
Please cite the Published Version

Wilson, Iain (2012) Ordered Diamond Nanowire Growth on Mesoporous Silica Oxides Using Hot
Filament Chemical Vapour Deposition - A Feasibility Study. Masters by Research thesis (MSc),
Manchester Metropolitan University.

Downloaded from: https://e-space.mmu.ac.uk/625599/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://e-space.mmu.ac.uk/625599/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Ordered Diamond Nanowire Growth on 

Mesoporous Silica Oxides Using Hot Filament 

Chemical Vapour Deposition - 

A Feasibility Study 

 

 

Iain Wilson 

 

 

A thesis submitted in partial fulfilment of the 

requirements of the 

Manchester Metropolitan University             

for the degree of MSc (by research) 

 

 

Faculty of Science and Engineering the 

Manchester Metropolitan University 2012 

  



i 
 

Abstract 

 
 

The concept of growing ordered diamond nanowires using HFCVD is investigated in this 

research. Modified mesoporous silicas are synthesized as possible substrates for diamond 

nanowire growth and their structures are examined using nitrogen porosimmetry. HFCVD is 

used initially to grow diamond coatings on silicon wafer before the novel use of the technique 

to attempt the first growth of ordered diamond nanowires using mesoporous silica as a 

template. The findings of this research show the conditions for growth of diamond using the 

CVD technique may be, however, outside of the conditions within which the mesoporous 

silicas are very stable. At a temperature that shows good deposition on flat substrates the 

results suggest, with a decrease in overall mass of the sample, that there may be a breakdown 

of the porous structure of the silicas. 
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1.1: Zeolites. 

Most mesoporous oxides are similar to zeolites, the name zeolite from two Greek 

words “zein” and “lithos”, meaning “boiling stone”.
[1,2]

 A zeolite can be described as 

a type of sponge, they are crystalline solids with perfect micro-porous structures.
[3]

 

Zeolites consist of lattice framework of [SiO4]
4-

/[AlO4]
5- 

tetrahedras forming cage 

type structures, commonly known as Sodalite cages.
[4] 

Secondary building blocks 

made up of the same tetrahedra as the basic Sodalite cages form with these to make 

the zeolite solid structure.
[6]

  

 

 

 

 

 

 

Fig 1.0: the basic structure of a sodalite cage, left, atomic model, right, cage 

structure.
[4,5] 

 

In accordance with IUPAC definitions, porous materials are divided into three classes 

according to pore diameter, microporous (<2 nm), mesoporous (2-50 nm) and 

macroporous (>50 nm).
[7]

 This makes a zeolite a typical microporous material, and, 

even despite the success of zeolites, their applications are limited by the  relatively 

small pore openings, therefore, pore enlargement, effectively the development of 

mesoporous and macroporous materials was a strong focus for zeolite chemistry.
[8]

 

 


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1.2: Mesoporous Materials 

1.2.1: Historical Aspects 

The first mesoporous materials to be synthesised were called MCM (Mobil 

Composition of Matter), in particular MCM-41 materials synthesised in 1991 were of 

interest, as they were the first high surface area (>1000 m
2 

g
-1

) mesoporous solids that 

showed regularly ordered pore arrangements and very narrow pore size 

distributions.
[9,10]

  A procedure for the synthesis of MCM-41 had been patented in 

1969, however it was only known as a low-density silica.
[11]

  It took until 1991 when 

Di Renzo et al. reproduced the synthesis reported in the patent and found that it leads 

to the synthesis of a material identical to mesoporous MCM-41, which scientists of 

the Mobil Oil Corporation patented in 1991.
[12,13] 

The first of the materials of high 

surface area mesoporous materials with a large pore size, 50 to 300 Angstrom, were 

developed by Dongyuan Zhao Et. Al. in California in late 1997.
[14] 

The material 

produced was named SBA-15, two theoretical uses at the time of first production were 

as a molecular sieve and separation reactions of larger molecules.
[15] 

More recent uses 

include photocatalysis applications and the growth by Chemical Vapour Deposition 

(CVD), or nanocasting, of other materials.
[16-19] 

 

1.2.2: Mechanism of Formation 

1.2.2.1: Synthesis 

The original MCM synthesis, from 1991, was conducted in water under alkaline 

conditions.
[9,10]  

Silica was added to a basic surfactant solution and the contents were 

heated at 100/150ºC in a sealed container for 24/48 hours.  In a similar manner to 

zeolite synthesis, organic surfactant molecules function as templates forming an 

ordered organic-inorganic composite material.
[20]

 The surfactant is then removed by 
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calcination in air, or by solvent extraction, leaving a porous silicate network.
[21]

  In 

contrast to zeolites however, the templates used for MCM synthesis are not single 

organic molecules but liquid-crystalline self-assembled surfactant molecules.  

 

The formation of the inorganic-organic composites is based on electrostatic 

interactions between the surfactant and silicate species and several studies have 

shown that the formation of MCM-41 follows a ‘liquid crystal templating’ (LCT) 

mechanism (figure 1.1).
[10,22]

 

 

Fig. 1.1:  MCM-41 formation showing liquid crystal templating method of 

cooperative self-assembly:    (1) TEOS hyrolisation around a surfactant.  

(2) The Silicate assembles into rows. 

(3&4)  The Silicate condenses around the 

surfactant to form MCM-41.
[10] 
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In this mechanism, the silica, tetraethyl orthosilicate (TEOS), shown in figure 1.2, 

firstly, hydrolyses in the water, and secondly condenses around the surfactant 

molecules. 

 

 

Fig 1.2: reactions of silica source TEOS in LCT mechanism for synthesis of  

MCM 

Whilst MCM-41 is made under alkali conditions, SBA-15 formation, shown here in 

fig 1.3, is under acidic conditions.
[14,23] 

In forming SBA-15, the sample can be heated 

over a range of times and temperatures, with a window of silica concentration also 

effective in the formation of SBA-15.
[14,23,24]

 Different heating times, temperatures 

and silica concentrations cause differences in silica wall thicknesses and pore size.
[14]

 

 

As with MCM-41,there is an electrostatic driving force behind the reaction. Silica is 

hydrolysed forming Si(OMe)4-n(OH2
+
)n electrostatic reactions of Cl

-
 and Van der 

Waals forces then form the silica microstructures.
[25,26] 

 

 

(a) Hydrolysis 

 

                                                                     

 SiOCH2CH3     +     H2O              SiOH     +     CH3CH2OH 

                                                                               

 

 (b) Condensation 

 

                                                                              

 SiOH     +     HOSi               SiOSi     +     H2O 

                                                                                         
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Fig 1.3:  A schematic model summarising the production of microstructures in 

the formation of SBA-15. This model shows that the hexagonal structure is 

formed only in the later times of the sample preparation (t > 2 h).
[27] 

 

1.2.2.2: Bond Formations 

 

The drive behind the condensation of the silicate onto the surfactant surface is one of 

ionic attraction. The organization of cationic quaternary ammonium surfactants (S
+
) 

e.g. CTAB (cetyltrimethylammoniumbromide) and anionic silicate species (I
-
) 

produces three-dimensional periodic biphase arrays. The silicate ions are attracted to 

the surfactant and condense, or polymerase, to form silicate walls. Cooperative 

interactions between inorganic and organic species based on charge interaction can 

also be achieved by using reverse charge matching (S
-
I
+
) or by mediated combinations 

of cationic or anionic surfactants and corresponding inorganic species (S
+
X

-
I
+
, X

-
 = 

halide, or S
-
M

+
I
-
, M

+
 = alkali metal ion).

[28,29] 
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The liquid-crystal approach also includes two additional pathways showing organic-

inorganic interaction. Under neutral conditions, mesostructures are formed by using 

neutral, (S
0
) or non-ionic surfactants (N

0
)
 
e.g. n-dodecylamine.

[30,31]
 In this approach 

((S
0
/N

0
)I

0
) hydrogen bonding is considered to be the driving force for the formation of 

the mesophase. 

 

1.2.2.3: Surfactant Mesophase Structural Importance 

Since the liquid-crystal structures of the surfactant serve as an organic template, the 

behaviour of the surfactant in binary surfactant/water systems is crucial in controlling 

the properties of silica mesostructures.
[32,33]

 MCM-41 can be synthesised with 

surfactant concentrations as low as the critical micelle concentration (CMC) and up to 

concentrations where liquid crystals are formed.
[34]

 According to a microscopic model 

introduced by Israelachvili et al. the relative stabilities of different aggregate shapes 

and the corresponding mesophase structures can be predicted.
[35]

 The preferred shape 

of self-assembled surfactant molecules above the CMC depends on the effective mean 

molecular parameters that establish the value of a dimensionless packing parameter g, 

which is defined in equation 1.0 

 

cola

V
g        Eqn. 1.0 

 

where:    V  =  effective volume of the hydrophobic chain 

    ao =  mean aggregate surface area per hydrophilic head group 

 lc  =  critical hydrophobic chain length 
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The parameter g depends on the molecular geometry of the surfactant molecules, such 

as the number of carbon atoms in the hydrophobic chain, the degree of chain 

saturation, along with the size and charge of the polar head group. In addition, the 

effects of solution conditions, including ionic strength, pH, co-surfactant 

concentration and temperature, are included implicitly in V, ao and lc.
[36]

 In classical 

micelle chemistry, mesophase transitions occur when the g value exceeds critical 

values shown here in Table 1.1 along with their mesophase structures in figure 1.4. 

