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Abstract 

Conventional water treatment methodologies are often incapable of eliminating chemical and 

biological pollutants from water sources leaving residual contaminants in treated water. These 

contaminants are of growing concern due to their potential for adverse health effects from 

chronic exposure. Non-thermal plasma generated in a dielectric barrier microfluidic plasma 

reactor, operated at atmospheric pressure, was studied for its potential to treat organic 

contaminants and pathogenic microorganisms in water. In this thesis, non-thermal plasma 

generated in a microfluidic reactor was investigated for the degradation of contaminants in 

water. The overall aim of this thesis is to optimize treatment efficiency of an organic 

contaminant, i.e. methylene blue, and biological contaminants, i.e. E. coli and P. aeruginosa, in 

non-thermal plasma by investigating the key process parameters. The microfluidic device in 

this work incorporated a dielectric barrier discharge generated in a continuous gas flow stream 

of a two-phase annular flow regime generated in the microchannel of the device. Using air as 

the carrier gas, low concentrations of long-lived chemicals generated in plasma such as nitrates 

were detected in plasma treated water. The relative degradation rates of MB were influenced 

by the residence time of the sample solution in the discharge zone, type of gas applied, channel 

depth and flow rate. Increasing the residence time inside the plasma region led to higher levels 

of degradation. Using a 100 µm deep device, oxygen was found to be the most effective gas 

for promoting MB degradation and by reducing the channel depth to 50 µm, the highest results 

were obtained, achieving more than a 97% level of degradation with air as the applied gas at a 

flow rate of 4 ml/min. Effective disinfection of water was achieved using air as the carrier gas. 

Full inactivation of both bacteria (108 CFU/mL maximum number of each bacteria treated) as 

monocultures and mixed cultures in water was achieved after 5 seconds of residence time in 

the plasma zone. The microfluidic system presented here demonstrates proof–of-concept that 

plasma technology can be utilised as an advanced oxidation process for water treatment, with 

the potential to achieve total mineralization of organics and hence eliminate water treatment 

consumables such as filters and disinfectants. A summary of the findings of this work is 

presented in Chapter 7 including further works.  
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Chapter 1 Introduction 

1.1 Overview 

This research focuses on investigating an atmospheric pressure dielectric barrier discharge (AP-

DBD) generated in a miniaturized plasma reactor and its potential application for water 

treatment. Understanding and controlling the behaviour of fluids and AP-DBD under these 

conditions will aid in the development of reactors using plasma to treat contaminated water. 

The behaviour of the AP-DBD generated in a closed system miniaturized reactor (microfluidic 

reactor) and the chemical reactions initiated were investigated for treatment of water 

contaminated with organic chemicals or microorganisms. The main focus was determining the 

factors affecting the AP-DBD treatment processes using a miniature plasma reactor including 

voltage, barrier thickness, channel length, and residence time. 

1.2 Research Motivation  

Water is necessary for life, for the Earth’s population and the planet’s survival; the human body 

is made up of 60% water and nearly 70% of the planet’s surface is covered with water, mainly 

saltwater and only 2.5% is freshwater. Of this, less than 1% of freshwater sources are available 

to feed the whole planet’s population, nearly 7.8 billion as of 2019. This water is consumptively 

used for industry, agriculture and domestic purposes; the rest is inaccessible, either frozen as 

snow and ice or stored as ground water (Gleick and Schneider, 1996). Human activities lead to 

a depletion of water quality by leaching various synthetic and naturally occurring contaminants 

into freshwater sources, which can be increasingly aggravated in the future as populations 

grow, climate change and global sea level rise. Without action, this is expected to cause an 

imbalance of water demand and availability. Most dialogues about this topic have focussed on 

low-income and developing countries suffering the environmental, health, social and economic 

ramifications of depleting water quality. However, recent reports have shown that even 

wealthier countries suffer contamination and face water crisis, with new stricter requirements 

for drinking water reducing the availability of clean water supplies. In the UK, several reports 

in recent years have identified microbial and chemical contaminants in drinking water, linked 

to treatment failure and resulting in significant adverse health effects (Gray, 2008; 

Inspectorate, 2015; DWI, 2017). A recent survey has shown that one in two people in the UK 
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are concerned about contaminants in their tap drinking water and over 47% take additional 

precautions by buying bottled water or using a filter system. This is likely to be a consequence 

of water contamination reports (Danny et al., 2018). 

Traces of contamination from various sources, chemical or biological, are still a problem if not 

treated efficiently by conventional physical, chemical or biological techniques and may require 

expensive methods to attain safe contaminant free water. The presence of these contaminants 

in treated water is a cause of growing concern of environmental consequences and potential 

adverse health effects from chronic exposure, prompting further investigation of novel 

methodologies to treat water sources effectively. Electrical discharge plasma technology has 

been widely investigated as a promising solution for water remediation driven by advanced 

oxidation process (AOP). Cold atmospheric plasma generated at room temperature and 

atmospheric pressure has produced encouraging results for disinfection and removal of 

contaminants in water through in situ generation of highly reactive species and physical 

processes (Anpilov et al., 2001; Foster, 2017; Miklos et al., 2018). In addition, the spectrum of 

contaminants for treatment can be extended to other pollutants and the efficiency of 

treatments improved by incorporating mediators such as catalysts (Lukes et al., 2012; Reddy 

et al., 2014). The ability to mineralize organic pollutants via plasma is an attractive feature for 

a fast and clean process with no toxic by-products formed and chemicals used during the 

process while simplifying the management of the process and reducing the toxicity of waste 

products (Sato et al., 2005). Generation of plasma at atmospheric pressure and room 

temperature reduces the operational costs required by other processes such as high 

temperatures and vacuum pumps. The application of plasma can be integrally modular and 

offers an alternative source for the chemical precursors and consumables operated in 

conventional AOPs and water treatment methods. Plasma-based Water Treatment (PWT) is 

predicted to be efficient and overcome current operational expenses since the treatment 

efficiency observed in plasma requires the synergetic combination of several conventional 

methods, AOPs and consumables to initiate the same reactions simultaneously for water 

treatment.  

Review papers have studied various reactor geometries to generate plasma in contact with 

water and investigate the chemical and physical processes involved that are useful for its 
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application (Locke et al., 2006; Bruggeman and Leys, 2009; Vanraes et al., 2016; Malik, 2010). 

However, it has proven difficult to implement PWT at the macro-scale. This was mainly due to 

mass transfer limitations of plasma species in the gas phase into the liquid bulk at the gas-liquid 

interface. This leads to an unfavourable energy yield, the amount of pollutant degraded per 

kilowatt-hour (Locke et al., 2006; Malik, 2010; Jiang et al., 2014).  

Recently, a number of studies on miniaturised reactors were investigated for plasma 

production in a continuous flowing system. Olabanji et al investigated the behaviour of plasma 

generated in a continuous flow microreactor (Olabanji and Bradley, 2011), Stauss et al 

investigated a continuous flow microreactor using plasma to synthesise diamondoids (Stauss 

et al., 2014). In both studies, the microreactors operated with AP-DBD systems, generating 

non-thermal plasma in a continuous gas flow. However, such reactors have yet to be further 

expanded as dual phase plasma-liquid microfluidic systems for studies in PWT.  

In this thesis, a miniaturised AP-DBD reactor was adapted and designed to operate a 

continuous liquid-gas flow and investigate the efficiency of a miniaturised AP-DBD reactor to 

degrade organic contaminants and to reduce the viability of opportunistic pathogens in water, 

by exploiting the benefits of microfluidics.  

1.3 Aim and objectives 

The aim of this project is to develop a novel microfluidic plasma reactor (MPR) to degrade 

organic contaminants and reduce the viability of pathogens in water sources by using 

atmospheric pressure plasma. Production of plasma in proximity to water was investigated to 

improve the aforementioned limitations and enhance treatment efficiency with the purpose 

of developing a potential application for continuous in-line water feed systems. It is predicted 

that the microfluidic plasma reactor would act as a proof-of concept for the inclusion of plasma 

technology into water systems, replacing current water treatment consumables such as filters.  

For the initial phase, an organic pollutant in the form of methylene blue (MB), an organic dye, 

was selected as a model compound to test the treatment efficiency using the AP-DBD reactor. 

Influence of applied voltage, residence time, liquid flow rates and gas composition with 

degradation of MB were investigated and optimised. Further optimisation of the physical 

parameters, dielectric barrier thickness and length of the serpentine channel, were 
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investigated to improve the efficiency of the discharge formed in the MPR. Optimised results 

were carried forward to chosen pathogens often detected in treated water; to test its potential 

to reduce the viability of E.coli and P. aeruginosa implicated in outbreaks of waterborne health-

care associated infections (HCAIs). The results obtained were used to test the potential of an 

MPR to treat water in a continuous flowing system. 

1.4 Structure of the thesis 

This thesis starts with a literature review in Chapter 2, introducing the problems with 

conventional water treatment processes and considers the advantages of AOPs, specifically 

the significance of plasma technology, as a prospective remedy to current water treatment 

problems. The fundamental aspects of plasma chemistry in water and microfluidics are 

discussed. Chapter 3 introduces the experimental set-up, the preparation of samples, analysis 

methods and calculations that were used in this study. Chapter 4  presents the investigation of 

the influence of process parameters such as residence time, liquid flow rate, gas flow rate, 

reactor design and plasma properties on the ionic composition of water samples. Chapter 5 

then proceeds to investigate the degradation of MB and formation of possible products formed 

after plasma treatment. Chapter 6 reports the investigation of applying the optimized 

parameters from Chapters 3 and 4 on the anti-microbial activity of plasma generated in the 

MPR with selected samples, i.e. antibiotic resistant E. coli and P. aeruginosa. Chapter 7 presents 

the conclusions from results obtained from the investigations studied in this thesis, including 

future work. 
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Chapter 2 Literature review 

This chapter begins with a general overview of water remediation by conventional water 

treatment processes and reviews the problems encountered, which emphasise the growing 

need for advanced water treatment processes. This is followed by an overview of the 

development of innovative advanced oxidation processes by plasma technology from several 

existing plasma reactor designs, leading to the introduction of a new plasma reactor design. An 

introduction and overview of the importance of microfluidics along with emerging plasma 

technology for water treatment is presented.  

2.1 Conventional Water Treatment  

With contaminants present in various forms in wastewater or water from source catchments, 

a single method of treatment is often inadequate to remove and process every contaminant 

(Hofman-Caris and Hofman, 2017). For example, the process of filtration is a common form of 

physical treatment that removes contaminants bigger than the perforation of the filter, yet 

contaminants of smaller size or those dissolved in water remain untreated. Thus, treating 

water to provide safe and clean water for consumption has relied mostly on the application of 

a multi-barrier water treatment approach, letting water flow through several stages and forms 

of treatment (Jackson et al., 2001; Dore, 2015). The barriers were selected and set-up to ensure 

that the removal capability of each step in the treatment process was maximized, in terms of 

removing contaminants that passed through untreated by preceding barriers, until drinking 

water quality is achieved. The treatment system occurs in serial steps and includes several 

conventional water treatment methods (Table 2.1). Each barrier was identified along with their 

limitations, such as treatment efficiency and risks of contaminants passing through the barrier 

untreated. Additional barriers to improve such limitations provide the support required to 

allow continuous operation in times of decline in performance of one or more barriers. In the 

event of failure of one or more of the barriers, the subsequent barriers can compensate thus 

limiting the possibility of contaminants left untreated.  
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Table 2.1: Common stages and examples of conventional water treatment methods and their 
effects. Adapted from (Vanraes, 2016). 

Stages Methods Effects Examples 

 
1⁰ 

treatment 

Coarse 
screening, 

mechanical/ 
physico-chemical 

methods 

Removal of large debris 
Settling of suspended solids and 

adsorbed pollutants 
Evaporation of volatile substances 

pH adjustment 

Filtration 
Coagulation 
Flocculation 

Sedimentation 

 
2⁰ 

treatment 

Biological 
treatment 

Biodegradation of organic 
compounds 

Biological nutrient removal (e.g. 
nitrogen, phosphorous) 

Aerated lagoons 
Activated sludge 

 
3⁰ 

treatment 

Water polishing, 
chemical 

treatment 

Removal of particulate material 
Sedimentation of non-degraded 

and degraded suspended particles 
Oxidation of compounds 

Photolysis of organic pollutants 
Sterilization 

Distillation 
Chlorination 
Ultraviolet 
radiation 

Ozonation 

 
4⁰ 

treatment 

Physico-
chemical 
methods, 
biological 
treatment 

Metabolic and co-metabolic 
reaction 

Vaporisation of volatile 
components 

Photolysis or hydrolysis of organic 
micropollutants 

Reverse osmosis 
Ozonation 

Volatilization 
Adsorption 

Biotransformation 
Abiotic reaction 

The primary treatment involves mainly conventional phase separation techniques, followed by 

chemical methods in the secondary and tertiary treatment. The quaternary treatment is 

carried out in response to contaminants of possible health concern that pass through 

untreated by prior conventional water treatment methods such as waterborne pathogenic 

microorganisms at low levels of 1 to 10 colony forming units (CFU) per 100 mL or 

micropollutants (MP), defined as organic contaminants of low levels in ng/L. For pathogenic 

microorganisms such as E. coli strains, regulators state 0 CFU/100 mL in water supplied for 

consumption (DWI, 2009). However, regulations for MP guidelines are still in the process of 

evaluation worldwide where political decisions and regulations concerning MP affecting the 

quality of water are driven by ambiguity and defended by precautionary and preventive 

principles (Metz and Ingold, 2014). To date, environmental quality standards for some MPs 

such as nonylphenol, bisphenol-A and diiron have been regulated by the European Parliament 

through Directive 2008/105/EC but other MPs are not listed (EU, 2008). The limited number of 

MPs regulated is a matter of concern due to the inability of conventional water treatment 
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methods to remove many MP compounds. In addition, current routine analytical technologies 

used in water treatment plants risk current and future MPs being undetected. So far, routine 

analysis is capable of detecting MPs up to the µg/Lrange, with ongoing studies on improving 

sensitivity of analytical methods to detect contaminants as low as 1 ng/L. This is based on 

precautionary principles and estimated risk (Schmidt, 2018). According to Metz et al, 

prohibiting substances or restricting authorization of substances that pose a significant health 

risk to humans and aquatic life may curb or reduce the presence of MPs in treated water (Metz 

and Ingold, 2014). Such a precautionary approach is inherent in risk management of 

contaminants not treated efficiently by water treatment (Hartmann et al., 2018). Hence it is 

essential to develop effective methods to remove contaminants where suspected adverse 

effects may arise.  

Ideally, fewer barriers in treatment will benefit the total operational cost, reduce the use of 

chemicals and the associated carbon footprint with water-related energy use. The UK water 

industry consumes 8100 GWh per annum of energy and directly contributes to an estimated 4 

million tonnes of the UK’s greenhouse gases (Ainger et al., 2009). In addition, the burden of 

treating contaminants not treated efficiently by conventional methods have been reflected in 

drinking water demand and supply costs, which can be recovered through water bills. The 

choice and cost of additional treatment barriers leads to increased operational expenditure in 

terms of energy demand and disposal of waste (Jones et al., 2007). According to a report of 

the EurEau summarizing treatment of MPs in several European countries, additional water 

treatment leads to an additional financial burden on the population and water treatment 

facility plants (EurEau, 2019). This includes 10% to 15% increase of total costs for water 

treatment in Switzerland, 20 to 30% increase of current wastewater charges in Finland, 10 to 

35% increase of energy consumption using advanced treatment, i.e. ozone and activated 

carbon, in Denmark and an average increase of 14% in water bills in Germany. According to 

Logar et al, inclusion of new technology increases operational costs by 30% and 35% for 

activated carbon and ozonation, respectively, for treatment of MPs not removed efficiently by 

conventional methods (Logar et al., 2014). Thus, the attention of researchers is focused on 

viable, robust and resource-efficient methods with performance beyond conventional 

methods to treat water from source to point-of-use at lower cost, without jeopardizing life and 

the environment by the treatment itself. Table 2.2 shows a summary of described 
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disadvantages and issues with conventional water treatment methods such as those described 

in Table 2.1. 

Table 2.2: Examples of challenges facing the water treatment process. 

 

 

 

Examples Description References 

Fouling in water 
systems 

- Biofilm formation acts as a reservoir for 
subsequent spread of pathogens and 
microbial leaching in treated water 
- Influences the taste and odour of treated 
water 
- Increased localised pipe corrosion and 
release of iron particles in water 

(Herzberg and 
Elimelech, 2007; 
Nguyen et al., 
2012; Bagheri and 
Mirbagheri, 2018) 

Water treatment 
plant residuals 

- Toxicity problems, even at low 
concentration, in treated water (e.g. 
chlorates and chlorites by-products) 
- Concentrated levels of co-occurring 
contaminants (e.g. heavy metals, ions) that 
require advanced processing and disposal 
methods 
- Difficult recovery of added reactants (e.g. 
homogenous catalyst) during regeneration 
(e.g. iron in water softener resin bed) 
- Replacement frequency of water 
consumables (e.g. filter, adsorbents, 
regeneration chemicals, ion exchange resins, 
reverse osmosis membranes) 

(Fawell and 
Nieuwenhuijsen, 
2003; WHO, 2004; 
Ippolito et al., 
2011; De Gisi et al., 
2016) 

Selective removal 
and further 

reaction/treatment 

- Rising problems of resistant pollutants, i.e. 
anti-microbial resistant pathogens with 
conventional disinfectants (e.g. chlorine) 
- New/emerging MPs and resistant 
microorganisms 
- Further reactions of disinfectants with 
other organic and inorganic compounds in 
untreated water forming potential toxic 
substances 

(Council and 
Council, 2006; 
Rajasulochana and 
Preethy, 2016; 
Lood et al., 2017; 
Krzeminski et al., 
2018) 
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2.2 Water Quality  

Water readily dissolves a variety of chemicals and accumulates microorganisms from various 

sources such as the underground strata and anthropogenic pollution (Table 2.3).  

Table 2.3: Sources and examples of water contaminants (Fawell and Nieuwenhuijsen, 2003; 
Margot et al., 2015). 

Major Sources Contaminants Examples 

Hospital effluents 
Biological contaminants 

(antibiotic resistant 
bacteria) 

Bacteria, viruses, protozoa, 
parasites 

Industrial wastewater 
Agricultural runoffs 

Domestic wastewater 
Chemical contaminants 

Pharmaceuticals, dye, 
pesticides, heavy metals, 

industrial chemicals 

Underground source 
leakage (i.e. from soil, 

oceans) 

Physical contaminants 
Sediment, suspended organic 

matter 

Radiological contaminants Radon, radium, uranium, lead 

Ideally, potable water should not contain any of these contaminants capable of causing 

adverse effects. The adverse effects of many of these contaminants to public health and the 

environment are known and regulated by their level of risk/hazard. This provides an ideal 

standard of clean and safe water. In accordance to the Water supply (Water Quality) 

Regulations of 2018 (England and Wales), water supplied via a consumer’s tap must not 

contain any microorganisms or substances at concentration values that can cause potential 

danger to human health (Table 2.4) (DWI, 2018).  

Table 2.4: The microbiological and chemical parametric values of treated water provided in 
consumer’s taps. Adapted from (DWI, 2018). 

Microbiological parameters 

Parameters 
Concentration or value 

(maximum) 
Units 

Enterococci 0 Number/100 mL 

Escherichia coli 0 Number/100 mL 

Coliform bacteria 0 Number/100 mL 

Chemical Parameters 

Acrylamide 0.10 µg/l 
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Antimony 5.0 μg/l 

Arsenic 10 μg/l 

Benzene 1.0 μg/l 

Benzo(a)pyrene 0.010 μg/l 

Boron 1.0 mg/l 

Bromate 10 μg/l 

Cadmium 5.0 μg/l 

Chromium 50 μg/l 

Copper 2.0 mg/l 

Cyanide 50 μg/l 

1, 2 dichloroethane 3.0 μg/l 

Epichlorohydrin 0.10 μg/l 

Fluoride 1.5 mg/l 

Lead 10 μg/l 

Mercury 1.0 μg/l 

Nickel 20 μg/l 

Nitrate 50 mg/l 

Nitrite 0.50 mg/l 

Pesticides (Aldrin, Dieldrin, 
Heptachlor, epoxide, 

0.030 μg/l 

other pesticides 0.10 μg/l 

Pesticides: Total 0.50 μg/l 

Polycyclic aromatic 
hydrocarbons 

0.10 μg/l 

Selenium 10 μg/l 

Tetrachloroethene and 
Trichloroethene 

10 μg/l 

Trihalomethanes: Total 100 μg/l 

Vinyl chloride 0.50 μg/l 

Failing to meet these criteria reduces the quality of water, which generally makes the water 

unacceptable for consumption and introduces a need for the water to undergo some type of 

treatment. So far, conventional water treatment processes such as filters and chemical 

treatments are inadequate for the effective removal of resistant contaminants such as 

microorganisms that get to re-enter water sources (Sousa et al., 2018; Gogoi et al., 2018). 

These contaminants can cause undesirable effects even at low concentrations (mg/L to ng/L), 

leading to adverse ecological impacts and interference with the use of water for domestic, 

recreational or critical applications due to short- and long-term toxicities (Richardson, 2009; 

Ratola et al., 2012; Bayen, 2012; Stuart et al., 2012). The public’s recognition of water quality 

and acceptability is derived on the general aesthetic properties such as turbidity, taste, odour, 

hardness and colour. In general, the aesthetic of water for public satisfaction and perception 
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of water free from contamination is often associated with colourless, odourless and tasteless 

qualities. However, water free from aesthetic problems is not necessarily safe for 

consumption, with contaminants such as pathogenic microorganisms, even at low levels, can 

lead to devastating consequences for health or even death. In response, environmental and 

public health concerns continue to increase in parallel with industrial development, climate 

change and population growth, which are the chief sources of these pollutants (Fawell and 

Nieuwenhuijsen, 2003; Margot et al., 2015). 

With an increasing number of emerging contaminants detected at low levels, lack of 

epidemiological studies and regulation and the uncertainty of their long-term consequence 

compromises the confidence of people in the safety and quality of their water supply. Other 

effects may be indirect, such as health decline and economic constraints caused by increasing 

morbidity rate, mortality rate and a combination of multiple water treatment process that lead 

to expensive remediation and cost inflation of safe water (WHO, 2004). Contaminated water 

sources are already prevalent in developing countries where water treatment process are 

either inefficient or absent. The World Health Organization (WHO) estimates that diseases 

sourced from poor quality drinking water supplies and/or scarcity of water treatment 

infrastructure, cause 4.0 % of deaths and 5.7 % of disability or ill health worldwide, with 

children and those on a low income bearing more of the burden of outbreaks by waterborne 

diseases, such as dysentery (WHO, 2012). In addition, poor water quality was not only limited 

to an impact on health but is now also closely associated with economic and social implications 

on a country. The World Bank estimated an economic loss of US $9 billion a year in Southeast 

Asia from poor sanitation that significantly contributed to polluted water sources, an increasing 

cost of safe water production and environmental losses such as decline in fish populations and 

a reduction in agricultural growth (Hutton et al., 2008).  

2.1.1 Chemical Contaminants 

Chemical contaminants in water are mainly the products of waste from natural and 

anthropogenic sources. In terms of their effect on health and the environment, it is important 

to destroy contaminants that are resistant to conventional water treatment, resist 

biodegradation and can accumulate in the environment. The average removal rates of some 
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of these contaminants by conventional water treatment processes is variable but they are 

generally low, down to 5% in some cases (Table 2.5). This results in an increased risk of chronic 

toxicity upon exposure through drinking water and to aquatic life.  

Table 2.5: Examples of chemical substances and average removal rates using conventional 
water treatment methods. Adapted from (Margot et al., 2015). 

Substance Examples (including ingredients) 
Average removal 

rate (%) 

Surfactants Soaps, alkylbenzene sulfonates, alcohol 

ethoxylates, alcohol ether sulfates, alkane 

sulfonates 

< 95 % 

Pharmaceuticals Analgesic, anti-inflammatory, antibiotics, 

antihistamines, synthetic metabolites 

> 70%  

Fragrances 

Preservatives, 

Antimicrobials 

Insect repellants 

UV filter 

Polycyclic musks galaxolide, tonalide 

Parabens 

Triclocarban and triclosan, chloroxylenol 

N,N-diethyl-m-toluamide  

Oxybenzone, octorylene, octyl-triazone 

< 85% 

< 95% 

< 95% 

62% 

50 – 95% 

Additives 

Plasticizer, plastic additive 

Anticorrosives 

 

Synthetic chelating agent 

Flame retardants 

 

 

Perfluorinated compound 

Aspartame, acesulfame, sucralose 

phthalate, bisphenol 

Benzotriazole  

Benzothiazole 

Ethylendiamine tetracetic acid 

Brominated flame retardant 

Organophosphorous flame retardant 

Chlorinated paraffins 

Perfluorooctane sulfonic acid 

90 – 95% 

60 – 95% 

20 -30 % 

0 - 80% 

> 10% 

~ 90% 

50 -75% 

> 99% 

< 5% 

Biocides and pesticides  

 

Diazinone, diuron , irgarol 

Aldrin, diedrin, hexachlorobenzene 

Triclosan 

< 50% 

<90% 

90 % 

Heavy Metals Zinc, copper, cadmium 

Mercury 

> 75% 

2-10% 

Polycyclic aromatic 

hydrocarbons 

Fluorence, pyrene, naphthalene < 90% 

Volatile organic compound Benzene, toluene, ethylbenzene, xylene < 97% 

Illicit drugs Amphetamine 

Cocaine 

Ecstasy 

98% 

79% 

15% 

Hormones Estrone 

Progesterone 

76% 

97% 
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17 α-ethinyl estradiol 60% 

Around 28 organic and inorganic compounds are required to be monitored by tap water 

providers (DWI, 2018) (Table 2.4). The limited number of compounds monitored is a matter of 

concern due to the likelihood of contaminants such as in Table 2.5 passing through treatment 

processes untreated or undetected. Topics that address the risk-based nature of some 

emerging contaminants at low concentrations in drinking water, in terms of bioaccumulation 

and cooperative effects, are currently being studied to establish the limits regarded safe for 

consumption (Virkutyte et al., 2010; Burkhardt-Holm, 2011; Cizmas et al., 2015; Verlicchi et al., 

2017). For example, polycyclic aromatic hydrocarbons (PAHs) found in petroleum-based 

products such as coal tar are regulated to a collective standard concentration of 0.1 µg/L for 

all substances (DWI, 2009); some PAHs are known carcinogens and mutagens, hence they are 

strictly monitored in water intended for consumption (Abdel-Shafy and Mansour, 2016). Some 

chemicals such as pharmaceuticals in water, which have been linked to toxic biological effects 

including estrogenicity, genotoxicity and mutagenicity (Elliott et al., 2018), are also routinely 

monitored for and detected below or above the regulated value of 0.05 µg /L in treated water. 

So far, studies on the potential health risk of chronic exposure to pharmaceuticals at trace 

concentrations in drinking water are limited; current observations suggest improbable adverse 

effect from trace values less than 1000 fold below the clinical active dosage (Benson et al., 

2017; Wee and Aris, 2017). However, each pharmaceutical has a different clinical active dosage 

and thus, the general consensus of 1000 fold may not apply for all pharmaceuticals with low 

active dosages, such as 0.05 mg for Beclomethasone, against high active dosage 

pharmaceuticals such as 52 mg for Tamiflu (Watts et al., 2007). In addition, these observations 

may not apply to children and vulnerable immunocompromised populations (H. Wang et al., 

2016; Kamba et al., 2017).  

2.1.2 Microbial Contaminants 

The most common and widespread health risk linked to treated water is microbial 

contamination. The importance of clean and uncontaminated water is critically highlighted in 

various fields, such as the major role it plays in immunocompromised hosts at risk of exposure 

to waterborne pathogens in settings such as healthcare. Most of these microorganisms are 
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harmless, but some opportunistic pathogens such as P. aeruginosa are extremely virulent, 

especially among the most vulnerable patients, and can lead to outbreaks of HCAIs (Cristina et 

al., 2013). In the UK, HCAIs represent an important patient safety challenge and economic 

burden upon the NHS, with approximately 1,000,000 cases reported annually from acute care 

hospitals (Hopkins et al., 2011). The burden imposed by HCAIs includes unnecessary deaths, 

prolonged hospital stays, financial strains for both the health system and family and increased 

resistance of pathogens to anti-microbial therapy (Plowman et al., 2001; Stone, 2009; Wiegand 

et al., 2012). Table 2.6 provides examples of microorganisms linked to water-borne HCAIs. 

Table 2.6: Examples of waterborne and persistent microorganisms affiliated with HCAIs. 

Adapted from (Decker and Palmore, 2013). 

The risk of acquiring a water-borne HCAI depends on various factors including susceptibility of 

the host and infective dose, defined as the number of microorganisms required from exposure 

Microorganism Example of organism(s) Examples of reservoir 

Legionella 
Legionella pneumophila, 

Legionella dumoffii 

Showers, ice machines, 

decorative 

fountains, humidifiers, 

plumbing systems, taps, water 

baths 

Gram-negative 

bacteria 

Pseuodomonas, 

Stenotrophomonas, Klebsiella 

spp, 

Therapy pools, tubs, water 

baths, taps, intravenous lines, 

invasive devices, sinks, wash 

basins, aerators, drains 

Gram-positive bacteria 

Methicillin-resistant 

Staphylococcus aureus, 

Staphylococcus aureus 

Invasive devices, sinks, wash 

basins, plumbing system 

Mycobacteria Nontuberculous mycobacteria 
Plumbing systems, invasive 

devices, taps 

Protozoa 
Cyclospora cayetanensis, 

Cryptosporidium parvum 

Plumbing systems, ice 

machines, taps, hospital water 

Fungi 
Aspergillus, Fusarium, 

Phialemonium 

Plumbing systems, hospital 

water, wastewater lines, 

invasive devices, 

Virus Norovirus 
Water contaminated by vomit 

or faeces 
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through ingestion to cause an infection. Infective dose varies broadly depending on the type 

of microorganism, which has been associated with their pathogenicity and virulence (Leggett 

et al., 2012). Table 2.7 shows the minimal infective dose of various microorganisms of health 

concern, which have been linked to contaminated drinking water. However, these values are 

expected to be lower for immunocompromised patients compared to a healthy individual.  

