
Please cite the Published Version

Liu, Yingyi (2017) Fraction magnitude understanding and its unique role in predicting general
mathematics achievement at two early stages of fraction instruction. British Journal of Educational
Psychology, 88 (3). pp. 345-362. ISSN 0007-0998

DOI: https://doi.org/10.1111/bjep.12182

Publisher: Wiley

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/625683/

Usage rights: In Copyright

Additional Information: This is an Author Accepted Manuscript of a paper accepted for publica-
tion in British Journal of Educational Psychology, published by and copyright Wiley.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1111/bjep.12182
https://e-space.mmu.ac.uk/625683/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


British Journal of Educational Psychology (2018), 88, 345–362

© 2017 The British Psychological Society

www.wileyonlinelibrary.com

Fraction magnitude understanding and its unique
role in predicting general mathematics
achievement at two early stages of fraction
instruction

Yingyi Liu*
Department of Educational Psychology, Faculty of Education, The Chinese University
of Hong Kong, Shatin, Hong Kong

Background. Prior studies on fraction magnitude understanding focused mainly on

students with relatively sufficient formal instruction on fractions whose fraction

magnitude understanding is relatively mature.

Aim. This study fills a research gap by investigating fraction magnitude understanding in

the early stages of fraction instruction. It extends previous findings to children with

limited and primary formal fraction instruction.

Sample(s). Thirty-five fourth graders with limited fraction instruction and forty fourth

graders with primary fraction instruction were recruited from a Chinese primary school.

Methods. Children’s fraction magnitude understanding was assessed with a fraction

number line estimation task. Approximate number system (ANS) acuity was assessed

with a dot discrimination task. Whole number knowledge was assessed with a whole

number line estimation task. General reading and mathematics achievements were

collected concurrently and 1 year later.

Results. In children with limited fraction instruction, fraction representation was linear

and fraction magnitude understanding was concurrently related to both ANS and whole

number knowledge. In children with primary fraction instruction, fraction magnitude

understanding appeared to (marginally) significantly predict general mathematics

achievement 1 year later.

Conclusions. Fraction magnitude understanding emerged early during formal instruc-

tion of fractions. ANS and whole number knowledge were related to fraction magnitude

understanding when children first began to learn about fractions in school. The predictive

value of fraction magnitude understanding is likely constrained by its sophistication level.

Fraction magnitude understanding is a strong predictor of later proficiency in mathemat-

ics (e.g., Bailey, Hoard, Nugent, & Geary, 2012; Torbeyns, Schneider, Xin, & Siegler,

2015). Previous studies examined either children without sufficient fraction knowledge
(e.g., Mack, 1995, 2001) or childrenwho have completedmost of their formal instruction

in fractions (e.g., Siegler, Thompson, & Schneider, 2011). Few studies focused on the

development of fraction magnitude understanding in the emergent stage when children

first begin formal fraction instruction (Resnick et al., 2016). Due to insufficient but
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ongoing instruction, children at this stage have immature or emergent fractionmagnitude

understanding and may exhibit distinct patterns compared to older children featured in

previous studies. This study addresses this research gap by examining fraction magnitude

understanding in children at the two earliest stages of formal fraction instruction. We
recruited two groups of children – one received very limited instruction in fractions and

the other received primary instruction (but not complete) in fractions. This study

contributes to our knowledge of fractionmagnitude understanding from a developmental

perspective.

The development of fraction magnitude understanding

At an early age, children have real-life experiences to support their understanding of basic
fraction concepts (e.g., Singer-Freeman & Goswami, 2001). For example, children learn

the semantic concept of 1/2 when they share a cake with a friend. At age three, children

start to show the ability to perform fraction calculations presented in the form of pictures

(Mix, Levine, &Huttenlocher, 1999). Their accuracy increases between ages 3 and 7 (Mix

et al., 1999).

