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Abstract

The energy harvesting methods enable WSNs nodes to last potentially forever with
the help of energy harvesting subsystems for continuously providing energy, and
storing it for future use. The energy harvesting techniques can use various potential
sources of energy, such as solar, wind, mechanical, and variations in temperature.
Energy-constrained sensor nodes are small in size. Therefore, some mechanisms are
required to reduce energy consumption and consequently to improve the network
lifetime. The clustering mechanism is used for energy efficiency in WSNs. In the
clustering mechanism, the group of sensor nodes forms the clusters. The
performance of the clustering process depends on various factors such as the
optimal number of clusters formation and the process of cluster head selection. In
this paper, we propose a hybrid whale and grey wolf optimization (WGWO)-based
clustering mechanism for energy harvesting wireless sensor networks (EH-WSNs). In
the proposed research, we use two meta-heuristic algorithms, namely, whale and
grey wolf to increase the effectiveness of the clustering mechanism. The exploitation
and exploration capabilities of the proposed hybrid WGWO approach are much
higher than the traditional various existing metaheuristic algorithms during the
evaluation of the algorithm. This hybrid approach gives the best results. The
proposed hybrid whale grey wolf optimization-based clustering mechanism consists
of cluster formation and dynamically cluster head (CH) selection. The performance of
the proposed scheme is compared with existing state-of-art routing protocols.

Keywords: Clustering, Cluster head (CH), WGWO, Whale optimization algorithm
(WOA), Grey wolf optimization (GWO)

1 Introduction
Recently, lots of research are going on various aspects of the energy harvesting wireless

sensor networks (EH-WSNs) [1]. EH-WSNs are playing a crucial role in multiple appli-

cations [2, 3], and also, in EH-WSNs, sensor nodes (SNs) can harvest energy from the

environment. The energy harvested SNs can improve their sensing range and lifetime

as compared to conventional SNs, which are depending on battery power for their op-

erations. Energy harvesting methods help the SNs to get the permanent power supply

from the sources available in the environment. Moreover, this scheme raises two
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concerns, such as the availability of energy resources and the amount of energy col-

lected. For successfully deploying WSNs, two issues that need attention are energy har-

vesting methods, and second is energy management issues [4]. In energy harvesting

schemes, environmental energy is converted into electrical energy. The energy manage-

ment mechanism consists of lowering energy consumption. The overall aim is to

maximize the remaining network energy.

In EH-WSNs, we can achieve a reliable and energy-efficient packet delivery by enhan-

cing the existing protocols. And for this, the scheme should provide adequate forward-

ing opportunities during the route-finding phase to find a robust route. Along this

route, packets greedily proceed to the destination through node’s participation [5]. In

EH-WSNs, it is a fact that SNs have a limitation in terms of energy and communication

ability. Therefore, there is a need to design a routing scheme for EH-WSNs to improve

data delivery to the receiver. The solution is energy-balanced routing schemes based on

the characteristics of forwarder nodes. The next forwarder is selected as per the quality

of the link and forwarder remaining energy [6].

Sensor nodes should have a higher energy harvesting rate as compared to their en-

ergy consumption rate. But, this condition is not usually meet. The duty cycle (DC)

method should be used to achieve this condition [7]. By increasing the network con-

nectivity (i.e., increasing the node’s sensing range) in the wireless communication sys-

tems, the convergence rate enhances. But, this increases energy consumption and

consequently decreasing the lifetime of EH-WSNs [8]. Reducing energy consumption

and, therefore, extending the network lifetime is a critical parameter for the successful

deployment of WSNs. There are various schemes developed for achieving the above

objective, such as multi-hop schemes, cooperative transmission schemes, and duty-

cycle schemes [9]. The main limitation of wireless charging is the risk of electromag-

netic exposure in WSNs. Also, wireless chargers can deplete the battery. The energy

harvesting technique has low risk. Harvesting energy from the environment can be used

effectively to energize the SNs. A power management scheme is needed for harvesting

the energy from the environment for efficiently managing the energy of sensors, and

this mechanism results in maximizing the sensors’ duty cycle [10].

For designing robust EH-WSNs, the mobility concept is used to avoid communica-

tion hindrances due to unstable energy variations. The mobile collector concept is get-

ting attention recently. In this technique, based on the sensed data, energy

consumption is balanced in the network. Now, researchers are working on designing

distributed algorithms to increase the network performance by changing the data rates

that adapt to the unstable environmental energy fluctuations [11]. In EH-WSNs, data

transmission with QoS constraints is a significant research challenge. Various research

work utilizes multipath routing to achieve reliability in EH-WSNs. However, multipath

routing has high energy costs. We can improve the efficiency of QoS routing in EH-

WSNs by the appropriate selection of the forwarding candidate set [12].

