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ABSTRACT Potential benefits of peer-to-peer energy trading and sharing (P2P-ETS) include the opportunity
for prosumers to exchange flexible energy for additional income, whilst reducing the carbon footprint.
Establishing an optimal energy routing path andmatching energy demand to supply with capacity constraints
are some of the challenges affecting the full realisation of P2P-ETS. In this paper, we proposed a slime-
mould inspired optimisation method for addressing the path cost problem for energy routing and the capacity
constraint of the distribution lines for congestion control. Numerical examples demonstrate the practicality
and flexibility of the proposed method for a large number of peers (15 − 2000) over existing optimised
path methods. The result shows up to 15% cost savings as compared to a non-optimised path. The proposed
method can be used to control congestion on distribution links, provide alternate paths in cases of disruption
on the optimal path, and match prosumers in the local energy market.

INDEX TERMS Peer-to-peer energy trading, peer-to-peer energy trading and sharing, matching algorithm,
shortest path, slime mould, smart grid.

NOMENCLATURE
α Discrete time step.
8̄i,j(xi,j) The cost of path P traversed from i to j.
M̄ A subset of link E .
γ A constant representing the decay rate of the

tube.
A Set of link weights representing the link costs.
Ai,j The weight along the link (i, j) representing the

link cost.
ci,j The capacity of the link (i, j).
Di,j The conductivity/total traffic of the tube/link.
E Set of network links (i, j) connecting the

prosumers.
G The strongly connected network graph.
G∗ A subgraph of G.
Io A constant flux/energy demand flowing from

the ni to nj.
L The length of the tube.
N Total number of actors.
ni Source prosumer.
nj Destination prosumer.

The associate editor coordinating the review of this manuscript and

approving it for publication was Bin Zhou .

P The path traversed by traffic flow xi,j from
producer ni to consumer nj.

pi, pj The pressure at ni and nj.
Qi,j Flux/energy demands on the tube/link

connecting ni and nj.
R Set of nodes of size |M̄ |.
t Iteration time.
V Interconnected nodes representing the set of

actors.
X ,Y Bipartite sets of graph G.
xi,j The traffic/demand flow on the link (i, j).

I. INTRODUCTION
In recent years, smart grid (SG) has emerged with intelli-
gent monitoring, control, and management of the traditional
power grid, offering increased automation and bi-directional
communication to improve the efficiency of the grid [1],
[2]. Peer-to-peer energy trading and sharing (P2P-ETS) is
an application of SG for transacting energy among a com-
munity of connected peers to realise better performance of
the grid including scalability, robustness, and reduction in
carbon emissions [3]–[5]. One challenge of P2P-ETS is the
large influx of distributed energy resources (DER) actively
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being connected to the grid, making grid management, power
flow, and control challenging. To alleviate these challenges,
distributed algorithms have been proposed for energy coor-
dination and control [4]–[10]. Authors in [4] proposed pair
matching strategies for prosumer’s energy trading market.
In [7], an energy exchange problem among several microgrids
is addressed to minimise global operation costs. Study [10]
presented a framework for P2P energy trading. The study
assumes that the underlying communication link is perfect.
The impact of imperfect communication links is assessed
in [5] while [6] addressed the optimal routing algorithm to
facilitate communication among microgrids. The aforemen-
tioned literature paid far little attention to the underlying
energy path/route connecting these prosumers.

Energy path optimisation has been a fundamental distribu-
tion grid network challenge; the primary aim of which is to
minimise the weights/cost of the path connecting generators
to loads. Energy loss due to long-distance transmission and
other associated costs has a direct correlation to the distance
it travels. For instance, ‘Ofgem’ reported that 66.48% of
an electricity bill is a service charge, with approximately
24% related to network characteristics including distance
charge [11]. One solution to minimising cost path is the
creation of multiple and redundant links between the gen-
erators and the loads, leading to increased network cost and
complexities. With the integration of these numerous DERs,
energy path complexity increases, thus, an optimised path for
the energy demand/supply of a prosumer (a producer and
consumer of energy) to be routed to their energy trading
target based on least-cost path and capacity constraints is
actively needed. This will inadvertently reduce the energy
routing cost, improves control schemes, and reduces energy
congestion on the distribution lines.

While several techniques have been proposed for path opti-
misation problems in the cyber-physical networks, including
the Dijkstra algorithm [12], Bellman-Ford algorithm [13],
etc., the computation time for these algorithms is excessive
when the network scale becomes large [14]. To address the
computational complexity, nature-based algorithms includ-
ing bioinspired techniques like genetic algorithm, parti-
cle swarm optimisation, and ant colony optimisation have
emerged [14]. Recently, the capability of Physarum Poly-
cephalum, also known as slime mould dynamics, has been
shown to offer efficient techniques in solving many graph
network problems [14]–[17].

