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Associations of combined genetic and epigenetic
scores with muscle size and muscle strength: a pilot
study in older women
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Abstract

Background Inter‐individual variance in skeletal muscle is closely related to genetic architecture and epigenetic regulation.
Studies have examined genetic and epigenetic relationships with characteristics of ageing muscle separately, while no study
has combined both genetic and epigenetic profiles in ageing muscle research. The aim of this study was to evaluate the
association between combined genetic and methylation scores and skeletal muscle phenotypes in older women.
Methods Forty‐eight older Caucasian women (aged 65–79 years) were included in this study. Biceps brachii thickness and
vastus lateralis anatomical cross‐sectional area (ACSAVL) were measured by ultrasonography. Maximum isometric elbow
flexion (MVCEF) and knee extension (MVCKE) torques were measured by a customized dynamometer. The muscle‐driven
genetic predisposition score (GPSSNP) was calculated based on seven muscle‐related single nucleotide polymorphisms (SNPs).
DNA methylation levels of whole blood samples were analysed using Infinium MethylationEPIC BeadChip arrays. The DNA
methylation score was calculated as a weighted sum of methylation levels of sarcopenia‐driven CpG sites (MSSAR) or an overall
gene‐wise methylation score (MSSNP, the mean methylation level of CpG sites located in muscle‐related genes). Linear
regression models were built to study genetic and epigenetic associations with muscle size and strength. Three models were
built with both genetic and methylation scores: (1) MSSAR + GPSSNP, (2) MSSNP + GPSSNP, and (3) gene‐wise combined scores
which were calculated as the ratio of the SNP score to the mean methylation level of promoters in the corresponding gene.
Additional models with only a genetic or methylation score were also built. All models were adjusted for age and BMI.
Results MSSAR was negatively associated with ACSAVL, MVCEF, and MVCKE and explained 10.1%, 35.5%, and 40.1% of the
variance, respectively. MSSAR explained more variance in these muscular phenotypes than GPSSNP, MSSNP, and models
including both genetic and methylation scores. MSSNP and GPSSNP accounted for less than 8% and 5% of the variance in all
muscular phenotypes, respectively. The genotype and methylation level of CNTF was positively related to MVCKE (P = 0.03)
and explained 12.2% of the variance. The adjusted R2 and Akaike information criterion showed that models with only a MSSAR
performed the best in explaining inter‐individual variance in muscular phenotypes.
Conclusions Our results improve the understanding of inter‐individual variance in muscular characteristics of older women
and suggest a possible application of a sarcopenia‐driven methylation score to muscle strength estimation in older women
while the combination with a genetic score still needs to be further studied.
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Introduction

Muscle mass and strength are two crucial factors in healthy
ageing.1 Older people with lower muscle mass and muscle
strength are more likely to have a greater loss of mobility2

and an increased risk of falls.3 A 10‐year follow‐up study by
Balogun et al.4 found that lower limb muscle mass and
muscle strength in older people were positively associated
with health‐related quality of life.

Many heritability studies have shown a genetic contribu-
tion to body composition and muscle strength in older adults.
An early twin study on postmenopausal women demon-
strated that genetic characteristics account for 52%, 46%,
and 30% of the variance in lean body mass, leg extensor
strength, and grip strength, respectively.5 An older male twin
study conducted by Carmelli et al.6 showed a decreased
genetic association with handgrip strength from 35% to 22%
over a 10‐year ageing process while the environmental
influence increased from 39% to 45%. Furthermore, multiple
association studies on athletes, young, and old populations
have suggested some genetic variants that are closely related
to body composition and muscle performance. For example,
the D allele of the ACE I/D polymorphism is related to higher
muscle strength.7 Older people with the ACE DD genotype
tend to have greater lean body mass and knee extensor
strength than II carriers.8 The R allele of the ACTN3 R/X
polymorphism is also associated with greater muscle power.9

Young people with the R allele had significantly higher knee
strength and more type IIx fibres than those of XX
genotype.10 The T allele in FTO A/T polymorphism is
predisposed to increase lean body mass and is more
prevalent in elite rugby players, who rely more on
appendicular lean mass for success, than other rugby athletes
and non‐athletes.11

To study the combined genetic association with physical
phenotypes, a phenotype‐driven genetic predisposition score
(GPS), which is calculated by adding up the number of predis-
posing alleles that are positively related to the corresponding
phenotype, has been introduced by Williams and Folland.12

With the application of the phenotype‐driven GPS, studies
have been able to analyse associations between genetic ar-
chitectures and physical performance based on multiple poly-
morphisms. Spanish athletes in endurance activities (e.g.
running, road cycling, and rowing) were found with a higher
endurance‐driven GPS than the general population.13,14

Coronary artery disease patients15 and older people16 with
higher muscle mass/strength‐driven GPS also demonstrated
greater muscular improvement after resistance training.

