
Please cite the Published Version

Irshad, O, Khan, MUG, Iqbal, R, Basheer, S and Bashir, AK (2020) Performance optimization of
IoT based biological systems using deep learning. Computer Communications, 155. pp. 24-31.
ISSN 0140-3664

DOI: https://doi.org/10.1016/j.comcom.2020.02.059

Publisher: Elsevier

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/625903/

Usage rights: In Copyright

Additional Information: This is an Author Accepted Manuscript of a paper accepted for publica-
tion in Computer Communications, published by and copyright Elsevier.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1016/j.comcom.2020.02.059
https://e-space.mmu.ac.uk/625903/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


1 
 

Performance Optimization of IoT Based Biological 

Systems Using Deep Learning 
Omer Irshad (Affiliation: Department of Computer Science and Engineering, The University of Engineering and 

Technology Lahore, Pakistan, Email: umar_irshad@hotmail.com, Tel/Fax: +92-42-99029450-300, Cell: 

+923008870760, Address: The University of Engineering and Technology, G.T Road, Staff Houses Engineering 

University Lahore, Punjab P.O. 54890,  Formal Principal/Corresponding author), 

 

Muhammad Usman Ghani Khan (Affiliation: National Center of Artificial Intelligence, Al-Khawarizmi Institute of 

Computer Science, The University of Engineering and Technology Lahore, Pakistan, Email: 

usman.ghani@uet.edu.pk), 

 

Razi Iqbal (Affiliation: Al-Khawarizmi Institute of Computer Science, The University of Engineering and 

Technology Lahore, Email: razi.iqbal@ieee.org), 

 

Shakila Basheer (Affiliation: Department of Information System, College of Computer and Information Sciences, 

Princess Nora Bint Abdul Rahman University, Saudi Arabia, Email: sbbasheer@pnu.edu.sa), 

 

Ali Kashif Bashir (Affiliation: (1) Manchester Metropolitan University, UK, Email: dr.alikashif.b@ieee.org (2) 

School of Electrical Engineering and Computer Science, National University of Science and Technology, Islamabad 

(NUST) , Pakistan.) 

 

Abstract- The advent of sensors and high-throughput 

technologies has resulted in an exponential growth of big biological 

data. Various distributed biological systems have been deployed 

for big biological data analytics and providing consolidated 

information to its end users. Performance optimization plays a 

significant role while making these systems interactive and 

responsive. Current performance optimization techniques 

consider no or fewer history data of the system’s functional context 

while optimizing performance, especially at cache, persistence and 

computation levels. In this paper, an intelligent multi-agent-based 

performance optimization approach is proposed that addresses 

the performance issues at these three levels. Based on the internet 

of things (IoT) and deep learning paradigm, the proposed 

approach blends state-of-the-art probabilistic, recurrent neural 

network and long short term memory models to intelligently 

predict the upcoming behavior and optimization needs of the 

system. It intelligently persists and migrates biological data objects 

among different distributed system nodes. We deployed the 

proposed performance optimization approach and showed 

significant performance gain in comparison with existing 

approaches. 

 

Index Terms- Object Caching, Distributed Biological System, 

Intelligent Multi-agents, Probabilistic Analysis, Response Time. 

 

1. INTRODUCTION 

IOLOGICAL cell system is one of the yet studied complex 

systems. For improving living and health standards of life, 

researchers, scientists, and biologists are continuously 

striving for discovering the hidden aspects of a cellular system. 

To infer and discover valuable knowledge, it is required to 

computationally understand this complex system through its 

data and functional processes. Due to the advent of emerging 

sensors and high-throughput technologies, biological data or 

data is growing at an exponential rate [1]. Currently, 

experimental biological data is heterogeneous and available in 

different types and formats through various data access 

interfaces. Dozens of computational systems are available to 

provide a well-aggregated and consolidated view of such 

geographically dispersed and heterogeneous data [2]. Among 

these computational systems, distributed biological systems are 

famous due to enabling distributed computing and providing an 

integrated view of such huge geographically dispersed and 

heterogeneous data with better online accessibility, availability, 

and usability. In such systems, better request turnaround time 

mainly depends on reasonable system performance at various 

computational levels like data caching, persisting, processing, 

routing, etc [3]. Among these computation levels, caching, 

persisting and processing are especially famous when network 

or data packet routing issues are not subject to discussion.  
Currently, many approaches are available for optimizing 

system performance at these three levels [4]. Caching 

techniques share a common objective of improving cache hits 

while ensuring cache consistency in place. These techniques 

take current state information of the system, identify cache 

patterns, and accordingly let the data to reside in cache. These 

techniques are not proactive enough and do not plan a caching 

B 

mailto:umar_irshad@hotmail.com
mailto:usman.ghani@uet.edu.pk
mailto:razi.iqbal@ieee.org
mailto:sbbasheer@pnu.edu.sa
mailto:dr.alikashif.b@ieee.org


2 
 

mechanism based on the history of system states [5]. 

Computational load balancing algorithms also use current state 

information of the system for balancing the computational load 

on distributed computational nodes. These algorithms are 

activated after the happening of the worst performance 

situation. Storage devices use a data layout plan for persisting 

permanent data. These storage layout plans are made according 

to the current needs of data demand. With the passage of time 

when data access demand changes, the system re-computes the 

data layout plan for fulfilling the new requirements of data 

access demand. Re-computation of data layout plan takes too 

much computation cost and time in addition to other network 

resources. Resultantly, until the implementation of a new 

storage plan, the system keeps showing poor performance. 

In this paper, we propose a performance optimization 

approach for IoT based distributed biological systems that are 

specialized for data analytics. The proposed approach is based 

on a probabilistic model that uses state and temporal 

information management constructs from Recurrent Neural 

Network (RNN) and Long Short Term Memory (LSTM) 

models of deep learning paradigm. RNN is a type of neural 

network, which is used to hold the temporal information for the 

time-specific problems.  LSTM is also the type and the 

extension of the RNN, which has the special as well as the 

standard memory gates. Both RNN and LSTM are built into the 

network and output the memory which has a direct impact of 

the spatial as well as the temporal information. Our proposed 

approach continuously and autonomously takes past and current 

state of the system and probabilistically analyzes it for 

providing intelligence to the system or its designer for updating 

the current caching, persisting and computing mechanisms. The 

proposed approach can add value to the system in a couple of 

ways (1) system designer can get optimization suggestions to 

manually redesign caching, persisting and computing 

mechanism (2) it can be implemented as part of the system. In 

this case, it will continuously check the need for data 

reorganization and will autonomously take optimization 

measures to keep the system’s performance up all the time.  

