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Abstract 

Currently there is a global interest in the application of 2D materials such as 

graphene, graphene oxide (GO), reduced graphene oxide (rGO), 2D hexagonal boron 

nitride (2D-hBN), MoSe2, MoS2, WSe2, antimonene and phosphorene within 

electrochemical applications. Some of those applications range from their use as 

sensors and energy storage/generation devices, including its use as an electrochemical 

supercapacitor, lithium/sodium ion batteries and as anodes and cathodes within fuel 

cells, to name just a few. This global interest is due to the unique beneficial properties 

of the 2D materials over traditional electrochemical materials. 

As a result, there is a need to fundamentally understand how these 2D materials 

behave as electrodes at the single layer scale within electrochemical systems, and 

develop enhanced 2D materials into useful 3D structures, e.g. as 3D printed 

structures/electrodes. The discovery and/or confirmation of the fundamental 

electrochemical properties of these 2D materials could enable its application in several 

areas, such as additive manufacturing, electronics, and energy storage/generation for 

electrochemical sensor platforms. There is a huge potential for this knowledge to be 

usefully exploited within sensing and energy sectors and beyond. 

This thesis reports the electrochemistry of graphene and other 2D 

nanomaterials from a fundamental point of view with thorough physicochemical 

characterisation and resultant electrochemical applicability of using 2D materials as 

electrodes.  

 Chapter 1 gives an overview of the fundamental concepts of electrochemistry 

and 2D materials related to this thesis. Chapter 2 details relevant experimental 

information used in this thesis.  
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Chapter 3 compares methods to determine the electroactive area of CVD 

grown graphene, which is important and novel contribution to those experimentalist 

using this and other electrode materials in order to benchmark their electrode platform. 

Chapter 4 demonstrates the origin of electron transfer properties of edge and basal 

plane sites on true graphene (polymer-free transferred and single layer). 

Chapters 5 and 6 study, for the first time, the applicability and structural 

integrity of CVD  graphene sheets towards the water splitting reactions depending on 

the number of layers, scan rate and voltage applied towards energy applications, 

indicating that mono- and few-layer CVD graphene are not suitable electrode 

materials towards the HER and the OER. Such work is of fundamental importance 

when graphene surfaces are use either “as is” or as the basis of catalyst as used in the 

HER/OER (Chapter 5 and 6 respectively). 

Chapter 7 explores the introduction of physical linear defects (PLDs) on the 

surface of monolayer hexagonal-boron nitride films (2D-hBN), in order change from 

an insulator to a semiconductor material, tailoring its electrochemical properties. 

Physicochemical, computational and electrochemical characterisation techniques are 

applied to identify/explain the change in the electrochemical response from the change 

in surface morphology. 2D-hBN typically is considered an electrochemical insulator, 

however this thesis reports that through implementation of physical defects (simple 

surface modifications) the bandgap changes from ca. 6.11 eV to ca. 2.36 eV, giving 

rise to electrochemically useful signatures towards RuHex, Fe+2/+3 and the HER.. 

Chapter 8 explores the use of different lateral flake sizes of graphitic powders 

in paste electrodes, applying the knowledge from Chapter 4, to obtain enhanced sensor 

devices by using smaller lateral flake sizes graphitic materials. 
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Lastly, chapter 9 explores the additive manufacturing of Graphene/PLA 

composites, namely thin films, 3D printable filaments and 3D printed electrodes, 

demonstrating that useful low cost 3D printable electrode can be manufactured and 

applied towards electroanalytical applications. 
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Aims and Objectives 

 The main focus of this thesis is to investigate the fundamental electrochemical 

properties of graphene and other 2D nanomaterials with thorough physicochemical 

characterisation. 

Objectives: 

1. Contribute to the fundamental understanding of the electrochemistry of CVD 

graphene and other 2D nanomaterials with physicochemical and electrochemical 

characterisation. Apply this into future sensing and energy applications. 

2. Explore the role of graphene’s structure and electrochemical reactivity to 

understand 2D materials capabilities when incorporated into paste electrodes. 

3. Utilise the knowledge gained through the completion of previous objectives to 

successfully implement, fabricate and evaluate graphene-based 3D printed electrodes 

for future applications. 
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Chapter 1: Fundamentals of electrochemistry 

This chapter introduces and explains general electrochemistry concepts for general 

comprehension and interpretation of this topic. The chapters included in this thesis 

apply and expand those concepts in order to understand the fundamentals of 

electrochemistry of Graphene and other 2D materials. 

1.1 Introduction to Electrochemistry 

Electrochemistry is the division of chemistry that focusses on the electrical and 

chemical reactions, studying the chemical changes triggered by the electric current 

and electrical energy created by chemical reactions1. Electrochemical reactions 

involve electron exchange processes, measuring current, potential or charge2,  for a 

wide range of applications including: electrochemical sensing (e.g. glucose sensors, 

heavy metals, pH meters), energy storage ( e.g. fuel cells, batteries) or synthesis3. 

These electron exchange processes can be involving: species in the same phase 

(homogeneous electron transfer reactions) or transfer between molecules or between 

an electronic conductor (electrode) and a molecule (heterogeneous electron transfer 

reactions). Electrochemistry’s main interest is the interaction between the surface of 

the electrode and the solution1-3. The main two types of electroanalytical methods are 

potentiometric and potentiostatic which need at least two conductors of electrode and 

a contacting solution (electrolyte). One of the electrodes, the working electrode (WE), 

responds to the target molecule(s), and the second electrode, or reference electrode 

(RE), is independent of the properties of the solution (of constant potential). Another 

option is the introduction of a third electrode, the counter or auxiliary electrode (CE) 

that allows the current to by-pass the reference electrode, allowing one to observe the 

energy of the electrons within the working electrode1.  Figure 1 represents a classic 

three-electrode system utilised later in this thesis.  
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Figure 1. Schematic of classic electrochemical with a three electrode configuration 

including the reference (RE), working (WE) and counter (CE) electrodes respectively. 

Potentiostatic, or potential-controlled techniques, focus on the charge transfer 

processes at the electrode-solution interface, based on dynamic situations. 

Potentiostatic techniques measure any electroactive by controlling the potential 

difference between the WE and the CE so the potential difference between the WE 

and the RE is accurately measured/defined. Potentiostatic methods have the 

advantages of high sensitivity and selectivity towards electroactive species, wide 

linear range, portable and little cost of instrumentation2. 

1.1.1 Faradaic processes 

There are two types of processes that can occur at the surface of electrodes, namely 

Faradaic and non-Faradaic processes. Potentiostatic methods measure the faradaic 

current that is directly proportional to the concentration of the target analyte1. The 

electrochemical process is expressed in the following equation:  

𝑂(𝑎𝑞) + 𝑛𝑒(𝑎𝑞)
−  𝑘𝑜𝑥

⇌ 
𝑘𝑟𝑒𝑑   𝑅(𝑎𝑞)

𝑛𝑒−                                                (1.1) 
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where O and R are the oxidised and reduced forms of a redox couple respectively. The 

electrochemical reaction consists in the transfer of charge through the interfacial 

region of the working electrode that acts as a source/sink of electrons, and a solution 

phase (aq) or electrolyte. The electron transfer moves towards the equilibrium, 

developing a charge difference between the electrode and the solution, called potential 

drop (across the interface), which is the potential difference at the solution-electrode 

interface. The transfer of electrons will occur in a potential region that makes the 

electron transfer thermodynamically or kinetically favourable. For systems governed 

by the laws of thermodynamics, the electrode’s potential can be used to calculate the 

concentration of the electroactive species at its surface, according to the Nernst 

equation: 

  E = E0 −
RT

𝑛𝐹
 ln 

𝐶𝑅

𝐶𝑂                                                           (1.2) 

where E0 is the standard potential for the redox reaction, R is the universal gas 

constant, T is the temperature in Kelvin, n is the number of electrons transferred in the 

reaction, F is Faraday’s constant and C is the concentration of the electroactive species 

(oxidised or reduced respectively).  At standard conditions, 298 K of temperature and 

considering that ln(x) = 2.3 log(x), equation (1.2) can be expressed in the following 

form1, 2: 

E = E0 −
0.059

𝑛
 log 

𝐶𝑅

𝐶𝑂                                                           (1.3) 

The resultant recorded current from a change in the oxidation state of the electroactive 

species is called the faradaic current (as it obeys Faraday’s laws), and such faradaic 

current is directly proportional to the rate of the redox reaction. The resultant current-
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potential plot, named voltammogram, displays the current response (y axis) against 

the excitation potential (x axis). 

1.1.2 Mass transport  

It is very relevant to emphasise the importance on mass transport due to the transport 

of electroactive species from the bulk solution to the surface of the electrode and vice 

versa because of its effect on the overall rate of an electrochemical reaction.  

Mass transport generally involves three different phenomena: diffusion, convection 

and migration-controlled processes.  

• Diffusion-controlled process: movement caused by a concentration gradient, from 

high to lower concentration regions, aimed at reducing the concentration 

differences. 

• Convection-controlled process: movement caused by an external mechanical 

energy, such as stirring, flowing or rotating the solution (forced-convection). This 

process can also occur as a result of density of gradients. 

• Migration-controlled process: movement caused by an electrical field transporting 

charged particles along it. 

Figure 2. Schematic of the three different mass transport methods: diffusion (left), 

convection (centre) and migration (right). 
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When a voltammetric technique is applied, diffusion is being favoured since it 

ensures the transfer of electroactive species at a reproducible rate (depending on the 

concentration of the analyte in the bulk solution), but it is important to highlight that 

all three mass transport modes co-exist in the solution, diffusion being the one with 

the highest contribution to the overall mass transport. Electrochemical 

experimentalists usually add a concentrated background electrolyte (such as large 

concentrations of KCl) to restrict migration effects and limiting the potential drop 

effects3. Lastly, natural convection is classified as negligible too, as long as the scan 

rate of the experiment is sufficiently fast (50 mV s-1 for a voltammetric experiment, 

the most common one used within this project, is fast enough to nullify the natural 

convection happening in the reaction). All of the described below make diffusion as 

the bigger contributor to mass transport, and was described by Fick’s laws in 18554. 

Mass transport within an electrochemical system is governed by the diffusion, 

molecules moving from a high to a low concentration, and therefore by the flux (j), 

which is defined by a number of molecules entering a specific area of the electrode 

over an imaginary plane: 

j = -D 
𝑑𝐶

𝑑𝑥
                                                                      (1.4) 

where j is the diffusive flux in moles cm2 s-1, D is the diffusion coefficient of the 

electroactive specie, C is the concentration of the electroactive specie and x is position. 

The diffusion coefficient is a fundamental term which represents the area in which the 

electroactive specie will diffuse in a given time. 

Diffusion coefficient: 

• Two-dimensional: 
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√(𝑥2) =  √2𝐷𝑡                                                             (1.5) 

• Three-dimensional: 

√(𝑥2) =  √6𝐷𝑡                                                              (1.6) 

The Stokes-Einstein equation describes diffusion coefficient as the direct relation 

between the Boltzmann constant (k) and the temperature (T), being both inversely 

proportional to the viscosity of the liquid (ŋ) and the hydrodynamic radius (R) of the 

diffusive specie as described in the following equation: 

𝐷 =  
𝑘𝑇

6𝛱ŋ𝑅
                                                              (1.7) 

It is important to note that diffusion coefficients are valid under the presence of an 

excessive background electrolyte (such as KCl), due to the negation of charge 

migration3.  

Diffusive flux is also connected to Faradaic current density as follows: 

𝐼 = 𝑛𝐹𝐴𝑗                                                              (1.8) 

where n is the number of electrons taking place in the reaction, F is Faraday’s constant, 

A is the electroactive area of the electrode and j is the diffusive flux. Now, if one 

substitutes diffusive flux from Fick’s first low into the above, equation is now: 

𝐼 = 𝑛𝐹𝐴 − 𝐷 
𝑑𝐶

𝑑𝑥
                                                              (1.9) 

which is the general equation to represent the current response in relation to the 

concentration of the electroactive species, being the current directly proportional to 

the gradient of the concentration of such analyte.  
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Nevertheless, Fick’s first law only considers diffusion at some point adjacent to the 

surface of the electrode, not taking into account diffusion between two different points. 

Therefore, Fick’s first law is time dependant creating the necessity for another 

mathematical expression that takes this into account. That is Fick’s second law, that 

explains the diffusion from one point to another in a single direction (applicable for 

macroelectrodes), considering the molecule’s position.  

Figure 3. Fick’s second law as a cross section of a known area of a cubic region. Both 

flux in (x) and flux out (x+ δx) of the cubic region are considered as function of the 

distance between two opposite faces of the cubic region (x).3 

 

Fick’s second law considers the change of the concentration of the analyte related to 

the concentration of the bulk, and the separation between these two points as follows: 

𝑑𝐶

𝑑𝑥
=  𝐷

𝑑2𝐶

𝑑𝑥2                                                                 (1.10) 

The total diffusive flux is then described as the combination of these components, 

namely the Nerst-Planck equation for a single dimension: 

J(x,t) = -D 
𝑑𝐶(𝑥,𝑡)

𝑑𝑥
−  

𝑧𝐹𝐷𝐶(𝑥,𝑡)

𝑅𝑇
 
𝑑𝜙(𝑥,𝑡)

𝑑𝑥
+ 𝐶(𝑥, 𝑡)𝑉(𝑥, 𝑡)                      (1.11) 
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Where dC/dt(x,t) is the gradient of concentration at distance x and time t, dϕ(x,t)/dx is 

the potential gradient, z is the charge and C(x,t) is the concentration of the electroactive 

species, and V(x,t) is the hydrodynamic velocity in aqueous media.  

According to Nernst, there is a diffusion layer where the physical processes occur, 

which is at distances around 10 Å from the electrode surface, where the concentration 

profiles of the analytes change (reactants are being consumed, generating product 

species). The movement of molecules due to gradient of concentration will occur, 

mainly, in this region.  

Figure 4. Schematic of the Nernst diffusion layer. 

The Nernst model for diffusion layers is used to deduce the mass transport coefficient 

(mT) by experimentalists, by taking into account the flux in this region, therefore: 

j =  
𝐷𝐶𝑥

𝛿
                                                                     (1.12) 
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where C* is the concentration in the bulk solution of the electroactive specie and 𝛿 is 

the diffusion layer thickness. Combining this with Faradaic’s current equation: 

𝐼 = 𝑛𝐹𝐴𝐷
𝐷𝐶𝑥

𝛿
                                                            (1.13) 

And the mass transport coefficient is described as: 

𝑚𝑇 =  
𝐷

𝛿
                                                                   (1.14) 

Combining both, Faradaic current is: 

𝐼 = 𝑛𝐹𝐴𝐷𝐶∗𝑚𝑇                                                        (1.15) 

Where current is linked to mass transport coefficient when considering electrode 

kinetics. 

1.1.3 Electrode kinetics 

Electrochemical reactions, when mass transport is sufficient high, are controlled by 

the electron transfer kinetics between the electroactive species and the surface of the 

electrode. Current-potential relation is expressed as described above with equation 1.1, 

the rate of the forward reaction is given by: 

𝑘𝑓𝑜𝑟 =  𝑘0exp (
αF

𝑅𝑇
[𝐸 − 𝐸𝑓𝑜𝑟

𝑜 ])                                               (1.16) 

and the rate of the backwards reaction is: 

𝑘𝑏𝑎𝑐𝑘 =  𝑘0exp (
−(1−α)F

𝑅𝑇
[𝐸 − 𝐸𝑏𝑎𝑐𝑘

𝑜 ])                                      (1.17) 

where E is potential of the cell, kback and kfor are the rates of the backward and forward 

reaction respectively. E0
for and E

0
back are the standard potentials of the forward and 

backward reactions. k0 is the overall electron transfer rate constant, 𝛼 is the 

dimensionless transfer coefficient of the process (usually α = 0.5, indicating the 
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symmetry of the electron transfer energy barrier), R is the universal gas constant and 

T is temperature.  

In the case where in an electrochemical reaction, the forward reaction can be larger 

than the product of the mass transport coefficient and the rate of the background 

reaction: 

𝑘𝑓𝑜𝑟 ≫ 𝑘𝑏𝑎𝑐𝑘𝑚𝑇                                                         (1.18) 

And the opposite case where the background reaction is greater than the forward 

reaction: 

𝑘𝑓𝑜𝑟 ≪ 𝑘𝑏𝑎𝑐𝑘𝑚𝑇                                                         (1.19) 

However, in the case of mass transport coefficient being larger than the product of 

both forward and background reaction: 

𝑚𝑇 ≫ 𝑘𝑓𝑜𝑟𝑘𝑏𝑎𝑐𝑘                                                         (1.20) 

The system is under control of the electrode kinetics, and the current would be 

sensitive to the potential applied, leading to three different types of voltammetric 

systems: 

• Reversible, where the electron transfer kinetics constant is so fast that the 

current response is only limited by the mass transport, with similar intensity 

for both oxidation and reduction (𝐼𝑝,𝑓~ 𝐼𝑝,𝑏 ) current peaks. Peak to peak 

separation (ΔEp) around 59 mV and independent of the scan rate. 𝑘0 ≫ 𝑚𝑇 

• Irreversible, where the mass transport is so large that the current response is 

limited exclusively by the rate of electron transfer, ΔEp larger than 212 mV/n, 

is dependent upon the voltage scan rate and the forward peak is larger than the 

backward peak. mT ≫ 𝑘0 
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• Quasi-reversible system when an intermediate case is happening, ΔEp is 

between 59 and 212 mV/n and (𝐼𝑝,𝑓~ 𝐼𝑝,𝑏 ). 𝑘0~ 𝑚𝑇. 

In the instance with electrochemical reversible processes with fast electron transfer 

kinetics, the peak to peak separation is small at the reversible limit (ΔEp ≈ 59 mV/n), 

where can be described as: 

ΔEp = 
2.218𝑅𝑇

𝑛𝐹
                                                                     (1.21) 

Also, the intensity of the voltammetric current is ruled by the Randles-Ševćik 

equations at electrochemical processes as it follows5-7: 

reversible:                  𝐼𝑝,𝑓
𝑟𝑒𝑣 = ±  0.446 𝑛𝐹𝐴𝑟𝑒𝑎𝑙𝐶 √  

𝑛𝐹𝐷𝜈

𝑅𝑇
                                                     (1.22) 

quasi-reversible:   𝐼𝑝,𝑓
𝑞𝑢𝑎𝑠𝑖 =  ±  0.436 𝑛𝐹𝐴𝑟𝑒𝑎𝑙𝐶 √  

𝑛𝐹𝐷𝜈

𝑅𝑇
                                      (1.23) 

irreversible:          𝐼𝑝,𝑓 
𝑖𝑟𝑟𝑒𝑣   =  ±  0.496 √𝛼𝑛′ 𝑛𝐹𝐴𝑟𝑒𝑎𝑙𝐶 √

𝑛𝐹𝐷𝜈

𝑅𝑇
                              (1.24) 

where in all cases, n is the number of electrons in the electrochemical reaction, Ip,f is 

the voltammetric current (analytical signal) using the forward peak of the 

electrochemical process, F is the Faraday constant (C mol-1), 𝜈 is the applied 

voltammetric scan rate (V s-1), R is the universal gas constant, T is the temperature 

(Kelvin), 𝐴𝑟𝑒𝑎𝑙 is the electroactive area of the electrode (cm2) and D is the diffusion 

coefficient (cm2 s-1), α is the transfer coefficient (usually assumed to be close to 0.5) 

and n’ is the number of electrons transferred before the rate determining step.  
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Figure 5. Schematic of characteristic cyclic voltammetric profile of 

hexaammineruthenium (III) chloride (RuHex), showing the typical voltammograms 

for reversible, quasi-reversible and irreversible electron transfer situations. 

Randles-Ševćik equations can be also used to estimate the electroactive area 

(Areal) via a simple cyclic voltammetry experiment. In this method, typically, a reliable 

redox probe within an aqueous electrolyte is used to determine a plot of the forward 

peak current, Ip,f, as a function of applied voltammetric scan rate (𝜈1/2). This is since 

the Randles-Ševćik equation is derived from assuming that the concentration of the 

electroactive species (in the bulk solution) is the same as that at the electrode surface, 

due to the development of the diffusion layer 3.  

Finally, the heterogeneous electron transfer (HET) rate constant can be 

calculated using the Nicholson’s equation8, which for quasi-reversible electrochemical 

reactions follows 9: 

𝜑 =  𝑘𝑜𝑏𝑠
0 [𝜋𝐷𝑛𝜈𝐹/𝑅𝑇]−1/2                                           (1.25) 

where φ is a kinetic parameter, D is the diffusion coefficient, n is the number of 

electrons that are taking part in the process, F is the faraday constant, 𝜈 is the scan 

rate, R is the gas constant and T is the temperature in Kelvin. In order to calculate the 
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HET rate constant, the peak-to-peak separation (ΔEp) is used to deduce φ, where ΔEp 

is obtained at various voltammetric scan rates10. The standard heterogeneous constant 

(𝑘𝑜𝑏𝑠
0 ) can be calculated via the gradient when plotting φ against [πDn𝜈F/RT]-1/2. In 

cases where ΔEp is bigger than 212 mV, the following equation should be 

implemented: 

𝑘𝑜𝑏𝑠
0 = [ 2.18 (

α𝐷𝑛𝜈𝐹

𝑅𝑇
)

−
1

2
exp[− (

αnF

𝑅𝑇
) ΔEp]                               (1.26)    

where α is assumed to be 0.5.  