Besides the genetic aspect, muscular phenotypes are also
related to multiple external factors such as physical activity
and nutrients,1 which might affect muscle‐related gene ex-
pression through epigenetic regulation.17,18 As a link between
environment and genes, an epigenetic regulation modifies
gene expression through several mechanisms, among which

DNA methylation is the one that has been extensively
studied. In the human genome, DNA methylation occurs
almost exclusively at the 5′ position of cytosine in cytosine‐
phosphate‐guanine (CpG) dinucleotides.19 Many factors such
as age, lifestyle, and nutrition can trigger DNA methylation
changes.20 DNA methylation in gene promoters is usually
associated with a repression of corresponding gene
expression,21 while a recent study by Jeziorska et al.22 has
suggested a positive association between the CpG island
methylation in intragenic regions and transcriptional activity.
Because DNA methylation is a reflection of environmental
exposures and gene expression status, methylation levels of
several CpG sites have been suggested as biomarkers for
cancer screening23 and chronological age prediction.24 A
BMI‐related epigenetic score developed by Hamilton et al.25

was found to be associated with body mass, aerobic capacity,
type 2 diabetes, and cardiovascular disease. The accuracy and
sensitivity of diagnostic26 and prognostic27 prediction of pros-
tate cancer were also improved with the assistance of DNA
methylation scores. Wei et al.28 built a predictive model for
clear cell renal cell carcinoma prognosis based on the
methylation of five CpG sites and the model presented
reliable predictions across several cohorts. Moreover, DNA
methylation scores of specific CpG sites were introduced to
the prediction of maternal smoking habit during pregnancy
with high accuracy.29

In skeletal muscle, epigenetic regulation can be found in
development and differentiation processes. The expression
of genes from the myogenic regulatory factor and the
myocyte enhancer factor families partly rely on DNA
methylation to modify skeletal muscle proliferation and
differentiation.30 Meanwhile, some epigenetic traits induced
by enviromental stimuli can be maintained for a considerable
period (e.g. 30 population doublings of cell culture,31 7 weeks
of detraining32), a phenomenon known as ‘epigenetic
memory’.33 A recent study by Seaborne et al.32 suggested
four genes (RPL35a, UBR5, SETD3, and PLA2G16) that held
epigenetic memory 7 weeks after resistance training. All
these four genes were characterized by a similar pattern of
decreased gene expression with DNA hypermethylation
during detraining and dramatically enhanced gene expression
with DNA hypomethylation after retraining.32 Turner et al.34

demonstrated five genes (FLNB, MYH9, SRGAP1, SRGN, and
ZMIZ1) with increased gene expression in the acute/chronic
resistant training and retained hyopmethylation status during
7 weeks of detraining, indicating an involvment of these five
genes in epigenetic regulation of skeletal muscle characteris-
tics. Lifelong regular physical activity is also associated with
hypomethylated promoter regions in genes related to energy
metabolism, myogenesis, and oxidative stree resistance in
ageing muscle.35 Notably, most methylation studies of
skeletal muscle focus on identifying genes with various
methylation changes under different intervention phases or
between different populations, but the relationship between
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methylation levels and muscular phenotypes has not been
reported.

Several studies have combined genetic and epigenetic
profile scores to explore hereditary and environmental
associations with physical conditions such as BMI and heart
disease risk. Shah et al. found that regression models with
only BMI‐derived genetic or methylation scores explained
less than 10% of the inter‐individual variance in BMI, while
a model combining both scores improved the explained
variance to 13–18%.36 Another model with integrated genetic
and methylation scores also outperformed (13% more
accuracy) conventional risk factors in predicting coronary
heart disease.37 Such an approach of combined genetic and
epigenetic scores suggests a new approach of studying
inter‐individual variance and long‐term changes in muscle
mass and muscle strength. A better understanding of genetic
and epigenetic associations with muscular phenotypes can be
beneficial to healthy ageing via improved estimation of the
probability of muscle degeneration and thus prediction of
frailty and sarcopenia. Therefore, our study was conducted
to explore possible genetic and epigenetic connections with
muscular phenotypes in a group of older women.

Methods

Participants

Genetic and epigenetic data of 48 older women (aged 65–
79 years) were analysed in this study. These participants were
conditionally selected from 247 independently living
Caucasian women (aged 65–80 years) around Manchester
Metropolitan University (Crewe, UK), which has been
described in details in our previous paper.38 Briefly, these
48 participants were generally age‐matched with no muscular
or nervous system problems that would affect their physical
performance. With cut‐off points of both skeletal muscle
index (SMI) less than 6.75 kg/m239 and hand grip strength
(HGS) less than 26 kg (the lower quintile of HGS in all
recruited 247 participants), 24 participants were classified
as sarcopenic (SMI: 6.00 ± 0.47 kg/m2, HGS: 23.2 ± 2.5 kg),
and the remaining 24 participants were classified as
non‐sarcopenic (SMI: 7.45 ± 0.67 kg/m2, HGS:
36.0 ± 3.7 kg). This study followed local ethics approval
(Manchester Metropolitan University, Crewe, UK) and
consent forms were signed by all participants.

DNA extraction

A 5 mL venous blood sample was collected from each
participant and stored in an EDTA‐coated tube at �20°C for
DNA extraction. DNA samples were extracted using a
QIAcube® and QIAamp® DNA Blood Mini Kit (Qiagen,

Crawley, UK) according to the manufacturer’s instructions.
The extracted DNA samples were stored at �20°C for
genotyping and DNA methylation analysis.