 

Dimensionless packing 

parameter/g 

Expected mesophase 

structure 

Mesoporous 

Material 

1/3 Cubic (Pm3n) SBA-1 

½ Hexagonal (p6) MCM-41 

1/2-2/3  Cubic (Ia3d) MCM-48 

1/1 Lamellar MCM-50 

 

Table 1.1:  Surfactant packing parameter g, expected mesopore structure and 

examples for each structure. 

 

(a)                 (b)               (c) 

 

Fig. 1.4:  Structures of (a) hexagonal phase MCM-41, (b) bicontinuous cubic 

phase MCM-48 and (c) lamellar MCM-50. 
[37] 
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The phase transitions also reflect a decrease in surface curvature in the micelle, from 

the cubic (Pm3n) over the hexagonal, to the lamellar phase. Spherical aggregates are 

preferentially formed by surfactants possessing large polar head groups. Rod-like 

lamellar aggregates are formed when the head groups are small and packed tightly 

thereby increasing the aggregation number. By including the inorganic component, 

Stucky et al. expanded the model to the NaOH/CTAB/TEOS system and created a 

phase diagram of mesophase structure.
[38,39] 

 

 

Fig. 1.5:  Synthesis-space diagram of mesophase structures established by XRD 

measurements for synthesis using NaOH/ CTAB/TEOS synthesis. 

(shaded area refers to cubic structure C).
[39] 

 

Figure 1.5 shows the parameters required for synthesis of cubic, hexagonal and 

lamellar mesophases and outlines the conditions where amorphous, rather than 

ordered porous materials are formed. By using X-Ray Diffraction (XRD), Nuclear 

Magnetic Resonance (NMR), and polarized microscopy, both binary and ternary 

systems were investigated in great detail by Firouzi et al.
[32]

 Vartuli et al. studied the 

effect of surfactant/silica ratios on the formation of mesostructures.
[40]

 This ratio is a 
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critical variable in the mesophase formation and by varying this ratio from 0.5 to 2.0 

products with hexagonal, cubic and lamellar structures were obtained. 

 

1.2.3:  Characterisation 

1.2.3.1:  X-ray Diffraction 

The periodic arrangement of atoms in a crystal causes the diffraction of X-rays from 

certain planes throughout the structure. For a fixed X-ray wavelength, the angle of 

diffraction varies for different planes. For a maximum to occur in the diffraction 

pattern at a particular angle of incidence θ (with respect to planes (hkl)), the Bragg 

equation must be satisfied: 

 

nλ = 2dhklsinθhkl     Eqn. 1.1
[41]

 

 

where:  dhkl  =    interplanar distance between (hkl) planes 

  n     =    order of reflection 

  λ     =    wavelength of incident x-rays 

  θhkl  =    diffraction angle 

 

MCM-41 has an ordered structure that is the result of a hexagonal array of cylindrical 

mesopores and is characterised by X-ray diffraction (XRD) values d100, and a0 the 

hexagonal unit cell parameter, figure 1.6.   
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Fig. 1.6:  Schematic representation of the structure of hexagonal MCM-41.
[42]

 

 

The XRD pattern of MCM-41 typically shows three to five reflections between 2θ = 

2º and 5º, as in figure 1.7 (a), although samples with more reflections have been 

reported.
[43,44] 

The reflections are due to the ordered hexagonal array of parallel silica 

tubes and can be indexed assuming a hexagonal unit cell as (100), (110), (200), (210) 

and (300). Since the materials are not crystalline at the atomic level, no reflections at 

higher angles are observed. The XRD pattern of bicontinuous cubic MCM-48 is 

shown in figure 1.7 (b) and the angles are in the same general region as those for 

MCM-41 (2-5° 2θ). The most intense peak present is from the (211) while further 

reflections shown are from (220), (310), (330) and (420). MCM-50, figure 1.7 (c), 

shows a number of peaks characteristic for a lamellar arrangement i.e. (100) and the 

higher order (200) and (300) reflections. 

 

It is not possible to quantify the purity of MCM-41 by means of X-ray diffraction 

alone. Samples with only one distinct reflection have also been found to contain 

substantial amounts of MCM-41. Corma, 1997, attributed the apparently ‘worse’ 

XRD pattern to the formation of smaller, although no less ordered MCM-41 

crystallites.
[44]

 In addition, the XRD patterns of MCM-41 containing various degrees 

of defects were simulated: it was found that even when the hexagonal pore structure 



 12 

contained a large number of defects, a pattern containing three reflections was found, 

the same as the hexagonal pattern.
[46] 
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(a) MCM-41    (b) MCM-48 

  

(c) MCM-50    (d) SBA-15 

 

Fig. 1.7:  X-ray diffraction patterns for mesoporous silicates.
[10,45, 14] 

 

XRD of SBA-15 shows three peaks, a (100) reflection at 0.8-1.1 2θ, the (110) 

reflection between 1.4-1.6 2θ and a (200) reflection visible at 1.6-1.8 2θ.  These 

reflections, as with MCM are due to the stable pore structure of SBA-15.
[14] 

As with 

MCM-41 it is not possible to clarify purity of SBA-15 with XRD, however 
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degradation of a sample can be seen in XRD patterns where the pattern would be clear 

and visible in the first instance and then not present upon re-analysis. 

 

1.2.3.2: Adsorption Porosimmetry 

 

1.2.3.2.1: Adsorption Isotherms 

To gain data from adsorption porosimmetry, adsorption behaviour itself needs to be 

understood. Adsorption isotherms show the relationship between the volume of gas 

adsorbed on a solid as a function of applied pressure at a fixed temperature, thereby 

explaining how a gas adsorbs onto the surface of the solid in question.
[47] 

 

Brunauer et al. found that the majority of isotherms resulting from physical 

adsorption can be grouped into five classes, which are shown in figure 1.8.
[48] 

In 

general, the quantity of adsorbed gas increases with increasing relative pressure (p/po, 

where po represents the saturation vapour pressure), and at a certain point the surface 

coverage corresponds to a monolayer. Further adsorption of gas leads to multilayer 

adsorption, and finally to a condensed phase.
[49]
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B

 

 

Fig. 1.8:  Adsorption isotherms classifications proposed by Brunauer et al. 
[48]

 

 

The Type I isotherm is termed a Langmuir isotherm, and corresponds to that expected 

for reversible adsorption.
[48]

 This isotherm shows a plateau which represents the 

formation of a monolayer covered surface, and assumes all surface sites are 

occupied.
[50]

 This response is observed in physisorption for microporous materials, 

and rarely occurs for non-microporous materials.   

 

The Type II isotherm is encountered for adsorption on non-porous materials and 

represents unrestricted multilayer adsorption on a heterogeneous substrate.
[51]

 The 

point of inflection of the curve, (point B in figure 1.8), corresponds to a fully 

developed monolayer on the solid, while increasing the relative pressure beyond this 

point results in further adsorption due to the formation of second and higher surface 

layers.  
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The shape of the Type III isotherm corresponds to a situation where the attractive 

forces between the gas molecules are greater than the adsorptive binding forces.  

Therefore as adsorption proceeds, additional adsorption can occur due to a greater 

adsorbate interaction for the adsorbed layer than that for the adsorbent surface. 

 

The Type IV response occurs for porous solids, which possess pores in the range 1.5-

100 nm.  The sharp rise in the volume of gas adsorbed at high relative pressure 

corresponds to capillary condensation (Section 1.2.2.3) of gas in the pores of the solid.  

The adsorption and desorption branches do not overlap resulting in the presence of a 

hysteresis loop which can be used to determine the pore size distribution of the solid.   

 

Type V isotherms are similar to type III in the lower relative pressure range, and 

capillary condensation occurs at higher pressures with an associated degree of 

hysteresis.  Type V isotherms are associated with pores in the same size range as type 

IV isotherms. 

 

The presence of a hysteresis loop for types IV and V is attributed to the fact that the 

processes of condensation and evaporation do not occur in an identical manner.  This 

is due to geometrical differences in pore filling and emptying.  The IUPAC manual 

provides a classification for hysteresis loops, and the profiles are illustrated in figure 

1.9.   
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Fig. 1.9:  The IUPAC classification of hysteresis loops.
 [48]

 

 

The shapes of hysteresis loops are related to specific pore structures. Type H1 loops 

are often obtained for agglomerates or compacts of spheroidal particles of fairly 

uniform size and array.  Some corpuscular systems tend to give H2 loops, but the 

distribution of pore size and shape is not well defined. Types H3 and H4 have been 

obtained with adsorbents having plate-like particles and slit-shaped pores, 

respectively. 