There is an urgent need in EH-WSNs to answer two simple questions on how to cor-

rectly estimate the energy consumption and selection of energy-efficient routes to send

the sensed data to the base station (BS). The formulation of a heuristic energy-efficient

data sensing and routing scheme is needed in EH-WSNs to answer the above questions

[13]. There are a large number of different energy-efficient routing schemes in EH-

WSNs that addresses the issue of lowering energy consumption. A new energy
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harvesting technology is getting the attention that uses piezoelectric nanogenerators to

supply power to the nano sensor; these are the sensors which cannot be charged by

traditional energy harvesters [14]. In a high dense WSNs, there is a redundancy of data

during sensing tasks. The reason is apparent; for precise and accurate monitoring, a

large number of sensor nodes are utilized. Hence, in this case, there is a need for data

fusion and aggregation for saving energy. In this way, total communication cost and en-

ergy consumption improve due to a reduction in the size and number of messages ex-

changed among SNs [15]. It is a well-known fact that in an EH-WSNs scenario,

transmission distance affects energy consumption as well as harvested energy at SN.

Energy consumption is directly proportional to the square of the distance, and har-

vested energy is inversely proportional. There must be some mechanism to pick the

nodes which are near to the path to help in the smooth transmission of data in the net-

work [16]. Furthermore, the protocols should consider the different energy levels of the

receiver, which is lacking in currently available protocols for EH-WSNs. Therefore,

there is a need for the medium access control (MAC) protocol for QoS in EH-WSNs.

Further, the protocol should also adjust the receiver DC according to its current energy

level [17].

Several kinds of research are going on to lower energy consumption by using

clustering-based schemes in EH-WSNs. The hybrid approach consisting of static and

dynamic clustering is a new method. The hybrid approach utilizes two parameters, such

as distributed-centralized schemes and multi-hop routing. Also, this scheme considers

the criteria, such as the level of energy, estimation of harvested energy, and the number

of neighbors [18]. Apart from two vibrant issues of EH-WSNs, such as reducing the en-

ergy expenditure and enhancing the network lifetime, the other important aspect in

EH-WSNs is to improve its operating performance also. To improve the working per-

formance of EH-WSNs, the BS can form unequal size clusters, and select cluster heads

(CHs) correspondingly, in which the clusters close to the BS have a smaller size. Then,

the BS builds efficient paths among each CHs [19]. Next, EH-WSNs need a cross-layer

protocol that can perform load-balancing adaptively, consisting of geographic-based

routing, and can select relay nodes (RNs) efficiently [20].

The size of the sensor nodes (SNs) is small, and they have limited energy capabilities.

With limited energy capabilities, they are having constrained in the communication process.

Therefore, some advanced methods are needed that are capable of reducing energy con-

sumption and enhancing the network lifetime in EH-WSNs. Clustering is a prominent

energy-efficient technique. Clustering balances the energy consumption among all SNs and

minimizes traffic and overhead during data transmission phases of WSNs.

The clustering-based approach consists of CHs selection, and SNs send data to the

nearest CH. CHs undertake data aggregation and compression. More responsibilities to

CHs will require more energy consumption to process and transmit each cluster’s data,

which will result in premature and irregular network depletion. There is not a general

approach to determine and optimize the dissipated energy and network lifetime longev-

ity. Existing various methods focus on improving one feature and may increase energy

consumption in other. Also, existing approaches do not consider the quantitative deter-

mination of energy consumption for the complete network.

For further development, this paper have proposed the hybrid WGWO (whale and

grey wolf optimization)-based novel energy-efficient clustering for EH-WSNs.
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The significant insights and offerings of this article can be listed as follows.

� We propose the hybrid whale grey wolf optimization (WGWO) algorithm for the

optimal number of clusters formation as well as dynamically selecting the cluster heads

(CHs). The proposed approach shows the novel research, where the proposed WGWO

optimization algorithm selects the energy-efficient clusters with efficient cluster heads

(CHs) in a dynamic fashion. We design the hybrid whale grey wolf optimization

(WGWO) algorithm by the integration of two novel optimization methods, such as the

whale optimization algorithm and the grey wolf optimization algorithms.

� Further, the relay nodes (RNs) are selected based on energy efficiency criteria, and

later they are prioritized.

� Finally, the proposed WGWO technique is compared with existing methods such

as enhanced threshold sensitive stable election protocol (ETSSEP) [21], link-aware

clustering mechanism (LCM) [22], tree-based clustering (TBC) [23], and partition-

based low-energy adaptive clustering hierarchy (LEACH) [24] in terms of perform-

ance measuring attributes, namely, delay, packet delivery ratio (PDR), energy con-

sumption, and network lifetime and throughput. The numerical analysis appraises

that the average percentage improvements of the proposed scheme outplay the

existing methods when compared.

The research article is organized and summarized as per following. Section 2 depicts

the related works. Section 3 describes the proposed scheme. Section 4 demonstrates

performance analysis. Finally, Section 5 concludes the research article.

2 Related works
2.1 Energy consumption minimization strategies in EH-WSNs

Zahedi et al. [25] propose a swarm intelligence-based forwarding (SIF); SIF uses the efficient

clustering algorithm to form the clusters, and then appropriate CHs are selected. This tech-

nique generates a balanced as well as the precise number of clusters. The main objective of

this routing scheme is to enhance the network’s lifetime, and it can be applied to a wide var-

iety of applications. Next, Zhang et al. [26] propose an efficient routing scheme. The basis

of this scheme is an efficient clustering technique, as well as a topology control mechanism.