Genotyping

Single nucleotide polymorphisms (SNPs) of seven genes were
selected for genotyping. These SNPs have been reported in at
least three papers as being related to muscle strength or
muscle mass with a consistent direction of favourable alleles
(Table S1). Duplicate genotyping was firstly made using a
192.24 Dynamic Array® IFC (Fluidigm Corp., South San
Francisco, CA, US) and TaqMan SNP genotyping assays
(Applied Biosystems, Paisley, UK) following the manufac-
turer’s instructions. Briefly, a genotyping mix (4 μL) consisted
of 2 μL assay loading reagent [2X] (Fluidigm), 1 μL SNP
genotyping Assay Mix [40X] (Applied Biosystems), 0.2 μL
ROX [50X] (Invitrogen, Carlsbad, CA, US), and 0.8 μL
DNA‐free water (Qiagen). A sample mix (4 μL) contained
1.6 μL DNA samples, 2.0 μL GTXpress master mix [2X]
(Applied Biosystems, PN 4401892), 0.2 μL Fast GT Sample
Loading Reagent [20X] (Fluidigm, PN 100–3,065), and 0.2 μL
DNA‐free water. All reaction mixes (7.75 μL, consisting of
3.75 μL genotyping mix and 4 μL sample mix) were loaded
onto the Dynamic Array IFC following the manufacturer’s
instructions. The array was subsequently placed into a
thermal cycler (FC1 Fluidigm, PN 100–1279 D1), and the GT
192.24 Fast v1.pcl protocol was performed. The thermal
cycling protocol included an amplification at 95°C for 120 s
followed by 45 cycles of denaturation for 2 s at 95°C and
extension for 20 s at 60°C. Reporter dyes VIC and FAM were
used for genotyping based on fluorescence detection.

About 1% of SNP‐sample data points showed unsuccessful
detection or inconsistent genotype results using the Fluidigm
system. These SNP samples were reassessed in duplicates
using a StepOnePlus Real‐Time PCR system with TaqMan
SNP genotyping assays and analysed using StepOnePlus
analysis software (Applied Biosystems, version 2.3). The
StepOnePlus reaction mix (10 μL) included 0.2 μL DNA
sample, 5 μL GTXpress master mix, 4.3 μL nuclease‐free
water, and 0.5 μL TaqMan SNP genotyping assay [20X]. Each
reaction mix was amplified for 20 s at 95°C, followed by
50 cycles of denaturation for 3 s at 95°C and extension for
20 s at 60°C. Genotypes were identified based on fluores-
cence detection of reporter dyes (VIC and FAM).

DNA methylation analysis

DNA methylation was measured using Illumina® Infinium
MethylationEPIC BeadChip arrays (Illumina Inc., San Diego,
CA, US) at the Genomics Core facility (Center for Human
Genetics, UZ/KU Leuven, Leuven, Belgium). Methylation
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signal data were read by R ‘Minfi’ package,40 background
signals were corrected by normal‐exponential out‐of‐band
(‘Noob’) method, and methylation levels (defined as β values,
methylation percentages at measured probes) were normal-
ized for blood cell composition by R ‘FlowSorted.Blood.EPIC’
package. CpG sites were removed from the initial measure-
ment under the following conditions: (i) with a low detection
rate (P> 0.01 compared with background signal); (ii) contain-
ing SNPs at the CpG interrogation or at the single nucleotide
extension as suggested in the ‘Minfi’ package (reference
array: ‘Illumina Human Methylation EPIC’, annotated by
‘ilm10b4.hg19’); (iii) with cross‐reactivity reported in the first
supplementary table of Pidsley’s study.41 A final 788 074
CpGs were kept for further analysis.

Muscular parameters

Biceps brachii thickness
B‐mode ultrasonography (7.5MHz, linear array probe, 38mm
probe length, MyLab®Twice Esaote, Genoa, Italy) was used to
measure biceps brachii (BB) thickness (THKBB) on the
dominant side (Figure S1a). Participants sat with elbows
extended and relaxed. Sagittal plane scans were taken and
muscle thickness measured at three sites: 60% of the length
from the acromion process of the scapula to the lateral
epicondyle of the humerus42 and the upper and lower sites
1 cm away from the 60% length site. Muscle thickness was
measured using an image processing program (ImageJ, NIH)
by the same investigator [intraclass correlation coefficient
(ICC) = 0.98, based on duplicate measurements of six
participants. The interrater reliability was based on a single
scan assessed on two occasions. The following ICC tests were
all based on the same participants]. The mean muscle
thickness of the three sites was recorded as THKBB.

Vastus lateralis anatomical cross‐sectional area
With participants in a standing position, the vastus lateralis
(VL) origin and insertion were identified at the proximal and
distal myotendinous junction under the previously mentioned
ultrasound. The VL anatomical cross‐sectional area (ACSAVL)
was measured using an ultrasonography method developed
by Reeves et al.43 with a high reliability and validity compared
with magnetic resonance imaging. In brief, participants sat
while axial plane scans were taken at 50% muscle length of
the VL and recorded in real time, with the ultrasound probe
passing over echo‐absorptive markers placed over the skin
of the VL (as described by Reeves43). The acquired images
were combined for ACSAVL measurement (Figure S1b). The
ACSAVL was measured three times using ImageJ, and the
mean value was recorded for further analysis. The ultrasound
scan was made by the same investigator with good test
consistency (ICC = 0.99).

Maximum isometric elbow flexion torque
Maximum isometric elbow flexion torque (MVCEF) on the
dominant side was recorded using a customized dynamome-
ter (MMU, UK), which was calibrated using loads of 0.5–5 kg
(with 0.5 kg increments) prior to each strength measurement
session. Participants were tested in a seated position with the
upper arm parallel to the trunk and the elbow flexed at 60°
(0° representing full extension). Participants were asked to
hold a force transducer (connected to the dynamometer)
and contract their elbow flexors with full effort. Verbal
encouragement was given during the test. Three trials were
performed with 1 min rest between each trial (ICC = 0.95),
with the highest MVCEF used for analysis. Elbow force was
recorded at 1000 Hz and analysed offline at a later date
(Labview, National Instruments, Newbury, UK). MVCEF was
calculated by the formula: MVCEF = Elbow force × Radius
length × cos(30°) with force in N and length in metres.