 

1.2.3.2.2: Surface Area Calculation from the BET Equation 

The volume of adsorbate molecules of known cross-sectional area, required for 

monolayer coverage, can be used to determine the surface area of a solid.  The 

isotherm derived by Brunauer, Emmett, and Teller (BET) is essentially a 
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generalisation of Langmuir's treatment for monolayer coverage applied to multilayer 

adsorption.
[52]

 The basis for this theoretical treatment is that the first layer of adsorbed 

molecules serves as a site for the adsorption of a molecule to form the second layer, 

and so on. The usual form of the equation derived by Brunauer et al. is shown in 

equation 1.2 

BETmoBETm

BET

o Cnp

p
.

Cn

C

p)n(p

p 11






    Eqn. 1.2

[52] 

 

where n      =   the number of moles adsorbed at pressure p 

 nm    =   the number of moles required for monolayer coverage, and 

CBET =  a constant for a given adsorbent 

 

The value of CBET is most frequently between 50 and 300 when using Nitrogen as an 

absorbate. A lower value of CBET is an indicator of a low heat of adsorption producing  

a type I isotherm, shown in fig 1.8. High CBET values show a type II isotherm, and for 

a CBET  value of less than 2 a type III isotherm is formed.
[53]  

 

The constant CBET is coupled exponentially to the heats of adsorption (H1) and 

condensation (HC) of the gas:
[49] 

 )/RTΔHHc(ΨCBET 1exp      Eqn. 1.3 

 

where   is the ratio of internal degrees of freedom in a molecule of the monolayer 

(jm) and of  the condensed phase (jc). 
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A plot of {p/[n (p0-p)]} versus p/p0 should produce a straight line with a slope equal to 

{(CBET-1)/nmCBET} and an intercept of 1/nmCBET.  This enables the total surface area to 

be calculated using equation 1.4 

m

m
BET

V

NAn
S         Eqn. 1.4 

 

where  SBET =  the BET surface area 

 N     =  Avogadro's number (6.023 x 10
23 

molecules mol
-1

) 

 A     =  surface area occupied by one gas molecule (0.162 nm
2
 for N2) 

Vm  =  molar gas volume at STP (22.4 dm
3
mol

-1
) 

 

The BET theory is primarily applicable for a relative pressure range of 0.05 to 0.3, 

and CBET values between 80 and 120, generally type II isotherms. A number of 

assumptions are implicit in the BET model.
[47,54]

 

 

a) One questionable assumption is that of an energetically homogenous surface.  

Experimental evidence from curves of heat of adsorption as a function of the 

quantity adsorbed illustrate that the deviation from homogeneity can be quite 

considerable. 

 

b) The model also ignores the influence of lateral adsorbate interactions.  It is 

certain that adsorbate-adsorbate interactions must be far from negligible when 

a layer is nearing completion. 

 

c) Further criticism arises from the question of how far the molecules in all 

layers after the first layer should be treated as completely equivalent, as the 

adsorbate-adsorbent interaction diminishes significantly as the distance from 

the surface increases. 
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1.2.3.2.3: Capillary Condensation 

Zsigmondy proposed a theory for capillary condensation on the basis that the 

equilibrium vapour pressure, p, over a concave meniscus of liquid, must be less than 

the saturated vapour pressure, p0, at the same temperature.
[55]

  This fact implies that a 

vapour can condense to a liquid in the pores of a solid, even when its relative pressure 

is less than one. Zsigmondy’s model assumes that initially, at low relative pressures, 

adsorption is restricted to a thin layer on the walls, until capillary condensation 

commences in the finest pores at the point of origin of the hysteresis loop. As the 

pressure is increased, progressively larger pores are filled (figure 1.10), until the 

system is considered to be full of condensate at the saturation pressure.  

(c)

2r1 2r2 2r3

(a)

2r1 2r2 2r3

2rk1

(b)

2r1 2r2 2r3

2rk3

2rk2

t2

t3

t1

 

Fig. 1.10:  Multilayer physisorption and capillary condensation processes within 

pores at (a) low, (b) medium, and (c) high relative pressure values. 
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It was subsequently assumed that the pores were cylindrical with a contact angle of 

zero, so the meniscus was hemispherical. The mean radius of curvature therefore 

equals the radius of the pores less the thickness of the adsorbed film on the walls. 

Hence it is possible to determine the mean radius of pores in which capillary 

condensation can occur, using the value of the relative pressure at the lower limit of 

the hysteresis loop, from the Kelvin equation (equation 1.5).
[54]

 

 

)RT(p/p

θVγ
r

o

k

ln

cos2
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where  rk   = Kelvin radius 

      = adsorbate surface tension 

  V   =  adsorbate molar volume 

     = adsorbate-surface contact angle. 

 

 

For nitrogen adsorbate at 77K: 
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1.2.3.2.4: BJH Method for Mesopore Size Distribution 

Multilayer physisorption and capillary condensation occur in mesopores at relative 

pressure (p/p0) greater than approximately 0.3. When determining the range of 

mesopores within a solid, the mesopore radius is therefore the sum of the radii derived 
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from both processes. This is the basis for the Barrett-Joyner-Halenda (BJH) method 

for mesopore size distribution determination.
[56,57]

 

 

The pore radius resulting from multilayer physisorption, rt, can be determined using a 

graphical procedure known as the MP method, and that due to capillary condensation, 

rk, evaluated using the Kelvin equation (equation 1.6).
[54]

  The MP method uses values 

of the statistical thickness, t, defined as the thickness of the adsorbed film on a pore 

wall, to calculate pore dimensions. 

 

The values of t were originally calculated from analysis of non-porous solids and for a 

specific analysis, t is determined from relative pressures p/po and the CBET value, i.e. 

partial pressures are converted to values of t.
[54]

 The volume of gas adsorbed V is then 

plotted versus t giving a t-plot or V-t curve figure 1.11. Curve X results from 

multilayer adsorption in the absence of condensation into pores while curve Y shows 

an upward deviation from linearity. The downward deviations from linearity result 

when pores are filled by multilayer adsorption and these values are used in the MP 

method to evaluate the micropore volume over a given statistical thickness range. A 

pore size distribution can be calculated by differentiating the V-t curve where the 

differential pore volume is plotted versus the pore radius rt (calculated as the average 

of two successive t values). 
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Fig. 1.11:  A typical V-t curve. 

 

In the BJH method a particular pore shape is assumed, and rt and rk are summed to 

give the actual pore radius r.  The adsorbate liquid volume (determined from the 

corresponding values of n, the quantity of gas adsorbed) from the isotherm is plotted 

versus r to give a cumulative pore size distribution and differentiated giving the 

differential pore volume distribution as a function of pore diameter i.e. pore size 

distribution. 

 

1.2.3.2.5: Porosity Analysis of Mesoporous Silicates 

Adsorption of probe molecules has been widely used to determine the surface area 

and to characterise the pore size distribution of mesoporous materials. Soon after the 

preparation of MCM materials, the physisorption of gases such as N2, O2 and Ar had 

been studied to characterise the porosity.
[58-61]

  

The nitrogen adsorption isotherm for MCM-41 with pore diameter approximately 4.0 

nm, which is type IV in the IUPAC classification, shows two distinct features: a sharp 

capillary condensation step at a relative pressure of 0.4 and the absence of hysteresis 

between the adsorption and desorption branches (figure 1.11). The adsorption at very 
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low relative pressures, p/po, is due to monolayer adsorption of N2 on the walls of the 

mesopores and does not represent the presence of any micropores.
[62,63] 

 

However, in the case of materials with pores larger than 4.0 nm or using O2 or Ar as 

adsorbate, the isotherm is still type IV but also exhibits well-defined hysteresis loops 

of the HI type.
[48,59,64]

 The presence and size of the hysteresis loops depend on the 

adsorbate, pore size and temperature.
[59,64,65]

 Non-local density functional theory 

(NLDFT) provides an accurate description of the thermodynamics of nitrogen 

confined in pores of this size and predicts the thermodynamic limits for the 

adsorption-desorption hysteresis loops.
[66] 

 

Fig. 1.12:  Nitrogen adsorption isotherm of MCM-41 at 77K.
[66] 

 

Comparison of the theoretically predicted thermodynamic hysteresis loops with 

experimental data on MCM-41 supports the classical physical scenario of capillary 

condensation in an open cylindrical capillary. In contrast, there is still no clear 

explanation for those cases where the hysteresis loops are absent. Calculations by 
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Ravikovitch et al. showed that the absence cannot be explained by the capillary 

critical temperature being achieved, which was previously assumed.
[63,66,67]  

 

To determine the pore size distributions in cylindrical pores, several methods are 

known based on geometrical considerations, thermodynamics or a statistical 

thermodynamic approach.
[54,66,68] 

The BJH method is based on the Kelvin equation 

and thus has a thermodynamic origin. The pore size distribution of MCM-41 

calculated using the BJH method is shown in figure 1.13.
[56,57]
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Fig. 1.13:  BJH pore size distribution of MCM-41
[45]

 

 

1.2.3.3: Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM) is used to elucidate the structure of 

mesoporous materials. In TEM, a sample is prepared, crushed and placed in a thin 

layer, <1000nm, on a carbon foil. For materials where the majority of the detail and 

characteristics are internal, this is a very useful and powerful technique.  Figure 1.14 
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shows a TEM image of the hexagonal arrangement of uniform pores in a mesoporous 

sample. However, the exact analysis of pore sizes and thickness of the pore walls is 

very difficult and not possible without additional simulations because of problems 

with focussing at the high magnifications involved.   

