists of medical, musculoskeletal, functional and performance tests that are typically 

evaluated during preseason and in-season periods [11]. PHE has a rehabilitation and 

performance monitoring function [12] and is also used to detect musculoskeletal or medical 

conditions that may be dangerous or performance limiting [13]. Another perceived role of 

PHE is to recognise and manage factors that may increase, or predict, an athlete’s future 

injury risk [10], although this function is currently unsubstantiated [13]. 

 

PHE-derived variables associated with particular injury outcomes (such as IMIs) are called 

prognostic factors [14], which can be used to identify risk differences between players within 

a team [12]. Single prognostic factors are unlikely to satisfactorily predict an individual’s 

injury risk if used independently [15]. However, several factors could be combined in a 

multivariable prognostic prediction model to offer more accurate personalised risk estimates 

for the occurrence of a future event or injury [15, 16]. Such models could be used to identify 

high-risk individuals who may require an intervention that is designed to reduce risk [17], 

thus assisting decisions in clinical practice [18]. Despite the potential benefits of prognostic 
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models for injury, we are unaware of any that have been developed using PHE data in elite 

football [19].   

 

Therefore, the aim of this study was to develop and internally validate a prognostic model to 

predict individualised IMI risk during a season in elite footballers, using a set of candidate 

prognostic factors derived from preseason PHE data.  

 

METHODS 

The methods have been described in a published protocol [20] so will only be briefly 

outlined. This study has been registered on ClinicalTrials.gov (identifier: NCT03782389) and 

is reported according to the Transparent Reporting of a Multivariable Prediction Model for 

Individual Prognosis or Diagnosis (TRIPOD) statement [21, 22].  

 

Data Sources  

This study was a retrospective cohort design. Eligible participants were identified from a 

population of male elite footballers, aged 16-40 years old at Manchester United Football 

Club. A dataset was created using routinely collected injury and preseason PHE data over 5 

seasons (1st July 2013 to 19th May 2018). For each season, which started on 1st July, 

participants completed a mandatory PHE during week 1 and were followed up to the final 

first team game of the season. If eligible participants were injured at the time of PHE, a risk 

assessment was completed by medical staff. Only tests that were appropriate and safe for the 

participant’s condition were completed; examiners were not blinded to injury status.  
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Participants and eligibility criteria 

During any season, participants were eligible if they: 1) were not a goalkeeper; and 2) 

participated in PHE for the relevant season. Participants were excluded if they were not 

contracted to the club for the forthcoming season at the time of PHE.   

 

Ethics and Data Use 

Informed consent was not required as data were captured from the mandatory PHE completed 

through the participants’ employment. The data usage was approved by the Club and 

University of Manchester Research Ethics Service. 

 

Outcome  

The outcome was any time-loss, index IMI (I-IMI) of the lower extremity. That is, any I-IMI 

sustained by a participant during matches or training, which affected lower abdominal, hip, 

thigh, calf or foot muscle groups and prohibited future football participation [23].  I-IMIs 

were graded by a club doctor or physiotherapist according to the validated Munich Consensus 

Statement for the Classification of Muscle Injuries in Sport [24, 25], during routine 

assessments undertaken within 24h of injury. These healthcare professionals were not blinded 

to PHE data. 

 

Sample size  

We allowed a maximum of one candidate prognostic factor parameter per 10 I-IMIs, which at 

the time of protocol development, was the main recommendation to minimise overfitting 

(Additional file 1) [20, 26]. The whole dataset was used for model development and internal 

validation, which agrees with methodological recommendations [27]. 
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Candidate Prognostic Factors  

The available dataset contained 60 candidate factors [20]. Because of the sample size 

considerations, before any analysis, the set of candidate factors was reduced. Initially, an 

audit was conducted to quantify missing values and to determine the measurement reliability 

of the eligible candidate factors [20]. Any candidate factors which had greater than 15% 

missing data, or where reliability was classed as fair to poor (intraclass correlation coefficient 

<0.70) were excluded [20] (Additional file 2). Of the remaining 45 eligible factors, previous 

evidence of prognostic value [19] and clinical reasoning were used to select candidate 

prognostic factors suitable for inclusion [20]. This process left a final set of 10 candidate 

factors, represented by 12 model parameters (Table 1). The 35 factors that were not included 

in model development are also listed in Additional File 2, and will be utilised in a related, 

forthcoming exploratory study which aims to examine their association with indirect muscle 

injuries in elite football players. 
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Table 1: Set of candidate prognostic factors (with corresponding number of parameters) for model 

development. 