Outline of remaining sections is as follows, Section 2 

provides the current state of the work in the cache, storage, and 

computation performance optimization areas. Section 3 

describes the proposed methodology to optimize the system 

performance at three levels mentioned in Section 2. Section 4 

validates the proposed methodology. Section 5 shows 

performance gain after deploying the proposed methodology. 

Section 6 concludes the findings, usefulness of our work and 

future directions. 

2. RELATED WORK 

In 2018, The Nucleic Acids Research journal reported around 

1613 molecular biology databases that are publically available 

[6]. This number is obtained just after adding around 66 new 

databases that were reported in 2018 [7]. Among these 

databases, few comprehensive databases like DNA Data Bank 

of Japan [8], GenBank [9] and European Nucleotide Archive 

[10] reported petabytes of the data increase in last few years. In 

addition to the exponential growth, biological data is 

heterogeneous and geographically dispersed too. To address the 

volume, heterogeneity, geographical dispersion, online 

accessibility and availability related issues, distributed 

computing paradigm well suits for providing consolidated and 

unified access of data to its end users.  

In the past few decades, several distributed biological 

systems or distributed systems have been deployed based on 

different data integration paradigms like view or linked-data 

systems, workflow-based systems, mashup or smashup based 

systems, semantic web-based systems, etc. Systems based on 

these paradigms contain several similarities with respect to their 

architectural components (e.g., distributed caching scheme, 

distributed computation and persistence mechanism, load-

balancing technique, data migrators, etc.). In these systems, 

performance plays a significant role in improving the overall 

system’s usability and availability. In these systems, 

performance can be discussed in different application areas at 

multiple levels of design complexity. For data caching, there 

are around seven application areas in various distributed 

biological systems [11-23] in which caching plays a significant 

role in the optimization of performance. These areas are a 

central processing unit, shared memory multiprocessor, 

distributed shared memory, distributed file management, 

distributed proxy cache, world wide web, and internet 

application and integration [24]. In these areas, it is required to 

temporarily store data for improving the turned around time of 

the request. Communicate the decision matter. 

In the last few decades, a number of caching techniques have 

been devised to address performance-related issues. For 

example, some caching strategies give an additional role to their 

clients [5]. Each client also caches all those objects which were 

requested and received by it. If some client demands a particular 

object and its neighboring client holds, then that object is 

provided by the owner client. Cache hints technique treats 

information as hints for maintaining the cache consistency [25]. 

It focuses on the consistency of cache data rather than 

increasing the cache hits. These hints provide knowledge about 

the accuracy of the information in the cache. The system gains 

performance improvement by improving the cache accuracy 

instead of improving the cache hit ratio. Acceptable accuracy is 

calculated from calculating the ratio of lookup costs to the costs 

of identifying and recovering from wrong entries of the cache. 

For reducing network traffic, a cache strategy that uses multiple 

distributed cache servers performs well under the limited 

network span and specific network topology [26].  

All distributed cache servers are controlled by a central cache 

control server. The central cache control server maintains a list 

for all contents which are cached by the multiple cache servers. 

If some request needs content, then it is looked in the central 

cache control server’s content list. Caching strategies that 

follow a linear division of caches at multiple levels usually 

perform well for the average scale centralized and distributed 

database systems [27]. In this case, the cache is linearly divided 

into multiple levels instead of a single level. Each level is 

further divided into two parts. One part contains a query result 

and the other part contains a sub-query execution plan. This 

sub-query execution plan is obtained by dividing the main 



3 
 

query execution plan. These sub-query execution plans are 

independent but interrelated with each other.  

Peer-to-peer (P2P) caching techniques place popular objects 

at different locations [28]. The algorithm identifies the 

importance of the object and makes a decision about the 

generation of its number of copies for disseminating to multiple 

locations. It does not do over caching because, with the passage 

of time, less popular objects are replaced by popular ones. For 

P2P video-on-demand systems, sometimes peer gets selfish and 

takes service from others but do not provide service to others. 

To overcome this problem, an incentive-based approach is 

used. Each peer gets some incentive if it is holding any video 

that is highly popular [29]. Due to this, the load on the main 

server is shared by the peers.  

Poor performance at the computation level too sometimes 

causes a bottleneck. Sometimes processing load at the particular 

processing node gets too high so that some objects are required 

to be migrated from the overloaded node to the less loaded one. 

Sometimes a task that may involve multiple objects needs 

timely availability of required objects to meet its completion 

deadline. In such a situation, the system’s resource manager 

migrates demanded objects from one location to another one 

[30]. Various algorithms have been devised to reduce the 

processing load of a particular node to cope with the complexity 

of meeting task completion deadlines [31]. In the case of the 

overloaded processing node, these algorithms first identify the 

overloaded node and then migrate a few objects to the less 

loaded node. In the case of highly demanded objects, these 

algorithms first calculate the expected completion time of the 

task and then compare it with the assigned deadline. If the task 

completion deadline seems not to be met, a reasonable 

migration of demanded objects is scheduled to meet the 

deadline [32].  

Optimization at the storage level too plays a significant role 

in reducing the speed mismatch between persistent and cache 

storage. Managing data on the storage-intensive servers or 

devices comes with lots of data management problems. Such 

types of servers are usually used as web servers or multimedia 

servers for handling the high demand for data. These servers 

usually consist of several storage disks that are internally 

connected with a dedicated network to form a larger storage 

cluster. These storage disks are further constrained by the 

storage size and number of simultaneous access to data [33]. 

For efficient data utilization, an initial data layout plan is made 

according to the initial requirements. But with the passage of 

time, these requirements may change and the system has to re-

compute the initial data layout plan to accommodate the new 

requirements [34]. When the need for a re-computing data 

layout plan arises, the problem of mapping the initial layout to 

the target layout also arises. Sometimes the system needs 

addition, removal or replacements of entire disks. In such cases, 

entire data from the source disk is required to be reasonably 

migrated to the destination disk.  

All the caching, persisting and processing techniques have a 

common objective of improving system performance in their 

respective areas [35]. These techniques use no or less 

contextual information of user requests and the history of 

system states. Due to this, the intelligent decision for 

performance optimization cannot be taken. In addition to this, 

most of the optimization techniques get activated or responsive 

after the happening of worst-case situations. In this case, 

frequent data migrations are performed at the expense of 

extensive system downtime and additional resources [36]. 

Furthermore, most of the techniques do not fully support for 

computing and rendering the object at its constituent level. So 

the system has to process the whole object even the user does 

not demand its all constituents. 

Significant performance can be obtained, if these techniques 

are supplemented by the behavioral intelligence of upcoming 

user requests and system states. Behavioral intelligence can be 

obtained by statistical and probabilistic analysis of historical 

data of the system states [37, 38]. Our deep learning-based 

probabilistic approach provides behavioral intelligence for 

existing optimization techniques by analyzing the history and 

current data of user requests and system states. In IoT based 

distributed biological systems, these states are request size, 

count, type, origin, scope, date, time, available and required 

resources, priority, importance, residual affinity, etc. [39, 40]. 