Interestingly, slime mould optimisation is particularly
suited for the SG network, as it can model both the shortest
path cost problem for energy routing and the capacity con-
straint of the distribution lines for congestion control. This
combination is a major strength of the proposed scheme com-
pared to other traditional algorithms that only model shortest
path problems. Besides, for P2P-ETS where prosumers are
distributed and diverse, a shortest path finding algorithm to
establish an optimised path among connected peers in parallel
is of most importance. Parallel execution reduces network
computation time and improves efficiency. This would not

only result in low cost but would also reduce the search time
significantly, especially in a large network as P2P-ETS.

The main contributions of this work can be summarised as
follows:
• we present a slime mould-inspired approach for SG
to determine the least-cost optimal path between con-
sumers and producers whilst implementing different
scenarios for energy network representation, and routing
energy demand between the prosumers;

• a specific case of maximum flow capacity in the dis-
tribution network is considered to realise optimal path
for energy flow in a capacitated network for congestion
control and to provide an alternate path in scenarios of
disruption with the optimal energy distribution path;

• finally, we extend the optimised path algorithm for per-
fect matching of the energy prosumers, ensuring all
consumers are matched with producers to collectively
reduce the network costs.

The remaining sections are organised as follows: Relevant
literature review is presented in Section II. Section III intro-
duced the problem formulation, the slime mould based opti-
mised path algorithm, and an extension to the algorithm for
energymatching between producer and consumer. Evaluation
of the developed solution is discussed in Section IV, including
its application to the optimal path for energy flow as well as
its numerical examples and the results. Section V summarises
the paper and identified future works.

II. LITERATURE REVIEW
The theory of complex networks involving a graph mod-
elling of real-world networks and evolutionary computation
algorithms have increasingly been used in SG applications
for path optimisation, resource discovery and power routing.
SG has been modelled as a complex network to analyse
and adapt the distribution of power flow [18]. The optimi-
sation objectives in SG, including the least-cost flow and
shortest path finding problems, can be solved by using the
technique of graph theory. Shortest path finding algorithms
are used to find the minimum weighted or most efficient
path in the network. They are used to identify a path or
route between two vertices such that the sum of the weights
of its constituent edges is minimised. This is equivalent to
finding the optimal and also the alternate paths for the flow
of power from a generating station to consumer ends [19].
By integrating the theory of complex network and evolu-
tionary algorithm concepts, a multi-objective minimisation
problem can be formulated [20]. This objective function com-
bines cost elements, related to the number of electric cables
(graph links), and several metrics that quantify properties
beneficial for SG including energy exchange at the local scale
(considering high robustness and resilience). A method to
manage the active power in the distribution systems using an
application of the graph theory, specifically, the successive
shortest path algorithm, is introduced in [21], for optimal
power generation, dispatch, and power flows. The algorithm
is implemented in a distributed way with simulations to prove

VOLUME 8, 2020 95267



O. Jogunola et al.: Prosumers Matching and Least-Cost Energy Path Optimisation for Peer-to-Peer Energy Trading

its efficiency in cases of optimal operation, congestion man-
agement, and power generation cost. Furthermore, in min-
imising time-out delays in power system networks during
outages, Hemalatha, et al. [19] investigated the transmission
of power through the optimal path for quick reconfiguration
of power system components using Bellman-Ford algorithm.
The solution is modelled for a given set of generation, load
pair, through the optimal path considering the capacity of the
transmission line, voltage stability, shortest path (minimum
losses), priority of loads, and power balance between the gen-
eration and demand. The algorithm was applied to a practical
230kV network to demonstrate its effectiveness. To maintain
the stability of a microgrid (MG) system through load shed-
ding, study [17] proposed a Physarum-based hybrid optimisa-
tion algorithm with ant colony optimisation (PM-ACO). The
model improved the selection probability of important items
and emerged a positive feedback process to generate optimal
solutions. Experimental results demonstrate that the proposed
PM-ACO algorithms have stronger robustness and a higher
convergence rate. The authors in [22] extended the Dijkstra
algorithm to a multi-objective shortest path algorithm to
design a spanning graph of a communication infrastructure
connecting the Phasor Measurement Units to the control
centre.

From the preceding discussion, Dijkstra, Bellman-Ford,
and Kruskal’s algorithms are examples of single objective
shortest path algorithms used in the SG applications dis-
cussed. These algorithms track the shortest paths from a
single source to one determined node in the graph and find the
shortest paths independently [22]. However, according to the
structure of power networks, specifically in large P2P-ETS
networks, it is sometimes necessary to find shortest paths
from one centered bus and/or multiple points to multiple
buses (i.e. phasor measurements units, households) simulta-
neously checking overlapped paths in the routing problem.
This requires a multi-objective shortest path algorithm like
slime mould optimisation, to find the best solution routes for
connecting SG components to ensure the least-cost power
flow.