Selection 
method Candidate Prognostic factor Measurement unit 

Number of model 
parameters 

corresponding to 
PF 

Measurement 
method Data type Reliability (if 

applicable) 

Systematic 
review/clinical 

reasoning 

Age Years & days 1 Date of birth Continuous N/A 

Frequency of previous muscle injuries within 3 
years prior to PHE Count 1 Medical records 

Discrete 
(treated as 

continuous) 
N/A 

Most recent previous muscle injury within 3 years 
prior to baseline PHE 

Never (ref); < 6 months; 
6-12 months; > 12 

months 
3 Medical records Categorical N/A 

Data 
quality/clinical 

reasoning 

CMJ peak power Watts 1 CMJ using force 
plates Continuous 

Test-retest ICC 
= 0.92-0.98 [28] 

 

PROM hip joint internal rotation difference* Degrees 1 
Supine ROM test 

using digital 
inclinometer 

Continuous Intra-rater ICC= 
0.90 [29] 

PROM hip joint external rotation difference* Degrees 1 
Supine ROM test 

using digital 
inclinometer 

Continuous Intra-rater ICC = 
0.90 [29] 

Hip flexor muscle length difference* Degrees 1 Thomas test using 
digital inclinometer Continuous Inter-rater ICC = 

0.89 [30] 

Hamstring muscle length /neural mobility 
difference* Degrees 1 SLR using digital 

inclinometer Continuous 

Intra-rater ICC 
=0.95-0.98 [31] 
Interrater ICC = 
0.80-0.97 [32] 

Calf muscle length difference* Degrees 1 WBL using digital 
inclinometer Continuous 

Inter-rater ICC = 
0.80- 0.95 [33, 

34]  
Intra-rater  ICC 

= 0.88 [34] 

BMI Kg/m2 1 
Composite height 
(cm) and weight 

(kg) 
Continuous - 

Key: PF= prognostic factor; PHE=periodic health examination; ref= reference category (does not count as a model parameter); WBL=weight 
bearing lunge; CMJ=countermovement jump; ROM = range of movement; PROM=passive range of movement; ICC=intraclass correlation 
coefficient; SLR= straight leg raise; BMI= body mass index; Kg=kilos; m = mass; Note: * denotes between limb differences. 

 

Statistical analysis 

Data handling – outcome measures 

Each participant-season was treated as independent. Participants who sustained an an I-IMI 

were no longer considered at risk for that season and were included for further analysis at the 

start of the next season if still eligible. Any upper limb IMI, trunk IMI or non-IMI injuries 

were ignored and participants were still considered at risk.  

 

Eligible participants who were loaned to another club throughout that season, but had not 

sustained an I-IMI prior to the loan, were still considered at risk.  I-IMIs that occurred whilst 

on loan were included for analysis, as above. Permanently transferred participants (who had 
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not sustained an I-IMI prior to leaving), were recorded as not having an I-IMI during the 

relevant season and exited the cohort at the season end.  

 

Data handling –missing data 

Missing values were assumed to be missing at random [20]. The continuous parameters 

generally demonstrated non-normal distributions, so were transformed using normal scores 

[35] to approximate normality before imputation, and back-transformed following imputation 

[36]. Multivariate normal multiple imputation was performed, using a model that included all 

candidates and I-IMI outcomes. Fifty imputed datasets were created in Stata 15.1 (StataCorp 

LLC, Texas, USA) and analysed using the ‘mim’ module. 