Maximum isometric knee extension torque
Maximum isometric knee extension torque (MVCKE) on the
dominant side was recorded using the same system as that
used in MVCEF measurement. Participants were tested in a
seated position with 60° knee flexion (0° representing full
extension). The tested leg was fastened to a force transducer
placed 5 cm above the lateral malleolus. Participants were
instructed to extend the fastened leg, and verbal encourage-
ment was given during the measurement. Three trials
were performed with 1 min break between each trial
(ICC = 0.96), with the highest MVCKE used for analysis. Knee
force was recorded at 1000 Hz and analysed offline at a later
date (Labview, National Instruments, Newbury, UK). MVCKE
was calculated by the formula: MVCEF = Knee force × (Tibia
length – 0.05) × cos(30°) with force in N and length in metres.

Statistics, model building, and model evaluation

Statistics
SAS 9.4 (SAS Institute, Cary, NC, US) and Python (version
3.7.3) were used for data management and data analysis.
Comparisons of muscular phenotypes and methylation scores
between the sarcopenic and non‐sarcopenic groups were
made using independent t‐tests. Fisher’s exact test was used
to compare the distribution of GPS between the two groups.
To study combined genetic and epigenetic associations with
skeletal muscle, three linear regression models (Models 1–3,
Figure 1) were built with muscular phenotypes (THKBB, ACSA-

VL MVCEF, and MVCKE) as dependent variables and genetic
and epigenetic scores as independent variables. Linear
models (Models 4–6) with only a genetic or methylation score
were also built to study the single genetic or methylation
association with muscular phenotypes. All models were
adjusted for age and BMI. Data are presented as mean and
standard deviation.
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Model building
Model 1: muscular phenotypes ∼ sarcopenia‐driven

methylation score (MSSAR) + muscle‐driven
genetic predisposition score (GPSSNP)

This model aimed to analyse the association between mus-
cular phenotypes, muscle‐related genetic architecture and
sarcopenia‐driven methylation levels using a muscle‐driven
genetic score and a sarcopenia‐driven methylation score as in-
dependent variables. The least absolute shrinkage and selec-
tion operator (LASSO) logistic regression was used for
sarcopenia‐driven CpG sites selection. The LASSO method
combines a linear regression with a L1 penalty on indepen-
dent variable coefficients to improve prediction accuracy
and reduce overfitting.44 Through a shrinkage parameter
tuning, the LASSO method aims to minimize residual sum of
squares by setting some coefficients of independent variables
to zeros.44 Therefore, the LASSO method is a powerful tool of
selecting strong independent variables from a large set of can-
didate variables when the amount of independent variables
greatly outnumbers the amount of observations.44 Cross vali-
dation is usually used to find an optimal shrinkage parameter.

In the current study, the sarcopenia status was used as the
dependent variable (sarcopenia coded as 1 and
non‐sarcopenia coded as 0) and the methylation levels (β
values) at measured CpG sites were used as independent var-
iables. A six‐fold cross validation (with the log loss score, the
accuracy score and the F1 score as metrics) was used for
shrinkage parameter tuning (Figure S2, Supplementary Table
S2A). The sarcopenia‐driven LASSO regression with an opti-
mal shrinkage parameter selected CpGs (with non‐zero coef-
ficients) that were strongly associated with sarcopenia status.
The MSSAR was calculated as a weighted sum of the selected
CpG methylation levels (the weight for each CpG site was the

coefficient from the LASSO regression, Supplementary Table
S2B, codes in Supplementary File 1). The ‘gene symbols’ of
selected CpG sites were further analysed by gene ontology
(GO) and KEGG analysis (databases until June 2019) using
Partek Genomics Suite V.7.18 (Partek Inc., St. Louis, MO,
US) (‘HumanMethylation850’ reference, ‘MethylationEPIC_v‐
1‐0_B4’ annotation file, ‘Homo sapiens’ species and hg19 ge-
nome build) with a false discovery rate (FDR) control at 0.05.

A summed score of the seven muscle‐related SNPs (Table
S1) was calculated as GPSSNP. Each SNP score was
represented by the number of muscle‐favourable alleles.
For example, the C allele is a muscle‐favourable allele in the
ACTN3 rs1815739. Therefore, the SNP score of the ACTN3
rs1815739 is 2 for a CC genotype, 1 for a CT genotype and
0 point for a TT homozygote.

Model 2: muscular phenotypes ∼ SNP‐driven methylation
score (MSSNP) + GPSSNP

To evaluate the association between muscle‐related genes
and muscular phenotypes, this model only included genetic
and methylation scores within genes where the seven
muscle‐related SNPs locate (Table S2C). Because each
muscle‐related gene contained different amounts of
measured CpGs, the mean methylation level of each gene
was firstly calculated and the MSSNP was later calculated as
the mean of the mean methylation levels of the seven
muscle‐related genes. Using ni to represent the number of

measured CpGs in the ith gene, Mi
j to represent the methyl-

ation level of the jth measured CpG in the ith gene, then
the calculation of the MSSNP can be represented as:

MSSNP ¼ ∑
7

i¼1
∑
ni

j¼1
Mi

j

 !
=ni

 ! !
=7

FIGURE 1 Workflow for model building (Model 1–3).
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Model 3: muscular phenotypes ∼ seven gene‐wise combined
genetic and methylation scores