Table 2.7: Minimum infective dose of various microorganism. Taken from (Bitton, 2014). 

Microorganism Minimum infective dose (MID) 

Salmonella spp. 104–107 

Shigella spp. 101–102 

Escherichia coli 106–108 

Escherichia coli O157:H7 < 100 

Vibrio cholerae 103 

Campylobacter jejuni about 500 

Mycobacterium avium 104–107 (for mice) 

Yersinia enterocolitica 106 

Giardia lamblia 101–102 cysts 

Cryptosporidium 101 cysts 

Entamoeba coli 101 cysts 

Ascaris 1–10 eggs 

Hepatitis A virus 1–10 plaque forming unit 

In addition to drinking water, water outlets, in particular taps and water supply pipes, are 

commonly recognized reservoirs for these water-borne pathogens (Decker and Palmore, 2013; 

Hutchins et al., 2017). This includes sludge and sediments in supply water, storage tanks, water 

distribution pipes and associated equipment such as different tap components such as valves, 

pumps and filters. The link between outbreaks with contaminated tap water and water systems 

for medical devices is well documented. However, it was not until 2013, after the most 

publicised fatal outbreak in a Northern Ireland Neonatal Intensive Care Unit (NICU) and several 

further outbreaks reported by paediatric and NICUs UK wide (Simon et al., 2008; Wise, 2012; 

Walker and Moore, 2015; Kinsey et al., 2017) that the Department of Health (DoH) and Health 

Protection Surveillance Centre (HPSC) issued guidelines regarding the prevention and control 
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of HCAIs from water systems (DoH, 2013; HPSC, 2015). Table 2.8 lists the recommended 

conventional water treatment processes in the healthcare water distribution systems. In such 

situations, improving the quality of drinking and tap water may reduce HCAI prevalence. 

Concerning water treatment, continuous disinfection rather than sporadic disinfection, for 

example with ultraviolet (UV) treatment, is primarily recommended (HSE, 2015).  

Table 2.8: Secondary disinfection methods employed to healthcare water distribution 
systems. Adapted from (HSE, 2015).  

Method Examples Remark 

Advantages Disadvantages 

Cleaning Descaling, deposit 
removal, water 

outlet 
replacement 

- Reduces biofilms, 
chemical and 
inorganic deposits 

- High financial 
liability from 
replacement and 
maintenance 

 Chlorine dioxide - More effective 
disinfectant than 
chlorine, greater 
penetration and 
removal of biofilms 

- Difficult to control, 
insufficient to 
prevent 
contamination, 
additional 
disinfection 
required 
difficult to control, 
toxic DBPs produced 

Monochloramines - Cheaper than 
chlorination, effective 
against biofilm 
formation 

- Narrow 
microbiocidal 
activity, toxic DBPs 

Copper-silver 
ionisation 

- Effective in 
controlling bacterial 
and biofilm formation 

- Water parameters 
must be monitored 
to avoid going over 
the regulated value 
of 2.0 mg/L copper 
in drinking water 

Electrochemically 
activated water 

- No toxic chemicals 
required, greater 
antimicrobial activity, 
effective removal of 
biofilms 

- high power 
consumption, 
electrode corrosion 
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Systemic Intermittent Thermal 
disinfection and 

shock 
hyperchlorination 

- Effective 
antimicrobicidal 
activity 

- Recommended 
short term solution, 
corrosive, high levels 
of trihalomethanes 
(THMs) and DBPs 
levels 

Silver catalysed 
hydrogen 
peroxide 

- Effective in 
removing biofilms 

- Recommended 
short term solution 

Focal Continuous Ultraviolet 
irradiation 

- Inexpensive and 
effective against a 
wide range of 
microorganisms, no 
residual or little effect 
on established 
biofilms 

-Inability to 
penetrate turbid 
water, ineffective 
for treatment of 
chemical 
contaminants in 
water 

Ozone - Effective 
antimicrobicidal 
activity 

- Expensive, low 
water solubility, 
stability and inability 
to oxidise some 
organic compounds 

Filters 

Filter with pore 
size 0.2 µm 

- Easy to connect - Blocked over time, 
must be replaced 
regularly, can cause 
retrograde 
contamination, 
pressure drop across 
filter 

No longer 
recommended 

Continuous 
chlorination 

 - Lack efficiency, 
corrosive effect on 
pipework, poor 
penetration into 
biofilm, chlorine 
residuals, formation 
of THMs 

Unfortunately, even the presence of trace microbiological contaminants can cause significant 

financial, morbidity and mortality burdens. Public Health England reported an increase of 

incidence of Pseudomonas bacteraemia in England, Wales, and Northern Ireland per year 

between 2008 and 2015; the overall rates increased by 4.4% from 6.6 to 6.9 reports per 

100,000 population (Public Health England, 2016). In 2015, the highest rates of patients 

affected were the older age group (more than 74 years) at 54.7 reports for male and 21.9 

reports for female, as well as infants (less than 1 year old) at 8.8 for males and 8.7 for females 
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reports per 100,000 population. These results are expected to increase with the occurrence 

and spread of anti-microbial resistant pathogens if not treated effectively by current and new 

water treatment processes in the future.  

Most treatment methods, such as filters, rely on preventing the downstream flow of biological 

contaminants present in water. Filtration fails to inactivate most microorganisms, especially 

those found in microbial biofilms, which continue to develop in filters, distribution systems, 

and purification equipment (Sala-Comorera et al., 2016). Biofilms are densely packed microbial 

communities enclosed in an extracellular polymeric matrix allowing bacterial adhesion to most 

surfaces, with studies showing their presence in many medical devices, water reservoirs and 

any surface water comes into contact (Percival et al., 2015). The complex bacterial community 

in biofilms is responsible for many obstructions in water distribution systems, leakage and 

downstream contamination that requires replacement of filters, resulting in additional costs 

and energy for their removal (Herzberg and Elimelech, 2007; Simoes and Simões, 2013; 

Hutchins et al., 2017). Even when water treatment facilities and equipment are well 

maintained, water quality can rapidly decline due to biofilm detachment in water distribution 

systems (Figure 2.1) (Zhang et al., 2018). Biofilm formation can be reduced by residual chlorine 

in water as a result of treatment and high wall shear stress that limits the deposition rate or 

thickness of the biofilm. However, such processes are insufficient with detached biofilms, 

which release microbial contents showing tolerance against antibiotics or disinfection by 

chlorine in water (Fux et al., 2004; Steed and Falkinham, 2006; Xi et al., 2009). 

 

Figure 2.1: Schematic illustration showing biofilm formation in water pipes, formation of 
antibiotic resistant bacteria (ARB) with viable but nonculturable (VBNC) bacteria in the biofilm 
over time and detachment, releasing ARB, VBNC bacteria and active cells into treated water. 
Taken from (Zhang et al., 2018). 
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2.1.3 By-products of Water Treatment 

The purpose of water treatment is to remove microbial and chemical contaminants so 

improving the quality of water to ensure that it is safe and accepted by the official regulatory 

body for consumption. Outbreaks associated with microbial contamination have raised 

concerns about the efficacy of water treatments, with viable microorganisms recovered from 

potable water distribution systems, maintaining residual disinfectant in the form of free 

chlorine (hypochlorous acid and hypochlorite ion) or combined chlorine (chloramine) at 0.5 

mg/L or less. However, certain treatment processes such as chlorination can also lead to 

adverse effects due to their potential to react with naturally occurring organic matter and 

other constituents to form disinfection by-products (DBP) such as chlorinated organic 

compounds (Minear, 2017; Li and Mitch, 2018). Table 2.9 shows some examples of DBPs 

identified as potentially toxic.  

Table 2.9: Examples of DBPs found in treated water (Minear, 2017). 

Disinfectants Examples of DBPs 

 
Inorganic products Organohalogen products 

Non-halogenated 
products 

Chlorine, 
hypochlorous 
acid 

   Chlorate 
Trihalomethanes, haloacetic 

acid, N-chloramines, 
chlorophenols 

Aldehydes, 
benzene, carboxylic 
acids, alkanoic acid, 

cyanoalakanoic 
acid 

Chlorine 
dioxide 

Chlorite, chlorate    

Chloramine  
Chlorate, nitrite. 

Hydrazine, nitrate 

Haloacetonitriles, 
cyanogens, haloketones, 

chloramino acids 
Aldehydes, ketones 

Ozone 

Chlorate, 
bromate, iodate, 

ozonates, 
epoxides, 

hypobromous 
acid 

Bromoform, 
monobromoacetic acid, 

dibromoacetic acid, 
cyanogen bromide 

Aldehydes, 
ketoacids, 

carboxylic acids, 
ketones 

Such chemical methods require a balance to be met between the ability to remove 

microorganisms and the potential hazards of DBPs produced. This is a major challenge because 

of the tendency to over use such treatments. Chemical treatment such as chlorine may require 
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high concentrations for full disinfection, depending on the level of water contamination, but 

can lead to significant DBP production. In response, additional steps are used after 

conventional treatment process to remove DBPs and pathogens resistant to normal doses of 

chlorine. Integrated techniques that involve a combination of different methods that match 

and improve the process efficiency aspect of conventional methods while averting the negative 

aspects are often employed. For example, combining ozone as primary disinfection with a 

secondary disinfection method listed in Table 2.8 such as chloramine to maintain a residual of 

chloramine in the distribution system can adequately remove microorganisms and reduce 

formation of DBPs (Robertson and Oda, 1983).  

2.3 Advanced Oxidation Processes  

Although several advanced water treatment technologies such as reverse osmosis and 

membrane filtration have been introduced to remove water contaminants from water 

reservoirs, AOPs are an attractive alternative for driving oxidation of contaminants resistant to 

conventional treatment methods. Literature reports regarding AOPs have demonstrated the 

effectiveness of oxidants to remove contaminants and deactivate pathogens in water 

(Mahamuni and Adewuyi, 2010; Oller et al., 2011; Oturan and Aaron, 2014; Miklos et al., 2018). 

AOPs, in general, utilize the simultaneous operation of more than one oxidation process and 

involve the generation and reaction of highly reactive species such as hydroxyl radicals in situ 

to remove contaminants or to inactivate and destroy microorganisms in water (Oturan and 

Aaron, 2014; Deng and Zhao, 2015). The non-selective nature of these highly reactive oxidative 

species (Table 2.8), reacting with various forms of contaminants in water upon generation 

forms the principle of a potential treatment system (Oturan and Aaron, 2014).  

Most AOP methods utilize the production of hydroxyl radicals, a powerful non-selective oxidant 

with a high oxidation potential (Table 2.10). Hydr oxyl radicals are capable of inducing cytotoxic 

effects on microorganisms leading to cell death and can oxidise organic matter to carbon 

dioxide and water, limiting the production of highly toxic and concentrated residues (Oller et 

al., 2011). The oxidation potential of hydroxyl radicals is higher than conventional chemicals 

such as chlorine; oxidation potential reflects the reactivity of the oxidant to induce an oxidation 

reaction and in this regard, degrade contaminants (Table 2.11). Li et al compared hydroxyl 
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radicals with chlorine and found that hydroxyl radicals disinfected more effectively, with lower 

CT (concentration X contact time) compared to chlorine, 33.5 and 1674 mg min L-1, respectively 

(Li et al., 2011). The high reactivity of hydroxyl radicals, attributed to its oxidation potential, 

offers a potential solution for removing contaminants not treated effectively by conventional 

treatment process such as chlorine resistant pathogens and without the associated DBPs.  

Table 2.10: Examples of AOPs used in water treatment (Oturan and Aaron, 2014; Deng and 
Zhao, 2015). 

AOP Reactive species formed 

UV based AOPs ·OH, O2
·-, H+, ·H,  

Ozone based AOPs ·OH, HO2
-, O2

·-, O3
·- 

Fenton and photo-Fenton related AOPs ·OH, HO2
., OH-, H+ 

Photocatalysis ·OH, H+, HO2
., e-, O2

·- 

Ultrasound and electronic-beam irradiation ·OH, ·H, H3O+, e- 

Sulphate radical-based AOPs ·OH, SO4
2-, SO4

·- 

Table 2.11: Oxidation potential of several reactive species used for water treatment. Taken 
from (Deng and Zhao, 2015). 

Oxidant Oxidation potential (V) 

Hydroxyl radical (·OH) 2.8 (pH 0) and 1.95 (pH14) 

Atomic oxygen (O) 2.42 

Ozone (O3) 2.07 

Hydrogen peroxide (H2O2) 1.77 

Sulphate radicals (SO2-) 2.01 

Chlorine dioxide (ClO2) 1.50 

Chlorine (Cl) 1.36 

Among conventional methods employed in water treatment described in Chapter 2.1, 

oxidation through a combination of several AOPs or with other advanced treatment 

technologies appears as an attractive way of decomposing a wider spectrum of contaminants 

(Miklos et al., 2018). The most commonly applied and studied combined method includes 

hydrogen peroxide, ozone, Fenton process and/or UV radiation (Oturan and Aaron, 2014; 

Miklos et al., 2018). However, these methods require chemical precursors in conjunction with 

chemical storage and on site availability. With precursors such as catalysts needed to form 

reactive species or increase degradation rates, implementation at a large scale is still difficult. 

This requires the development of kinetic models to determine optimal operating conditions 
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when encountering fluctuating parameters such as pollutant content without leading to new 

waste problems such as DBPs (Oller et al., 2011).  

The need for a cost-effective and efficient method for the production of highly reactive species 

in water while decreasing reliance on chemical or biological precursors has motivated research 

on the application of plasma for AOPs in water treatment. In general, high voltages applied in 

water induce chemical and physical process such as UV radiation and the generation of radical 

and molecular reactive species in water (Foster, 2017; Miklos et al., 2018). 

2.3.1 Plasma 

States of matter are generally described as solid, liquid and gas, with plasma widely referred 

to as the fourth state. Plasma is a gas that has been either partially or fully ionised. Plasma 

covers a wide range of pressures, temperatures and electron densities. The ionization degree 

of gases can vary from fully ionised plasma to very low values of 10-4 – 10-6 (partially ionised 

plasma) (Fridman, 2008). 

 Plasma either occurs naturally or can be made artificially. Figure 2.2 shows examples of plasma 

described in terms of electron density and temperature, under various pressure conditions. 

More than 99% of the universe is made up of plasma in various forms such as interstellar gas, 

solar corona and nebula while on Earth, plasma naturally appears as lightning and aurora 

borealis. Though naturally occurring plasmas are rare, artificial plasma is extensively used for 

industrial applications and academic research. The most commonly used method of generating 

artificial plasma for technological and technical application is by applying thermal energy or an 

electric field to a neutral gas (Fridman, 2008). Using various operational parameters, i.e. 

discharge type, pressure, operating temperature, gas species, power supply and magnitude, it 

is possible to modify the characteristics of plasma such as density, electric field and 

temperature. The difference in electron density and temperature distinguish artificial plasma 

into two types, thermal equilibrium plasmas and non-thermal or non-equilibrium ‘cold’ plasma. 

Both types are used in various applications such as chemical synthesis (Oehrlein and 

Hamaguchi, 2018; Peng et al., 2018a), surface coatings (Nikiforov et al., 2016; Chung and 



40 | P a g e  
 

Chang, 2016) and environmental remediation (Bruggeman et al., 2016; Zhang et al., 2017; Liao 

et al., 2017) 

Figure 2.2: Examples of plasma found in nature and in the laboratory with different particle 
densities (unit: eV), temperature (unit: K) and wavelength (unit: cm-3). Taken from (Donko, 
2013). 

Thermal plasma, also known as local thermodynamic equilibrium (LTE) plasma is generally 

operated at atmospheric or high-pressure conditions by means of high power plasma 

generators. Under these conditions, elastic collisions and high temperatures govern the 

ionization of the gas where LTE dominate (Te = Th ≈ 10 000 K); the temperature of electrons (Te) 

in the plasma is equal or nearly equal to the heavy particles (atoms, ions and molecules) 

temperature (Th). With high energy density (0.1 – 10 kW cm-3) and a large number and variety 

of active species, thermal plasma is widely used in a variety of applications. Examples of 

thermal plasmas are spark and arc plasmas used for welding, plasma cutting and high 

temperature applications (Fridman, 2008). Recently, thermal plasmas have been used for 



41 | P a g e  
 

hazardous waste treatment and solutions with chemical and microbial contaminants due to its 

high energy densities and temperature (Gomez et al., 2009; Yuan et al., 2010). For water 

treatment, thermal plasma is unsuitable in most cases due to the high ion temperatures 

involved that will simply boil and evaporate the water. 

Non-thermal plasma, commonly known as cold plasma, is non-LTE operated at atmospheric 

pressure or low-pressure reactors. With non-thermal plasma, the main constituent of energy 

deposition is transmitted to the electrons instead of the heavy particles. Thus, gas remains 

‘cold’ and the energy of the electrons is in the range of 1 eV to 10 eV (1 x 104 to 1 x 105 K). The 

electron temperature is higher than the temperature of heavy particles, which ranges from 

300 to 1000 K (Te >> Th). Compared to thermal plasma, non-thermal plasma does not require 

extreme conditions and requires less power to transfer energy to electrons and not the whole 

gas bulk. The ability of non-thermal plasma to produce reactive species at atmospheric 

pressure and at ambient temperature is of interest and has led to a wide range of industrial, 

environmental and commercial applications (Nikiforov et al., 2016; Chung and Chang, 2016; 

Oehrlein and Hamaguchi, 2018; Peng et al., 2018a). For water treatment, non-thermal plasma 

is of greater interest compared to thermal plasma since the power supplied is simply used to 

generate plasma at ambient conditions rather than heating the water.  

2.3.1.1 Non-thermal plasma generation 

In general, the generation of non-thermal plasma occurs in a gap between parallel metal 

electrodes, one of which is connected to a high voltage power supply (cathode) and the other 

is grounded (anode). An electric field is formed between the two electrodes when a high 

voltage is supplied to the electrodes. The electric field strength increases with the input power 

until breakdown voltage of the employed feed gas is reached, generating a Townsend 

discharge and this is followed by the propagation of a streamer discharge (Figure 2.3). The 

threshold value for the electrical breakdown varies depending on the gas and electrode 

configuration (Fridman, 2008). 
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Figure 2.3: Schematic illustration of a) Townsend breakdown and b) streamer breakdown. 
Taken from (Chu and Lu, 2013). 

Under the influence of the electrical field formed from application of high voltage across two 

electrodes, the free electrons in the discharge gap are accelerated towards the anode. The 

energetic fast moving electrons within the discharge gap collide with and ionize neutral atoms 

and molecules in the gas or on the surface of the electrodes, producing secondary electron-

ion pairs (Fridman, 2008; Samukawa et al., 2012). These active species undertake subsequent 

secondary reaction processes in plasma to form the final plasma products. At very high 

currents and long durations of applied voltage, an irreversible transition into an arc or spark 

occurs. This transition from non-thermal ionization to arc or spark occurs when enough energy 

is dissipated in the discharge gap during the glow phase (Figure 2.4). 

Figure 2.4: Current versus voltage characteristic of a typical DC low-pressure gas discharge. 
Taken from (Conrads and Schmidt, 2000). 
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The increased number of ionization collisions leads to increasing gas temperature (Tg) and 

reduction of the gas density, which is followed by increasing electric field to neutral particles 

density ratio (E/N). Transition from Townsend to corona, followed by subnormal to normal 

glow discharge occurs (Figure 2.4). The transition is marked by an increase in current and 

decrease in voltage. As E/N increases further, greater frequency of electron collision leads to 

electrons gaining energy, which is associated to an increasing Te. As Te increases, a runaway 

condition occurs where the high degree of collision between the electrons and other 

components of the plasma leads to equilibrium distribution of internal energy, i.e. kinetic, heat 

of dissociation and ionization, between electron and heavy particles (Heberlein, 1992). This 

ultimately leads to the formation of a thermal plasma arc, which occurs at low applied voltage 

and high discharge current.  

Underwater thermal arc plasma have been studied for various applications such as nanocarbon 

synthetics and water treatment applications (Lange et al., 2003; Yamatake et al., 2006b). 

However, for water treatment, generation of thermal plasma arc involves high temperatures 

that can heat up and vaporise the bulk media, i.e. 4000 – 6500 K plasma temperature (Lange 

et al., 2003). In terms of water treatment, non-thermal plasma is ideal due to lower 

temperatures and power usage compared to thermal plasma. Several studies use various ways 

of preventing transition from non-thermal ionization to thermal plasma arc or spark for water 

treatment (Foster, 2017), i.e. ballasting (resistor), dielectric barriers, fast rise time limited 

duration (ns) voltage pulses, control of duty cycle, electron beams, modification of gas 

composition and increasing flow rate to enhance cooling. Water treatment using various types 

of non-thermal plasma and plasma reactors has been reported in the literature and has shown 

promising microbial inactivation for effective sterilisation and purification of various water 

sources, compared to conventional methods (Bruggeman et al., 2013; Vanraes, 2016). Based 

on water treatment by plasma, various types of discharge were described in the literature 

(Table 2.12).  
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Table 2.12: Different types of plasma used in water treatment. Adapted from (Malik et al., 
2001; Romat et al., 2004). 

Type 
Electrode characteristic for 

plasma formation 
Applied Voltage Energy 

Glow discharge 
electrolysis 

Thin wire anode in contact 
with water while cathode 

dipped in water 
DC ~ 0.5 kV 

Maximum of 
100 eV 

Dielectric-barrier 
discharge (DBD) 

Parallel electrode with at least 
one covered with a dielectric 
material, i.e. glass or quartz 

AC ~15 kV ~1-10 eV 

Corona 
discharges 

Various configurations, I.e. 
needle-plate electrode, wire 

cylinder 
DC ~15-100 kV ~5 eV 

Arc discharge 
Point to point electrode with a 

gap in-between 
AC or DC ~1-5 eV 

2.3.1.2 Plasma in contact with liquid 

In general, the detailed mechanism of the complex processes involved with non-thermal 

plasma in contact with liquid is not yet fully understood (Fridman, 2008; Samukawa et al., 

2012). However, numerous studies have proved plasmas as an effective source of oxidants and 

physical processes such as UV emission, heat, shockwaves and ultrasound that promote 

desirable chemical reactions in liquids and at the plasma-liquid interface (Bruggeman et al., 

2016). The reactive species produced by plasmas are short lived (milliseconds and 

microseconds) and undergo subsequent reactions either with each other, chemical and 

biological species in water or directly with water. Table 2.13 provides examples of accounted 

particle interactions by electron impact and other reaction pathways of plasma with water to 

form these reactive species (Malik et al., 2001). In addition to radical and molecular products, 

plasma discharge can form solvated electrons (eaq
- ) (Richmonds et al., 2011; Rumbach et al., 

2015a; Rumbach et al., 2015b). Solvated electrons have strong potential that can either react 

directly with water to form radicals or degrade electron-accepting pollutants in contaminated 

water (Sun et al., 2000). The formation of these oxidants in water was confirmed by various 

chemical probe measurements, reactive species scavengers and optical techniques (Sunka et 

al., 1999; Bruggeman et al., 2009; Kanazawa et al., 2011; Marotta et al., 2011). The synergistic 
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effects of these products and processes are considered to achieve higher water treatment 

efficiency than conventional methods.  

Table 2.13: Examples of reaction that occur in the liquid phase and gas/plasma-liquid 
interphase (Malik et al., 2001). 

Ionization H2O    + e-*  →  H2O+  +  2e- 

Dissociation 

H2O    + e-*  →  ·OH+  ·H  +  e- 
H2O+  + H2O  →  ·OH+ H3O+ 
H2O·+ + H2O  →  ·OH+ H3O+ 

H2O*   + H2O  →  ·H+ ·OH+ H2O 

Radiation pathway 
H2O   rad

→
   H2O·++ e- 

H2O   rad
→

   H2O* 

Photolysis of water 
H2O hv

→
  ·OH+  ·H 

H2O hv
→

     H2+  O   

Recombination reactions 

·OH   + ·OH  →   H2O2 
H2O2 + H  →   HO2 +  ·OH 
HO2   + ·OH  →   H2O +   O2 
O2+ H  →   ·OH +   O 

Bulk reaction 6H2O  →  4H2  +  2H2O2 +  O2 

Electron solvation 

H2O + e-  →    eaq
-  

H2O + eaq
-   →  ·OH+  ·H  

·OH + eaq
-   → OH-+  ·H  

* indicates a high-energy state. 

Various indirect or direct methods are commonly employed to achieve interaction of plasma 

with liquid water. Indirect treatments by plasma generation in the gas phase above a liquid are 

typically considered similar to gas electrical discharge due to a similar breakdown strength in 

atmospheric gases. For plasma discharge that occurs in the gas phase, collision of plasma 

electrons initiates the chemical reactions in the bulk gas phase to produce reactive species 

(Samukawa et al., 2012). These reactive species produced in plasma rely on diffusion across 

the gas-liquid interface into the bulk liquid via Henry’s law; 

 p = kH . c Equation 2.1 

where p is the partial pressure above the liquid, c is the concentration in the liquid and kH is 

the respective Henry’s law constant. These oxidizing species, formed in the gas phase and then 

transferred into water, are reported in several studies (Hoeben et al., 1999; Petr Lukes et al., 

2005; Dobrin et al., 2013; Lindsay et al., 2015). According to some authors, reactive oxidants 
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formed in close proximity to the liquid surface diffuse through the gas-liquid interface, initiate 

reactions within the liquid and by increasing the plasma-liquid contact area, higher treatment 

efficiency can be achieved. Others suggest that oxidation of some chemical pollutants takes 

place in the gas phase. Ognier et al reported that volatile pollutants, where pollutants that 

readily transitions from liquid to gas phase, react with the plasma species in the gas phase 

(Ognier et al., 2009).  

With plasma discharge in the gas phase, the formation of the reactive species varies with 

different gases. For example, air is made up of around 79% N2, 20% O2 and a 1% mixture of 

other gases (Bruggeman et al., 2016). Air under plasma drives the formation of other oxidants 

such as reactive nitrogen species (RNS), which are absent in other pure gases (Lukes et al., 

2014; Lu et al., 2017; Tarabová et al., 2018). Several long-living species, such as O3 and H2O2 

can induce post reactions, increasing the cumulative oxidizability of plasma treatment, through 

the generation of subsequent ·OH products via processes such as catalytic reactions, 

dissociation and photolysis. Thus, by sealing such plasma reactors, (mainly reactors in static 

configuration), postreaction of long-lived species in the gas phase were confined and appeared 

to improve treatment efficiency (Yano et al., 2009; Cui et al., 2018). In addition, the 

surrounding water vapour in humid gases and the plasma-liquid interface can generate further 

reactive species following interaction with these long-lived species (Moreau et al., 2008). 

Compared to indirect plasma discharge, direct discharge in a liquid requires a strong electrical 

field for breakdown to occur; it can also be achieved by using microwaves, laser pulses and 

sonoluminescent bubble implosions (Foster, 2017). In general, the electrodes are submerged 

in liquid and require ~1 MV/cm for electrical breakdown in water (dielectric constant (Ɛ) ~80 

for deionized water), forming filamentary streamers or bubbles (Figure 2.5) (Foster, 2017; 

Korobeynikov and Melekhov, 2016). Streamer discharges are a consequence of electron 

avalanche in liquids, similar to gas discharge, and occur in a relatively short period, i.e. 

nanoseconds, limiting the transfer of excessive heat to the heavy particles and the surrounding 

liquid medium (Locke et al., 2006). On the other hand, electrical breakdown in water can occur 

through bubble formation, a consequence of gas cavities formed by heating up the liquid, Joule 

heating, during discharge (Tachibana et al., 2011). When Joule heating between the electrodes 
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exceeds the threshold value for breakdown, instability occurs at the surface of the electrodes, 

resulting in phase transition and vapour voids, followed by thermal breakdown.  

Figure 2.5: Example of plasma generation for water treatment: a) Streamer propagation in 
liquid, b) Bubble process in liquid and c) Gas phase discharge over liquid. Taken from (Sato, 
2000) (a), (Tachibana et al., 2011) (b) and (Lukes et al., 2011) (c). 

The overall plasma discharge directly formed in liquids is in general affected by additional 

factors such as electrode materials and solution parameters that influence plasma efficiency 

and the production of the reactive species (Jiang et al., 2014). The mechanism of this 

phenomenon in liquids is still not well understood and several theories have been suggested, 

i.e. thermal, bubble, crack and nanopore mechanisms (Bruggeman et al., 2016; Foster, 2017). 

These theories describe how breakdown in liquid occurs through phase transition to a low-

density state or channels, i.e. water to vapour, bubbles or cracks, except for nanopore 

mechanisms that propose streamers are generated in nanopores, formed in water via 

electrostriction.  

2.3.1.2.1 Non-thermal plasma application for chemical degradation 

Several studies have studied degradation of dissolved chemicals in water using non-thermal 

plasma. The number of non-thermal plasma studies for treating various chemicals, organic and 

inorganic is continually expanding.  The plasma-induced decomposition of organic compounds 

is well established but there are limited studies in regards to treating inorganic compounds. 

Conventional methods such as ion exchange transfers dissolved inorganic compounds to 

sludge, which requires safe post treatment and resin regeneration (Gunatilake, 2015). 

However, plasma has the potential to oxidize inorganic compounds to their less toxic form and 

enhance their potential for removal. Back et al reported treatment of arsenic with non-thermal 

   

a) b) c) 
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plasma, oxidizing As (III) to As (V), which is less toxic and has a higher affinity for surfaces, and 

thus, combined with coagulation and ultrafiltration leads to effective removal of higher levels 

of arsenic in water (Back et al., 2018).    