The clustering technique is utilized to find out the optimal number of clusters.

Further, in the topology control mechanism, sensor nodes (SNs) find out the efficient

path, based on the optimal forwarding communication area. The main characteristic of

this protocol is to minimize energy consumption and enhance the lifetime of the net-

work. Further, Darabakh et al. [27] propose a novel clustering and routing scheme in

EH-WSNs. This scheme aims to lower energy consumption by utilizing the multi-layer

architecture. This scheme reduces the communication range, which also decreases the

communication overhead. Furthermore, this paper proposes a multi-hop routing algo-

rithm, which considers the two factors, namely, total distance and the energy of RNs.

2.2 Efficient connectivity scheme in EH-WSNs

Mohemed et al. [28] present the solution of the routing hole issue due to energy deple-

tion in EH-WSNs. The paper effectively resolves the issue of the premature ending of
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the network lifetime, where the BS is far away. The proposed scheme maintains con-

nectivity in an energy-efficient manner. In EH-WSNs, the degree of sensor nodes (SNs)

affects the performance of the network. Therefore, we need to drive the perfect node

degree with reduced consumption of energy. Furthermore, Mohamed et al. [29]

propose a routing mechanism with minimum transmission energy requirement. The

proposed scheme, with an optimal node degree, performs effective data monitoring

tasks in WSNs.

2.3 Concept of minimum cost route, geographic routing, and multi-hop graph-based

routing in EH-WSNs

In WSNs, the efficient energy management of the SNs is a big challenge. Therefore,

special attention is deeply required. In high range data transmission, multi-hop routings

are used. The multi-hop routing scheme has the limitation of finding efficient routes.

Fawzy et al. [30] propose an energy-efficient scheme that is based on the Dijkstra algo-

rithm. Higher energy nodes are selected to work as relays. The Dijkstra algorithm aims

to search for the minimum cost route efficiently.

Further, Huang et al. [31] propose an efficient geographic routing scheme. The pro-

posed scheme gives enhanced route recovery from a routing hole issue. It dynamically

uses the three factors to make routing decisions, such as information related to location,

residual energy computation, and total energy consumption. Earlier developed geographic

routing schemes use only local location information to route data. Therefore, conven-

tional geographic routing approaches suffer from the routing hole problem. Hence, exist-

ing protocols suffer from longer delivery delays and the lower delivery ratio.

Furthermore, Rhim et al. [32] propose a multi-hop graph-based technique for effi-

cient routing schemes in WSNs, which aims to enhance the network lifetime. This

technique consists of two phases such as the clustering phase and routing phase. The

clustering phase consists of the formation of clusters and the further selection of CHs.

The routing phase is dedicated to dynamically building the multi-hop routes between

CHs and the sink.

2.4 Concept of probabilistic routing schemes, relay transmission probability, and role of

opportunistic routing in EH-WSNs

Hawbani et al. [33] primarily focus on probabilistic routing schemes. Probabilistic rout-

ing can be of two types, fixed and adaptive. Fixed schemes are having a fixed probability

of forwarding. But in the adaptive case, various parameters are considered, such as dis-

tance, traffic, and energy to determine the probability of forwarding. They provide the

conclusion that the optimal probability of forwarding is not universal, and it depends

on many topological parameters such as density, location, and transmission range.

Next, in EH-WSNs, the two issues are still challenging due to the fluctuating and un-

predictable nature of harvested energy such as how to optimize energy efficiency and

designing dynamic routing protocols. Li et al. [34] propose an efficient routing scheme

in EH-WSNs by considering the relay transmission probability and residual energy.

This scheme aims to achieve balanced routing with enhanced transmission characteris-

tics. Further, the performance of WSNs can be significantly increased with the help of

an opportunistic routing (OR) scheme. Traditional routing schemes use the pre-
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determined routes for packets transmission. OR scheme uses the metric for the selec-

tion of candidates as forwarders. Now in case of OR, the waiting issue is solved. But a

large number of candidates affect the packet delivery. Hawbani et al. [35] propose a

scheme that combines two main parts. First is defining the candidate’s zone by each

node. Second, the candidates are prioritized by using the OR metric.

2.5 Recent developments in routing schemes for EH-WSNs

Mottaghinia et al. [36] propose a routing scheme that considers three factors such as

fuzzy-logic concept, distance, and energy-aware routing (FLDEAR). It is known as the

FLDEAR protocol. This protocol uses two fuzzy inference systems in routing. The main

feature of this protocol is the efficient use of buffer management. Next, Tang et al. [37]

propose an efficient bionic hybrid preferable routing protocol (EHPRP) for EH-WSNs.

It is also known as EHPRP. This scheme aims to optimally use the harvested energy to

improve the lifespan of the network. Further, this approach would prominently

minimize the delay in processing and save energy. Also, Lu et al. [13] propose a routing

scheme that considers three steps primarily first, estimating the link quality; second,

optimally allocating the energy for data monitoring and routing; and third, sending the

collected data to the base station along energy-efficient routes. It is known as energy-

efficient data sender routes strategies (EEDSRS).