A crucial goal of fraction learning is understanding the magnitudes that fractions

represent. Children with more than 1 year of formal instruction on fractions have

demonstrated this ability (Iuculano & Butterworth, 2011; Siegler et al., 2011). Recently,
researchers investigated an early stage of formal fraction instruction in fourth graders

(McMullen, Hannula-Sormunen, & Lehtinen, 2014; McMullen, Laakkonen, Hannula-

Sormunen, & Lehtinen, 2015; Resnick et al., 2016; Vamvakoussi, 2015). Specifically, in

studying fraction magnitude understanding, Resnick et al. found that fourth graders

showed some level of fraction magnitude understanding. However, their participants

seemed to have received some level of systematic instruction in fraction concepts and

fraction comparison (Resnick et al., 2016, p. 3). Additionally, the study did not consider

the contribution of the approximate number system (ANS) to fraction magnitude
understanding or control the autoregressive effect of mathematics achievement when

examining the predictive power of fraction magnitude understanding.

Our study extended existing knowledge by including children at two earlier stages of

beginning fraction instruction and considering the effects of both the ANS and whole

number knowledge. Formal fraction instruction is usually scaffolded step by step. Each

stepmay lead to subtle changes in children’s fractionmagnitude understanding. To better

understand the development of children’s fraction magnitude understanding, it is

necessary to take into account each instructional step.

Predictors of fraction magnitude understanding

Fraction magnitude understanding is closely related to two number systems, the ANS and

whole number knowledge (Fazio, Bailey, Thompson, & Siegler, 2014; Vukovic et al.,

2014). Consequently, the present study focuses on these two core predictors.

Furthermore, regarding the role of the ANS in fraction magnitude understanding,

previous studies either did not compare the relative contributions of the ANS and whole
number knowledge (Fazio et al., 2014; Resnick et al., 2016) or did not find a relationship

(Jordan et al., 2013). The present study examined both ANS and whole number

knowledge in a single model to examine their relative importance in predicting fraction

magnitude understanding in the early stages of formal instruction of fractions.
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Approximate number system

The mental representation of numerical quantities (discrete or continuous) has been

widely assumed to be supported by the ANS (e.g., Brannon & Terrace, 1998;Wynn, 1992;

Xu & Spelke, 2000). Increasing evidence suggests that the ANS supports fraction learning
(Meert, Gr�egoire, & No€el, 2010; Sprute & Temple, 2011). The ANS has been suggested to

be related to ratio processing, a precursor of fraction magnitude understanding

(Matthews, Lewis, & Hubbard, 2016; McCrink & Wynn, 2007; Meert, Gr�egoire, Seron,
& No€el, 2012).

Findings from developmental studies are mixed. Jordan et al. (2013) failed to find any

significance of the ANS in predicting fraction concepts and procedures longitudinally

from third grade to fourth grade. Apparently, some of the outcome variables in Jordan

et al. involved part-whole understanding of fractions or the comparison of fractions with
common denominators, which might have prompted children to use whole number

knowledge instead of fractionmagnitude understanding as their problem-solving strategy

(Bonato, Fabbri, Umilta, & Zorzi, 2007; Meert et al., 2010). It is possible that the ANS is

related to fraction magnitude understanding, which is measured by the fraction number

line estimation task (Siegler et al., 2011). Fazio et al. (2014) found that both symbolic

fraction number line estimation and symbolic fraction comparison correlated with ANS

acuity. This study would extend our knowledge of the predictive role of the ANS in

fraction magnitude understanding to the beginning phases of formal fraction instruction.

Whole number knowledge

Whole number knowledge is the first type of symbolic mathematical knowledge to

emerge in children (Gallistel & Gelman, 1992; Gelman & Gallistel, 1978). In learning

whole number knowledge, children become equipped with mathematics principles that

do not exist in the ANS – they learn that numbers are located along a number line from left

to right in a linear manner (Siegler & Opfer, 2003). The linear representation of whole
numbers emerges early on and develops as children accumulate more experience and

receive more formal instruction (Ashcraft & Moore, 2012; Berteletti, Lucangeli, Piazza,

Dehaene, & Zorzi, 2010; Siegler & Booth, 2004; Siegler & Opfer, 2003).