This model examined each of the seven selected
muscle‐related gene and studied its association with
muscular phenotypes by building a gene‐wise combined
genetic and methylation profile score. In this model, a
methylation score was calculated as the mean methylation
level of promoters in each gene because, compared to other
gene regions, increased methylation in gene promoters has
been more strongly associated with a repression of gene
expression.21 The gene‐wise combined score was later
calculated as the ratio of a SNP score to the mean methyla-
tion level in promoters of the corresponding gene (Table
S2D) so that a participant with a higher SNP score and a lower
methylation score would have a higher gene‐wise combined
score. For instance, there were five measured CpG sites lo-
cated in the promoters of MSTN. Given that one participant
has a MSTN SNP (rs1805086) score of 2 and a mean methyl-
ation level of 0.32 at the five CpG sites located in MSTN pro-
moters, the MSTN‐wise combined score will be 6.26; if
another participant has a MSTN SNP score of 1 and a mean
promoter methylation level of 0.4, then the MSTN‐wise com-
bined score will be 2.5. Similar calculations were carried out
in the other six genes and therefore, there were seven
gene‐wise combined scores (representing each of the seven
muscle‐related genes) as independent variables in Model 3.

Model 4: muscular phenotypes ∼ MSSAR

This model only studied the association between the
sarcopenia‐driven methylation and muscular phenotypes.

Model 5: muscular phenotypes ∼ MSSNP

This model only studied the association between the meth-
ylation of muscle‐related genes and muscular phenotypes.

Model 6: muscular phenotypes ∼ GPSSNP

This model only studied the association between the
muscle‐related genetic architecture and muscular
phenotypes.

Model interpretation and evaluation
Adjusted coefficient of determination (R2) was used to inter-
pret the explained variance in muscular phenotypes by each
linear model. Because a model with more independent vari-
ables usually has a higher R2, the adjusted R2 is introduced
as a modification of the R2 controlled for the number of inde-
pendent variables in the corresponding model. In this study, a
partial R2 was also used to illustrate the phenotype variance
that an independent variable accounted for in a linear model.
The Akaike information criterion (AIC) was used to evaluate

the quality of each model with the same muscular phenotype
as the dependent variable. The AIC assesses the relative
amount of information lost by a given model;45 therefore,
the model with the smallest AIC will be the best model
(among all candidate models). Empirically, if another model
has an AIC value that is less than two units from the smallest
AIC, then that model also has considerable ability to explain
variability in the corresponding dependent variable. In that
case, more data are needed for model evaluation or a com-
bined model should be created for a better prediction.46

Results

Characteristics of participants

Descriptive characteristics of participants are presented in
Table 1. Participants in the sarcopenic group had lower body
mass (P = 0.003) and BMI (P = 0.005) than the non‐sarcopenic
group. Values of muscular phenotypes in the sarcopenic
group were lower (P < 0.001) than in the non‐sarcopenic
group, except for THKBB (P = 0.283).

Comparisons of methylation scores are presented in Table
2. The sarcopenic group had a higher MSSAR than the
non‐sarcopenic group (P < 0.001, Figure 2A), and the com-
bined genetic and methylation score in VDR was lower in
the sarcopenic group (P = 0.02). The mode and median values
of GPSSNP were both 9 in the non‐sarcopenic group, and the
mode and median values of GPSSNP in the sarcopenic group
were 7 and 8, respectively. Fisher’s exact test for the distribu-
tion of GPSSNP between the sarcopenic and non‐sarcopenic
group showed no difference (P = 0.67, Figure 2C).

CpG sites selected from the sarcopenia‐driven
LASSO logistic regression

Three hundred seventy‐nine CpG sites were selected from the
sarcopenia‐driven LASSO logistic regression, indicating a possi-
ble association between these CpGs and sarcopenia. These se-
lected CpGs located in 190 genes, with the PIWIL1 gene
contributing most (n = 4) CpGs (Table S3A). GO analysis on
the identified genes showed that 29 GO terms were enriched
after FDR control (q value <0.05, Table S3B). Many of these
GO terms were associated with protein binding (e.g. antigen
binding and cell adhesion), MHC protein complex, signal trans-
duction (e.g. receptor binding and transport vesicle mem-
brane), and synapse structure (e.g. synapse assembly and
synapse organization). The most enriched GO term was the
‘peptide antigen binding’ term (q value = 0.002), which in-
cluded four hypermethylated (higher methylation in the
sarcopenic group than non‐sarcopenic group) CpGs and three
hypomethylated (lower methylation in the sarcopenic group)
CpGs (Table S3C). KEGG analysis showed 46 pathways that
were enriched (q value <0.05, Table S3D). Many pathways
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were related to immune system function (e.g. allograft rejec-
tion and T helper cells differentiation) and diseases (e.g. auto-
immune thyroid disease and viral myocarditis), and chronic
disorders (e.g. type I diabetes mellitus and rheumatoid arthri-
tis). The most enriched pathway was the ‘Asthma’ pathway
with three hypermethylated CpGs and four hypomethylated
CpGs (Table S3E).

Muscular phenotypes with genetic and methylation
scores

Main results of linear regression models with both genetic
and methylation scores are presented in Table 3 (complete
results in Table S4). In Model 1, the MSSAR was negatively re-
lated to MVCEF and MVCKE (P < 0.01) and explained 33.2%
and 39.4% of the variance, respectively. With one unit in-
crease in the MSSAR, MVCEF and MVCKE decreased by 0.67
and 2.63 N·m, respectively. The GPSSNP was not significantly
associated with any muscular phenotypes. In Model 2, nei-
ther the MSSNP nor the GPSSNP was significantly correlated
to muscular phenotypes. In Model 3, only the combined ge-
netic and methylation score in the CNTF was positively re-
lated to MVCKE (P = 0.03) and explained 12.2% of the

MVCKE variance. A one‐score addition in the CNTF combined
score was associated with 15.7 N·m increase in MVCKE.