 

1.2 Electrochemical methodologies 

1.2.1 Cyclic Voltammetry 

Cyclic voltammetry (CV) is the most commonly employed electrochemical 

procedure to gain knowledge about electrochemical reactions. CV offers quick 

identification of redox potentials depending on the electroactive species, displaying 

information about the kinetics of heterogeneous electron transfer reactions, adsorption 

processes and thermodynamics. CV is the linear scan of potential of the working 

electrode utilising a triangular potential wave form.  

In CV experiments, the working electrode (WE) measures the current during a 

potential ramping, which is plotted as a function of time (called cyclic 

voltammogram). The potential goes from E1 (starting potential) to E2 (upper potential), 

and back to E1 and a rate called scan rate which is the gradient of the line (scan rate is 

typically measured in V s-1). If the potential is stopped after E2, is known as linear 

sweep voltammetry (LSV).  
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Figure 6. Schematic of typical cyclic voltammetry as an applied waveform of potential 

as a function of time. 

Cyclic voltammograms are usually utilised to quantify an unknown analyte in solution 

(electroanalysis), and can also give information about the surface of the working 

electrode such as electroactive area (Areal), heterogeneous electron transfer kinetics 

(𝑘0 ) and diffusion coefficients (D).  

Figure 7. Schematic of typical cyclic voltammetric profile for the reduction of 

hexaammineruthenium (III) chloride (RuHex), showing the characteristics peak 

position (Ep) and peak height (Ip) of both anodic and cathodic peaks. 

The typical voltammetric peaks are caused by the diffusion layer near the electrode 

surface, reflecting the constant changes of the concentration gradient with time. The 

increase in the peak current corresponds to the achievement of diffusion control, while 
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the current drop is dependent to t-1/2 and independent to the applied potential. That is 

the reason why the forward and the reversal current have the same shape for diffusion 

control processes2. 

1.2.2 Chronoamperometry 

Chronoamperometry (CA) is the experimental technique that consists in applying a 

fixed potential and measure the current over time. It is a key electroanalytical 

methodology that allows the distinction and understanding of the diffusional process 

occurring at the electrode surface. By holding the potential at which there is no 

Faradaic process happening, and then shifting to a potential where the reaction can 

proceed spontaneously while measuring the current, there will be a visible change in 

the peak current directly related to the concentration of the electroactive specie.  

Figure 8. Schematic of typical chronoamperometric experiment, where a potential 

step waveform is applied from a non-faradaic region to a faradaic region, resulting in 

a change in the current response. 

The mass transport process is only governed by diffusion during this process, therefore 

the current vs. time plot shows the change in the analyte concentration at the surface 

of the electrode, involving the increase of the diffusion layer that is associated with 

the decrease of the reactant (its concentration), which is also seen in the plot as time 

moves forwards. 
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A decrease in the current is due to the creation of a concentration gradient at the surface 

of the electrode, in which the flux of the electrochemical species can react rapidly at 

the surface, being in agreement with Cottrell’s equation1, 3, that describes the current 

as a function of time (at a planar electrode of infinite size): 

𝑖(𝑡) =  
𝑛𝐹𝐴𝐶𝐷1/2

π1/2𝑡1/2                                                             (1.27)    

Where n is the number of electrons, F is Faraday’s constant, A is the electroactive area 

of the electrode, C is the concentration of the electroactive specie and D is the diffusion 

coefficient.  

It is important to highlight that the current of the double layer also contributes to the 

overall current, but also decays as a function of time1/2 and is only significant at the 

beginning. 

CA is frequently used to estimate the diffusion coefficient of electroactive species or 

the electroactive surface area of the working electrode. CA can also be applied as 

double-step methods, where the first potential generates a species and the second one 

analyses that secondary specie. This potential-step experiment can be used to study 

the charge vs. time relationship, due to the integration of the current recorded from the 

potential step (and including corrections for the charge due to the double-layer and the 

adsorbed species)2:  

𝑄 =  
2𝑛𝐹𝐴𝑟𝑒𝑎𝑙𝐶√𝐷𝑡

√𝜋
 + 𝑄𝑑𝑙 +  𝑄𝑎𝑑𝑠                                     (1.28)    

where 𝑄 is the charge, 𝑛 is the number of electrons in the electrochemical reaction, 

𝐴𝑟𝑒𝑎𝑙 is the electroactive area, 𝐹 is Faraday’s constant, 𝐶 is the concentration, 𝐷 is 

the diffusion coefficient, Qdl  is the double layer capacitance and Qads is the capacitance 

from the adsorbed species. Since the adsorbed materials are electrolyzed 
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instantaneously, the charge is not time-dependant and also the charging of the double 

layer is instantaneous and independent of time. Qads can be described as nFArealΓ0 

where 𝛤0  is the coverage of adsorbed reactant (mol cm-2). 

The charge measurement method, known as chronocoulometry (CC), is a classical 

electrochemical technique that has been overlooked over recent years. CC was 

developed by Anson11 (see equation 1.28), which involves the measurement of charge 

vs. time response from an applied potential step waveform. CC is a useful technique 

in electrochemistry allowing one to readily determine the electrochemical active 

electrode area, as well as their respective diffusion coefficients, the time-window of 

an electrochemical cell, adsorption of electroactive species and rate constants for 

chemical reactions coupled to electron transfer reactions; this in summary, is a very 

useful electrochemical approach.  

Figure 9. Representation of CC (charge vs. time1/2) for an adsorbed electrochemical 

species. 
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1.3 Electrode materials: Graphene and related 2D materials 

Graphitic electrodes have been extensively used in electrochemistry as an 

attempt to replace precious metals such as gold or platinum. Carbon shapes a variety 

of materials such as graphite, diamond or charcoal, it also includes a whole family of 

nanomaterials such as fullerene, graphene, carbon nanotubes (CNTs) and graphene 

nanoribbons (GNRs). All of these materials show different electrical, optical, thermal 

and chemical properties depending on their structures12. In recent decades, the 

traditional forms of carbon (e.g. graphite, carbon black or glassy carbon) have lost 

attention in favour of other novel carbon (see Figure 10) forms with enhanced 

properties, these are carbon nanotubes, graphene, graphene nanoribbons etc.  

Figure 10. Representation of the structures of graphite, graphene, graphene oxide, 

graphene nanoribbons (GNRs) and carbon nanotubes (CNTs) respectively. 

Carbon nanomaterials such as nanographite, carbon black and nanotubes have 

long been utilised as electrode materials within electrochemistry, outperforming 

traditional noble metals13-15 and even the conventional carbon materials based on 

graphite or glassy carbon16-19. Chemical stability, structural polymorphism, wide 

operable potential windows, rich surface chemistry and strong C-C bonds present 

internally and between the carbon material and a surface modifier20, are some of the 

reasons why carbon nanomaterials are at the forefront of innovation in 
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electrochemistry research, as it is fundamentally based on interfacial phenomena20. 

Carbon materials and electrochemistry have been bound to each other since the very 

beginning of electrochemistry21, and the appearance of new carbon materials have 

been connected to research regarding the doping22, 23, preparation24, characterisation 

and application of these materials using electrochemical techniques10.  

1.3.1 Graphene 

Graphene is a 2D monolayer lattice of sp2 hybridised carbon atoms, and it has 

had the interest of scientists since its isolation as “pristine” graphene (i.e. mono-layer 

graphene without heteroatomic contamination) in 200425, which exhibits much greater 

surface area compared to graphite and even carbon nanotubes. Graphene has already 

been reported towards the sensing of biologically relevant molecules (such as 

dopamine26, glucose27, hydrazine28, nitric oxide29, b-nicotinamide adenine 

dinucleotide (NADH)30, uric acid31, epinephrine31 or paracetamol32 among others, 

allowing to reduce limits of detection32, 33. Therefore graphene would seem to be 

ideally suited for implementation into electrochemical applications13 as a main 

component or as a foundation to develop new 2D graphene-based materials. 

Graphene’s electrochemical properties are highly dependent upon its number of 

layers34 and by the fabrication process by which it is synthesised as depicted in Figure 

11.  

Typically, graphene is fabricated via one of two routes; a bottom-up (BU) or a 

top-down (TD) approach. TD methods start from a graphite starting point and modify 

it to obtain a single layer of graphene. An example of TD methods is chemical/thermal 

reduction of graphene oxide or using physical/chemical exfoliation can give rise to a 

large quantity of graphene sheets; however, the fabricated graphene is generally highly 

defective and abundant with residual C/O groups or other contamination such as 



42 

 

surfactants or metals35-38. Bottom-up (BU) fabrication routes directly synthetises the 

mono-layer graphene from precursors, typically lead to higher quality graphene using 

carbon sources as methane, benzene and polymers, but in smaller quantities39. 

Chemical Vapour Deposition (CVD) utilises hydrocarbon gases as a precursor to grow 

graphene over a catalyst. The best effective catalysts so far are transition metal 

surfaces (namely Cu40-42 to grow mono- and Ni43, 44 to grow few-layer graphene). 

Copper has been recognised as the most appropriate catalyst for carbon formation due 

to its low affinity towards carbon, but still able to stabilise carbon on their surfaces by 

forming weak bonds45. 

 Figure 11. Representation of the top down and bottom up graphene synthesis method 

respectively. 

CVD grown graphene is a BU route that facilitates the study of high quality 

monolayer graphene45-47, which can then be transferred after the removal of the copper 

foil by wet chemical etching. Several transfer techniques have been reported to transfer 

CVD Graphene onto a suitable substrate, among them the use of Poly(methyl 
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methacrylate) (PMMA) is the most common one41, 44, 48. In this technique, PMMA is 

first spin coated onto the graphene-copper sample, followed by metal etching. 

PMMA/Graphene sample would then be scooped onto the substrate, followed by a 

baking step and finally the PMMA layer would be etched by dissolving it in acetone49, 

50. PMMA has previously been reported to affect the physical and electrical properties 

of CVD grown graphene samples transferred via this route51-57. 

Fundamental work exploring CVD grown mono-, double- and few-layer 

graphene electrodes have been reported to exhibit different electron transfer kinetics 

to each other34, revealing that the electrochemical response is dependent on the density 

of edge plane like-sites/defects at graphene-based electrodes. Such performance is due 

to pristine graphene’s fundamental geometry, which contains a small edge plane and 

large basal plane presence when compared to few- and multi-layer graphene. There is 

great interest in graphene and graphene-based materials as potential electrodes for 

energy applications such as supercapacitors58-61, solar cells62-65, fuel cells66-68 and 

water splitting69, but further fundamental research needs to be studied.   

1.3.2 Other 2D materials: hexagonal boron nitride (hBN) 

Boron nitride (BN) is a structural analogue of graphite, in which an equal 

number of boron and nitrogen atoms form a honeycomb lattice structure70 of sp2 

bonded layers71. This structure is not found naturally and was first synthesised by 

Balmain72, 73 in 1842.  

Hexagonal boron nitride (2D-hBN) is a structural analogue of graphene and 

has high thermal conductivity and robustness to oxidation74, which historically has 

allowed it to be used as lubricant75-77. 2D-hBN has also been reported to improve the 

mechanical properties of composites, even at low percentages78-80, when added as few 

layered nanosheets due to its low density, good thermal and chemical stability81-83.  
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According to the literature, pristine 2D-hBN (see Figure 12) has a wide band gap (ca. 

5.2-5.8 eV)84, 85 making it an electrical insulator85, with it being widely applied as a 

charge leakage barrier-layer in electronic equipment71, 86. 2D-hBN has also been used 

to tailor the bandgap of graphene (creating graphene-hBN interfaces)86-97. Another 

approach to decrease hBN’s bandgap is by creating thin strips of single layered 2D-

hBN nanosheets, producing nanoribbons (NRs) (see Figure 12), which contain a 

honeycomb lattice with an armchair or zig-zag edge that possess active dangling 

bonds98. The electronic properties of such nanoribbons are strongly affected by edge 

termination structures, reconstructions and functionalizations99, 100 and recently 

several reports have indicated electrocatalytic behaviour of 2D-hBN101, 102.  

Figure 12. 2D chemical structure of the 2D-hBN mono-layer (A) and hBN nanoribbon 

(B). 

As a summary, this thesis explores the electrochemistry of 2D materials 

(mainly graphene and 2D-hBN) from the single layer scale (CVD grown) to powder 

and fully 3D printed structures towards a range of electrochemical applications and 

considers the effects of the stability and defects upon the observed electrochemistry. 
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Chapter 2: Experimental Section 

This chapter describes the overall experimental settings applicable to the work 

reported herein, unless specifically said otherwise. In the cases where conditions are 

different, individual experimental sections included in each chapter of this thesis will 

be added when relevant. 

All chemicals used were analytical grade and were used as received from the 

manufacturer without any further purification. All solutions were prepared with 

deionised (DI) water of resistivity no less than 18.2 MΩ cm and were vigorously 

degassed prior to electrochemical measurements with high purity, oxygen free 

nitrogen.   

Electrochemical measurements were carried out using an Autolab 

PGSTAT204 potentiostat (Metrohm Autolab, The Netherlands). All measurements 

were conducted using a three electrode system. Working electrodes were variable, and 

unless differently stated, a platinum counter/auxiliary electrode and an Ag/AgCl 

reference electrode completed the circuit.  

 

2.1 Physicochemical characterisation 

2.1.1 Raman spectroscopy 

Raman spectroscopy is a non-destructive technique that analyses the 

inelastically scattered light produced by the interaction of the light with the atomic 

vibrations (as shown in Figure 13). In Raman spectroscopy, a beam of light interacts 

with a sample, where the main measurement recorded is the shift in energy between 

the incoming and the inelastically scattered light103. Majority of the light is reflected 

and a small fraction of the incoming light is scattered due to the inhomogeneities inside 

the sample. Those inhomogeneities can be static as crystal dislocations, generating 
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elastic scattering (when there is no change in wavelength), or dynamic scattering such 

as atomic vibrations (when there are changes in the wavelength). Raman spectroscopy 

has historically been a powerful tool for the fundamental understanding and 

characterisation of graphitic materials104-108, and has also become the most common 

spectroscopy used to study and characterise graphene109-111. 

Figure 13. Schematic of Raman spectrometer platform setup. 

Raman mapping spectroscopy data from chapters 4, 5 and 8 was recorded using 

a Thermo Scientific DXR Raman microscope fitted with a 532 nm excitation laser at 

a low power of 3 mW to avoid any heating effects. In chapters 4 and 5, spectra were 

recorded using a 3 seconds exposure time for 3 accumulations in each point. To collect 

the map we used a step size of 75 x 75 µm, to collect a Raman profile between the 

region of 1050 and 3300 cm-1.  In chapter 8 spectra were recorded using a 10 seconds 

exposure time for 10 accumulations in each point. To collect the map a step size of 10 

x 10 µm was used, to collect a Raman profile in the region of 1100 and 2000 cm-1. 

Raman Mapping Spectroscopy data included in chapter 6 was collected using XploRA 

PLUS (Horiba, UK) fitted with a 638 nm excitation laser at a low power of 3 mW to 
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avoid any heating effects. Spectra were recorded using a 5 seconds exposure time for 

1 accumulations at each point. To collect the map a step size of 40 x 40 µm and a 

Raman profile between the region of 1300 and 3200 cm-1 was employed, mapping a 

circular-shaped area of 2.6 mm of diameter. 
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2.1.2 Scanning electron microscopy (SEM) 

Scanning electron microscope (SEM) is a type of electron microscope that 

produces an image by focussing a beam of high-energy electrons that hits the surface 

of the sample as shown in Figure 14. When the electrons hit the sample, they produce 

secondary electrons (that produce SEM images) and other signals such as 

backscattered electrons, X-rays, photons, visible light and heat. These signals are 

detected by their respective detectors. When the electron beam hits the sample, it 

penetrates a few microns and produces secondary and backscattered electrons, 

depending on their accelerating voltage and the sample itself, secondary and 

backscattered electrons are the most common ones used for imaging. 

Figure 14. Schematic of a Scanning Electron Microscope setup. 

SEM images and surface element analysis were obtained using a JEOL JSM-

5600LV model SEM equipped with an energy-dispersive X-ray microanalysis (EDS) 

package. 
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2.1.3 Other techniques 

2.1.3.1 Atomic Force Microscopy (AFM) 

Atomic Force Microscopy (AFM) data was collected using a DualScope C26 

(DME, Germany), carried out using AC mode using DS 95 AC probes with a spring 

constant of 42 N m-1 (DME, Germany). Scans were carried out at 40 µm s-1 with a 

force set point of 6 nN. Samples were attached to glass microscope slides using double 

sided tape. 

Unless stated otherwise, AFM data was collected by Dr. Kathryn A. Whitehead. 

2.1.3.2 X-Ray Photoelectron Spectroscopy (XPS) 

X-Ray Photoelectron Spectroscopy (XPS) data was acquired using an AXIS 

Supra (Kratos, UK), which was equipped with an Al X-ray source (1486.6 eV) 

operating at 300 W in order to perform survey scans and 450 W for narrow scans. All 

X-rays were mono-chromated using a 500 mm Rowland circle quartz crystal X-ray 

mirror. The angle between X-ray source and analyser was 54.7°. With an electron 

energy analyser: 165 mm mean radius hemispherical sector analyser operating in fixed 

analyser transmission mode, pass energy 160 eV for survey scans and 40 eV narrow 

scans. A detector with a delay line detector with multichannel plate was utilised. 

Unless stated otherwise, XPS data was collected by Dr. Samuel J. Rowley-Neale and 

Dr. Christopher W. Foster. 

2.1.3.3 Density-Functional Theory (DFT) 

Density Functional Theory (DFT) calculations were performed to unravel the 

reasons underlying the enhanced electron-transfer properties of 2D-hBN after making 

line defects and edge plane sites. All DFT computations were performed using 

B3LYP/LANL2DZ functional implemented in Gaussian 09 package. GaussView 

Version 05 package was used for visualization of the optimized structures, highest 
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occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO). 

Unless stated otherwise, DFT characterisation was collected by Dr. Ahmed S. Abo 

Dena. 

2.2 Electrode materials 

2.2.1 Screen-printed Electrodes 

The Screen-printed electrodes (SPEs) were manufactured in-house with 

appropriate stencil designs to achieve a 3.1 mm diameter working electrode, using a 

carbon-graphite ink (Product ink: C2000802P2; Gwent Electronic Materials Ltd, UK) 

printed using a DEK 248 screen printer machine (DEK, Weymouth, UK) onto a 

polyester (Autostat, 250 micron thickness) flexible film. This layer was cured in a fan 

oven at 60 °C for 30 minutes and finally, a dielectric paste (Product Code: 

D2070423D5; Gwent Electronic Materials, UK) was then printed onto the polyester 

substrate to cover the connections. After a second curing process at 60 °C for 30 

minutes, the SPEs are ready to be used. The in-house fabricated SPEs have been 

previously reported and characterised112, 113. Unless stated otherwise, SPE were 

fabricated by Dr. Christopher W. Foster and Dr. Samuel J. Rowley-Neale. 

2.2.2 Edge-plane pyrolytic carbon and glassy carbon electrodes 

The edge plane-pyrolytic graphite (EPPG) working electrode (4.9 mm 

diameter, Le Carbone, Ltd. Sussex, UK fabricated from highly ordered pyrolytic 

graphite) and the glassy carbon (GC) working electrode (3 mm diameter, BAS, 

Indiana, USA) were used without any further modifications from the manufacturer. 

EPPG and GC electrodes were polished before the start of each experimental using 

two diamond suspensions (1 and 0.25 μm; Kemet international Ltd., Kent, United 

Kingdom114) in a spray format. After carrying out each polishing step, the electrode 
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was washed and sonicated in DI water in order to remove diamond particles. 

2.2.3 Chemical Vapour Deposition (CVD) grown mono-layer boron nitride (2D-

hBN) 

CVD grown mono-layer boron nitride (2D-hBN) on SiO2 wafer were 

commercially obtained from Graphene Supermarket115 (Reading, MA, USA)116, 

which is grown on copper foil under low pressure (LPCVD) using borazane as 

precursor at a fixed temperature of 1000 °C. First, borazane is heated up to 130 °C to 

generate borazane vapour from its solid and to diffuse to the growth chamber while 

being carried out by hydrogen gas. Borazane is decomposing producing hydrogen, 

monomeric aminoborane (BH2NH2) and borazine (HBNH). Monomeric aminoborane 

is very active and it forms polymeric aminoborane, which is a white non-crystalline 

solid and stable at room temperature. Following growth, the 2D-hBN is transferred 

onto an oxidised silicon wafer (electrochemically inert supporting substrate) via a 

poly-methyl methacrylate (PMMA) assisted transfer method, the exact details are 

proprietary information116. 