 

Prognostic model development  

Continuous parameters were retained on their original scales and their effects assumed linear 

[22]. A full multivariable logistic regression model was constructed, which contained all 12 

parameters. Parameter estimates and results were combined across imputed datasets using 

Rubin’s Rules [37]. To develop a parsimonious model that would be easier to utilise in 

practice, backward variable selection was performed using estimates pooled across the 

imputed datasets at each stage of the selection procedure to successively remove non-

significant factors with p-values > 0.157. This threshold was selected to approximate 

equivalence with Akaike’s Information Criterion [38, 39]. Multiple parameters representing 

the same candidate factor were tested together so that the whole factor was either retained or 

removed. Candidate interactions were not examined and no terms were forced into the model. 

All analyses were conducted in Stata 15.1. 
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Assessment of model performance 

The full and parsimonious models were used to predict I-IMI risk over a season, for every 

participant-season in all imputed datasets. For all performance measures, each model’s 

apparent performance was assessed in each imputed dataset and then averaged across all 

imputed datasets using Rubin’s Rules [37]. Discrimination determines a model’s ability to 

differentiate between participants who have experienced an outcome compared to those who 

have not [40], quantified using the concordance index (c-index).  This is equivalent to the 

area under the receiver operating characteristic (ROC) curve for logistic regression, where 1 

demonstrates perfect discrimination, while 0.5 indicates that discrimination is no better than 

chance [41]. 

Calibration determines the agreement between the model’s predicted outcome risks and those 

observed [42], evaluated using an apparent calibration plot in each imputed dataset. All 

predicted risks were divided into ten groups defined by tenths of predicted risk. The mean 

predicted risks for the groups were plotted against the observed group outcome proportions 

with corresponding 95% confidence intervals (CIs). A loess smoothing algorithm showed 

calibration across the range of predicted values [43]. For grouped and smoothed data points, 

perfect predictions lie on the 45° line (i.e. a slope of 1).   

The systematic (mean) error in model predictions was quantified using calibration-in-the-

large (CITL), which has an ideal value of 0 [40, 42], and the expected/observed (E/O) 

statistic, which is the ratio of the mean predicted risk against the mean observed risk (ideal 

value of 1) [40, 42]. The degree of over or underfitting was determined using the calibration 

slope, where a value of 1 equals perfect calibration on average across the entire range of 

predicted risks [22]. Nagelkerke’s pseudo-R2 was also calculated, which quantifies the 
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overall model fit, with a range of 0 (no variation explained) to 1 (all variation explained) 

[44]. 

 
Assessment of clinical utility 

Decision-curve analysis was used to assess the parsimonious model’s apparent clinical 

usefulness in terms of net benefit (NB) if used to allocate possible preventative interventions. 

This assumed that the model’s predicted risks were classed as positive (i.e. may require a 

preventative intervention) if greater than a chosen risk threshold, and negative otherwise. NB 

is then the difference between the proportion of true positives and false positives, where both 

were weighted by the odds of the chosen risk threshold and also divided by the sample size 

[45]. Positive NB values suggest the model is beneficial compared to treating none, which 

has no benefit to the team but with no negative cost and efficiency implications. The 

maximum possible NB value is the proportion with the outcome in the dataset.   

 

The model’s NB was also compared to the NB of delivering an intervention to all individuals. 

This is considered a treat-all strategy, offering maximum benefit to the team, but with 

maximum negative cost and efficiency implications [17]. A model has potential clinical value 

if it demonstrates higher NB than the default strategies over the range of risk thresholds 

which could be considered as high risk in practice [46].  

 

Internal validation and adjustment for overfitting 

To examine overfitting, the parsimonious model was internally validated using 200 bootstrap 

samples, drawn from the original dataset. In each sample, the complete model-building 

procedure (including multiple imputation, backward variable selection and performance 
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assessment) was conducted as described earlier. The difference in apparent performance (of a 

bootstrap model in its bootstrap sample) and test performance (of the bootstrap model in the 

original dataset) was averaged across all samples. This generated optimism estimates for the 

calibration slope, CITL and C-index statistics. These were subtracted from the original 

apparent calibration slope, CITL and C-index statistics to obtain final optimism-adjusted 

performance estimates. The Nagelkerke R2 was adjusted using a relative reduction equivalent 

to the relative reduction in the calibration slope.  