2.6 Comparison of clustering protocols

In the partition-based LEACH scheme [24], the complete network is divided into vari-

ous sectors, and one of the sensor nodes (SNs) is designated as a CH, which is having

higher energy. In this approach, the attempt is made for enhancing the network’s life-

time, but unbalanced consumption of energy is the prominent issue that arises here

due to poor path selection.

In the tree-based clustering approach [23], the data delivery ratio improves inside the

clusters only. The problem of unbalanced consumption of energy also exists in this ap-

proach. Also, in this approach, the packet delivery ratio is poor in the transmission of

processed data from cluster head to base station due to adopting the single-hop trans-

mission scheme.

Link-aware clustering mechanism (LCM) [22] utilizes the link quality attribute for

routing. This approach is having higher communication overhead; also, excess energy is

used for re-clustering, which occurs at regular intervals.

In enhanced threshold sensitive stable election protocol (ETSSEP) [21], the probabil-

ity function is utilized for the election of CH; the probability function is dynamic. Due

to poor route selection strategy, this approach suffers from a network reliability issue.

Table 1 shows the features of some clustering protocols briefly.

From the above literature, it can be concluded that clustering is a necessary means to

minimize energy consumption and prolong network life.

3 Proposed hybrid WGWO: whale grey wolf optimization-based novel
energy-efficient clustering in EH-WSNs
WSNs are constrained in terms of energy efficiency and communication capabilities.

Most of the research on WSNs has mainly concentrated on the design of energy and
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computationally efficient algorithms and protocols. EH-WSNs can provide continuous

and controllable energy for enabling the dead sensors to resume operation. The other

important aspect of EH-WSNs is to improve its operating performance also. For enhan-

cing the working performance of EH-WSNs, the BS can form unequal size clusters, and

select CHs correspondingly, in which the clusters close to the BS have a smaller size.

Then, the BS builds efficient paths among each CHs. Next, EH-WSNs need a cross-

layer protocol that can perform load-balancing adaptively, consisting of geographic-

based routing, and it should select relay nodes efficiently.

Clustering methods have various significant advantages. Clustering provides energy

efficiency, scalability to decrease the energy utilization of SNs in EH-WSNs. Clustering

reduces network overhead and traffic. Clustering prevents redundant messages from

being exchanged during the communication. In clustering, CHs perform data compres-

sion and data aggregation task, which results in reduced energy consumption in the

network. Also, the transmission range among SNs reduces in clustering mechanism. In

the clustering mechanism, only CHs are having high-range data transmission. In the

clustering mechanism, CHs play a major role, and therefore their selection is one of the

most critical problems in the clustering process. The traditional optimization algo-

rithms are not capable enough to provide the appropriate solution in a specific time.

Meta-heuristic methods are mainly used for these optimization problems to provide

the best solution. Next, Fig. 1 demonstrates the clustering mechanism in detail.

3.1 Objective function

There are seven objective functions [38, 39]. These seven objective functions are cover-

ing all important aspects needed for energy-efficient clustering such as saving the en-

ergy by minimizing the number of CHs, finding the current energy ratio, enhancing the

link quality in clusters, minimizing the distance between CHs and BS, reducing the

intra-cluster distances, maximizing the inter-cluster distance between CHs, and finally

balancing the load between CHs. The proposed hybrid WGWO algorithm provides the

best solution by minimizing all seven objective function. The fitness function for this is

the sum of all seven objective functions with seven weight constants. The fitness func-

tion, which is defined in the proposed method, is described as follows:

FF ¼ minimum m1y1 þm2y2 þm3y3 þm4y4 þm5y5 þm6y6 þm7y7ð Þ ð1Þ

where m1, m2, m3, m4, m5, m6, and m7 are weight constants defined by the user, and

FF is the fitness function. Also, y1, y2, y3, y4, y5, y6, and y7 are the objective functions.

Table 1 Merits and demerits of various clustering protocols in WSNs

Clustering protocols Merits Demerits

Partition-based LEACH [24] Improvement in network lifetime. Unbalanced energy consumption.

Tree-Based Clustering (TBC)
[23]

Improvement in packet delivery but only
inside the clusters.

Energy consumption is uneven,
higher delay.

Link-aware clustering
mechanism (LCM) [22]

Reliable routes are discovered by
considering link quality. Enhancement in
network lifetime.

Communication overhead increases,
excess energy consumption for re-
clustering.

Enhanced threshold sensitive
stable election protocol
(ETSSEP) [21]

Improvement in network lifetime. Reduction in packet delivery and
network reliability performance.
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The proposed hybrid WGWO (whale grey wolf optimization) is used to find the best

solution according to the fitness function. In the proposed hybrid algorithm, the solu-

tion is given by each agent. The best solution for the above-defined fitness function

consists of the minimum number of clusters with high link quality and dynamically se-

lected CHs with high remaining energy.