 

2.2.4 Chemical Vapour Deposition (CVD) grown mono-layer graphene electrodes 

The commercially available CVD synthesised graphene films were obtained 

from  ‘Graphene Supermarket’ (Reading, MA, USA)116 and is known as ‘graphene on 

285 nm SiO2 Wafer’. The single layer continuous graphene film (ca. 97% graphene 

coverage (95% monolayer) with occasional holes, cracks and small multi-layer 

islands) comprises graphene grains of different crystallographic orientations 

(polycrystalline in nature) and is grown utilising a copper foil (0.025 mm thick) 

catalyst via a CVD synthesis method (ca. 1000 °C (cooling rate 40–300 °C min-1) with 

H2/CH4 precursor (0.06 sccm and partial pressure 66.66 Pa) for less than 3 minutes 

growth time47). Following growth, the graphene is transferred onto an oxidised silicon 
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wafer (electrochemically inert supporting substrate) via a poly-methyl methacrylate 

(PMMA) assisted transfer method, as previously reported and characterised47, 117-119, 

the exact details are proprietary information116.  

The commercially available CVD synthesised double-layer graphene film was 

obtained from ‘Graphene Supermarket’ (Reading, MA, USA)116 and is known as 

‘Single/Double Layer graphene on 285 nm SiO2 Wafer’. The mono-/bi-layer 

continuous graphene film (ca. 95% graphene coverage (up to ca. 30% coverage is 

double-layer graphene islands) with occasional holes and cracks) comprising graphene 

grains of different crystallographic orientations (polycrystalline in nature) is grown 

utilising a modified method of the aforementioned CVD process. An example of this 

CVD method would be, a copper foil (206 nm thick) catalyst is utilised via a CVD 

synthesis method (ca. 800 °C (cooling rate 40– 300 °C min-1) with H2/CH4 precursor 

(5 sccm and partial pressure 52 Pa) for ca. 10 minutes growth time)47, 117, after which 

the graphene film is transferred onto an oxidised silicon wafer via the PMMA assisted 

transfer method, as previously reported and characterised47, 117-119. The exact details 

are proprietary information116. 

The CVD graphene working electrodes were secured into a 3D printed 

electrochemistry cell described in Figure 15, connected with copper foil to a crocodile 

connector which leads to the potentiostat and external reference and counter 

electrodes. In this work, 0.025 mm copper foils (99.99+%) purity from Goodfellow 

were used to grow graphene. A polymer-free graphene transfer method, 0.1 M 

(NH4)2S2O8 98% from Sigma-Aldrich in DI water and hexane 97% from Sigma-

Aldrich, were used. 

Autodesk software has been used to design the 3D printed electrochemistry cell, which 

has been printed using a UV curable proprietary polymer and a Form 2 3D printer 
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from Formlabs, USA.  The use of a bespoke electrochemistry cell configuration 

(Figure 15) allows us to carry out electrochemistry experiments with a solution and 

analyse the sample (1 x 1 cm graphene sample) with the DXR Raman without needing 

external manipulation, keeping the electrode area constant and having extra space to 

allocate reference and counter electrodes. 

Figure 15. Schematic cross-sectional perspective of the CVD graphene ‘housing’ 3D 

printed cell (A) designed using Solidworks and 3D printed using a Form 2 3D UV 

curable printer. Reference and counter electrodes are incorporated into the three-

electrode system in the 3D printed cell. Schematic diagram of the CVD graphene 

‘housing’ 3D printed cell (B). The cell allows the connection of the monolayer 

graphene sheet to the potentiostat with a copper foil wrapping the graphene chip and 

allowing its use under a microscope or Raman Spectrometer without dismounting and 

manipulating the chip. There is a silicon O-ring sealing the graphene chip, keeping the 

studied area of the WE. 
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2.2.5 Graphene in-house growth 

The graphene in-house growth has taken placed in a nanoCVD-8G rig from 

Moorfield, which uses a cold-wall variant of the chemical vapour deposition. 

Chemical Vapour Deposition (CVD) of monolayer graphene on copper has been 

proven to be one of the most competitive graphene growth method. In this project a 

cold wall variant of the CVD process is used, where the Cu foils are selectively heated 

at temperatures ≈ 1000 °C in a quartz tube furnace, in which the hydrocarbon gas flows 

as precursor gas. This method, as other cold wall CVD systems, allows faster and more 

efficient temperature ramps, shorter growth times and less gas consumption. This 

leads to a more uniform heating of the copper foils acting as a substrate, reducing the 

contaminants that might happen due to chemical reactions that can take place in the 

gas phase at high temperature, and allows the quality of the graphene sheets grown by 

CVD on copper foil to be enhanced, due to very fast cooling rates120. 

2.2.5.1 Growth procedure for graphene sheets 

Using a CVD-8G rig from Moorfield (schematic shown in Figure 16), our own 

monolayer graphene has been grown in the lab following an in-house recipe based on 

the one developed by Bointon120. Copper foils (25 µm, 99.99+%) were placed in the 

stage (1 cm by 1 cm square sample), followed by heating up the CVD system from 

room temperature to 1035 °C (growth temperature) with H2 gas flowing at a rate of 

0.4 sccm at 1.33 Pa. Following this, the annealing step was performed for 300 seconds 

at 1035 °C in a H2 atmosphere, keeping a constant 0.4 sccm H2 flow at 1.33 Pa. This 

is followed by a nucleation and growth process at 1000 °C, with the first 120 seconds 

with a flow of 1.4 sccm of CH4 and then 600  seconds (also compared to 720, 900, 

1200 and 1800 seconds) at 7 sccm of CH4, keeping constant the 0.4 sccm of H2. Next 

there is a cooling down process, based on a flow of H2 at 0.4 sccm and Ar at 100 sccm, 
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which reduces the temperature from 1000 °C to 190 °C for 600 seconds at 1.33 Pa. 

Finally, the sample is left cooling down at atmospheric pressure, and no gas flow until 

a temperature below 40 °C is reached to avoid any copper oxidation. 

Figure 16. Schematic diagram of the cold-wall Chemical Vapour Deposition (CVD) 

rig used for graphene growth. The arrows indicate the direction of gas flow. 

The number of layers and the quality of the graphene was compared depending 

upon their nucleation and growth time with Raman Spectroscopy from Figure 17, 

including its typical D (≈1335 cm-1), G (≈1590 cm-1) and 2D (≈2690 cm-1) bands, 

showing that the 12 minutes variant (described in Figure 18) was the one which gives 

rise to the best monolayer graphene coverage and high quality due to the shape, 

position and relative intensity of the G and 2D peaks (𝐼𝐺/2𝐷) similar to 0.25.  
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Figure 17. Comparison of the Raman profile and optical image respectively of 10 

minutes (A and B), 12 minutes (C and D), 15 minutes (E and F), 20 minutes (G and 

H) and 30 minutes (I and J) of growth time.  
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Figure 18. Graphene 12 minutes growth temperature curve, including H2, CH4 and Ar 

flow rates at every stage. 

Phonon dispersion of graphitic materials is an important topic interpreting their 

Raman spectra. Phonons are atomic vibrations, being a phonon the unit of vibrational 

energy that come from atoms that are oscillating within a crystal. In graphene, the 

optical phonons in the central zone (Γ) and in the edges (K and K’) have great interest, 

due to their accessibility using Raman spectroscopy. The Γ point optical phonons are 

generated with symmetry (for pristine graphene). The vibrations correspond to rigid 

displacements of two sub-lattices. This phonon is Raman active, and generates the 

Raman G band in graphene111. 

The 2D band (double or triple resonance) begins with an electron of wave-

vector k around K absorbing a photon. That electron is in-elastically scattered by a 

phonon or a defect of wavevector q to a point belonging to a circle around the K point 

(with a wavevector k+q). The electron is then scattered back to a k state, emitting a 

photon by recombining with a hole at a k state. In case of the D band, one scattering 
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process is elastic (defect) and the other one is inelastic (emitting or absorbing a 

phonon). In the case of the 2D band, both processes are inelastic, with two phonons 

involved. The triple resonance process can happen by both scattering of electrons and 

holes, added to the recombination at the inequivalent K’ point with respect to K point 

generating a photon. The G and 2D bands represent the two-dimensional hexagonal 

lattice is due to the bond stretching of all pairs of sp2 atoms in rings and chains109, 110, 

121.  

The designation of the Raman band for Graphene is depicted in Figure 19. The 

G band is related to the first-order Raman band of all sp2 hybridized carbons. The D 

band is usually associated with defects and disorders due to the breathing modes of 

sp2 atoms in rings within graphite atoms in rings within graphite layers110, 122-124. There 

is tangential stretching of the σ bonds along the plane that gives rise to the G band, 

which is a one phonon intra-valley scattering process at the Γ point. The in-plane 

transverse optical (iTO) phonon around the edges is accessible by a two-phonon 

Raman process, giving rise to the 2D band (also called G’) of graphene. 
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Figure 19. Raman scattering process for graphene Raman bands. First-order G band 

process, one-phonon second-order double resonance (DR) process for D band (intra-

valley process) and two-phonon second-order resonance Raman spectral processes for 

the DR G process for the triple resonance process for monolayer graphene. For one-

phonon, second-order transitions, one of the two scattering events is an inelastic 

scattering event. Resonance points are shown as circles near the K and K’ points 

respectively. 

2.2.5.2 Transfer procedure of graphene sheets from Cu foil onto other substrates 

A modified version of the polymer free transfer method is utilised in this work 

adapted from  Zhang125, that makes use of an organic/aqueous biphasic configuration 

made from hexane/ammonium persulfate. The ammonium persulfate acts as an 

etching solution to remove the copper avoiding the use of any polymers that can 

contaminate graphene48, 53, as depicted in Figure 20. After etching all the copper below 
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the graphene, the sheets are transferred into a DI water/hexane interface to clean any 

etching product that might still be in solution. To transfer the free-floating graphene 

sheet onto another substrate or solution, the sheet is scooped out with a Si/SiO2 wafer 

or the desired final transfer to be used as an electrode for further studies. 

Figure 20. Graphene/copper sample floating at the hexane/etching solution interface. 

Where A shows that the graphene sheet on copper would be floating between the 

hexane and the etching solution (0.1 M ammonium persulfate). B shows the process 

after 5 hours of etching, when the copper is completely removed from the sample. C 

depicts the cleaning process of the sample when the graphene floats between hexane 

and DI water in order to clean copper or etchant residues. D shows the graphene sheet 

being transferred to a Si/SiO2 wafer or other substrate. 

 

   



61 

 

Chapter 3: Determination of electroactive area of electrochemical 

sensing platforms 

This chapter investigates determination of the electroactive area of polymer-free 

CVD grown mono-layer graphene electrodes using a range of outer- and inner- sphere 

redox probes and various experimental approaches. There is a clear need to standardise 

mono-layer graphene samples fabricated and used globally in electrochemical 

applications. In order to achieve this, two approaches are explored: cyclic voltammetry 

(CV) in conjunction with the appropriate Randles-Ševćik equation and 

chronocoulometry (CC) with the implementation of the Anson plot. Herein, the 

importance of redox probe selection is highlighted and shows that for CVD grown 

mono-layer graphene, the use of an outer-sphere redox appears to be the optimal 

approach to be used in order to report the electroactive area of the given mono-layer 

graphene electrode/surface. Conversely, when employing an inner-sphere redox 

probe, electrochemists should take into account the fouling of the electrode surface 

when this is used multiple times (i.e scan rate study).  

3.1 Introduction  

An important factor when utilising electrochemical platforms (such as glassy 

carbon, edge-plane pyrolytic carbon, screen printed electrodes (SPEs) etc.) is the 

determination of their electrochemical active surface area, which allows for the 

benchmarking of these SPEs and is an important parameter in Quality Control. In this 

chapter, it is considered the use of cyclic voltammetry (CV) and chronocoulometry 

(CC) to allow for the determination of the electrochemical area of screen-printed and 

mono-layer graphene electrochemical sensing platforms, comparing them to classic 

electrodes such as glassy carbon (GC) and edge-plane pyrolytic carbon, highlighting 

to experimentalist the various parameters that need to be diligently considered and 

controlled in order to obtain useful measurements of the electroactive area. 
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Screen-printed electrochemical platforms form the basis of translating industry 

‘in-the-field’ and are fabricated on a large scale resulting in low cost, yet highly 

reproducible sensors which can be used as either single-use (disposable) or can be 

readily modified via surface modification with enzymes, nanostructures or even the 

bulk of the sensor can be adapted to allow bespoke applicability in a multitude of 

applications 126, 127. For example, Banks et al 128, 129 have shown that metal oxide 

(bismuth, antimony and tin) bulk modified screen-printed electrodes can offer a 

suitable platform for the sensing of heavy metals. Additionally, screen-printed 

platforms have been utilised, both as-is (unmodified) and modified, within many 

sensing applications, for example, towards the detection of biomolecules (such as 

lactate130 or l-cysteine131), gases (such as O2
132 or CO133) and metals (such as Sb and 

Sn134); with particular success within the food industry a key indication of their quality 

and versatility, with respect to capsaicin 135 and garlic 136 which have been successfully 

analysed with SPEs. An important parameter to consider when utilising 

electrochemical sensors is the electroactive area, especially within fundamental 

calculations of electrochemical processes, as well as providing a methodology for their 

benchmarking with respect to the quality control of SPEs.  

Jarzabek and Borkowska 137 have reported upon determining the electrochemical 

area of gold polycrystalline electrodes using the mass transport and adsorption process 

of different species (namely HClO4 and LiClO4). While Czervinski et al 138 have 

provided a thorough overview of the various approaches to determine the electroactive 

area of noble metal electrodes, reporting that each method implemented to measure 

the electroactive area of an electrode is based upon very specific theory and 

assumptions, thus not providing a standardised method for the determination of these 
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metal based electrodes, and in particular there is a lack of research in the determination 

of the electroactive area of mono-layer 2D materials as electrode materials. 

The determination of the electroactive surface area of SPEs has also been 

investigated using the redox probe N,N,N',N'-tetramethylphenyl-diamine (TMPD)139, 

through the popular methodologies of cyclic voltammetry (CV) and chronocoulometry 

(CC). Interestingly, the approach via chronocoulometry has been used to determine 

the electroactive area of nitrogen-doped graphene modified electrodes, with 

Ru(NH3)6
3+/2+ used as the redox probe140. Other groups have also used CC to measure 

the area of gold nanostructures141, CNT/NiO microfluidic electrode142, and Ag@Pt 

nanorods143 using ferrocyanide/ferricyanide redox probes. Additionally, alternative 

electrochemically irreversible probes such as NAD+ and ascorbic acid have been used 

to measure the surface area of commercial SPEs using CV144. Moreover, Terranova et 

al. have utilised diluted H2SO4 determining the area of a MWCNT-PtNP modified 

electrode using a both CV and CC methods145
.  

In the literature, in the above reported methodologies, such measurements are 

undertaken with little understanding or consideration for the redox probe utilised or 

experimental parameters and this same literature does not properly explain this to 

novices. 

 

3.2 Results and discussion 

The electrode area of screen-printed electrodes (SPEs) and CVD grown mono-

layer graphene can be physically/visually determined with techniques such as 

scanning electron microscopy. In this case, the geometrical area, Ageo, is determined 

through its physical dimensions, but there is no resemblance to the true electroactive 

area and there is no way of knowing which parts of the electrode surface are 
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electrochemically active or indeed inactive. The most appropriate way is to use an 

interfacial technique such as electrochemistry; it is this approach that is considered 

herein. 

3.2.1 Determining the electroactive area using cyclic voltammetry 

Firstly, one must consider the respective Randles-Ševćik equations (at non-standard 

conditions)1, 5-7 for reversible, quasi-reversible and irreversible electrochemical 

processes5-7 : 

𝐼𝑝,𝑓
𝑟𝑒𝑣 = ±  0.446 𝑛𝐹𝐴𝑟𝑒𝑎𝑙𝐶 √  

𝑛𝐹𝐷𝜈

𝑅𝑇
                                  (1.22)  

𝐼𝑝,𝑓
𝑞𝑢𝑎𝑠𝑖 =  ±  0.436 𝑛𝐹𝐴𝑟𝑒𝑎𝑙𝐶 √  

𝑛𝐹𝐷𝜈

𝑅𝑇
                                    (1.23)  

𝐼𝑝,𝑓 
𝑖𝑟𝑟𝑒𝑣  =  ±  0.496 √𝛼𝑛′ 𝑛𝐹𝐴𝑟𝑒𝑎𝑙𝐶 √

𝑛𝐹𝐷𝜈

𝑅𝑇
                               (1.24) 

where in all cases, n is the number of electrons in the electrochemical reaction, Ip,f is 

the voltammetric current (analytical signal) using the forward peak of the 

electrochemical process, F is the Faraday constant (C mol-1), 𝜈 is the applied 

voltammetric scan rate (V s-1), R is the universal gas constant, T is the temperature 

(Kelvin), 𝐴𝑟𝑒𝑎𝑙 is the electroactive area of the electrode (cm2) and D is the diffusion 

coefficient (cm2 s-1), α is the transfer coefficient (usually assumed to be close to 0.5) 

and n’ is the number of electrons transferred before the rate determining step. 

Equations (1.22, 1.23 and 1.24) can be used to determine the electroactive area (Areal) 

through a simple cyclic voltammetry experiment. In this approach, typically, a reliable 

redox probe within an aqueous electrolyte is used to determine a plot of the forward 

peak current, Ip,f, as a function of applied voltammetric scan rate (𝜈1/2). This is since 

the Randles-Ševćik equation is derived from assuming that the concentration of the 
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electroactive species (in the bulk solution) is the same as that at the electrode surface, 

due to the development of the diffusion layer3.  

There are important factors to consider when utilising the aforementioned Randles-

Ševćik equations: 

1) Which equation should be used for each redox probe utilised? I.e. which equation 

from 1.22, 1.23 and 1.24 is the most suitable to use? Analysis of the peak-to-peak 

separation (ΔEp) of the recorded voltammogram is useful, where in the reversible 

limit the ΔEp is ~ 59mV and is independent of scan rate. In the case of quasi- and 

irreversible conditions the ΔEp is larger and is dependent upon the voltage scan 

rate. The wave-shape of the forward peak allows one to determine between 

reversible and irreversible conditions; a full analysis is given in reference3. 

2) These should only be used for the forward scan3, this is due to the fact that on the 

forward wave, the product is electrochemically produced and diffusion occurs, 

giving, as a result, a concentration of zero product within the bulk solution 

compared to that at the electrode surface. Consequently on the return scan, 

reducing the electrochemically formed product back to its starting material, a 

decrease in the concentration of the product has occurred, resulting in a less intense 

backward peak than the forward one. The Randles-Ševćik equations are only an 

approximation, and therefore do not represent an exact value, as is, for example, 

in the case of chronocoulometry. 

3) The Randles-Ševćik equations are more suitable for macroelectrodes, therefore 

which size of electrode can be utilised to satisfy the Randles-Ševćik equation? I.e. 

how big does the electrode need to be in order to give rise to the mass transport 

dominated by planar diffusion? Compton has undertaken experiments inferring 

that working electrodes of not less than 4 mm radius should be employed for 
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investigations in aqueous solutions 146. Their work demonstrates that for a simple 

electron transfer process, the ΔEp is reduced from 60.6 mV using a radius of 0.5 

mm to 57.5 mV in the case of a radius of 4 mm and larger; the quantitative change 

is due to the geometric electrode size increasing such radial diffusion 146.  

4) One must consider, is the electrode relatively flat and non-porous? In order for 

equations (1-3) to hold, this should be the case. In the case of a SPE, the electrode 

is heterogeneous, comprising a range of different carbons (graphite, carbon black) 

and also binder(s). It should be noted that the surface roughness of a SPE is 

typically 0.078 µm. In the case of CVD grown mono-layer graphene, its surface is 

virtually flat, being reported to be the origin of electrochemical activity at its edges 

and defect sites across its basal surface (see Chapter 4147), the electroactive area is 

an important parameter to calculate and compare. Over the timescale of the 

voltammetric experiment, as determined by Compton148, 149, the diffusion layer is 

larger than the SPE and graphene micro-features such that the electrode kinetics is 

heterogeneous and dominated by the faster electrode material, i.e the edge plane 

features of the graphite(s)/carbon black(s). In this case, equations (1.22-24) hold; 

see references 20 and 10 for the categorisation of electrochemically heterogeneous 

surfaces that may be encountered. 

5) The potential window is not reversed too early, and the analysis of the forward 

peak is used on the first scan3. 