Whole number estimation has been found to be a consistent predictor of fraction

magnitude understanding across grades. Jordan et al. (2013) showed that when other

general and math-specific factors were controlled, children’s whole number estimation

performance in third grade made the largest contribution in predicting their fraction

concepts and procedures in fourth grade. Hansen et al. (2015) extended Jordan et al.’s
findings to older children. Bailey, Siegler, and Geary (2014) found that whole number

estimation in first grade predicted fraction estimation and comparison in seventh grade.

The close relationship between whole number knowledge and fraction magnitude

understandingcanbeexplainedby their shared cognitive foundations– theunderstanding
of the magnitudes of symbolic numbers (Siegler et al., 2011).

The predictive power of fraction magnitude understanding
Understanding fractions is crucial for further numeracy development. Studies have

revealed that fraction understanding predicts standardized and general mathematics

achievements (Fazio et al., 2014; Torbeyns et al., 2015). Siegler et al. (2012) demon-

strated that fifth graders’ fraction magnitude understanding predicted their mastery of

algebra and overall mathematics achievement in high school even after controlling for
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general cognitive abilities, family socio-economic status, and whole number knowledge.

There are two possible explanations for the strong association between fraction

understanding and mathematics achievement. On one hand, practically, concepts of

fractions may serve a ‘gatekeeper’ function in which failure to master fractions is highly
detrimental to latermathematics learning (Booth,Newton,&Twiss-Garrity, 2014). On the

other hand, theoretically, the integrated theory has proposed that the association

between fraction magnitude understanding and overall mathematics achievement

mirrored the close association between number sense and higher-level mathematics

achievement (Dehaene, 1997).

It is unknown whether the associations between fraction magnitude understanding

and overall mathematics score could be extended to children with limited or primary

instruction. Does fraction magnitude understanding have predictive power when it is
emergent? Some have hypothesized that the predictive power of fraction magnitude

understanding lies partly in its ability to promote the learning of rational numbers, rules of

arithmetic operations, pre-algebra, and algebraic equation solving (Booth et al., 2014;

Siegler et al., 2011). Thus, the predictive power of fraction magnitude understanding

might not be evident at the earliest stages of fraction learning, when it is not mature

enough to support the understanding of higher-level mathematical concepts. Moreover,

fraction magnitude understanding involves the ANS as well as understandings of whole

numbers, fractions, and rational numbers in general.Without sufficient instruction, itmay
be difficult for children to intuitively integrate these areas of knowledge. In this sense, it is

possible that only a relatively mature understanding of fractions can contribute to

children’s mathematics skills.

The present study
Weposed three questions about fractionmagnitude understanding from a developmental

perspective. These three questions concern whether the theories of the development of

fractionmagnitude understanding can be extended to students at all stages of instruction.

First, is fraction magnitude understanding present in children without sufficient formal

instruction? Second, what is related to the individual differences in fraction magnitude

understanding in children at the early stages of formal instruction of fractions? Third, does

emergent fractionmagnitude understanding predict generalmathematics achievement in

children without sufficient formal instruction? The widely used fraction number line
estimation task was adopted in this study because it is rarely used by teachers for

classroom instruction (Siegler et al., 2011).

Practically, it is helpful to knowwhat occurs in the earliest phase of fraction instruction

in typically developing children. This knowledge will help us design early intervention to

prevent later learning difficulties in mathematics that may result from inadequate fraction

understanding.

Method

Participants

This study was conducted in a Chinese primary school. This school is small-scaled with

two classes per grade. Children were randomly assigned to two classes when they were

admitted. The two classes involved in this study, both from Grade 4, were taught by the

same Chinese reading and mathematics teachers. Participants were rewarded with small
gifts after testing.
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In China, some cities have 5 years for primary school and 4 years for middle school.