The first function is dedicated to save energy, and we know that if we can minimize

the optimal number of CHs, then energy consumption will be minimized. Equation (2)

describes this clearly.

Fig. 1 Clustering mechanism in WSNs
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y1 ¼
optimal number of clusters cð Þ
size of set of CH contestants sð Þ ð2Þ

The second function provides information about the current energy ratio; if there are

total M nodes, R clusters then the second function is the ratio of the initial energy of

nodes and the current CHs energy. Equation (3) describes this clearly.

y2 ¼

XM
p¼1

Energy nodep
� �

XR
q¼1

Energy cluster headq
� � ð3Þ

The third function aims to improve the link quality in clusters. This function gener-

ates the clusters in such a way that distances between SNs are minimum. In the third

function, Euclidean distance is calculated between the SN and the CH. Equation (4) de-

scribes this clearly.

y3 ¼
XR
q¼1

P
∀node j∈clusterq euclidean distanceðnode j; cluster headqÞ

minimum∀node j∈clusterq euclidean distanceðnode j; cluster headqÞ ð4Þ

The fourth function minimizes the distance between CHs and BS. Here, the area is

assumed to be A ×A; total clusters are R. Equation (5) describes it in detail.

y4 ¼

1
R

XR
q¼1

euclidean distanceðcluster headq; base stationÞ

A
2

ð5Þ

The fifth function aims to reduce the intra-cluster distances of SNs and their corre-

sponding CHs. The binary parameter is having value 1 if a particular node is assigned

to a specific CH; otherwise, its value is 0. Equation (6) illustrates it in detail.

y5 ¼

1
M

XM
p¼1

XR
q¼1

euclidean distanceðnodep; cluster headqÞ � binary parameterpq

Average distance two neighbors cluster heads
2

ð6Þ

The sixth function is dedicated to maximizing the inter-cluster distance between

CHs. Equation (7) represents it. |CNq| is the number of nodes in cluster q.

y6 ¼
Average distance two neighbors cluster heads

1
jCNqj

XjCNq j

q¼1

euclidean distanceðcluster headq; cluster headrÞ
ð7Þ

The seventh function is used for balancing the load between CHs. Equation (8) will

reduce the maximum load between CHs. |CNq| is the number of nodes in cluster q.

Here, the area is assumed to be A × A; total clusters are R.
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y7 ¼
MAXIMUM CNq

�� ��� �
1
R

XR
q¼1

CNq

�� ��� � ð8Þ

3.1.1 Whale optimization algorithm (WOA)

The mathematical modeling of WO A[40] is described in the below sections.

U
!¼ H

!� N!�
lð Þ−N! lð Þ

��� ��� ð9Þ

N
!

l þ 1ð Þ ¼ N
!�

lð Þ−Y!� U! ð10Þ

where “l” represents a current iteration, Y
!
,H
!

represent coefficient vectors, N
!�

dem-

onstrates the best solution, and N
!

depicts a current state.

Y
!¼ 2 y!� i

!
− y! ð11Þ

H
!¼ 2 � i

! ð12Þ

where y! reducing from 2 to 0 also i
!
∈½0; 1�.

N
!ðl þ 1Þ ¼ U

!
dist� explogarithmicspiralυ �cos ð2ΠυÞ þ N

!�ðlÞ ð13Þ

where U
!

dist ¼ jN!�
qðlÞ−N

!ðlÞj
v ∈ [−1, 1], logarithmicspiral signifies the logarithmic spiral shape.

N
!

l þ 1ð Þ ¼ N
!�

lð Þ−Y!� U!; ifR < 0:5

U
!

dist : exp
logarithmicspiralv � cos 2

Y
v

� �
þ N
!�

lð Þ; ifR≥0:5

(
ð14Þ

where R ∈ [0, 1].

U
!¼ H

!� N!random
−N
!��� ��� ð15Þ

N
!

l þ 1ð Þ ¼ N
!random

−Y
!� U! ð16Þ

where N
!random

represents the current population random position vector.

3.1.2 Grey wolf optimization (GWO) algorithm

In GWO [41], alpha (α), beta (β), delta (δ) wolves direct the tracking.

In GWO, the most important inspiration is to encircle a prey by guidance through α,

β, and δ, which systematically establishes as beneath:

Z l þ 1ð Þ ¼ Z lð Þ−B � S ð17Þ
S ¼ F � Zpp lð Þ−Z lð Þ�� �� ð18Þ

Here, Z represents the grey wolf position,

Zpp is the prey position,

B, F are the coefficient vectors, and the number of iteration is defined by “l.”
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B ¼ 2b � d1−b ð19Þ

F ¼ 2 � d2 ð20Þ

where “b” decreases from 2 to 0, and d1and d2 are the random vectors from [0,1]. The

parameter “b” is updated in every iteration within the range from 2 to 0 as below,

b ¼ 2−l
2
L

� �
ð21Þ

At this point, “L” denotes the total number of iterations allowed.