This motivated the study to harness the potential of slime
mould-inspired path optimisation to address the problem of
matching prosumers in the microgrid to facilitate P2P-ETS
utilising the least-cost optimal path between them. Secondly,
to route energy demand between the producers and con-
sumers and reduce the chances of overloading the distribution
lines.

III. OPTIMAL PATH PROBLEM
FORMULATION
Consider an energy network model that focuses on least-
cost path optimisation and energy demand routing, among
prosumers at the tertiary level of control without explic-
itly touching the physicality of the underlying distribution
network such as power flow analysis. Here, least-cost path
optimisation refers to the cost of routing energy demands

FIGURE 1. Benchmark of MG connection to the grid (adapted from [23].

over a distribution link in relation to the weight or cost
of the links used. Interactions among these prosumers are
illustrated in Fig. 1, that shows the power and communi-
cation connection between prosumers, consumers, and the
grid [23].

From Fig. 1, for power flow from the grid to the consumer,
the optimal path would be through the connection to the
prosumer, then to the consumer. The same analogy applies
to other actors (prosumers, consumers, and producers) illus-
trated in Fig. 1. Thus, each actor (i = 1, · · · ,N ) has its
computed energy needs (demands or supplies) to be satisfied
in the network. For instance, actor i is a producer (source)
that desires to sell energy to consumer j (sink). The energy
network is described as a connected graphG = (V ,E),where
V = {1, · · · ,N } denotes the set of actors.
G is a strongly connected directed graph, where every

node/actor in the network is reachable from every other node,
i.e., there exists a directed link eij ∈ E denoted by (i, j)
from node ni to node nj in the network. E(t) ⊆ V × V is
a set of links that changes over time according to the state
of the link at the time, t . Each directed link is characterised
by its capacity, ci,j, (the maximum power that can flow
through the link), and the power flow, xi,j from the producer
to the consumer. For each link, A denotes the set of the link
weights which represents the link costs. Representing |V | as
n, then A can be expressed as the symmetrical adjacency
matrix of equation (1), where Ai,j denotes the weight on the
link (i, j),

A =


0 A12 A13 . . . A1n
A21 0 A23 . . . A2n
A31 A32 0 . . . A3n
...

...
...

. . .
...

An1 An2 An3 . . . 0

 (1)

Given a source node i ∈ V , a sink node j ∈ V , a function
8̄i,j(xi,j) represents the cost of path P that traversed by energy
flow xi,j from ni to nj. The optimal cost path problem can be
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formulated as

min
∑

p∈P(i,j)

8̄i,j(xi,j) (2a)

s.t. :
∑
j:i,j∈E

xi,j =
∑
i:j,i∈E

xj,i, ∀i, j ∈ E (2b)

∑
p∈P(i,j)

xi,j ≤ ci,j, ∀i, j ∈ E, p ∈ P (2c)

∑
p∈P(i,j)

xi,j ≥ 0, ∀i, j ∈ E, p ∈ P (2d)

where P(i, j) represents the set of all paths from producer
ni to consumer nj. Equation (2b) is the energy conservation
constraints, where all energy entering a node (not the source
nor destination) leaves the node. Equation (2c) is the capacity
constraints that suggest that the energy flow xi,j to be less than
the capacity of the link ci,j, while (2d) is the non-negativity
constraints meaning that, there should be a positive flow from
ni to nj.

A. PHYSARUM POLYCEPHALUM ALGORITHM
The slime mould based path optimised algorithm is briefly
introduced in this section. Physarum polycephalum forms a
dynamic tubular network connecting peers, where the diame-
ters of the tubes carrying large fluxes of flows grow to expand
their capacities, and the tubes that are not used decline and
disappear entirely. The segments of tubes of slimemouldmay
be modelled as edges of a graph network, with an intersection
point representing the nodes. The parameters Qi,j represent
the flux on the tubes connecting node ni to node nj. According
to Kirchoff’s law and the law of conservation of flow, the flux
of input at a source is equal to the total flux of output at all
node sets [24], [25]. Also, at any other node, the sum of flux
flowing in is equal to the sum of flux flowing out [25]. The
flow conservation may be expressed as:

∑
j

Qi,j =


−Io, for i = source (3a)

Io, for j = sink (3b)

0, otherwise. (3c)

where Io is constant and represents the flux flowing from the
source node or into the sink node. Assuming the flow along
the tubes is approximated by Poiseuille flow, the fluxQi,j can
be calculated by,

Qi,j =
Di,j
Li,j

(pi − pj) (4)

where Di,j is the conductivity of the tube, Li,j is the length
of the link, and pi is the pressure at node i. To calculate the
pressure on each node, equation (4) is substituted in (5) as:

Qi,j =
Di,j
Li,j

(pi − pj) =


−Io, for i = source (5a)

Io, for j = sink (5b)

0, otherwise. (5c)

By setting pj to the basic pressure level of pj = 0, all pi and
Qi,j can be determined. To model the adaptive behaviour of
the slime mould, the conductivity Di,j is believed to change

over time as the flux increases or decreases, resulting in the
evolution of Di,j as

δDi,j
δt
= f (|Qi,j|)− γDi,j (6)

where γ is a constant that represents the decay rate of the
tube that ensures the convergence of the algorithm when the
value is set to 1. Equation (6) is called the adaptation equation,
depicting the relationship between the conductivity and flux
on the link. For instance, the conductivity diminishes when
the flux on the links is zero and increases by the amount
of flux on the link. f (·) is assumed to be monotonically
increasing continuous function satisfying f (0) = 0. Assume
f (|Q|) = |Q|, γ = 1, Physarum can always converge to the
shortest path [25]. For an iterative process, and adopting the
functional form f (Q) = |Q|, (7) is used instead of (6) to
calculate the conductivity of the link as

Dt+1i,j − D
t
i,j

δt
= α|Qti,j| − γD

t+1
i,j (7)

where Dti,j is the value of Di,j at the t
th iteration time. Thus,

based on the feedback from the iteration, a critical link would
be preserved and others would be deleted, thus forming a
Physarum spanning tree. Other algorithms solve problems
by progressing step-by-step in a single direction, the slime
mould algorithm works by sampling a variety of directions
in parallel. Based on the samples, it discards less optimal
directions to progress toward the solution. After adaptation,
the algorithm selects another set of sources and sink nodes
and repeats the calculations.
Example 1: Consider the network shown in Fig. 2,

the shortest path between nodes 1 and 5 needs to be
determined.

FIGURE 2. Example network showing the least-cost path from Prosumer
1 to Prosumer 5.

The number along the edge represents the weight of the
edge. Each source node creates a unit flow of demands
and the demands are consumed at destination nodes called
sinks. To start the implementation, the conductivity is first
initialised, as the fluxmoves along the edges, the conductivity
is recorded, as shown in Fig. 3.
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FIGURE 3. The changing trend of the conductivity on each edge.

It can be observed that the flux along edges (1, 3) and
(3, 5) converge to 1 signifying the shortest path, with the same
result evidence from other traditional algorithms including
the Dijkstra algorithm, but with a longer convergence time.
Here, convergence is achieved when the strongest flowmoves
from the source to the sink using the least-cost shortest path
and remained constant (the flux of each arc does not change
anymore) until the end of the simulation.

In Section IV-E there will be further comparison results
of the convergence time with the traditional algorithms.
Interestingly, if there is a unique shortest path from source
to sink and the dynamics stabilise, the diameter of edges
on the shortest path converges to > 0, or 0 otherwise,
which means, the link constraint enforces unused links to
zero thereby removing such links from the design. This
suggests that other paths except the optimised one can be
successfully removed/deleted from the network design, thus
saving cost in terms of eliminating redundant links in the
network.

B. OPTIMAL PATH AMONG PROSUMERS
The physarum algorithm is modified for energy network opti-
misation as follows. Nodes are defined as energy producers,
consumers, and prosumers; links are energy distribution links
connecting the producers to the consumers. In a P2P-ETS,
energy producers could assume the role of consumers or
prosumers. To be more representative of the distribution
network, an additional parameter of capacity constraint, ci,j,
is included to ensure the congestion control of power flow
on the distribution lines. A single source, single sink of the
original Physarum model of (5) is also extended to provide
multiple sources, multiple sinks for distributed implementa-
tion expressed in (8)

Di,j
Ai,j

ci,j(pi − pj) =


−

∑
j∈N

I i,jo , for i = source (8a)

∑
j∈N

I i,jo , for j = sink (8b)

0, otherwise. (8c)

where I i,jo represents the energy flow between producer i and
consumer j, Ai,j is the link cost on the distribution link, while
ci,j represents the capacity of the link. This is a practical

solution to ensure that the distribution line is not congested
for control purposes. In the physarummodel, the flow on each
link is continuous during iterations; the costs on each link
is updated with the flow based on peer activities at time t .
The traditional shortest path algorithms including theDijkstra
algorithm only reflect the link length attributes (to calculate
the shortest path), whereas, energy routing has two attributes:
energy flow and the link cost (the edge weight as a function
of the flow). This resulted in most algorithms utilising the
Dijkstra as the path searching algorithm and then proposing
another algorithm to optimise cost as found in [21], [26]. The
developed algorithm is presented in Algorithm 1.