Our proposed model uses these states as model parameters and 

works in a feedback-loop manner to autonomously optimize the 

system performance. So, these are some of the characteristics 

that make our proposed approach novel, better and distinct 

among existing approaches. 

3. PROPOSED SOLUTION 

In a distributed system, performance can be optimized at 

various levels of the system design. Fig. 1 pictorially shows the 

idea of performance optimization in the distributed system at 

three levels like cache, computation, and storage.

 

 



4 
 

Strategy Level Analysis Agent

(For cache)

Request Level Analysis Agent

(For cache)

Strategy Level Analysis Agent

(For computation)

Request Level Analysis Agent

(For computation)

Strategy Level Analysis Agent

(For storage)

Request Level Analysis Agent

(For storage)

System Context

System Context

System Context

Req. / Res. Req. / Res. Req. / Res.

Functional Context of 

Distributed Biological System

Distributed Biological System

Functional & Contextual Info.

Intelligence for Performance Optimization

Distributed Biological System Optimizer

Feedback for Optimization 

 

Fig.  1.  Performance optimization through multiple intelligent agents. 

In Fig. 1, Distributed Biological System or System has a 

Functional Context and six intelligent software agents. The 

system has different Requesting Terminals (RTs) through 

which Users can send requests to the System for required data 

resources. The system accepts the requests and processes 

them to send the response to its end users. The system has 

other channels too through which it can take inputs (e.g., 

sensors, external systems, web services, etc.), but for the sake 

of simplicity, we only consider RTs as the request source. 

Users from any RT can request Biological Objects (BO) 

like deoxyribonucleic acid (DNA) sequence, codding or non-

codding gene annotation, chromosome region, medical 

image or video, gene map, graph, pattern, etc. BO may be an 

aggregation of more than one smaller object (e.g. a DNA has 

multiple regions marking codding genes, exons, and introns 

in DNA regions, etc.). This aggregation is primarily 

established if either some chemical bondings exist among 

objects or user demands custom aggregation. For example, a 

long sequence of DNA contains several regions and among 

them, there are some protein-coding regions that are 

associated with different proteins and phenotypes. Based on 

this association, an aggregated BO can be defined that can 

comprehensively define a concept like a gene involved in 

protein production, a gene that can cause cancer, etc. Fig. 2 

pictorially shows the aggregation structure as follows.

 

 

Aggregated Object

(e.g,. Chromosome)

BO1

(e.g., DNA)
BO2 BO3 BON

BO1.1

(e.g., Codding gene)

BO1.2

(e.g., Intron)

BO1.3

(e.g., Exon)

BO1.M

(e.g., Non-codding region)

 
Fig. 2. Aggregation of biological objects. 

 



5 
 

In Fig. 2, BO1, BO2, BO3, …, BON are the constituents of 

Aggregated Object and BO1.1, BO1.2, BO1.3, …, BO1.M are the 

constituents of BO1. This de-aggregation can be continued at 

a greater level of the hierarchy. At the bottom of the 

hierarchal structure, those objects reside that have high 

cohesion among their constituents and cannot be further de-

aggregated. 

Most of the time when an aggregated object is demanded, 

its user just partly consumes it as per the need. Other 

constituents get wasted at the expense of computational and 

caching cost. In our proposed approach, we copped this issue 

by learning from history data of the system state parameters 

like RT name or geographical location, requested object 

identifier, request date/time, list of object’s constituents used 

and not with respect to requester and list of supporting 

objects (i.e., those objects that are required during the 

execution of object being processed.).  Table 1 shows sample 

access history of objects requested from different users from 

different or same RTs. 
TABLE 1 

SAMPLE ACCESS HISTORY OF BIOLOGICAL OBJECTS 

RT 
Req. 

Object 
Req. Time 

Object’s Constituents Supporting 

Objects Total Used 

T1 BO1 
10-Jan-2019, 

10:00AM 

BO1.1, …, 

BO1.M 

BO1.1, 

BO1.2 
BO2, BO3 

T2 BO1 
11-Jan-2019, 

11:00AM 

BO1.1, …, 

BO1.M 

BO1.1, 

BO1.2 
BO4, BO3 

T2 BO1 
11-Jan-2019, 

11:10AM 

BO1.1, …, 

BO1.M 

BO1.1, 
BO1.2, 

BO1.3 

BO4, BO3 

T1 BO2 
10-Jan-2019, 
09:00AM 

BO1.1, …, 
BO1.L 

BO1.1, 
BO1.3 

BO4, BO1 

T2 BO2 
10-Jan-2019, 

09:10AM 

BO1.1, …, 

BO1.L 

BO1.1, 

BO1.2 
BO4, BO1 

T2 BO2 
11-Jan-2019, 
09:10AM 

BO1.1, …, 
BO1.L 

BO1.1 
BO4, BO1, 
BO3 

 

The first entry of Table 1 shows that T1 requested BO1 on 

10-Jan-2019 at 10:00 AM. Second, its two constituents, BO1.1 

and BO1.2, were used by its User out of its total constituents 

(i.e. BO1.1, BO1.2… BO1.M). Third, this object consumed some 

services from BO2 and BO3 during its lifetime. The rest of the 

entries can be interpreted in a similar way.  

Statistical analysis for data shown in Table 1 shows that 

BO1 is requested 3 times from different requesting terminals 

between 10-Jan-2019 at 10:00 AM to 11-Jan-2019 at 11:10 

AM. It does not need all of its constituents. BO1.1 and BO1.2 are 

used three times and BO1.3 is used one time. Among those 

objects that are providing services to BO1, BO3 is used three 

times, BO4 is used two times and BO2 is used one time. 

Similarly, BO2 is requested 3 times from different requesting 

terminals between 10-Jan-2019 at 09:00 AM to 11-Jan-2019 

at 09:10 AM. It does not need all of its constituents. BO1.1 is 

used three-time, BO1.2 is used one time and BO1.3 is used one 

time. Among those objects that are providing services to BO2, 

BO1 and BO4 are used three times and BO3 used one time. Table 

2 shows these statistics as 

 
TABLE 2 

STATISTICAL ANALYSIS FOR ACCESS HISTORY OF EACH BIOLOGICAL OBJECT 

Object 
Req. Time 

From 
Req. Time To 

Object’s 

Constituents 

Required 

Objects 

BO1 
10 - Jan-2019 

at 10:00AM 

11 - Jan-2019 

at 11:10AM 

BO1.1, BO1.2, 

BO1.3 

BO3, BO4, 

BO2 

BO2 
10 - Jan-2019 

at 09:00AM 

11 - Jan-2019 

at 09:10AM 

BO1.1, BO1.2, 

BO1.3 

BO4, BO1, 

BO3 

 

The first entry of Table 2 shows that during the date/time 

from 10-Jan-2019 at 10:00 AM to 11-Jan-2019 at 11:10 AM, 

BO1 requested services from BO3, BO4, and BO2 (in descending 

priority order) and also demanded its constituents BO1.1, BO1.2, 

and BO1.3 (in descending priority order). The rest of the table 

entries can be interpreted in a similar way. Based on these 

statistics, the demand for all objects can be prioritized for 

performance optimization. 