6) The scan rate is not too fast to make the cyclic voltammetric response become non-

reversible. This is since the Randles-Ševćik equations are derived from assuming 

the concentration of the electroactive species in the bulk is the same as that at the 

surface of the electrode, which as highlighted above is due to a diffusion layer 

developing3. 
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7) In the case of determining the electrode area, a reliable diffusion coefficient (D) 

value needs to be utilised. A useful approach is the Wilke-Chang150 equation to 

determine the diffusion coefficient: 

D =  7.4 x 10−8  
T√𝑥Ms

ηV0.6                                             (3.1) 

where x is the association parameter to define the effective molecular weight of 

the solvent with respect to the diffusion process (where x = 2.6 for water and x = 

1 for non-associated solvents150), Ms is the molecular weight of the solvent (g mol-

1), η is the viscosity of the solution (g cm-1 s-1) and V is the molar volume of solute 

at normal boiling point (cm3 g-1 mol-1). This equation predicts the D value with an 

exponential error of ±13%. As highlighted by Sitaraman et al151, finding the 

association parameter (x) becomes an issue for unknown systems, therefore the 

following correction has been proposed: 

D = 5.4 x 10−8(
TLs

1
3√xMs

ηV0.6√VmLs0.3)0.93                                 (3.2)      

where Ls is the latent heat of vaporization of solute at normal boiling point (cal g-

1). This methodology still has an error of ±13%, but is simpler when used by 

experimentalists. Clearly, temperature is critical in determining the 

electrochemical area. Changes and fluctuations in temperature will affect the 

information obtained from equations (1.22-24 and 3.1-2). Consequently, the 

temperature at the time of the experiment should be measured and factored into 

these equations. 

8) The Randles-Ševćik equations are useful for single electron transfer processes that 

feature a 1:1 reaction stoichiometry, inversely however, for example, the reduction 

of protons to hydrogen (hydrogen evolution reaction, HER) has a 2:1 

stoichiometry and experimental results deviate from theory.152 The diffusion 
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coefficients used here are either from the academic literature or deduced using 

equation (3.2). 

Returning to the case of determining the electrode area, electrochemical 

experiments were performed using redox probes with a range of voltammetric scan 

rates utilised (see experimental section). The appropriate Randles-Ševćik equations 

were utilised to determine the electrode area (Areal). The estimated areas for the 

different electrodes are shown in Table 1, with their calculated Areal and its percentage 

compared to the Ageo (%Real = (Areal / Ageo) x 100); examples from their CVs are 

depicted in Figure 21. (Note: in case of capsaicin, the second electron of the reaction 

was utilised and in case of the TMPD, the first oxidation peak was chosen). 

It is readily evident that a range of %Real values for SPEs are obtained alternating 

from 65.5 to 145.7%. Using SPEs, one can realise that this value will likely deviate 

from 100% due to the binder holding the graphite and carbon black components 

together comprising the electrode surface. So what value of %Real is the one to be 

utilised? One needs to not only consider the limitations of the Randles-Ševćik 

equations, as identified above, but also the redox probe used is of importance.  

Hexaammineruthenium (III) chloride (RuHex) is a near-ideal outer-sphere 

redox couple which does not show changes in electron transfer rates upon varying 

surface chemistry and is dependent only on the electrode’s electronic structure (DOS 

and Fermi level)20. In order to calculate the areas for the range of electrodes, an 

average of three sets (each set calculated as an average of ten different scan rates each 

(5 to 500 mV s-1)) were performed for each electrode and redox probe, in order to 

collect strong and reliable data. The estimated areas for the CVD grown mono-layer 

graphene, SPE, glassy carbon and EPPG electrodes are shown in Table 1 and examples 

from their CVs are depicted in Figure 21. Areas were calculated as 0.057, 0.056, 0.052 
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and 0.023 cm2 for RuHex, Co(phen), TMPD and IrCl6 respectively for CVD graphene, 

which correspond to 72.4, 70.7, 42.4 and 29.5% of the geometrical area of the 

electrode respectively. In comparison, RuHex estimates an Areal percentage in 

comparison to the geometrical one (%Real = (Areal*100/Ageo)) of 90.4, 100.8 and 82.8 

% for the GC, EPPG and SPE electrodes respectively. Using TMPD, another outer-

sphere redox probe, the calculated %Real is 154.1, 167.0, 75.6 and 65.7 % for GC, 

EPPG, SPE and CVD mono-layer graphene. Co(phen) measurements give a %Real of 

104.1, 103.3, 112.3 and 70.9 % for GC, EPPG, SPE and CVD mono-layer graphene 

electrodes respectively. Lastly, IrCl6 estimates a %Real of 108.7, 99.3, 84.1 and 29.5 

% for GC, EPPG, SPE and CVD grown mono-layer graphene. 

Interestingly, in the case of inner-sphere electron transfer probes (which show 

deviations due to the surface chemistry, physical structure and electronic structure 

since the redox probe requires contact with the electrode surface or through a bridging 

ligands) such as dopamine, a value of 0.056 cm2 is predicted for the CVD graphene 

electrode when a new electrode is used for each scan rate. If the same electrode is used 

for the ten scan rates, the estimated area is 0.011 cm2; corresponding to 71.0 and 13.4% 

of the geometrical area of the electrode respectively. This blockage/fouling of the 

electrode is due to the dopamine adsorption onto the surface of the electrode, and 

therefore decreasing the analytical response from the second scan 153, 154. Same process 

seem to happen when using any of the inner-sphere redox probes such as NADH, 

capsaicin or ascorbic acid that only estimate 13.4, 12.3 and 41.2 % of the geometrical 

area of the working electrode. 

Dopamine and NADH, according to McCreery20, need to adsorb onto the 

surface prior to electro-oxidation occurring and furthermore, capsaicin’s oxidation 

product has been reported to adsorb on to the surface of the electrode155-157. The 
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oxidation of ascorbic acid is reported to be controlled by kinetics of adsorption 

together with diffusion, whereas the reaction probably occurs at the less active sites of 

Pt electrodes, while the more active sites are covered by the adsorbed ascorbic acid158. 

A new electrode should be used after oxidation to prevent polymerized products being 

analysed.  

Dopamine, NADH and capsaicin employed as redox probes results in similar 

estimates of the electrode area when using the Randles-Ševćik equation (at identical 

electrodes and when using the entire scan rate study (10 different scans)), this is likely 

be due to the adsorption processes of the three molecules. While dopamine is a small 

molecule, NADH’s size is larger and it has been reported that two different adsorption 

mechanisms may occur. Planar adsorption of the molecule happens rapidly but 

occupies a large area with a few number of molecules. On the other hand, 

perpendicular adsorption happens more slowly, in which each molecule occupies less 

overall area, giving an optimal condition for reproducibility159. 
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Figure 21. Cyclic voltammetry of 1 mM RuHex (A), 1 mM IrCl6 (B), 2 mM Co(phen) 

(C), 1 mM TMPD (D), 1 mM dopamine (E), 1 mM ascorbic acid (F), 1 mM NADH 

(G) and 1 mM capsaicin (H) for CVD grown mono-layer graphene, GC, EPPG and 

SPE electrodes. Scan rate 0.05 V s-1 with an arrow pointing at the forward peak 

selected to calculate the Ageo with equations 1 to 3. Results are presented in Table 1. 
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 Table 1. Calculated %Real areas for CVD grown mono-layer graphene, GC, EPPG 

and SPE electrodes using Randles-Ševćik equations. %Real is the percentage of Areal 

divided by the Ageo (averaged using 3 different scan rate studies, each of them 

averaging 10 different scan rates; N = 3).  Note that for dopamine, there are two 

different estimated values, first calculated using one electrode for the ten scans, and 

second calculated using ten different electrodes to see the fouling of the electrode due 

to analyte’s adsorption to the surface of the electrode, see Refs153, 154 (at 19.6 °C). 

Figure 22 shows McCreery’s elegant flow chart depicting the electrochemical 

processes of redox complexes, classifying each redox probe as either inner and outer-

sphere probes depending on how the electron transfer processes occur on the surface 

of the electrode. Randles-Ševćik equations are only an approximation and also strictly 

apply for diffusion controlled redox processes3. Redox processes (see Figure 21) are 

classed into outer-sphere where electron transfer is fast where the redox probes comes 

close to the electrode surface for electrons to tunnel/hop across a monolayer of solvent 

but do not directly interact with the electrode surface. Such redox probes are 

influenced by the electronic structure of the electrode surface only. On the other hand, 

inner-sphere probes are influenced not only by the electronic structure but also the 

electrode surface (either reactant, product), i.e. surface functional groups (adsorption 

sites)/surface chemistry 160. Thus in the redox probes utilised, RuHex is a near ideal 

Electroactive 

Probe 

%Real GC    

/ % 

%Real  EPPG  

/ % 

%Real  SPE    

/ % 

%Real  CVD 

mono-

graphene / % 

RuHex 90.4 ± 1.6 100.8 ± 8.9 82.8 ± 3.4 72.4 ± 2.1 

IrCl6 108.7 ± 1.5 99.3 ± 4.3 84.1 ± 2.0 29.5 ± 0.7 

Co(phen) 104.1 ± 1.6 103.3 ± 2.0 112.3 ± 9.7 70.9 ± 1.6 

TMPD 154.1 ± 3.6 167.0 ± 7.0 75.6 ± 2.4 65.7 ± 3.2 

Dopamine 187.5 ± 6.5 169.7 ± 9.1 120.2 ± 4.6 13.4/71.1 ± 4.5 

Ascorbic acid 136.4 ± 9.5 78.5 ± 7.2 145.7 ± 3.6 53.1 ± 2.9  

NADH 63.6 ± 3.0 52.6 ± 4.3 65.5 ± 7.3 11.81 ± 1.6 

Capsaicin 13.4 ± 1.0 11.6 ± 2.2 123.7 ± 6.2 12.3 ± 0.5 
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outer-sphere redox couple which does not show any changes in its electron transfer 

rates due to varying surface chemistry and is only dependent upon the electrodes 

electronic structure (Density of States (DOS) and the Fermi level), thus allowing its 

use to give rise to the closest estimations of the electroactive area (Areal). 

Figure 22. Classification of redox systems by McCreery et al.20 according to their 

kinetic sensitivity to particular surface modifications upon carbon electrodes. The 

figure has been adapted to show clearly outer- and inner- sphere probes. Fc: ferrocene, 

MV: methyl viologen, CPZ: chlorpromazine and MB: methylene blue. 
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3.2.2 Determining the electroactive area using chronocoulometry 

Chronocoulometry (CC) is a classical electrochemical technique that has been 

overlooked over recent years. CC was developed by Anson11 (see equations 3.3 and 

3.4), which involves the measurement of charge vs. time response from an applied 

potential step waveform. The shape of the resulting chronocoulogram, is summarised 

within Figure 23. CC is a useful technique in electrochemistry allowing one to readily 

determine the electrochemical active electrode area, as well as their respective 

diffusion coefficients, the time-window of an electrochemical cell, adsorption of 

electroactive species and rate constants for chemical reactions coupled to electron 

transfer reactions; this in summary, is a very useful electrochemical approach. 

The Anson equation for diffusion only processes (see equation 3.3) defines the 

charge-time dependence for linear diffusion control, using a CC method, which is the 

measure of charge (Coulombs) as a function of time, and can be applied to the 

measurement of the electroactive area of electrodes139. In the case of adsorption, for 

electrochemical processes (such as the case of inner-sphere probes, see equation 3.4) 

where the reactants is adsorbed, the charge is due to the electrolysis of the adsorbed 

species which can be distinguished from the charge that is occurring from the 

electrolysis of the solution based species. The adsorbed materials upon the electrode 

surface are electrolyzed immediately upon application of the potential step, while the 

solution based species obviously have to diffuse to the electrode surface to react. In 

this case, the total charge is the contribution of the double layer, the electrolysis of the 

adsorbed species and the electrolysis of the solution. 
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Anson equations: 

• for diffusion processes 

𝑄 =  
2𝑛𝐹𝐴𝑟𝑒𝑎𝑙𝐶√𝐷𝑡

√𝜋
 + 𝑄𝑑𝑙                                         (3.3) 

 

• for adsorption processes 

𝑄 =  
2𝑛𝐹𝐴𝑟𝑒𝑎𝑙𝐶√𝐷𝑡

√𝜋
+ nFA𝑟𝑒𝑎𝑙Γ0 + 𝑄𝑑𝑙                                       (3.4)       

where Q is the charge, n is the number of electrons in the electrochemical reaction, 

Areal is the electroactive area, F is Faraday’s constant, C is the concentration, D is the 

diffusion coefficient, 𝑄𝑑𝑙 is the double layer capacitance and 𝛤0 is the coverage of 

adsorbed reactant (mol cm-2). The electrolysis of the diffusion species shows a 

dependence upon 𝑡𝑖𝑚𝑒1/2. Since the adsorbed materials are electrolyzed 

instantaneously, the charge is not time-dependent and also the charging of the double 

layer is instantaneous and independent of time. Thus, as shown in Figure 23 the 

difference in the charge due to the 𝑄𝑑𝑙 +  nFA𝑟𝑒𝑎𝑙Γ0 is readily evident but the gradient 

is the same, due to the reaction cited above. Therefore, CC is the most accurate when 

considering near-ideal outer-sphere probes or highly adsorbed analytes. 
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Figure 23. Representation of CC (charge vs. time1/2) for a non-adsorbed outer-sphere 

probe (A) and for an adsorbed inner-sphere probe (B). Note that, in A, the intercept is 

not truly zero due to the contribution of Qdl (see equation 3.3 and 3.4). 

CC was described by Anson as a method to determine quantities of adsorbed 

reactants, as such, this equation cannot be reliably used to determine 𝐴𝑟𝑒𝑎𝑙. It is 

because of the contributions of "𝑛𝐹𝐴𝑟𝑒𝑎𝑙𝛤0" in the aforementioned equations (i.e. 

having two different terms in the equations representing the area) that the electroactive 

area cannot be directly calculated. A range of redox probes was used to calculate the 

electroactive area of the different electrodes using the Anson plot (equation 3.3 and 

3.4), applying first a potential pulse to reduce all of the analyte and a second pulse to 

oxidise (or reduce in the case of RuHex and TMPD, thus the first step was inversed 

also) with the results depicted in Figure 24, and their calculated Areal and %Real 

reported in Table 2. 
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Figure 24. Anson plots resulting from using the following redox probes: 1 mM RuHex 

(A), 1 mM IrCl6 (B), 2 mM Co(phen) (C), 1 mM TMPD (D) 1 mM dopamine (e), 1 

mM ascorbic acid (F), 1 mM NADH (G) and 1 mM capsaicin (H) for CVD grown 

mono-layer graphene, EPPG, GC and SPE electrodes (corresponding estimated areas 

are shown in Table 2) (at 19.6 °C).  
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 Table 2. Calculated ‘areas’ for CVD grown mono-layer graphene, GC, EPPG and 

SPE electrodes using Anson equations. %Real is the percentage of Areal divided by the 

Ageo (N = 9) (at 19.6 °C). 

In the case of CVD grown mono-layer graphene and, as a comparison, GC, EPPG 

and SPE electrodes as depicted in Figure 24 and Table 2. Displayed data is the average 

of three sets of data from three different electrodes, each data made by three 

repetitions. Each CC method was made by a first potential applied at a low voltage 

where no electrochemical Faradaic reaction occurred, and the second potential was 

applied in order detect the corresponding Faradaic process, with the total charge 

passed versus time was recorded for 6 seconds. It can be readily observed in Figure 

24 that the linearity of the Anson plots change depending on the electrode utilised. For 

example, in Figure 24A-D, which corresponds to the Anson plot for the outer-sphere 

redox probes, CVD grown mono-layer graphene shows a linear response of charge vs. 

time1/2. Inversely, Figure 24E-H shows the Anson plot for the inner-sphere redox 

probes that adsorb onto the surface of the different electrodes in different degrees. 

The %Real for the CVD grown mono-layer graphene electrode using the Anson 

plots are shown in Table 2. The estimated electroactive areas for the CVD grown 

mono-layer graphene are 0.10, 0.084, 0.084 and 0.098 cm2 using RuHex, Co(phen), 

TMPD and IrCl6 respectively, which correspond to 128.2, 106.1, 123.7 and 92.2 % of 

Electroactive 

Probe 

%Real GC   

/ % 

%Real EPPG 

/ % 

%Real SPE 

/ % 

%Real  CVD 

mono-

graphene / % 

RuHex 62.1 ± 2.1 137.1 ± 7.8 73.3 ± 6.0 128.2 ± 5.2 

IrCl6 101.9 ± 7.3 178.2 ± 6.1 132.8 ± 1.6 92.2 ± 5.7 

Co(phen) 234.4 ± 1.4 147.1 ± 0.5 220.2 ± 3.2 106.1 ± 3.8 

TMPD 395.4 ± 0.3 741.6 ± 5.5 70.5 ± 5.2 123.7 ± 5.5 

Dopamine 502.4 ± 9.4 522.3 ± 6.5 102.5 ± 5.0 324.5 ± 4.0 

Ascorbic acid 246.5 ±10.3 160.7 ± 6.2 161.2 ± 0.6 558.1 ± 2.8 

NADH 25.0 ± 1.4 194.7 ± 8.1 103.3 ± 5.2 50.5 ± 9.8 

Capsaicin 110.9 ± 6.6 118.4 ± 3.0 75.9 ± 1.4 69.9 ± 9.5 
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the geometrical area respectively. In comparison, RuHex estimates a %Real of 62.1, 

50.9 and 73.3 % for GC, EPPG and SPE electrodes respectively. Using TMPD, 

another outer-sphere redox probe, the calculated %Real is 392.4, 741.6, 70.5 and 123.7 

% for GC, EPPG, SPE and CVD mono-layer graphene. Co(phen) measurements give 

a %Real of 234.4, 147.1, 220.2 and 106.1 % for GC, EPPG, SPE and CVD mono-layer 

graphene electrodes respectively. Lastly, IrCl6 estimates a %Real of 101.9, 178.2, 

132.8 and 92.2 % for GC, EPPG, SPE and CVD grown mono-layer graphene. 

Last, note that when comparing the use of the outer- and inner-sphere redox 

probes, it is suggested to always use an outer-sphere redox probe (such as RuHex, 

IrCl6, Co(phen) or TMPD) that are only sensitive to the density of states (DOS). 

Contrarily, the use of an inner-sphere redox probe to estimate the area depend on the 

electronic structure and the surface of the electrode (such as surface functional groups) 

and also can foul the electrode surface when is used multiple times, therefore 

electrochemists should consider these factors.  In order to compare between the 

different electrochemical techniques: Randles–Ševćik  vs. the Anson plot to estimate 

the area of CVD graphene electrodes, given that the Anson plot (with CC) minimises 

the effect of adsorption processes and needs less experiments, it is recommended to 

use CC to calculate the electroactive area. It is important to note that the parameters 

described herein are applicable for the stated experimental conditions; in cases where 

working electrodes have high roughness factors, porosity, capacitance and/or presence 

of inactive materials the equations might not be applicable. 
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3.3 Conclusions 

In summary, this works compares for the first time, methods to determine the 

electroactive area (Areal) of screen-printed and mono-layer graphene electrodes via CV 

and CC. Details are given to allow novices to utilise these approaches to understand 

the various parameters that need to be taken into consideration to determine a robust 

value for the electroactive area. Outer-sphere electron transfer redox probes, are the 

optimal choice of analyte to employ when one needs to obtain the most accurate and 

reliable indication of the electroactive surface. For classic electrode platforms the 

Randles-Ševćik equation is considered the most accurate one. SPE’s active area results 

are less than 100% due to the presence of inactive binders; for GC and EPPG it is 

expected values close to 100% due to their flat and fully reactive surfaces using the 

Randles-Ševćik equation. For CVD grown mono-layer graphene, given that mono-

layer graphene structure comprises a large coverage of low electro-catalytic activity 

(namely its basal plane) and a low coverage of active edge plane like-sites/defects, the 

estimated Areal calculated using the appropriate Randles–Ševćik equation with outer-

sphere redox probes correspond to between 42.4 and 70% of the geometrical area of 

the given electrode. In contrast, the use of the Randles-Ševćik equation might 

introduce newly created defects/rips/damage as it is explored in Chapters 5 and 6, 

therefore it is recommended herein the use of the Randles-Ševćik equation with an 

outer-sphere redox probe. 

This work is an important and fundamental contribution to those experimentalist 

who use and benchmark the electroactive area of different electrode platforms, 

independently to their roughness, since it provides the first comparison of inner and 

outer-sphere redox probes, highlighting the various parameters that need to be 

considered in order to obtain useful estimations of the electroactive area. 
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Chapter 4: Exploring the reactivity of distinct electron transfer sites 

at CVD grown monolayer graphene through the selective 

electrodeposition of MoO2 nanowires 

This chapter investigates electron transfer at Chemical Vapour Deposition 

(CVD) grown monolayer graphene using a polymer-free transfer methodology 

through the selective electrodeposition of Molybdenum (di)oxide (MoO2). This work 

demonstrates the distinct electron transfer properties of edge and basal plane sites on 

CVD grown monolayer graphene, inferring favourable electrochemical reactivity at 

edge plane like- sites/defects and clarifying the origin of graphene electro-activity. 

The confirmation of monolayer graphene’s electrochemical properties could enable 

enhanced application in several areas, by tailoring devices the utilised graphene 

exposing its edges such as additive manufacturing, electronics, energy 

storage/generation and for electrochemical sensor platforms.  

4.1 Introduction  

Graphene is extensively studied due to its reported unique electronic, 

mechanical and optical properties161-165 which translate into abundant research interest 

in energy applications such as supercapacitors58-61, solar cells62-65, fuel cells66-68, water 

splitting69 and for electrochemical sensors166-168 when utilised as an electrode material.  