Some cities have 6 years for primary school and 3 years for middle school. These two

educational systems may differ in the starting time of fraction instruction. The city where

this study was conducted adopts the former system.
As reported by the mathematics teacher of the two classes, children are first

introduced to fractions in grade 3 – instruction at this point is quite limited. Children are

only taught that ‘1/2’ is a mathematic symbol for a type of numbers called fractions. They

are taught to name fractions. Instruction is solely based on concrete and real-life scenarios

such as splitting a cake. Moreover, children are taught with pictorial visual aid. For

example, they learn that a circle shaded in half means 1/2 and its shaded area is smaller

than that in a circle shaded in 3/4. However, children likely rely on the surface features of

these pictures tomake the comparison. The shaded area in 1/2would look conspicuously
smaller than that in 3/4. Given fractions without visual aid, children may not be able to

compare the numerical magnitudes of fractions. Children at this point are not instructed

on themathematical meaning of fractions or their relationship towhole numbers.We call

this type of instruction limited instruction. Limited instruction takes place for a week.

Near the end of the grade 4, children are introduced to the definition, concepts, and

mathematical meanings of fractions. They also learn to compare fractions with common

components beyond the visual pictorial level. For example, they understand that 1/2

equals to 0.5 or 50%. We call this primary instruction. Primary instruction takes place
for 6 weeks.

Among the two classes recruited, the first class with 35 children (20 boys, mean

age = 120 months, SD = 4.85 months) was tested just before primary instruction

started (Time 1[T1]). The only formal fraction instruction these children received had

been limited instruction when they were in grade 3. This group is named the limited

instruction group. In the following 1.5 months, primary instruction was given to all

children. The second class with 40 children was tested immediately after primary

instruction (20 boys, mean age = 122 months, SD = 4.53 months). This group is
referred to as the primary instruction group. The reason why we adopted the between-

subject design is to prevent test–retest effect, which may overestimate children’s gains in

fraction magnitude understanding across the two instructional levels.

At T1, children’s term scores in Chinese reading and mathematics were collected to

indicate their general Chinese reading and mathematics achievement. The mathematics

test at T1 involved mainly comparison and problem-solving questions with whole

numbers. Some basic knowledge about fractions was tapped. One year later, at Time 2

[T2], general mathematics achievementwas collected again. At T2, two children from the
first class and three from the second class were missing due to school transfer. The

mathematics test at T2 involved mainly comparison and problem-solving questions with

fractions, decimals, and percentages.Whole number knowledgewas involved to a smaller

extent than it was in T1.

Measures

Fraction magnitude understanding

A 0–1 fraction number line estimation task was used with stimuli adapted from Iuculano

andButterworth (2011), including 1/20, 1/9, 1/6, 1/5, 2/9, 1/4, 2/7, 1/3, 2/5, 4/9, 1/2, 4/7,

3/5, 13/20, 5/7, 3/4, 7/9, 5/6, 6/7, and 19/20. Each child was given a booklet of papers
with a 25 cm horizontal line printed across the middle. Above the mid-point of the
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number linewas the number to be estimated. The order of these numberswas randomized

for each student.

Three practice trials were given first. The children were asked to locate the numbers

50, 30, and 90 on a 0–100 number line. During the practice trials, the experimenter
modelled her estimations on the blackboard, after which the formal test was presented.

The children were instructed to make only one clear mark on the line to indicate their

answer. No rulers or other measuring equipment were allowed. No time limit was set.

Approximate number system

Approximate number system acuity was assessed with Panamath software version 1.22

(Halberda, Mazzocco, & Feigenson, 2008), whichwas performed on a computer set at the
12-year-old level to avoid ceiling effect (Jordan et al., 2013). The number of dots ranged

from 5 to 21, and the colours involved were yellow and blue. Non-numerical variables

were controlled to ensure that participantsmade their judgement based on the number of

the dots rather than other cues. The participants pressed the ‘F’ key or the ‘J’ key to

indicate whether the left or the right side of the screen had more dots, respectively.

Whole number knowledge

A0–1,000whole number line estimation taskwas usedwith stimuli taken from Siegler and

Opfer (2003), including 2, 4, 6, 18, 25, 71, 86, 230, 390, 780 and 810. Other details were

identical to the fraction number line estimation task. This task was conducted right after

the fraction number line estimation task. No practice trials were given as all children

showed sufficient knowledge of the experimental procedure.