The ability to mineralize organic pollutants by non-thermal plasma has raised interest for a fast 

and clean process for water treatment, involving no or few chemicals while also simplifying 

process management and reducing the toxicity of waste products. Numerous studies have 

investigated the degradation of organic contaminants such as phenols, pesticides, 

pharmaceuticals and organic dyes, which are contaminants not effectively removed by 

conventional methods. Several studies have shown effective degradation of organic 

contaminants using plasma as a stand-alone process or in combination with other components 

such as catalysts to enhance degradation. Non-thermal plasma as a stand-alone process is ideal 

in terms of limiting pre-or post-treatment costs, since components such as catalysts are 

expensive. Table 2.14 shows some examples of non-thermal plasma treatment of various 

organic contaminants with no pre-or post-treatment of solution.  

Table 2.14: Treatment of organic contaminants dissolved in water using various types of non-
thermal plasma. Publications including pre- or post-treatment of solution are not included.  

Contaminants 
Non-

Thermal 
Plasma 

Gas/ Voltage/ 
Energy 

Treatment Results Reference 

Phenol / 
phenolic 

compounds 

Corona 
discharge 

Air/ 10-12 
kV/ 0.2 - 3.6 

W 

Maximum of 90% 
degradation of phenol in 

mists 

(An et al., 
2011) 

Dielectric 
barrier 

discharge 

Air/ 16.5 – 
18 kV 

80% degradation of phenol 
after 4 hours of treatment 

(Marotta et 
al., 2011) 

Corona 
discharge 

Air/ 0 - 30 kV 
100% degradation of 

phenolic compounds after 
60 minutes of treatment 

(Cheng et 
al., 2012) 

Dielectric 
barrier 

discharge 
Oxygen/ 2 kV 

99%  degradation of phenol 
with 45 mg/L hydroxyl 

radical concentration in 
solution 

(Yang et al., 
2009) 

Corona 
discharge 

Air/ 40 kV/ 
54 mJ per 

pulse 

90% phenol degradation at 
pH 10.2 

(Grabowski 
et al., 2006) 
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Pesticide 

Dielectric 
barrier 

discharge 
Air/ 80 kV 

78.98%, 69.62% and 57.71% 
degradation for dichlorvos, 
malathion and endosulfan 
respectively after 8 min of 

treatment 

(Sarangapa
ni et al., 
2016) 

Corona 
discharge 

Oxygen/ 18 
kV/ 11-13 W 

> 90% degradation of 2,4-
dichlorophenoxyacetic acid 

after 60 minutes of 
treatment 

(Bradu et 
al., 2017) 

Corona 
discharge 

Air/ − 9.5 kV/ 
5.5 W 

Degradation of imidacloprid 
and thiamethoxam after 5 

hours of treatment 

(Tampieri 
et al., 2019) 

Corona 
discharge 

Air/ 15 – 25 
kV/ 26016 – 

101.5 W 

100% degradation of 2,4-
dichlorophenoxyacetic acid 

after 6 minutes of treatment 

(Singh et 
al., 2017) 

Dielectric 
barrier 

discharge 

Air or 
oxygen/ 6 

kV/ 

Higher degradation using 
oxygen, with 98% 

degradation of oxadiazon 
achieved after 30 minutes of 

treatment 

(Ying et al., 
2017) 

Pharmaceutical 

Dielectric 
barrier 

discharge 

Air/ 40 – 44 
kVp-p/ 5 – 33 

W 

Maximum of 90% 
degradation  of 2-naphthlol 

after 2 minutes of treatment 

(Krugly et 
al., 2015) 

Corona 
discharge 

32 kV/ 30 mJ 
per pulse 

91.7% degradation of 
ibuprofen achieved after 80 

minutes of treatment 

(Zeng et al., 
2015) 

Dielectric 
barrier 

discharge 

Oxygen/ 12 
kV/ 1.2 W 

92.5% degradation of 
pentoxifylline achieved after 

60 minutes of treatment 

(Magurean
u et al., 
2010) 

Dielectric 
barrier 

discharge 

Air, argon or 
nitrogen/ 8 
kVp-p/ 1 W 

81% degradation of 
paracetamol achieved after 

60 minutes of treatment 

(Baloul et 
al., 2016) 

Dielectric 
barrier 

discharge 

Oxygen/ 17 
kV/ 2 W 

25%, 22.5%, 29% 
mineralization as carbon 

dioxide of oxacillin, 
amoxicillin and ampicillin 

after 120 , 120 and 30 
minutes, respectively, of 

treatment 

(Magurean
u et al., 
2011) 

Organic dye 

Corona 
discharge 

Air/ 17 kV 
50% degradation of 

methylene blue after 10 
minutes of treatment 

(Magurean
u et al., 
2013) 

Gas 
discharge 

Oxygen/ 46 
kV/ 5.67 W 

92% degradation of methyl 
orange after 20 minutes of 

treatment 

(Jiang et al., 
2012) 
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Dielectric 
barrier 

discharge 

Air, O2/ 5 - 7 
kV/ 18 W 

99.98% degradation of 
methylene blue using oxygen 
plasma for 20 minutes and 

85.3% degradation using air 
plasma for 100 minutes 

(Wang et 
al., 2017a) 

Dielectric 
barrier 

discharge 

Air/ 14 kV/ 
25 W 

Complete degradation of 
reactive black 5 after 5 
minutes of treatment 

(Dojčinović 
et al., 2016) 

As shown in Table 2.14, degradation of the contaminant was achieved to at least an average 

of 90% but this does not mean complete mineralization was accomplished instantaneously. 

Oxidation of contaminants was indicated as the first step of degradation, which leads to 

formation of shorter intermediates rather than direct mineralization. This could be due to 

mineralization occurring at a slower rate compared to production of degradation products and 

may require longer treatment time for further oxidation of formed degradation products to 

mineralisation. Magureanu et al reported degradation of dissolved pharmaceuticals in water 

by non-thermal plasma yet to undergo mineralization took 120 minutes (Magureanu et al., 

2011). In such conditions, energy consumption is high and not cost effective to achieve 

complete mineralization. Several papers have employed various factors such as using different 

gases, i.e. oxygen to increase reactive oxygen species concentration, increase plasma contact 

using mist or water films and increase plasma density by reducing the space gap where plasma 

is generated to increase degradation rate (Locke et al., 2006; Stratton et al., 2015; Foster, 2017; 

Yang et al., 2018). Thus, maximizing contact between plasma, contaminants and its 

degradation products may encourage early mineralization and reduce treatment time. 

2.3.1.2.2 Sterilization by non-thermal plasma 

Non-thermal plasma offers several strategies for developing antibacterial approaches that 

repel or kill bacteria. Previous studies with non-thermal plasma have demonstrated promising 

antimicrobial activity in surface sterilization, development of antimicrobial surfaces that 

prevent bacterial adhesion, food preservation and safety, anti-biofilm activity, water treatment 

and treatment of aerosolised and antibiotic resistant bacteria (Moreau et al., 2008; Misra et 

al., 2011; Liang et al., 2012; Isbary et al., 2013; Cha and Park, 2014; Prochnow et al., 2014; Liao 

et al., 2017; Bourke et al., 2017). For water treatment, various studies have investigated long-

lived reactive agents generated in water after plasma treatment that can induce antimicrobial 
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activity, allowing plasma activated water (PAW) to be used for disinfection of equipment, 

sterilization and surface decontamination. Direct application of non-thermal plasma treatment 

on microorganisms in water, and indirect via PAW, added to contaminated water represent 

alternative methods of water disinfection rather than using chlorine with its associated toxic 

by-products and the growing number of microorganisms resistant to chlorine (Vanraes, 2016). 

Table 2.15 shows some studies that investigated the anti-microbial activity of plasma against 

various microorganisms in water responsible for diseases and HCAIs.  

Table 2.15: List of examples of microorganisms in water treated with non-thermal plasma, 
with or without pre- or post-treatment of the bacterial suspension.  

Type Contaminant 
Non-

Thermal 
Plasma 

Gas/ 
Voltage/ 
Energy 

Treatment Results Reference 

Gram 
negative 
bacteria 

Escherichia coli 

Atmospheric 
pressure 

plasma jet 

Nitrogen / 
70 V / 7 W 

5 log reduction after 
exposure to plasma 

combined with 
vapour systems 

(deionised water 
/HNO3) 

(Shaw et 
al., 2018) 

Gliding arc 
discharge 

Air/ 3 kV/ 
200 W 

Total of 6 log 
reduction during 25 

minutes of 
treatment and 2 

hours after 
treatment 

(Kim et al., 
2013) 

Dielectric 
barrier 

discharge 
Air/ 40 kVp-p 

7 log reduction 
after 20s direct or 

45 s indirect 
treatment 

(Ziuzina et 
al., 2013) 

Atmospheri
c pressure 
plasma jet 

Argon/ 1-5 
kV 

7 log reduction 
after 15 minutes of 
treatment but after 

45 minutes of 
treatment 12% 
remained alive 

(Dolezalov
a and 
Lukes, 
2015) 

Legionella 
pneumophila 

Corona 
discharge 

Air/ ±80 kV 

5.4 log reduction 
after 12.5 minutes 
of treatment (+80 
kV) and 2.54 log 

surviving 
population 

detected using -80 
kV 

(Banaschik 
et al., 
2016) 
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Legionella 
gratiana 

Arc 
discharge 

Air/  1.12 kW 
6 log reduction 

after 20 seconds of 
treatment 

(Johnson 
et al., 
2016) 

Acidithiobacillus 
ferrooxidans 

Arc 
discharge 

Air/ 1.06 kW 
6 log reduction 

after 40 seconds of 
treatment 

(Johnson 
et al., 
2016) 

Pseudomonas 
aeruginosa 

Dielectric 
barrier 

discharge 
Air/ 7.4 kVp-p 

4.8 log reduction 
after 4 minutes of 

treatment 

(Choudhur
y et al., 
2018) 

Glow 
Discharge 

Helium 
(98%), 
Oxygen 

(2%)/ 0.30 
kV/ 0 - 80 W 

8 log reduction 
after 6 minutes of 

treatment 

(Zhang et 
al., 2012) 

Pseudomonas 
fluorescens 

Microplasm
a jet 

Air/ 1 – 5.5 
kV/ 0.1 – 

2.3 W 

6 log reduction 
after 4 minutes of 

treatment 

(Zhang et 
al., 2013) 

Gram 
positive 
bacteria 

Staphylococcus 
aureus 

Plasma 
microjet 

Helium 
(98%)- 
Oxygen 

(2%)/ 400 V 

4 log reduction 
after 10 minutes of 

treatment 

(Bai et al., 
2011) 

Plasma 
microjet 

Air/ 100 V 

3 ~ 4 log reduction 
over 30 days period 

after        S. aerus 
added to PAW and 

stored at -80 °C 

(Shen et 
al., 2016) 

Dielectric 
barrier 

discharge 
Air/ 7.4 kVp-p 

5.4 log reduction 
after 2 minutes of 

treatment 

(Choudhur
y et al., 
2018) 

Bacillus subtilis 
Plasma 

microjet 
Air/ 400 – 

600 V 

97% inactivation 
rated after 6 
minutes of 
treatment 

(Sun et al., 
2012) 

Bacillus 
thuringiensis 

Dielectric 
barrier 

discharge 

Oxygen, air, 
argon/ 6 kV/ 

5 W 

3 log reduction 
after 20 minutes of 

treatment 

(Hayashi 
et al., 
2013) 

Bacillus 
pumilus 

Gas 
discharge 

Air, oxygen/ 
4.21 W cm-1 

4.54 log reduction 
after 30 minutes of 

treatment 

(Purevdorj 
et al., 
2003) 

Yeast 
Saccharomyces 

cerevisiae 
Plasma 

microjet 
Air/ 0.56 kV 

51.9% apoptotic rate 
for no strain S. 

cerevisiae in 
comparison to nearly 
30% for two strains 

of S. cerevisiae 

(Ma et al., 
2013) 
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Compared to direct plasma treatment of microorganisms on surfaces, the liquid environment 

provides an additional barrier preventing direct impact of electrons and ions in plasma with 

microorganisms in water. However, plasma induced processes such as UV-light and reactive 

species dissolved in water can penetrate and interact with the microorganism (Malik et al., 

2001). The molecular mechanism of its antimicrobial effect with microorganisms in water is 

still not well understood; various constituents of plasma, i.e. chemical production and physical 

processes, can affect the biological, chemical and physical processes in microorganisms (Liao 

et al., 2017; López et al., 2019). Numerous efforts from previous studies have realized that the 

reactive chemicals formed in plasma can stimulate oxidative stress in cells, which leads to DNA 

damage, cell cycle arrest and apoptosis (Fang, 2011; Zhang et al., 2013; Vatansever et al., 2013; 

Dezest et al., 2017; Vaze et al., 2017; Liao et al., 2017;). However, this effect is dose dependant; 

low concentrations of reactive chemicals in plasma stimulate cell proliferation, mutagenesis 

and differentiation while high doses can drive apoptosis and necrosis (Kalghatgi et al., 2010; 

Barekzi and Laroussi, 2012; Ma et al., 2013). In addition, microorganisms are very diverse, with 

different structures and may have different responses to plasma. For example, both gram 

negative and gram positive bacteria have shown susceptibility to plasma but gram negative is 

more sensitive which was linked to cell wall chemical resistance and/or respiration mechanism; 

cell walls of gram negative bacteria have a single layer of peptidoglycan compared to multiple 

layers in gram positive bacteria (Lunov et al., 2014; Lunov et al., 2015). However, the effect 

increases in line with increasing treatment time and plasma density, increasing the dosage of 

chemical species generated in plasma can kill such bacteria, even with a thicker defensive layer 

(Maisch et al., 2012; Baldanov et al., 2015; Al-rawaf et al., 2018).  

Compared to planktonic culture, defined as floating single cells in a culture medium, biofilms 

represent a serious challenge in water treatment, where cells are denser and more resistant 

to conventional anti-microbial agents due to the protection provided by its extracellular 

polymeric substances (EPS) (Sehar and Naz, 2016). Biofilms in water are monitored and mainly 

treated through chemical disinfection such as chlorine (Liu et al., 2016). Even in the presence 

of conventional disinfectants in water, biofilms persist and grow, which forces authorities to 

increase the level of conventional disinfectant agents to improve the disinfection results and 

prevent pathogenic microorganisms being released into water during the shedding period of 

the biofilm (Helmi et al., 2008; Henne et al., 2012). However, increasing the level of disinfection 
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affects the aesthetic quality and can lead to production of DBPs in the treated effluent, which 

requires additional management. In addition, such a method is not effective against biofilms 

harbouring microorganisms resistant to conventional disinfection agents. A number of studies 

have demonstrated effective treatment and inactivation of biofilms in water by plasma (Sun et 

al., 2018; Zhou et al., 2019). In comparison with planktonic samples, treatment of biofilms took 

longer, which was associated with its cell density and protective extracellular matrix (Soler-

Arango et al., 2019). 

2.3.1.3 Plasma reactors for water treatment 

In recent years, research towards plasma reactors and their development for water 

treatment has increased significantly, focusing specifically in maximizing contact between 

plasma and the liquid solution while reducing treatment time as a cost-efficient treatment 

option. Continuous development has led to an expanding category of various reactors 

depending on discharge type, electrode configurations, i.e. pin-to-pin, pin-to-plate, plate-to-

plate electrode configurations and coaxial geometry, or electrode designs, i.e. multiple pins, 

brush electrodes and coated electrodes, to generate strong electric field and high plasma 

density that improves treatment efficiency (Bruggeman and Leys, 2009; Vanraes, 2016). 

Several reviews have emphasised the substantial influence of material, reactor design and 

operational parameters on the performance of the reactor. Malik provided an insight 

comparing treatment efficiency of different existing plasma reactors (Malik, 2010). This was 

followed by Stratton et al, identifying and characterizing design parameters that influence 

treatment efficiency of these reactors and thus may assist in new designs (Stratton et al., 2015). 

Initially, numerous electrode configurations have been developed and these were classified 

depending on the plasma-liquid phase distribution, i.e. remote, direct and indirect (Bruggeman 

and Leys, 2009). Recently, Vanraes extended this classification into six reactor types (Figure 

2.5) (Vanraes, 2016): 
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Figure 2.6: General designs of different types of plasma reactor: (a) Electrohydraulic discharge 
reactor, (b) Gas phase discharge reactor, (c) Coaxial reactor with falling water film, (d) spray 
discharge reactor, (e) hybrid reactor and (f) remote discharge reactor. Adapted from (Vanraes, 
2016). 

Electrohydraulic discharge and gas-phase discharge are the two most common reactor types 

used in initial studies. Since plasma is generated directly in the liquid, electrohydraulic 

discharge was considered suitable for scaling up due to a relatively high area of plasma-liquid 

contact and hence direct interaction of plasma with the contaminants. However, 

electrohydraulic discharge requires a strong electrical field for cavitation i.e. formation of 

vapour or bubbles in liquid during discharge (Starikovskiy et al., 2011). Treatment efficiency of 

electrohydraulic discharges is often affected by the electrode material and suffers from 
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discharge electrode corrosion that leads to particles being released during plasma treatment, 

reducing the lifetime of the system and contaminating the water being treated. Yet, some of 

the particles eroded from these metals, such as from titanium electrodes, were found to 

enhance pollutant degradation and vice versa (Parkansky et al., 2013). Coated electrodes, 

corrosion resistant metals or dielectric barriers have been employed to increase electrode 

lifetime, followed by low pulse energy to lower temperature loading and clean the electrode 

from products generated in solution (Potocký et al., 2009). Further improvement in energy 

efficiency and reduction of mass-transfer limitations that manifest in these reactors was 

achieved by combining methods that enhance plasma-liquid or erosion particle contact and 

may facilitate the onset of plasma generation to reduce the energy consumption in boiling or 

heating the liquid, i.e. from 1~2 MV/cm to 30 kV/cm. This includes several batch, semi-batch 

and bubble column reactors, where a certain volume of solution under treatment remains in 

the reactor until completion of treatment time, coupled with processes such as external 

bubbling of gas in liquid through an opening, ultrasonic cavitation, recirculation of water and 

rotating electrodes (Bruggeman and Leys, 2009; Vanraes, 2016). The mechanism that leads to 

the production of reactive species by these methods in liquid, specifically bubbling, is 

inconclusive and still not fully understood. However, studies have shown that such systems are 

useful in several applications other than water treatment such as synthesis, sterilisation and 

surface treatment (Samukawa et al., 2012; Adamovich et al., 2017).  

Compared to electrohydraulic discharge, plasma discharge in the gas phase has shown greater 

energy efficiency since cavitation is not required (Stratton et al., 2015). However, the utilization 

of the reactive species generated in the gas phase and the plasma-liquid interface using these 

reactors relies on their diffusion coefficient from gas to solution. Spray discharge and novel 

reactors in the form of coaxial electrode configurations utilizing liquid films has received 

increasing attention due to their reported higher removal and energy efficiencies as compared 

to other designs in Figure 2.5 (Malik, 2010). Such reactors use liquid film and liquid spray, 

where flow rates have substantial influence on performance due to surface-to-volume ratio. 

The mass transfer of reactive species formed in plasma can be enhanced by utilizing the large 

surface area-to-volume ratio and proximity of plasma to the liquid surface found in such 

reactors. Spraying or using liquid films can further increase the plasma-liquid contact for mass 

transfer, in comparison to reactors where treatment was achieved over a water bulk in batch 
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configuration. This leads to shorter treatment times, lower energy demand and higher 

treatment, with maximum treatment of more than 90% of contaminants in water achieved 

(Sano et al., 2003; Kobayashi et al., 2010; Aziz et al., 2018). According to Stratton et al, gas 

discharges found in spray configuration achieve 150 times higher energy yield in comparison 

to electrohydraulic discharge, with no bubbling (Stratton et al., 2015). The effectiveness of 

liquid spraying and liquid films has been demonstrated in hybrid reactors, using both 

operations, i.e. gas phase and electrohydraulic discharge simultaneously (Kobayashi et al., 

2010). Remote discharge reactors were originally used for ozone production and subsequently 

injected or bubbled through the liquid for treatment. New approaches utilize various feed 

gases to generate chemical reactive species other than ozone (Zhang et al., 2006; Tang et al., 

2009). Compared to the reactors mentioned earlier, treatment efficiency is less pronounced. 

The difference was explained with the lack of utilization of short-lived species, generated in 

the plasma-liquid interface and in the liquid. Using a different approach, such reactors were 

used to produce PAW and added to water for treatment (Zhang et al., 2006; Kim et al., 2013).  

Although the results and potential advantages offered by these reactors for PWT were 

promising, the demands for higher system throughput or treatment efficiency and versatile 

designs with low energy demand remain as challenges to the implementation of PWT. Table 

2.16 summarize specific advantages and disadvantages of the aforementioned types of 

reactor. 

Table 2.16: Advantages and disadvantaged of the plasma reactors used for water treatment.   

Type of reactor Description Advantages Disadvantages 

Electrohydraulic 

discharge 

Plasma generated 

directly in the liquid 

phase 

- High area of plasma 

liquid contact 

- High energy 

required for 

cavitation 

(formation of 

vapour or 

bubbles in liquid) 

- Suffers 

electrode 

corrosion 

affecting 

longevity of the 

system 
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Bubble 
discharge 

Plasma generated 
directly in the liquid 
phase through 
externally applied 
bubbles 

- No cavitation required  
- Enhanced efficiency by 
plasma formation 
compared to 
electrohydraulic 
discharge 
- Aid mixing the solution 
during treatment to 
increase plasma-liquid 
contact 

- Particles 
clogging the small 
gas inlets.  
- Energy leaks and 
heats the water 
lowering 
treatment 
efficiency  
- Submerged 
electrode with no 
barrier or coating 
suffers corrosion 

Gas phase 
discharge 

Plasma generated in 
the gas phase or 
over a liquid film 

- No cavitation required  
- Increase treatment 
efficiency for gas phase 
discharge over thin water 
films due to increase 
plasma-liquid contact 
- Induces degradation of 
volatile contaminants in 
the gas phase 

- Relies on 
diffusion of 
plasma species in 
the gas phase 
into liquid 
- Requires stirring 
mechanism to 
enhance plasma-
liquid contact 

Spray discharge 
Plasma generated in 
contact with 
spraying liquid 

- High plasma liquid 
contact 
- Shorter treatment time 
- Lower energy demand 
due to no cavitation 
required 

- Small nozzle 
orifice of spray-
heads susceptible 
to blockage 
- Lack of control 
over mean 
droplet size 
- Broad droplet 
distribution 

Hybrid reactors 
Combination of 
electrohydraulic and 
gas phase discharge 

- Combine the 
advantages of both gas 
phase and 
electrohydraulic 
discharge 
- High plasma-liquid 
contact 

- Associated high 
energy 
consumption at 
high applied 
voltage (< 20 kV) 

Remote 
discharge 

Remote plasma 
generation, without 
direct contact with 
liquid under 
treatment 

- Large production of 
ozone and PAW as 
source of treatment of 
contaminated water 
 

- Lack of utilizing 
short-lived 
species, 
generated in the 
plasma-liquid 
interface and in 
liquid 
- Lower 
treatment 
efficiency 
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Using methylene blue as a model contaminant, selected results from studies using 

aforementioned reactors were compared and summarized in Table S2.1 in the appendix. 

Studies with no pre- or post-treatment and only relying on plasma for treatment were selected. 

Hybrid reactors could not be included due to comparable data not being available and limited 

numbers of studies but are expected to improve treatment efficiency combining the 

advantages of liquid and gas discharges. However, the main drawback is the associated high-

energy consumption (greater than 20 kV applied voltage) compared to lower voltages used in 

other types of reactor in Table 2.17 for chemical degradation (Na et al., 2012).  

In terms of performance, reactors operating liquid sprays and water films have shown the 

highest treatment efficiency which could be due to higher surface-area-to-volume ratio and a 

shorter distance for mass transfer of plasma species from gas into liquid compared to reactors 

operating in bulk liquid. Malik has estimated about 1,000 times improvement in energy 

efficiency for treatment using water film and 2,000 times improvement using water spray 

compared to electrohydraulic discharge (Malik, 2010). Thus, reactors operating water film or 

spray provide the advantage of high surface-area-to-volume ratio for efficient treatment. 

In this study, the MPR was operated in the water film mode. Although the microfluidic device 

can be operated with water droplets as an analogous model for water spray reactors, the use 

of water film has been the focus of study due to easier flow control and reproducible film size 

distribution. Water droplets involve difficulty in control over droplet size due to the tendency 

of droplets to merge or break up at high shear stress, thus resulting in broad droplet size 

distribution and difficulty in reproducibility (Gu et al., 2011). 

2.3.1.4 Continuous flow reactors 

The reactors described above with different geometries have produced promising results, with 

the optimal design associated with a high surface area-to-volume ratio observed with spray or 

coaxial reactors. These initial studies were imperative in determining such key parameters 

related to efficient contaminant degradation and disinfection of water. Although they were not 

representative in developing reactors with low costs and high productivity of potable water; 

most of these reactors treat small volumes of water in static configurations either with or 

without recirculation (Vanraes, 2016; Cui et al., 2018). Compared to batch type reactors, 
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continuous flow reactors have the potential to provide large volumes of potable water at lower 

costs by reducing treatment time. Continuous flow processes involve a continuous movement 

of materials from one point to another; in terms of water treatment, high volumes of 

contaminated water can be introduced continuously into such a reactor and continuously 

discharge potable water.  

Whilst flow reactors allow higher volumes and faster processing than batch type reactors, 

sufficient residence time to allow maximum interaction between plasma and contaminant in 

water is required to obtain potable water before it exits the system. In batch reactors, 

residence time is defined by how long the media resides in the reactor while flow rate 

determines the residence time of solution in a continuous flow reactor. A continuous flow 

reactor, operating without recirculation and treating water in a single pass configuration, is 

attractive in overcoming the issues of space, long residence times and high costs associated 

with batch treatment, to achieve high treatment efficiency and provide large volumes of 

potable water (Simon et al., 2006). Experimental studies evaluating the treatment efficiency 

and energy cost in continuous-flow reactors for chemical degradation (Gerrity et al., 2010; 

Dojčinović et al., 2016; Ceriani et al., 2018) and water disinfection (Singh et al., 2019) have 

shown promising results for improved energy efficiency in comparison to static configurations 

used currently (Gerrity et al., 2010; Johnson et al., 2016; Singh et al., 2019). Water films and 

spray were employed, taking advantage of their large surface-area-to-volume ratio that 

benefits fast processing in flow reactors, but difficulty in flow control caused broad size 

distribution of formed water droplets and film. Thus limited mass transfer of plasma species in 

the gas phase into liquid. Optimizing such operational parameters to maximize their potential 

and improve limitations with mass transfer and residence time is important in further 

understanding how the application of water treatment can be developed in continuous flow. 

This leaves a margin of progress in improving treatment efficiency of plasma in single pass 

configuration of continuous flow type reactors for water. This includes developing a robust and 

efficient continuous flow reactor that can treat water efficiently and be adapted to small and 

large-scale applications. Such scalable systems can provide flexibility for on demand potable 

water and replace or complement water treatment facilities.  
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Microreactors, defined as miniaturized reactors with characteristic dimensions in micrometres 

and sample volumes in nano-to microlitre, may have a key role as an optimizing tool and 

develop scalable flow systems for PWT. In particular, microreactors built upon microfluidic 

technology, which deals with the behaviour and manipulation of nano- or microlitre fluids 

allows exploitation of miniaturised dimensions to carry out multiple reactions in flow 

conditions. Their potential in industrial applications are expected to be analogous to bulk 

reactors and thus can provide guides on developing industrial design (Suryawanshi et al., 2018). 

Several studies have exploited such benefits of continuous flow microfluidics to develop 

various microfluidic platforms in areas such as synthesis (Lin et al., 2004; Ma et al., 2017; 

Jensen, 2017), particle separation (Karle et al., 2016; Hejazian et al., 2015; Shields et al., 2015), 

extractions (Wang and Luo, 2017; Tang et al., 2016; Tetala and Vijayalakshmi, 2016) and 

screenings assays (Du et al., 2016; Lifton, 2016). However, the full potential of microfluidics for 

PWT is yet to be realized. 

2.4 Microfluidics  

Microfluidics refers to devices and methods that allow control of the spatial and temporal 

behaviour of fluid with length scales less than a millimetre (Luo and Duan, 2012). The inherent 

characteristics of microfluidic systems have demonstrated their advantages in action in terms 

of high surface-area-to-volume ratios, increased speed of analysis/throughput, high sensitivity, 

portability and cost-effectiveness in regards to fabrication, reduced chemical reagents and 

waste effluent (Minteer, 2006; Luo and Duan, 2012). This results in powerful techniques to 

control and measure chemical reactions or physical/biological processes, which has influenced 

the creation of various miniaturised devices for biological and chemical analysis.  

2.4.1 Microfluidic reactors for water treatment 

Although limited and not reported as frequently as conventional bulk reactors, microfluidic 

reactors for water treatment have demonstrated promising results in overcoming various 

limitations found in bulk and batch type reactors. Initial studies developed catalytic 

microreactors that exploited the advantages of microfluidics to enhance catalytic efficiency for 

oxidation reactions of contaminants compared to conventional bulk catalytic reactors used in 

water treatment. The degradation of organic pollutants was achieved in seconds with these 
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microreactors (Dapeng and Jiuhui, 2009; Silva, 2015; Silva et al., 2016). An expanding area 

regarding photocatalytic water treatment in microfluidic research, utilizing catalysts and light 

to drive oxidative processes and degrade contaminants in water, has demonstrated high mass 

transfer efficiency between the liquid and catalyst surface, achieving more than 100 times 

reaction rate constants and reaction times in seconds compared to hours in corresponding 

bulk reactors (Wang et al., 2014; Azzouz et al., 2018). Water treatment in micromagnetofluidic 

devices, which employ magnetic nanoparticles to remove heavy metals in water, was 

considered to enhance mixing to improve heavy metal capture in highly metal laden water 

(Kefou et al., 2016). Other areas of water treatment such as microfluidic desalination using 

methods such as electrodialysis to provide potable water from salt water were developed, 

providing insight on ion transport and hence aiding the optimization of macro-scale 

desalination systems (Roelofs et al., 2015). New areas of hybrid systems in a microfluidic device 

for water treatment have been developed, combining electrocoagulation for the removal of 

contaminants and ion concentration polarization for desalination of water, while minimizing 

power consumption, contaminants and salt in water compared to bulk reactor systems (Choi 

et al., 2017). 