Results of linear models with only a genetic/methylation
score are presented in Table 4 (complete results in Table
S4). The MSSAR alone (Model 4) was negatively associated
with ACSAVL, MVCEF, and MVCKE, and explained 10.1%,
35.5%, and 40.1% of the variance, respectively. The MSSNP
and GPSSNP were not associated with any muscular pheno-
types. Specifically, the MSSNP explained less than 8% of the
variance in muscle size and less than 1% of the variance in
muscle strength. The GPSSNP accounted for less than 5% of
the variance in all muscular phenotypes.

Explained variance of muscular phenotypes by the six
models are presented in Table 5. Model 1 with both the MS-

SAR and GPSSNP explained less phenotype variance than Model
4, which included only an MSSAR, and more variance in muscle
strength than Model 6, which included only a GPSSNP. Model
2 with the MSSNP and GPSSNP explained less variance in mus-
cle size than Model 5. When compared with Model 6, Model
2 explained more variance in muscle size but less variance in
muscle strength. Models with an MSSAR (Models 1 and 4) ex-
plained more variance in muscle strength (MVCEF and MVCKE)
than models without MSSAR. When comparing models with
genetic and methylation profile scores within the preselected

FIGURE 2 Distribution of genetic and methylation profile scores. (A) MSSAR based on CpGs selected by sarcopenia‐driven LASSO regression is higher in
the sarcopenic than the non‐sarcopenic group (p < 0.01). Black diamond markers represent the mean MSSAR in each group. (B) MSSNP is not different
between the sarcopenic and non‐sarcopenic groups (p = 0.96). (C) Fisher’s exact test for the distribution of GPSSNP showed no difference between the
sarcopenic and non‐sarcopenic group (p = 0.67).
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seven muscle‐related genes, Model 3 explained less variance
than Model 2 in all muscular phenotypes except for MVCKE.
Notably, the explained variance in muscle size (THKBB and
ACSAVL) was similar across all models. This was possibly
because BMI was closely related to muscle size and explained
a considerable percentage (20.1% to 61.4%) of the variance
(Tables 3 and 4).

In the aspect of model evaluation, Model 5, which included
only an MSSNP, explained the most variance in THKBB (with
the highest adjusted R2 value) and outperformed other
models in the prediction of THKBB (with the lowest AIC value).
Model 4, which includes only an MSSAR, explained the most
variance in ACSAVL, MVCEF, and MVCKE (with the highest
adjusted R2 values), and performed better than other models
in the prediction of those muscular phenotypes (ACSAVL,

MVCEF, and MVCKE) (with the lowest AIC values). Notably,
the AIC differences were smaller than two between Models
2 and 5 (in THKBB), and Models 1 and 4 (in ACSAVL, MVCEF,
and MVCKE), indicating that more data might be needed
before deciding if GPSSNP should be included into a model.

Correlation and regression analysis on actual and
predicted muscle size values inferred by Model 4

As Model 4 is the most powerful model in predicting muscu-
lar phenotypes than the rest models in Table 5, correlation
analysis was made between actual and predicted muscle size
inferred by Model 4. Moderate correlations ranging between
0.55 and 0.79 were found (Figure 3, Supplementary Table 4F).

Table 3 Main results of linear models (Models 1–3) with combined genetic and methylation scores

Model 1 Model 2 Model 3

MSSAR GPSSNP Age BMI MSSNP GPSSNP Age BMI CNTF_combined Age BMI

THKBB
Coef <0.01 �0.01 0.03 0.04 �16.47 �0.02 0.04 0.04 0.09 0.03 0.04
Partial R2 0.002 0.003 0.145 0.201 0.080 0.007 0.198 0.270 0.017 0.142 0.258
P 0.76 0.74 0.01 <0.01 0.07 0.60 <0.01 <0.01 0.44 0.02 <0.01

ACSAVL
Coef �0.16 0.16 �0.02 0.57 �97.93 0.26 �0.02 0.64 1.33 �0.04 0.73
Partial R2 0.080 0.008 0.001 0.499 0.041 0.023 0.001 0.591 0.052 0.004 0.614
P 0.07 0.56 0.89 <0.01 0.20 0.34 0.84 <0.01 0.18 0.72 <0.01

MVCEF
Coef �0.67 0.29 �0.05 0.08 �23.51 0.78 �0.27 0.37 2.02 �0.24 0.42
Partial R2 0.332 0.009 0.001 0.006 0.001 0.042 0.033 0.086 0.023 0.026 0.094
P <0.01 0.55 0.81 0.62 0.88 0.18 0.23 0.05 0.36 0.33 0.06

MVCKE
Coef �2.63 �0.37 �0.58 �0.53 193.22 1.56 �1.30 0.72 15.68 �0.99 1.70
Partial R2 0.394 0.001 0.019 0.021 0.003 0.014 0.053 0.028 0.122 0.042 0.142
P <0.01 0.82 0.38 0.36 0.74 0.45 0.14 0.29 0.03 0.22 0.02

Table 4 Main results of linear models (Models 4–6) with only genetic or methylation scores