 

 

Fig. 1.14:  Transmission electron micrograph of calcined zirconium oxo 

phosphate showing a hexagonal pore arrangement analogous to MCM-41 

materials (scale bar not shown).
[69] 

 

 

It was shown by Chen et al. that, for MCM-41, the thickness of the features  (pore 

size and wall thicknesses) depend strongly on the focus conditions, and careful 

modelling is necessary for a precise analysis.
[70]

 Moreover, most MCM-41 samples 

not only show ordered regions but also disordered regions, lamellar (prior to 

calcination) and fingerprint-like structures.
[71]

 Chenite et al. showed that the 

equidistant parallel lines observed in the micrographs are related to the hexagonal 
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repeat between tubules.
[72]

  The honeycomb structure is sufficiently regular to give 

fringes in projection under proper orientation of the specimen. Feng et al. investigated 

the curved, fingerprint-like structures in more detail, and observed two dislocation 

and two disclination defect structures, which are similar to those detected in pure 

liquid-crystal phases.
[73]

 Using TEM imaging as a basis for their conclusions, they 

proposed that since the mesoporous structure cannot shear without fracturing, these 

defects must have formed in the unpolymerised liquid-crystal like silicate precursor 

phase. 

 

TEM’s use with SBA-15 has become widespread as a technique in analysing SBA-15 

structure and the effects of changes in the sample preparation and treatment.
 [14,74-76]

 

 
 

Fig 1.15: TEM images of SBA-15 with average pore sized (a) 60 Å (b) 89 Å (c) 

200 Å (d) 260 Å[14] 
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The images in figure 1.15 show clearly the ordered honeycomb structure of SBA-15 

with differing average pore size. SEM however, has been the preferred tool for 

microscopy of SBA-15.  

 
1.2.3.4: Scanning Electron Microscopy (SEM) 

 

Scanning Electron Microscopy allows a greater depth of field than TEM and allows 

the user to determine the surface structure of materials to the nanometer (nm) and 

micrometer (µm) scale.
[77] 

 

Figure 1.16 below shows how useful the technique is in looking at mesoporous oxides 

in the nm and µm scale.  

 

 

Fig 1.16: SEM images of SBA-15 
[78] 
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SEM is a very popular technique, this is due in the main to the capability of the 

technique to obtain images that are three dimensional in character for the surfaces of 

materials.
[77] 

SEM works by directing a beam of electrons from an electron gun at the 

top of the microscope in a vertical path to the sample. This is done in a vacuum in 

order to ensure the electron beam reaches the sample rather than scatters of gaseous 

species within the microscope. The electron beam is focussed through lenses and 

electromagnetic fields and finally hits the sample. When the electron beam impinges 

on the sample, the sample emits secondary electrons and X-Rays from the surface 

structure. These are then detected and converted into an image for display.  (Fig 1.17) 

shows the full set up of a standard SEM.  

 
Fig 1.17: Schematic diagram of a scanning electron microscope.

[79]
 

 

 
1.3: Allotropes of Carbon 

Carbon is the lightest group VI element and is the most interesting due to its tendency 

to form different allotropes, diamond, graphite and fullerene are the most well known 

of these. 
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1.3.1: Hybridisation 

The chemical bonding of different allotropes of carbon depends upon the 

hybridization of the s and p orbitals. Hybridisation is the generation of a new set of 

atomic orbitals, hybrid orbitals, by the combining of atomic orbitals in an atom. 

Hybrid orbitals are the atomic orbitals produced when two or more nonequivalent 

orbitals of the same atom combine. Within carbon these hybrid orbitals are formed 

when the s and p orbitals combine. The hybrid orbitals form covalent bonds and, with 

carbon, can form a maximum of four sp
3
 orbitals (figure 1.18), three sp

2
 orbitals 

(figure 1.19) and two sp orbitals (figure 1.20). 

 

 

 

Fig 1.18: The structural rearrangement of s and p orbitals to form four hybrid 

sp
3
 orbitals.

[80] 
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Fig 1.19: The structural rearrangement of s and p orbitals to form three hybrid 

sp
2
 orbitals.

 [80] 

 

 

 

 

 

Fig 1.20: The structural rearrangement of s and p orbitals to form two hybrid sp 

orbitals.
 [80]
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Table 1.2 below shows the effect hybridization of atomic orbitals has on the structure, 

and consequently the allotrope of carbon that is formed. 

Typical Chemical Bonding 

Physical 

Dimensionality 

and 

coordination 

number (z) 

Hybridization Bond 

Length 

(Å) 

Energy 
(eV mole

-1
) 

Solid state 

phases 

Shape of hybrid 

orbitals 

3D (tetrahedral 

structures  

z = 4) 

sp
3
-sp

3 
1.54 15 Diamonds 

 
2D (lamellar 

Structures 

z = 3) 

aro-aro 1.40 25 Graphites 

(plane surfaces) 

 

sp
2
-sp

2
 1.33 26.5 Fullerenes 

(curved 

surfaces) 

1D (Chains or 

rings 

z = 2) 

sp
1
-sp

1
 1.21 35 Carbynes 

 
 

Table 1.2: A table showing bonding properties within allotropes of carbon.
 [80,81]

 

 

1.3.2: Graphite Structure 

Graphite is an allotrope of carbon with sp
2
 hybridised aromatic covalent bonding, the 

structure of graphite, shown in figure 1.21, is therefore two dimensional and planar. 

When the overall structure of graphite is examined in 3D, the 2D layers are separated 

by 3.35Å, much larger than the C-C bond distance of 1.42Å.
[81] 

Graphite has 

lubricating properties due atomic adsorption of water vapour within the layers and, 

because of weak interplanar forces allowing the movement of the 2D planar structures 

over one another.
 [82]
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Fig 1.21: Structure of graphite planar and top view, the red lines depict weak 

interplanar forces.
 [83]

 

 

1.3.3: Fullerene Structure 

Fullerenes, as graphite, are sp
2 

hybridised, however, their structure is not planar, the 

bonding is such that fullerenes create spheroids. Buckminster fullerene, C60, shown 

here in Fig 1.22, is probably the most well known fullerene, discovered in 1985 it was 

the catalyst for further fullerene research.
[84] 

 

Fig 1.22: Buckminster fullerene carbon structure discovered in 1985.
 [85]

 



 33 

Fullerenes are usually formed by the clustering of carbon through laser vaporization 

of graphite, however this approach yields a range of cluster sizes, typically clusters 

from 10 to 18 atoms, and 32 to 60 atoms in size.
 [86,87]

 It is believed that these 

fullerenes grow by the addition of carbon atoms, much like the paving in a road, 

leading to the process being nicknamed the “fullerene road”.
 [88,89] 

Fullerenes in 

general have a wide range of structures, more common structures are shown here in 

fig 1.23. The smallest of which that is known to be stable is C20, and the largest that 

has so far been reported are between C600 and C700.
 [81,90]

 

 

 

Fig 1.23: Common structures of the Cn clusters. a) C24 one-pentagon bowl, Oh 

cage, D6 fullerene, ring, and sheet, (b) C26 fullerene and one-pentagon sheet (c) 

C28 sheet and fullerene (d) C32 fullerene.
 [91]

 

 

Buckeyballs are extremely strong molecules, they can withstand pressures of over 

3,000 atmospheres and still bounce back to their original shape.
 [92]

 However, they do 

not bond together chemically, this gives them potential as a lubricant, however, the 

molecules tend to be too small for many applications as they become lodged in 

crevaces.
[92]

Fullerenes are also used as precursors for materials such as diamond 
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coatings or nanotubes. These fullerene nanotubes are sought after as they have the 

same ability to withstand the high pressures and still return to their original shape.
[92] 

 

1.3.4: Diamond Structure 

Diamond has a lattice structure, with two interpenetrating face-centered cubic lattices. 

Each lattice is one quarter of a lattice constant apart from the other, and is 

tetrahedrally arranged with four other carbon atoms in the sublattice, as shown in Fig 

1.24. It is this structure which is responsible for the very strong carbon–carbon 

bonding, which in itself, results in its properties such as extreme high hardness, 

extremely high thermal conductivity, and chemical inertness.
[93–94]

 It is for these 

properties that metastable diamond is sought after as a material for many 

applications.
[95–107]

 
 

 

Fig. 1.24: Structural framework of diamond, showing the interconnecting 

lattices.
[108]

  

This demand for metastable diamond has driven researchers to look into methods of 

creating diamond, especially since the first reported synthesized diamonds using a 

high-pressure and high-temperature process (HPHT). 
[109,110]

 There are now many 
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different routes, through which diamond synthesis can be achieved, in addition to the 

original HPHT synthesis, Chemical Vapour Deposition (CVD) has become widely 

used to grow metastable diamond. 
[101,111] 

 

1.4: Chemical Vapour Deposition (CVD) 

1.4.1:  CVD Technique 

CVD is a process where a volatile precursor gas comes into contact with a heated 

substrate causing a reaction and depositing a thin solid film onto the substrate. 
[112]

 It 

involves a chemical reaction in the gas phase, which occurs above a solid deposition 

substrate surface. All techniques of CVD use gas phase reactions to propagate the 

growth of the solid films that are wanted from the experiment, as illustrated in figure 

1.25. 