These studies have highlighted the advantages of the microfluidic approach in water treatment 

by improving treatment efficiency and providing insights into the treatment process at a micro-

scale that was difficult to study in bulk systems. Thus, by exploiting the advantages of 

miniaturisation, integration of non-thermal plasmas within microfluidic platforms can be 

utilised to enhance the oxidation process induced by plasma to remove contaminants in water. 

Compared to the aforementioned microreactors, the MPR does not require precursors such as 

catalysts for oxidation of contaminants and disinfection of water, thus keeping operational cost 

and maintenance low. This eliminates the need for catalyst separation and regeneration from 

treated effluent, which could be toxic when consumed or harmful if released unprocessed to 

the environment. On the other hand, electrocoagulation does not require chemical additives 

that are expensive to precipitate contaminants in water. However, blockage may occur in the 

microchannel due to electrocoagulation, especially water with high concentration of 

contaminants, and requires neutralization of the disposed waste (Moussa et al., 2017). 
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2.4.2 Microfluidic plasma reactor  

In the past, miniaturisation of analytical equipment has inspired the integration of plasma 

technology into microreactors for applications such as spectrometry to generate non-thermal 

microplasmas, a plasma of dimensions  less than a millimetre (Karanassios, 2004). The spatial 

confinement of microplasma in microreactors is a promising ionization source due to their 

unique characteristics such as high electron density, causing high rates of excitation and 

ionization, and low breakdown voltage (Schoenbach and Becker, 2016a). Thus, the last 20 years 

has seen growth in research of microplasmas with its integral role as one of the most powerful 

excitation and ionisation sources in developing miniaturised synthetic reactors, detectors, 

spectrometers and other technological applications in medicine and the environment (Olabanji 

and Bradley, 2011; Stauss et al., 2014; Ishii et al., 2015; Schoenbach and Becker, 2016b; 

Wengler et al., 2018). 

Due to the low discharge voltage required to generate a microplasma, (about 1 kV), some 

studies have applied microplasmas for water treatment, where it is either generated directly 

on water or used to generate reactive chemicals to treat water. A microplasma jet is an 

example of a microplasma used for direct disinfection of water (Shen et al., 2016). Shimizu et 

al used a dielectric barrier discharge microplasma generated on the surface of water for 

degradation of a textile dye in water (Shimizu et al., 2013). Shirke et al used microplasma as a 

remote discharge to form ozone and added it to water (Shirke et al., 2014). Although the 

generation of microplasmas in microreactors is well established, microplasmas generated in a 

microfluidic reactor for continuous flow treatment has yet to be realized for the degradation 

of contaminants and disinfection of water. 

The use of continuous flow microfluidic reactors with integrated plasma technology provides 

an opportunity for utilizing the inherent benefits of microfluidics in its application for PWT, 

overcoming limitations such as mass transfer in bulk reactors. Although combining 

microfluidics with relatively large-scale water treatment creates potential problems in terms 

of sample volume, this contrast can be bridged by placing multiple devices in parallel. On the 

other hand, the microreactor can be developed for a wide array of applications such as 

synthesis reactors, analytical applications and installation with in-line water supply systems 

that do not require high volume throughput. Microfluidics may provide some benefit for 
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prospective portable plasma reactor devices for water treatment on demand in the future, 

eliminating expensive consumables. 

2.4.3 Fabrication of microfluidic plasma reactor  

Various materials such as polydimethylsiloxane (PDMS) or glass can be used for the fabrication 

of an MPR (McCreedy, 2001; Ren et al., 2013). Plasma production in channels with a hydraulic 

diameter below 1 mm, i.e. microchannel, has been reported in PDMS and glass reactors 

(Olabanji and Bradley, 2011; Ishii et al., 2015; Wengler et al., 2018). In terms of plasma 

generation, high chemical and thermal stability of the reactor material is required to ensure 

that reaction is not affected by material transformation during plasma ignition. PDMS is 

attractive due to low production cost and ease of processing , yet poor thermal and chemical 

stability leads to deterioration or under-performance of the reactor. PDMS has a low thermal 

conductivity of 0.18 W m-1 K-1, an order of magnitude lower than glass, which equates to poor 

thermal distribution as a consequence of varying internal or external temperature of the device 

and poor chemical stability, with the tendency to absorb molecules and solvents, interfering 

with analysis (Erickson et al., 2003; Toepke and Beebe, 2006). However, glass has favourable 

properties such as better thermal and chemical stability compared to PDMS but the process of 

fabricating glass-based microreactors compared to PDMS is expensive (Ren et al., 2013). With 

both liquid and gas introduced at the same time into the proposed MPR, a glass microreactor 

is ideal as it can withstand high-pressure driven experiments, up to 400 atm (Tiggelaar et al., 

2007). Under high-pressure conditions, PDMS is susceptible to elastic deformations, which 

affect pressure distribution within the channels, and thus alters the flow regime over time 

(Gervais et al., 2006). Glass is not permeable, with relatively low adsorption compared to PDMS 

and thus its chemical inertness, biocompatibility and tolerance to high-pressure conditions 

allows the reaction to be contained and ensures longevity of the reactor (Eichholz et al., 1965). 

This makes glass the material of choice due to its thermal and chemical stability for prolonged 

water processing of samples spiked with chemical or biological agents.  These initial 

investigations using glass reactors were based on a dielectric barrier discharge (DBD) mode of 

activation.  
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2.4.3.1 Dielectric barrier discharge 

DBD, commonly known as the silent discharge, is based on the use of at least one electrical 

insulator i.e. dielectric barrier, between two planar or cylindrical electrodes separated by a 

small gap between 0.1 to 100 mm (Kogelschatz, 2003; Fridman, 2008). The dielectric layer 

could be of various materials such as glass, quartz, ceramic or a layer of water around one 

(single barrier) or both (double barrier) of the electrodes. DBD is ignited by a sinusoidal or 

pulsed AC power source, with an amplitude of 1-100 kV. The discharge mode is either glow or 

microdischarge. When the applied high voltage across the discharge gap between the 

electrodes is high enough, an electron avalanche forms from the cathode leading to fast 

streamer propagation towards the anode. These streamers, known as microdischarge, are 

randomly distributed across the discharge gap between the electrode and leads to breakdown 

in various working media i.e. liquid and gas phases. The dielectric constant and thickness of the 

dielectric barrier limits the transport of current and formation of spark or arc in the discharge 

gap. By increasing the electrical conductivity of the dielectric, it interferes with and limits the 

current flow in generating streamers in the discharge gap. For double barrier reactors, higher 

voltage was applied to enhance the local electric field compared to a single barrier. However, 

higher degradation efficiency was found using double barriers compared to a single barrier of 

similar dimensions, which was assumed to be caused by a higher energy density (Yamatake, 

2007). 

2.5 Summary 

Applications of non-thermal plasma in various types of plasma reactors have been investigated 

and proven effective in treatment of contaminated water samples; water film and spray 

discharge were the most effective due to high surface-area-to-volume ratio. However, most 

plasma reactors investigated operated batch type systems in static configuration, which is not 

as effective, compared to continuous flow type reactors for treating large volumes of water. 

Batch type reactors in static configuration were limited in terms of mass transfer of plasma 

species formed in the gas phase into liquid, long treatment times and high cost. Miniaturization 

of non-PWT reactors for chemical processing have overcome similar limitations with 

corresponding bulk reactors. However, these reactors require additives or precursors for 
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enhanced water treatment. Integration of plasma technology with microreactors built upon 

microfluidic technology is attractive due to no precursor being required and the inherent 

advantages of microfluidics may help overcome the limitation of current bulk plasma reactors. 

Single pass plasma treatment of water in a continuous flow reactor is of current interest for 

their simple configuration, which can be achieved in a microfluidic reactor. So far, the 

application of MPR for the removal of contaminants and disinfection of water is yet to be 

developed. 
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Chapter 3 Methodology 

This chapter explains the equipment used for the production of plasma in a microfluidic device 

and the experimental procedures conducted. The geometry and characteristics of the 

microfluidic reactor and plasma source are described. The applied analytical, chemical and 

microbiological assays are discussed.  

3.1 Fabrication of the microfluidic device 

The microfluidic device was fabricated on a glass substrate in the Lab-on-a-Chip Fabrication 

Facility at the University of Hull. Standard photolithography coupled with wet etching 

techniques (Scheuble et al., 2017) were used to produce the standard design of the MPR used 

in this study (Figure 3.1). The microfluidic devices were fabricated using Schott B270 glass blank 

wafers (Telic, California USA), 1 or 3 mm thick, as top plate and wafers pre-coated with low 

reflective chromium and photoresist , 1 mm thick as bottom plate and 1 mm or 3 mm as the 

top plate. The coated wafers were exposed to UV light from a UV exposure box (196-5251 RS 

components, UK) for 60 seconds through a patterned photo-mask (MicroLitho Ltd, Chelmsford, 

UK) with the desired channel design made using AutoCAD (Autodesk, USA) (Figure 3.1). The 

photoresist layer is degraded where it has been exposed to UV light and dissolved away by a 

developer (AZ351, Microchemicals GmbH, Germany in a 4:1 dilution), for one minute, exposing 

the desired pattern on the chromium layer (Figure 3.1.c). The chromium layer was etched using 

a chromium etchant (Fisher Scientific, UK). The exposed glass layer was wet-etched to the 

desired depth of 50 or 100 µm using a buffered HNO3/HF solution (2% by vol HF and 5% by vol 

HNO3, Fisher Scientific UK) (Figure 3.1.d). After wet etching, both the photoresist and 

chromium layer were stripped using acetone and followed by chrome etchant (Fisher Scientific 

UK), (Figure 3.1.e, f, g). The glass blank wafers were drilled with access holes (1/16” outer 

diameter (OD)) for the inlet and outlet using a CNC machine (Datron, Milton Keynes, UK) 

(Figure 3.1.h). Both drilled and etched wafers were cleaned and degreased with acetone, 

followed by isopropanol and submerged in piranha solution (3:1 by volume concentration 

H2SO4 : 30% H2O2) for 1 hour. The cleaned glass wafers were then washed with deionized 

water. The top plates with drilled holes were aligned with the etched wafer, thermally bonded 

together by applying slight pressure by hand and placed in a furnace (Northern Kilns UK) and 
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heated to 585°C for 10 hours in air, sealing the reactor permanently (Figure 3.1.i). After 

bonding, fluorinated ethylene propylene (FEP) tubing (1/16” OD x 0.030” inner diameter (ID)) 

was glued into the access holes using Araldite two part epoxy adhesive (Huntsman Advance 

Materials, UK).  

Figure 3.1: Schematic illustration of the photolithography and wet etching process employed 
in fabricating the microfluidic device used in this study. Adapted from (Scheuble et al., 2017).  
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3.2 Microfluidic device layout 

The initial design of the glass microfluidic device used in this study is presented in Figure 3.2. 

Glass was used as substrate due to its dielectric properties (dielectric constant εr: 5 - 10 (10 

kHz – 10 MHz)) which prevents arc formation and limits the charge and energy deposited in a 

single microdischarge (Kogelschatz et al., 1997). The design of the microfluidic device was 

adapted from (Cvetković et al., 2012). In order to maintain a continuous two-phase flow of 

liquid and gas, it was modified at the outlet so that the sample was collected directly after the 

serpentine channel. The device consisted of two separate in-plane inlets for liquid (1) and gas 

feeds (2), the T-junction where gas splits into two streams (3), the Y-junction where both liquid 

and gas meet (4), the serpentine channel after the Y-junction (5) before finally reaching the 

outlet for sample collection (6) (Figure 3.2 (a)). The cross-sectional geometry of the 

microchannel (mc) is considered as trapezoidal or semi-circular, (Widthmc x Depthmc = 330 µm 

x 50 µm and 390 µm x 100 µm) (Figure 3.3).  

Figure 3.2: Sketch of the general design (a) and photograph (b) of the microfluidic device used 
in this study.  

Figure 3.3: a) Schematic diagram of the geometry and dimensions of the microchannel’s cross 
section: width (Wmc) and depth of the microchannel (Dmc). b) SEM image of the microchannel. 
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The plasma zone comprised of the serpentine channel after the Y-junction and before the 

outlet. The initial length of the serpentine channel (Lch), as fabricated, was Lch = 212 mm long. 

The channel length of 212 mm was adopted for initial studies on the effect of plasma treatment 

on the residence time of liquid in the reactor. Further modification of the reactor design with 

longer serpentine channels, Lch = 395 and 595 mm, were fabricated and used for further trials 

on residence time. Figure 3.4 shows the schematic layout of the different versions of the 

microfluidic device. The later designs of the microfluidic devices with a longer serpentine 

channel had both the inlets and outlet positioned away from the serpentine channel with a 

larger distance between the side endpoints of the microchannel and the edge of the device. 

This was to facilitate the placement of the electrodes and to prevent electrical discharges 

around the outside of the devices. 

Figure 3.4: Different dimensions of the MPR used in this study: a) MPR1, b) MPR2 and c) MPR3. 

3.2.1 Electrodes 

Copper tape (RS Components Ltd., UK) was used as the high voltage and ground electrodes (el) 

in this study (Lengthel x Widthel x Thicknessel = 2 cm x 1 cm x 35 µm (MPR1), 2 cm x 2 cm x 35 

µm (MPR2) and 2 cm x 3cm x 35 µm (MPR3)). The electrodes were aligned to the serpentine 

microchannel. Thus, plasma generation created between the conducting electrodes occurred 

in the gas space along the two-phase flow in the serpentine channel. 

For visual observation of plasma generation in the microchannel between conductive 

electrodes placed in parallel to the serpentine channel during two-phase flow, indium tin oxide 

(ITO) coated glass (Length x Width x Thicknessglass x ThicknessITO = 2 cm x 1 cm x 1.1 mm x 1850 

Å) (ThePiHut, Haverhill Suffolk, England, UK) and conductive paint (Bare conductive Ltd., UK) 
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(Length x Width x ThicknessITO = 2 cm x 1 cm x ~35 µm) were used as high-voltage and ground 

electrodes, respectively. Conductive carbon adhesive tabs (Agar Scientific, Stansted Essex, 

England, UK) were used as electrical connection points on both electrodes. Kapton tape (RS 

Components Ltd., UK) was used for thermal and electrical insulation of the microfluidic reactor 

and the electrode. Photographs of plasma generated in the microchannel were taken using a 

Nikon D3200 DSLR with a 60 mm lens and 1:2.8 aperture (ISO:12800, Exposure time: 1/ 100 s) 

(Nikon Corp., Japan).  

3.3 Experimental setup 

The schematic diagram of the experimental set-up using the proposed microfluidic reactor is 

shown in Figure 3.5. The set-up consists of a flow control system, electric system and a sample 

collection zone. The liquid flow rate and gas flow were controlled using separate pressure 

sources to pump each fluid directly into the device: via syringe pump (Cronus Sigma 2000C, 

SMI-LabHut Ltd., UK) and a pressure regulator (WIKA Instruments Ltd., UK), respectively. Thus, 

reaching the optimum point for the flow regimes of gas-liquid two-phase flow could be 

achieved. The influence of various flow rates and gas pressures on flow regime is discussed in 

Chapter 4. Various carrier gases were supplied to the microfluidic device: Air was provided by 

an in-house compressor, argon (99.9995% specialty grade, BOC Ltd., UK) and oxygen (99.999% 

specialty grade BOC Ltd., UK). 
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Figure 3.5: Schematic diagram of the experimental setup used for all the investigations carried 
out in this study. 

High voltage (HV) applied to the electrodes was provided by a power supply which consisted 

of a signal generator (TTi TG1000), audio amplifier (ProSound 1600) and custom-built high 

voltage transformer (Amethyst Designs). The signal generator produced the desired sinusoidal 

signal and the audio amplifier amplified the output signal. The audio amplifier modulated the 

input voltage from the power supply to the primary side of the transformer and the 

transformer stepped up the voltage to levels suitable to break down the gas. Current and 

voltage measurements were made with a Pearson 4100 current monitor (1 V/A) and a 

Tektronix 1000:1 voltage probe, measured using a Tektronix DPO3014 digital oscilloscope.   
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3.4 Operating conditions 

3.4.1 Gas pressure and liquid flow rate 

An in-house regulated gas line was employed to control the gas flow rate by changing the 

pressure of the gas entering the inlet and the total feed liquid flow rate was controlled using 

the syringe pump. Although the gas and liquid sources were directly connected to the chip, a 

pressure drop from the connectors to the microchannel was expected. In addition, high gas 

pressure, greater than 1atm, accompanied with low liquid flow rate, less than 30 µL/min, led 

to backflow, with water flowing in the reverse direction. Prior to plasma generation, the 

microfluidic device was left to run for 3 to 5 minutes when liquid flow rate was changed to 

stabilize a steady pressure and generation of the two-phase flow. Table 3.1 shows the operated 

values used in this study to acquire a two-phase annular flow regime in the microchannels. 

Resulting flow regimes of the two-phase flow were observed in the serpentine region of the 

chip using food dye (Thermo Fisher Scientific, UK) in deionised water, mounted on an inverted 

light microscope (Zeiss Primovert). Liquid film thickness was obtained from the microscope 

images, with reference length scales used to calibrate the measurements of the liquid film.  

Table 3.1: Operational parameters, i.e. liquid flow rate and gas pressure used with the MPR.  

 Length (Lch) of the 
serpentine channel (mm) 

Liquid flow rates 
(µL/min) 

Gas Pressure (atm) 

MPR 1 212 35 - 100 1 – 2 

MPR 2 395 35 - 100 3 

MPR 3 595 35 - 100 6 

3.4.2 Electrical measurements and calculations 

The MPRs were powered using a HV power supply with a frequency of 17 kHz. The applied 

voltage(peak-to-peak) was varied using the audio amplifier, ranging from 0 to maximum of 13 kV 

HV source. A high voltage probe (Tektronix 1000:1 voltage probe) and current probe (Pearson 

4100) connected to a Tektronix DPO3014 digital oscilloscope were used to measure and 

characterize the supplied power. The average power applied on the microfluidic device was 

calculated using 3.1 (Archambault-Caron et al., 2015): 
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Pt= ∫ √V t

 2 x I t
 2  dt

t

0

 Equation 3.1 

where Pt is the deposited power over one period in Watts, t is the period in seconds, V is the 

applied voltage measured in Volts and I is the input current measured in Amperes.  

3.4.3 Reactor temperature 

During plasma generation in the microchannel, the temperature of the MPR was measured 

over time. The experimental temperature of the microfluidic device was measured with an 

infrared thermometer (Maplin Electronics, UK) and a thermal camera (Fluke 279 FC Thermal 

Imaging camera) at a distance of 20 cm above the reactor. The average temperature of the 

dielectric surface of the microfluidic reactor was evaluated by the measurement of the 

electrode temperature. Temperature readings assumed uniform heat transfer from the 

electrode to the dielectric surface; these readings did not take into account the cooling of the 

dielectric surface by heat conduction through the compressive case, incoming gas and liquid 

flow, bulk of dielectric material and subsequent convective transfer from electrode to 

surrounding air. Actual temperature measurements inside the microchannel were not 

possible. 

Figure 3.6 shows the final assembly of the MPR used in this study. The original setup was 

modified to include a heatsink (2 x 2.5 cm, 3 x 6 cm) (RS Components Ltd., UK) attached on 

both sides of the microfluidic reactor, a thermal pad (1.5 X 2.5 cm, 2.5 x 2.5 cm, 3.5 x 2.5 cm) 

(Akasa Ltd., UK) to further improve electrode contact with the heatsink and a miniature cooling 

fan (ThePiHut, Haverhill Suffolk, England, UK) to promote air circulation. The microreactor 

device was fixed into a compressive case made of poly(methyl methacrylate) (PMMA) (4.5 x 

5.5 x 1.5 cm) with windows to allow inlet tubing and electrical connections.   
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Figure 3.6: (a) Schematic diagram of the microfluidic plasma device. (b) Exploded view of the 
final assembly.  

3.5 Analysis of MB and water samples  

3.5.1 UV-Vis Spectrophotometry 

Colorimetric analysis for MB solution (Sigma-Aldrich, UK) (5 mg/L), before and after plasma 

treatment, was performed using a Perkin Elmer Lambda 40 UV-Vis spectrophotometer, 

operating single beam optical systems, wavelength range of 200 – 900 nm, slit width of 2 nm 

and UV grade PMMA cell with a path length of 1 cm. Calibration of absorbance is based on 

chemical concentration according to Beer-Lambert’s law (Swinehart, 1962) using Equation 3.2:  

 A = Ɛ c l Equation 3.2 

where A is absorbance, Ɛ is the molar extinction coefficient (M-1 cm-1), c is the sample 

concentration (M) and l is the cell path length (cm). For the control experiments, colorimetric 

analysis was performed of 5 mg/L MB solution treated at various temperatures (30 – 100 °C) 

and pH values (3.0 – 10.0) without plasma treatment. MB solution was prepared at different 

pH values using 1 M hydrochloric acid (Thermo Fisher Scientific, UK) and 1 M sodium hydroxide 

(Thermo Fisher Scientific, UK) to adjust the pH of the deionized water before adding MB and 

measured using a pH and temperature meter (Jenway 4510 Conductivity Meter, UK). 10 mL of 

MB solution was continuously stirred on a hot plate magnetic stirrer (Stuart equipment, UK) 

with a mercury thermometer to monitor the temperature. The solution was left to cool to 

room temperature before analysis.  
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3.5.2 Liquid chromatography-Mass Spectroscopy (LC-MS) 

Analysis of MB before and after plasma treatment was performed using an Agilent 

Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS. Samples were injected into the LC 

through an injection valve with an injection loop of 20 µL. A 100 mm C18 column with 2.1 mm 

internal diameter and 2.5 µm particle size (ACE-HPLC, UK) was used and set at a column 

temperature of 40 °C. Gradient elution with mobile phase A (0.1% acetic acid in water) and 

mobile phase B (0.1% acetic acid in 100% acetonitrile) was used with a constant flow rate of 

300 µL/min in total. The aforementioned mobile phases, with organic acid standard solutions, 

were prepared using HPLC grade reagents (Sigma-Aldrich, UK). 

The mass spectrometer was operated in the positive ion mode in the mass range of 65 – 980 

atomic mass units (m/z) at a rate of 1 scan per second. Samples were injected into an electron 

spray ionization (ESI) source at a flow rate of 20 µL/min, nebuliser pressure of 15 psig, gas flow 

and temperature of 5 L/min and 325°C, respectively. Nitrogen was used as the nebulising gas. 

3.5.3 Ion Chromatography 

Water quality standards of surface water differ due to different environmental conditions, 

intended human use and changes induced by treatment processes. Ion concentrations in 

various water samples, i.e. deionized water, soft and hard tap water samples, before and after 

plasma treatment were measured using high performance anion and cation exchange 

chromatography (Ion Chromatography Dionex Model ICS 5000, Thermo Fisher, UK). The 

instrumentation control, data acquisition and processing were executed by the software 

Chromeleon Data System version 7.2 (Thermo Scientific, Dionex). The electrical signals 

detected were integrated in µS (microSiemens). 

Anions were analysed by the IC system, consisting of an isocratic pump, conductivity detector, 

an injection valve with an injection loop for 10 µL, 2 mm AG18 guard column, 2 mm analytical 

IonPac AS18 separation column, coupled with a 2 mm Anion Self-Regenerating ADRS 600 

suppressor. All components were from Thermo Scientific, Dionex, UK. Chromatographic anion 

runs were carried out at 23°C under gradient elution using potassium hydroxide, 18 mM - 45 

mM, as base eluent and flow rate of 250 µL/min. Cations were analysed using the same IC 
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system consisting of an isocratic pump, conductivity detector, an injection valve with an 

injection loop of 5 µL, 3 mm CG16 guard column, 3 mm analytical IonPac CS16 separation 

column, coupled with a 2 mm Cation Self-Regenerating CDRS 600 suppressor. 

Chromatographic cation runs were carried out at 60°C under isocratic elution using 39 mM 

methanesulphonic acid as the base eluent and flow rate of 360 µL/min. The eluents and organic 

acid standard solutions were prepared using HPLC grade reagents (Sigma-Aldrich, UK). 

Prior to sample analyses, IC standards were measured and calibrated using Thermo Scientific 

Dionex Six Cation (II) standard 046070 and Seven Anion standard in deionized water 056933. 

These standard solutions were stored at 4°C until use. Table 3.2 shows the concentration of 

the ions in the standard solutions. 

Table 3.2: Summary table of metal ions concentration in the standard solutions. 

Cation Standard Anion standard 

Chemical Concentration (mg/L) Chemical 
Concentration 

(mg/L) 

Water (99.9%) Hydrochloric acid (pH 3.0 ± 0.3) 

Sodium Fluoride 20 Lithium Chloride 50 

Sodium Chloride 30 Sodium Chloride 200 

Sodium Nitrite 100 Ammonium Chloride 250 

Sodium Bromide 100 Potassium Chloride 500 

Sodium Nitrate 100 Magnesium Chloride 250 

Potassium 
Phosphate 
(monobasic 

150 Calcium Chloride 500 

Sodium Sulphate 
(dibasic) 

150   

3.6 Microbiology 

3.6.1 Microorganisms 

E. coli (NCIMB 10244) and P. aeruginosa (ATCC 47085) were obtained from the National 

Collection of Industrial, Food and Marine Bacteria, UK and the American Type Culture 

Collection, US, respectively. Both were used as model microorganisms for plasma treatment 

using the MPR. Stocks were stored at -80°C in a freezing mix containing di-potassium hydrogen 

phosphate (12.6 g/L), potassium dihydrogen phosphate (3.6 g/L), tri-sodium citrate (0.9 g/L), 
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ammonium sulphate (1.8 g/L), glycerol (300 g/L), magnesium sulphate (1.8 g/L) and deionised 

water (1100 mL). All components used to prepare the freezing mix were from Thermo Fisher 

Scientific, UK. Frozen stocks were thawed and streaked on nutrient agar media (Oxoid, UK) 

under sterile conditions and incubated at 37°C for 24 hours. The inoculated agar plates were 

kept at 4°C and replaced every 4 weeks. All media such as nutrient broths, phosphate buffered 

saline (PBS) and agar plates were autoclaved at 120°C for 20 minutes. 

3.6.2 Bacterial growth 

The microbial culture was prepared for the cultivation of E. coli and P. aeruginosa as follows. A 

loop of the microbial culture from previously prepared agar streak plate was inoculated into 

10 mL of sterilized 13 mg/L nutrient broth (Oxoid, UK). Broth cultures were left to grow at 185 

rpm in a rotary shaker at 37°C for 15 hours. The nutrient broth contained Lab-Lemco beef 

extract, yeast extract, peptone and sodium chloride at concentrations of 1.0, 2.0, 5.0 and 5.0 

g/L, respectively.  

Antibiotic susceptibility of both bacteria was determined using antibiotic susceptibility discs 

(Mastring-S M26 for Gram-negative rods, Mast Group Ltd., UK). Table 3.3 shows the list of 

antibiotics in Mastring-S M26. 100 µL of the bacteria grown in nutrient broth (OD600nm = 1.0), 

10-fold dilution, was spread on nutrient agar plate. Antibiotic susceptibility discs were placed 

on the inoculated plates, left to grow at 37°C for 24 hours and inhibition zones were measured 

using callipers (Mauser, Switzerland). Bacteria strains were considered according to the 

inhibition zones produced. This method was used to confirm the presence of streptomycin 

resistant E. coli and ampicillin resistant P. aeruginosa. 

Table 3.3: Summary table of antibiotics and concentration in Mastring-S M26.  

M26 

Antibiotic Concentration 

Ampicillin  25 µg 

Chloramphenicol  50 µg 

Colistin Sulphate  100 µg 

Kanamycin  30 µg 

Nalidixic acid  30 µg 

Nitrofurantoin  50 µg 

Streptomycin  25 µg 

Tetracycline  100 µg 
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3.6.3 Microbial culture in water 

A PBS tablet (Oxoid, UK) was dissolved in 100 mL of deionised water, autoclaved at 120°C for 

20 minutes, and filtered through a 0.22 µm membrane (Pall Acrodisc).This solution was used 

for washing and diluting the microbial culture. The resulting PBS contained sodium chloride 

(8.0 g/L), potassium chloride (0.2 g/L), di-sodium hydrogen phosphate (1.15 g/L) and potassium 

dihydrogen phosphate (0.2 g/L) with a pH of 7.3 ± 0.2 at 25°C). The resulting culture was 

centrifuged at 3000 rpm for 5 minutes. The resulting pellet was washed by suspending the 

pellet in filtered PBS solution, re-centrifuged at 3000 rpm for 5 minutes and re-suspended in 

filtered PBS. The microbial suspension was diluted in filtered PBS to obtain an optical density 

(OD600nm) of 0.4 for E. coli and P. aeruginosa using a Jenway 6305 spectrophotemeter, which 

corresponds to ~108 CFU per mL.  

3.6.4 Microbiological analysis 

3.6.4.1 Microbial adhesion test 

The microfluidic reactor was assessed for blockage and bacterial adherence to the 

microchannel walls. Bacteria suspended in PBS with a concentration of 108 CFU was left for 24 

hours continuously infused into the microfluidic reactor using each liquid flow rates of 35, 40, 

60 80, 90 and 100 µL/min and 1 atm gas pressure. Excess bacterial suspension in the 

microchannel was removed and the channel dried with filtered air driven by the syringe pump 

for 1 hour. 1% w/v fluorescein salt/PBS mixture (excitation wavelength of 485 nm and emission 

filter of 520 nm) (Sigma-Aldrich, UK) was pumped into the microfluidic reactor and excess fluid 

removed with pumped filtered air. The microchannel was visualised using epifluorescent 

microscopy (Nikon Eclipse E600 epifluorescence microscope, Tokyo, Japan) mounted with an 

F-View II black and white digital camera (Soft Imaging System Ltd., Helperby, UK, supplied by 

Olympus, Hertfordshire, UK). This system was operated using Cell-F image visualisation 

software (Olympus, UK) for image capture and analysis. The microchannel was focused using 

a 100X objective to image the fluorescence intensity of the microchannel. The presence of 

fluorescence at an increased intensity indicated the adherence of bacteria.  
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3.6.4.2 16S Sequencing  

The 16S rRNA gene sequencing was used as a standard method to confirm the bacterial used 

in this study. For the DNA extraction, 500 µL of overnight microbial culture was transferred to 

a sterile Eppendorf tube, centrifuged at 5000 rpm for 5 minutes, the pellet was washed and 

re-suspended in 500 µL of molecular grade water (MGW). The sample was heated at 100°C for 

5 minutes, centrifuged at 5000 rpm for 5 minutes and 100 µL of the supernatant transferred 

to a sterile Eppendorf tube. This contained the template DNA. 1 µL of the extracted DNA was 

mixed with 5 µL of Biomix (Bioline, UK), 3 µL of molecular grade water (MGW) and 1 µL of 16s 

primer mix, containing primers 27F (5′-AG AGT TTG ATC MTG GCT CAG-3′) and 518R (5′-ATT 

ACC GCG GCT GCT GG-3′) (Frank et al., 2008; Abbas et al., 2017) with a final concentration of 

10 pmol. MGW was used as control with no DNA. 16s primer mix was used to amplify a 

hypervariable region of the 16S rRNA gene.  