Procedure
The two number line estimation tasks were group-administered paper-and-pencil tasks;

they were given to all children in the classrooms. Children were tested with the ANS

measure in small groups in the school computer room. The tasks were administered over

two consecutive school days.

Data analysis

Regression models were conducted with Mplus with MLR estimator (Muth�en & Muth�en,
1998–2010). Missing data were addressed with full information maximum likelihood

estimation.

Results

To evaluate ANS acuity,w and RT were standardized and then summed to obtainw + RT
to control for the speed–accuracy trade-off (Fazio et al., 2014). For the number line

estimation task, estimation accuracy was assessed by percentage absolute error (PAE):

PAE = |Estimate�Estimated Quantity|/Scale of Estimates. Smaller PAE indicates more

accurate estimates on a number line (Siegler & Booth, 2004). The linearity of the

estimation was evaluated by conducting a regression model in which the children’s

estimates were regressed against the objective magnitudes. R square of the model was
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used as the index for the linearity of estimation (Siegler&Booth, 2004). A composite score

of the number line tasks was calculated by transferring the PAE and linearity scores into

z-scores and combining them together. Because the reading and mathematics measures

were not standardized tests, the scores were transformed into z-scores. The descriptive
statistics and correlation matrix are reported in Table 1 and Table 2, respectively. ANS

acuity and whole number knowledge correlated significantly with fraction magnitude

understanding for both groups.

Independent t-test analyses revealed that the two groups showed no significant

differences in reading achievement (T1), mathematics achievement (T2), ANS acuity (w)

and whole number knowledge (PAE and linearity). They had marginal differences in

mathematics achievement (T1) and reaction time on the ANS measure (both ps = .04).

Considering that they were taught by the same reading and mathematics teachers,
assigned the same homework inmost cases, administered the same term tests, came from

the same community and showed no significant differences on most measures, we

assumed that the two groups of children were comparable to a large extent.

Fraction magnitude understanding

Some evidence suggests that the limited instruction group did not perform randomly. In

Siegler and Pyke (2013), the average PAE on the same task for 6th and 8th graderswas 16%.
In Resnick et al. (2016), the PAE on the same task was 19.87% for fifth graders. Our

subjects were younger, but our results paralleled theirs with older children with more

knowledge of fractions.

The first research question was addressed by analysing whether the children’s

representation of fractions was linear. At the group level, the fits of the linear and

logarithmic functions to the group median estimates were examined. For each of the 20

stimuli, we compared whether children’s median estimates were closer to the predicted

values by the linear or logarithmic function (Siegler & Booth, 2004). The scatter plots of
group medians of estimates were displayed in Figures 1 and 2. Both groups of children’s

median estimates were a better fit with the linear function, F(1, 38) = 38.47, p < .01. The

Table 1. Means and standard deviations of general school achievement and measures

Limited instruction group Primary instruction group

M SD M SD

Reading (T1) 92.47 4.21 88.88 11.40

Mathematics (T1) 89.31 5.45 83.30 16.59

Mathematics (T2) 89.64 8.38 85.03 11.80

Approximate number system (T1)

w 0.17 0.05 0.20 0.08

Reaction time 667.59 88.52 708.76 77.22

Whole number line estimation (T1)

PAE 0.08 0.06 0.08 0.05

Linearity 0.92 0.08 0.88 0.13

Fraction number line estimation (T1)

PAE 0.19 0.12 0.11 0.11

Linearity 0.43 0.41 0.72 0.35

Note. PAE = percentage absolute error.
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effect of instructional level was not significant, F(1, 38) = .021, p = .885. The interaction

term was significant, F(1, 38) = 5.07, p = .030.