In terms of understanding the electrochemical response of CVD grown 

monolayer graphene (via a BU approach), the reactivity of such electrodes is 

commonly assigned to the graphene edge planes, which are reported to exhibit ca. 4 

orders of magnitude greater specific capacitance, faster electron transfer rates and 

higher electrocatalytic activity when compared to the graphene basal planes169. Recent 

work involving the electrochemical behaviour of CVD grown pristine graphene has 

shown a correlation in the structure of graphene, in terms of a dependence upon its 

number of layers and the macroscopic electrochemical response/performance34, 170. 
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Moreover, an identical relationship in terms of graphene’s geometric structure (the 

quantity of edge plane vs. basal plane coverage) has recently been reported with 

respect to the lateral flake size, in which smaller graphitic flake sizes (comprising a 

large edge plane like- site/defect density and a respectively small basal plane 

geometric contribution) exhibited improved electrochemical properties when 

compared to the inverse171. Indeed, there have been numerous other studies reporting 

that, in comparison to the edge plane like- sites/defects172, 173, the basal planes of 

graphitic and carbon-based materials are effectively inert34, 169, 174, 175. However, 

regardless of the vast number of recent reports concerning graphene-based electrodes, 

researchers still debate the real contributions of edge and basal plane like- sites/defects 

at the macroscopic scale, in the future researchers should clarify the experimental 

configuration of their studies, i.e. macro- vs microscopic voltammetry176 with respect 

to their observed heterogeneous electron transfer (HET) kinetics10, 175, 177-179; further 

work is required to explore this edge vs. basal argument for carbon surfaces176. It is 

these aforementioned research considerations that are investigated herein, through the 

utilisation of a MoO2 deposition technique decorating CVD grown monolayer 

graphene using a polymer-free transfer method, so that one can determine the true 

electrochemical contributions arising from its structure. 

Molybdenum oxide(s) and other metal oxides have been shown to 

electrochemically nucleate specifically onto the edge plane like- sites/defects of highly 

oriented pyrolytic graphite (HOPG)180-184. Davies et al.185 reported that edge plane 

like- sites/defects on basal plane orientated HOPG (SPI-1 grade) are responsible for 

the voltammetric signal, and Rowley-Neale et al.9 extended these insights with screen-

printed graphitic electrodes (SPEs) with similar results. In these approaches, the 

selective deposition of metals and metal oxides onto graphite is called ‘step edge 
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decoration’180-183, and has been utilised to demonstrate that electrochemical reactions 

at edge plane graphite are “anomalously fast” in comparison to the basal plane, which 

is effectively inert184-186. Through the selective coating and blockage method of the 

edge plane like- sites/defects with MoO2 nanowires (that are electrochemically 

insulating), a reduction in the electrochemical response towards [Ru(NH3)6]
3+/2+ 34, 175 

was reported; clearly demonstrating that the electrochemical reactivity of the HOPG 

is due to edge plane like- sites/defects. To the best of our knowledge, the above elegant 

approach has not previously been applied towards CVD grown monolayer graphene 

sheets (in addition to the polymer-free transfer method utilised herein) contributing to 

the understanding of graphene and all akin carbon-based electrode materials.  

4.2 Results and discussion  

Previously reported methodologies have utilised the electrochemical 

decoration of MoO2 onto HOPG and SPEs185,9, where MoO2 selectively deposits upon 

the available edge plane like- site/defects, allowing their electrochemical contributions 

to be deduced. In consideration of these approaches, herein this method is adapted to 

CVD grown monolayer graphene sheets. Presented within the Experimental Section 

and Supporting Information are details of the fabrication process, optimisation and 

physicochemical characterisation of the CVD grown monolayer graphene sheets and 

their MoO2 decorated counterparts. Briefly, Figure 32 depicts the full Raman spectra 

of a MoO2 decorated monolayer graphene, displaying the typical monolayer graphene 

D (1350 cm-1), G (1580 cm-1), 2D (2700 cm-1) and 2D’ (3250 cm-1) peaks, the presence 

of MoO2 (308 cm-1)187 and the presence of the underlying Si (514 and 985 cm-1) wafer 

(which usually are not shown in the literature and generally ignored / not-presented 

even though they will be observed). Additionally, AFM images were collected in order 

to characterise the MoO2 nucleation upon the edge plane like- sites/defects as depicted 
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in Figure 33, where the length and width of the wires is 1-2 µm and 30-75 nm 

respectively, which corroborates with the selective nucleation characterised by 

Rowley-Neale et al.9 

Figure 25A depicts an SEM image of the edge of an unmodified monolayer 

graphene sheet and Figure 25B presents the corresponding cyclic voltammetric 

response, using the near-ideal outer-sphere redox probe, [Ru(NH3)6]
3+/2+, which 

exhibits a peak-to-peak separation (ΔEp) of 160 mV (at 50 mV s-1 vs. Ag/AgCl) and a 

HET (𝑘𝑜𝑏𝑠
0 ) rate of 1.91×10-3 cm s-1 (see Experimental Section). Note that this value 

is similar but slightly faster than other CVD monolayer graphene sheets previously 

reported by our research group34, which is due to a higher exposure of the edge plane 

like- sites/defects upon the graphene sheet. Furthermore, it is worth noting at this stage 

that each individual graphene sheet is unique in terms of its level of edge plane like- 

site/defects, so there is natural variation in the reported HET rates throughout the 

literature; thus, it is important to characterise each monolayer graphene sample16 prior 

to modification with MoO2. Figure 25C depicts an SEM image of the MoO2 

electrochemically decorated monolayer graphene sheet following applying 

chronoamperometry at a set voltage (-0.6 V vs. Ag/AgCl) for 1 second, where it is 

readily observed that the MoO2 nucleates upon the edge plane like- 

sites/defects/wrinkles of the monolayer graphene surface. 

Figure 25D represents the voltammetric responses using the 

near-ideal redox probe, [Ru(NH3)6]
3+/2+, which exhibits a ΔEp of 200 mV (at 50 mV s-

1 vs. Ag/AgCl) and a 𝑘𝑜𝑏𝑠
0  of 8.80 × 10-4 cm s-1. Such decreased voltammetric 

behaviour implies that the insulating MoO2 nanowires have coated some of the 

available edge plane like- sites/defects, with some edge sites remaining unmodified. 

Figure 25D compares the voltammetric profiles and Table 3 shows (with respect to 
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the HET kinetics (𝑘𝑜𝑏𝑠
0 ) and the percentage of edge plane coverage (%θedge) values) 

the changes observed as one electrodeposits MoO2 onto the graphene electrode’s 

surface. Such voltammetric profiles, show that the decorated electrode (dashed line) 

still exhibits relatively fast HET kinetics when compared to the unmodified electrode 

(solid line), but presents a lower current intensity due to the limited availability of 

edge plane like- sites/defects on the electrode surface. This is corroborated with the 

SEM presented within Figure 25C. 
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Figure 25. SEM images of a monolayer graphene electrode (A), 1 second 

electrodeposition of MoO2 at -0.6 V (vs. Ag/AgCl) (C) and 10 second 

electrodeposition of MoO2 at -0.6 V (vs. Ag/AgCl) (E). Additionally presented is 

cyclic voltammetric analyses recorded using 1 mM [Ru(NH306]
3+/2+ / 0.1 M KCl, using 

a monolayer graphene sheet (B), 1 second electrodeposition of MoO2 at -0.6 V (vs. 

Ag/AgCl) (D) and 10 second electrodeposition of MoO2 at -0.6 V (vs. Ag/AgCl) (F) 

(Scan rate: 25 mV s-1). Note that the monolayer graphene samples (Fig 4.1A) might 

contain dust/air impurities due to the manufacturing process explained within the 

Experimental Section, observed as nanoparticulates. 
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 Table 3. HET kinetics, coverage and electrodeposition times for CVD mono-layer 

graphene decorations. HET kinetics (𝑘𝑜𝑏𝑠
0 ) were determined using the near ideal outer-

sphere redox probe [Ru(NH3)6]
3+/2+ / 0.1 M KCl, coverage of edge plane (θedge)  and 

the difference in the percentage of edge coverage upon the surface of the monolayer 

graphene sheets (Δθedge) followed by the electrochemical decoration of MoO2 for: 1 

(A), 2 (B), 5 (C) and 10 (D) seconds; electrochemical parameters: -0.6 V (vs. 

Ag/AgCl) using 1 mM Na2MoO4 (in 1 M NaCl).  Note: each sample (A, B, C and D) 

is a different CVD monolayer graphene sheet and has a varied initial size and quantity 

of edge sites, which exhibit distinct electron transfer rates (HET kinetics). 

Next, the effect of increased deposition times at -0.6 V (vs. Ag/AgCl) is 

investigated. Presented within Figure 25E is an SEM image of the MoO2 

electrochemically decorated monolayer graphene sheet that has been applied at -0.6 V 

(vs. Ag/AgCl) for 10 seconds via chronoamperometry, where it is clear that 

electrodeposition is no longer isolated upon the edge plane like- sites/defects. Instead, 

the MoO2 has coated/blocked the entire electroactive surface. Upon electrodeposition 

at more electrochemically negative potentials (ca. –1.0 V) or longer deposition times, 

a large MoO2 film is created/deposited on the graphene sheet, originating and 

expanding from the original edge plane like- sites/defects (non-selective deposition), 

as shown in Figures 29.  Figure 25F corroborates with this topographical analysis as 

Graphene 

Sample 
Prior to 

electrodeposition 

Electro-

depositi

on Time 

/ s 

Post electrodeposition 
Δ%θ

edge 
k0

obs (cm s-1) %θedge k0
obs (cm s-1) %θedge 

A 1.64×10-3 0.4 1 9.65×10-4 0.24 -41.5 

B 4.26×10-4 0.1 2 3.44×10-4 0.09 -18.2 

C 2.32×10-3 0.6 5 8.75×10-4 0.22 -62.1 

D 2.83×10-3 0.7 10 2.18×10-6 0.0005 -99.9 
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the corresponding cyclic voltammetric analysis utilising the same near-ideal redox 

probe, [Ru(NH3)6]
3+/2+, exhibits a ΔEp of 820 mV and a 𝑘𝑜𝑏𝑠

0  of 2.18×10-6 cm s-1. As 

expected, the monolayer graphene sheets coated with insulating MoO2 (upon the edge 

plane like- sites/defects), gives rise to an electrochemical response with a larger ΔEp 

(slower electron transfer) than the unmodified monolayer graphene. The 

aforementioned MoO2 coverage dependant electrochemical behaviour has been 

illustrated within the schematic presented within Figure 26. Figure 26 represents the 

selective nucleation process of MoO2 wires that nucleate onto the graphene’s edge 

plane (and or defect/wrinkle) sites when a electrodeposition for 1 second at -0.6 V is 

performed, resulting in a decrease in the reversibility of the [Ru(NH3)6]
3+/2+ redox 

peaks. Longer deposition times will increase the nucleation of the MoO2 onto 

remaining edge sites and towards the basal plane of the graphene sheet (deposition of 

5 seconds at -0.6 V). Eventually, a complete coverage of the surface of the graphene 

is confirmed by the absence of cyclic voltammetric redox peaks of [Ru(NH3)6]
3+/2+, 

for example, when an electrodeposition of 10 total seconds at -0.6 V is performed. 
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Figure 26. Schematic highlighting the MoO2 deposition process upon monolayer 

CVD graphene sheets, where MoO2 nucleation starts upon the graphene edge plane 

like- sites/defects. Note that longer deposition times result in the MoO2 growing from 

the edge plane like- sites/defects over onto the basal plane sites, until there is a 

complete insulating layer covering the entire monolayer graphene sheet, resulting in 

substantially reduced electrochemical activity. Note, sizes are not to scale. 
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The experiments performed above confirm that the MoO2 wires are indeed being 

electrodeposited selectively onto the graphene edge plane like- sites/defects, at a set 

potential of -0.6 V (vs. Ag/AgCl) for 1 second and this results in a decrease in the 𝑘𝑜𝑏𝑠
0  

by 41.5% (shown in Figure 25 and Table 3). Note that the electrochemical activity of 

the monolayer graphene sheet is reduced since the MoO2 selectively electrodeposits 

upon the edge plane like- sites/defects, which is confirmed by physicochemical 

characterisation indicating that these are the active sites for electron transfer. If no 

changes in the voltammetry were observed, this would indicate that basal planes sites 

are the origin of electron transfer, as this is not the case, our work provides convincing 

evidence that it is the edge plane like- sites/defects of the CVD grown monolayer 

graphene that are the origin. When utilising an electrodeposition of 10 seconds, an 

insulating film is created, which largely decreases the amount of available edge plane 

like- sites/defects by 99.9%. Note that in the case of sample B, however, in this 

instance due to the initial low θedge and hence 𝑘𝑜𝑏𝑠
0 , the deposition of MoO2 has fewer 

edge plane like- sites/defects to deposit upon. This demonstrates again that each 

individually grown CVD graphene sheet is unique in terms of edge plane like- 

sites/defects and 𝑘𝑜𝑏𝑠
0 ; therefore emphasising the importance of their characterisation 

(both physicochemical and electrochemical) upon fabrication and prior to application. 

Last, note that if incorrect deposition parameters are utilised, i.e. too long deposition 

times and high deposition potentials, physicochemical characterisation would indicate 

a large film is created, which would give the false impression that the basal plane of 

monolayer graphene is as equally electrochemically active as the edge plane sites, 

which is not the case. However, there has been a great deal of elegant work published 

on the micro scale response of electron transfer at carbon materials using novel 

nanoscale techniques188, 189, therefore it is intended that the data reported herein be 
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considered in-conjunction with such other studies for the electrochemical community 

to better understand this phenomena as a whole. 

4.3 Conclusion 

MoO2 nanowire arrays have been electrodeposited onto the edge plane like- 

sites/defects of CVD grown monolayer graphene using a polymer-free transfer 

method, which have been confirmed via physicochemical characterisation. The 

electrochemical activity pre and post MoO2 electrochemical deposition has been 

assessed using a near-ideal redox probe and in the latter case indicates that the HET 

kinetics (𝑘𝑜𝑏𝑠
0 ) are significantly reduced, providing convincing evidence that the edge 

plane like- sites/defects/wrinkles of the CVD grown monolayer graphene are the 

predominant origin of electron transfer. The confirmation of the origin of monolayer 

graphene’s electrochemical properties could enable its application in several areas, 

such as additive manufacturing, electronics, energy storage/generation and for 

electrochemical sensor platforms.  
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4.4 Experimental section 

Test solutions were: 1 mM [Ru(NH3)6]
3+/2+ (in 0.1 M KCl), 0.5 M H2SO4 and 

1 mM Na2MoO4 (in 1 M NaCl). Working electrodes were in-house fabricated CVD 

synthesised monolayer graphene films supported on an oxidised silicon wafer. A 

nickel wire counter/auxiliary electrode and a silver/silver chloride electrode 

(Ag/AgCl) reference electrode completed the circuit. 

The in-house graphene growth took place within a nanoCVD-8G rig 

(Moorfield, UK), which uses a cold-wall variant of the CVD process, using the method 

described in Chapter 2. 

The HET rate constants, 𝑘𝑜𝑏𝑠
0 , were calculated using the near ideal outer-sphere 

redox probe [Ru(NH3)6]
3+/2+ (in 0.1 M KCl) using the well-known190 and utilised 

Nicholson method8, for electrochemical reactions via the equation 1.25 and 1.269 

described in Chapter 1.  

The observed electron transfer rate, 𝑘𝑜𝑏𝑠
0 , of graphite electrodes has been 

shown to be a contribution of edge plane like- sites/defects (𝑘𝑒𝑑𝑔𝑒
0 ) and basal planes 

(𝑘𝑏𝑎𝑠𝑎𝑙
0 ), allowing one to calculate the specific contributions with the following 

equation: 

 𝑘𝑜𝑏𝑠
0 =  𝑘𝑒𝑑𝑔𝑒

0  (θ𝑒𝑑𝑔𝑒) +  𝑘𝑏𝑎𝑠𝑎𝑙
0  (1 −  θ𝑒𝑑𝑔𝑒)                         (4.1) 

where 𝜃𝑒𝑑𝑔𝑒 is the coverage of edge plane like- sites/defects on the surface of the 

electrode, and 𝑘𝑒𝑑𝑔𝑒
0  has been shown as anomalously fast over that of 𝑘𝑏𝑎𝑠𝑎𝑙

0  on 

graphite, allowing one to write:  

𝑘𝑒𝑑𝑔𝑒
0 ≫ 𝑘𝑏𝑎𝑠𝑎𝑙

0                                                             (4.2) 

Such that equation (4.1) now becomes: 
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𝑘𝑜𝑏𝑠
0 = 𝑘𝑒𝑑𝑔𝑒

0  (θ𝑒𝑑𝑔𝑒)                                                  (4.3) 

allowing the coverage of edge plane like- sites/defects upon the graphite electrode to 

be deduce; it is used and adapted this to the voltammetry observed at the CVD grown 

monolayer graphene sheets. %𝜃𝑒𝑑𝑔𝑒 is the percentage representation of the edge plane 

coverage in comparison to the total coverage, being the sum of %𝜃𝑒𝑑𝑔𝑒  and %𝜃𝑏𝑎𝑠𝑎𝑙 

always equalling 100%. In the above analysis, the assumption is that the electron 

transfer rate for edge plane like- sites/defects (𝑘𝑒𝑑𝑔𝑒
0 ) for the near ideal outer-sphere 

redox probe, [Ru(NH3)6]
3+/2+, has been widely determined with a commercial 

simulation package providing a value of 0.4 cm s-1 for HOPG electrodes185.   

Note that the area studied is in the macroscale range which is not considered 

too large (ca. 6 mm2 of full exposed graphene area), because indeed it averages the 

actual phenomena occurring locally (which it is studied in terms of physicochemical 

characterisation on the nanoscale too). Such that this makes this study applicable for 

real applications. It is reported herein on the average response of the macro electrode 

with varying contributions of the two micro features (edge and basal planes), which is 

relevant because the likely end use/application of such systems will be on that of the 

macro scale. 
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4.5 Supporting Information 

4.5.1 Optimising the electrochemical deposition of MoO2 upon the monolayer 

graphene sheets 

A monolayer graphene sheet covering half of the SiO2 wafer surface, was used to 

highlight the edge plane sites/defects of the monolayer graphene, creating a single step 

of one carbon atom as depicted in Figure 27. The monolayer graphene electrode was 

immersed in solutions of 0.5 and 1 mM Na2MoO4 (in 1 M NaCl and 1M NH4Cl 

adjusted to pH 8.5 with liquid NH3). Linear sweep voltammetry was performed from 

0.5 to -1.5 V (vs. Ag/AgCl) as depicted in Figure 30, where the electrochemical 

deposition of MoO2 onto the electrode surface is detected via the electrochemical 

reduction peak at -0.6 V (vs. Ag/AgCl). In this electrochemical process, the reduction 

of Mo6+ to Mo4+ occurs through the following reaction mechanism:  

MoO4
2- + 2H2O + 2e- 

→ MoO2 + 4OH-, producing MoO2 deposited on the monolayer 

graphene. Note that in the experiments performed herein, the potential at which the 

MoO2 electrodeposition occurs is shifted to a less negative potential compared to -1.0 

V as reported previously when using HOPG183, 185 and graphitic SPEs9, which is likely 

due to the use of inert binders in the SPEs, and that we have exposed the edge plane 

of the monolayer graphene making it more readily available. Inspection of the 

voltammetric signals shown in Figure 30 reveal deposition potentials of -0.6 V (vs. 

Ag/AgCl), which corresponds to the onset of MoO2 deposition, and resultantly the 

required chronoamperometry was subsequently performed at this potential.  
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Figure 27. Optical (A) and SEM (B) images of a monolayer graphene sheet deposited 

upon a SiO2 wafer covering half of surface in order to expose the edge plane 

sites/defects of the monolayer graphene before going into the electrochemical cell. 

Note that the graphene samples may possess air/dust impurities in the form of dots  

apparent in B. 
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Figure 28. SEM images of a monolayer graphene sheet decorated with MoO2 through 

electrodeposition at – 0.6 V (vs. Ag/AgCl, Scan rate: 5 mV s-1) for 1 (A), 5 (B), 20 (C) 

and 100 seconds (D) respectively. Images show how with longer deposition times, 

deposition is no longer edge plane selective and moves from the edge to the basal 

planes, covering the entire graphene sheet. 
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Figure 29. SEM images of a monolayer graphene sheet decorated with MoO2 through 

electrodeposition at – 1 V (vs. Ag/AgCl, Scan rate: 5 mV s-1) for 1 (A), 5 (B), 20 (C), 

100 (D) and 200 seconds (E) respectively. Images show how with a more negative 

potential and longer deposition times, deposition is no longer edge plane selective 

(when is MoO2 nanowires) and moves from the edge to the basal planes (non-selective 

deposition, as MoO2 bulk), covering and breaking the entire graphene sheet. 
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Figure 30. Linear sweep voltammetry recorded with 0.5 (solid line) and 1 mM (dotted 

line) Na2MoO4 solutions depicting the electrodeposition of MoO2 at a monolayer 

graphene sheet (vs. Ag/AgCl; Scan rate 5 mV s-1). 