The update procedure of wolves position takes place as per the following:

Z1 ¼ Zα lð Þ−B1 � Sα ð22Þ

Z2 ¼ Zβ lð Þ−B2 � Sβ ð23Þ

Z3 ¼ Zδ lð Þ−B3 � Sδ ð24Þ

where Sα, Sβ, and Sδ are obtained as follows:

Sα ¼ F1 � Zα−Zj j ð25Þ

Sβ ¼ F2 � Zβ−Z
�� �� ð26Þ

Sδ ¼ F3 � Zδ−Zj j ð27Þ

We can determine the solution for the next iteration as follows:

Z l þ 1ð Þ ¼ Z1 þ Z2 þ Z3ð Þ
3

ð28Þ

The process of updating the wolf positions stopped when the maximum iteration

achieved.

Next, Fig. 2 demonstrates the flow chart of the hybrid whale grey wolf optimization

algorithm.

We have designed the hybrid scheme by integrating the whale and the grey wolf algo-

rithms, which are known as novel approaches for optimization. Here, both algorithms

provide the optimal best solutions simultaneously in each round of iteration; the best

solution is selected in each round of iteration after comparing the solutions provided

by both algorithms. Further this best solution is given to both algorithms to generate

the optimal solutions which is much better than the past optimal solutions, and the

cycle is repeated until maximum iterations.

A broad range of optimization problems has been solved by swarm intelligence and

population-based algorithms. There are some complicated problems in which the trad-

itional approaches cannot find the best solution at a particular time. WOA and GWO

are the most recent meta-heuristic optimization algorithms.

Currently, meta-heuristic search algorithms which are based on swarm intelligence

and population-based are used to provide the best solution in the form of energy-

efficient clustering methods in WSNs. For multidimensional search space, traditional

algorithms are not able to give solutions in a specific time, and in these circumstances,

meta-heuristic optimization algorithms provide an appropriate solution.

Rathore et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:101 Page 11 of 28



3.2 Relay nodes selection and prioritization scheme

Relay nodes (RNs) are initially selected by considering three energy focused attributes,

namely, energy-consumption [42, 43], congestion rate (CR) [44, 45], and also

EDCW[46] metric.

The energy consumption parameter consists of energy utilized in data transmission,

reception, and also energy utilized in data fusion.

Energytransmission R;mð Þ ¼ Energycircuit loss transmission þ Energycircuit loss amplifier ð29Þ

Here, R is the range for m bits data transmission, Energycircuit _ loss _ transmission depicts

energy consumption in circuit, and Energycircuit _ loss _ amplifier illustrates the energy con-

sumption in the amplifier.

Equation (30) represents the energy consumption in receiving m bits of data.

Energyreceiving data mð Þ ¼ m� Energytransmission per unit bit ð30Þ

Similarly, Eq. (31) exhibits energy utilization in fusing m bit data.

Fig. 2. Flow chart of the hybrid whale grey wolf optimization algorithm (WGWO)
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Energyfusing mð Þ ¼ m� Energyfusing unit bit data ð31Þ

The congestion rate parameter is utilized for evaluating the relay nodes (RNs) load.

Congestion Rateh ¼
PQ

h¼1

P
nodeh∈route

p
hk
CD nodehð Þ−Pnodeh∈routemhk

CD nodehð ÞPQ
h¼1

P
nodeh∈route

p
hk
CD nodeið Þ ð32Þ

Here, the degree of connectivity is represented by CD(nodei), and routehk is used for

the route.

In the EDCW [46] metric, the RNs set is formulated by utilizing the information

about the neighbors of the SNs. The EDCW of particular nodei can be expressed as

given in Eq. (33). It is the sum of single-hop and multihop transmission.

EDCW nodehð Þ ¼ 1X
kϵFS hð Þ

LP h; kð Þ þ

X
kϵFS hð Þ

LP h; kð Þ:EDCW kð Þ
X

kϵFS hð Þ
P h; kð Þ þ weight ð33Þ

Here, weight represents the cost of forwarding. Also, LP(h, k) is the success probabil-

ities, and FS(h) is the set of forwarders.

Next, we calculate the expected operating transmission cost (EOTC) [47] and

prioritize the RNs by using EOTC. Therefore, the actual relay list is built for each node.

The EOTC of single-hop data forwarding, EOTCðTuv
single−hopðwÞÞ at particular slot w is

derived from the sum of transmission cost and the wait cost as given in Eq. (34).

EOTC Tuv
single−hop wð Þ

� �
¼ cost Tuv

wait wð Þ� �þ cost Tuv
transmission wð Þ� � ð34Þ

The multi-hop method of data transmission uses the EOTC metric in single-hop and

average EOTC metric values of all subsequent RNs. The below Eq. (35) model this

concept.

EOTCðTuvðwÞÞ ¼ EOTCðTuv
single−hopðwÞÞ þ

P
r∈Setvinitial

EOTCðTvrðwÞÞ
sizeðSetvinitialÞ

ð35Þ

where sizeðSetvinitialÞ depicts the relay set, and EOTCðTuv
single−hopðwÞÞ is the EOTC of

receiver node v for a single hop in the RN set. Next, EOTC is used for the prioritization

of the relay nodes. We can form the actual list of RNs for each node based on EOTC

by using the previous relay set. The RNs having lower EOTC values will get a higher

priority.