To produce a final model adjusted for overfitting, the regression coefficients produced in the 

parsimonious model were multiplied by the optimism-adjusted calibration slope (also termed 

a uniform shrinkage factor), to adjust (or shrink) for overfitting [47]. Finally, the CITL (also 

termed model intercept) was then re-estimated to give the final model, suitable for evaluation 

in other populations or datasets.  

 

Complete case and sensitivity analyses  

To determine the effect of multiple imputation and player transfer assumptions on model 

stability, the model development process was repeated: 1) as a complete case analysis; and 2) 

as sensitivity analyses which excluded all participant-seasons where participants had not 

experienced an I-IMI up to the point of loan or transfer, which were performed as both 

multiple imputation and complete case analyses.  
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RESULTS 

Participants 

During the five seasons, 134 participants were included, contributing 317 participant-seasons 

and 138 IMIs in the primary analyses (Fig. 1). Three players were classified as injured when 

they took part in PHE (which affected three participant-seasons). This meant they were 

unavailable for full training or to play matches at that time. However, these players had 

commenced football specific, field-based rehabilitation around this time, so also had similar 

exposure to training activities as the uninjured players. As such, these players were included 

in the cohort because it was reasonable to assume that they could also be considered at risk of 

an I-IMI event even during their rehabilitation activities.  

 

Table 2 describes the frequency of included participant-seasons, and the frequency and 

proportion of recorded I-IMI outcomes across all five seasons. For the sensitivity analyses 

(excluding loans and transfers), 260 independent participant-seasons with 129 IMIs were 

included; 36 participants were transferred on loan, while 14 participants were permanently 

transferred during a season, which excluded 57 participant-seasons in total (Fig. 1). Table 2 

also describes the frequency of excluded participant-seasons where players were transferred 

either permanently or on loan, across the 5 seasons. 
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Fig.1 Participant flow chart 

 

 

Key: n=participants; I-IMI=index indirect muscle injury 
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Table 2 Frequency of included participant-seasons, I-IMI outcomes and participant-seasons affected by 
transfers, per season (primary analysis).  

 
   Season    

 1 
(2013/2014) 

2 
(2014/2015) 

3 
(2015/2016) 

4 
(2016/2017) 

5 
(2017/2018) Total 

Included participant-
seasons 58 66 66 61 66 317 

Participant-seasons 
with an I-IMI outcome 

(%) 
26 (44.83) 21 (31.82) 29 (43.93) 28 (45.90) 34 (51.52) 138 

(44.00) 

Participant-seasons 
where players 

transferred on loan 
16 10 7 4 6 43 

 
Participant-seasons 

where players 
transferred 

permanently 
 

1 4 5 3 1 14 

 
Key: I-IMI = index indirect muscle injury 

 

Table 3 shows anthropometric and all prognostic factor characteristics for participants 

included in the primary analyses. These were similar to those included in the sensitivity 

analyses (Additional file 3).  

 

Table 3 Characteristics of included participants in the primary analysis 

Characteristic/candidate 
prognostic factors 

Measurement 
method Data type Freq. (%) if 

categorical Min Lower 
quartile Median Upper 

quartile Max Missing 
values n (%) 

Anthropometrics           

Age at PHE (years) Birthdate Cont. - 16.01 17.80 19.69 23.56 39.59 0 (0) 

Height (cm) Standing height Cont. - 164.3 176.0 180.0 185.5 195.0 18 (5.68) 

Weight (kg) Digital scales Cont. - 56.8 69.2 73.6 80.0 94.0 18 (5.68) 

BMI (Kg/m2) 
Calculated 
using the 

formula: Kg/m2 
Cont. - 18.1 21.8 22.7 23.7 29.1 23 (7.26) 

Past medical history           

Freq. of previous IMIs in 3 
years prior to PHE 

Medical 
records Dis./cont. - 0 0 1 2 7 0 (0) 

Most recent previous IMI 
in 3 years prior to PHE           

Never Medical 
records Cat. 143 (45.11) - - - - - 0 (0) 

<6 months Medical 
records Cat. 48 (15.14) - - - - - 0 (0) 

6-12 months Medical 
records Cat. 52 (16.40) - - - - - 0 (0) 

>12 months Medical 
records Cat. 74 (23.34) - - - - - 0 (0) 

Musculoskeletal 
Examination           

PROM hip internal 
rotation difference (deg.) 