Polymerase Chain Reaction (PCR) was performed using a GTQ-Cycler 96 (Hain Scientific). The 

following PCR conditions were used: initial denaturation at 94°C for 2 mins, then five cycles of 

94°C for 30 s and 40°C for 1 min and then 30 cycles of 94°C for 30 s, 50°C for 1 min and 72°C 

for 3 min. The PCR product was analysed by agarose gel electrophoresis to check the size and 

that the control was clear. Agarose (1.5 g) was dissolved in 100 mL of TBE (Tris/Borate/EDTA) 

buffer and cast into a gel tray with a well comb in place. 5 µL of the sample was run on the 

agarose gel with 2 µL of OrangeG loading dye per sample for visualisation alongside a 100bp 

Hyperladder (Bioline). The PCR product was cleaned using ExoSAP (Thermo) to remove excess 

primer and unincorporated dNTPs. The ExoSAP protocol consisted of mixing 5 µL of post PCR 

product with 2 µL of EXOSAPIT reagent, leaving it to incubate at 37°C for 15 minutes followed 

by 80°C for 15 minutes. Following the ExoSAP protocol, 3 µL of the clean PCR product was 

mixed with 6 µL of MWG and 1 µL of either forward or reverse 16S primer. The purified 

sequencing product was then ready for Sanger sequencing. Sanger DNA sequencing was 

performed using BigDye v3.1 terminator and run on an ABI 3730 48-well capillary DNA Analyser 

(Applied Biosystems, California, USA). These 16S sequences obtained by Sanger sequencing 

were compared to known sequences of 16S ribosomal RNA (bacteria and archaea) using the 

Basic Local Alignment Search Tool (BLAST) to obtain the highest % similarity (NCBI 2015, 2019).  
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3.6.4.3 Spread plate method 

The concentration of viable cells was evaluated using a standard spread plate method. Agar 

plates were prepared using 28 grams of nutrient agar (Oxoid, UK) per litre of deinoized water. 

The agar solution was sterilized and cooled to 50°C before adding the desired antibiotic. 

Selective petri dishes were prepared with streptomycin (50 µg/mL) for E. coli and ampicillin 

(100 µg/mL) for P. aeruginosa. For mixed bacterial cultures, MacConkey agar (Oxoid, UK) was 

used for selective differentiation of both bacteria, i.e. E. coli colonies appeared as pink colour 

while P. aeruginosa colonies exhibited no colour. Serial dilutions of the bacterial suspension 

were prepared, with dilutions up to 1:108. Diluted samples of 100 µL were spread onto the 

surface of the agar plate using a sterile spreader. The inoculated Petri dish was left to incubate 

at 37°C for 24 hours before colony counting. The numbers of colonies formed were counted 

to determine the concentration of bacteria in the undiluted sample as CFU/mL. The limit of 

detection for spread plating 100 µL of the diluted sample was 1 CFU for 1: 108 dilution and the 

limit of quantification from a countable range of 25 – 150 CFU.  

Minimum inhibitory concentrations (MIC) for E. coli and P. aeruginosa were determined by 

varying the concentration of streptomycin and ampicillin and assessing bacterial growth using 

CFU counts. E. coli and P. aeruginosa inoculum with 108 CFU/mL were spread on plates 

containing various concentrations of 50 to 500 µg/mL of streptomycin or ampicillin and left to 

grow at 37°C for 24 hours. MIC was defined as the minimum concentration to inhibit visible 

growth (Wiegand et al., 2008). In each experiment, CFU counts in the uninoculated PBS were 

measured prior to inoculation for plasma treatment for viable growth of bacteria. Samples 

were collected before infusion of the bacterial suspension into the microfluidic reactor and 

from the outlet to compare the CFU to account for possible bacterial adhesion to the tubing 

and microchannel walls. Before each experiment, the microfluidic reactor, syringe and PTFE 

tubing were sterilized with 2% v/v sodium dodecyl sulphate (Sigma-Aldrich, UK) followed by 

rinses of autoclaved deionised water and ethanol. The microfluidic reactor, syringe and tubing 

were wrapped in autoclave packaging and sterilised for 20 minutes at 120°C. Three repeats of 

CFU measurements in uninoculated PBS and inoculated PBS before and after plasma treatment 

were carried out and compared. 
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3.6.4.4 Live/Dead Assay 

Live/Dead stains were diluted in dimethyl sulfoxide (Sigma-Aldrich, UK) according to the 

manufacturer’s instructions and individually diluted in a 1:10 ratio in sterile distilled water. 

Diluted propidium iodide and SYTO 9 were mixed together in a 1:1 ratio and 10 µL was spread 

across the sample, which was left to air dry in the dark. Samples were stored in the dark at 4°C 

and analysed for potentially viable or damaged cells using epifluorescent microscopy as 

described in section 3.6.5.3. Under the microscope, viable cells appeared green while non-

viable or damaged cells appeared red. The percentage bacterial coverage of live and dead 

bacteria was measured using separate selective UV filters for propidium iodide (excitation 

wavelength of 535 nm and emission filter of 617 nm) and SYTO 9 (excitation wavelength of 485 

nm and emission filter of 498) across the same field of view. A minimum of 10 fields of view 

using each UV filter were taken per sample.  

To examine cell viability before and after plasma treatment, samples were treated using a 

live/dead stain (LIVE/DEAD™ BacLight™ bacteria viability kit, Invitrogen, Scotland). 10 µL of 

collected bacterial samples, before and after plasma treatment, were loaded onto the surface 

of clean stainless steel coupons (L x W x H: 1.5 mm x 1.5 mm x 1 mm) (SS316 with 2B finish) 

and allowed to air dry in a microbiological Class II safety hood. Before bacterial samples were 

loaded on stainless steel coupons, surfaces were initially cleaned with 50% nitric acid, followed 

by sterile deionised water, ethanol and finally rinsed with sterile deionised water for 15 

minutes each, blown with compressed air and left to dry in a microbiological Class II safety 

hood. Populations of live and/or dead bacteria without plasma treatment were investigated as 

controls to validate that viable bacteria were SYTO9 positive (green) and nonviable bacteria 

were propidium iodide positive (red). Control for dead bacterial cells was prepared by 

centrifuging, at 3000 rpm, 5 mL of the microbial culture (OD600: 0.4 for both E. coli and P. 

aeruginosa), washing the pellet with PBS, re-centrifuged, resuspended in 5 mL of 70% ethanol 

and left for 1 hour. For live bacterial controls, microbial cultures were centrifuged and 

suspended in 5 mL of PBS. For mixed cultures, equal volumes of live and dead microbial 

cultures were combined and vortexed in sterilised Eppendorf tubes.  
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3.6.4.5 Scanning Electron Microscope for microbial samples 

Stainless steel coupons loaded with bacterial samples as described in section 3.6.5.3 and 

unloaded coupons as a control were immersed in 4% glutaraldehyde (Sigma-Aldrich, UK) 

overnight at 4°C to fix the bacterial cells. 10 mL of autoclaved and filtered dionised water was 

used to clean the surface of the coupons at a 45° angle. Sample coupons were left to dry for 1 

hour in a microbiological Class II safety hood followed by sequential immersion in ethanol 

(Sigma-Aldrich)/water mixture (30%, 50%, 70%, 90% and 100%) for 10 minutes for each 

concentration and left to dry in the Class II fume hood for 1 hour. Prior to SEM analysis, samples 

were stored at room temperature in a desiccator with silica gel. Samples were attached to 

aluminium pin stubs with adhesive carbon tabs before sputter coating with gold/palladium 

coating (Model: SC7640, Polaron, Au target, coating time: 30 seconds, 5 mA current. 800 V). 

The SEM was carried out using a Supra 40VP with SmartSEM software (Carl Zeiss Ltd. UK) and 

images were taken using an acceleration voltage of 2kV and a working distance of 

approximately 6 mm. 

3.7 Statistical analysis 

The standard error of the means are shown on graphs and tables using error bars, and 

lower/upper limits, respectively. ρ values were determined at the 95% confidence level using 

two-way ANOVA. IBM SPSS Statistic (Version 24) was used to perform statistical calculations. 

Post hoc analysis with Tukey’s test was performed for all data. The level of statistical 

significance was set at ρ < 0.05 for all tests. (IBM SPSS Stat., Ver. 24) 
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Chapter 4 Device characterisation of the microfluidic plasma reactor  

This chapter investigates the internal flow regimes, behaviour of the plasma discharge, and 

the effect of non-thermal plasma on the ion concentrations of water using the MPR.  

4.1 Introduction 

Non-thermal plasma is known to produce long- and short-lived chemical species in the plasma-

liquid interface and in water at ambient conditions (Gorbanev et al., 2016). Interaction of non-

thermal plasma and liquid has led to several studies addressing a variety of applications and 

prospective remediation such as surface modification (Inagaki, 2014; Desmet et al., 2009), 

analytical chemistry (Karanassios, 2004; Yuan et al., 2011), synthesis (Yanling et al., 2014; Peng 

et al., 2018a), material processing (Taylor and Pirzada, 1994), food processing (Thirumdas et 

al., 2015) and environmental remediation (Mizuno, 2007; Liao et al., 2017; Surowsky et al., 

2015). However, despite the advantages of non-thermal plasma, implementation outside of 

the laboratory and into real life applications or industry, specifically using direct treatment of 

water with non-thermal plasma treatment, has yet to occur.  

So far, non-thermal plasma in water industries was generated in remote discharge reactors to 

produce ozone, which is subsequently transported to water under treatment. However, 

several studies have demonstrated the superiority of direct plasma treatment compared to 

ozone and emphasize the advantage of direct plasma-liquid interaction to utilize plasma 

processes and highly reactive chemicals formed in plasma and the plasma-liquid interphase 

such as UV radiation and the hydroxyl radical.  Yamatake et al compared bubble discharge, i.e. 

plasma generated in gas bubbles formed in water, with remote discharge for ozone production 

and found decomposition of acetic acid in bubble discharge but no decomposition using the 

remote discharge reactor (Atsushi Yamatake et al., 2006a). This difference was explained with 

the production of oxygen radicals, excited gas atoms and hydroxyl radicals through plasma-

liquid interaction and none in remote discharge due to short lifetimes before they can reach 

the water under treatment. Dobrynin et al compared remote discharge and gas discharge i.e. 

plasma generated above liquid, for treatment of Bacillus spores and found a higher rate of 

inactivation through direct treatment using gas discharge than remote discharge (Dobrynin et 

al., 2010). In addition to utilizing reactive chemicals in plasma with short lifetime, inactivation 
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of the Bacillus spores was further assisted by the UV radiation in gas discharge but not in 

remote discharge. Other than reactive chemicals with short lifetimes and plasma processes, 

long-lived reactive species transferred from the gas phase into water or through recombination 

processes and rapid conversion of short-lived chemicals, can further enhance the treatment 

efficiency of contaminants in water (Jiang et al., 2014; Foster, 2017; Gorbanev et al., 2016). 

Due to the short lifetime of some of the reactive chemicals generated in liquid or the plasma-

liquid interface such as the hydroxyl radical with a lifetime of 2.7 microseconds (Attri et al., 

2015), studies have focused on investigating the contribution of longer-lived chemicals for 

water treatment and the quality of water, specifically long-lived reactive oxygen species (ROS) 

and reactive nitrogen species (RNS). Some studies used remote discharge to produce plasma-

activated water (PAW) and added it to the water for treatment; PAW has been commonly 

investigated for the disinfection of water but its application in chemical degradation is yet to 

be investigated (Gorbanev et al., 2016; Chauvin et al., 2017; Back et al., 2018; Judée et al., 

2018; Zhou et al., 2018; Pai et al., 2018). Zhang et al. reported effective disinfection of 

Staphylococcus aureus by ROS in PAW using 2% oxygen in argon carrier gas (Zhang et al., 2013). 

Taylor et al. attributed long-lived ROS and RNS generated in PAW using air as the carrier gas 

with the inactivation of E. coli. Zhou et al identified peroxynitrite, generated from reaction of 

nitrite and hydrogen peroxide, in PAW using air as the carrier gas as a critical chemical for the 

inactivation of E. coli. Chauvin et al demonstrated effective inactivation of Colletotrichum 

gloeosporioides using PAW, where a higher activation rate was observed with PAW generated 

using air than oxygen as the carrier gas (Wu et al., 2018). Using oxygen as the carrier gas, ROS 

(hydrogen peroxide and ozone) were detected while RNS (nitrate and nitrite) and ROS were 

both detected using air, which was attributed to the inactivation of C.  gloeosporioides; the 

mechanism involving RNS for the inactivation was not explained. Interestingly, some studies 

have shown future agricultural application of long-lived chemicals in PAW other than in the 

biomedical field. In a review by Thirumdas et al, direct plasma interaction with water or indirect 

interaction using PAW can be applied as an irrigation liquid for seed germination (Thirumdas 

et al., 2017). Judee et al used PAW as an irrigation liquid for plant growth and found increased 

growth of coral lentils, though thresholds of the RNS and ROS level in PAW for growth may 

differ when applied with different families of seeds (Judée et al., 2018). Wang et al used PAW 
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for food sterilization, inactivating Staphylococcus aureus inoculated on strawberries and found 

no changes in the physical properties of the PAW treated strawberries (Ma et al., 2015). 

These initial studies have demonstrated the benefits of the long-lived chemicals as prospective 

fertilizers, food sterilizers and as residual antimicrobial agents in water for prevention of 

subsequent contamination after treatment (Thirumdas et al., 2018; Kaushik et al., 2018). In 

addition, chemical quality of PAW can last for days; Buendia et al. observed the plasma effect 

on pH and nitrate lasting for at least 14 days; nitrate levels increased during and after 

treatment, which was assumed to be from the conversion of nitrite to nitrate (Buendia et al., 

2018). However, these long-lived species could pose a risk to the environment and individuals 

who consume such water on a regular basis. One of the major cause of eutrophication is an 

excess of nutrients in water, most commonly inorganic nitrogen and phosphorous (Yang et al., 

2008). Formation of ammonium, nitrites and nitrates in plasma-activated water are implicated 

as an additional source of nutrient pollution when released in to aquatic environments 

(González et al., 2008; Lunau et al., 2013). Inorganic ions such as nitrates are known to be a 

health hazard due to their metabolic reduction to nitrite causing a condition called 

methemoglobinemia, a blood disorder where a low level of oxygen is present in blood that can 

result in cyanosis (Fewtrell, 2004). Thus, the overall quality of plasma treated water in the 

future may require legal compliance with specific standards and guidelines for certain 

applications. For example, with drinking water, ion concentration such as nitrates over the UK 

regulated standard level, 50 mg/L, impairs the potability of plasma treated water (DWI, 2010). 

However, stricter regulation of setting nitrate levels between 1.5 and 4 mg/L has been 

proposed to meet good ecological status in surface freshwater and groundwater used for 

abstraction of potable water (HC, 2018). 

Several studies have shown that levels of these ions present in water after plasma treatment 

depends on various factors such as carrier gas, power consumption, plasma density, type of 

plasma reactor and treatment or residence time of liquid in plasma. Liu et al reported a 

decrease of RNS (nitrite and nitrate ions) in water when the air gap increases; the 

concentration of nitrite was lower than nitrate due to reaction with ozone or with nitrate (Liu 

et al., 2016).  Judee at al. observed similar trends of increasing concentration of nitrate, nitrite, 

ammonia, ammonium ions and hydrogen peroxide in tap water as treatment time increases; 
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bicarbonate concentration decreases as treatment time increases, which was attributed to 

conversion into gaseous carbon dioxide but yet to be validated (Judée et al., 2018). Bafoil et al 

compared nitrate ion in tap and deionised water after plasma treatment and found higher 

nitrate concentration in tap water compared to deionised water (Bafoil et al., 2018). Pai et al 

observed direct correlation between nitrite generation and power, with higher concentration 

of nitrite was generated using higher power input (Pai et al., 2018). Peng et al compared direct 

plasma treatment of water using spray discharge and gas phase discharge and found two times 

higher fixation rate of nitrite, nitrate and ammonium using the spray discharge (Peng et al., 

2018b). The observed result was attributed to the short distance between plasma and the 

spray liquid and thus allow faster dissociation of nitrogen to react with hydrogen or hydroxyl 

radical to form nitrate and nitrite. By using oxygen, less production of RNS in water benefits 

the process, specifically with plasma reactors in static configurations operating in the range of 

hours for treatment, but due to cost, air was widely used in most studies. Although the added 

benefit of long-lived species in water can further enhance the efficiency of PWT, production of 

high nitrogen containing effluent after treatment will require additional removal process 

through chemical reduction or further diluting the solution. However, such applications 

increase operational cost and would not be effective when applied in large scale where more 

concentrated solutions are produced.  

In the present work, the effect of plasma generated in a MPR on water composition in terms 

of ion levels was investigated. To the best of our knowledge, ion measurements in plasma 

treated water using a microfluidic device has not yet been reported previously. The aim of this 

chapter is to investigate the internal flow regimes, behaviour of the plasma discharge and 

evaluate the presence and concentration of ion species in plasma treated water using a MPR. 

We focus on the relationship between ion concentration and residence time of liquid in 

plasma. 

4.2 Experimental set-up 

The experimental reactor set-up is as described in Chapter 3.3. A non-thermal plasma 

generated by a DBD set-up using a microfluidic reactor and air carrier gas at atmospheric 

pressure was evaluated. The MPR was powered using a HV power supply with a frequency of 

17 kHz and applied voltage of 10 kV.  Gas-liquid two-phase flow in the microchannel was 
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established, in a microfluidic reactor with 100 µm channel depth, gas flow and liquid flow rate 

controlled at 1 atm and 35 to 150 µL/min, respectively. Water from three different sources 

was used in this investigation: Milli-Q water,soft tap water sourced from Manchester 

Metropolitan University, and hard tap water sourced from the University of Hull. Tap water 

samples were allowed to run to waste for 5 minutes to remove stagnant water from the 

distribution system and then collected and filled to the brim of a high-density polyethylene 1 L 

bottle. The water samples were filtered through a 0.22 µm syringe filter (Pall Acrodisc) and 

processed within 48 hours of collection. 

The initial temperature of the water samples was room temperature, approximately 22°C. 

Samples were directly injected (10 µL for anion and 5 µL for cation) into the ion chromatograph 

within 30 minutes of plasma treatment. Ion chromatography (IC) was used as a reference 

method for determination of ions in the water samples before and after plasma treatment. A 

description of the equipment has been presented in Chapter 3.5.3. Four dilutions (dilution 

factor of 101, 102, 103 and 104) of the standard solution (Thermo Scientific Dionex Six Cation 

(II) standard 046070 and Seven Anion standard in deionized water 056933) were used to plot 

the calibration curve of the peak area against concentration. The standard chromatograms for 

both anions and cations detected using IC can be seen in Figure S4.2 in the appendix. Both 

cations and anions of interest were separated completely within a total run time of less than 

15 minutes. The retention times of the anions and cations with their relative standard deviation 

obtained using a known standard solution are presented (Table S4.1 in the appendix).  

4.3 Results and Discussion 

4.3.1 Flow characterisation 

Multiphase flows are created when two or more immiscible constituents, such as liquid and 

gas, are simultaneously injected and come into contact in closed microchannels. The 

immiscible phases can form different flow regimes, which depend on acting forces such as 

surface tension, viscosity, inertia and gravity (Taitel and Dukler, 1976; Coleman and Garimella, 

1999). Microscopic images were acquired showing the bottom view of the microfluidic device, 

with various flow regimes observed depending on the flow rates of gas and liquid (Figure 4.1). 

Liquid was injected into the microfluidic devices at flow rates between 30 and 150 µL/minute 
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and gas flow pressures at 1 and 2 atm in 100 and 50 µm deep channels respectively. In 

microfluidic devices, small variations in the flow rate conditions can lead to flow regime 

transitions, i.e. from stratified to annular flow and annular to plug flow patterns (Taitel and 

Dukler, 1976). 

Figure 4.1: Optical microscope images of various dual phase flow regimes using 1 atm gas 
pressure and various liquid flow rates of less than 35 µL/min for (a) stratified flow, 35-100 
µL/min for (b) annular flow and greater than 100 µL/min for (c) plug flow and 1 atm gas flow 
pressure of compressed air in a 100 µm microchannel depth. 

 In the system, annular and plug flow were the two major flow regimes observed depending 

on the applied flow conditions. Annular flow was sustained at liquid flow rates between 35 - 

100 µL/minute (Figure 4.2) while plug flow was observed at flow rates greater than 100 

µL/minute in 100 µm deep channels. Liquid flow rates below 35 µL/minute led to the eventual 

failure (leaking) of the syringe containing the liquid. This was because the liquid flow rate was 

insufficient to prevent gas from passing back through the liquid inlet channels and into the 

syringe.  
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Figure 4.2: Optical microscope images of the annular flow regime observed using various liquid 
flow rates, 100 and 50 µm channel depth using 1 and 2 atm gas pressure of compressed air, 
respectively.  

 The generation of stratified flow was transient and not generated under any of the flow 

conditions employed due to the attraction between the glass microchannel wall and the liquid 

column at both low and high flow rates, resulting in annular flow or plug flow. Huh et al used 

a vacuum pump attached to the outlet to achieve stratified flow in a straight channel 

configuration (Huh et al., 2002) while Shahriari et al further increased the hydrophobicity of 

the channel walls through deposition of fluorosilane (Shahriari et al., 2016). However, such 

strategies were not studied with the current set-up since a vacuum pumping system may 

provide enough drawing capacity to attain stratified flow but the U-bends of the serpentine 

channel impede the gas flow and leads to low pressure areas. This result to flow regime 

transition caused by water attracted to the walls (Rosaguti et al., 2004; Maharudrayya et al., 

2006). This includes plasma reacting and leading to surface modification of the fluorosilane 

film with etching reactions (Williams et al., 2003). Prevention of transition to plug flow is 

important, as this leads to an effective reduction in the plasma-liquid interfacial area, which 

influences the degradation of contaminants in liquid treated by the device (Gobert et al., 2017). 

Annular flow was then employed to test the plasma discharge within the microfluidic devices. 

With annular flow, the liquid is expelled from the centre of the microchannel and flows as a 

thin film along the channel wall while gas flows continuously in the middle, providing a 

continuous gas core for discharge. Liquid flow rates were set to 35 - 100 µL/minute as minimum 

and maximum to avoid flow regime transition, or gas entering the sample syringe. 
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4.3.2 Film thickness and Residence time 

Flow rates between 35 - 100 µL/min of liquid and 4-8 mL/min of gas flow at 1-2 atm gas 

pressure were further investigated. These conditions produced a thin film of liquid on the walls 

of the microchannel, enabling control of two key parameters for plasma water treatment: 

liquid film thickness and residence time. Both parameters are critical in the control of mass 

transfer of the plasma species into the bulk of the liquid and the plasma-liquid interaction in 

the MPR.  

In general, the microfluidic device operated with liquid films in the order of micrometres and 

residence times of seconds, compared to batch type plasma reactors reported in literature 

with residence times in the order of several minutes or hours and film thicknesses of several 

millimetres (Dojčinović et al., 2011; Vanraes, 2016; Jones and Raston, 2017; Aziz et al., 2018; 

Krupež et al., 2018). The mean residence time of the solution in two-phase annular flow along 

the plasma discharge zone was calculated as the ratio of the inner volume of the reactor to the 

volumetric flow rate (Fogler, 1999), ranging from 3 - 9 seconds and 1 - 5 seconds in 100 µm 

and 50 µm channel depths, respectively. Thin film characteristics were adjusted by varying the 

liquid flow rate, with the average film thickness found to increase as a function of liquid flow 

rate. Thin liquid films were achieved at low flow rates of less than 50 µL/min, with an estimated 

liquid film thickness, ranging from 60 to 100 µm and 40 to 60 µm in 100 µm and 50 µm channel 

depths, respectively. The stability of the liquid film observed in the microchannels was reduced 

at higher flow rates. Film thicknesses varied over time using flow rates greater than 35 µL/min 

in 100 µm deep channels. Less surface deformation of the liquid film was observed in the 50 

µm channel depth compared to 100 µm using similar liquid flow rates but with higher gas flow 

pressure (Figure 4.2). It is possible that surface deformation may have an effect on plasma 

stability, which is likely to be detrimental to effective treatment, but it is also likely to lead to 

greater mixing which should enhance treatment (Bruggeman et al., 2007). 

Residence time and the liquid film thickness are important parameters with significant effects 

on maximizing plasma-liquid interfacial area and mass transfer of plasma induced species into 

the bulk of the liquid (Malik, 2010; Foster et al., 2018). Highly reactive species have inherently 

short lifetimes, i.e. approximately microseconds for solvated electrons, hence they do not have 
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much time to migrate into the liquid being treated and react as desired with the contaminants 

in the sample (Foster et al., 2018). Therefore, it is advantageous to have as thin a layer of water 

as possible to maximise the effectiveness of the plasma treatment process.  

4.3.3 Electrical characterisation 

With the MPR, the gas space and liquid film are effectively isolated from the circuit. An 

illustration of the main capacitive components, i.e. the dielectric barrier and gas (Figure 4.3). 

Figure 4.3: Schematic (a) representation and electrical equivalent circuit of the microfluidic 
chip.  

Characteristic current-voltage (I-V) sinusoidal waveforms of a DBD generated in the 

microfluidic device using flowing air and deionized water is shown in Figures 4.4 and 4.5. The 

current waveform, with numerous narrow peaks was observed with the microfluidic device 

operating DBD, where discharge is generated within a gas filled cavity in the form of 

filamentary streamers. In this case, each narrow peak represents plasma filaments passing 

across the channel of the MPR. As the applied voltage was increased, the number of plasma 

filaments observed increased in number and amplitude (Figure 4.4). The use of a dielectric 

barrier along the discharge path prevents the filamentary discharge transforming to an arc or 

spark resulting from an increase applied voltage and this allows the discharge to be sustained 

at low input power (Brandenburg, 2017). 
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Figure 4.4: Applied voltage and discharge current at an inlet air pressure of 1 atm, 100 µL /min 
liquid flow rate, 2 mm barrier thickness and a channel depth of 100 µm. Current traces are 
shown in green while voltage traces in yellow.  
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Figure 4.5: Photograph of chip during plasma generation using an ITO electrode (indium tin 
oxide) top view (Frequency: 17 kHz, Applied voltage (peak-to-peak): 12-13 kV) (Gas flow 
pressure: 1 atm, liquid flow rate (35 µL/min).   

The electrode voltage from the AC power supply was controlled at a peak-to-peak applied 

voltage of approximately 10 kV and the frequency was set to 17 kHz. In general, for the applied 

voltage used, the average power consumption was found to be 13.0 ± 0.7 W (Brandenburg, 

2017). The rate of plasma generation was predicted to be constant based on a consistent 

applied AC voltage to the plasma reactor at various liquid flow rates (Figure S4.1 in the 

appendix). It was assumed that the plasma generation in the microfluidic devices was confined 

to the gas column within the microchannel and transfer of the reactive species formed in the 

gas phase was dependent on the gas-liquid interface and residence time of liquid in plasma.  

Figure 4.2 shows the gas space decreasing as a function of increasing liquid flow rate. At higher 

flow rates, film thickness and surface deformation increased which may leave less space for 

plasma generation and affect the gas volume for excitation and ionization (Jones and Raston, 

2017). As of yet, the effect of plasma on the stability of the annular flow regime in our device 

is unknown. However, it is assumed that the plasma discharge does not have any significant 

effect on the flow regime inside the devices, with heat removal by external substrates, i.e. 

heatsink and thermal pad, decrease remote heating of the reactor and thus prevent thermal 

spots that may cause evaporation of water in the microchannel. Under a given power input 

supplied to the device, the rate of generated plasma species was assumed to reach a pseudo-

steady state. 



95 | P a g e  
 

Numerous studies have found treatment efficiency by plasma discharges to be influenced by 

the liquid to gas volume ratio (Fogler, 1999). So far, limited studies were performed with a 

similar reactor configuration and examined plasma generation in a dual phase annular flow 

regime. Wengler et al reported the application of plasma for organic synthesis (Wengler et al., 

2018). They used a microfluidic device equipped with transparent indium tin oxide as both 

ground and high-voltage electrodes for controlled oxidation of alkyl C-H bonds of cyclohexane 

in synthesising polyamide fibres. In this work, copper was chosen as both ground and high 

voltage electrode. 

Previous studies have shown the significance of the type of electrode used for plasma 

generation. Parkansky et al found particles eroded from titanium electrodes during plasma 

generation promote degradation of contaminant in water (Parkansky et al., 2013). However, 

over time, erosion of the electrode affects the performance and duration of the electrode and 

overall, the lifetime of the plasma system (Lukeš et al., 2006; Parkansky et al., 2012).  