3.1 Request Level Analysis Agent (For Cache) 

This software agent is responsible for statistical analysis 

of the history of requested objects, their constituents and 

supporting objects requested from different requesting 

terminals in different time intervals (e.g., 10:00 AM to 11:00 

AM is a time interval in a day of 24 hours.). With the help of 

such statistical analysis, the agent recommends the future 

placement of objects on the cache. This placement is usually 

done with respect to the specific time intervals. Most of the 

objects are highly demanded in specific time intervals and 

get less demanded in other intervals. For example, if 

statistical analysis shows that BO1 is demanded 50 times in 

the time interval from 10:00 AM to 11:00 AM and only 2 

times in the time interval from 02:00 PM to 03:00 PM, then 

BO1 needs to be present in cache every day just before 10:00 

AM to 11:00 AM. Based on this strategy, cache hits and 

system performance show significant improvement. 

3.2 Strategy Level Analysis Agent (For Cache) 

The input of this software agent is the output of the 

Request Level Analysis Agent (For Cache) agent. This agent 

has sufficient knowledge of different caching and server 

replication schemes. It contains information regarding the 

characteristics, behaviors, limitations, benefits, etc. of 

different caching and server replication techniques. This 

agent perceives the given statistical analysis of the Request 

Level Analysis Agent (For Cache) agent and recommends the 

best suitable caching or server replication technique. 

Keeping this agent’s function separate from Request Level 

Analysis Agent (For Cache) agent gives localized design 

level change effect. That is, if in future any new caching or 

server replication scheme is required to be implemented, 

then the only design of Strategy Level Analysis Agent (For 

Cache) will be affected. 

3.3 Request Level Analysis Agent (For computation) 

This agent receives the incoming request information and 

statistically analyzes the history of requested objects with 

respect to specific time intervals. The perspective of this 

agent is to know (1) which object is demanded from which 

requesting terminal (2) what type of computation objects are 

required (3) how much time an object needs for completing 



6 
 

its computation (4) what other constituents and supporting 

objects are required to the object which is being processed 

(5) in which time interval objects are highly demanded (6) 

which object is requested before or after the object which is 

being processed. This agent understands such characteristics 

of the objects and proposes an execution plan for fulfilling 

upcoming needs. For example, if the request for BO1 receives 

and BO1 needs its constituents BO1.1, BO1.2 and BO2 and BO3 as 

its support objects, then the execution plan places all these 

required objects in some reasonable execution order so that 

constituents and supporting objects of BO1 get available 

before BO1’s execution time. The prime objective of the 

execution plan is to avoid deadlock situations while ensuring 

that all required objects are available before the upcoming 

demands. 

3.4 Strategy Level Analysis Agent (For computation) 

The input of this software agent is the output of the 

Request Level Analysis Agent (For computation) agent. This 

agent has sufficient knowledge of different computation load 

balancing techniques. It contains information regarding 

characteristics, behaviors, limitations, benefits, etc. of 

different computation load balancing techniques. This agent 

understands the given statistical analysis of the Request Level 

Analysis Agent (For computation) agent and recommends 

the best suitable computation load balancing scheme. 

Keeping this agent’s function separate from Request Level 

Analysis Agent (For computation) agent gives a localized 

effect of system design change. That is, if in future, some 

new computation load balancing scheme is required to be 

implemented, then the only design of Strategy Level Analysis 

Agent (For computation) will be affected. 

3.5 Request Level Analysis Agent (For storage) 

On storage intensive servers, data is stored according to a 

data layout plan. This data layout plan is developed 

according to the need of data access patterns. This agent 

statistically analyzes the history of requests and identifies the 

best suitable data access patterns. It identifies the priority of 

objects with respect to the specific time interval and place so 

that they can efficiently be retrieved later. It also identifies 

access relationships among objects with respect to the 

specific time intervals. For example, in some specific time 

interval, if BO1 needs its constituents BO1.1, BO1.2 and its 

supporting objects BO2, BO3, then data access pattern 

considers them in a tight access relationship and rest of its 

constituents and supporting objects in loose access 

relationship for that specific time interval. Based on this, 

whenever a specific time interval arrives, the system 

considers those objects that are highly demanded in that 

particular time interval and accordingly loads them before 

their demand. 

3.6 Strategy Level Analysis Agent (For storage) 

The input of this software agent is the output of the 

Request Level Analysis Agent (For storage) agent. This agent 

contains sufficient knowledge of different storage 

management techniques. It contains information regarding 

characteristics, behaviors, limitations, benefits, etc. of 

different storage management techniques. This agent 

perceives the given statistical analysis of the Request Level 

Analysis Agent (For storage) agent and recommends the best 

suitable storage management technique. Keeping this agent’s 

function separate from Request Level Analysis Agent (For 

storage) agent gives a localized effect of system design 

change. That is, if in future some new storage management 

scheme is required to be implemented, then the only design 

of Strategy Level Analysis Agent (For storage) will be 

affected. 

All discussed software agents can be implemented in a 

multimodular way so that system extensibility can be 

ensured while minimizing the overhead of system 

maintenance and change effect. These agents are 

autonomous and their output is helpful in the system design, 

development and maintenance activities. Designers and 

developers learn from agents’ outcome and deploy the 

suggested changes accordingly. This cycle continues until 

the refinement of the system’s performance and cache, 

storage, and computation load balancing techniques get 

aligned with the context of the system. Finally, system 

design level changes get minimized and performance 

remains up all the time. 

4. VALIDATION 

For validating the proposed solution, an intelligence of the 

Request Level Analysis Agent (For storage) agent is 

improved at the storage level of a prototype biological 

distributed system. This intelligence helps in improving the 

way of storing data on storage devices and ultimately in 

improving the performance gain of the whole system. Here 

only Request Level Analysis Agent (For storage) agent is 

providing intelligence to the system, but this validation 

mechanism can similarly be implemented for cache and 

computation levels too. 

Intelligence can be gained by various probability 

calculation approaches (e.g., Frequentist, Bayes, etc.). For 

example, in the case of Bayes, we can introduce a new data 

object with some reasonable initial prior and likelihood. 