Supine ROM 
test with digital 

inclinometer 
Cont. - -25.0 -3.0 0.0 5.0 20.0 20 (6.31) 

PROM hip external 
rotation difference (deg.) 

Supine ROM 
test with digital 

inclinometer 
Cont. - -20.0 -5.0 0.0 5.0 25.0 20 (6.31) 

Hip flexor length 
difference (deg.) 

Thomas test 
with digital 

inclinometer 
Cont. - -20.0 -2.0 0.0 3.0 14.0 23 (7.26) 

Hamstring length /neural 
mobility difference (deg.) 

SLR with 
digital 

inclinometer 
Cont. - -20.0 0.0 0.0 0.0 15.0 23 (7.26) 

Calf muscle length 
difference (deg.) 

WBL with 
digital 

inclinometer 
Cont. - -20.0 -2.0 0.0 3.0 15.0 20 (6.31) 

Lower Extremity Power           

CMJ power (Watts) CMJ using 
force platform Cont. - 2625.0 3707.0 4150.0 4662.0 6577.0 42 (13.25) 
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Key: PHE= periodic health examination; I-IMI=index indirect muscle injury; IMI= indirect muscle injury; min = minimum; max = maximum; n = 
observations; Freq= frequency; WBL=weight bearing lunge; CMJ=countermovement jump; ROM= range of movement; PROM=passive range of 
movement; deg. = degrees; SLR= straight leg raise; BMI= body mass index; kg/m2 = kilograms/body height (metres) squared; cm = centimetres; 
Kg=kilograms; Cont.=continuous; dis./cont.= discrete treated as continuous; cat.= categorical 

 

 

Missing data and multiple imputation  

All I-IMI, age and previous muscle injury data were complete (Table 3). For all other 

candidates, missing data ranged from 6.31% (for hip internal and external rotation difference) 

to 13.25% for countermovement jump (CMJ) power (Table 3). The distribution of imputed 

values approximated observed values (Additional file 4), confirming their plausibility.   

 

Model development 

Table 4 shows the parameter estimates for the full model and parsimonious model after 

variable selection (averaged across imputations). 
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Table 4: Results of the full and parsimonious multivariable logistic regression models, with prediction formulae  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key: β= Beta (regression) coefficient; SE= standard error; CI=confidence interval; OR=odds ratio; PHE= periodic health examination; Freq.= frequency; IMI= indirect muscle injury; deg.=degrees; BMI= body mass index; 
kg/m2 = kilograms/body height squared; ref= reference category;†= β values are expressed per one-unit increase for all continuous variables, and according to category for the most recent IMI within 3 years prior to 
PHE;*Adjusted regression value after multiplication with uniform shrinkage factor of 0.718;** Re-estimated model intercept after internal validation. Note: Factors in bold indicate significance at the 0.157 level (equivalent to 
Akaike’s information criterion).  
 
Prediction formula of parsimonious model (used during internal validation procedure): The predicted probability of a player sustaining an I-IMI during a season can be calculated using the following formula: Probability = 1/ 
(1+ exp(2.384- 0.091 x age – 0.168 x freq. of previous IMIs within 3 years prior to PHE)). If desired, a percentage risk score can be obtained by multiplying the probability x 100. 
Prediction formula for final model (for use on new datasets): The predicted probability of a player sustaining an I-IMI during a season can be calculated using the following formula: Probability = 1/ (1+ exp(1.786 - 0.065 x age – 
0.120 x freq. of previous IMIs within 3 years prior to PHE)). Note: exp = exponentiate. If desired, a percentage risk score can be obtained by multiplying the probability x 100.