4 Results and discussions
In this section, the network simulator (NS2) is utilized for implementing the hybrid

WGWO based novel energy-efficient clustering mechanism for EH-WSNs. The sensor

nodes (SNs) are varied from number 100 to 500. Table 2 represents the simulation

Rathore et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:101 Page 13 of 28



parameter and its value. The comparative analysis is carried out in the proposed re-

search by comparing the proposed WGWO scheme with the schemes, namely, ETS-

SEP, LCM, TBC, and partition-based LEACH. The various performance parameters

taken into consideration are energy consumption, network lifetime, throughput, packet

delivery ratio (PDR), and delay.

Figure 3 shows the performance of the proposed WGWO scheme for delay param-

eter as compared with existing schemes. After analyzing the graph, it is clear that the

proposed approach is having a lower delay than the existing schemes.

The delay parameter of the WGWO scheme is minimum due to the reason that we

have used the multi-objective functions for energy-efficient clusters formation and dy-

namically selecting the cluster heads. Further, we have used the hybrid metaheuristic

algorithms for the best solution in the form of optimal clusters formation and dynamic-

ally cluster heads selection; furthermore, in our approach, RNs are selected based on

Table 2 The simulation parameter and its value used for analysis

Parameter Value

Area size× 450m × 450m

MAC protocol 802_11

Antenna Omnidirectional

Packet size 128 bytes

Transmission energy per node 09 × 10-3 J

Receiving energy per node 2.9 × 10-3 J

The initial energy of each sensor node 0.7 J

Simulation time 650 s

Fig. 3 Delay (ms) vs. variation in the number of nodes
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energy-efficient parameters, and later RNs are prioritized for efficiently transmitting the

packets through optimal route without route breakages. Therefore, the probability of re

data forwarding is also very low in our proposed approach. Hence, total time spent is

low in communication mechanism, and this validates our claim of lower delay. Also,

Table 3 shows the comparative analysis of WGWO for the delay parameter.

The average percentage improvements of WGWO in terms of delay are 29.99, 52.38,

58.98, and 67 as compared to ETSSEP, LCM, partition-based LEACH, and TBC, re-

spectively. Detailed analysis of the delay parameter for WGWO is depicted in Fig. 4.

Figure 4 consists of five different columns. Initially, these five different columns rep-

resent the value of delay parameter on 100, 200, 300, 400, and 500 nodes, and later in

this figure these five different columns represent the percentage improvements, and fi-

nally, sixth columns represent the average percentage improvements comparing with

each scheme, respectively.

Figure 5 shows the performance of the proposed WGWO scheme for the packet de-

livery ratio (PDR) parameter as compared with existing schemes. After inspecting the

graph, we can conclude that the proposed WGWO approach has a maximum PDR.

The PDR parameter of our proposed WGWO scheme is higher due to the reason

that packet drop and control overhead is reduced in our proposed scheme; also, in our

proposed approach delay is less for sending the packets from source to destination.

Energy-efficient parameters are used for RNs selection. Therefore, incompetent RNs

are avoided during routing. Also, in our proposed approach reliability is high in select-

ing the next forwarders as compared with existing schemes. Hence, the packet delivery

ratio is maximum in our proposed approach, and accordingly network performance is

improved. Next, Table 4 shows the comparative analysis of WGWO for the packet de-

livery ratio parameter.

The average percentage improvements of WGWO in terms of packet delivery ratio

are 10.47, 25.62, 40.65, and 55.78 as compared to ETSSEP, LCM, partition-based

LEACH, and TBC, respectively. Detailed analysis of the packet delivery ratio parameter

for WGWO is depicted in Fig. 6.

Again, Fig. 6 consists of five different columns, and initially, these five different col-

umns represent the value of PDR parameter on 100, 200, 300, 400, and 500 nodes; also,

later in this figure these five different columns represent the percentage improvements,

and finally, sixth columns represent the average percentage improvements comparing

with each scheme, respectively.

Figure 7 exhibits the performance of the proposed WGWO scheme for the through-

put parameter as compared with existing schemes. After observing the graph, it is clear

that the proposed approach is having a higher throughput than the existing schemes.

Throughput depends on various factors such as delay, packet drop, and control over-

head. The proposed scheme has less packet drop, control overhead, and delay. There-

fore, throughput is higher in our scheme. Also, in our proposed approach reliable and

optimal path is selected for data transmission using energy-efficient multiple parame-

ters such as energy consumption, congestion rate, and EDCW metric. The probability

of selecting the inefficient nodes in data routing is high in existing schemes, and conse-

quently, throughput is less. In our proposed scheme, next forwarders are selected effi-

ciently with a shorter range of communication and less energy consumption. Table 5

shows the comparative analysis of WGWO for the throughput parameter.
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The average percentage improvements of WGWO in terms of throughput are 11.57,

26.73, 40.75, and 53.62 as compared to ETSSEP, LCM, partition-based LEACH, and

TBC, respectively. Detailed analysis of the throughput parameter for WGWO is

depicted in Fig. 8.