4.5.2 Raman characterisation  

Raman characterisation of the MoO2 decorated monolayer graphene is 

recorded over the range:  20–3300 cm-1. The schematic presented in Figure 31A 

depicts the electrodeposition process of MoO2 nucleating onto the monolayer 

graphene edge plane like- sites/defects, when the electrochemical decoration is held -

0.6 V (vs. Ag/AgCl) for 1 second. Figure 31B shows the full Raman spectra of a MoO2 

decorated monolayer graphene, displaying the typical monolayer graphene D (1350 

cm-1), G (1580 cm-1), 2D (2700 cm-1) and 2D’ (3250 cm-1) peaks, the presence of 

MoO2 (308 cm-1)187 and the presence of the Si (514 and 985 cm-1) wafer (which usually 

are not shown in the literature). Figure 31C depicts the Raman analysis of an area 

where MoO2 has not grown yet, indicating the presence of monolayer graphene and 

the Si wafer. Figure 31D shows the Raman spectra of an area of the chip where there 
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is no monolayer graphene and therefore there is no presence of MoO2, showing only 

the presence of the Si wafer. 

 

Figure 31. Schematic of selective MoO2 deposition process (chronoamperometry at -

0.6 V (vs. Ag/AgCl) for 1 second), where the monolayer graphene sheet covers half 

of the SiO2 wafer (A). Raman spectra from the edge of the monolayer graphene (B) 

with a MoO2 peak at 308 cm-1, the monolayer graphene where MoO2 has not been 

electrodeposited yet (C), and an area where there is only SiO2 wafer (D). 
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Figure 32. Raman spectra from the edge of the monolayer graphene before (A) and 

after (B) its decoration with MoO2 (chronoamperometry at -0.6 V (vs. Ag/AgCl) for 1 

second). Raman peak at 308 cm-1 corresponds to the MoO2 nanowires on the decorated 

graphene electrode. 
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4.5.3 AFM characterisation of the selective electrodeposition of MoO2 upon a 

monolayer graphene sheet 

AFM images were collected in order to characterise the MoO2 nucleation upon 

the edge plane like- sites/defects as depicted in Figure 33, where the length and width 

of the wires is 1-2 µm and 30-75 nm respectively, which corroborates with the 

selective nucleation characterised by Rowley-Neale et al.9.  

Figure 33. AFM analysis of a monolayer graphene sheet following the 

electrodeposition of MoO2 at -0.6 V for 1 second (vs. Ag/AgCl). Figure 33A shows 

the topography of the graphene, where most of the surface remains unmodified (basal 

plane), although some MoO2 wires can be observed in 33B, C, D and E. 

 

 

  



102 

 

Chapter 5: Investigating the Integrity of Graphene towards the 

Electrochemical Hydrogen Evolution Reaction (HER) 

This chapter investigates mono-, few- and multi- layer graphene towards the 

electrochemical Hydrogen Evolution Reaction (HER). This chapter indicates the 

importance of benchmarking and studying the structural integrity stability of CVD 

graphene electrodes towards electrochemical applications and how can the creation of 

rips increase the coverage of edge plane like-sites/defects, having a direct effect on the 

electrochemical results. This chapter also indicates that multilayer graphene has more 

potential as an electrochemical platform for the HER, rather than that of mono- and 

few-layer graphene. Electrochemical perturbation, in the form of electrochemical 

potential scanning (linear sweep voltammetry), as induced when exploring the HER 

using mono-/few-layer graphene, creates defects upon the basal plane surface that 

increases the coverage of edge plane sites/defects resulting in an increase in the 

electrochemical reversibility of the HER process. This process of improved HER 

performance occurs up to a threshold, where substantial break-up of the basal sheet 

occurs, after which the electrochemical response decreases; this is due to the 

destruction of the sheet integrity and lack of electrical conductive pathways.  

5.1 Introduction  

The electrocatalytic splitting of water is considered a promising strategy for 

the production of hydrogen, which is a clean and carbon neutral fuel with potential 

applicability in a range of commercial, industrial and transportation sectors191-193. The 

production of molecular hydrogen due to the electrocatalytic splitting of water via the 

Hydrogen Evolution Reaction (HER; 2H+ + 2e- → H2) is well-known and improving 

the overall process, output and costs can give rise to a desirable future source of 

sustainable energy194.  
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Currently, platinum (Pt) is considered the most active catalyst towards the HER given 

that it has a small binding energy for the reaction to occur, resulting in the reaction 

proceeding instead at low over-potential values close to zero195-197. However, Pt is a 

precious metal with a low natural abundance in the Earth’s crust and has a prohibitive 

cost for wide-spread implementation in water electrolysers198, meaning that for this 

technology to prevail, an alternative cheaper yet still efficient catalyst is required. As 

a result of their beneficial properties (in comparison to other, more traditional 

materials)175, 199-202, there is interest in the application of 2D materials, such as 

graphene67, 203-205, graphene oxide206, and other (non)carbon nanomaterials207, to be 

explored as Pt alternatives.  

For example, Qu et al208 have reviewed the use of pristine, doped and hybrid 

graphene materials for the electrocatalytic splitting of water, indicating that graphene 

has been subjected to substantial investigation and thus implemented to undertake 

multiple roles within this area, such as being the electrochemical platform and/or as a 

functionalizable support208-217 for use within a multitude of distinct carbon-based 

hybrid catalyst. That said, there is a lack of research and understanding with respect 

to the application of graphene towards the HER in terms of the graphene structure and 

how the surface changes as a function of electrochemical perturbation.  

This chapter fully characterises, for the first time, the electrochemical performance of 

mono-, few- and multilayer graphene electrodes towards the HER, with the purpose 

of correlating the observed electrochemical behaviour to the change in the physical 

structure of the graphene surfaces using electrochemical perturbation in the form of 

electrochemical scanning (linear sweep voltammetry) and Raman analysis.  
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5.2 Results and discussion 

Attention was first turned to benchmarking monolayer graphene, without any 

further modification from the manufacturer, as an electrochemical platform towards 

the HER within acidic media (0.5 M H2SO4) as is common within the literature218, 219, 

which is the cathode in polymer electrolyte membrane (PEM) electrolysers. The 

physiochemical characterisation of the graphene sample and others are presented in 

the Supporting Information, confirming a true monolayer graphene surface.  Figure 

34A depicts scanning stability experiments using monolayer graphene towards the 

HER using linear sweep voltammetry (LSV). The initial voltammetric response 

indicates the HER reaction occurs with an onset value of ca. -0.669 V, a current 

density of -7.39 mA cm-2 and a Tafel Slope of 234 mV dec-1 (onset and Tafel slope 

calculated at an overpotential of 10 mA cm-2; vs. RHE). The HER is less 

electrochemically reversible than conventional Pt systems (30 mV dec-1), which is as 

expected due to Pt being a pure metal that has a very small binding energy for H+195, 

220; whereas pristine graphene’s surface is mostly comprised of basal planes, that are 

reported to have limited electrochemical activity3, 10, 147, 176. 

Critically, the effect of electrochemical perturbation, in terms of electrochemical 

reversibility, stability and cyclability was explored via driving the electrochemical 

potential back and forth multiple times from +0.21 to -1.2 V (vs. RHE), the region in 

which the HER occurs; this stability studies are often overlooked with the academic 

literature. Additionally after each scan, the graphene sample was interrogated with 

Raman spectroscopy to allow the direct comparison of electrochemical perturbation 

upon the graphene’s physical structure. Surprisingly, after five successive LSV scans, 

the current density was -1.60 mA cm-2 (at -0.65 V) with an onset potential of ca. -

0.859 V and a Tafel slope of 280.5 mV dec-1 (vs. RHE), showing a decrease in the 
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electrochemical HER performance. Interestingly, after electrochemical perturbation 

of ten voltammetric scans, an onset value of ca. -0.59 V and a current density at -0.65 

V of -15.11 mA cm-2 is evident, indicating an improvement in the onset potential, 

however the Tafel slope had changed to 292.0 mV dec-1. Furthermore, after a further 

ten LSV scans, meaning that a total of twenty voltammetric scans had been performed, 

an onset value of ca. -0.099 V and a limited current density at -0.85 V of -0.0014 mA 

cm-2 was exhibited, with a Tafel slope of 141.1 mV dec-1 describing poor 

electrochemical activity throughout the HER experiments, indicating an overall 

significant drop in the electrochemical current and reduced electrochemical activity. 

These changing electrochemical observations clearly suggest a physical change of the 

monolayer graphene and in the conductive pathways. In summary, the monolayer 

graphene initially gives rise to a useful electroactive graphene surface, which upon 

electrochemical perturbation and potential cycling ultimately reduces to a worse 

electrochemical response towards the HER. 

In order to understand this phenomenon, Raman mapping of the monolayer 

graphene surface was explored after each LSV scan. Figure 34 B to 34N depicts 

Raman mapping of monolayer graphene following electrochemical perturbation 

towards the HER, showing how the graphene surfaces changes in-line with the 

electrochemical data presented in Figure 34A. Figure 34B represents the typical 

Raman profile of monolayer graphene. Figures 34C, D and E depict an unused 

monolayer graphene surface, indicating that it is a good quality monolayer graphene 

surface, as demonstrated by the characteristic G and 2D Raman peaks (see Figure 34B 

and Supplementary Information for the full characterisation). Five LSV scans were 

performed and a decrease in the electrochemical performance was observed, followed 

by a mapping with Raman spectroscopy to study the surface of the electrode. Figure 
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34F, G and H show the graphene monolayer following after five voltammetric scans, 

where it is evident that the graphene sheet starts to fracture. When more scans are 

undertaken, it is apparent that one observes the presence of more rips, which correlates 

to the decreased performance. This phenomena is explored further, with a total of ten 

voltammetric scans (as depicted in Figure 34I, J and K) undertaken. The Raman 

mapping shows the increased prevalence of holes, with the presence of few and/or 

multilayer graphene areas (confirmed with Raman spectroscopy as shown in Figure 

35B and D) at the edges of the rips and surrounding the damaged areas. The 

manifestation of few- and multilayer areas is likely responsible for the improved HER 

performance (formation of H2) reported above. Notably, after twenty LSV scans, there 

is no electrochemical response and as depicted in Figure 34L, M and N, the electrode 

is completely ripped, such that there is a lack of electrical conductive pathways.



107 

 

Figure 34. Scanning stability experiments using monolayer graphene; linear sweep 

voltammetry (LSV) (scan rate: 25 mV s-1; vs. RHE; solution: 0.5 M H2SO4).  (B) 

Typical Raman profile of the monolayer graphene sheet described and presented in C, 

D and E. Optical images of monolayer graphene unused (C), after 5 LSV scans (F), 

after 10 LSV scans (I) and after 20 LSV scans (L). 2D Raman mapping of the 

monolayer graphene unused (D), after 5 LSV scans (G), after 10 scans (J) and after 20 

LSV scans (M). 3D Raman mapping of the monolayer graphene sheet unused (E), 

after 5 LSV scans (H), after 10 LSV scans (K) and after 20 LSV scans (N), all in red 
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colour and compared to the unused sheet (yellow overlay). Raman maps show 

intensity of Graphene’s G band (ca. 1590 cm-1) in order to show the presence of 

graphene. 

Given the apparent degradation of mono-layer graphene observed above and 

the presence of few- and multilayer graphene surrounding the damaged areas, total 

specific capacitance (C0) calculations are now explored in order to estimate the edge 

and basal plane coverages of respective ‘pristine’ and ‘damaged’ graphene samples. 

Total specific capacitance is calculated as described by equation 5.1, which is a 

weighted average of the edge (Ce)  and basal plane (Cb) contributions comprising the 

graphene surface186:  

C0 = 𝐶𝑒𝑑𝑔𝑒
0  𝑓𝑒𝑑𝑔𝑒 + 𝐶𝑏𝑎𝑠𝑎𝑙

0  (1- 𝑓𝑒𝑑𝑔𝑒)                                            (5.1) 

where 𝐶𝑒𝑑𝑔𝑒
0  and 𝐶𝑏𝑎𝑠𝑎𝑙

0  (in µF cm-2) are the specific weighted capacitance averages 

for edge and basal plane surfaces respectively and 𝑓𝑒𝑑𝑔𝑒 is the fraction of edge plane 

on the graphene surface. Previous studies using the basal plane of highly ordered 

pyrolytic graphite (HOPG)221 have reported specific capacitance values of ca. 1 - 2 µF 

cm-2, while the specific capacitance of edge plane orientated HOPG is ca. 70 µF cm-

2, allowing one to estimate via equation (5.1) the relative edge and basal sites of the 

graphene electrodes utilised herein. Note that previously, the specific capacitance 

values of graphene (fabricated identically to that used in this study) for 1 to 5 layers 

have been reported, with values independent to the number of layers but similar in 

range to that of basal plane HOPG222.  

Analysis of the edge and basal plane % contribution as a function of 

electrochemical perturbation (number of scans) is presented in Table 4 which indicates 

that initially (prior to the first voltammetric scan) the % edge and basal plane is 0.15 
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and 99.85% respectively. This is in agreement with the voltammetry observed in 

Figure 34, where electrochemically irreversible processes are observed due to the low 

percentage of edge plane coverage and lack of electron transfer sites. Following the 

fifth LSV scan, the surface changes to 1.24% edge plane and 98.76% basal plane, 

again correlating with the observed HER performance and Raman mapping 

experiments. A dramatic change is then observed following ten scans, where the % 

edge changes to 19.81% and the basal plane to 80.19% respectively, indicating that 

the graphene surface has a substantial edge plane coverage and thus substantial 

increase in sites available for fast electron transfer to occur. This agrees with the LSV 

presented within Figure 34, where the voltammetric signature becomes more 

electrochemically reversible. After 20 LSV scans, the % edge plane changes to 8.29 

% and the % basal plane to 91.71 %. Note that adhesively cleaved HOPG has 1-10 % 

edge plane surface coverage20, 149, 223 suggesting that the mono-layer graphene 

becomes similar akin to defect free HOPG. The deduced relative edge and basal plane 

values support the data observed via LSV and Raman mapping, demonstrating how  

 the mono-layer graphene dramatically changes over the course of the HER 

process,  which has not been reported before.  

 Table 4. Determination of the % edge plane sites and % basal plane sites upon the 

monolayer graphene sheet/electrochemical platform. Cyclic voltammograms were 

performed within a non-Faradaic region between -0.16 and +0.26 V at different scan 

rates (0.1, 0.2 and 0.5 V s-1 (vs. RHE)) and analysed to deduce the average specific 

Scan 

Number 
Average specific 

capacitance / µF 

Relative edge plane 

% 
Relative edge 

basal % 

1 0.90 0.15 % 99.85 % 

5 1.86 1.24 % 98.76 % 

10 12.67 19.81 % 80.19 % 

20 6.72 8.29 % 91.71 % 
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capacitance and allow the calculation of the edge and basal plane contributions as 

described by equation (5.1). Solution composition: 0.5 M H2SO4 (degassed using 

nitrogen). 

A schematic representing the observed changes to the physical surface of 

monolayer graphene when applied towards the HER is summarised within Figure 35. 

As the monolayer graphene rips via electrochemical use it is evident that the edges of 

the holes sometimes fold upon themselves, as is shown in Figure 35A and 35B. In 

these instances the graphene is then present as double layer (as evident in the Raman 

spectra; note, such spectra is not present prior to electrochemical testing), giving rise 

to increased edge plane content34. Figure 35C shows the Raman profile of the damaged 

graphene sheet, where there is no presence of the typical G and 2D peaks of the pristine 

graphene, which usually occur at ca. 1590 cm-1 and 2690 cm-1 respectively110, instead 

only background noise is present due to the SiO2/Si wafer onto which the graphene 

was suspended. Given the above insights, the observed initial improvement in the 

electrochemical performance of monolayer graphene is most likely due to an increase 

in the planar edge density when a hole is created and the surface is ripped (as depicted 

schematically in Figure 35E), after which and with continued ripping the hole becomes 

too extensive such that there is a loss of the electrical conductive pathways and 

effectively the graphene sheet ‘disintegrates’ with no further recordable 

electrochemical signal. 
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Figure 35. Mono-layer graphene stability schematic under HER consecutive 

scanning. (A) Monolayer graphene following 20 HER LSV scans. Part (B) depicts the 

Raman profile near a hole, showing that it is few-layer graphene, with the 

characteristic ratio of the G/2D peaks near to 1:1. (C) Depicts the Raman profile of a 

broken area where there is no characteristic graphene peak (or signal) present. (D) 

Shows the Raman profile of an intact area where there is monolayer graphene 

including its typical G (1590 cm-1) and 2D (2690 cm-1) peaks. (E) Is a schematic 

representation of the behaviour identified within this figure (A–D), where the 

emergence of a bubble on the graphene surface (due to the HER) leads to the creation 

of some rips when the bubbles move and disperse. The debris created due to the 

graphene breakdown is stacked in areas near to the holes/rip. When many bubbles 

explode, there is an incremental rise of the edge sites caused by the broken graphene 

pieces, which eventually lead to the complete destruction of the graphene sheet. 
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The behaviour observed in Figures 34 and 35, and in Table 4 and Figure 38 

depict the evolution of a graphene monolayer during the HER, where holes are created 

due to interfacial friction forces caused by H2 bubbles growing on top of the graphene, 

with an estimated value of 4.8 x 10-7 mm3 to 1.1 x 10-3 mm3 (supported by Figure 38 

and Table 5 in the supplementary information), after which such bubbles exploded, 

inducing a cavitational collapse upon the graphene surface, which is likely asymmetric 

in nature upon the graphene surface, contributing to its physical degradation. This is 

akin to that observed in sonoelectrochemistry. The broken graphene debris likely folds 

onto itself due to Van der Waals forces, creating a quasi224 or multilayer graphene area 

surrounding the edges of the hole (supported with Raman spectroscopy), which leads 

to an increase in electrochemical behaviour at first (as shown in Figure 34A). 

Following that, when the hole is enlarged due to further scanning of the electrode, via 

LSV, the breakdown of the basal layer leads to the creation of more edge plane sites 

(supported by capacitance tests), hence there is a reduction in the overall 

electrochemical behaviour or even the full destruction of the graphene monolayer. 

Note that it has been previously reported that Chemical Vapour Deposition (CVD) 

graphene and SiO2 substrates have different wettability properties, although 

underlying substrates do not seem to affect the wettability of such graphene225; in the 

presence of graphene with rips and holes as this chapter reports, is likely that the 

different areas might have different wettability, such effect needs further explorations 

and will be investigated in the future. 

In order to gain further insights, it is interesting to compare the above results 

with few- and multilayered graphene, applying the same analysis of stability and 

cyclability experiments towards the HER. Thus, it is next investigated if the 
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thickness/number of layers of the graphene layers has an impact on the structural 

integrity.  

Few- and multilayer graphene electrodes were explored towards the HER (as shown 

in Figures 36A and 37A respectively). Few-layer graphene was tested for a maximum 

of thirty voltammetric scans, showing a change in the current density (at -0.85 V) from 

–0.065 mA cm-2 to -0.0042 mA cm-2. In contrast, the multilayer graphene sheet 

increased its current density from -0.028 mA cm-2 to -0.41 mA cm-2 when scanned for 

one hundred times. Evidently, the surface of few-layer graphene is susceptible to 

similar surface changes as observed with monolayer graphene (but to a less significant 

degree than the latter), whereas multilayered graphene remains unaltered and stable 

throughout experiments (with an intrinsic resistance to such surface changes 

apparent). 
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Figure 36. Scanning stability experiments using few-layer graphene; linear sweep 

voltammetry (LSV), scan rate: 25 mV s-1; vs. RHE; solution: 0.5 M H2SO4. (B) Typical 

Raman profile of the few-layer graphene described and presented in C, D and E. 

Optical images of a few-layer graphene unused (C), after 10 LSV scans (F), after 20 

LSV scans (I) and after 30 LSV scans (L). 2D Raman mapping of the few-layer 
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graphene unused (D), after 10 LSV scans (G), after 20 LSV scans (J) and after 30 LSV 

scans (M). 3D Raman mapping of the few-layer graphene unused (E), after 10 LSV 

scans (H), after 20 LSV scans (K) and after 30 LSV scans (N), all in red colour and 

compared to the unused sheet (yellow overlay). Raman maps show intensity of 

Graphene’s G band (ca. 1590 cm-1) in order to show the presence of graphene. 
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Figure 37. Scanning stability experiments using multilayer graphene; linear sweep 

voltammetry (LSV), scan rate: 25 mV s-1; vs. RHE; solution: 0.5 M H2SO4. (B) Typical 

Raman profile of the multilayer graphene described and presented in C, D and E. 