 

 

Fig 1.25: Schematic diagram of CVD using precursor gasses to form radicals 

that can diffuse onto the substrate surface, leaving a solid film. (adapted from 

Ashfold et. al.)
[113] 
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There are three main types of CVD activation process used for diamond growth, 

namely, hot filament, plasma and torch CVD.  They are all similar in the fact that the 

initiating reaction that occurs is in the gas phase above the deposition surface; 

however, the methods of inducing this reaction differ completely. The input gas 

mixture is usually a hydrocarbon gas diluted in hydrogen (most commonly 1% CH4-

H2). 

 

1.4.1.1: Hot Filament CVD 

 

Fig 1.26: Schematic diagram of Hot Filament CVD apparatus.
 [113]

 

 

In 1982, Matsumoto first published the process of hot filament CVD, where he used a 

low pressure vacuum, achieved with a rotary pump.
[114] 

The precursor gasses are in a 

constant flow over the filament at 2200K and between 2-8mm from the substrate.  

Catalytic dissociation of the precursor gas species occurs at the filament to produce 

reactive species, such as atoms and radicals, which cause deposition. Within this kind 

of CVD chamber the walls are preferentially cooled, thus limiting the  CVD film or 

crystal growth in all places other than on the substrate. This happens because most 
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CVD reactions are endothermic, absorbing heat, the implication of this is that the 

sample will preferentially grow on the substrate where the temperature is higher and 

leave the cool walls of the chamber uncoated. Diamond film growth rates of ~1μm/hr 

are typically achieved by HFCVD. 
[115]

   

 

 

 

1.4.1.2 Microwave plasma CVD 

 

 

Fig 1.27: Schematic diagram of a Microwave Plasma CVD reactor.
 [113] 

 

A Microwave plasma induced CVD set up can be achieved by the proper combination 

of electric and magnetic fields.
[116, 117]

 As with hot filament CVD, microwave plasma 

CVD is conducted at low pressure.
[118]

 The microwave plasma induces ionisation of 

gasses, forming highly energetic electrons and lower energy, higher mass, ions. The 

high energy electrons collide with gas molecules resulting in dissociation of the 

molecules and the formation of highly reactive chemical species which begin the 

deposition reaction. Growth rates of diamond scale almost linearly with power of the 

microwave generator, a 1kW plasma produces growth rates of ~1μm/hr. 
[115] 
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1.4.1.3 Oxyacetylene Torch CVD 

 

Fig 1.28: Schematic diagram of Oxyacetylene Torch CVD.
 [113] 

 

 

The oxyacetylene torch was first used as a method of CVD in 1988 by Hirose.
[119]

 

This method of CVD has potential been seen in further experiments as one of the 

major successes of the diamond CVD techniques.
[116, 120]

 In this technique, excess fuel 

and CO are oxidised whilst hydrogen and acetylene are burned. Diamond forms on a 

substrate at a rate of 100-200 micrometers per hour and a temperature of 800-

1100
o
C.

[121]
 The reason this technique is seen as an important prospect in Diamond 

CVD growth is because of these high growth rates, however as yet, the Diamond 

formed from this technique is not uniform in structure.
[121] 

 

 

 

 

 

 

 

 



 39 

1.4.2 CVD Growth of Diamond 

 

 
Diamond CVD utilises standard CVD techniques, however the precursor gasses are 

limited to substances which contain only carbon and hydrogen and also Nobel gasses. 

Using these gasses, the growth of diamond can be achieved on diamond or silica 

substrates. The growth of diamond on these substrates is seen in the same orientation 

as the substrate and often can be layered.
[116, 122-124]

 

 

CVD growth of Diamond usually takes place following five stages, firstly, incubation, 

where the initial nucleation occurs. Secondly, nucleation of individual crystals, in this 

stage the nuclei of diamond become available for larger nucleation of individual 

diamond crystals. Thirdly, the termination of the surface nucleation, during which 

there is growth of individual crystals. In the fourth stage we can see  the formation of 

a continuous film of diamond, of which the growth is the fifth stage.
[125] 

 

Fig 1.29: Growth process of a diamond film. (top left) nucleation, (centre top) 

termination of nucleation, (top right) growth of individual crystallites, (lower 

three images) continuous film growth. 
[116] 
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Depending on the substrate material, the incubation period can take from a few 

minutes to hours. The nucleation during this time can be seen in figure 1.29 and the 

process of nucleation has been previously shown in figure 1.25, as the radical or 

ionised gasses diffuse from the filament the diamond will nucleate upon the 

substrate.
[116]

 On an atomic scale, there are six processes which may be seen during 

surface nucleation.
[116]

 These are: 

 

1- Atoms impinge upon the deposition substrate from the gas phase and become 

absorbed onto the surface. 

2- The adatoms may desorb or diffuse over the surface. The adatoms may also diffuse 

into the substrate or bond to other surface atoms. 

3- With increasing time, the surface concentration of the adatoms increases and 

clusters form. 

4- Through Statistical fluctuation in the local adatom concentration, the clusters either 

grow or decay. 

5- There exists a critical size above which the probability of growth will be greater 

than decay, so that the clusters with a size exceeding the critical size become stable. 

6- The stable clusters provide suitable growth sites for growth, both from migratory 

adatoms and from the atoms in the gas phase. 

 

After these initial clusters are formed, nucleation of individual crystals takes place. At 

first, these crystals are amorphous, however as the process moves through the third 

stage, termination of nucleation into the fourth stage, the growth of a film, the crystals 

begin to arrange themselves to achieve the lowest surface energy for a diamond 
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crystal.
[126,127]

 It is from this ordered layer growth where the final step, growth of a 

single crystalline film occurs. 

 

1.5 Diamond Nanorods 

Rods of diamond have been produced since 1968 when diamond whiskers were 

grown using a vapour-liquid-solid mechanism.
[128] 

This is where a liquid phase 

catalyst alloy rapidly absorbs a gas vapour to levels where it is supersaturated and 

crystal growth then occurs from nucleation sites.
[129]

 Further work on diamond 

nanorods between 1968 and 2004 was slow in progress due to the difficulty in 

producing good quality nanorods.
[130]

  

In 2000, progress was made when aligned diamond whiskers with small diameters 

~60nm were synthesised.
[131] 

This was achieved, not by chemical vapour deposition 

growth, but rather by air plasma etching of polycrystalline films using Molybdenum 

as a mask to prevent etching of the wires. This molybdenum makes the diamond 

nanorods impure and their theoretical electronic properties would become inhibited, 

making the nanorod produced less desirable than pure diamond nanorods, as pure 

nanorods are, theoretically, excellent thermal conductors and excellent electronic 

insulators, if the insulating properties are lost, then the product would be less 

desirable. Further progress was made in 2001 when CVD was used in order to 

produce diamond-nanorods. However, these nanorods, at 300nm diameter, are 

relatively large in comparison with the pore size of SBA-15. These nanorods were a 

breakthrough and even though the dimensions of the nanorods were easily controlled 

during growth, orientation and ordering of the nanorods was not.
[132] 
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Fig 1.30: (a) The top view of the nanotubes coated with diamond after 15 

minutes, The FE-SEM view in (b) complete diamond coverage along the whole 

length of the tubes. At higher magnifications (c and d) wires are coated by grains 

with diameters ranging approximately between 20 and 100 nm.
[133]

 

 

It was not until 2005 that smaller diameter diamond nonowhiskers had been 

successfully grown by CVD, and even then this process involved a hybrid material, 

with carbon naontubes, rather than pure diamond nanorods themselves.
[133]

 In this 

work, Terranova et al, HF-CVD was employed in order to use carbon nanopowders of 

40nm mean diameter to grow diamond on the exterior surface. The team behind this 

work had had previous success in producing carbon nanotubes and used their methods 

in order to produce the diamond coated carbon nanotubes, shown here in figure 1.30 
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Microwave plasma CVD has also seen success in creating these hybrid nanotubes, the 

results of this work produced more success in delivering the much sought after 

diamond nanorods, shown extending from the supporting carbon nanotube in figure 

1.31, however, again, as with the work of Masuda et al, the diamond nanorods were 

not well ordered.
[132, 134]  

 

Fig 1.31: TEM image of diamond nanorods grown on the original Carbon 

nanotube framework.
[134]

 

 

Nanorods of diamond-fullerene hybrids have also been synthesised.
[135] 

These 

nanorods have been grown, again by HFCVD. The process requires an 

ultrananocrystalline diamond substrate doped with 25% N2. The main difference 

between these hybrids and the earlier diamond-carbon hybrid nanorods is the fact that, 

as shown in figure 1.32, the diamond structure is this time on the inside of the 

fullerene. 
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(a) 

(b) (c) 