Gnapowski et al shown that plasma generation over time led to corrosion products formed 

over the surface of electrode, which reduced the amount of plasma generated (Gnapowski et 

al., 2019). With the microfluidic reactor, unwanted erosion and etching of the electrode was 

avoided due to both electrode isolated from liquid and plasma. However, the performance of 

the DBD microfluidic reactor can be influenced by the electrical property of the electrode 

material such as ionization energy for electron emission and electrical resistivity as well as 

other parameters such as thickness and geometric area. Wang et al compared various 

electrode materials in their DBD reactor, with results showing higher NO removal efficiency 

using tungsten than copper and stainless steel (Wang et al., 2012). This was further explained 

by secondary electron emission coefficient, i.e. proportional to the square root of the metallic 

density, which is higher in tungsten compared to copper and stainless steel, resulting in higher 

rate of ionisation and excitation of the carrier gas to form reactive chemicals. In this current 

work, our electrodes are not made of tungsten or transparent materials i.e. ITO (indium tin 

oxide) but of copper tape, which is cheaper and more accessible. Copper tape was chosen, 

with low electrical resistance of 0.003 Ω/sq. while surface resistance of standard ITO glass 

varies from 4 to 12 Ω/sq. which limits its conducting ability for plasma generation.  
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4.3.4 Temperature 

During plasma generation in the microchannel, the temperature of the MPR was measured 

over time. The initial temperature of the dielectric material of the microfluidic reactor was at 

room temperature, between 20 and 24 °C. Initiating plasma generation results in an increase 

in temperature on both the  electrode and the dielectric surface over time. Overall, the rising 

temperature during initiation of plasma reduced the lifetime of the microfluidic reactor when 

installed and left running for prolonged periods of time (less than30 minutes). The continuous 

high input power and voltage drop over the electrodes due to poor load balancing at the power 

supply causes the reactor temperature rise to more than 85°C in under 30 minutes resulting in 

thermal fracture which is identified as low stress breakage due to large temperature gradients 

on the dielectric surface. The rise of temperature gradients is due to thermal spots formed at 

the electrical wire and both the copper electrode, causing an uneven thermal distribution on 

the dielectric surface.  Figure 4.6 shows an example of a single wavy crack caused by thermal 

fracture on the microfluidic reactor and a thermal image of the reactor in operation. As shown, 

the liquid temperature out of the outlet does not exceed the electrode temperature, between 

30-35 °C. Since the microdischarges formed in the microchannel are small, short-lived and 

distributed along the serpentine channel, the microdischarges were regarded to provide 

minimum contribution to large-scale heat transfer and generation (Jidenko et al., 2010; 

Tirumala et al., 2014). Heat transfer to liquid and gas occurs solely through conduction and 

convection from the dielectric surface.  

The amount of heat applied to the dielectric surface defines the ability of the microfluidic 

reactor to effectively run for long periods. As shown in Figure 4.7, the temperature was higher 

for the reactor with thinner dielectric barrier, which is due to less area for heat transfer and 

conducts heat at a much slower rate. Thus, the final model incorporated a heatsink, which 

transfers the heat generated away from the reactor surface. The reduction in dielectric surface 

temperature lead to increased longevity of the reactor, running up to 8 hours while plasma 

was ignited with surface temperature less than 50°C, applied voltage of 10 kV(p-p)  and 
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frequency of 17 kHz. The liquid temperature downstream of the DBD was measured at less 

than 5 °C difference with room temperature. 

Figure 4.6: a) Image of a thermal fracture (red circle) of the MPR. b) Thermal image of the MPR 
during plasma ignition. 

Figure 4.7: (a) Variation of electrode temperature over time: applied voltage 10 kV(p-p) and 
frequency 17 kHz. Error bars represent standard errors n = 3. Statistical significance, ρ > 0.05. 
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4.3.5 Chemical effects yielded in water by plasma treatment using a microfluidic 

plasma reactor 

In this section, the formation of ROS and RNS, as detected by IC, was evaluated. Ion 

chromatograms of anions and cations, with corresponding retention times, using a standard 

sample with anions and cations of interest are shown in Figure S4.2 and Table S4.1 in the 

appendix. The composition ratio of the ion species, dependant on the water sample and 

residence time in the plasma discharge zone, was investigated.  

4.3.5.1 Effect of plasma treatment using a microfluidic reactor on anion levels in 

water 

Measurements of the initial concentration of anions in the three different water samples 

were performed and compared after plasma treatment. Overall, no significant change or 

formation was observed in hard and soft water samples for fluoride, chloride, bromide, 

phosphate and sulphate in any of the samples (ρ < 0.05). No formation of these anions was 

detected in Milli-Q water after plasma treatment (Figure S4.3 in the appendix). 

Concentration of both nitrate and nitrite was observed to increase with increasing residence 

time, from around 3 to 9 seconds (Figure 4.8). The formation and change in concentration of 

nitrogen species in Milli-Q water and the tap water samples is due to the presence of nitrogen 

in air as the carrier gas for plasma generation.  
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Figure 4.8 : a) Nitrate concentration and b) nitrite concentration in water samples collected 
after plasma treatment for various residence times using the MPR. Error bars represent 
standard errors n = 3. Statistical significance, ρ > 0.05. 

Nitrite and nitrate at zero concentration at lower residence time could be explained by the low 

detection limits of the IC system. A maximum of 0.013 mg/L of nitrite and 0.143 mg/L of nitrate 

after 9 seconds of plasma treatment was measured in the water samples. These observed 

outcomes of nitrate and nitrite concentrations are lower than maximum outcomes in PAW 

generated in other types of electric discharge and plasma reactors (Chauvin et al., 2017; Judée 

et al., 2018; Thirumdas et al., 2018; Kaushik et al., 2018; Zhou et al., 2018). Even with the tap 

water samples, concentrations are considerably lower than the maximum standard levels 

a) 

b) 
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recommended in potable water, which are 50 mg/L for nitrate and 0.50 mg/L for nitrite in the 

UK (DWI, 2010). This is probably explained by the substantial low residence time of the water 

sample in the plasma discharge zone of between 3 and 9 seconds using a continuous-flow 

microfluidic system, compared to residence time in the range of hours with reactors in static 

configuration. However, these guidelines not only relate to the water quality but as well the 

treatment process and so far, plasma treatment is yet to be considered in meeting quality 

guidelines for potable water. Compared to static configuration, the microfluidic system 

demonstrate that lower level of ions can be attained in continuous flow configuration and 

lower residence time of liquid under treatment in plasma.  

The mechanism involved in generating nitrate and nitrite in water is the result of mass transfer 

or dissolution of reactive nitrogen species, formed in air plasma by gas-phase reactions of 

dissociated nitrogen and oxygen, into water (Adamovich et al., 2017; Judée et al., 2018). 

Studies have shown that NO, N2
+ and N are generated by plasma using air or nitrogen as the 

carrier gas.  In contact with liquid, RNS react with water molecules and subsequently generate 

H+ ions in water, as shown in Equations 4.1 and 4.2, reducing the pH of the media (Judée et al., 

2018). HNO2 and HNO3 reach equilibrium with their hydrolysed H+, NO2
-   and NO3

-  ions.  

 NO2 +  NO2 + H2O → NO2
-  + NO3

-  + 2H+ Equation 4.1 

 NO +  NO2 + H2O → 2NO2
-   + 2H+ Equation 4.2 

The results show that the overall concentration of nitrite in all three water samples after 

plasma treatment is lower by comparison to nitrate. This is due to the subsequent 

transformation of nitrite to nitrate ions by reacting with nitrate and ROS such as ozone, as 

shown in Equations 4.3 and 4.4, or disproportionation of nitrite to nitrate under acidic 

conditions (pH<3.5), as shown in Equation 4.5. This leads to a higher ratio of nitrate to nitrite 

concentration over the treatment time due to increasing competition leading to 

decomposition of nitrite to nitrate. 

 O3 + NO2
-  →  NO3

-  + O2 Equation 4.3 

 NO3 + NO2
-  →  NO2+ NO3

-  Equation 4.4 

 3NO2
-  +  3H+ + H2O → 2NO + NO3

-  + 2H3O+ Equation 4.5 

The starting pH for all three samples were relatively similar and significantly differed in 

conductivity (Table 4.1).  
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 Table 4.1: Parameters of the water samples before plasma treatment. 

After plasma treatment, no significant difference in pH was observed between before and after 

plasma treatment of the soft and hard water, maximum pH difference of 0.46 and 0.28 for soft 

and hard water, respectively. Thus, Equation 4.3 and 4.4 may have been the dominant 

reactions in the microfluidic reactor during plasma ignition in driving transformation of nitrite 

to nitrate. Other chemical species such as hydrogen peroxide were not measured by the IC, 

which may have contributed on the pH difference.  Compared to drastic decrease in pH of 

buffer and saline samples after plasma treatment, Schmidt et al associated the buffering 

components in tap water, such as carbonate, impede pH change in tap water, especially with 

hard water (Schmidt et al., 2019). At 35 µL/min liquid flow rate, pH change from 7.26 to 5.5 

was observed with Milli-Q water, which to an extent was contributed to exposure to air at 

prolonged period (1.5 hour) when collecting the minimum volume of 2 mL to measure pH. The 

control experiment of collecting MIlli-Q water for 1.5 hour, with no plasma treatment, showed 

pH decrease from 7.26 to 5.93, which is due to formation of carbonic acid and dissociates into 

carbonate or bicarbonate in water (Riché et al., 2006). Carbonate ions in Milli-Q water without 

plasma treatment were detected using the IC (Figure S4.3 in the appendix). 

Regardless of water conductivity, increasing production of nitrates and nitrite ions as residence 

time increases was detected in all three water samples. However, the effect of water 

conductivity on formation of ions in plasma treated water is yet to be understood. Initially, high 

conductivity of water was expected to affect the propagation of streamers leading to less 

plasma density and thus, low rate production of chemical species in plasma treated water. 

Hamdan et al found decreasing plasma volume with increasing liquid conductivity using bubble 

discharge (Hamdan et al., 2017). Using spark discharge over water surface, Midi et al concluded 

that water conductivity has a significant effect on the electric field which affects the electric 

potential distribution (Midi et al., 2013). Akishev et al reported decrease in strength of the 

electric field in liquid with high conductivity. Kornev et al found no significant change in 

composition of nitrate and nitrite with increasing conductivity using spark and corona 

Sample pH Conductivity (µS/cm) Temperature (°C) 

Milli-Q water 7.26 0.2 21.2 

Soft water (Manchester) 7.36 109.4 21.2 

Hard water (Hull) 7.95 747 21.2 
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discharge, but concentration of nitrogen containing ions decreased with increasing 

conductivity when dielectric barrier discharge was used (Kornev et al., 2013). This was further 

explained with the reduction of the density and energy of the microdischarge. However, no 

significant reduction in nitrate and nitrite concentrations in water after plasma treatment was 

observed, specifically with the hard water sample, when using the MPR. This could be due to 

the high surface-area-to-volume-ratio and power density of the plasma generated in the 

microchannel compared to plasma generated in bigger gas space (Ohtsu and Fujita, 2004), 

which may compensate the effect of conductivity and thus enhance conduction, leading to 

production of chemical species. Thus, similar linear behaviour was observed with all three 

water samples with different conductivity. 

4.3.5.2 Effect of plasma treatment using microfluidic reactor on cation levels in 

water 

After plasma treatment, no significant change in concentration of sodium, potassium, 

magnesium and calcium was observed (ρ < 0.05). However, an increasing concentration of 

ammonium ions was observed with all three water samples as residence time in plasma 

increases. Figure 4.10 shows ammonium concentration increasing with residence time, with a 

maximum of 0.0061 mg/L of ammonium measured in hard water at around 9 seconds of 

residence time in the plasma discharge zone. 

Figure 4.9: Ammonium concentration in water samples collected after plasma treatment in 
various residence times using a MPR. Error bars represent standard errors n = 3. Statistical 
significance, ρ > 0.05. (n=3). 
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The formation of ammonium ions in plasma treated water is described in a two-step 

mechanism via the dissociation of water molecules to form hydrogen gas in the gas phase, 

followed by reaction of hydrogen with excited nitrogen in the plasma phase to form ammonia 

(Judée et al., 2018). Ammonia undergoes an acid-base reaction in water, as shown in Equations 

4.6 to 4.10.  

 H2O* + H2O →  *H+ *OH +  H2O   Equation 4.6 

 H2O* +*H →   H2 + *OH Equation 4.7 

 *OH + H2O*  →  *H+   H2O2   Equation 4.8 

 N2
*+ 3 H2  →   2 NH3   Equation 4.9 

  NH3+ 3 H+ ⇋   2 NH4
+   Equation 4.10 

An increase in ammonium production due to the pH and conductivity of the water samples 

was considered. However, similar linear behaviour of ammonium production was obtained 

with all three water samples with similar pH but different conductivity. The independence of 

the steady production of ammonium, including the nitrogen-containing species on the initial 

concentration of ammonium measured in Milli-Q and tap water samples has led to the 

assumption that increased plasma-interaction with increasing residence time caused an 

increase in the formation of ions where conductivity has a negligible effect. This could be due 

to the inherent advantage of microfluidics with high surface-area-to-volume ratio and 

dimensions in µm leading to higher power density (Ohtsu and Fujita, 2004) and thus results to 

production of nitrogen species in water,  

4.4 Summary 

Characterisation of the process parameters and the generation of ions in the water samples by 

dielectric barrier discharge using an MPR was investigated. The main findings were: 

 Gas-liquid annular flow was employed due to limitation of experimental equipment and 

flow regime transition using low or high gas pressure and liquid flow rates.  

 Film thickness varied over residence time by changing the liquid flow rate, which affects 

the plasma liquid interfacial area and mass transfer of species formed in the gas phase 

during plasma ignition the plasma-liquid interface and in liquid.  

 Preliminary results with the MPR operating DBD confirm increasing number of plasma 

filaments as applied voltage increase.  
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 Longevity of the MPR was improved by using heatsink as passive exchanger of heat 

generated in the electrodes during plasma ignition.  

 Using air as the carrier gas for plasma generation, concentration of nitrogen-containing 

ions, i.e. nitrate, nitrite and ammonium, increase with increasing residence time. 

 No significant difference was observed with pH after plasma treatment of soft and hard 

water samples. This was contributed to low levels of ions formed in water after plasma 

treatment due to short residence time in the range of seconds and buffer components 

such as carbonate.  

 Effect of conductivity on concentration of ions detected in water after plasma 

treatment using the MPR was negligible. This could be due to the high surface-area-to-

volume ratio in microfluidic system and higher plasma density in smaller gas space, 

which compensate the effect of conductivity. 

The obtained concentration of the nitrogen-containing ions is substantially lower than the 

recommended standard ion levels in potable water. Compared to plasma reactors in static 

configurations, operating in the range of hours, low level of ions was attained in a continuous 

flow configuration with treatment time in the range of seconds. The MPR has the potential to 

form high quality of water, free of chemical or biological contaminants, without introducing 

high levels of ionic species in water treated by non-thermal plasma using air as carrier gas.  
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Chapter 5 Chemical degradation of methylene blue using a microfluidic 

plasma reactor  

This chapter investigates the process parameters such as residence time of the sample 

solution in the discharge zone, type of gas applied, dielectric thickness, channel depth and 

length that influence the degradation of methylene blue (MB) using the MPR. The results in 

this chapter has been published. 

5.1 Introduction  

The exposure of consumers to contaminants in supplied water presents risks to the human 

health and aquatic environment. Industrial wastewaters predominantly possess organic and 

inorganic chemicals such as textile dyes with small amounts (less than 1 mg/L) can contaminate 

tonnes of water and many of these industries discharges are highly coloured  (Kant, 2012; Khan 

and Malik, 2014; Holkar et al., 2016). According to the World Bank, an estimated 20% of global 

water pollution comes from textile processing and most of the effluent from textile industries 

is discharged untreated to receiving water sources (Kant, 2012). The discharge of wastewater 

without effective treatment can be mixed to freshwater and surface water sources that can 

ultimately enter potable water. Thus, water quality must be verified since textile dyes at low 

concentrations, i.e. less than 1 mg/L, in water are highly visible, affecting the aesthetic quality 

and safety of potable water (Kant, 2012). In humans, dyes are known to be toxic, which causes 

skin irritation, dermatitis, dysfunction of organs such as kidneys and liver, harm intestinal 

bacteria and carcinogenic degradation products. In addition, studies have reported its impact 

on photosynthetic activity in aquatic plants when discharged and accumulates in aquatic 

sources due to limiting the light to penetrate through water  (Gita et al., 2017). 

Azo dyes represent the most abundant class of synthetic dye found in contaminated water, 

with complex structures such as aromatic ring, which are not easily degradable either naturally 

or by conventional water treatment methods (Shu and Chang, 2005). Established technologies 

such as combined physico-chemical or biological methods are often incapable of reducing dye 

concentration to desired and/or legislated values of colour in treated water i.e. less than 15 

TCU (True Colour Unit) to colourless (Robinson et al., 2001; WHO, 2004; Adegoke and Bello, 

2015). For example, adsorption such as activated carbon are commonly used in removing dye 
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in contaminated water. However, the high capital cost, deterioration over time as number of 

cycle increases and difficulty in regeneration of adsorbent materials are some of the present 

day challenge in such conventional method (De Gisi et al., 2016). In addition, accumulation of 

concentrated and toxic compounds, since they are simply transferred rather than treated, 

presents essential post-treatment of incineration that consumes extensive amounts of energy 

(Gupta et al., 2012; Yagub et al., 2014; Nawaz and Ahsan, 2014). Degradation products of such 

organic azo dyes includes aromatic amines, which are known as mutagenic and even 

carcinogenic (Chung, 2016). If the complete mineralisation of organic contaminants, 

transformation of contaminants into harmless products such as carbon dioxide and water, is 

achieved, no highly toxic or concentrated by-products would be present in the processed 

water, which can be produced by conventional water treatment methods (Lin and Green, 1987; 

Ippolito et al., 2011).  

Considering the relevance of mineralizing of such contaminants, plasma-based water 

treatment has shown a promising solution of driving advance oxidation processes in solution 

for water disinfection and treatment. Several laboratory-scale plasma reactors have been 

developed for organic contaminant degradation as described in Chapter 2.4.3, which have 

adopted various types of plasma discharge, in water or at the water-gas interface. However, 

these have proven difficult to implement at the macro-scale (Foster, 2017). Plasma-based 

water treatment approaches have often been based on batch type reactors, which can achieve 

high levels of contaminant degradation, but at the cost of long residence times (Malik, 2010). 

Ideally, any processing system for water treatment should be continuous flow, which would 

require a large plasma-liquid interfacial area for plasma species to be generated and diffuse 

into the liquid, allowing for treatment of varying quantities of effluent within a short space of 

time to meet supply and demand. Innovative continuous flow plasma reactors such as falling 

water film reactors and reactors with radial flow have been applied to increase plasma- liquid 

interfacial area to improve treatment efficiency (Dojčinović et al., 2016; Wang et al., 2017b). 

In these systems thin films of water flow along the inner walls of a vertical cylindrical electrode 

and come into contact with plasma. These reactors performed favourably in terms of high 

degradation capability, with high mass transfer of plasma species into the thin film of solution 

along the discharge. However, fluid control and even film distribution were difficult to achieve 
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which can affect pollutant degradation efficiency. In addition, these systems are susceptible to 

electrode erosion processes. 

Recently, by exploiting the advantages of miniaturisation, effective dielectric barrier discharge 

(DBD) systems within microfluidic platforms operated at atmospheric pressure have been 

presented and utilised for plasma characterisation and synthesis reactions (Olabanji and 

Bradley, 2011; Yamanishi et al., 2013; Schelcher et al., 2014; Ishii et al., 2015; Tatoulian et al., 

2017), but these systems have yet to be applied to plasma based water treatment. Plasma 

microfluidic devices have also been employed recently for plasma synthesis in dual phase 

plasma–liquid systems, in particular for gold nanoparticle synthesis (Li and Lin, 2018), for 

synthesis reactions (Zhang et al., 2018), and for controlled oxidative processes (Wengler et al., 

2018), with all three studies indicating the potential of dual phase plasma–liquid microfluidic 

systems for studies in plasma water treatment. Microfluidics refers to devices and methods 

that allow the control of the spatial and temporal behaviour of fluids within dimensions less 

than a millimetre (Luo and Duan, 2012). The high surface-area-to-volume ratios inherent to 

microfluidic systems used in a range of different applications present significant enhancement 

of the observed reaction rate compared to traditional, macroscale bulk reactors. Utilising a 

microfluidic approach can benefit PWT by maximising the plasma–liquid interfacial area, 

enhancing mass transfer and reducing transfer distance of reactive species in plasma to liquid 

in continuous flow. Although each device may only process a small volume at a time, larger 

volumes can be processed by operating multiple devices in parallel (Iles, 2009). 

For these reasons, this work focuses on evaluating a continuous flowing system using a MPR 

for water treatment based on the degradation of MB as a model azo dye contaminant. MB can 

be found in wastewater that causes undesirable environmental impact on receiving waters, 

and subsequently on human health (Cragan, 1999; Soni et al., 2012; Giwa et al., 2013).  The 

MPR utilizes a DBD at atmospheric pressure, with the plasma generated in the gas stream of a 

continuous gas–liquid two-phase flow. The effect of residence time of the solution in the 

discharge zone, type of gas applied, barrier thickness and channel depth and length were 

evaluated. 
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5.2 Experimental set-up  

The experimental set-up described in chapter 3.3 was used for this investigation. Both gas 

and liquid were introduced into separate inlets of the MPR. Gas pressure was regulated to 1 

or 2 atm gauge in channel depth of 100 and 50 µm, respectively. Operating conditions of 

MPR1, MPR2 and MPR3 reactors with 50 µm channel depth were described in Chapter 3.4.1. 

The gas volume flow rate was approximately measured by attaching a Hamilton gas-tight 

syringe to the outlet, while desired flow regimes were generated within the microchannel of 

the device. The gas volume collected from the outlet was measured as a function of time for 

device inlet pressures of 1 and 2 atm. This gave 4 and 8 mL/min measured in devices with 50 

and 100 µm channel depth, respectively. Liquid flow rate was controlled within the range of 

35 to 100 µL/min. Resulting flow regimes were observed in the serpentine regions of the chip 

using an inverted light microscope (Zeiss Primovert). For this experiment, a fixed applied 

voltage of 10 kVp-p and a frequency of 17 kHz with air, argon and oxygen as the gas source 

were used. Barrier thicknesses of the microfluidic devices were modified by using different 

thickness top plates (1 – 3 mm) to achieve the desired top plate total thickness of 2 and 4 

mm whilst maintaining a bottom plate thickness of 1mm.  

Analytical grade MB (Sigma Aldrich), with a concentration of 5 mg/L in deionised water (18.2 

MΩ/cm at room temperature) and kept at pH 7.4 ± 0.5 by 0.1 M phosphate buffer, was used 

as a model sample for evaluation of the MPR. The concentration of MB was monitored, before 

and after plasma treatment, using a UV-vis spectrophotometer (Perkin Elmer Lambda 40) 

described in Chapter 3.5.1. The percentage of MB degradation due to plasma treatment was 

calculated using Equation 5.1; 

 Degradation (%) = (1-
[MB]

[MB0]
)  ×100                                                Equation 5.1  

where [MB]0 is the initial concentration of the MB solution and [MB] is the final concentration 

after plasma treatment. The by-products formed with plasma treated MB solution were 

identified by means of a mass spectrometer coupled with ESI-MS described in Chapter 3.5.2.  
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5.3 Results and discussion 

5.3.1 Effect of liquid flow rate 

The residence time of the liquid in the plasma zone was controlled by changing the flow rate 

of the liquid entering the MPR. To investigate the effect of residence time on the degradation 

efficiency of MB by non-thermal plasma generated in the MPR, flow rates ranging from 35 to 

100 µL/min were used in a 100 µm channel depth using air as the working gas for the initial 

study. Figure 5.1 shows the efficiency of degradation of MB with respect to liquid flow rate 

(Fig. 5.1a) and decolourization of the MB solution (Fig. 5.1b). Lower flow rates, which 

correspond to increasing residence time of the liquid in the plasma zone resulted in increased 

degradation efficiency of MB due to a longer plasma-liquid interaction. This increases the 

number of reactions and collisions between the MB in liquid and the reactive species formed 

in plasma leading to MB degradation.   
 

Figure 5.1: Degradation efficiency of MB in air non-thermal plasma at 1 atm of gas pressure 
as a function of liquid flow rate of liquid in the plasma zone using 100 µm channel depth. 
Error bars represent standard errors. (n=3, R2= 0.9851, ρ < 0.05) (b) Colour variation of 
plasma treated MB solution at various flow rates. From left to right: 35, 40, 50, 60, 70, 80, 90, 
100 µL/minute and untreated. 

a) 

b) 
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5.3.2 Effect of channel depth 

The effect of changing the channel depth was investigated, with Figure 5.2 showing the effect 

of reducing the channel depth of the microfluidic device on the degradation of MB, using air 

as the working gas. The use of a shallower channel depth, 50 µm compared to 100 µm, reduced 

the residence time of the liquid in the microchannel. Despite the shorter residence time, the 

results show significant improvement in MB degradation, with a maximum of 97% achieved, 

using a shallower channel depth and a liquid flow rate of 35 µL/min compared to 100 µm 

channel depth. The maximum residence time calculated in the 50 µm deep channel device was 

5 seconds. 

Figure 5.2: Degradation efficiency at different channel depths of 50 and 100 µm, air as feed 
gas at 4 and 8 mL/min respectively, applied voltage at 10 kV and frequency of 17 kHz. 100 µm 
(k = 0.088 s-1, R2 = 0.9952) and 50 µm channel depth  (k = 0.573 s-1, R2 = 0.8938). Error bars 
represent standard errors n = 3. Statistical significance, ρ < 0.05. 

The discharge gap distance, i.e. the channel depth of the microfluidic device, is important in 

terms of breakdown voltage. With a small gap distance, lower breakdown voltage and higher 

discharge current is expected (Yoon et al., 2018). Hence, decreasing the discharge gap from 

100 µm to 50 µm, increases the power density in the discharge zone when using the same 

applied voltage (Ohtsu and Fujita, 2004). As a result, a more reactive environment is expected 

and consequently the collision probability is increased between the reactive species in the 

plasma and the liquid in the channels. In addition, using a shallower channel reduced the liquid 
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film thickness compared to the deeper channels, which would have improved the utilisation of 

short-lived radicals for MB degradation in solution. Finally, the increase in pressure from 1 to 

2 atm led to an overall increase in the density of gas in the discharge regions, and potentially 

an increase in the concentration of active plasma species.  

5.3.3 Effect of barrier thickness 

The effect of thickness of the glass dielectric layer of the MPR was investigated, with Figure 5.3 

shows MB degradation for different barrier thicknesses. The results show that decreasing the 

barrier thickness improved MB degradation. As the barrier increases in thickness, the 

capacitance due to the barrier decreases, resulting in a greater voltage drop across the barrier, 

and less voltage applied across the gas gap. This results in a reduction of power applied to the 

plasma region, reducing the electron density and chance of collisions in the gas space, leading 

to a lower concentration of ions and excited atoms formed in the plasma (Li et al., 2008; Tao 

et al., 2008; Liu et al., 2012; Yang et al., 2013). 

In the literature, only cases of pseudo-first order plasma based degradation of MB at similar 

concentrations to this work were reported (Q. Wang et al., 2013; Yin et al., 2014; Thagard et 

al., 2016). The experimental results obtained here indicated that the degradation rate of MB 

in 100 µm channel depth fitted the pseudo-first order kinetic model. However, the data 

obtained using the 50 µm channel depth (Figure 5.3 a) has a lower R2 value  compared to the 

100 µm channel depth (Figure 5.3 b) on the calculated model. For both experiments, starting 

concentrations (5 mg/L) used were equal, therefore other effects such as enhancement of 

mass transfer of plasma species from the gas phase into the liquid phase are predicted to be 

occurring in the 50 µm channel depth, which results in the observed higher degradation of MB.  
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Figure 5.3: Effect of barrier thickness on MB degradation in constant plasma discharge with an 
applied voltage of 10 kV, frequency of 17 kHz, gas flow pressure of 1-2 atm and channel depth 
of 50 µm (a) and 100 µm (b). Total barrier thicknesses of 2 ± 0.1 (•) and 4 ± 0.1  (•) mm were 
used in this study. 50 µm channel depth (2 mm: k = 0.573 s-1, R2 = 0.8938, 4 mm: k = 0.203, R2 
= 0.9393) and 100 µm (2 mm: k = 0.088 s-1, R2 = 0.9952, 4 mm: k = 0.046, R2 = 0.9577). Error 
bars represent standard errors n = 3. Statistical significance, ρ < 0.05. 

5.3.4 Effect of gas pressure 

The gas flow rate of the carrier gas in the plasma zone was controlled by changing the gas 

pressure of the carrier gas entering the MPR1 with channel depth of 50 µm. Changing the gas 

flow pressure from 2 to 3 atm has not shown any significant difference in the degradation of 

a 

b 
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MB (Figure 5.4). By increasing the gas pressure, the water film flows as a smooth film along the 

microchannel wall and results in thin films, as shown in Chapter 4.3.1. The similarity of the 

observed trends of MB degradation for both 2 and 3 atm used in 50 µm channel depth suggests 

that the results are affected negligibly by increasing the gas flow pressure. The results showed 

no statistical difference (ρ > 0.05) between the degradation of MB using 2 and 3 atm gas 

pressure. Although, increasing the gas pressure does reduce the residence time of the gas 

phase and increase the density of gas in the plasma zone, effective degradation of MB was 

compensated for by the higher residence time of the liquid and more efficient mass transfer 

of plasma species from the gas phase to the thin water films. 

Figure 5.4: Effect of gas flow on MB degradation in constant plasma discharge using air as 
carrier gas with an applied voltage of 10 kV, frequency of 17 kHz and channel depth of 50 µm. 
Total barrier thicknesses of 2 mm was used in this study. Error bars represent standard errors 
n = 3. Statistical significance, ρ > 0.05. 

5.3.5 Effect of channel length 

In section 5.3.1, higher residence time lead to higher degradation of MB. Thus, amendments 

were made to the design of the MPR to include longer lengths of serpentine channel to enable 

higher residence times. The length of the serpentine channel was 395 for MPR2 and 595 mm 

for MPR3. Higher gas flow pressure was used to achieve annular flow for the new designs i.e. 