Optical images of a multilayer graphene unused (C), after 30 LSV scans (F), after 50 

LSV scans (I), after 70 LSV scans (L) and after 100 LSV scans (L). 2D Raman 

mapping of the multilayer graphene unused (D), after 30 LSV scans (G), after 50 LSV 

scans (J), after 70 LSV scans (M) and after 100 LSV scans (P). 3D Raman mapping 

of the multilayer graphene unused (E), after 30 LSV scans (H), after 50 LSV scans 

(K), after 70 LSV scans (N) and after 100 LSV scans (Q), all in red colour and 

compared to the unused sheet (yellow overlay). Raman maps show intensity of 

Graphene’s G band (ca. 1590 cm-1) in order to show the presence of graphene. 
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It is now turn to analyse the surface of the few- and multilayer graphene 

electrodes with Raman mapping spectroscopy. In order to study how the number of 

layers affects the integrity of the graphene sheet when utilised in electrochemistry, as 

depicted in Figure 36 and 37 respectively. 

The few-layer graphene electrode is confirmed to be a continuous good quality 

sheet via the Raman and optical images that are presented. Electrochemical scanning 

the HER potential window ten times evidently creates holes in the sheet, as shown in 

Figure 36F, G and H. Following an additional twenty scans, a major damaged area is 

evident on the electrode surface, which is confirmed with Raman spectroscopy in 

Figure 36L, M and N; however, one must be aware that the disruption to the electrode 

surface is not to the same extent as that observed previously with monolayer graphene 

as it is likely that underlying layers dissipate the effect of lost layers and hence a loss 

in electrical conductivity.  

Finally, multilayer graphene was analysed via Raman mapping and shown to 

be approaching the structural configuration of graphite (see Figure 37B), as confirmed 

in Figure 37C, D and E. Note that although minor changes to the electrode surface are 

observable following fifty LSV scans of the HER potential window, this remains 

unchanged up to one hundred scans (Figure 37F to 37Q). Clearly however, the Raman 

maps remain unaltered and there is little change in the HER performance observed, 

such that with the multilayered graphene electrode there appears to protect against the 

increase of holes. The origin of this maintained integrity is likely that of the underlying 

graphene layers (when exposed due to the failure of the upper most layers) reacting 

identically to the first layer and thus maintaining the observed response. 
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5.3 Conclusion 

In summary, this chapter indicates that mono- and few-layer graphene, when 

used as electrodes toward the HER break-up when an electrical current is applied to 

them during electrochemical HER experiments performed within aqueous solution. 

The mechanism of which is first ripping of the film due to the evolution of H2 (i.e. 

bubbles), creating surface defects due to frictional forces and a larger edge plane % 

(i.e. causing an observed improved response), after which ultimately the integrity of 

the graphene film as a whole is not viable and the electrical conductive pathways are 

disrupted and result in a loss of electrochemical signal. This response is mirrored with 

few-layered graphene structures, but not to the same extent. Conversely, multilayered 

graphene structures do not present this phenomena and remain stable (HER values and 

film integrity) after HER scanning for an extensive number of scans. These findings 

are of high importance to those working in the graphene energy field, particularly for 

those designing and implementing graphene electrical components given that the sheet 

integrity is questioned herein and this report shows that pristine graphene is not a 

beneficial electrode material towards the HER. 
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5.4 Experimental 

The tested solutions were 0.5 M H2SO4. Working electrodes were: commercially 

obtained chemical vapour deposition (CVD) synthesised mono-layer, a few-layer 

(quasi-graphene) and multilayer-graphene films supported on an oxidised silicon 

wafer. A Pt wire counter/auxiliary electrode and a silver/silver chloride (saturated 

Ag/AgCl; +0.210 V vs. RHE) reference electrode completed the circuit.  

The commercially available CVD synthesised graphene films, that have been 

used in our previous work16, 34, 226, were obtained from ‘Graphene Supermarket’ 

(Reading, MA, USA)227 and are known as ‘graphene on 285 nm SiO2 Wafer’ and have 

been previously reported and characterised in the literature47, 118, 119, 226; the exact 

details are proprietary information227. Note that full physicochemical characterisation 

(Raman spectroscopy and X-ray photoelectron spectroscopy (XPS)) of the various 

graphene samples utilised within this work is reported in the Supplementary 

Information. 

Raman Mapping Spectroscopy data was performed using a DXR Raman 

Microscope (Thermo Scientific, UK) fitted with a 532 nm excitation laser at a low 

power of 3 mW to avoid any heating effects. Spectra were recorded using a 3 seconds 

exposure time for 3 accumulations at each point. To collect the map a step size of 

75×75 µm and a Raman profile between the region of 1050 and 3300 cm-1 was 

employed. Raman maps show intensity of Graphene’s G band (ca. 1590 cm-1) in order 

to show the presence of graphene. 
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5.5 Supporting Information 

 Table 5. Hydrogen bubble size growth generated in-situ while performing 

chronoamperometry, potential held at -1.2 V (vs. RHE), using monolayer graphene. 

Data clearly shows the evolution of a single hydrogen bubble from its initial 

generation to its explosion. Note that the measurement of the bubble started once it 

was big enough to be analysed with the optical microscope, therefore it is timed that 

initial measurement as ‘time 0 seconds’. 

Figure 38. Snapshot from an in-situ video recorded while performing 

chronoamperometry, (potential held a -1.2 V (vs. RHE)) using monolayer graphene 

clearly showing the evolution of hydrogen bubbles on top of the graphene electrode 

over the following time periods: 0 (A) (zero as initial measurement time), 1 (B), 4 (C), 

14 (D), 45 (E) and 67 (F) seconds. Video recorded from the top of the graphene during 

the electrochemical experiment. 

Time / s Diameter of bubble / µm Volume of bubble / mm3 

0.0 9.7 4.8 x 10-7 

1.0 36.4 2.5 x 10-5 

3.0 54.9 8.7 x 10-5 

5.0 77.1 2.4 x 10-4 

20.0 151.8 1.8 x 10-3 

45.0 219.9 5.6 x 10-3 

72.5 272.8 1.1 x 10-2 
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The physicochemical characterisation of the batch graphene samples used in 

this work and their characterisation is reported below.  

Atomic force microscopy (AFM) characterisation of the batch graphene samples used 

in this work including the monolayer and multilayer graphene have been reported 

previously by Brownson et al.34. Furthermore, X-ray photoelectron spectroscopy 

(XPS) has previously been performed on these batch samples revealing the monolayer 

graphene to comprise of an O/C ratio of ca. 0.05, which is consistent with that of a 

low oxygen content of the graphene domain and thus is indicative of being pristine 

(aka pristine graphene)186. In the case of the multilayer graphene samples, XPS reveals 

a O/C ratio of ca. 0.07, that is again consistent with inferences gained through Raman 

spectroscopy (see later) and indicates that the this material is comprised of pristine 

graphene.  

Raman characterisation of the batch mono-, few- and multilayer graphene electrode 

normalised to the G peak were performed and are as depicted in Figure 39. The Raman 

spectra of the graphene films confirms the G (ca. 1550 cm-1) and 2D (ca. 2680 cm-1) 

characteristic peaks that allow us to quantify the number of graphene layers. The 

Raman spectra of the monolayer graphene sheets reveals that the full width at half-

maximum (FWHM) of the 2D band corresponds to 34.72 cm-1, which upon exploring 

the literature110, 228 indicates that our batch samples are comprised of single layer of 

graphene; additionally the intensity ratio G/2D of 0.72 suggests that the graphene 

samples are comprised of monolayer due to the lower intensity of the G band in 

relation to the 2D peak. The Raman spectrum of the few-layer graphene films reveals 

an intensity ratio of G/2D of 1.00 suggesting that the electrode is comprised of dual-

layer graphene, but as there are occasional multilayer islands; it is therefore named 

herein as “few-layer” graphene. The Raman spectrum of the multilayer graphene 
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reveals an intensity ratio of G/2D of 1.76 suggesting that such electrode is comprised 

of multilayer graphene. 

Figure 39. Raman characterisation of mono-, few- and multilayer graphene utilised 

within this work. Raman is performed with a 532 nm excitation laser at a low power 

of 3 mW to avoid any heating effects. Spectra were recorded using a 3 seconds 

exposure time for 3 seconds exposure time for 3 accumulations at each point. 
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Chapter 6: Investigating the Integrity of Graphene towards the 

Electrochemical Oxygen Evolution Reaction (OER) 

This chapter investigates mono-, few- and multi- layer graphene towards the 

electrochemical Oxygen Evolution Reaction (OER). This work indicates the 

importance of the scan rate and potential limits applied to graphene electrodes in 

addition to the relationship between the number of layers and structural integrity. 

Raman mapping characterisation is performed, revealing that the structure of graphene 

is damaged due to the electrochemical perturbation of the OER. The performance of 

mono- and few- layer graphene electrodes gradually decrease with consecutive OER 

scans, with the process damaging the graphene sheet, after which there is a loss in the 

electrochemical signal and the electrically conductive pathways. Importantly, the 

severity of these changes is dependent on the potential and chosen scan rate that is 

applied to the graphene electrode. Contrary however, multilayer graphene’s initial 

performance towards the OER process improves after the first few scans, which is 

likely due to an increase in the coverage of edge plane sites/defects and underlying 

layers maintaining electrical contact.  This work highlights the impact of establishing 

the correct experimental conditions when applying CVD graphene towards 

electrochemical applications, and how parameters such as gas formation, potential 

limits, scan rate and surface characterisation are important parameters to take into 

account when one is applying CVD graphene towards electrochemical/energy 

applications. 

6.1 Introduction  

Water oxidation, namely the oxygen evolution reaction (OER), is part of the 

water splitting reaction and involves a complex process with a solid catalyst, 

electrolyte, and both gas-/liquid-phase reactants and products229, 230. The OER is 

recognized as a very sluggish reaction in water electrolysis for clean hydrogen energy, 
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due to not being kinetically favored and usually requires precious iridium- or 

ruthenium-based catalysts to reduce the overpotential231. Water splitting consists of 

the reaction of water molecules to form molecular hydrogen and molecular oxygen, 

usually described as two half reactions: at the cathode, protons are reduced to 

hydrogen (hydrogen evolution reaction; HER); and at the anode, water is oxidized to 

oxygen (oxygen evolution reaction; OER). The OER involves four proton-coupled 

electron transfers and oxygen-oxygen bond formation in acidic conditions: 2H2O → 

O2 + 4H+ + 4e-. In alkaline conditions the OER involves four hydroxyl groups (OH-) 

being transformed into H2O and O2 molecules with four electrons involved 4OH- → 

O2 + 2H2O + 4e-.  

Currently, there is significant research interest into studying the fundamentals 

of the OER in order to obtain more active catalysts232-236. At the same time, the key to 

developing mass-producible and economical fuel cells is realizing the use of 

nonprecious metals as highly active catalysts237-241. Recently, carbon-based materials 

have been reported to be a viable source for durable and affordable OER catalysts242. 

A promising alternative is the combination of carbon-nitrogen with the high activity 

of earth-abundant transition metals (such as Co, Ni, Mn, Fe etc.)243-247. It is also 

important to consider that thick carbon shells have been reported to obstruct the 

electron transfer from metals to carbon, reducing the catalytic activity of the 

catalyst248, 249. As a result, there is interest in developing graphene-based catalysts 

using innovative strategies including surface functionalization250, geometric 

arranging251 and heteroatom doping252. There is therefore a need to fundamentally 

understand the intrinsic relationship of the graphene structure (mono-, few- and 

multilayer) correlated to electrochemical performance. 
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Herein, it is explored and fully characterise the electrochemical stability of 

mono-, few- and multi-layer Chemical Vapour Deposition (CVD) grown graphene 

electrodes towards the OER, with the purpose of finding the origin of 

physical/structural changes in pristine graphene and with importance to future 

graphene-based OER catalysts. 

6.2 Results and discussion  

Attention was first turned to benchmarking mono-, few- and multi-layer (basal 

plane) graphene as an electrode platform towards the OER within alkaline media (0.1 

M KOH), as is common within the literature253. Figure 40 shows electrochemical 

scanning stability experiments using mono-, few- and multi-layer graphene electrodes 

towards the OER after five OER linear sweep voltammetry (LSV) scans (from +0.21 

to +1.61 V; Scan rate: 25 mV s-1, vs. RHE). As one can see in Figure 40A, the 

electrochemical performance of mono-layer graphene towards the OER decays when 

successive scans are completed; note also that the electrochemical signal of the first 

scan is affected by bubbles being formed upon the graphene electrode’s surface, which 

are oxygen bubbles being formed as a result of the OER occurring at edge plane 

sites/defects upon the basal plane graphene surface.  

The first OER scan using the mono-layer graphene has a current of 3.13 µA cm-2 (at 

+1.61 V, vs. RHE), after which there is a significant decrease to 2.24, 1.78, 1.58 and 

0.29 µA cm-2 (at +1.61 V) for the successive five scans respectively, indicating a decay 

in the electrochemical current and reduced electrochemical activity. These changing 

electrochemical observations clearly suggest a physical change of the mono-layer 

basal plane electrode and in the conductive electron pathways. In the case of few-layer 

graphene towards the OER, as depicted in Figure 40B, shows a gradual decrease in 

the electrochemical performance during 5 individual LSV scans (from 11.3 µA cm-2 



127 

 

at the first scan down to 0.852 µA cm-2 (at +1.61 V) at the fifth scan), similar to the 

case observed with mono-layer graphene. Finally the electrochemical response of 

multi-layer graphene, as shown in Figure 40C, the current increases when further scans 

are performed from 108 µA cm-2 to 3234 µA cm-2 (at +1.61 V; vs. RHE) at the fifth 

scan, having a similar LSV profile and values between the 30th and 50th consecutive 

scans, where the electrochemical performance stabilises.  

Figure 40. Scanning stability experiments of mono- (A), few- (B) and multi-layer 

graphene (C); linear sweep voltammetry (LSV) from 0 to +1.61 V; Scan rate: 25 mV 

s-1; vs. RHE; Solution: 0.1 M KOH. 

In Figure 41 the Raman mapping characterisation and optical images from the 

graphene samples/electrodes in Figure 40 can be observed. It is clear that the mono- 

and few-layer basal plane graphene surfaces are mostly damaged and show the lack of 

characteristic Raman peaks, which usually occur at ca. 1590 cm-1 and 2690 cm-1 

respectively; such peaks are evident prior to experimental probing110 after 5 LSV 

scans. Conversely, the multi-layer graphene electrode remains mostly unaltered across 

its surface throughout experiments, evidenced by to the optical and Raman mapping 

characterisation (showing an inherent resistance to such surface changes). 
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Figure 41. Scanning OER stability experiments using mono-, few and multi-layer 

graphene; Mono-layer graphene (A to F) showing an optical image, its Raman profile 

and 3D Raman map (A, B and C respectively) of the unused mono-layer graphene. 

Mono-layer graphene after 5 LSV OER scans optical, its Raman profile and 3D Raman 

map (D to F respectively). Few-layer graphene (G to L) showing an optical image, its 

Raman profile and 3D Raman map (G to I) of the unused few-layer graphene. Few-

layer graphene after 50 LSV OER scans optical, its Raman profile and 3D Raman map 

(J to L). Multi-layer graphene (M to R) showing an optical image, its Raman profile 

and 3D Raman map (M to O) of the unused multi-layer graphene. Multi-layer 

graphene after 5 LSV OER scans optical, its Raman profile and 3D Raman map (P to 

R). 
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Attention was then turned to considering how the different scan rates applied 

to the electrode surface can affect the structural integrity of the mono-layer graphene. 

Note that this is a common approach to characterize the electrochemical performance 

of an electrode material (voltammetric scan rate study) to determine the heterogeneous 

electron transfer kinetics, providing an electrochemical benchmarking of the graphene 

electrode under investigation. Figure 42 shows the optical images and Raman maps of 

both ‘unused’ and ‘used’ (following 5 LSV OER scans) electrodes, after being used at 

different scan rates (2.5, 25, 250 and 2500 mV s-1). The damage created on graphene 

surfaces is evident, the degree of damage is related to the scan rate applied. It is clear 

that faster scan rates create extended damage on the surface of the electrode, having a 

more focused or confined damage pattern than when slower scan rates are applied. 

Interestingly, similar microstructural and compositional surface fragmentation have 

been previously reported in graphite electrodes, due to prolonged and variable scan 

rates potential cycling when exploring Li-ion storage applications254-256. This could 

suggest, that in-situ generated gas bubbles and Li-ion intercalation move along the 

surface of graphitic films creating similar defects/damage to the surface of the 

electrode. 
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Figure 42. Scan rate OER stability experiments using mono-layer graphene at 2.5 (A), 

15 (B), 250 (C) and 2500 (D) mV s-1, showing the Raman mapping characterisation 

before and after 5 LSV OER scans and optical image of the electrode after the 5 LSV 

OER scans. (Solution: 0.1 M KOH; vs. RHE). 

Next, chronoamperometry (CA) was utilised in order to analyse the origin of 

the breakup of graphene’s structure when applied towards the OER. Herein, a fixed 

potential was held for 280 seconds, which corresponds to the same amount of time as 

the electrode using in the scanning stability studies at 25 mV s-1 (Figures 41 and 42). 

In Figure 43, CA studies are performed at +0.61, +1.01 +1.41 and +1.61 V (vs. RHE) 

for samples named 1 to 4 of mono-layer graphene respectively, showing optical 

images, Raman profiles and Raman mapping characterisation for each sample ‘before’ 

and ‘after’ applying the fixed potential. Sample 1 and 2 (Figure 43A to F and 43G to 



132 

 

L respectively) have the typical Raman peaks in their profiles both before and after 

being used; although some localized damage can be seen. Sample 3 (Figure 43M to 

R) shows the presence of a continuous graphene sheet after being used for 280 seconds 

at +1.41 V, however upon inspection of the Raman profile one can observe the 

presence of a graphene D band (ca. 1350 cm-1) that corresponds to defects in the lattice 

structure, similar to that observed in graphene quantum dots257-260 (GQD; sometimes 

also called nanographene261) or ozonolyzed CVD graphene262. Sample 4 (Figure 43S 

to X) shows a large damaged area after holding +1.61 V (vs. RHE) for 280 seconds, 

in addition to the presence of the characteristic D band/peak (ca. 1350 cm-1) previously 

described in Sample 3. 
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Figure 43. Chronoamperometry stability experiments using mono-layer graphene, 

holding a fixed potential at 0.61 V (A to F), 1.21 V (G to L), 1.41 V (M to R) and 

+1.61 V (S to X), showing optical images and Raman mapping characterisation before 

and after holding the fixed potential for 280 seconds (Solution: 0.1 M KOH; vs. RHE). 

As shown above, clearly, an important factor to consider in terms of material 

integrity in the OER in the degradation of the graphene sheet is the physical movement 

of the generated oxygen bubbles themselves, which are generated at edge plane 

sites/defects. Electrochemical systems have been reported to suffer poor management 

of evolving gas bubbles263. Gas formation can be divided in four stages that occur 

simultaneously on the surface of the electrode: nucleation, growth, detachment and 

rise264, 265. In order to capture the graphene damage due to O2 evolution, as a result of 

the OER occurring at the various graphene electrodes/surfaces, as it takes place, an in-

situ video was captured, showing a mono-layer graphene electrode while a CA was 
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applied (at +1.61 V, vs. RHE). Figure 44 depicts screen captures taken from the 

aforementioned video, showing the graphene surface and the nucleation, growth and 

detachment of O2 at ten, twenty, thirty and forty seconds (Figures 44A, B, C and D 

respectively) since the fixed potential is applied. One can see the direct damage created 

to the surface of the mono-layer graphene when a bubble is nucleating, growing and 

coalescing with other bubbles and while moving across the electrode.  Large bubbles 

act as collectors, attracting smaller growing bubbles, inducing mechanical forces, heat 

transfer and mass diffusion due to supersaturation of surrounding liquid solution266 

and are likely the reason of the collapse of the graphene integrity.   
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Figure 44. Captions extracted from an in-situ video recorded while performing 

chronoamperometry (potential held a +1.61 V (vs. RHE)), using mono-layer graphene. 