Fig 1.32: (a) Diamond nanowires protruding from the surface of the 25% N2 

Ultrananocrystalline diamond ssubstrate (b) Close up of Hybrid diamond-

fullerene nanorod showing the darker diamond core (c) Hybrid diamond-

fullerene nanorod showing the darker diamond core at lower magnification.
[135]

 

 

Again though with these nanorods, although the fullerene outer layers can 

theoretically be etched away to leave only the diamond nanorod, the growth of these 

hybrid nanorods is again disordered, the amount of disorder is shown above in figure 

1.32 where the nanorods can clearly be seen overlapping and intersecting.  
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Reports using ab-initio modelling techniques to obtain theoretical energetic stabilities 

of diamond nanorods have had favourable results. Initial studies led to the conclusion 

that the surface morphology of the diamond nanorod and the direction of the internal 

structure of the diamond nanorod had the largest baring on the stability of the 

nanorod.
[136] 

Some reported theoretical values hav suggested that at a radius greater 

than about 1−3 nm, with the correct orientation, a diamond nanorod may have greater 

physical strength than that of the carbon nanotubes, citing an increase in both the 

brittle fracture force and zero strain stiffness.
[137]

 This increase in the physical 

capabilities of diamond nanorods compared with carbon nanorods alone makes them 

an attractive and viable target for synthesis.
[137]

 

 

It was with this target that the first diamond nanorods with a radius less than 3nm 

(6nm diameter) were synthesised. Dubrovinskaia et al, in 2005 reported the first 

diamond nanorods to be developed with a diameter below 6nm, with a range of 5–

20nm.
[138] 

These diamond nanorods were synthesised from fullerene C60 in a multi 

anvil press under 200,000 bar and 2500K. These diamond nanorods were then 

mechanically tested and proved the modelling theory that the diamond nanorods are 

the material with the lowest experimentally determined compressibility to date.
[138] 

The drawbacks to this method are the harsh conditions needed and the energy input 

required for this high pressure, high temperature synthesis to take place, along with 

the tendency for non-uniform diamond nanorod formation, rather than the 

theoretically more energy efficient low pressure low temperature technique of CVD 

with the use of nanopore templating. 
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1.6 Aims of This Research 

 

1. Synthesise SBA-15 and CH3-modified SBA-15 using the cooperative self-

assembly method 

 

2. Create nucleation sites within the pores of SBA-15 by incipient wetness 

impregnation with K2PtCl4 solutions and diamond powder suspensions. 

 

3. Investigate the thermal stability of modified SBA-15 for use as a template 

under HFCVD 

 

4. Produce microcrystalline and nanocrystalline diamond on flat silicon. 

 

5. Optimise parameters for the growth of polycrystalline and nanocrystalline 

diamond using hot filament CVD and CH4/H2/Ar gas mixtures. 

 

6. Undertake the first attempts to use SBA-15 as a template for nanocrystalline 

diamond rods and by the use of HFCVD deposit diamond within the pores of a 

sample of SBA-15. 
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1.7: Experimental Procedures 

 

1.7.1 Mesoporous Silica Oxide Type MCM 

 

1.7.1.1 MCM-41 

MCM-41 was synthesized by dissolving Cetyl trimethylammonium bromide (CTAB) 

(10g) and NaOH (1g) in H2O (90g) and heated to 35
o
C tetraethyl orthosilicate TEOS 

(11cm
3
) was then added and the mixture covered and stirred vigorously. The resulting 

powder was recovered by filtering and calcined in air by heating to 500
 o
C at 5

o
C/min, 

holding at 500
o
C for 6 hours, and then cooling to room temperature over 2 hours. 

 

1.7.1.2 CH3 Modified MCM-41 

 

Variations of CH3-MCM-41 were synthesised by following the procedure outlined in 

1.7.1.1 with methyltriethyl orthosilicate MTEOS modifier being used in the following 

proportions alongside the TEOS silicate. 

 

% TEOS Vol Teos / 

cm
3
 

% MTEOS Vol MTEOS / 

cm
3
 

100 11.00 0 0 

99 10.89 1 0.09 

95 10.45 5 0.50 

90 9.90 10 0.90 

80 8.80 20 1.80 

70 7.70 30 2.71 

 

Table 1.3: The range of concentrations of modifier used in the preparation of 

CH3-MCM-41 
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1.7.2 Mesoporous Silica oxide type SBA-15 

 

SBA-15 was synthesized by dissolving P123 (4g) in distilled water (30g) and HCl 

(120g), tetraethyl orthosilicate [TEOS] (11cm
3
) was added and the solution was 

stirred for 6 h at 60
o
C, followed by 12 hours hydrothermal treatment at 100

o
C, the 

SBA-15 was recovered by filtering and calcined in air by heating to 800
o
C at 

10
o
C/min, holding at 800

o
C for 6 hours, and then cooling to room temperature over 4 

hours. 

 

1.7.2.1 CH3 Modified SBA-15 

 

Variations of CH3-SBA-15 were synthesised by following the procedure outlined in 

1.7.2 with methyltriethyl orthosilicate MTEOS modifier being used in the following 

proportions alongside the TEOS silicate. 

 

 

% TEOS Vol Teos / 

cm
3
 

% MTEOS Vol MTEOS / 

cm
3
 

100 11.00 0 0 

90 9.90 10 0.90 

80 8.80 20 1.80 

70 7.70 30 2.70 

60 6.60 40 3.60 

50 5.50 50 4.50 

40 4.40 60 5.40 

30 3.30 70 6.30 

 

Table 1.4: The range of concentrations of modifier used in the preparation of 

CH3-SBA-41 
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1.7.2.2 Pt Modified SBA-15 

 

Pt-SBA-15 was prepared by an incipient wetness method, impregnating samples of 

SBA-15 prepared using the method in 1.7.2. Three solutions of K2PtCl4 (1x10
-4 

mol 

dm
-3

, 1x10
-3 

mol dm
-3

 and 1x10
-2 

mol dm
-3

) were prepared and the solutions added 

dropwise to dry powdered SBA-15 (1g) until the samples showed the first sign of 

being moist. The samples were then calcined in air by heating to 650
 o

C at 25
o
C/min, 

holding at 650
o
C for 6 hours, and then cooling to room temperature over 4 hours. 

 

1.7.2.3 SBA-15 Thermal Stability test. 

 

SBA-15 prepared using the method outlined in 1.7.2 was treated in a calcination oven 

at 650
o
C, 750

o
C, 850

o
C, 950

o
C and 1050

o
C for a period of six hours in air. The 

sample was then analysed by nitrogen porosimmetry. 

 

1.7.3 Chemical Vapour Deposition (CVD) 

The filament was made from 0.5mm diameter tantalum wire and manually formed 

into a 6 turn coil of diameter 3mm. In this study, a tantalum filament was pre-

carbonised for up to 2 hours prior to deposition, using 3 vol % CH4 in 97 vol % H2.  

This is to avoid filament poisoning and tantalum incorporation within the diamond 

deposit.
[139] 

 

Once the substrate has been prepared by abrasion with diamond powder (1-3µm 

diameter) in order to enhance the nucleation density of diamond on the subtrate, it is 

fixed to the substrate holder (20mm x 20mm, Mo) using silver glue. Previous research 
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has established the optimum distance of substrate to filament to be 4 mm for optimum 

growth of high quality diamond films.
[140]

  The distance of 4mm from the filament to 

the top of the substrate remained constant throughout deposition experiments.
[141]

 

Throughout the deposition procedure the substrate must also be aligned with the 

filament, as shown in figure 1.33. 

 

 

 

Fig 1.33: Photograph of the internal arrangement of the HFCVD reactor. The 

filament to substrate distance is 4 mm 

 

 

1.7.3.1 CVD Diamond onto Silicon wafer.  

The deposition of diamond onto silicon (Si) wafer was attempted over the gas 

compositions and pressures listed in Table 1.5. Each setting was run over a period of 

3 hours and a period of 6 hours with a flow rate of 20 sccm and a substrate 

temperature controlled by the filament and kept constant at  850
o
C measured with a K 

type thermocouple.  



 51 

 

Ar (vol.) % H2 (vol.) % CH4 (vol.) % Pressure (Pa) 

0 99 1 666.5 

0 99 1 2666 

0 99 1 6665 

0 99 1 13330 

25 74 1 666.5 

25 74 1 2666 

25 74 1 6665 

25 74 1 13330 

50 49 1 666.5 

50 49 1 2666 

50 49 1 6665 

50 49 1 13330 

60 39 1 666.5 

60 39 1 2666 

60 39 1 6665 

60 39 1 13330 

80 19 1 666.5 

80 19 1 2666 

80 19 1 6665 

80 19 1 13330 

90 9 1 666.5 

90 9 1 2666 

90 9 1 6665 

90 9 1 13330 

95 4 1 666.5 

95 4 1 2666 

95 4 1 6665 

95 4 1 13330 

99 0 1 666.5 

99 0 1 2666 

99 0 1 6665 

99 0 1 13330 

 

Table 1.5: The gas composition and pressure used in the CVD of diamond onto 

Silicon wafer. 
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1.7.3.2 CVD Diamond with SBA-15 

Following the CVD  experimentation on silicon wafer, the optimum settings for 

production of the desired nanocrystalline diamond were used to attempt CVD of 

nanocrystalline diamond within the pores of SBA-15. 