4 and 6 atm for MPR2 and MPR3, respectively.  



114 | P a g e  
 

Compared to MPR1 where the film thickness was uniform at full length of the serpentine 

channel described in Chapter 4.3.1, various thickness of the water film was observed along 

sections of the serpentine channel of MPR2 and MPR3 (Figure 5.5).  This was due to waves (b) 

and liquid ring flow (c), characterised by a liquid bridge separating two consecutive gas slugs, 

formed towards the outlet of the reactor. This could be due to decreasing gas-liquid relative 

velocity as both gas and liquid pass more channel bends in MPR2 and MPR3 compared to MPR1 

where formation of liquid bridge was suppressed by high velocity gas streams along its shorter 

channel (Taitel and Dukler, 1976). As mentioned in Chapter 4.3.2, formation of surface 

deformation along the water film such as waves and liquid ring flow observed in MPR2 and 

MPR3 may affect plasma stability for water treatment but their occurrence likely improves 

mixing for enhanced mass transfer during treatment (Bruggeman et al., 2007). 

Figure 5.5: Images of the flow patterns taken from each section of the MPR3 with operating 
with 6 atm gas flow pressure and 60 µL/min.  

MB degradation increases as the residence time in each microfluidic reactor increases (Figure 

5.6). There was no significant difference in MB degradation between MPR1, MPR2 and MPR3. 

Results show that MPR3 took the longest residence time to achieve the maximum MB 

degradation of 95% in 13 seconds compared to 96% in 8 seconds for MPR2 and 97% in 5 

seconds for MPR1. 
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Figure 5.6: Effect of channel length on MB degradation in constant plasma discharge using air 
as carrier gas with an applied voltage of 10 kV, frequency of 17 kHz and channel depth of 50 
µm. Total barrier thicknesses of 2 mm was used in this study. MPR1 (k = 0.573 s-1, R2 = 0.8938,), 
MPR2 (k = 0.259 s-1, R2 = 0.9648) and MPR3 (k = 0.171 s-1, R2 = 0.8385). Error bars represent 
standard errors n = 3. Statistical significance, ρ < 0.05. 

Increasing surface area of electrode was used to occupy the length of the serpentine channel 

for each reactor as described in Chapter 3.2.1. The resistivity of the electrode decreases with 

its surface area (Meaden, 2013). As a result, more current can be delivered for the same 

voltage applied to all three reactors to generate plasma along the area of the serpentine 

channel. However, the effects are small with no significant difference in MB degradation 

between the three reactors. This could be due to an increasing area of parasitic capacitance 

for longer channels, which is associated with the capacitance between the parallel channels. 

This includes power loss from poor load balancing at the power supply that causes the reactor 

temperature to rise, described in Chapter 4.3.4. Surface deformation of the water film along 

sections of the serpentine channel of MPR2 and MPR3 may reduce the oxidation process by 

leaving less space for plasma generation, affecting the gas volume for ionization and reducing 

the mass transfer of plasma species from the gas phase to the liquid phase (Malik, 2010; 

Thagard et al., 2016; Vanraes, 2016). Thus, compared to MPR1, longer residence time was 

required to achieve more than 95% MB degradation. 
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5.3.6 Effect of working gas 

MPR1 was operated using air, argon and oxygen as the working gases. MB degradation was 

more evident when oxygen was used as the working gas (Figure 5.7). By increasing the 

residence time of the MB solution in the plasma discharge zone, exposure of the MB solution 

to plasma increased and higher MB degradation was achieved. Kinetic behaviour of the 

degradation process was obtained by fitting the data to a pseudo-first order kinetic model 

using Equation 5.6 derived from Equations 5.2 to 5.5, based on the relationship between the 

degradation efficiency (𝜂), rate constant (k) and estimated residence time (t) (Yin et al., 2014; 

Thagard et al., 2016). 

 d[Mb]

dt
= -k [Mb] 

Equation 5.2       

 
∫

d[Mb]

[Mb]

[Mb]

[Mb]o

=- ∫ kdt
t

0

 
Equation 5.3 

 [Mb]= [Mb]o e- kt Equation 5.4 

 [Mb]

[Mb]o
= e- kt 

Equation 5.5 

 η=1-e-kt Equation 5.6 

The rate constant obtained by the best fit of Equation 5.6 to the data in Fig. 5.7 is 0.088 s-1, 

0.11 s-1 and 0.13 s-1 for air, argon and oxygen respectively. This model was used to postulate 

the order of the reaction kinetics which shows that using the microfluidic device allowed high 

degradation efficacy to be achieved, with residence times in the order of seconds rather than 

minutes or hours that have been reported in numerous studies using plasma reactors 

(Dojčinović et al., 2011; Jones and Raston, 2017; Aziz et al., 2018; Krupež et al., 2018; Attri et 

al., 2018). However, the rate of change of degradation with respect to residence time 

decreases with increasing residence time, due to the first order kinetics of the degradation 

process. In addition to residence time, degradation can be enhanced depending on the working 

gas (Figure 5.7). 
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Figure 5.7: Degradation efficiencies with different working gases at 1 atm of gas pressure, 
applied voltage at 10 kV and frequency of 17 kHz. Air (k = 0.088 s-1, R2 = 0.9952), argon (k = 
0.11 s-1, R2 = 0.9927) and oxygen (k = 0.13 s-1, R2 = 0.9898). Channel depth of 100 µm. Error 
bars represent standard error,   n = 3. Statistical significance, ρ < 0.05. 

High-energy electrons (e*) generated in the plasma produce reactive free radicals by reactions 

at the plasma-liquid interface, generating the species shown in Equation 5.8 (Locke and Shih, 

2011; Samukawa et al., 2012; Ruma et al., 2014): 

 H2O   +   e*     →     ·OH   +   H·   +    e- Equation 5.7 

However, nitrogen containing species generated in plasma indicated in Chapter 4.3 are known 

to scavenge reactive species such as ozone and hydroxyl radicals (Equations 5.9 and 5.10) 

(Nikitenko et al., 2004; Son et al., 2011): 

 O3   +   NO2
-      →     O2   +   NO3

-  Equation 5.8 

 OH·   +   NO2
-      →     OH-   +   NO2

·  Equation 5.9                       

The greater degradation of MB observed with argon and oxygen as the working gases 

compared to air can be attributed to the absence of scavenging nitrogen species (Feng et al., 

2016; Kovačević et al., 2017). The use of argon mainly relies on electron impact ionization of 

water molecules to produce hydroxyl radicals and hydrogen peroxide (Hamdan et al., 2017). 

With plasma discharges conducted in pure oxygen, greater amounts of reactive oxygen species 

were produced, in addition to hydroxyl radicals. (Bruggeman et al., 2016; Sano et al., 2002). 
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5.3.7 Degradation of MB 

To give a qualitative indication of the types of degradation products produced by plasmas in 

different working gases, mass spectra were obtained for untreated and plasma treated MB 

samples that were processed through the MPR. Untreated MB showed a prominent peak at 

284 m/z consistent with its molecular structure (Figure 5.8). After plasma treatment, 

differences in relative intensity of the 284 m/z peak and a number of fragments of MB were 

observed for each working gas used. Several studies have reported routes of MB degradation 

and intermediates after plasma treatment, which were consistent to the peaks obtained in this 

study (Wang et al., 2017a; Shirafuji et al., 2017; Bansode et al., 2017). The spectra obtained 

using oxygen as the working gas produced the greatest number of degradation products, 

compared to air and nitrogen. Although concentrations cannot be determined from these 

measurements and so it is not possible to determine the extent of mineralisation, it is clear 

that a significant number of degradation fragments are present in the samples following 

plasma treatment.  
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 Figure 5.8: Comparison of mass spectra of plasma treated and untreated MB. Various ions as 
detected by the MS. Molecular ion (MB+) = m/z 284.1221. Results taken with the different 
working gases at 1 atm inlet pressure, applied voltage at 10 kV, frequency of 17 kHz, liquid flow 
rate of 35 µL/min and channel depth of 100 µm. 
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MB is a relatively large molecule that requires many steps for its complete mineralisation to 

CO2, H2O and inorganic salts. MB is a water-soluble salt that dissociates in water and produces 

a chloride anion and MB cation. The LC-MS spectra shows a decrease in intensity of the peak 

corresponding to the MB cation (284 m/z), with several peaks were observed,  which may have 

been caused by bombardment of plasma species such as electrons or products such as 

hydroxyl radicals from hydrogen peroxide (Figure 5.8). Such processes lead to hydroxylation of 

the MB cation and intermediates to form polyhydroxyl compounds such as peak 338, 305 and 

144 m/z (Figure 5.9). These products continuously react with the reactive species formed in 

plasma and ultimately produce light ions with smaller m/z values, less than 200 m/z. In some 

studies, demethylation of MB caused by high-energy electrons generated in plasma were 

proposed as another option of MB degradation (Huang et al., 2010; Benetoli et al., 2012; Wang 

et al., 2017a; Bansode et al., 2017). In this mechanism, the N-CH3 bond is regarded as the 

weakest bond that can easily be attacked and lead to a successive demethylation pathway 

resulting in demethylated products of MB such as peak 244, 226, 228, 261 and 240 m/z (Figure 

5.9) (Yin et al., 2014). Based on the production of the degradation products corresponding to 

the prominent peaks identified on the LC-MS spectra, a mechanism of MB degradation was 

proposed (Figure 5.10). Successive hydroxylation of these products through the addition of 

hydroxyl groups results to the production of opened ring products of MB and leads to 

mineralization products (Oliveira et al., 2007; Benetoli et al., 2012). 
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Figure 5.9: intermediates that correspond to prominent peaks identified by the LC-MS for the 
different working gases. 
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Figure 5.10: Possible pathways of MB degradation based on the degradation products related 
to the peaks in the mass spectra obtained. 
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5.4 Summary 

The influence of the process parameters employed for the degradation of methylene blue 

using atmospheric pressure plasma generated in a microfluidic device was investigated. The 

degradation rates of the MB solution varied as a function of liquid flow rate, working gas, 

channel depth and barrier thickness. The main findings are: 

 Degradation was enhanced by using: lower liquid flow rates, thinner dielectric barriers 

and shallow channel depths.  

 With air as the carrier gas, a degradation of 97% was achieved at a liquid flow rate of 

35 µL/min, a barrier thickness of 2 mm and channel depth of 50 µm. 

 Increasing the gas flow pressure showed no significant difference in MB degradation. 

 Increasing the length of the serpentine region showed no significant difference in MB 

degradation. 

 Oxygen was found to be the most effective working gas. Higher number of fragments 

were detected using oxygen as the working gas.  

Since many water sources contain not only chemical but also microbiological contaminants, it 

is important to investigate the anti-microbial activity of plasma generated in a microfluidic 

reactor. The aim of this chapter is to optimise the process parameters to achieve the highest 

degradation of MB in air plasma and apply to other contaminants in water.  

  



124 | P a g e  
 

Chapter 6 Microbial inactivation using a microfluidic plasma reactor 

This chapter investigated the use of atmospheric-pressure plasma generated in a microfluidic 

plasma reactor for microbial inactivation of E. coli and P. aeruginosa, representative of Gram 

negative bacteria found in contaminated water. 

6.1 Introduction  

The greatest risk imposed by pathogenic microbes in water is related to the consumption of 

potable water contaminated with pathogenic microorganisms that pass untreated through the 

chemical and physical water treatment processes. Even though some of these microorganisms 

may not pose a problem to healthy individuals, pathogenic and opportunistic microorganisms 

can cause infections in immunocompromised individuals. Healthcare associated infections 

(HCAIs), defined as infections acquired as a consequence of healthcare intervention, are the 

most common incident that compromises patient safety globally (Allegranzi et al., 2011). In 

England, the prevalence of HCAIs in 2011 was 6.4%, with around 300,000 patients acquiring 

HCAIs annually costing the NHS £1 billion (Andrew et al., 2018). The implications caused by 

HCAIs are exacerbated with intensive care unit (ICU) patients, due to risks associated with 

invasive devices. Data included in a report by the WHO showed that hospital-wide prevalence 

of HCAIs varied from 3.5% to 12% and 5.7% to 19.1% in developed and developing countries, 

respectively (WHO, 2011). However, the proportion of patients acquiring at least one HCAI in 

ICU was significantly higher, with approximately 30% in developed countries and 4.4% to 88.9% 

in developing countries.  

The body has several mechanisms to counteract extracellular invasion and production of toxic 

substances by pathogenic microorganisms in tissue but immunocompromised patients are 

more susceptible to acquiring HCAIs and developing life-threatening complications such as 

sepsis, meningitis and endocarditis, due to an impaired immune system (Monegro and 

Regunath, 2018).  Waterborne HCAIs, caused by opportunistic waterborne microorganisms 

such as P. aeruginosa, are one of the most prevalent causes of mortality and morbidity 

incidences in settings such as healthcare (Ferranti et al., 2014). According to the report from 

the European Surveillance System, 8.3% of patients admitted in the ICU for more than 2 days 

acquired at least one HCAI, with P. aeruginosa as the most frequently isolated microorganism 
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(ECDC, 2017). Neonates in these settings are at higher risk of HCAIs, with several deaths of 

neonates in NICUs reported and directly linked to contaminated water systems (Wise, 2012; 

Walker et al., 2014). Kadambari et al. reported 93% of outbreaks was attributed to 

Pseudomonas infections in neonatal units, with 18% associated deaths, based on the Neonatal 

Infection Surveillance Network between 2005 and 2011 in the UK (Kadambari et al., 2014). 

HCAIs caused by Pseudomonas spp.  increased by 26.6% between 2013 and 2017 in the UK; P. 

aeruginosa was the most frequently isolated bacteria, with approximately 82% of incidences 

caused by this bacteria reported (PHE, 2018). At several outbreaks of HCAIS in the UK that 

caused morbidity and mortality in NICUs, pathogen intrusion into hospital water distribution 

systems was verified as the source of infection (Mora-Rodríguez et al., 2015; Wise, 2012; 

Kinsey et al., 2017; J Walker and Moore, 2015). A systematic review by Jefferies et al. 

highlighted water and surfaces in contact with contaminated water were the main sources of 

outbreaks of P. aeruginosa infections in NICUs, both in developed and developing countries 

(Jefferies et al., 2012). In addition to HCAIs caused by P. aeruginosa, other microbes such as E. 

coli were increasingly detected in outbreaks of waterborne HCAIs. Bou-Antoun et al. reported 

a sustained annual increase of HCAIs caused by E. coli in the UK, with a 6% increase between 

2012 and 2014 and the incidence recorded in neonates less than 1 year old was higher 

compared to older patients between 1 and 64 years of age (Bou-Antoun et al., 2016). 

In recent times, dramatic reductions of HCAI outbreaks caused by some microorganisms under 

surveillance in the NHS in England were recorded; methicillin-resistant Staphylococcus aureus 

(MRSA) and Clostridium difficile incidence reduced by around 25% and 17% between 2012 and 

2017, respectively (Andrew et al., 2018). However, their report included a 1.5% and 17% 

increase of E. coli and methicillin-susceptible S. aureus (MSSA) HCAI incidence over the same 

period, respectively; more than 5,500 patients were killed by E. coli infections in 2015, which 

cost the NHS £2.3 billion by 2018. Concerns of multi-drug resistant bacteria in waterborne 

HCAIs outbreaks were emphasised in these studies due to the reduction of therapeutic 

effectiveness of antimicrobial agents such as antibiotics in treating infected patients. According 

to the O’Neill commission in 2016, approximately 700,000 patients die annually due to 

infections caused by antibiotic resistant microorganisms, with an estimated 10 million deaths 

by 2050 and a cumulative global cost of $100 trillion as the emergence and spread of antibiotic 

resistant microorganisms continues to grow (O’Neill, 2018). Thus, before such pathogens reach 
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patients, especially immunocompromised individuals, efforts have focused on controlling the 

misuse of antibiotics, implementing safe practices of better hygiene and improved sources of 

safe water. 

In the UK, national guidance for safe water has been put into place, implementing routine 

water quality monitoring in augmented care units with specified interventions in the event of 

high microbial counts in treated water such as microbial counts of more than 0 and more than 

10 CFU/ 100 mL of E. coli and P. aeruginosa, respectively (DoH, 2013; DoH, 2016). Interventions 

to improve water quality in such events include the application of conventional methods such 

as boiling of water, replacement of filters, pipework with high deposits of scales or biofilms 

being replaced, and disinfection(Bichai et al., 2008).  Chlorination is an established effective 

conventional method of disinfection, reducing the number of bacteria in contaminated water, 

but it can be challenging to maintain adequate levels throughout the water distribution system 

(residual levels of less than or equal to 0.5 mg/L) to prevent recolonization of treated water 

and biofilm formation Li and Mitch, 2018). This includes problems of emerging concern such 

as toxic by-products in events of hyperchlorination, inefficient disinfection of some pathogens 

of clinical concern such as P. aeruginosa, an increase in antibiotic resistance of planktonic 

organisms, with studies reporting protection of waterborne pathogens by biofilms and other 

organisms such as amoeba (Bridier et al., 2011; Mao et al., 2018; Hou et al., 2019). While 

maintenance of pipework is required to prevent against leakage that can allow external 

contaminants into treated water and preserve the physical integrity of the distribution system 

by preventing the growth of deposits, it constitutes a significant management challenge for 

both an operational and public health point of view, including financial liability (Pollard, 2016). 

Several studies have focused on finding alternative methods of disinfection, with higher 

efficacy than chlorine, such as antibiofilm surface modifications and coatings to prevent biofilm 

deposition leading to water contamination and biocorrosion in distribution systems 

(Sadekuzzaman et al., 2015; Kregiel et al., 2019).  Installation of point-of-use filters (0.2 µm 

filtration units) at the exit of water outlets have been reported as effective in terms of dealing 

with contaminated tap water without the drawbacks of chemical based disinfection to subdue 

HCAI outbreaks and supply an immediate source of microbe free water in the event of a HCAI 

outbreak (Loveday et al., 2014; Falkinham III et al., 2015). In a 2-year study, Trautmann et al. 

reported a significant reduction of P. aeruginosa infections in a surgical ICU; from 3.9 
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incidences per month before point-of-use filter installation to 0.8 incidences per month after 

point-of-use filter installation (Cervia et al., 2008). Yet, point-of-use filtrations were costly in 

terms of hospital wide application and replacement being incapable of eradicating and only 

blocking the discharge of microorganisms to the treated effluent and the environment from 

the filter outlet. Radical strategies involving water free patient care such as the removal of sinks 

and the covering of water dispersal sources such as toilets, wash basins and sink drains where 

spray of water droplets could occur demonstrated a significant reduction of HCAIs (Mathers et 

al., 2018; Shaw et al., 2018; Livingston et al., 2018). Hopman et al.  reported a reduction in the 

rate of patient colonization with Gram-negative bacteria, particularly patients with longer 

admissions in the ICU from a 2.5 to 3.6 fold reduction (Hopman et al., 2017). However, in such 

studies, they relied on bottled water and disposable materials. Water free patient care relying 

on bottled water is ineffective as a long-term strategy, increasing the costs of patient care and 

problems with storage space for large patient population. In addition, some studies traced ICU 

outbreaks of HCAIs caused by P. aeruginosa to bottled water and thus, regular testing is 

required to ensure bottled water is sterile (Eckmanns et al., 2008; Naze et al., 2010). 

Other than the presence of antibiotic resistant bacteria in treated water, antibiotic resistance 

genes and antibiotics are only partially removed by conventional water treatment methods 

and enter treated water supplies (Rizzo et al., 2013). So far, there is poor understanding of 

such contaminants in water supplies, in terms of health impact and levels that lead to 

resistance in bacteria, with no maximum limit of antibiotics established by the EU and other 

international organizations (Rizzo et al., 2013). Previous studies of residual antibiotics, up to 1 

ng/L, in drinking water have reported no harmful effects to human health but the implications 

of potential toxicity from long-term exposure, bioaccumulation and effect during 

developmental periods have yet to be further investigated (Simazaki et al., 2015; Wang et al., 

2016; Jin et al., 2016; Li et al., 2017; Wang et al., 2017). Nonetheless, some studies reported 

that antibiotics and antibiotic resistance genes in ng/L to µg/L in aquatic environments could 

cause the acquisition of antibiotic resistance in bacteria (Sandegren, 2014; Danner et al., 2019), 

with the antimicrobial effect of antibiotic lost in treating biofilms (Cairns et al., 2018). 

Microbial biofilms can be formed from attached single cells and multicellular aggregates on 

surfaces (Kragh et al., 2016). To effectively prevent the development of biofilms, which can 
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lead to recontamination of treated water, several studies have focused on interfering in the 

attachment process during water distribution and improving treatment efficiency for 100% 

disinfection. A recent report by the European Commission highlighted improving the efficacy 

of water treatment, upgrading water treatment facilities with more advanced treatment 

technologies for the purpose of preventing waterborne microorganism that may develop to 

biofilms in distribution systems, reducing antibiotic resistance and providing potable water 

(Isabella et al., 2018). Specifically, advanced oxidation processes using non-thermal plasma has 

gained significant interest as an effective advanced treatment technology for the chemical-

free treatment of water (Foster, 2017). Microbial inactivation was attributed to be a 

consequence of the combined effect of the plasma process and generated reactive species. 

Compared to direct plasma-microorganism interaction in studies such as surface treatment, 

the presence of liquid acted as an additional barrier that impeded the direct interaction of 

plasma with the microorganisms in water. However, plasma generated in water has been 

attributed to plasma-induced changes in treated water. Plasma-liquid interaction leads to 

plasma processes such as UV light and the formation of several reactive species such as 

hydrogen peroxide, ozone and hydroxyl radicals, which are considered to be the main reactive 

species that promote the bacterial inactivation process (Foster, 2017). 

Several reactors using non-thermal plasma have demonstrated effective inactivation of various 

strains of bacteria such as Pseudomonas aeruginosa, Bacillus subtillus, Escherichia coli, Listeria 

monocytogenes, Acidithiobacillus ferrooxidans, Legionella gratiana, Staphylococcus aureus and 

Staphylococcus epidermis (Mai-Prochnow et al., 2014; Tian et al., 2015; Johnson et al., 2016; 

Zhang et al., 2017; Shaw et al., 2018; Pai et al., 2018; Kondeti et al., 2018). In a recent review 

by Liao et al., the antimicrobial efficacy of non-thermal plasma can be affected by several 

factors including environmental elements such as pH and process parameters of reactors such 

as input power, treatment time and gas type (Liao et al., 2017). So far, studies have focused on 

improving reactor design parameters that can enhance performance in both batch and 

continuous flow configurations, as well as energy efficiency and mass transfer of plasma 

species from gas into liquid for treatment (Malik, 2010). Higher treatment efficiencies using 

water films and spray discharge in plasma reactors was established for degradation of some 

organic and inorganic contaminants yet limited studies have been reported in terms of their 

antimicrobial application in a continuous flow system (Malik, 2010; Vanraes, 2016). Production 
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of plasma-activated water using water film or spray discharge containing high concentrations 

of long-lived species with antimicrobial properties such as hydrogen peroxide was reported as 

a tool for disinfection (Scholtz et al., 2015).  Burlica et al. reported inactivation of E. coli grown 

on agar by plasma-activated water, generated by spray discharge and sprayed onto the sample 

(Burlica et al., 2010). Compared to water film or spray discharge, several studies have 

demonstrated inactivation of bacteria in water using other types of discharges. Liu et al. used 

electrohydraulic discharge, where plasma is generated in water inoculated with S. aureus. Kim 

et al. used remote discharge to generate plasma-activated water and injected into water 

inoculated with E. coli (Kim et al., 2013). Rashmei et al. demonstrated effective disinfection of 

E. coli and Enterococcus faecalis in water using gas discharge where plasma is generated on 

the surface of the liquid (Rashmei et al., 2016). 

This work focused on evaluating the antimicrobial efficiency of non-thermal plasma 

generated in a microfluidic plasma reactor. With microscale devices, the high surface-area-

to-volume ratio inherent to microfluidics allows high plasma-microorganism interaction and 

mass transfer of plasma species into water for disinfection while operating in a continuous 

gas-liquid flow system. The optimised operating parameters from Chapter 5 were evaluated 

against opportunistic pathogens E. coli and P. aeruginosa, which are commonly isolated from 

waterborne HCAIs, focusing on microbial death and maximum antimicrobial efficiency. 

6.2 Experimental set-up 

The same experimental set-up described in Chapter 3.3 was used in this chapter. Antibiotic 

resistant strains of E. coli (NCIMB 10244, UK) and P. aeruginosa (ATCC 47085, US) were 

investigated in these assays. Cells were diluted in 10 mL sterile PBS (phosphate buffered saline) 

solution, prepared using sterile membrane filtered water (MilliporeElix, USA), to an optical 

density (OD) of 0.4 at 600 nm using a UV-vis spectrophotometer (Jenway 6305, UK), calibrated 

against sterile PBS. The sterile PBS used contains sodium chloride (8.0 g/L), potassium chloride 

(0.2 g/L), di-sodium hydrogen phosphate (1.15 g/L) and potassium dihydrogen phosphate (0.2 

g/L) at a pH of 7.3 ± 0.2 at 25°C. Cell counts were determined in CFU/mL using serial dilutions 

and the spread plate method, before and after plasma treatment, as described in Chapter 3.6. 

Cell counts of 5.4 x 108 and 7.0 x 108 CFU/mL were determined for E. coli and P. aeruginosa, 

respectively. For mixed bacterial cultures, MacConkey agar (Oxoid, UK) was used for selective 
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differentiation of both bacteria, i.e. E. coli colonies appeared pink in colour while P. aeruginosa 

colonies showed no colour. Cell counts of 3.0 x 105 and 5.0 x 105 CFU/mL for E. coli and P. 

aeruginosa, respectively, were determined in mixed bacterial culture. 

Both air and the inoculated liquid sample were introduced into separate inlets of the 

microfluidic plasma reactor. Gas flow pressure was regulated to 2 bar in a channel depth of 50 

µm while using air as the carrier gas. Bacterial colonies from planktonic and mixed culture 

samples were counted before entering the inlet and after exiting the outlet. The collection of 

samples was carried out after 3 to 5 minutes without plasma to stabilize the liquid flow and 5 

minutes after initiating plasma generation in the reactor. The experiments were repeated at 

least three times using independently grown cultures. To test for adhesion and blockage over 

time, samples were left to continuously flow for 24 hours using a 35 µL/min - 100 µL/min liquid 

flow rate. Fluorescence test was performed to check areas showing fluorescence, which was 

used to indicate bacterial adhesion on the channel walls. Morphological changes were 

observed using SEM and viability of plasma treated bacteria were observed using LIVE/DEAD 

assay. Both method were described in Chapter 3. 

Treatment of planktonic and mixed culture samples of E. coli and P. aeruginosa by AP-DBD 

generated in MPR1 with serpentine channel length of 212 mm and channel depth of 100 and 

50 µm were studied. A fixed applied voltage of 10 kVp-p and a frequency of 17 kHz with air as 

the gas source were used.  

6.3 Results and discussion 

6.3.1 Microbial adhesion 

 For every treatment, a control experiment with the inoculated sample flowing into the reactor 

treated only by the flow of the air as carrier gas but without plasma ignition was carried out. 

Bacteria tend to adhere to surfaces, forming microcolonies and developing biofilms (Tuson and 

Weibel, 2013). In continuous flowing systems, fluid flow can enhance transfer of substrates 

such as nutrients in the bulk liquid to the adhered bacterial colonies or biofilms (Taherzadeh 

et al., 2012). This allows the development of colonies and established biofilms on the surface 

of the channel, which may significantly affect the number of bacteria leaving the reactor via 
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the outlet and cause blockages in the microchannel over time.  No adhesion of large bacterial 

aggregates was observed on the channel walls but a cloudy appearance was observed in the 

fluorinated ethylene propylene (FEP) tubing using E. coli inoculated water. Similar results were 

observed with P. aeruginosa (Figure 6.1). 

 
Figure 6.1: Image of the FEP tubing (a) and epifluorescence microscopy images of the 
microchannel (b and c) after 24 hours continuous flow of inoculated liquid and d) after 
plasma ignition. Liquid flow rate of 100 µL/min and 2 atm gas pressure were used. 

No blockages and no significant reduction in bacterial counts over time was observed for both 

E. coli and P. aeruginosa (ρ > 0.05) as the solution containing these bacteria flowed through 

the reactor (Figure 6.2). This could be due to the enhanced fluid velocity and pressure from 

both air and liquid in the microchannel with small channel diameter, i.e. µm, compared to wide 

channel, i.e. mm, exerting shear forces on the attaching cells, inhibiting cell attachment and 

thus resulting in detachment of these cells (Rijnaarts et al., 1993; Donlan, 2002; Taherzadeh et 

al., 2012). No further observation of fluorescing bacteria on channel walls was made in areas 

where plasma was formed (Figure 6.1 (d)). This could be due to multiple processes and reactive 

species formed during plasma ignition where antimicrobial activity occurs upon bombardment 

with bacteria attached on surface of the channel walls and in water (Burts et al., 2009; Scholtz 

et al., 2015). 

a) d) 

b)                                                       c) 
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Figure 6.2: Measurement of E. coli and P. aeruginosa before entering the inlet (defined at 0 
minute) and after exiting the outlet where samples was collected at various times, 100 
µL/min liquid flow rate and 2 atm gas pressure. Error bars represent standard errors n = 3. 
Statistical significance, ρ < 0.05. 

6.3.2 Plasma treatment of bacteria in monoculture samples 

Planktonic and mixed bacterial samples were treated at various residence times by non-

thermal plasma generated in the microchannel. The residence time of the inoculated liquid in 

the plasma zone was regulated through changing the liquid flow rate entering the microfluidic 

plasma reactor. Before plasma treatment, 16S, Sanger sequencing was used to determine and 

confirm the identity of obtained bacterial samples (Figure S6.3 in the appendix). 