For each individual, the estimates on all items were regressed against actual

magnitudes according to the linear and logarithmic functions (Berteletti et al., 2010;

Booth&Newton, 2012; Booth&Siegler, 2006). In the limited instruction group, the linear

function accounted for 43%of the variance in estimates,whereas the logarithmic function

accounted for 37%. In the primary instruction group, individuals’ estimates showed a

relatively strong linear pattern (mean R
2 = 72%). In contrast, the fit of the logarithmic

Table 2. Correlations between age, school achievement, approximate number system, whole number

knowledge, and fraction magnitude understanding

1 2 3 4 5 6 7

Limited instruction group

1. Age –

2. Reading (T1) .053 –

3. Mathematics (T1) �.148 .004 –

4. Mathematics (T2) �.357* .142 .129 –

5. Approximate

number system (T1)

�.025 �.249 �.229 �.001 –

6. Whole number

knowledge (T1)

.178 .101 .174 .110 �.270 –

7. Fraction magnitude

understanding (T1)

�.023 �.034 .050 .121 �.574*** .393* –

Primary instruction group

1. Age (T1) –

2. Reading (T1) �.166 –

3. Mathematics (T1) �.137 .881*** –

4. Mathematics (T2) .009 .731*** .876*** –

5. Approximate

number system (T1)

�.103 �.217 �.267 �.294 –

6. Whole number

knowledge (T1)

�.036 .288 .355* .277 �.335* –

7. Fraction magnitude

understanding (T1)

.009 .599*** .663*** .752*** �.353* .373* –

Notes. *p < .05; ***p < .001.
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Figure 1. Group means of estimates on the fraction estimation task for the limited instruction group.
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function was 61%. Analyses with pattern of estimates (linear vs. logarithmic) as within-

subject factor and instructional level (limited instruction vs. primary instruction) as

between-subject factor were performed. Children’s mathematics achievement at T1 was

included as a covariate. The main effect of instructional level was significant (p < .01).

The interaction between the pattern of estimates and instructional level was significant

(p < .01). Post-hoc analyses showed the magnitude of the difference between the two
models to be .055 in the limited group and .113 in the primary group (both ps < .01).

Furthermore, a best estimation pattern (linear or logarithmic) was assigned to each

child (Sella, Berteletti, Brazzolotto, Luncageli, & Zorzi, 2013). An individual’s estimation

pattern was considered linear if the linear function had a higher R2. It was considered

logarithmic if the logarithmic function had a higher R
2. If both models were not

significant, the individual was classified as non-representational. Table 3 shows that the

number of children in each pattern of estimates varied significantly with instructional

level, v2 (2, N = 75) = 9.71, p < .01.

Predictors of fraction magnitude understanding

Table 4 shows that in the limited instruction group, both the ANS and whole number

knowledge predicted additional variance in the individual differences in fraction

magnitude understanding beyond age, reading, andmathematics achievement. However,

in the primary instruction group, no significant predictors were found.

Predictive power of fraction magnitude understanding

Table 5 shows that the predictive power of fraction magnitude understanding was found

to be marginally significant (p = .052 when PAE score was used) or significant (both
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Figure 2. Group means of estimates on the fraction estimation task for the primary instruction group.

Table 3. Type of representation in the 0–1 number line task in each group

Limited instruction group Primary instruction group

Linear representation 17 33

Logarithmic representation 2 1

None 16 6

Note. Cell values represent the number of cases in each pattern.
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ps < .05 when the linearity score or a composite score was used) only in the primary

instruction group, but this pattern did not hold in the limited instruction group.

Discussion

Our findings demonstrated that even with quite limited formal instruction, children’s

knowledge of fractions was linear and predicted by their ANS acuity and whole number

knowledge above and beyond the contributions of age, reading, and mathematics

achievement. The longitudinal predictive power of fraction magnitude understanding

was found only in children with primary instruction in fractions but not in children with
limited instruction.

Fraction magnitude understanding in children with limited instruction

It is striking to see that the mental representation of fractions was linear in children with

very limited instruction in fractions. Previously, the linear fraction representation was

only observed in older children who had had more instruction (Iuculano & Butterworth,

2011; Siegler et al., 2011). We provided two possible explanations, which are not
mutually exclusive requiring further empirical evidence to verify.