Once again, Fig. 8 consists of five different columns. Same as the previous figure,

these five different columns represent the value of throughput parameter on 100, 200,

Fig. 4 Detailed analysis of delay parameter for WGWO

Fig. 5 Packet delivery ratio (PDR) (%) vs. variation in the nodes
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300, 400, and 500 nodes, and later in this figure, these five different columns represent

the percentage improvements, and finally, sixth columns represent average percentage

improvements comparing with each scheme, respectively.

Figure 9 illustrates the performance of the proposed WGWO scheme for the energy

consumption parameter as compared with existing schemes. After examining the graph,

it is clear that the proposed approach is having a lower energy consumption than the

existing schemes.

Fig. 6. Detailed analysis of packet delivery ratio (%) parameter for WGWO

Fig. 7 Throughput (packets/second) vs. variation in the number of nodes
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It can be stated from the above figure that the energy consumption parameter of

our proposed scheme is lower. The energy consumption increases with the forma-

tion of non-optimal clusters. And, in the proposed research, with the help of a hy-

brid metaheuristic algorithm, the optimal number of clusters is formed with the

objective of the minimum energy consumption. Further, in our proposed approach,

communication as well as computing cost is low with optimal nodes selection as

the next forwarders. Therefore, the proposed scheme achieves minimum energy

consumption as compared with existing schemes. Next, Table 6 shows the com-

parative analysis of WGWO for the energy consumption parameter.

The average percentage improvements of WGWO in terms of energy consumption

are 33.84, 69.99, 80.70, and 88.56 as compared to ETSSEP, LCM, partition-based

LEACH, and TBC, respectively. Figure 10 depicts the detailed analysis of the energy

consumption parameter.

Furthermore, Fig. 10 consists of five different columns. Initially, these five different

columns represent the value of energy consumption parameter on 100, 200, 300, 400,

and 500 nodes, and later in this figure, these five different columns represent the per-

centage improvements, and finally, sixth columns represent average percentage im-

provements comparing with each scheme, respectively.

Figure 11 indicates the performance of the proposed WGWO scheme for the net-

work lifetime parameter as compared with existing schemes. After assessing the graph,

it is clear that the proposed approach is having a higher network lifetime than the exist-

ing schemes.

From Fig. 11, it is evident that the network lifetime parameter of our proposed

scheme is higher. The network lifetime is inversely proportional to the energy con-

sumption parameter. The energy consumption is less in our proposed approach; conse-

quently, network lifetime is higher. Further, in the existing schemes, routing decisions

are made periodically without utilizing the impact of network conditions. In our pro-

posed scheme, the routing decision is based on the characteristics of the next

Fig. 8 Detailed analysis of throughput (packets/seconds) parameter for WGWO
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forwarders by utilizing energy-efficient criteria. And, this form the consistent routing

mechanism. Next, Table 7 shows the comparative analysis of WGWO for the network

lifetime parameter.

The average percentage improvements of WGWO in terms of network lifetime are

13.29, 31.29, 46.37, and 59.81 as compared to ETSSEP, LCM, partition-based LEACH,

and TBC, respectively. Detailed analysis of the network lifetime parameter for WGWO

is depicted in Fig. 12 which is in 10-point scale.

Furthermore, Fig. 12 consists of five different columns. Initially, these five different

columns represent the value of network lifetime parameter on 100, 200, 300, 400, and

500 nodes, and later in this figure these five different columns represent the percentage

improvements, and finally, sixth columns represent average percentage improvements

comparing with each scheme, respectively.

5 Conclusion
We have proposed a hybrid whale grey wolf optimization algorithm for novel energy-

efficient clustering for energy harvesting wireless sensor networks. The novel energy-

efficient clustering process consists of the optimal number of clusters formation and

cluster heads (CHs) selection in a dynamic fashion. Further, relay nodes are selected

with the objective of energy efficiency, and later they are prioritized. The energy-

efficient clustering is done by the proposed hybrid WGWO algorithm. We use the vari-

ous objective functions to compute the optimal number of clusters as well as selecting

the CH node among multiple nodes in the cluster in a dynamic fashion. The hybrid

WGWO algorithm can find better solutions for the fitness function with multiobjective

functions. The multiple parameters are used to select the relay nodes to reach the

Fig. 9 Energy consumption (mJ) vs. variation in the number of nodes
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destination, and later these relay nodes are prioritized. Finally, the performance of

the proposed WGWO protocol is compared with the existing ETSSEP, LCM,

partition-based LEACH, and TBC, respectively, in terms of delay, energy consump-

tion, network lifetime, throughput, and delivery ratio. The results attest that the ef-

ficiency of the hybrid WGWO based clustering scheme is much better than the

various existing schemes.

Fig. 10 Detailed analysis of energy consumption (mJ) parameter for WGWO

Fig. 11 Network lifetime(s) vs. variation in the number of nodes
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