Algorithm 1 Proposed Optimal Path Algorithm for
Prosumers
1 Input: The graph G = (V ,E), the link cost Ai,j, total
flow traffic Di,j, pj = 0, the demand flow Qi,j,
the capacity ci,j, γ , and the step-size, α, for all i ∈ N

2 for t > 0, do
3 Calculate pi, according to (8)

4 Update the demand flow Qi,j =
Di,j
Ai,j

ci,j(pi − pj)

5 Update Di,j using (7), ∀i, j ∈ N
6 Go to next time slot until maximum time-step is

reached
7 end

C. ENERGY DEMAND PERFECT MATCHING
This section presents an extension to the algorithm to realise
a perfect demand matching among the prosumers in the
network. Consider a network of 5 consumers and 5 pro-
ducers; each consumer requires a demand for 10kWh of
energy. Energy demands of Consumer A can be satisfied by
Producers B,C, and D. However, there is a requirement to
ensure that the producer utilising the minimum cost would
be appropriate to satisfy the demand among the Producers
B,C, andD. Thus using the proposed slime mould algorithm
and a Hungarian matching algorithm (also called the Kuhn-
Munkres algorithm), the proposed optimised path algorithm
is extended for prosumers matching in the network for a
perfect match. This is to ensure that all the consumers are
matched to the least-cost producers whilst meeting their
demand requirements. The Hungarian algorithm solves the
maximum-weight matching (perfect matching) in a com-
plete bipartite graph represented with an adjacency matrix
described in (1). The proposed algorithm is discussed in the
next section.

D. PROSUMERS MATCHING ALGORITHM
Let M̄ be a subset of E of the graph G. If any of two links
of M̄ are disjoint in G, M̄ is a matching of G, the two
connected nodes of a link of M̄ are matched in G. Here,
n consumers’ energy demands are to be satisfied by m

95270 VOLUME 8, 2020



O. Jogunola et al.: Prosumers Matching and Least-Cost Energy Path Optimisation for Peer-to-Peer Energy Trading

producers in the network, considering that the consumers’
demands can be met by one or more producers. The aim is
to ensure that at least one consumer is matched with one
producer with the least path costs. Consider the bipartite
subgraph G∗Ni,Nj , where Ni = {ni,1, ni,2, · · · ni,n}, and Nj =
{nj,1, nj,2, · · · nj,m} denotes set of consumers and producers
in the network respectively. Note that a bipartite graph is a
graph that its nodes can be divided into two independent and
non-empty sets.

To accommodate the matching, Algorithm 1 now becomes
Algorithm 2. After the initial path optimisation, Step 6 of
Algorithm 2 starts by searching for a maximum matching in
the subgraph G∗Ni,Nj , with G = (X \ Y ,E) of bipartite sets
X,Y. if one is found, the algorithm stops, else, it proceeds to
the next step, Step 9. The algorithm proceeds by initialising
an empty matching (Steps 11 and 12), then search for aug-
menting matches in the subgraph, by flipping the matched
and unmatched links along the search path (Steps 14 and 15).

Algorithm 2 Proposed Optimal Path and Prosumers
Matching Algorithm

1 Input: The graph G = (V ,E), the link cost Ai,j, total
flow traffic Di,j, pj = 0, the demand flow Qi,j,
the capacity ci,j, γ , and the step-size, α, for all i ∈ N

2 for t > 0, do
3 Calculate pi, according to (8)

4 Update the demand flow Qi,j =
Di,j
Ai,j

ci,j(pi − pj)

5 Update Di,j using (7), ∀i, j ∈ N
6 if maximum matching M̄ in G∗Ni,Nj then
7 Output M̄
8 else
9 Let ni = max{Ai,j : j = 1, · · · , n}, nj = 0

10 Let R be a set of nodes of size |M̄ | in G∗Ni,Nj
11 S := X ∩ R; T̄ := Y ∩ R
12 ε := min{ni + nj − Ai,j : xi ∈ X \ S, yj ∈ Y \ T̄ }
13 Update ni and nj using steps 14 &

15 respectively
14 ni := ni − ε if xi ∈ X \ S
15 nj := nj + ε if yi ∈ Y \ T̄
16 end
17 Go to next time slot until maximum time-step is

reached
18 end

IV. NUMERICAL SIMULATION AND
RESULT ANALYSIS
To test the effectiveness of the proposed optimised path solu-
tion, the result of a network consisting of 10 prosumers is
presented in Fig. 4. Simulations are performed in MATLAB
using random graphs which are presumed to represent real-
world distributed systems [26]. Assigning arbitrary costs to
the connecting links, and setting α = 1 (α serves as a multi-
plier to calculate the value of Di,j from the demand flow Qi,j)

FIGURE 4. P2P-ETS network showing the least cost path from producer 1
to consumer 10.

and γ = 1 (γ ensures faster convergence of the algorithm,
the sensitivity analysis of α and γ will be discussed further in
Section IV-G). In the following, simulation results to demon-
strate the performances of the system under different network
scenarios are presented.