 Full model Parsimonious model (after variable selection) 
Final model after 

adjustment (shrinkage) 
for overfitting 

Candidate prognostic factors β† 95% CI OR 95% CI P 
Value β† 95% CI OR 95% CI P 

Value 
Adjusted 

β† 
Adjusted 

OR 
Anthropometrics             

Age at PHE (years) 0.095 0.032 to 0.159 1.100 1.032 to 1.172 0.003 0.091 0.034 to 0.148 1.095 1.035 to 1.159 0.002 0.065* 1.068 

BMI (Kg/m2) -0.078 -0.249 to 0.093 0.925 0.780 to 1.098 0.372        

Past medical history             
Freq. of previous IMIs in 3 

years prior to PHE 0.235 -0.037 to 0.507 1.265 0.964 to 1.661 0.090 0.168 -0.015 to 0.350 1.182 0.986 to 1.419 0.0 0.120* 1.128 

Most recent previous IMI in 3 
years prior to PHE             

Never ref Ref ref ref ref - - - - - - - 

<6months 0.043 -0.892 to 0.978 1.044 0.410 to 2.660 0.928 - - - - - - - 

6-12 months -0.463 -1.317 to 0.392 0.630 0.268 to 1.480 0.289 - - - - - - - 

>12 months -0.308 -1.056 to 0.440 0.735 0.348 to 1.553 0.420 - - - - - - - 
Musculoskeletal 
Examination           - - 

PROM hip internal rotation 
difference (deg.) 0.008 -0.029 to 0.044 1.008 0.971 to 1.045 0.682 - - - - - - - 

PROM hip external rotation 
difference (deg.) 0.024 -0.011 to 0.059 1.024 0.989 to 1.061 0.180 - - - - - - - 

Hip flexor length difference 
(deg.) 0.026 -0.032 to 0.083 1.026 0.969 to 1.087 0.382 - - - - - - - 

Hamstring length /neural 
mobility difference (deg.) -0.007 -0.083 to 0.068 0.993 0.920 to 1.070 0.846 - - - - - - - 

Calf muscle length difference 
(deg.) 0.018 -0.033 to 0.069 1.018 0.967 to 1.072 0.493 - - - - - - - 

Lower Extremity Power             

CMJ power (Watts) 0.000 0.000 to 0.001 1.000 1.000 to 1.001 0.394 - - - - - - - 

Intercept -1.448 -4.564 to 1.668 - - - -2.384 -3.558 to -1.211 - - - -1.786** - 
Model Performance 

Statistics Apparent performance (95% CI) Apparent performance (95% CI) – 
before validation  

Optimism- adjusted performance 
with 95% CI – after validation   

Nagelkerke R2 0.120 0.089 0.064   

Calibration slope 1.000 (0.608 to 1.392) 1.000 (0.557 to 1.443) 0.718 (0.275 to 1.161) - - 

CITL 0.000 (-0.233 to 0.233) 0.000 (-0.230 to 0.230) -0.009 (-0.239 to 0.239) - - 

C-index 0.670 (0.609 to 0.731) 0.641 (0.580 to 0.703) 0.589 (0.528 to 0.651)  - - 
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For both models, only age and frequency of previous IMIs had a statistically significant (but 

modest) association with increased I-IMI risk (p <0.157). No clear evidence for an 

association was observed for any other candidate factor.  

 

Model performance assessment and clinical utility 

Table 4 shows the apparent performance measures for the full and parsimonious models, all 

of which were similar. Fig. 2 shows the apparent calibration of the parsimonious model in the 

dataset used to develop the model (i.e. before adjustment for overfitting). These were 

identical across all imputed datasets because the retained prognostic factors contained no 

missing values. The parsimonious model had perfect apparent overall CITL and calibration 

slope by definition, but calibration was more variable around the 45° degree line between the 

expected risk ranges of 28% to 54%. Discrimination was similarly modest for the full (C-

index= 0.670, 95% CI=0.609 to 0.731) and parsimonious models (C-index = 0.641, 95%CI = 

0.580-0.703). The apparent overall model fit was low for both models, indicated by 

Nagelkerke R2 values of 0.120 for the full model and 0.089 for the parsimonious model.  
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Fig. 2 Apparent calibration of the parsimonious model (before adjustment for overfitting). 
 