With this methodology, the system can calculate the initial 

posterior. After some reasonable time period, the system can 

again calculate new posterior with the feedback of the old 

posterior. That is, this process will work in a feedback loop 

as shown in Fig. 1. In every iteration, the process will get a 

better understanding of the system’s behavior. After some 

iterations, this iterative process will return a convergence 

point for the system’s maximum performance.  

In the frequentist approach, probabilities are calculated on 

the basis of frequencies of the events. Here event means a 

data object stored in some storage is requested from some 

requesting terminal on a specific time interval and processed 

at some processing terminal. After the happening of each 

event, the probability of the respective data object will be 

recalculated with respect to the time interval and storage 

location. According to the calculated probability value, the 

object will be migrated to the more suitable storage location 



7 
 

either before the time interval or on the demand of the object. 

As we do not have any prior information about the 

occurrences of events, so we will use the frequentist 

approach to calculate the probabilities. 

Suppose we have a biological distributed system, say 

“BioDistSys”, with n requesting terminals say RT1, RT2 … 

RTn, n processing nodes say P1, P2 … Pn (i.e., one processing 

node for one requesting terminal.) and n storage locations say 

S1, S2 … Sn (i.e., one storage location at one processing 

node.). Further suppose that we have m data objects say D1, 

D2 … Dm, that can be requested from any requesting terminal 

(s). That is, any number of data objects can be repeatedly 

requested from any requesting terminal in some specific time 

interval. With the non-probabilistic approach, any data 

object can be stored in any storage location. But with the 

probabilistic approach, data objects will be stored in their 

respective storage locations with respect to some specific 

time interval. That is, if RT1 made a maximum number of 

requests for D2 in some specific time interval then it is more 

suitable to keep D2 in S1 for that specific time interval. 

Similarly, with the passage of time, if RT2 exceeds from RT1 

in making requests for D2 in another specific time interval, 

then it is more suitable to migrate D2 from S1 to S2. In case, 

when an object is equally demanding for more than one 

storage location in the same time interval, then we can 

temporarily replicate the object on all demanding storage 

locations.  

Before going into the algorithmic details, let’s formulate 

the method of computing probability function for calculating 

the probability of each data object. Let’s assume we have 

three random variables (1) data object D, (2) specific time 

interval T and (3) storage location S. Variable D may take 

any value from the set of m data objects like D1, D2 … Dm, 

variable T may take any value from the set of t time intervals 

like T1, T2 … Tt and finally variable S may take any value 

from the set of n storage locations like S1, S2 … Sn. Each time 

interval will have a start interval time and an end interval 

time (e.g. 1:00 AM to 2:00 AM where 1:00 AM is a start 

interval time and 2:00 AM is an end interval time). We may 

concatenate day, week or month information with each time 

interval to make it more informative for further analysis. The 

value of t will depend on the number of defined time 

intervals. Each time interval may have variable length but the 

sum of all time intervals must be equal to 24 hours of a day. 

In order to calculate the probability of demand for some 

data object Di (here i = 1 … m) during time interval Tj (here 

j = 1 … t) from storage location Sk (here k = 1 … n), we 

assume that there are total N events and a three-dimensional 

array corresponding to three random variables D, T and S. 

Each cell cijk (here i = 1 … m, j = 1 … t and k = 1 … n) of 

the array contains the number of instances of respective 

events. For example, if c135 contains value equal to 10, it 

means there are 10 events occurred in the system in which 

data object D1 was requested during the time interval T3 from 

storage location S5. 

So the maximum probability Pmax of any data object Di to 

be in Smax during some specific time interval Tj can be 

computed as given in the probability equations (1a) and (1b). 

 
P (Sk | Di, Tj) = cijk / ∑x=1

n cijx    (1a) 

Pmax (Smax | Di, Tj) = max {P (S1 | Di, Tj), P (S2 | Di, Tj) … P (Sn | Di, Tj)}    

(1b) 

For some n ≥ max ≥ 1 where Smax ϵ {S1, S2 … Sn} 

Here Di ϵ {D1, D2 … Dm}, Tj ϵ {T1, T2 … Tt} and Sk ϵ {S1, S2 … Sn} 

The maximum probability Pmax of some specific time 

interval Tmax, in which Di is in some storage location Sk, can 

be calculated as given in the probability equations (2a) and 

(2b) 

 
P (Tj | Di, Sk) = cijk / ∑x=1

t cixk      (2a) 

Pmax (Tmax | Di, Sk) = max {P (T1 | Di, Sk), P (T2 | Di, Sk) … P (Tt | Di, Sk)}  

(2b) 

For some n ≥ max ≥ 1 where Tmax ϵ {T1, T2 … Tt} 

Here Di ϵ {D1, D2 … Dm} Tj ϵ {T1, T2 … Tt} and Sk ϵ {S1, S2 … Sn} 

Similarly, the maximum probability Pmax, that Dmax should 

be in some storage location Sk during some specific time 

interval Tj, can be calculated as given in the probability 

equations (3a) and (3b) 

 
P (Di | Tj, Sk) = cijk / ∑x=1

m cxjk    (3a) 

Pmax (Dmax | Tj, Sk) = max {P (D1 | Tj, Sk), P (D2 | Tj, Sk) … P (Dm | Tj, Sk)} 

(3b) 

For some m ≥ max ≥ 1 where Smax ϵ {S1, S2 … Sn} 

Here Di ϵ {D1, D2 … Dm}, T = {T1, T2 … Tt} and S = {S1, S2 … Sn} 

Above mentioned probability equations (1a), (1b), (2a), 

(2b), (3a) and (3b) are collectively forming a probability 

computing method for calculating the probability of each 

data object with respect to time and location. These equations 

help in deciding the migration of an object, from one storage 

location to another in a certain time interval. Similarly, for 

computation and cache levels these equations can compute 

probabilities for migrating objects from one processing 

terminal or cache to another processing terminal or cache 

with respect to time, location, and processing load (for 

computation level only.). 

5. RESULTS AND DISCUSSIONS 

Based on the proposed probability calculation technique, 

an algorithm for migration of objects is devised for our 

supposed system “BioDistSys”. This algorithm takes data 

object set, time interval set and storage locations set as input 

and returns migration plan as an output. The pseudo-code of 

the algorithm is online available on our website [41]. 

Devised algorithm partially uses equations (1a) and (1b) 

to compute a migration plan for all objects in the system. 

Each entry of this migration plan identifies the best possible 

storage location for an object with respect to a particular time 

interval. This algorithm also supports if more than one 

storage locations are equally favorable for an object during a 

specific time interval. In this situation, we make multiple 

copies of the object accordingly and make multiple entries in 



8 
 

the migration plan for the same object and time interval with 

different storage locations. 