A. SINGLE PRODUCER AND SINGLE CONSUMER
The convergence of the system is achieved when the flow
runs from the source to the destination on the shortest path
and remains until the simulation ends. Since this is the single
producer-consumer pair problem, the calculations of step 4
of Algorithm 1 is according to (5). The result of the total
demand convergence is illustrated in Fig. 5, while Fig. 4
shows the energy network with the weights on the links.

This shows that the proposed solution solves the network
problem by first locating the consumer using the least cost
path, and then transmitting a demand value of 10kWh from
Producer 1 to Consumer 10, as evident in Fig. 5, the total flow
on edges 1 −→ 2 −→ 3 −→ 4 −→ 10 converged to 10kWh
indicating the shortest path from Producer 1 to Consumer 10,
while the conductivity on other edges converged to 0.

FIGURE 5. The demand flow on each link for a single producer to a single
consumer.

B. A SINGLE PRODUCER AND n CONSUMERS
For the case of connecting a single producer to multiple
consumers, the calculations of step 4 of Algorithm 1 is
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FIGURE 6. The demand flow on each link for a single producer to
multiple consumers.

given as

Di,j
Ai,j

ci,j(pi − pj) =


−Io, for i = source (9a)∑
j∈N

I i,jo , for j = sink (9b)

0, otherwise. (9c)

The resulting flow plot of transmitting a demand value of
10kWh from Producer 1 to Consumer 6 and 10 of the network
layout of Fig. 4 is illustrated in Fig. 6.

The plot shows the total flow on each link, with higher
flows on the optimal path to the destination. For instance,
the flow on links 1 −→ 2 −→ 3 −→ 4 −→ 10 and
1 −→ 2 −→ 5 −→ 6 are the highest. While 7 −→
8 −→ 9 −→ 10 shows alternate paths (less optimal) to the
destination consumers. Besides, the other links converged to
0, since they are not involved in the optimised path to the
consumer.

C. n PRODUCERS AND A SINGLE CONSUMER
In this setting, the demands are set to flow from multiple
producers in the network directed to a single consumer.

With the configurations, the calculations of step 4 of
Algorithm 1 is according to:

Di,j
Ai,j

ci,j(pi − pj) =


−

∑
j∈N

I i,jo , for i = source (10a)

Io, for j = sink (10b)

0, otherwise. (10c)

Similarly, from the total flow convergence of Fig. 7, it can be
observed that the routes 1 −→ 2 −→ 3 −→ 4 −→ 10 and
7 −→ 8 −→ 9 −→ 10 converges to higher flow value than
the other links 12 −→ 5 −→ 6. While other unused links
converged to 0.

D. n PRODUCERS AND n CONSUMERS
Further, setting some prosumers as producers and some
as consumers, and transmitting a demand value of 10kWh
among them, in this case, two consumers. Similarly, the cal-
culations of step 4 of Algorithm 1 is according to (8). The
convergence result of Fig. 8 demonstrates that the proposed
optimised path algorithm solves the network problem by

FIGURE 7. The demand flow on each link for multiple producers to a
single consumer.

FIGURE 8. The demand flow on each link for multiple producers to
multiple consumers.

transmitting demand value of 10kWh each from Producers
1 and 7 to Consumers 4 and 10 using the least cost path.
i.e., using edges 1 −→ 2 −→ 3 −→ 4 and 7 −→ 8 −→
9 −→ 10, while other links converged to 0.

E. COMPARISON WITH OTHER SHORTEST-PATH
ALGORITHMS
Whilst this work in envisioned for energy networks, the solu-
tion therein can be proven for other cyber-physical networks
requiring path finding algorithms. In this section, the pro-
posed shortest path algorithm is compared to the traditional
path-finding algorithms including ACO, Dijkstra [12], and
IPPA (improved physarum polycephalum algorithm) [14]
using different datasets shown in Table 1. The efficiency
of the algorithm is tested over a network with random and
varying topologies, with network sizes ranging from 15 to
2000 nodes [14], and link costs ranging from 1 to 100 and
analysed based on the algorithm execution time. The reported
probability is the probability of establishing a connection
between the nodes.

1) COMPARISON BASED ON EXECUTION TIME
The performance of an algorithm is mostly determined by
its execution time and its accuracy in solving the proposed
problem. The accuracy of the algorithm has been confirmed
from the previously presented cases, which located the des-
tination prosumer utilising the least-cost path and routed the
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TABLE 1. The test data sets for the comparison study.