The surviving CFU/mL of the E. coli and P. aeruginosa over residence time showed that the 

reduction of E. coli and P. aeruginosa increased with increasing residence time. There was 

significant difference (ρ < 0.05) between untreated and plasma treated bacterial samples 

(Figure 6.3 and 6.4). Both bacterial strains were 100% inactivated where no colonies were 

observed, using 35 µL/min liquid flow rate with residence time of 5.3 seconds in the plasma 

zone. However, compared to P. aeruginosa, E. coli was inactivated more rapidly; no colonies 

were observed at lower residence time of 4.6 seconds after 24 hours of incubation. A 

statistically significant difference (ρ < 0.05) was observed between the plasma treated E. coli 

and P. aeruginosa as monoculture samples. This result indicated that P. aeruginosa may 
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require a higher residence time for further interaction between the bacteria and reactive 

species formed in the gas and liquid phase during plasma ignition or increased plasma density 

for a higher rate of inactivation.   

Though both E. coli and P. aeruginosa are classified as Gram-negative bacteria, the composition 

of their extracellular polymeric substance (EPS), which acts as protection from external forces 

and maintain biofilm architecture, differs. In E. coli, the composition of its EPS include various 

polysaccharides, proteins, membrane lipid and β-1,6-N-acetyl-D-glucosamine as 

polysaccharide adhesin for biofilm formation (Goller et al., 2006) while the EPS matrix of P. 

aeruginosa includes galactose- and mannose-rich Psl polysaccharide, protein, extracellular 

DNA, nucleic acid and other molecules (Ma et al., 2009). The use of plasma to treat E. coli and 

P. aeruginosa may be limited by its ability to penetrate the EPS matrix; the outer membrane of 

P. aeruginosa is 10 to 100 fold less permeable than E. coli and thus may lead to slow transport 

of reactive species formed in the gas and liquid phase during plasma ignition into the bacteria 

(Breidenstein et al., 2011; Gellatly and Hancock, 2013). However, a recent study on E. coli has 

found that during plasma treatment, the heat shock protein 33 (Hsp33) is activated to prevent 

protein aggregation, increasing the survival rate of bacteria that over-express the Hsp33 

encoding gene (Krewing et al., 2019). The Hsp33 gene is present in P. aeruginosa but similar 

studies have not yet been reported (Groitl et al., 2017).  Little is yet known in regards to 

waterborne bacteria developing resistance to plasma, similar to antibiotics. Yet, a recent study 

with P. aeruginosa has shown that plasma interferes with cell-to-cell communication in 

bacteria via quorum sensing, defined as the ability to regulate gene expression in response to 

changes in cell density. This limits the regulation of gene expression in bacteria, and thus 

results in reduction of virulence (Flynn et al., 2016). Different types of protein damage occur 

as a result, which eventually leads to membrane permeation, membrane depolarization and 

bacterial inactivation (Yost and Joshi, 2015). 

After 72 hours of incubation, emerging colonies of E. coli and P. aeruginosa were observed on 

agar plates with samples treated at residence times of between 1 and 3 seconds. The number 

of new colonies was low, less than 100 CFU/mL. No new colonies were detected in agar plates 

with samples treated with residence time greater than 4 seconds.  
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Figure 6.3: Surviving CFU/mL of monoculture E. coli in water after plasma treatment at various 
residence times. CFU/mL at 0 seconds indicates the starting CFU of E. coli in water introduced 
into the inlet while the subsequent results refer to samples collected from the outlet. Error 
bars represent standard errors n = 3. Statistical significance, ρ < 0.05. 
 

 

Figure 6.4: Surviving population of monoculture P. aeruginosa in water before and after plasma 
treatment at various residence times. With the control data, CFU/mL at 0 seconds indicates 
the starting population of P. aeruginosa in water introduced into the inlet while the subsequent 
results refer to samples collected from the outlet. Error bars represent standard errors n = 3. 
Statistical significance, ρ < 0.05. 

The microfluidic plasma reactor was able to achieve bacterial inactivation in the range of 

seconds of treatment, which showed it was sufficient to induce inactivation of bacteria in the 

water. The differences in residence time of liquid in plasma between the microfluidic reactor 

and plasma reactors reported in literature, demonstrate great influence of mass transfer on 
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disinfection by non-thermal plasma in shorter periods, i.e. from minutes and hours to seconds 

of treatment. Malik et al. reported that the surface-area-to-volume ratio of water under 

treatment affected mass transfer, indicating that high treatment efficiency observed using 

water spray or film was due to their large surface-area-to-volume ratio (Malik, 2010). 

Compared to conventional reactors, with liquid depths of cm or mm, reducing channel size 

down to those found in microfluidic devices in the order of microns increases surface-area-to-

volume ratio as the scale of the water film is reduced to micrometres. Thus, greater mass 

transfer and penetration of reactive chemicals from gas into liquid was obtained as compared 

to bulk reactors in static configuration with smaller surface-area-to-volume ratios where 

plasma interacts at the interface of the bulk liquid. 

Using air as the carrier gas for non-thermal plasma generation, complete inactivation of 

bacteria was achieved. Different carrier gases such as oxygen, nitrogen and argon have been 

used for plasma-based disinfection of water (Mai-Prochnow et al., 2014; Tian et al., 2015; 

Johnson et al., 2016; Zhang et al., 2017; Shaw et al., 2018; Pai et al., 2018; Kondeti et al., 2018). 

However, air is more attractive as an abundant and cheap source for plasma generation for 

cost effective plasma based water disinfection. As the main components of air are oxygen and 

nitrogen, a combination of ROS and RNS can be formed. Short-lived species (NO, OH and 

superoxide) and long-lived species described in Chapter 4 (nitrates, nitrites, ammonium) 

induce anti-microbial effect but the full mechanism of the direct oxidative effect induced by 

each individually or the synergy of these chemicals has yet to be understood. For example, 

hydrogen peroxide is a known effective disinfectant. In addition, when reacted with other 

chemicals generated in plasma such as nitrate, peroxynitrite forms, as shown in equation 6.1 

and 6.2, which has been suggested to induce an anti-microbial effect (Zhou et al., 2018). 

Peroxynitrite toxicity in microorganisms has been suggested to induce an oxidative stress 

response through oxidation and nitration of critical cell components.  For example, the 

oxidation of the mitochondrial membrane leads to release of pro-apoptotic factors and 

peroxynitrite-induced hyperactivation of the nuclear enzyme poly (ADP-ribose) polymerase 

causing reduction of ATP and NAD+, ultimately leading to apoptosis, necrosis or dysfunction 

(Szabó et al., 2007; Islam et al., 2017).    

 NO2
-  + H2O2  + H+ →  O=NOOH + H2O Equation 6.1 
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 HNO2 + H2O2  + H+ →  O=NOO- + H2O Equation 6.2 

6.3.3 Plasma treatment of mixed culture samples 

Both E. coli and P. aeruginosa in water was used to investigate the efficiency of the microfluidic 

plasma reactor in treating mixed microbial bacterial cultures in water. Upon using the 

MacConkey agar, no reduction in CFU/mL was observed in the mixed culture sample with E. 

coli and P. aeruginosa initial total concentration of 7.40 x 105 CFU/mL  and 5.40 x 105 CFU/mL 

for each bacteria) (Figure 6.5).  

Figure 6.5: Surviving populations of E. coli and P. aeruginosa after plasma treatment at various 
residence times. Error bars represent standard errors n = 3. Statistical significance, ρ < 0.05. 

The result showed a significant reduction in CFU/mL of both bacteria as residence time 

increased; no colonies of either bacteria were observed after a residence time of 5 seconds. 

The results of plasma treated mixed culture samples showed no statistical difference (ρ > 0.05) 

between the amount of surviving E.coli and P. aeruginosa; there was a significant difference (ρ 

< 0.05) in CFU/mL of the mixed culture sample before and after plasma treatment at all 

residence times tested. However, compared to the monoculture E. coli from the previous 

section, several colonies of E. coli were observed on agar plates with samples treated with 4 

seconds of residence time, whereas no colonies were observed in the monoculture 

counterpart. After 72 hours of incubation, emerging colonies of E. coli and P. aeruginosa were 

observed on agar plates with less than 4 seconds of residence time but no significant increase 
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in colonies observed for both colonies, less than 500 CFU/mL for both E. coli and P. aeruginosa. 

No new colonies were detected with a residence time of more than 4 seconds. 

Several papers have indicated that there was inactivation of bacteria after plasma treatment, 

yet few had further examined possible regrowth of colonies after more than 24 hours 

incubation (Yingguang et al., 2011; Sanaei and Ayan, 2015; Ercan et al., 2018). In this study, a 

higher residence time showed no regrowth of bacteria after an incubation period of 72 hours, 

which could be due to a higher degree of plasma and water interaction inducing oxidative 

stress, which killed the bacterial samples in water. However, regrowth of small colonies was 

detected on agar plates, with samples treated with shorter residence times, after 72 hours 

incubation and the counts remained the same after a further 24 hours incubation. This may be 

indicative of small colony variant (SCV) bacteria, an aberrant form of bacteria generated in 

response to environmental stress, characterized with a slow growth rate, reduced metabolic 

activity and increased resistance to antibiotics, which are able to recover over time when 

provided with essential factors such as nutrients (Proctor, 2006). Several studies indicated SCV 

bacteria to be less virulent due to less efficient colonization but infections facilitated by SCV 

bacteria were over 100 fold resistant to treatment than normal strains (Proctor, 2006). Initial 

studies of P. aeruginosa, E. coli and S. aureus SCV strains reported their ability to remain within 

the host cells and cause recurrent or chronic infections despite the use of antibiotics (Melter 

and Radojevič, 2010; Xia et al., 2017; Pestrak et al., 2018). In this study, treated samples were 

left on agar for further incubation, which has the essential factors such as nutrients that may 

have led to the bacterial regrowth observed (Kriegeskorte et al., 2014). Similar to SCV bacteria, 

viable but nonculturable (VBNC) bacteria, which refers to live bacteria in a state of low 

metabolic activity, which cannot be cultured, remains a concern for potential risks upon 

exposure. The current method of spread plating fails to detect bacteria treated by non-thermal 

plasma that have entered the VBNC state. Although there are conflicting viewpoints in terms 

of virulence of VBNC bacteria, some studies have found resuscitation of VBNC bacteria in 

favourable conditions such as nutrient availability and temperature-induced resuscitation 

(Ramamurthy et al., 2014). This potentially allows bacteria to cause infections prior to or after 

it enters the body. However, this may not be reflective in terms of non-thermal plasma 

inducing SCV or VBNC states in bacteria during and after treatment. This is due to stronger 

antimicrobial effect than conventional disinfectants, with effects such as acidification and 
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presence of long-lived species as residual disinfectant against regrowth of bacterial colonies in 

plasma treated water. As observed in plates with samples treated at a longer residence time, 

no colonies were detected after 72 hours of incubation compared to samples treated with 

shorter residence times, which were assumed to be SCV or resuscitated VBNC E. coli and P. 

aeruginosa. Virulence and resistance of regrown bacteria in SCV or VBNC states detected in 

plasma treated water has yet to be reported. This generates concern and further research is 

required in terms of survival and virulence of surviving strains. 

6.3.4 Scanning Electron Microscope (SEM) 

SEM analysis was employed to visualise the effect of non-thermal plasma treatment on 

bacteria in water using a microfluidic plasma reactor. Images of untreated E. coli and P. 

aeruginosa confirmed the presence of healthy cells with the cell membrane appearing smooth 

and intact (Figure 6.6). After plasma treatment, both bacterial species showed distinct signs of 

damage such as irregular shape, dimples on the surface, craters, holes and burst cell 

membranes. This may have led to its content being released and resulting in its inactivation.  

E. coli P. aeruginosa 

  

a) d) 
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Figure 6.6: SEM images of E. coli (a, b, c) and P. aeruginosa (d, e, f) before and after plasma 
treatment. Untreated E. coli (a) and P. aeruginosa (d). Plasma treated E. coli (b, c) and P. 
aeruginosa (e, f). Images a and d correspond to control samples, images b and e to samples 
treated with a 5 seconds residence time and images c and f to samples treated with a 3 second 
residence time. Black arrows indicate intact cells while white arrows indicate dimples or 
damaged cells. 

The appearance of such distinct damage on cells after plasma treatment has been previously 

reported for E. coli and P. aeruginosa; plasma treatment results in ruptured cell membrane 

and leakage of contents, affecting their metabolic functions and ability to replicate and grow, 

which leads to the death of the bacteria (Ziuzina et al., 2015; Sun et al., 2018). A series of 

chemical and physical reaction processes induced simultaneously by plasma processes such as 

UV light, high-voltage electric fields, and reactive species generated in plasma can lead to 

inactivation of cells (Montie et al., 2000; Mounir Laroussi et al., 2002). According to Laroussi et 

al., OH radicals compromise cellular viability through oxidation of proteins and 

b) 

c) 

e) 

f) 
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polyunsaturated fatty acids in the bacterial cytoplasmic membrane i.e. lipid peroxidation, 

reducing its permeability, barrier function, and transport of ions and molecules in and out of 

cells (Laroussi and Leipold, 2004). Thus, prolonged exposure to plasma causes rupture of cell 

membranes, leakage of intracellular components and exposure of genetic material to the 

surrounding environment. Mendis et al., theoretically predicted that such morphological 

change is caused by electrostatic disruption of the cell membrane, specifically electrostatic 

stress caused by charge collection on the outer membrane exceeding the tensile strength of 

the cell membrane (Mendis et al., 2000). In addition, such electrostatic disruption is more 

pronounced in Gram-negative bacteria with irregular structure, rough surface and thin 

membranes compared to Gram-positive cells with a smoother surface and thicker 

peptidoglycan layer Mai-Prochnow et al., 2016). Some papers displayed SEM images 

comparing Gram-negative and Gram-positive bacteria where similar irregularity of the cell 

membrane was observed with inactivated Gram-negative bacteria while inactivated Gram-

positive bacteria show intact cell membrane with associated changes in configuration, i.e. from 

long to short chains after plasma treatment (Laroussi et al., 2002; Lee et al., 2019;).  This was 

further explained by differences in strength due to the thickness of the cell wall.  

In the SEM images, dead cells were identified with burst membranes but cells with intact 

membranes were also observed (Figure 6.6 (c, f)), which were assumed to be live, VBNC or SCV 

bacteria recovered. However, some studies reported that plasma was not specific with 

damaging the cell membrane only, detecting reactive species such as hydrogen peroxide within 

the cells after plasma treatment. These reactive species can exert intercellular damage and 

lead to oxidation of lipid, proteins, carbohydrates and nucleic acid (Joshi et al., 2011; Dobrynin 

et al., 2011; Yost and Joshi, 2015). Yost et al., found that long exposure of E. coli to plasma of 

5 to 10 minutes led to oxidative stress of the DNA through oxidation of DNA bases, causing 

DNA fragmentation (Yost and Joshi, 2015). At the same time, they found OxyR and SoxR, 

regulator proteins that detect oxidative stress and regulate antioxidant genes, activated in 

E.coli in the presence of hydrogen peroxide after plasma treatment. However, an imbalance 

due to increasing accumulation of reactive species treatment over cellular detoxifying capacity 

of the cell during prolonged plasma led to oxidation of the regulator proteins and oxidative 

stress-induced cell death. 
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6.3.5 Live/Dead Assay 

A Live/Dead assay was conducted on cells treated with plasma since SEM was limited in 

determining viability of treated cells, specifically the cells with intact membranes (Figure 6.6). 

Plasma treated E. coli and P. aeruginosa were double stained with SYTO9/propidium iodide (PI) 

and observed by epifluorescence microscopy. SYTO9 permeates the intact cell membrane of 

living cell and stains the cell green while PI cannot permeate through the cell membrane of 

living cells and stains dead cells with disrupted cell membranes red. Representative live and 

dead cell controls for the Live/Dead assay were tested (Figure S6.4 in the appendix). Results 

from the Live/Dead staining indicated dead E. coli and P. aeruginosa after plasma treatment; 

control E. coli and P. aeruginosa showed green fluorescence while plasma treated E. coli and 

P. aeruginosa showed red fluorescence (Figure 6.7). This showed that plasma affected the 

permeability of the cell membrane, which allowed PI to enter the cell, emitting red 

fluorescence upon binding to the DNA.  Thus, dead E. coli and P. aeruginosa were identified in 

plasma treated water. Likewise, no green fluorescence was detected in samples treated in 5 

seconds residence time after 72 hours incubation. However, this method is limited in providing 

indication of red fluorescing bacteria in VBNC or SCV state, which under favourable conditions 

such as nutrient availability can potentially re-grow. In some samples treated with longer 

residence times, a small fraction of green fluorescence was detected indicating live cells (Figure 

6.7 (c, f)). This may correspond to some of the bacteria detected in the SEM images with intact 

membrane after plasma treatment. However, as previously mentioned, plasma treatment was 

not specific in causing damage to the cell membrane for inactivation. Thus, such bacteria with 

intact cell membranes but with compromised function allows permeation of SYTO9 (Schmidt-

Emrich et al., 2015). 
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E. coli P. aeruginosa 

    

  

  

Figure 6.7: E. coli (a, b, c) and P. aeruginosa (d, e, f) viability according to Live/Dead assay 
results before and after plasma treatment. Images a and d correspond to control samples, 

a) 

b) 

c) 

d) 

e) 

f) 
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images b and e to samples treated with a 1 second residence time and images c and f to 
samples treated with a 5 second residence time.  

6.4 Summary 

Antimicrobial efficacy of a microfluidic plasma reactor was investigated. The main findings 

were: 

 Both E. coli and P. aeruginosa showed the same trend, with decreasing bacterial 

viability as residence time in plasma increases.  

 Using air as the carrier gas, effective disinfection of water was achieved. Full 

inactivation of both bacteria (108 CFU/mL maximum number of each bacteria treated) 

as monoculture and mixed culture was achieved after 5 seconds of residence time in 

the plasma region of the plasma microfluidic reactor. 

 Mixed bacterial culture samples may induce protection to plasma compared to the 

monoculture samples. 

 Compared to E. coli, P. aeruginosa is less susceptible to plasma, probably due to a 

thicker EPS matrix that offers an extra barrier.  

 The ability of plasma to penetrate the bacteria was confirmed with SEM and Live/Dead 

assay. SEM analysis reveals changes in cell morphology, with ruptured cell membrane, 

while Live/Dead assays revealed dead and non-culturable cells after plasma treatment. 

Results may correspond to live, dead VBNC or SCV cells. 

This work demonstrated that non-thermal plasma has the potential to replace chemicals and 

disinfectants for water treatment methods. The microfluidic plasma reactor allows the control 

of fluid flow dynamics, and utilizes its inherent advantages such as large surface-area-to-

volume ratio to facilitate improved mass transfer and plasma penetration of water, leading to 

cell damage and reducing the viable bacterial counts by 8 orders of magnitude in seconds.  
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Chapter 7 Conclusion and further work 

The primary aim of this work was to develop and characterise a microfluidic reactor that allows 

for the evaluation of the effect of several operating parameters on the treatment efficiency of 

chemical and biological contaminants in water using atmospheric pressure non-thermal 

plasma. Further optimisation of these parameters was carried out to achieve maximum 

treatment efficiency of these contaminants using air as carrier gas. 

Initial characterisation of the microfluidic reactor and influence of non-thermal plasma using 

air as carrier gas in water resulted in the following findings: 

 Plasma was generated in the microfluidic reactor using a two-phase gas-liquid annular 

flow regime. Both film thickness and residence time of the liquid film formed on the 

walls of the microchannel was regulated by changing the liquid flow rate. 

 As the applied voltage increases, the number of discharges formed in the 

microchannel increase, in conjunction with reactor temperature. Reactor 

temperature and longevity was improved by installing a heatsink. 

 Using air as the carrier gas, concentration of nitrogen containing ions, such as nitrate, 

nitrite and ammonium, increase with increasing residence time in range of seconds.  

Treatment of a chemical contaminant in the form of MB solution was investigated. 

 A longer residence time of the liquid film in the plasma achieved by decreasing the 

liquid flow rate increases the treatment efficiency of MB; this is due to increasing 

reactions and collisions between plasma generated species and MB in water. 

Increasing the gas flow rate showed no signifacant difference in MB degradation. 

 The degradation efficiency of MB using the MPR has a maximum of 97% using air as 

the carrier gas, liquid flow rate of 35 µL/min, a barrier thickness of 2 mm and channel 

depth of 50 µm. 

 Oxygen was found to be the most effective working gas. Higher number of fragments 

were detected using oxygen as the working gas.  

To enhance the influence of residence time on the treatment of MB solution, MPR with 

longer serpentine channel was used.  
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 Increasing the length of the serpentine channel showed no significant difference in 

MB degradation; this is due to power loss from power loading and increasing area of 

parasitic capacitance. 

The influence of process parameters on the anti-microbial effect of non-thermal plasma 

against E. coli and P. aeruginosa using a MPR was investigated. 

 Using air as the carrier gas, effective disinfection of water was achieved. 100% 

disinfection of both bacteria (108 CFU/mL maximum number of each bacteria treated) 

as monoculture and mixed culture was achieved after 5 seconds of residence time in 

the plasma region of the plasma microfluidic reactor. 

 Non-thermal plasma induces rupture of the cell membrane with a Live/Dead assay 

revealing dead bacteria after plasma treatment. 

To conclude, maximum treatment efficiency of an organic contaminant, in the form of MB, and 

biological contaminant, in the form of E. coli and P. aeruginosa was achieved in air plasma using 

the MPR. Low levels of ionic species were generated in the plasma treated water. Miniaturized 

plasma-based reactors have a promising future for application to water treatment and other 

applications such as chemical synthesis. Multiple MPR devices can be operated in an array to 

produce an effective continuous flow system for the removal of persistent organic molecules 

and biological contaminants from water resources. Such a system can be highly portable and 

operate without the need for reagents or consumables, to provide high quality drinking water 

or process water for critical applications, for example, in neonatal care in hospitals. 
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7.1 Future work 

In situ measurement of plasma properties would be advantageous in identifying and 

quantifying the reactive species formed during plasma generation in the MPR, including 

reactive species formed in water after plasma treatment. This would help further understand 

the mechanism involved in the degradation or inactivation of chemical and biological 

contaminants in water. In addition, optimizing the microfluidic reactor to achieve complete 

treatment of contaminants. 

Further investigation in treating hazardous contaminants such as pesticides and mixed 

contaminants in water, simulating industrial effluents with contaminants that pass through 

untreated by conventional methods is important for comparison of efficiency with 

conventional water treatment methods. Identification of the intermediates and separation fo 

by-products  formed during and after treatement is important to allow assessment of toxicity,  

Reactor design is another area for further investigation. This includes reducing parasitic 

capacitance by either reducing the  length of the channel or shaping the electrode similar to 

the shape of the channel. Further development in reducing power loading on the electrodes 

which affects the reactor temperature is important to improve longevity and energy 

consumption of such reactors; this includes pulsed power generator and investigating different 

electrode material and fabrication material such as quartz with higher temperature resistance 

than glass. 

Numerous studies have reported effective treatment of a wide array of contaminants in water 

compared to conventional treatment and AOP methods. However, plasma technology is yet to 

be applied for direct treatment of water in industrial scale.  A compact plasma system in the 

form of MPR has been developed so far for laboratory scale experiments and short treatment 

times, i.e. in seconds. Scaled up versions or multiple arrays of MPRs that can treat high 

throughput volume as a continuous system are still to be developed.  
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Appendix 

Table S2.1: List of experimental works on the treatment of methylene blue solution with 
various types of discharge and reactors. Publications including pre- or post-treatment of water 
solution have been omitted. 
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Figure S4.1: Calculated power versus residence time, with frequency of 17 kHz and 17 kVp-p 

applied voltage.  

Table S4.1: Retention time for standard ions at optimized ion chromatographic conditions in 
untreated and plasma treated water samples (n=5). 

 Retention time 
(min) 

Standard deviation 
(min) 

Standard deviation 
% 

Fluoride (F-) 3.70 0.005 0.13 

Chloride (Cl-) 5.57 0.004 0.08 

Nitrite (NO2
-) 6.75 0.005 0.07 

Sulphate (SO4
2-) 8.7 0.026 0.29 

Bromide (Br-) 9.21 0.025 0.27 

Nitrate (NO3
-) 10.55 0.044 0.42 

Phosphate (PO4
3-) 13.16 0.081 0.62 

Sodium (Na+) 5.72 0.011 0.19 

Ammonium 
(NH4

+) 
6.64 0.007 0.10 

Potassium (K+) 8.31 0.068 0.82 

Magnesium 
(Mg2+) 

10.23 0.22 2.08 

Calcium (Ca2+) 12.62 0.21 1.70 
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Figure S4.2: Ion chromatograms for (a) anions and (b) cations measured in standard samples 
using the IC 

 

 

a) 

b) 
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Figure S4.3: Ion chromatograms showing (a) nitrate and (b) nitrite in Milli-Q water after 
plasma treatment.  

  

a) 

b) 
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Figure S4.4: Ion chromatogram detecting carbonate in Milli-Q water without plasma treatment  
using the ion chromatography.  
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Figure S4.5: Standard calibration curve of anions in water using ion chromatography. Nitrate 

(R2 = 1), nitrite (R2 = 1), sulphate (R2 = 1), phosphate (R2 = 1), fluoride (R2 = 0.9954), bromide 

(R2 = 1) and chloride (R2 = 0.9924). Error bars represent standard errors (n = 3). 
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Figure S4.6: Standard calibration curve of anions in water using ion chromatography. Sodium 

(R2 = 0.9989), ammonium (R2 = 0.9929), potassium (R2 = 0.9995), magnesium (R2 = 0.9617) 

and calcium (R2 = 0.9808). Error bars represent standard errors (n = 3).  
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Figure S5.1: a) Calibration curve of methylene blue, stock concentration of 5 mg/L. b) UV-vis 

spectra of methylene blue at various concentration. Error bars represent standard errors n = 

3. (R2 = 0.999) 

 

 

 

 

 

a) 

b) 
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Figure S5.2: Degradation of MB versus time in the absence of plasma under UV light. 

Figure S5.3: Degradation of MB versus temperature in absence of plasma. 
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Figure S5.4: Degradation of MB versus pH in absence of plasma. 

 

a) b) 

Figure S6.1: Susceptibility of E. coli (a) and P. aeruginosa (b) with different antibiotics 

(Ampicillin (•), Chloramphenicol (•), Colistin Sulphate (•), Kanamycin (•), Nalidixic acid (•), 

Nitrofurantoin (•), Streptomycin (•), Tetracycline (•)). With E. coli, inhibition zones were 

observed with all antibiotics except streptomycin while with P. aeruginosa, inhibition zones 

were observed with streptomycin, colistin sulphate and kanamycin.  
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Figure S6.2: Agarose gel electrophoresis of 16S rRNA PCR products from E. coli (A) and P. 

aeruginosa (B), lane X: marker, 100 bp DNA ladder and lane C: negative control. 

 

E. coli 

Query  12   GCCTAGC-CATGCAAGTCGAACGGTAACAGGAAGCAGCTTGCTGCTTCGCTGACGAGTGG  70 

            ||||| | ||||||||||||||||||||||||||||||||||||||| |||||||||||| 

Sbjct  19   GCCTAACACATGCAAGTCGAACGGTAACAGGAAGCAGCTTGCTGCTTTGCTGACGAGTGG  78 

 

Query  71   CGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGG  130 

            ||||||||||||||||||||||||||||||| |||||||||||||||||||||||||||| 

Sbjct  79   CGGACGGGTGAGTAATGTCTGGGAAACTGCCNGATGGAGGGGGATAACTACTGGAAACGG  138 

 

Query  131  TAGCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGACCTTCGGGCCTCTTGCCATC  190 

            |||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||| 

Sbjct  139  TAGCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGACCTTAGGGCCTCTTGCCATC  198 

 

Query  191  GGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCC  250 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  199  GGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCC  258 

 

Query  251  CTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTAC  310 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  259  CTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTAC  318 

 

Query  311  GGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGT  370 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  319  GGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGT  378 

 

Query  371  GTATGAAGAAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAGTAAAGTTA  430 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  379  GTATGAAGAAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAGTAAAGTTA  438 

 

Query  431  ATACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGC  490 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  439  ATACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGC  498 

 

Query  491  CGCGGGTAATAC  502 

            ||||| |||||| 

Sbjct  499  CGCGG-TAATAC  509 

 

  X      A     X     B      X     C 
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P. aeruginosa 

Query  8    CGGGGCTAATTCTGTTGGTAACGTCAA-NCAGCAAGGTATTAACTTACTGCCCTTCCTCC  66 

            ||| ||| |||||||||||||||||||  ||||||||||||||||||||||||||||||| 

Sbjct  491  CGGTGCTTATTCTGTTGGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCC  432 

 

Query  67   CAACTTAAAGTGCTTTACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAG  126 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  431  CAACTTAAAGTGCTTTACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAG  372 

 

Query  127  GCTTTCGCCCATTGTCCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTC  186 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  371  GCTTTCGCCCATTGTCCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTC  312 

 

Query  187  TCAGTTCCAGTGTGACTGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGC  246 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  311  TCAGTTCCAGTGTGACTGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGC  252 

 

Query  247  CTTTACCCCACCAACTAGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGA  306 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  251  CTTTACCCCACCAACTAGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGA  192 

 

Query  307  TCCCCCACTTTCTCCCTCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCC  366 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  191  TCCCCCACTTTCTCCCTCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCC  132 

 

Query  367  CCACTACCAGGCAGATTCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGCAAG  426 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  131  CCACTACCAGGCAGATTCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGCAAG  72 

 

Query  427  CTCCCTTCATCCGCTCGACTTGCATGTGTTAGGCCTGCCGCCAGCGTTCAATCTGAGCCA  486 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  71   CTCCCTTCATCCGCTCGACTTGCATGTGTTAGGCCTGCCGCCAGCGTTCAATCTGAGCCA  12 

 

Query  487  TGATTAAA  494 

            |||| ||| 

Sbjct  11   TGATCAAA  4 

 

Figure S6.3: Nucleotide sequences obtained from E. coli and P. aeruginosa sample (Sbjct (i.e. 
subject)) compared to sequence database (Query) found in BLAST. 
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Figure S6.4: Live/Dead cell viability assay of control E. coli and P. aeruginosa.  
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