The first explanation is that children may use whole number knowledge as an aid to

solve the fraction estimation task.Whole number knowledge involves arranging numbers

sequentially and linearly on a line (e.g., Siegler & Opfer, 2003). This way of arranging

numbersmay be similarly applied to fractions. Also, whole number estimation involves an

understanding of themeaning of number symbols. Arabic digits or written numberwords

are culturally invented symbols, the meanings of which are achieved by mapping onto

mental magnitude codes (Dehaene, 1997; Gallistel & Gelman, 1992, 2000; Gelman &
Gallistel, 1978). This mapping ability develops between 6 and 8 years of age (Mundy &

Gilmore, 2009). The access to the magnitude codes of whole numbers is found to be

automatic around age 9 (Van Galen & Reitsma, 2008). When children start learning

fractions (at around age 10), the established mapping between symbols and the ANS may

help children map fraction symbols onto the magnitudes in the ANS in a systematic way.

The second explanation is that the representationof symbolic fractionsmay develop in

a different fashion than the logarithmic-to-linear developmental progression of whole

numbers. For whole numbers, smaller numbers are more frequently encountered in our
daily lives than larger numbers. Thus, children represent smaller numbers more

accurately than they do larger numbers (Dehaene, 1997). This explains the logarithmic

pattern of whole number representation at the early stages of whole number knowledge

development. However, this may not be the case for fractions. Siegler et al. (2011)

suggested that the representational pattern of fractions would not be logarithmic during

development because the frequency of fractions encountered in our daily lives is not

systematically related to theirmagnitudes. Smaller fraction values (e.g., 1/97) are notmore

commonly seen in our daily lives than larger ones (e.g., 3/4).

ANS, whole number knowledge and fraction magnitude understanding

The significant role of the ANS found in the present study dovetails with previous findings

demonstrating the role of the ANS in supporting bothwhole number and rational number

knowledge (Fazio et al., 2014; Siegler et al., 2011). Our findings lend support to the
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hypothesis that number sense is fundamental in the development of symbolic

mathematical thinking (e.g., Chen & Li, 2014; Halberda et al., 2008; Inglis, Attridge,

Batchelor, & Gilmore, 2011; Jordan, Glutting, & Ramineni, 2010; Libertus, Feigenson, &

Halberda, 2011; Piazza et al., 2010; Starr, Libertus, & Brannon, 2013). Moreover, our
findings revealed that in the early development of fraction magnitude understanding in

the school setting, both ANS and whole number knowledge played important roles.

By contrast, in the primary instruction group, both ANS acuity and whole number

knowledge were significantly correlated with fraction magnitude understanding but

failed to reach significancewhen included in a singlemodel. Thismay suggest that theANS

andwhole number knowledgemaybothhave influences on children’s fractionmagnitude

understanding but their contributions were not unique to each other. The overlapping

contribution of theANS andwhole number knowledge canbe explainedby their common
nature of representing magnitude (Dehaene, 1997). There is evidence showing that as

children develop a mature understanding of fractions, they learn to integrate whole

numbers and fractions into a single rational number system and interpret both as

magnitudes in the ANS (e.g., DeWolf, Bassok, & Holyoak, 2015; Siegler et al., 2011). The

children in the primary instruction group were perhaps progressing towards this mature

rational number system inwhich a number of skills, including the ANS andwhole number

knowledge, were integrated. Therefore, when the two were considered simultaneously,

we could not extricate one single significant predictor of individual differences.
Alternatively, instead of the ANS and whole number knowledge coming together to

account for the variance, it could be that conceptual knowledge of fractions simply

renders both abilities less important for the fraction number line estimation task.

Fraction magnitude understanding predicts mathematics achievement

Consistent with previous studies (Fazio et al., 2014; Resnick et al., 2016; Torbeyns et al.,

2015), our finding shows that fraction magnitude understanding longitudinally (margin-
ally) predicts general mathematics achievement in the primary instruction group. This

finding seems to support the hypothesis that the symbolic understanding of numbers is

related to general mathematics achievement (Siegler et al., 2011). By contrast, for the

limited instruction group, the predictive power of fraction magnitude understanding on

mathematics achievement was not significant. The contrast between the two groups

suggests that the predictive value of fraction magnitude understanding is likely

constrained by its sophistication level.