FIGURE 9. The comparison result of other algorithms using the execution
time.

demand successfully. Thus the execution time of its shortest
path property is compared against other algorithms illustrated
in Fig. 9, including the Dijkstra, ACO, and IPPA. In IPPA,
the authors combined the original slime mould algorithm
with a parameter called Energy, which quantifies the energy
provided and consumed by the tube. However, in this paper,
we combined the capacity constraints to the original slime
mould algorithm to model the distribution network problem,
by setting a limit to the amount of power flow, thereby
controlling congestion and reducing the algorithm execu-
tion time. Algorithm response time would affect network
application performances, especially in a large network as
P2P-ETS. It can be observed that with a fewer number of
nodes, the Dijkstra is faster than the developed algorithm.
However, as the number of nodes increased from 100, they
both have similar execution time, which is faster than both
the IPPA and the ACO algorithms.

Moreover, in the Dijkstra algorithm, each link is only
associated with one criterion; length, and there is no equiv-
alent attribute like ‘flow’ evident in the Physarum model
reacting to the change of the link cost. As a result, many
classical algorithms for the cyber-physical network problem

must have two separate processes/algorithms: path finding
and flow optimisation. In contrast, the presented Physarum-
based algorithm solves both problems simultaneously; once
the link cost Ai,j is updated, with the help of (4), the flow
is redistributed and reallocated dynamically in the next itera-
tion. Physarum algorithm is suitable for solving the network
optimisation problems in a dynamic environment because it
can utilise the computational (or intermediate) results in the
previous iterations and respond to the changes by adjusting
the flow. The scalability result of the algorithm by utilising
2000 prosumers is equally deducted from Fig. 9.

F. CONGESTION CONTROL IN DISTRIBUTION NETWORK
While the previous sections are motivated by the desire
to address the problem of the optimal least-cost path
between producers and consumers, the solution proffer can
be extended to realise optimal path for power flow in a capac-
itated network. Thus, the power flow optimisation is defined
as a minimum cost flow problem relating to both the shortest
optimised path and maximum flow capacitated problem [21].
This section’s focus is on an optimal path for energy transfer
in a capacitated network for congestion control. As defined
in Section III that each link is characterised by two non-
negative attributes ci,j, capacity, and Ai,j, link cost. Given a
source node i ∈ V , a sink node j ∈ V . Function 8̄i,j(xi,j)
represents the optimisation problem defined in (2a). ci,j is
the capacity of the link i, j that ensures the distribution line
is not congested, as well as to maintain a maximum flow
of power for control purposes. The traditional solution to
solving the maximum cost flow problem is the successive
shortest path algorithm, which has been discussed to have
higher computational time. Thus, using the proposed slime
mould solution, by setting the capacity of the distribution
line, the maximum flow problem is remodelled to cope with
congestion on the lines. For instance, Fig. 10 illustrates the
same test graph but comprising of the link cost as well as the
capacity of each link.

In Fig. 11, the convergence result of the optimised path
from Producer 1 to Consumer 10 is shown, which is consis-
tent with Fig. 5. However, it can be observed that, while all
other links not on the optimal path converged to zero in Fig. 5,

FIGURE 10. P2P-ETS network with capacity constraints and link costs.
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FIGURE 11. The demand flow on each link for the optimal path for energy
transfer.

FIGURE 12. The demand flow on each link for the optimal path for energy
transfer with capacity constraints.

Fig. 11 provided alternate paths in cases of fault with themain
optimised path. In addition, limiting the capacity installed on
link 1 −→ 2 from 10kWh to 5kWh, it can be observed that the
power flow on the link has been suppressed to 5kWh which
is different from Fig. 11 due to the restriction on the lines
as shown in Fig. 12. This property is useful in coping with
congestion on the distribution lines for control purposes.

G. SENSITIVITY ANALYSIS
To further analyse the performance of the algorithm, a sen-
sitivity analysis is done by varying the variables α and γ .
Fig. 13 shows the corresponding result. It can be observed
that the time to convergence decreases when γ is 1, compared
to when γ is 0.01 and 0.1 irrespective of the corresponding α
value. The selection of α and γ for the test cases is based on
this property.

H. ROUTING POWER COST COMPARISON
USING IEEE 39 BUS
For further analysis of the proposed solution, this subsection
shows a comparison result with study [26] using an IEEE
39 bus. The IEEE 39 bus system represents an approximation
of an electrical power system with 39 buses, comprising
of 46 lines, 10 power sources, and 19 loads. Represent-
ing the power sources as producers and the loads as con-
sumers, Fig. 14 shows the IEEE 39 bus test including the line

FIGURE 13. Sensitivity analysis for varying values of α and γ .

FIGURE 14. IEEE 39-bus test case for energy routing.