Model 4 Model 5 Model 6

MSSAR Age BMI MSSNP Age BMI GPSSNP Age BMI

THKBB
Coef <0.01 0.03 0.04 �15.80 0.04 0.04 �0.01 0.03 0.04
Partial R2 0.001 0.147 0.211 0.075 0.194 0.272 0.002 0.147 0.248
P 0.82 0.01 <0.01 0.07 <0.01 <0.01 0.80 0.01 <0.01

ACSAVL
Coef �0.17 <0.01 0.57 �107.42 <0.01 0.64 0.31 �0.07 0.64
Partial R2 0.101 <0.001 0.496 0.048 <0.001 0.583 0.031 0.009 0.579
P 0.04 1.00 <0.01 0.16 0.98 <0.01 0.26 0.54 <0.01

MVCEF
Coef �0.69 �0.02 0.06 �51.35 �0.22 0.34 0.79 �0.28 0.37
Partial R2 0.355 <0.001 0.004 0.003 0.022 0.074 0.044 0.036 0.087
P <0.01 0.90 0.69 0.73 0.33 0.07 0.17 0.21 0.05

MVCKE
Coef �2.60 �0.61 �0.51 115.81 �1.17 0.68 1.45 �1.21 0.72
Partial R2 0.401 0.022 0.020 0.001 0.044 0.026 0.013 0.051 0.029
P <0.01 0.34 0.37 0.84 0.18 0.31 0.47 0.15 0.28
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Discussion

The current study explored the association between muscular
phenotypes, genetic architecture, and DNA methylation via
linear regression models in sarcopenic and non‐sarcopenic
elderly women. Genetic architecture was represented as a
GPS that was calculated from seven muscle‐related SNPs.
The DNA methylation was represented as either a
sarcopenia‐driven methylation score, which was calculated
as a weighted sum of the methylation levels of 379
sarcopenia‐driven CpG sites, or a gene‐wise methylation
score, which was calculated as an average of the methylation
levels within muscle‐related genes. Based on the six linear
models used in this study, the sarcopenia‐driven methylation
score was negatively related to ACSAVL, MVCEF, and MVCKE,
and explained more variance in these muscular phenotypes
than the GPS, the gene‐wise methylation score and the
models with combined genetic and methylation scores. The
adjusted R2 and AIC showed that models with only a methyl-

ation score had the best performance in explaining
inter‐individual variance in muscular phenotypes while more
data are needed to determine the inclusion of GPS into the
models. Moreover, the model with gene‐wise combined
genetic and methylation scores demonstrated that the
genotype and methylation level in CNTF was closely related
to knee extensor strength, indicating a close association
between CNTF and knee strength.

Sarcopenia‐driven CpG sites

DNA methylation changes have been examined in studies of
ageing and resistance training, but no study has reported
the DNA methylation association with sarcopenia. Using the
sarcopenia‐driven LASSO logistic regression, our study identi-
fied 379 CpG sites that were possibly related to sarcopenia.
Zykovich et al.24 identified 5963 CpG sites that were related
to ageing based on skeletal muscle tissue. Bell et al.47 found
490 ageing‐associated CpGs from blood samples. However,
none of those ageing‐related CpGs were found among the
sarcopenia‐driven CpGs identified in our study. Seaborne
et al. studied DNA methylation changes in skeletal muscle
during resistance training and identified 2445 CpG sites that
were differentially methylated after a 7‐week loading stimuli
and 1883 CpGs that were association with an unloading
phase. We shared one CpG site in each of the loading and
unloading phase, with both CpGs located in the intergenic
region (Table S5A). We further compared our CpGs with
those identified by Turner et al., 34 who analysed tran-
scriptome and methylome associations after acute/chronic
resistance training, but no common CpG was found. Notably,
Turner et al. reported three genes (ETF1, ETV1, and SH3KBP1)
that were up‐regulated after acute/chronic resistance
training34 while some hypermethylated sarcopenia‐driven

Table 5 Adjusted R2 and AIC of linear models

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

THKBB
Adj R2 0.240 0.299 0.255 0.256 0.311 0.256
AIC �103.5 �107.2 �100.4 �105.4 �108.9 �105.4

ACSAVL
Adj R2 0.585 0.568 0.561 0.592 0.568 0.560
AIC 86.4 88.3 92.9 84.8 87.3 88.1

MVCEF
Adj R2 0.371 0.060 �0.013 0.380 0.042 0.081
AIC 148.4 167.3 174.8 146.8 167.3 165.3

MVCKE
Adj R2 0.392 <.001 0.112 0.406 0.010 0.021
AIC 251.4 273.8 272.5 249.5 272.5 272.0

FIGURE 3 Plots of actual and predicted muscle size inferred by Model 4. (A) Actual and predicted THKBB values are moderately correlated (r = 0.55). (B)
Actual and predicted ACSAVL values are moderately correlated (r = 0.79).
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CpGs identified in our study were found to locate in promoter
regions of those three genes (Tables S5B,C, S3).

The gene ETF1 is a member of the human transcriptional
enhancer family. Recent research on human liver HepG2 cell
line showed that the ETF1 gene was involved in the
regulation of transcript stability.48 The gene ETV1 is involved
in multiple cellular activities that are related to physical
performance. ETV1 knockout mice demonstrated abnormal
cardiac conduction49 and neuromuscular impairment.50 The
gene SH3KBP1 belongs to a gene group of putative motility
modifiers, and the knocking down of SH3KBP1 leads to
reduced cell migration in scratch wound assays.51 Because it
has been established that hypermethylated gene promoters
are associated with repressed gene expression,52 the
identification of hypermethylated CpGs in promoters of these
three genes (ETF1, ETV1, and SH3KBP1) in our study indicates
possible down‐regulated cellular activity in association with
sarcopenia. Yet further transcriptome analysis on
corresponding genes are still needed to confirm the
down‐regulation in gene expression.