For the concrete understanding of devised algorithm and 

probability equations, the devised algorithm is executed on 

the sample data set to elaborate on our proposed technique 

with the help of a use-case. The sample data set which is 

presented in Table 3,  is randomly generated by assuming 

uniform distribution for data object D, time interval T and 

storage location S. The Matlab code for the algorithm is 

online available on our website [41]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Here the sample size is 10, the number of distinct objects 

is 3, the number of time intervals is 3 and the number of 

storage locations is 2. For the verification and validation of 

the proposed methodology, we took a small amount of 

sample data but it can similarly be verified and validated on 

any real and larger sample size. Each row in Table 3 

corresponds to an instance of an event. That is, the first event 

depicts that object number 3 was demanded during the time 

interval number 1 from storage location 2. On the sample 

dataset, the algorithm calculates the frequency matrix for 

storage locations as shown in Table 4 and Table 5. 

 
TABLE 4 

FOR STORAGE LOCATION 1 

 TABLE 5 

FOR STORAGE LOCATION 2 

 
Time 
Int. 1 

Time 
Int. 2 

Time 
Int. 3 

 
Time 
Int. 1 

Time 
Int. 2 

Time 
Int. 3 

BO1 0 0 0 BO1 1 1 1 

BO2 0 0 1 BO2 0 0 1 

BO3 0 0 2 BO3 1 1 1 

 

Each cell of Table 4 shows, the number of times that an 

object came in the storage location 1 in the respective time 

intervals. A similar explanation holds for each cell of Table 

5. On the basis of these statistics, probabilities are calculated 

as given in Table 6 and Table 7. 

 
TABLE 6 

FOR STORAGE LOCATION 1 

 TABLE 7 

FOR STORAGE LOCATION 2 

 
Time 

Int. 1 

Time 

Int. 2 

Time 

Int. 3 

 Time 

Int. 1 

Time 

Int. 2 

Time 

Int. 3 

BO1 0 0 0 BO1 1 1 1 

BO2 0 0 0.5 BO2 0 0 0.5 

BO3 0 0 .6667 BO3 1 1 0.3333 

 

Each cell of Table 6 shows, the probability that an object 

can come in storage location 1 in the respective time 

intervals. If any cell contains 0 then it means that in 

respective time interval corresponding object has 0 

probability to come in storage location 1. A similar 

explanation holds for each cell of Table 7. 

On the basis of these statistics, a migration plan is calculated 

and shown in Table 8. 

 

 

 

 

 

 

 

Each cell of Table 8 shows the suitable storage location 

number for a particular object in a specific time interval. 

The final output of the proposed algorithm is a data object 

migration plan as shown in Table 8. This migration plan tells 

that which data object should be at which storage location 

during a specific time interval. With the help of this 

migration plan, the system can migrate the data objects 

before time to the storage location(s) where they should be. 

Resultantly, requests from any requesting terminal can be 

processed from its nearest associated processor and storage 

location. Based on this, there will be no need for data object 

migration during the run time or request time and hence the 

system’s performance will remain up all the time. 

For verifying and validating the whole concept, a concept 

simulator is developed. The code for this simulator is online 

available on our website [41]. This simulator executes two 

types of approaches 1) the common approach: an approach 

based on common characteristics of existing approaches and 

2) the proposed approach. 

The simulator gives the same input to both approaches and 

computes results for each approach. After that, the simulator 

analysis the results of both approaches and gives the results 

in terms of performance gain. Table 9 gives algorithmic 

details of both approaches in terms of assumptions, input, 

output and normal course of action. 

 
TABLE 9 

ALGORITHMIC DETAILS OF PROPOSED AND COMMON (I.E. BASED ON 

COMMON CHARACTERISTICS OF EXISTING APPROACHES) APPROACH. 

 Common Approach Proposed Approach 

Assumptions Initially, all objects will 

be in the same storage 
location against all the 

time intervals 

Initially, all objects will be 

initialized according to the 
migration plan 

Input There will be a sample dataset 
No migration plan Migration plan 

Output The total number of migrations happened for each object 

with respect to time interval and storage location. 
Course of 

action 

Place all objects in the 

same storage location 

against all the time 
intervals 

Place all objects in storage 

locations according to the 

plan 

1. Compute migration need for each object.  

2. First, find an object in its expected storage location 
3. If an object is not present in its expected location then 

find it in all locations and migrate it from its present 

location to the expected location.  
4. Count this mismatch as one migration. 

TABLE 3 

 SAMPLE DATASET 

Sr. # Object 
Time 

Int. 

Storage 

Location 

1 3 1 2 
2 3 3 1 

3 1 3 2 

4 3 2 2 
5 2 3 2 

6 1 1 2 

7 1 2 2 
8 2 3 1 

9 3 3 2 

10 3 3 1 

TABLE 8 

OBJECT MIGRATION PLAN 

Object 
Time 

Int. 1 

Time 

Int. 2 

Time 

Int. 3 

BO1 2 2 2 

BO2 0 0 1 
BO3 2 2 1 



9 
 

5. Do nothing if an object is already in its expected 

location 

Compute the total number 

of migrations happened in 
the common approach 

Compute total number of 

migrations happened in the 
intelligent approach 

 

After getting the results of both approaches, equation (4) 

computes the performance gain in terms of percent gain. 
 

Percent Gain = ((TMCA – TMPA) / TMCA) * 100   (4) 

 

Here TMCA stands for Total Migrations with Common 

Approach and TMPA stands for Total Migrations with 

Proposed Approach (i.e., TMCA and TMPA show the total 

number of required migration for both approaches.).  Table 

10 shows the migration plan that is computed by the Percent 

Gain formula on the sample dataset given in Table 3. 
 

 

 

 

 

 

 

 

Table 11 and Table 12 differentiate migration needs for 

both approaches based on the migration plan given in Table 

10.  
 

TABLE 11 

MIGRATION NEED FOR THE 

COMMON APPROACH 

 TABLE 12 

MIGRATION NEED FOR THE 

PROPOSED APPROACH 

Object Number of Migrations 

Happened 

Object Number of Migrations 

Happened 

BO1 11 BO1 0 

BO2 4 BO2 4 

BO3 12 BO3 4 

 

So percent gain in performance can be shown in the 

following equation. 
 

Here TMCA = 27, TMPA = 8 

Percent Gain = ((TMCA–TMPA)/TMCA)*100 = ((27– 8)/27)*100 = 

70.4% 

 

Percent gain shows that how much percent, proposed 

approach reduces the need for object migration in a system 

that uses a common approach. In addition to this, there is a 

negligible performance and implementation overhead if the 

proposed technique is integrated with some external system. 

It is because the proposed technique works with negligible 

computation and storage complexity. It migrates objects 

before time and so the user will not see any delay due to the 

unavailability of the resources and demanded objects.  