 
Key: E:O= expected: observed ratio; CI= confidence interval 

 

Fig. 3 displays the decision-curve analysis. The NB of the parsimonious model was 

comparable to the treat-all strategy at risk thresholds up to 31%, marginally greater between 

32% and 36% and exceeded the NB of either default strategies between 37% and 71%.  
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Fig. 3 Decision curve analysis for the parsimonious model (before adjustment for overfitting). 

 

 

Internal validation and adjustment for overfitting 

Table 4 shows the optimism-adjusted performance statistics for the parsimonious model, with 

full internal validation results shown in Additional file 9. After adjustment for optimism, the 

overall model fit and the model’s discrimination performance deteriorated (Nagelkerke R2 = 

0.064; c-index = 0.589 (95% CI= 0.528 to 0.651). Furthermore, bootstrapping suggested the 

model would be severely overfitted in new data (calibration slope = 0.718 (95% CI=0.275 to 

1.161)), so a shrinkage factor of 0.718 was applied to the parsimonious parameter estimates 

and the model intercept re-estimated to produce our final model (Table 4).  

 

Complete case and sensitivity analyses 

The full and parsimonious models were robust to complete case analyses and excluding loans 

and transfers, with comparable apparent performance estimates. For the full models, the c-
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index range was 0.675 to 0.705 and Nagelkerke R2 range was 0.135 to 0.178, while for the 

parsimonious models, the c-index range was 0.632 to 0.691 and Nagelkerke R2 range was 

0.102 to 0.154 (Additional files 5-9). The same prognostic factors were selected in all 

parsimonious models. The degree of estimated overfitting observed in the complete case and 

sensitivity analyses was comparable to that observed in the main analysis (calibration slope 

range = 0.678 to 0.715) (Additional files 5-9).  

 

DISCUSSION 

We have developed and internally validated a multivariable prognostic model to predict 

individualised I-IMI risk during a season in elite footballers, using routinely, prospectively 

collected preseason PHE and injury data that was available at Manchester United Football 

Club. This is the only study that we know of that has developed a prognostic model for this 

purpose, so the results cannot be compared to previous work.  

 

We included both a full model which did not include variable selection and a parsimonious 

model, which included a subset of variables that were statistically significant. The full model 

was included because overfitting is likely to increase when variable inclusion decisions are 

based upon p-values. In addition, the use of p-value thresholds for variable selection is 

somewhat arbitrary. However, the overfitting that could have arisen in the parsimonious 

model, after using p-values in this way was accounted for during the bootstrapping process, 

which replicated the variable selection strategy based on p-values in each bootstrap sample. 

 

The performance of the full and parsimonious models was similar, which means that utilising 

all candidate factors offered very little advantage over using two for making predictions. 

Indeed, variable selection eliminated 8 candidate prognostic factors that had no clear 
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evidence for an association with I-IMIs. Our findings confirm previous suggestions that PHE 

tests designed to measure modifiable physical and performance characteristics typically offer 

poor predictive value [10]. This may be because unless particularly strong associations are 

observed between a PHE test and injury outcome, the overlap in scores between individuals 

who sustain a future injury and those who do not results in poor discrimination [10]. 

Additionally, after measurement at a single timepoint (i.e. pre-season), it is likely that the 

prognostic value of these modifiable factors may vary over time [48] due to training 

exposure, environmental adaptations and the occurrence of injuries [49].   

 

The variable selection process resulted in a model which included only age and the frequency 

of previous IMIs within the last three years, which are simple to measure and routinely 

available in practice. Our findings were similar to the modest association previously observed 

between age and hamstring IMIs in elite players [19]. However, while a positive previous 

hamstring IMI history has a confirmed association with future hamstring IMIs [19], we found 

that for lower extremity I-IMIs, cumulative IMI frequency was preferred to the time 

proximity of any previous IMI as a multivariable prognostic factor. Nevertheless, the weak 

prognostic strength of these factors explains the parsimonious model’s poor discrimination 

and low potential for clinical utility.  