 

The powder was held in a molybdenum tray at a distance of 4mm from the filament 

and treated for 6 hours at a pressure of 2666 Pa, flow rate of 20 sccm and a gas 

composition of  95% Ar 4% H2 1% CH4 the substrate temperature was controlled by 

the filament and kept constant at 850
o
C measured with a K type thermocouple. 

 

1.7.4: Characterisation; SEM, TEM and Porosimmetry. 

 

All SEM images were captured using a Zeiss Supra Model 40VP Scanning Electron 

Microscope installed at the Dalton Research institute located at Manchester 

Metropolitan University. 

 

All TEM images were captured using a Philips CM200 FEG microscope located at 

the Fritz-Haber-Institute, Berlin. 

 

The porosimmetry results were analysed and calculated using a Micromeritics 

ASAP2020 Surface area Porosity Analyser installed at the Dalton Research 

institute located at Manchester Metropolitan University.
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2.1: Results and Discussion 

 

2.1.1 Mesoporous Silica Oxide Type MCM 

2.1.1.1 MCM-41 

 

MCM-41 was produced early on in this project as the modification of mesoporous 

silicates would be more easily tested on a material that took less time to prepare than 

SBA-15. Figure 2.0 shows the XRD plot from  one of the earliest samples of MCM-

41 produced, the peaks at  2 theta values of 2.2, 3.4 and 3.8  give three reflections 

between 2θ = 2º and 2θ = 5º, just as in figure 1.7 (a). The small peak at 2θ = 6.9 

indicates that there is a small amount of  MCM-50 stable within the structure also. 

The production of MCM-41 following the procedure outlined in section 1.7.1.1 was 

easily reproducible and therefore it was relatively easy to design the method for the 

modification of MCM-41 with CH3 groups. 
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Fig 2.0: XRD plot of  MCM-41 prior to calcination 
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2.1.1.2 CH3 Modified MCM-41 

The MCM derivatives produced following the method in section 1.7.1.2 shown in 

figure 2.1 have mesopore stability when produced using up to 30% MTEOS modifier.  

Up to the 30% MTEOS modification, the XRD show pore structures with three 

reflections in the 2θ =2-5 range. As the amount of modifier, the number and quality of 

these peaks decreases.  

 

Replacing 30% of the TEOS with MTEOS allows for a significant number of organic 

groups present within the structure of MCM-41 like materials. This posed the 

question as to whether the same could be accomplished with SBA-15, a more useful 

substrate due to the pore size of SBA-15. 

 

 

Fig 2.1: XRD plot of MCM derivatives with a range of CH3 modifier. 
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2.1.2 Mesoporous Silica oxide type SBA-15 

 

The SBA-15 produced experimentally using the method outlined in section 1.7.2 is 

stable in air up to a temperature of 750
o
C, as is shown by the thermal stability testing 

discussed in 2.1.2.3. There are good areas of pore structure present as shown in the 

XRD plot (see figure 2.2) and the TEM images of the SBA samples shown in figure 

2.3, with the (100) reflection at 2θ = 0.8, the (110) reflection at 2θ  = 1.5  and the 

(200) reflection 2θ  = 1.7, as shown in figure 1.8. This success in synthesising SBA-

15 was the successful stepping stone required to be able to produce modified versions 

of SBA-15 for use in the synthesis of diamond nano-wires. 
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Fig 2.2: XRD plot of SBA-15 
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(a) (b) 

(c)  

Fig 2.3: TEM images of SBA-15 recorded on a Philips CM200 FEG microscope, 

operated at an accelerating voltage of 200kV.  (a) Regular pore structure is 

shown with a diameter of 5nm. (b) Hexagonal arrangement of the cylindrical 

pores of SBA-15 (c)  Pores of Sba-15 clearly shown over a large area relative to 

the sample size. 

2.1.2.1 CH3 Modified SBA-15 

 

The attempt to modify SBA-15 was taken in order to provide a surface that would be 

more likely to induce nucleation of diamond under CVD. The CH3 modified SBA-15, 

synthesised by the method in section 1.7.2.1, was found to have some pore stability up 
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to a maximum of 40% modifier, however, the highest percentage of MTEOS modifier 

used that was regularly seen to produce a stable product was 30%. Figure 2.4 below 

shows the degradation of pore stability as the percentage of the modifier is increased. 

We see this as when the amount of modifier increases, there is a shift in the pattern 

and intensity of the XRD. As the amount of modifier increases the intensity of the 

peaks decrease pore structure of MCM-41 being completely lost at the point where 

70% of the reacting silicate is MTEOS.  

 

 

Fig 2.4: Log10 XRD plot of CH3-SBA-15 showing the ratio of TEOS to MTEOS 

used, where the MTEOS is providing the CH3 modification to SBA-15, and its 

effect on pore structure. 

 

A stable SBA-15 structure with 30% MTEOS modifier still provides the possibility of 

many CH3 groups lining the inside of the SBA-15 pores as possible nucleation sites 

for CVD. However it is not certain at this point that the structure of the CH3-SBA-15 

would have the CH3 groups on the surface of the pore or whether the CH3 groups 

would be within the structure.  

 



 59 

Nitrogen porosimmetry was performed on the samples in order to establish where the 

CH3 groups were located within the structure. In figure 2.5 we see an increase in pore 

diameter as the amount of modifier increases. This is an indication that the CH3 may 

be within the pores of the SBA-15 structure. Based upon this, the CH3-SBA-15 

samples seem to be viable for testing as possible substrates for enhanced nucleation 

for CVD of nanocrystalline diamond within a porous structure.  

 

 
Fig 2.5: Nitrogen porosimmetry of CH3-SBA-15 showing the ratio of TEOS to 

MTEOS used, where the MTEOS is providing the CH3 modification to SBA-15, 

and its effect on pore size. 

 

 

% MTEOS/%TEOS 60/40 50/50 40/60 30/70 20/80 10/90 0/100 

Pore Diameter / Å 54.1 53.1 52.9 52.7 52.1 51.4 51.0 

 

 

Table 2.1: Nitrogen porosimmetry data for CH3-SBA-15 showing the ratio of 

TEOS to MTEOS used, where the MTEOS is providing the CH3 modification to 

SBA-15, and its effect on pore diameter. 
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2.1.2.2 Pt Modified SBA-15 

The first test in producing the platinum doped SBA-15 was to observe the method for 

stability. The original SBA-15 was treated only with de-ionised water and then dried. 

In this experiment the SBA-15 was treated with the K2PtCl4 solution and then dried. 

The outcome, shown in figure 2.6 indicates that the pore is unchanged under the 

treatment method and that there is a 30% decrease in the pore volume when doped 

with platinum. 

 

 

 

Fig 2.6: Nitrogen porosimmetry plot of Pt-SBA-15. 

 

When the samples of Pt impregnated SBA-15 were examined by nitrogen 

porosimmetry, they were found to have a lower pore volume when the concentration 

of the Pt complex was increased. This was in line with the hypothesis that a greater 

initial complex concentration would lead to a greater nucleation of Pt within the 

pores. Figures 2.7 and 2.8 show how the pore size changes, the pore structure has not 
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changed significantly. There is a slight decrease in pore volume, which increases as 

the K2PtCl4 concentration increases. This suggests that the pores have been partially 

filled with platinum nucleation sites for CVD. This is also indicated in fig 2.9, where 

the pore volume increases as the amount of K2PtCl4 modifier decreases, indicating 

that there is a deposit of something else within the pores. 

 

 

 

Fig 2.7: Nitrogen porosimmetry plot of Pt-SBA-15 prepared by incipient wetness 

using K2PtCl4 (1x10
-2

mol dm
-3

-1x10
-4

mol dm
-3

) including the result when SBA-15 

was treated in the same way with de-ionised water. 

SBA-15 treated with 

K2PtCl4 

1x10
-2 

mol dm
-3 

1x10
-3 

mol dm
-3

 

1x10
-4 

mol dm
-3

 

Untreated 

Pore Diameter / Å 52.3 51.9 52.3 52.0 

Pore Volume cm
3
/g 8.4 13.6 19.9 29.3 

 

Table 2.2: Nitrogen porosimmetry data for Pt-SBA-15 prepared by incipient 

wetness using K2PtCl4 (1x10
-2

mol dm
-3

-1x10
-4

mol dm
-3

) including the result when 

SBA-15 was treated in the same way with de-ionised water. 
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Fig 2.8: BET surface area values and pore diameters for Pt-SBA-15 prepared by 

incipient wetness using K2PtCl4 (1x10
-2

mol dm
-3

-1x10
-4

mol dm
-3

) including the 

result when SBA-15 was treated in the same way with de-ionised water. 