CONCLUSION AND FUTURE DIRECTIONS 

It is a widely accepted fact that biological data is 

heterogeneously growing and geographically dispersing at 

an astronomical rate from the last few decades. Distributed 

computing is one of the paradigms that are suitable for 

storing and processing such big data. Providing interactive 

and responsive experience to the end system users is tightly 

coupled with the reasonable system performance. In this 

paper an IoT based system performance optimization 

approach is proposed, that uses state-of-the-art probabilistic 

models from deep learning paradigm for optimizing the 

cache, persistence and processing nodes to achieve better 

performance. Few improved design features make our 

proposed approach distinct and efficient than other 

approaches like optimization based on contextual and 

functional history data, autonomous and loopback 

mechanism for continuous optimization, IoT based device 

communication, etc. Furthermore, we are working on 

enhancing the optimization technique for warehouse and 

workflow-based biological systems. These systems are 

friendlier for those users which require freestanding and off-

line processing of biological data. 

ACKNOWLEDGMENT  

 

This research was funded by the Deanship of Scientific 

Research at Princess Nourah bint Abdulrahman University 

through the Fast-track Research Funding Program. 
 

REFERENCES 

[1] C.E. Cook, M.T. Bergman, R.D. Finn, G. Cochrane, E. Birney, R. 
Apweiler. (2016, Jan). The European Bioinformatics Institute in 2016: 

Data growth and integration. Nucleic Acids Research. 44(Database 

issue). pp. D20-D26. doi:10.1093/nar/gkv1352. 
[2] V. Lapatas, M. Stefanidakis, R.C. Jimenez, A. Via, M.V. Schneider. 

(2015, Dec). Data integration in biological research: an overview. 

Journal of Biological Research. 22(1). doi:10.1186/s40709-015-0032-
5. 

[3] V. Gligoriević, N. Pržulj. Methods for biological data integration: 

perspectives and challenges. (2015, Nov). Journal of the Royal Society 
Interface. 12(112): doi:10.1098/rsif.2015.0571. 

[4] X. Tang, M.T. Kandemir, M. Karakoy, M. Arunachalam. Co-

optimizing memory-level parallelism and cache-level parallelism. 
Proc. of the 40th ACM SIGPLAN Conference on Programming 

Language Design and Implementation, 2019. pp. 935-949. 

[5] A. Waterland, E. Angelino, E.D. Cubuk, E. Kaxiras,  R.P. Adams, J. 
Appavoo, M. Seltzer. Computational caches. Proc. of the 6th 

International Systems and Storage Conference, 2013. 

[6] D.J. Rigden, X.M. Fernández. (2019, Dec.). The 26th annual Nucleic 
Acids Research database issue and Molecular Biology Database 

Collection. Nucleic Acids Research. 47(D1), pp. D1-D7. Available: 
doi:10.1093/nar/gky1267. 

[7] D.J. Rigden, X.M. Fernández. (2018). The 2018 Nucleic Acids 

Research database issue and the online molecular biology database 
collection. Nucleic Acids Research. 46(Database issue), pp. D1-D7. 

Available: doi:10.1093/nar/gkx1235. 

[8] J. Mashima, Y. Kodama, T. Fujisawa, et al. (2017, Jan.). DNA Data 
Bank of Japan. Nucleic Acids Research. 45(D1), pp. D25–D31. 

Available: https://doi.org/10.1093/nar/gkw1001 

[9] D.A. Benson, M. Cavanaugh, K. Clark, et al. (2018, Jan.). GenBank. 
Nucleic Acids Research. 46(D1), pp. D41-D47. Available: 

doi:10.1093/nar/gkx1094 

[10] A.L. Toribio, B. Alako, C. Amid, et al. (2017, Jan.). European 

Nucleotide Archive in 2016. Nucleic Acids Research. 45(D1), pp. 

D32–D36. Available:  https://doi.org/10.1093/nar/gkw1106 

[11] T. Etzold, A. Ulyanov, Argos P. (2004, Jan.). SRS: Information 

retrieval system for molecular biology data banks. Methods in 

Enzymology.266, pp. 114–128. Available: 

https://doi.org/10.1016/S0076-6879(96)66010-8 

TABLE 10 
MIGRATION PLAN 

Object Time 

int. 1 

Time 

int. 2 

Time 

int. 3 

BO1 2 2 2 

BO2 1 1 1 

BO3 2 2 1 

https://doi.org/10.1093/nar/gkw1001
https://doi.org/10.1093/nar/gkw1106
https://www.sciencedirect.com/science/journal/00766879
https://www.sciencedirect.com/science/journal/00766879
https://doi.org/10.1016/S0076-6879(96)66010-8


10 
 
[12] P. Kersey, L. Bower, L. Morris, A. Horne, R. Petryszak, C. Kanz, et 

al. (2005, Jan.). Integr8 and genome reviews: integrated views of 
complete genomes and proteomes. Nucleic Acids Research. 33(Suppl. 

1), pp D297–302. Available: doi: 10.1093/nar/gki039 

[13] The Entrez Search and Retrieval System, 2nd ed., Bethesda (MD): 

National Center for Biotechnology Information (US)., In The NCBI 
Handbook., 2007. 

[14] D. Smedley, S. Haider, B .Ballester, et al.(2009, Jan.). BioMart - 

biological queries made easy. BMC Genomics. 10(22), pp. 1–12. 
[15] E. Cadag, B. Louie, P. J. Myler, P. Tarczy-Hornoch, “Biomediator 

data integration and inference for functional annotation of anonymous 

sequences,” in Pacific Symposium on Biocomputing 2007, pp. 343–

354. 

[16] D. Blankenberg, N. Coraor, G.V. Kuster, J. Taylor, A. Nekrutenko. 

(2011, April). Integrating diverse databases into a unified analysis 

framework: A Galaxy approach. Database (Oxford). (bar011), pp. 1–

9. 

[17] K. Wolstencroft, R. Haines, D. Fellows, et al. (2013, July). The 

Taverna workflow suite: designing and executing workflows of Web 

Services on the desktop, web or in the cloud. Nucleic Acids Research. 

41, pp. W557-W561. Available: doi:10.1093/nar/gkt328. 

[18] R. Dowell , R. Jokerst, A. Day, S. Eddy,  L. Stein. (2001, Oct.). The 

distributed annotation system. BMC Bioinformatics. 2(1), pp.7. 

[19] M. Wilkinson, H. Schoof, R. Ernst, D. Haase. (2005, May). 

BioMOBY successfully integrates distributed heterogeneous 

bioinformatics web services. The PlaNet exemplar case. Plant 

Physiol. 138(1), pp. 5–17. 

[20] K.H. Cheung, K.Y. Yip, A. Smith, R. deKnikker, A. Masiar, M. 