 

Our study is the first to utilise decision-curve analysis to examine the clinical usefulness of a 

model for identifying players at high risk of IMIs and who may benefit from preventative 

interventions such as training load management, strength and conditioning or physiotherapy 

programmes. Our parsimonious model demonstrated no clinical value at risk thresholds of 

less than 36%, because its NB was comparable to that of providing all players with an 

intervention. Indeed, the only clinically useful thresholds that would indicate a high-risk 



 23 

player would be 37-71%, where the model’s NB was greater than giving all players an 

intervention. However, because of the high baseline IMI risk in our population 

(approximately 44% of participant-seasons affected), the burden of IMIs [1-5] and the 

minimal costs [10] versus the potential benefits of such preventative interventions in an elite 

club setting, these thresholds are likely to be too high to be acceptable in practice. 

Accordingly, it would be inappropriate to allocate or withhold interventions based upon our 

model’s predictions.    

 

Because of severe overfitting our parsimonious model was optimistic, which means that if 

used in new players, prediction performance would likely to be worse [39]. Although our 

model was adjusted to account for overfitting and hence improve its calibration performance 

in new datasets, given the limitations in performance and clinical value, we cannot 

recommend that it is validated externally or used in clinical practice.  

 

This study has some limitations. We acknowledge that the development of our model does 

not formally take account of the use of existing injury prevention strategies, including those 

informed by PHE, and their potential effects on the outcome. Rather, we predict I-IMIs under 

typical training and match exposure, and under routine medical care.  In addition, it should be 

noted that injury risk predictions at an elite level football club may not generalise to other 

types of football clubs or sporting institutions, where ongoing injury prevention strategies 

may not be comparable in terms of application and equipment. 

 

We measured candidate factors at one timepoint each season and assumed that participant-

seasons were independent. While statistically complex, future studies may improve predictive 
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performance and external validity by harnessing longitudinal measurements and 

incorporating between-season correlations.  

 

We did not perform a competing risks analysis to account for players not being exposed to 

training and match play due to injuries other than I-IMIs. That is, our approach predicted the 

risk of I-IMIs in the follow up of players, allowing other injury types to occur and therefore 

possibly limiting the opportunity for I-IMIs during any rehabilitation period. The competing 

risk of the occurrence of non-IMIs was therefore not explicitly modelled and players 

remained in the risk set after a non-IMI had occurred. 

 

We also merged all lower extremity I-IMIs rather than using specific muscle group outcomes. 

Although less clinically meaningful, this was necessary to maximise statistical power. 

Nevertheless, our limited sample size prohibited examination of complex non-linear 

associations and permitted a small number of candidates to be considered. A lack of known 

prognostic factors [19] meant that selection was mainly guided by data quality control 

processes and clinical reasoning, so it is possible that important factors were not included.  

 

Risk prediction improves when multiple factors with strong prognostic value are used [15]. 

Therefore, future research should aim to identify novel prognostic factors, so that these can 

be used to develop models with greater potential clinical benefit. This may also allow 

updating of our model to improve its performance and clinical utility [50].   

 

Until the evidence base improves, and because of sample size limitations, it is likely that any 

further attempts to create a prognostic model at individual club level would suffer similar 

issues. Importantly, this means that for any team, the value of using preseason PHE data to 
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make individualised predictions or to select bespoke injury prevention strategies remains to 

be demonstrated. However, the pooling of individual participant data from several 

participating clubs may increase sample sizes sufficiently to allow further model 

development studies [51], where a greater number of candidate factors could be utilised. 

 

CONCLUSION 

Using PHE and injury data available pre-season, we have developed and internally validated 

a prognostic model to predict I-IMI risk in players at an elite club, using current 

methodological best practice. The paucity of known prognostic factors and data requirements 

for model building severely limited the model’s performance and clinical utility, so it cannot 

be recommended for external validation or use in practice. Further research should prioritise 

identifying novel prognostic factors to improve future risk prediction models in this field.  
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