 

Fig 2.9: Pore Volumes for Pt-SBA-15 prepared by incipient wetness using 

K2PtCl4 (1x10
-2

mol dm
-3

-1x10
-4

mol dm
-3

) including the result when SBA-15 was 

treated in the same way with de-ionised water. 
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(a)   (b) 

(c)   (d) 

Fig 2.10: TEM image of Pt-SBA-15 prepared by the incipient wetness method 

laid out in section 1.7.2.2 using K2PtCl4 1x10
-2

 mol dm
-3

 (a) amorphous silica 

oxide with 4 clear Pt nucleations, (b) ordered silica oxide with clear Pt 

nucleations within the pores of SBA-15, (c) Clear area of dense nucleation of Pt, 

(d) a larger image showing a constant impregnation of Pt nucleation within the 

pore structure of the SBA-15. The images were recorded on a Philips CM200 

FEG microscope, operated at an accelerating voltage of 200kV 

 

From the TEM images in fig 2.10, (a) suggests some of the structure of SBA-15 has 

either not formed, or has collapsed under the treatment, however, this area was found 

to be small in comparison with the area of SBA-15 sample with good structure. 

Included in this is the observation that there are relatively few areas of platinum 
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nucleation in this area. There is a greater nucleation of platinum shown in the 

structured areas of SBA 15, (b-d) showing the platinum embedded within the pores of 

the SBA-15 structure. 

 

2.1.2.3 SBA-15 Thermal Stability test. 

 

Fig. 2.11: Pore size distribution plots of SBA-15 after elevated temperature 

treatment for 6 hours in air. 

The pore size distribution plots for SBA-15 treated at temperatures between 650 °C 

and 1050 °C in air for 6 hours are show in figure 2.11.  There is some damage to pore 

structure even at 750 °C, shown by a decrease in pore diameter. This may indicate 

that SBA-15 is not sufficiently thermally stable to withstand the conditions of 

diamond CVD, however, there is still SBA-15 like porous structure even after 

treatment in air at 850°C, meaning that the deposition of diamond nano-wires may be 

equally plausible. Significantly the structure remains porous even after treatment at 

high temperatures, meaning that there may be useful pores for diamond nanowire 

growth even at these higher temperatures. 
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2.1.3 Chemical Vapour Deposition (CVD) 

2.1.3.1 CVD Diamond onto Silicon wafer. 

What appeared under SEM to be microcrystalline diamond shown in Fig 2.12 and 

2.13 was produced using a run time of 6 hours at a pressure of 2666 Pa, flow rate of 

20 sccm and a gas composition of  99% H2 1% CH4. The silicon wafer substrate 

temperature was controlled by the filament and kept constant at 850
o
C. This was 

consistent and repeatable and formed of relatively large crystals of diamond upon 

silicon wafer. However, the discontinuous surface coverage of the diamond indicates 

that there is a relatively poor density of nucleation sites. 

 

 

 

Fig 2.12: SEM image of microcrystalline diamond grown on silicon wafer. 

Recorded on a Zeiss Supra Model 40VP SEM 
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Fig 2.13: SEM image of a second sample of microcrystalline diamond grown on 

silicon wafer this time shown at a higher magnification. Recorded on a Zeiss 

Supra Model 40VP SEM 

 

What appears to be nanocrystalline diamond was produced using the same run time, 

temperature and pressure, but using a change in the gas composition of 95% Ar 4% 

H2 1% CH4. This resulted in a change in the nature of the diamond deposited; the 

deposition of one sample is shown in fig 2.14 and 2.15. The surface coverage of the 

nanocrystalline diamond is more complete than that of the microcrystalline diamond, 

This is evident on comparing figure 2.12 and 2.14, where the surface has almost 

complete coverage of nanocrystalline diamond, whereas the microcrystalline diamond 

previously deposited has silicon wafer remaining exposed. The size and structural 

comparison between the two samples is shown upon comparing figure 2.13 and 2.15, 



 67 

where the diameter of the diamond crystal deposited on the silicon wafer in figure 

2.13, at its smallest, ~0.9µm compared with the sample shown in figure 2.14 where 

the individual crystals are still too small to be measured with any reliable degree of 

accuracy using SEM techniques. 

 

 

 

Fig 2.14: SEM image of nanocrystalline diamond grown on silicon (Si) wafer. 

Recorded on a Zeiss Supra Model 40VP SEM 
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Fig 2.15: SEM image of the nanocrystalline diamond grown on silicon (Si) wafer 

from fig 2.12 shown in higher magnification. Recorded on a Zeiss Supra Model  

40VP SEM 

 

In this section it is important to note that even though the appearance of the diamond 

grown on the silicon wafer is that of micro and nanocrystalline diamond, there is no 

complete set of results here that prove conclusively that this is either of the diamond 

types. In order for this to be known fully Raman spectroscopy of the samples would 

be required. 

 

The size of the microcrystalline diamond grown (~10,000Å) was deemed unsuitable 

for deposition onto SBA-15 and its derivatives as the size of the crystals were too 
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large for the pores (~52Å). It was therefore decided that the conditions for 

nanocrystalline diamond growth should be used with SBA-15. 

 

2.1.3.2 CVD Diamond with SBA-15 

 

Initially it was decided to test the stability of SBA-15 under deposition conditions by 

attempting nanocrystalline diamond deposition on untreated SBA-15. The sample of 

SBA-15 that was placed into the CVD rig, shown in figure 2.16 was very different 

from the sample after CVD using conditions for the growth of nanocrystalline 

diamond. There were two distinct layers, an upper layer, (figure 2.17) which was 

black in appearance and a lower layer (figure 2.18) which appeared unchanged by the 

CVD process. The layers were examined both individually and together by mass 

comparison, nitrogen porosimmetry and XRD. The difference in the visual 

characteristics could have been caused by diamond deposition within the pores of the 

upper layer of the SBA-15. 
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Fig 2.16: Photograph of SBA-15 prior to CVD 

 

 

  

Fig 2.17: Photograph of SBA-15 top layer after CVD 
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Fig 2.18: Photograph of SBA-15 lower layer after CVD 

 

 

 

Fig 2.19: Nitrogen porosimmetry of SBA-15 before and after CVD with a 

substrate temperature of 850
o
C using whole sample. 
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The nitrogen porosimmetry data (figure 2.19) was inconclusive. When the whole 

sample was compared with an SBA-15 sample prior to CVD, the results seem to 

suggest that there may be pore filling. When the comparison was made with the top 

layer, the same conclusion could be reached, it seems as though the layer closest to 

the filament has had carbon deposited in the pores, whilst deeper into the material 

there is little to no deposition taking place. 

 

Fig 2.20: XRD plot of SBA-15 layers. 

 

The XRD spectra, shown here in figure 2.20 as a log10 plot, presents evidence that the 

SBA-15 sample is degrading in the CVD chamber during the carbon deposition into 

the top layer. Figure 2.20 shows the top layer as having no ordered SBA-15 structure 

remaining, there is possibly some form of order within the powder, shown by the peak 

at the 2 theta value 3.1,  however, this does not resemble the order for that of SBA-15 

as sought. The lower layer of powder still has a weak XRD spectrum resembling that 

of SBA-15. This result could also explain why there is some porous characteristic 
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remaining when examining the nitrogen porosimmetry in fig 2.19. The lowered pore 

volume is most likely due to deposition of carbon in the top layer of the SBA-15 

sample whilst the remaining pore volume can be explained by the fact that the lower 

half of the treated SBA-15 held some of its structure. 
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3: Conclusions 

1. SBA-15 materials with pore diameters between 5 and 6 nm, with narrow pore 

size distribution and surface areas ~500 m
2
 g

-1
have been successfully 

synthesised. 

 

2. There were obvious platinum nucleation sites within the pores of SBA-15 

formed by incipient wetness impregnation with K2PtCl4 solutions. 

 

3. SBA-15 has been shown to retain some pore structure at temperatures used in 

nanodiamond CVD.  

 

4. On silicon wafers there have been successful depositions of, what appears 

under SEM, to be microcrystalline and nanocrystalline diamond. 

 

5. The optimum conditions for the apparent nanocrystalline diamond growth 

have been found to be: gas composition 95% Ar, 4% H2, 1% CH4 at a flow 

rate of 200 SCCM and substrate temperature 950 °C. 

 

6. SBA-15 samples have been introduced to the CVD chamber as a substrate for 

deposition. Despite early results showing less promise than was hoped, there is 

still reason to believe that the technique can produce nanowires within the 

pores of SBA-15. Future Raman spectroscopy and TEM work would be 

required to discover more about the top layer of the material produced after 

CVD of the SBA-15 samples. 
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4: Recommendations for Future Work. 

 
1. Transmission Electron Mictoscopy (TEM) Should be carried out on all SBA-

15 samples produced by CVD, to investigate (a) what has happened to the 

structure of the pores and (b) whether there has been any deposition of a 

substance within the pores. 

  

2. Raman Spectroscopy should be carried out on all samples that have undergone 

CVD to establish the nature of the diamond deposited. 

 

3. Further CVD should be carried out on mesoporous silica oxides in order to 

determine if there is a point at which the substrate is stable under deposition 

conditions. 

 

4. Work can be continued on creation of mesoporous oxides that are both stable 

at deposition temperatures already known to be successful and have a pore 

size of 50Å, matching the pore size that has been worked out theoretically as 

preferential for diamond deposition within pores. 
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