In the limited instruction group, children’s linear representation of fractions indicates
some degree of fraction magnitude understanding. However, their understanding might

not be consolidated – their estimates on the fraction number line task were less accurate

or linear than those made by the primary instruction group. Formal instruction on the

concepts of fractions provides children with a deeper understanding of fraction

magnitudes, allowing them to make more accurate estimates of fractions on the mental

number line. Also, children gain a firm understanding of the relationship between whole

numbers and fractions on the number line, which may facilitate the learning of algebra

which requires more advanced magnitude understanding of the number system.
It should be noted thatwhen PAEwas used as the sole indicator of the fraction number

line estimation task, the predictive power of the task was marginal. PAE and linearity are

two different indicators of the number line estimation task. The use of PAE versus linearity

has seldom been addressed in past studies. Linearity has been a useful developmental

predictor in the past, but that fraction magnitude understanding can be gauged by other
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measures (e.g., PAE), as well as other tasks (e.g., comparisons). Some researchers

used linearity as the sole indicator because it showed superior predictive value in

predicting mathematics achievement (Booth & Newton, 2012; Booth et al., 2014).

The present study showed that providing PAE score is important as well because it
shows a different pattern than that shown by linearity scores. PAE, to some extent,

may be a more accurate indicator. A more linear representation of numbers is not

necessarily a correct one. Even though the children in the primary instruction group

showed a more linear pattern, their knowledge may not be as mature as assumed.

Their fraction understanding may need to be enhanced to support more advanced

rational number problem-solving.

Limitation

First, the underlying problem-solving strategies used by the limited group was not clear.

Although the group’s performance was comparable to that of older children in other

studies, their fraction magnitude understanding may not be comparable. They may use

1/2 as an anchor or focus only on numerators or denominators (Ni & Zhou, 2005). Also,

although our results suggested that the ANS andwhole number knowledge supported the

children’s performance, further research is needed to explore the mechanism involved.

Second, our sample size was relatively small. Future studies with larger sample sizes are
needed to verify the present findings. Third, school instruction varies greatly across

regions and countries. The generalizability of the present results may be limited. Fourth,

although our between-subject design has the strength of being free of the test–retest
effect, it has a limitation. The two groups of children may not be identical in all aspects,

which challenges the validity in comparing their performances. Table 2 indicates that the

two groups had differences in correlation matrices concerning mathematics achieve-

ments, ANS,wholenumber knowledge and fractionmagnitudeunderstanding, so it brings

up the possibility that the differences observed in the two groups arise from some
unmeasured differences between them.

In conclusion, the present study revealed how fraction magnitude understanding

developed when instruction took place in two steps. It also revealed fraction magnitude

understanding’s relationships with the ANS, whole number knowledge, and later general

mathematics achievement. The linear representation of fractions was found to be present

quite early. Both the ANS and whole number knowledge had significant roles in

supporting fraction learning in children with limited instruction. Furthermore, the

predictive power of fractionmagnitudeunderstandingwas observedonly in childrenwith
primary instruction of fraction.

Practically, the findings suggest that a linear representation of fractions at the

starting point of instruction may be predictive of satisfactory later mathematics

achievement and should be emphasized by educators and parents. However, as the

teachers in the present study indicated, very little instruction was provided on

positioning fractions on a number line. Teachers and parents may use activities (e.g.,

linear numerical board games) to explicitly teach fraction magnitude understanding

(Ramani & Siegler, 2008; Ramani, Siegler, & Hitti, 2012; Siegler & Ramani, 2009),
which may help promote children’s overall mathematics achievement in the long run.

The lack of a linear representation of fractions may lead to delays in higher-level

mathematics skills such as fraction arithmetic computations, pre-algebra, and algebraic

equation solving. Interventions may be developed to teach the linear representation

of fractions. Both the ANS and whole number knowledge should be given sufficient
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attention (Park & Brannon, 2013; Siegler & Ramani, 2009). Furthermore, teachers

should explicitly explain the similarities and differences in ways to discriminate

between magnitudes in non-symbolic quantities, whole numbers, fractions, and mixed

numbers (Woodward, 2017).
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