Gerstein. (2005, July). YeastHub: a semantic web use case for 

integrating data in the life sciences domain. Bioinformatics. 
21(Suppl. 1), pp. i85–96. Available: 

doi:10.1093/bioinformatics/bti1026 

[21] E.K. Neumann, D. Quan. (2006). Biodash: a semantic web dashboard 
for drug development. Pac Symp Biocomput. pp. 176–87. Available: 

doi:10.1142/9789812701626_0017. 

[22] F. Belleau, M.A. Nolin, N. Tourigny, P. Rigault, J. Morissette. (2008, 
Oct.). Bio2RDF: towards a mashup to build bioinformatics 

knowledge system health care and life sciences data integration for 

the semantic web. Banff, Canada. 41(5), pp. 706-716. Available: 

10.1016/j.jbi.2008.03.004 

[23] O. Irshad, M.U.G Khan. (2019, Feb.). Integration and Querying of 

Heterogeneous Omics Semantic Annotations for Biomedical and 
Biomolecular Knowledge Discovery. Current Bioinformatics; 14(8): 

doi: 10.2174/1574893614666190409112025. 

[24] V. Milutinovic. (2000, September). Caching in Distributed Systems. 
IEEE Concurrency. 8(3). pp. 2-3. 

[25] Hasslinger G, Ntougias K, Hasslinger F, Hohlfeld O. (2017). 

Performance Evaluation for New Web Caching Strategies 

Combining LRU with Score Based Object Selection. Computer 

Networks. Available: 10.1109/ITC-28.2016.150 

[26] J. Gomez-Vilardebo. (2018, June). A Novel Centralized Coded 
Caching Scheme with Coded Prefetching. IEEE Journal on Selected 

Areas in Communications, Special Issue on Caching for 

Communication Systems and Networks. 35(8), pp. 1904 -1904. 
Available: 10.1109/JSAC.2017.2721578 

[27] J. Hachem, N. Karamchandani, S. Moharir, S. Diggavi. (2018, June). 

Caching with Partial Adaptive Matching. IEEE Journal on Selected 

Areas in Communications, Special Issue on Caching for 

Communication Systems and Networks. 36(8), pp.1831 – 1842. 

Available: 10.1109/JSAC.2018.2845018 
[28] Gao G, Li R, Xiao Z, Xu Z. Distributed Caching Strategies in Peer-

to-Peer Systems. IEEE International Conference on High 

Performance Computing and Communications 2011. Available: 
10.1109/HPCC.2011.11 

[29] Wu. Weijie, T.B. Ma Richard, C.S. John Lui. (2014, Mar.).  

Distributed Caching via Rewarding: An Incentive Scheme Design in 
P2P-VoD Systems. IEEE Trans. Parallel Distrib. Syst. 25(3), pp. 

612-621. Available: 10.1109/TPDS.2013.94 

[30] E. Anderson, J. Hall, J. Hartline, J. Hobbes, A. Karlin, J. Saia, R. 
Swaminathan, J. Wilkes. (2010, June). Algorithms for data 

migration. Algorithmica. 57 (2), pp. 349-380. Available: 

10.1007/s00453-008-9214-y  

[31] Y.B. Zikria, S.W. Kim, M.K. Afzal, H.W., M.H. Rehmani. (2018, 

October). 5G Mobile Services and Scenarios: Challenges and 
Solutions. MDPI Sustainability. 10(10), pp. 1-9. 

[32] Thalheim B, Wang Q. (2013, Sep.). Editorial: Data migration: A 

theoretical perspective. Data Knowl. Eng. 87, pp. 260-278. 
Available: 10.1016/j.datak.2012.12.003 

[33] Roberts G, Chen S, Kari C, Pallipuram V. Data migration algorithms 

in heterogeneous storage systems: A comparative performance 
evaluation. IEEE 16th International Symposium on Network 

Computing and Applications (NCA), Cambridge, MA, 2017. 

Available: 10.1109/NCA.2017.8171340 
[34] Phyu M.P, Phyu M.P, Thein N.L. Efficient storage management for 

distributed storage system. Proc. SPIE 8350, Fourth International 

Conference on Machine Vision (ICMV 2011): Computer Vision and 
Image Analysis; Pattern Recognition and Basic Technologies 2012. 

Available: 10.1117/12.920129 

[35] R. Abbasi, H. Hassan, W. Ahmed, G. Rehman, N.M. F. Qureshi, B. 
Luo, A. K. Bashir. (2019). Generalized PVO based Dynamic Block 

Reversible Data Hiding for Secure Transmission Using Firefly 

Algorithm.     Transactions on Emerging Telecommunications 
Technologies, Wiley. 

[36] S Yaseen, S.M.A Abbas, A. Anjum, T. Saba, A. Khan, S.U.R Malik, 

N. Ahmed, B. Shahzad, A.K Bashir. (2018). Improved 
Generalization for Secure Data Publishing. IEEE Access. 6, pp. 

27156-27165. 

[37] M. Z. Khan, M. U. Ghani, O. Irshad, R. Iqbal. (2019, June). Deep 
Learning and Blockchain Fusion for Detecting Driver's Behavior in 

Smart Vehicles. Internet Technology Letters. doi: 
https://doi.org/10.1002/itl2.119. 

[38] A. Musaddiq, Y.B. Zikriya, O. Hahm, H.J. Yu, A. K. Bashir, S.W. 

Kim. (2018, February). A Survey on Resource Management in IoT 
Operating Systems. IEEE Access. 6, pp. 8459-8482. 

[39] Y.B. Zikria, S.W. Kim, O. Hahm, M.K. Afzal, M.Y. Aalsalem. 

(2019, April). Internet of Things (IoT) Operating Systems 
Management: Opportunities, Challenges, and Solution. Sensors. 8 

(19), pp. 1-10. doi: 10.3390/s19081793. 

[40] G. Rathee, A. Sharma , H. Saini, R. Kumar, R. Iqbal. (2019, June). 
A Hybrid Framework for Multimedia Data Processing in IoT-

HealthCare using Blockchain Technology. Multimedia Tools and 

Applications.1(23). doi:10.1007/s11042-019-07835-3. 
[41] Link: https://ncai.kics.edu.pk/brl-downloads/. (Note. The link will 

publically be available after the acceptance of this paper. However 

software code has already been uploaded to the submission portal 
during the paper submission process.) 

 

https://dx.doi.org/10.1093%2Fnar%2Fgki039
https://doi.org/10.1093/bioinformatics/bti1026
https://doi.org/10.1109/ITC-28.2016.150
https://doi.org/10.1109/JSAC.2017.2721578
https://doi.org/10.1109/JSAC.2018.2845018
https://doi.org/10.1109/HPCC.2011.11
https://doi.org/10.1109/TPDS.2013.94
https://www.spiedigitallibrary.org/profile/notfound?author=Myat_Pwint_Phyu
https://doi.org/10.1002/itl2.119