FIGURE 15. Comparison of the power costs for the Proposed, GRASP, and
Optimal for IEEE 39-bus test network.

capacities and costs of the links. A total power generated by
all producers in the networks equal 570kW , while the 19 con-
sumers demanded a total of 570kW of power. To compare the
effectiveness of the proposed slime mould solution, the line
cost here represents the total power loss asmodelled in greedy
smallest-cost-rate path first (GRASP) [26]. Fig. 15 shows the
result of GRASP, optimal, and the proposed solution. It can
be observed that the proposed slime mould approach yielded
the least total cost in routing the power from the producers to
the consumers in the network.
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FIGURE 16. P2P-ETS network showing the paired two producers to three
consumers.

FIGURE 17. P2P-ETS network showing the paired three producers to two
consumers.

I. NUMERICAL SIMULATION AND RESULT OF THE
PERFECT MATCHING ALGORITHM
The effectiveness of the proposed perfect matching algo-
rithm, i.e. Algorithm 2, is presented as follows. A situation
involving an odd number of actors is first considered, with a
focus on one-to-many or many-to-one matching, i.e. a pro-
ducer to many consumers, as the case arises. This reflects
a real-world scenario where the demands of a consumer are
satisfied by one or two producers and vice versa. Utilising the
average separation distances between houses in the UK [27],
ranging from a minimum of 1m of a bed dwelling to 27.5m of
a three/four storey building, the distances between the actors
are determined accordingly and illustrated in Figs 16 and 17.

Fig. 16 reflect the case of three producers to two con-
sumers, the producers are Nj = {1, 3,&5}, while the con-
sumers are Ni = {2,&4}. It can be observed that the
algorithm successfully matched peers with the least-cost to
minimise the overall network cost. For instance, Producers 3
and 5 to Consumer 4, while Consumer’s 2 demands are met
by Producer 1.

Similarly, Fig. 17 shows the result of two producers Nj =
{1,&3}, to three consumers Ni = {2, 4,&5}. Demands of
Consumer 2 is satisfied by Producer 1, while demands of
Consumers 4 and 5 are both supplied by Producer 3 to save
costs as well as to ensure all demands are met in the network.

To further quantify the effectiveness of the proposed opti-
mised path algorithm, Fig. 18 reflect the saved costs from the
two cases previously considered. The non-optimal path is the
path the peers would have taken without the algorithm, while

FIGURE 18. Cost savings for the optimised path and non-optimised path.

FIGURE 19. P2P-ETS network showing the paired producers and
consumers.

the optimal path is the path taken as a result of the proposed
algorithm. A total of 15% cost was saved for the case of
establishing an optimised path between two producers and
three consumers, while 8% was saved for the case of three
producers to two consumers. This cost savings reflect the
variety of roles of participants in the network. For instance,
the cost savings increases when there are more consumers
to buy energy than when there are more producers than
consumers.

J. ONE-TO-ONE MATCHING
The numerical example presented in Section IV-I considers
a case of an odd number of actors. Here, we focus on an
even number of producers and consumers in the network to
produce a one-to-one matching. Using the same set numbers
of prosumers from Section IV, but assigning 5 producers
and 5 consumers, Fig. 19 is a resulting plot of the matching
algorithm. The producers are Nj = {1, 3, 5, 7,&9}, while
the consumers are Ni = {2, 4, 6, 8,&10}. It can be observed
that the algorithm successfully matched the peers with the
least-network cost, for instance, Producer 1 to Consumer
2, Producer 3 to Consumer 4, Producer 5 to Consumer 6,
Producer 7 to Consumer 8, Producer 9 to Consumer 10.
Although, when observed closely, and based solely on the link
costs, Consumer 8 could have been paired with Producer 9,
however, if this were to be true, it would result in no pairing
(or higher cost) for Consumer 10.
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As previously established that energy loss is mostly due
to long distance-transmission, thus producing power locally
and matching supply and demand can minimise the losses
from transportation for economic and environmental benefits.
Invariably, matching local energy demand, would lower the
control effort of the overall power system. Furthermore, dis-
tribution networks are vulnerable to a variety of faults, thus by
providing an alternate route for power distribution, disruption
to the consumerswould beminimisedmaking the electric grid
more resilient.

V. CONCLUSION
This paper addressed the problem of matching prosumers in
MG to facilitate P2P-ETS. Two main issues were addressed;
Firstly, as the cost of energy has a direct correlation with
the distance between energy producer and consumer, a path-
optimised systemwas developed for energy routing. This was
shown to have up to 15% cost savings as compared to a non-
optimised path. Also, the execution time for the developed
algorithm, as the number of peers increases (15 − 2000),
is reduced as compared to other traditional algorithms, which
is highly desirable in a large network as P2P-ETS. Secondly,
the proposed solution was applied to a maximum flow capac-
ity problem in the energy distribution network to reduce
congestion on the power distribution lines. This result shows
the secure operation and control of the grid. Future work will
look at including additional constraints such as the cost of
renewable energy generation, different generation capacities
from prosumers, energy storage systems, and electric vehicles
in the problem formulations.
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