Evaluation of linear models

In our study, the sarcopenia‐driven methylation score (MSSAR)
was closely related to muscle strength and explained 33.2% to
40.1% of inter‐individual variance in all models (Models 1 and
4). This indicates a possible application of the MSSAR to the
estimation of skeletal muscle strength in older women. Mean-
while, we should be aware that the participants in this study
belong to two groups (i.e. sarcopenic and non‐sarcopenic
groups) which have significant difference in muscle strength
(Table 1) and MSSAR (Table 2). Therefore, when applying the
MSSAR to a population with less variability in muscle strength
(e.g. a group with only physically fit older people or a group
with only sarcopenic participants), the corresponding
muscular variance explained by the MSSAR might decrease to
some extent. In fact, the MSSAR was found to explain less than
8% of the muscular variance within the sarcopenic or
non‐sarcopenic group when analysed separately (Table S4E).
Clearly, future studies on larger cohorts are still needed to
evaluate the feasibility of applying the MSSAR for muscle
strength evaluation.

Additionally, we found that genetic profile scores based on
seven selected genes (GPSSNP) explained up to 4.4% of the
variance in muscle size and strength, methylation levels in
the seven selected genes (MSSNP) explained up to 8% in the
studied phenotypes, while the MSSAR explained 10.1–40.1%
of the individual differences in muscle size and strength in
our sample of older women. These results showed that
genetic and methylation profiles on several representative
genes only explained limited muscular variability. Moreover,
by comparing the AIC, the model with only an MSSAR showed
the best performance in explaining the variance in muscle

size and strength. This, again, indicated that using the data
from a small set of representative genes might not well
explain muscular variability. Notably, previous studies have
demonstrated that even based on a larger candidate pool
of more than 100 genetic variants, the data‐driven GPS only
explained up to 7% of the variance in muscle mass and
strength.16,53 Therefore, it is possible that the genetic
architecture only accounts for a small portion of muscular
variability during ageing—or we have not yet used the
optimal methodology to include all contributing genetic
factors, while a larger proportion of the variance is taken up
by DNA methylation. Because DNA methylation is
representing the sum of short‐term and long‐term environ-
mental factors, the finding that methylation levels explains
a larger proportion of the variance in muscle morphology
and strength than genetic profiles might indicate that
environmental elements account for more variance than
genetic factors in skeletal muscle during ageing, which is in
line with the findings of previous heritability studies.6,54,55

Notably, the model with gene‐wise combined genetic and
methylation score (Model 3) showed that the genotype and
methylation level in CNTF was closely related to knee
extensor strength. The CNTF gene encodes ciliary
neurotrophic factor, a polypeptide that promotes neuronal
cell differentiation and neurite outgrowth, and exerts a
neuroprotective effect by preventing motor neuron
degeneration.56 Indeed, CNTF G allele carriers have shown
higher knee strength than A allele homozygotes at both
slow and fast contraction speed across a large age span
(20–90 years).57 Our finding provides supportive evidence
for the association between CNTF and knee strength.

Limitations

We acknowledge that, despite presenting signficant associa-
tions, our study has a limited sample size. Because of the
limited sample size, we could only use adjusted R2 and AIC
for model evaluation. Therefore, our results still need to be
examined in different cohorts with large sample sizes. More-
over, DNA methylation is only one mechanism of epigenetic
regulation. Future models including other epigenetic mecha-
nisms (e.g. histome methylation and acetylation), genome
conformation, and transcriptome analysis might make the
model more reliable. Additionally, the current study still
remains descriptive and only reports the CpG sites that might
be associated with sarcopenia based on the results of
statistical analysis. Further transcriptome analysis on the
genes, where these sarcopenia‐driven CpG sites (identified
in the current study) located, should give more insight into
the DNA methylation association with gene expression in
respect of skeletal muscle condition among older women.

Another limitation is that the methylation data used in this
study were based on blood samples. It is well known that

Combined genetic and epigenetic scores for muscle strength 11

Journal of Cachexia, Sarcopenia and Muscle 2020
DOI: 10.1002/jcsm.12585



DNA methylation is tissue‐specific,58 so the methylation data
obtained from blood might not fully represent the methyla-
tion status in other tissues. Although venous blood is more
easily obtained, methylation status could be more
informative if DNA was derived from skeletal muscle tissue.
Meanwhile, the Illumina MethylationEPIC BeadChip used for
methylation analysis in our study only covers 850 K CpG sites,
which is a small proportion of the 28 million CpG sites in the
human genome, and is not always informative because many
CpG sites are omitted.41 Therefore, a methylome‐wide
association study should be more powerful in identifying
sarcopenia‐driven or muscle‐related CpG sites for model
building.

Conclusions

Our study combined genotypes and DNA methylation levels
to evaluate their associations with muscle size and strength
in older women. We found that a sarcopenia‐driven methyla-
tion score explained more inter‐individual variance in muscle
strength and thigh muscle size than a genetic score or models
with both genetic and methylation scores. Our results suggest
a possible application of a sarcopenia‐driven methylation
score to identify older adults who are at risk of muscle
weakness conditions (e.g. sarcopenia and frailty) using
routine blood samples, while the combination with a genetic
score still needs to be further studied.
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