Captions show the evolution of hydrogen bubbles over the following time periods: 10 

(A), 20 (B), 30 (C) and 40 (D) seconds. Black arrows indicate the movement of the 

bubbles damaging the surface of the electrode. 
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Figure 45 presents a schematic overview of the proposed mechanism of 

degradation of the mono- and few-layer graphene electrode, which shows that the 

detachment or departure of bubbles from the electrode’s surface can also cause 

damage to the electrode. Once a bubble grows, fuelled at the edge plane sites/defects 

via the OER reaction, large enough to reach a critical volume, at which the flotation 

force surpasses the interfacial tension between the oxygen filled gas bubble and the 

electrode surface, the bubble will detach or collapse from the surface of the electrode 

into the bulk solution. The collapse of the bubble can lead to surface cleaning, via 

frictional forces as it is “filled” at active edge plane sites/defects, or in addition, to 

surface cavitation, ablation and/or fracture267. It is inferred herein that this is the 

mechanism that results in the degradation of graphene surfaces, rather than graphene 

not being able to support such large over-potentials. It is likely that the mechanism for 

breakup of the graphene sheet occurs due to three contributing factors: i) given that 

the graphene structure is too thin/fragile on the macro-scale, it cannot accommodate 

the charge/current passed through it; ii) bubbles are formed on the surface of the 

graphene sheet and break it via frictional forces and when the bubbles collapse (as 

described above); and iii) bubbles evolve from underneath the graphene sheet (which 

is unlikely). Currently, there is no way to de-convolute the degradation process from 

that of bubbles generation/surface motion from that of charge instability, but we 

inferred the former based upon observations (Figure 44) and note that the predominant 

mechanism is likely that of (ii) the bubbles formed upon the graphene surface and the 

resultant physical forces induced. 
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Figure 45. Monolayer graphene stability schematic under OER consecutive scanning, 

showing bubbles growing, merging and collapsing inducing structural damage in the 

surface of the mono-layer graphene electrode. 
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The data presented herein has shown the damage sustained to a graphene 

structure when applied as an electrode material towards the OER. This damage is 

directly dependent on the number of layers comprising the graphene electrode, the 

applied voltage (voltages higher than +1.41V, vs. RHE, in this case) and scan rate 

applied (faster scan rates create more extensive damage). This behaviour indicates that 

the generation and movement of O2 bubbles results in the graphene surface first 

becoming defective (according to the presence of a D band in its Raman profile) and 

later collapsing/breaking-up completely. Note that it has been reported previously that 

mono- and few-layer CVD graphene is not a beneficial electrode material towards the 

HER due to the generation of H2 bubbles (see Chapter 5 of this thesis); although at 

first its response improves the electrochemical reversibility of the reaction due to an 

increase in the edge-site/defect coverage prior to electrochemical cycling damaging 

the electric pathway. In this case of this chapter, the application of CVD graphene 

towards the OER induces the creation of defects on/across the electrode’s surface, 

likely due to the generation and movement of O2 bubbles, creating rips, holes and 

defect-dense graphene domains akin to nano-ribbon like structures, which finally 

disrupt the conductive pathway, ultimately resulting in a loss of electrochemical 

signal. 

6.3 Conclusion 

The behavior described in this chapter shows, for the first time, that mono- and 

few-layer CVD graphene electrodes break-up when utilised towards the OER. The 

mechanism in which the graphene structure rips occurs when potentials more positive 

than +1.41 V (vs. RHE) are reached. Evidence of small fragments of graphene/nano-

ribbon like structures were found, according to the Raman characterisation, when a 

potential of +1.41 V is held for prolonged time. More positive potentials fixed for the 



139 

 

same period of time (as per cycling potential exposures) created extended damage on 

the mono-layer graphene sheet. The scan rate applied on the electrode surface also has 

an effect on the stability of the reaction, creating more damage when faster scan rates 

are applied. This reported response (or instability) is evident at both CVD mono- and 

few-layer graphene electrodes, what is important however, is that multi-layer graphene 

does not present the same inherent limitations, with this material remaining stable after 

OER scanning for a larger number of consecutive scans. These findings are relevant 

to those working with CVD graphene at high potentials, given that the integrity of the 

material’s structure is compromised, it is evident that CVD mono-and few-layer 

graphene are not suitable electrode materials towards the OER. Such work is of 

fundamental importance when graphene surfaces are use either “as is” or as the basis 

of catalyst as used in the OER. 
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6.4 Experimental information 

The tested solutions were 0.1 M KOH. Working electrodes were: commercially 

obtained Chemical Vapour Deposition (CVD) synthesised mono-layer, a few-layer 

(quasi-graphene) and multilayer-graphene films supported on an oxidised silicon 

wafer. A Pt wire counter/auxiliary electrode and a silver/silver chloride (saturated 

Ag/AgCl; converted to vs. RHE using the factor +0.210V vs. RHE) reference electrode 

completed the circuit. 

The commercially available CVD grown graphene films, that have been used 

in our previous work16, 34, 226, 268, were obtained from ‘Graphene Supermarket’ 

(Reading, MA, USA)227 and are known as ‘graphene on 285 nm SiO2 Wafer’ and have 

been previously reported and characterised in the literature47, 118, 119, 226, 268; the exact 

details are proprietary information227. Note that full physicochemical of the various 

graphene samples utilised within this work have been previously reported and 

characterised268.  

Raman Mapping Spectroscopy data was performed using XploRA PLUS 

(Horiba, UK) fitted with a 638 nm excitation laser at a low power of 3 mW to avoid 

any heating effects. Spectra were recorded using a 5 seconds exposure time for 1 

accumulations at each point. To collect the map a step size of 40×40 µm and a Raman 

profile between the region of 1300 and 3200 cm-1 was employed, mapping a circular-

shaped area of 2.6 mm of diameter.  3D Raman map figures depict the intensity of the 

characteristic Raman G band for graphene (ca. 1590 cm-1) recorded from their full 

Raman spectra. 

Graphene Raman characterisation 

Raman characterisation of the batch mono-, few- and multilayer graphene 

electrode normalised to the G peak were performed and are as depicted in Chapter 5, 

Figure 39. 
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Chapter 7: Tailoring the electrochemical properties of 2D-hBN via 

physical linear defects: physicochemical, computational and 

electrochemical characterisation 

This chapter considers physicochemical, computational and electrochemical 

characterisation techniques towards identifying the electrochemical activity of 

monolayer hexagonal-boron nitride films (2D-hBN). 2D-hBN films are typically 

reported within the literature to be electrochemically insulating due to their 

considerable band gap; however this chapter shows that the formation of physical 

linear defects (PLD) on the basal plane surface can lead to the full hydrogenation of 

the 2D-hBN sheets, which can also lead to oxygen passivation of the boron and/or 

nitrogen at its edge sites; this in turn causes a decrease in the band gap (from ca. 6.11 

to 2.36/2.84 eV, calculated Density Functional Theory (DFT) values). 2D-hBN films 

with such defects are shown to be electrochemically active, this behaviour is 

dependent directly upon the coverage of edge plane-sites/defects and this is correlated 

with the electrocatalytic activity towards Hexaammineruthenium (III) chloride 

(RuHex), Fe2+/3+ and the Hydrogen Evolution Reaction (HER). This chapter de-

convolutes, for the first time, the fundamental electron transfer properties of 2D-hBN, 

demonstrating that through implementation of physical defects one can tailor the 

properties of this material. It is also shown in this chapter how other 2D materials such 

as 2D-hBN can be tailored and applied for electrochemical applications by simple 

surface modifications. 

7.1 Introduction  

Two-dimensional (2D) nanomaterials came into the spotlight after Novoselov 

and Geim first isolated a mono-layer of the carbon honeycomb lattice structure, 

‘graphene’ in 200425, and have since gained more traction following the award of their 

Nobel prize in 2010.  
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Boron nitride (BN) is a structural analogue of graphite, in which an equal 

number of boron and nitrogen atoms form a honeycomb lattice structure70 of sp2 

bonded layers71. This structure is not found naturally and was first synthesised by 

Balmain72, 73 in 1842. Hexagonal boron nitride (2D-hBN) is a structural analogue of 

graphene and has high thermal conductivity and robustness to oxidation74, which 

historically has allowed it to be used as a lubricant75-77. 2D-hBN has also been utilised 

to improve the mechanical properties of composites, even at low percentages78-80, 

when added as few layered nanosheets due to its low density and good 

thermal/chemical stability81-83.  

As reported within the literature, electrically, 2D-hBN (see Figure 52A) has a 

wide band gap (ca. 5.2-5.8 eV)84, 85, which makes it classed as an electrical insulator85, 

thus it is widely applied as a charge leakage barrier-layer in electronic equipment71, 86. 

Interestingly, 2D-hBN has also been used to tailor the band gap of graphene (creating 

graphene-hBN interfaces)86-97 and another approach to decreasing/modifying 2D-

hBN’s band gap is creating thin strips of single layered 2D-hBN nanosheets; thus 

producing nanoribbons (NRs) (see Figure 52B), which contain a honeycomb lattice 

with either armchair or zig-zag edges that possess active dangling bonds98. The 

electronic properties of such nanoribbons are strongly affected by edge termination 

structures, reconstructions and functionalization99, 100 and recently several reports have 

indicated the inherent electrocatalytic behaviour of 2D-hBN101, 102. Moreover, Golberg 

et al.269 reported that 2D-hBN-NRs become semiconductors due to doping-like 

conducting edge states and vacancy defects. Furthermore, by controlling the 

hydrogenation ratio, the electronic and magnetic properties of zig-zag–terminated 2D-

hBN-NRs can be precisely tailored, modulating their band gap270. Most recently in 

electrochemistry however, 2D-hBN has been explored computationally as a potential 
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electrocatalyst towards the Oxygen Reduction Reaction (ORR) (when 

computationally supported upon Co, Ni or Cu substrates), where it was shown that the 

underlying metal support highly influences the electrochemical behaviour of the 2D-

hBN271. In other work, Uosaki et al. reported 2D-hBN powder immobilised upon gold 

electrodes showing activity towards the ORR272, proving previous theoretical 

predictions, and Khan et al. have reported 2D-hBN powder to be sensitive to the 

substrate roughness102 and surfactant content101 towards the ORR. In terms of 

electrochemical properties, Li recently developed a nano-flake hBN supported on a 

glassy carbon electrode (hBN/GCE) towards the detection of ascorbic acid, dopamine 

and uric acid, which exhibited wide linear ranges, a low limit of detection and 

outstanding anti-interference ability, making it a potential candidate for sensor 

devices273. 

In order to de-convolute and understand the electrochemical properties of 2D-

hBN, this chapter utilises CVD grown 2D-hBN (supported upon SiO2), in comparison 

to 2D-hBN in powder form used in all the above, allowing full control of the surface 

morphology which is studied with physicochemical, computational supported and 

electrochemical characterisation. It is demonstrated herein, that the electrochemical 

response of 2D-hBN can be tailored through the introduction of physical linear defects 

(PLDs) upon the surface of the 2D-hBN, which transforms this previously 

electrochemically inert material into one that gives rise to electrochemically useful 

signatures/activity. Importantly, given that the current accepted model of 2D-hBN is 

that of being an insulator/inert material within electrochemical applications, this 

chapter shows that its behaviour is more complex than initially reported. 
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7.2 Results and discussion  

7.2.1 Electrochemical and physicochemical characterisation 

The electrochemical properties of CVD grown 2D-hBN (supported on SiO2) 

are first characterised with cyclic voltammetry (CV), using Ru(NH3)6
3+/2+ (RuHex) 

which is a near ideal190 outer-sphere probe (exclusively sensitive to the electronic 

structure of the electrode’s surface), and additionally (NH₄)₂Fe(SO₄)₂ (Fe2+/3+) is 

selected as an inner-sphere redox probe due to its sensitivity to oxide groups on the 

electrode’s surface only190. Figure 46 shows that the 2D-hBN electrodes exhibit no 

observable electrochemical activity towards RuHex and Fe2+/3+. These results confirm 

the literature assertion that 2D-hBN is indeed an inert/insulating material. 

Previous work on 2D materials has asserted that active edge plane-sites/defects 

are the origin of electron transfer9, 147, 171, and consequently, attention was turned to 

try and introduce such sites, through investigating the creation of physical linear 

defects (PLD) upon the surface of the 2D-hBN (now termed: PLD-2D-hBN). In order 

to explore this, a ca. 1 mm (length) by 60 μm (width) physical linear defect (PLD) was 

physically created, with a diamond knife, on the surface of the electrode (as described 

within the Supporting Information; 0.8 x 0.8 cm of exposed area) to create defective 

edges on the surface. The PLD-2D-hBN sample was then applied towards the 

electrochemical detection of RuHex and Fe2+/3+ as depicted in Figure 46. Figure 46A 

depicts the absence of voltammetric peaks associated to RuHex when a 2D-hBN 

electrode was utilised. For controls, a PLD-SiO2 wafer was utilised (no 2D-hBN), and 

just a SiO2 wafer which also yielded no electrochemically measurable/observable 

responses. However, in the case of the PLD-2D-hBN there is a clearly evident 

electrochemical response, which is associated to the electrochemical reduction and 

oxidation of RuHex. It is interesting to note that the electrochemical signature (viz 
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Figure 46A) is sigmoidal in nature and is due to the fact that the PLD is akin to that of 

a nanoband; while the PLD is fabricated with a 1 mm length and 60 micron width, it 

creates a morphology that has no material in the middle and that we have 2 x 1mm 

lengths and two 60 micron width and as the edges are only active, and due to 

diffusional interaction, the overall response becomes that of a nanoband. This is 

consistent with the magnitude of the current observed in Figure 46. In the case of the 

other redox probe, Figure 46B shows the CVs of Fe+2/+3 which again exhibits no 

measurable electrochemical activity at the PLD-SiO2 wafer and SiO2 wafer, but again, 

for the case of the PLD-2D-hBN there is clearly an electrochemical oxidation peak 

associated with the redox probe. In summary it is clear that upon the introduction of 

physical linear defects upon a 2D-hBN film/electrode, an electrochemical signal 

output is observed that is not present with the pristine 2D-hBN working electrode (and 

controls). Note that we infer that the PLDs are acting as electroactive sites. CVs of 

RuHex and Fe+2/+3 using a PLD-SiO2 wafer (i.e. a substrate control with no 2D-hBN) 

are depicted in Figure 53, showing the absence of a voltammetric profile when no 2D-

hBN is present; also the lack of diamond contamination is shown from observing the 

Raman profile of both SiO2 and PLD-2D-hBN (shown in Figure 53), thus there is 

confidence that the PLDs are the origin of the observed electron transfer. 
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Figure 46. Cyclic voltammetry for 1 mM RuHex /0.1 M KCl (A) and 1 mM Fe2+/3+/0.2 

M HClO4 (B) using a PLD-SiO2 wafer as first control (black line), a 2D-hBN electrode 

(red line) and a PLD-2D-hBN electrode with 1 defective line (violet line) as working 

electrodes respectively. Scan rate: 50 mV s-1; vs. Ag/AgCl. Note that the introduction 

of PLD gives rise to electrochemically useful signatures. 

In the above approach, a microband electrode is fabricated, this approach, 

historically, has the electrochemical advantages of fast mass transport, high signal to 

noise ratio, short time to reach the steady state and gives rise to enhancements in 

electroanalytical and kinetic measurement. However, due to the size (i.e. nano) the 

current output is nano-amperes and can be plagued with noise such as from the mains. 

To overcome this, an array of many nanobands wired in parallel can offer the same 

enhanced sensitivity of a single microband but with the advantage of a higher total 

current output. We sought to introduce multiple PLDs onto the 2D-hBN electrode 

surface. It is explored next, the response of 1 PLD through to a total of 6 PLDs using 

RuHex as shown in Figure 47. It was found that additional PLDs created on the surface 

result in further improvement in the electrochemical response, but the current doesn’t 

readily scale with the increasing number of PLDs since there are diffusional inactions 

between the PLDs due to physical constrains upon the electrode surface. Nevertheless, 

this demonstrates that the current can be increased from the nano-ampere region to 
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that in the micro-ampere range. It is attempted to undertake a voltammetric scan rate 

study, that is, the scan rate is changed from slow (15 mV s-1) to fast (250 mV s-1) to 

provide further electrochemical insights. It is observed that the voltammetric current 

started to fade upon excessive scan rates, it is this what is next explored. 

Figure 47. Cyclic voltammetric scan rate study of 1 mM RuHex/0.1 M KCl using a 

unmodified 2D-hBN (A),  1 line 1PLD-2D-hBN (B) and 6 line 6PLD-2D-hBN (C) as 

working electrode (vs. Ag/AgCl). Note that in the absence of PLD there is clearly no 

electrochemical activity (47A) where upon the introduction of PLDs, 

electrochemically useful signatures are observed (47B and 47C). 
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Raman mapping characterisation was performed as depicted in Figure 48, 

where it can be observed that cracks/defects have formed across the surface from the 

PLD upon the 2D-hBN surface. Figure 48 shows damage on the surface of the 2D-

hBN caused during electrochemical perturbation (in the form of CV), resulting in less 

2D-hBN coverage, as confirmed by Raman mapping characterisation and optical 

images. 
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Figure 48. Optical image of PLD-2D-hBN electrode used for 28 scans for a scan rate 

study of 1 mM RuHex/0.1 M KCl, decorated with 6 PLD onto it with a growing tree-

shape of rips/defects due to its electrochemical application with its overlapped Raman 

mapping (A). B shows typical Raman peak of 2D-hBN (1365 cm-1), C shows Raman 

peak of a damaged area caused by the HER scanning and D shows the Raman peak of 

a physical linear defect. Higher resolution zoom in area with optical image (E), 2D 

Raman mapping (F) and 3D Raman mapping (G) of another area of the same PLD-

2D-hBN electrode. 
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To explore the elemental change upon the surface of the 2D-hBN, X-ray 

photoelectron spectroscopy (XPS) was also performed, confirming the commercially 

sourced sample to be 2D-hBN. Figure 49 depicts a XPS map of both unmodified and 

PLD-2D-hBN samples with the coverage of Si highlighted. It is clear that the physical 

linear defect (PLD) has penetrated the 2D-hBN sheet and exposed the underlying Si 

wafer (PLD-Si wafer was confirmed in Figure 53 not to be electrochemically active 

towards RuHex and Fe2+/3+). Spot XPS analysis was next performed on the two 2D-

hBN sheets and as shown in Figure 49B, the first sample was an undamaged basal 

plane (2D-hBN) and the second was at the edge of the induced defect of a PLD-2D-

hBN sample. XPS spectra for both locations are shown, B1s in Figure 49C and 49D 

for unmodified and PLD-2D-hBN samples respectively, and N1s in Figure 49E and 

49F for unmodified and PLD-2D-hBN samples respectively. Components are seen at 

ca. 190.8 eV and 398.5 eV, respectively with roughly a 1:1 stoichiometry. The 

observed binding energy of these photoelectron peaks strongly correlate to those 

expected for 2D-hBN274, 275. There is a significant amount of carbon and oxygen 

present on the surface at both sample sites, due to typical adventitious carbon 

contamination276 and from the manufacturing process. During synthesis the 2D sheet, 

it is commonly transferred onto the desired substrate using a PMMA polymer48, 118, 277 

(which has been previously reported to affect physical and electrical properties of 

CVD grown graphene transferred samples51, 52). High resolution XPS analysis of the 

B1s and N1s components at the basal and edge sites are reported in Figure 49C and 

49D, and 49E and 49F, respectively. There is no observed alteration in the B 

component, however interestingly a minor peak signal is observed at 400.3 eV for the 

edge site N1s component, which is not observed at the basal site. This additional minor 
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peak at the edge site may be related to protonated amine groups274, 278, 279, which 

represents the hydrogenation of the nitrogen at these edge sites. 

Figure 49. XPS analysis of 2D-hBN and PLD-2D-hBN’s edge of a PLD. XPS map of 

2D-hBN and PLD-2D-hBN electrode (A), XPS spectra for both locations (B), high 
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resolution XPS analysis of the B1s components of an 2D-hBN (C) and PLD-2D-hBN 

(D) electrode and high resolution XPS analysis of the N1s components of an 2D-hBN 

(E) and PLD-2D-hBN (F) electrode. 

7.2.2 DFT computational characterisation 

Density Functional Theory (DFT) was used in order to explain the observed beneficial 

electrochemical response when PLDs are introduced to the 2D-hBN electrode surface. 

7.2.2.1 Percent of hydrogenation 

According to the literature, an increase in the hydrogenation ratio of the edge-

plane atoms can turn the 2D-hBN from an insulator to a semiconductor, having a 

noticeable enhancement of the electrical conductivity of 2D-hBN-NRs270. As PLDs 

are effectively nanobands akin to NRs, Density Functional Theory (DFT) calculations 

are performed, as an attempt to find an interpretation for the increased rate of electron 

transfer and electrical conductivity in the modified 2D-hBN nanosheets; DFT 

optimisations are described in full in the Supporting Information. 

As previously mentioned98, this chapter focuses on the nanoribbon structures 

of 2D-hBN because they were proved to have an enhanced conductivity/electron 

transfer rates. Through investigating pristine basal plane sheets of 2D-hBN such as 

those depicted in Figure 46, unsatisfactory results were obtained where no significant 

changes in the electrochemical properties could be observed prior to inducing physical 

PLDs upon the basal plane atoms (PLD-2D-hBN). On the other hand, the amount of 

hydrogen atoms in the nanoribbons was changed so as to investigate the influence of 

varying the hydrogenation ratio of 2D-hBN-NRs on their electrical and electronic 

properties. Therefore, mono- (mh-hBN-NR) and fully hydrogenated (fh-hBN-NR) 

edge-planes were simulated in the computational study. DFT calculations were 

explored to investigate the highest occupied molecular orbital (HOMO) to the lowest 
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unoccupied molecular orbital (LUMO) and the total density of states (TDOS) with 

mh-hBN-NRs and fh-hBN-NRs edge planes, and oxygen-passivated structures 

investigated due to the presence of oxygen peaks in the XPS results. 

7.2.2.2 Molecular orbitals and electron transfer 

The electron-transfer process takes place mainly on the edge planes of the 2D-

hBN-NRs, where the edge-plane boron atoms are the ones that participate more, as 

depicted by the HOMO and LUMO molecular orbitals in Table 6. This is clearly from 

the delocalization of the HOMO molecular orbital on the edge-plane nitrogen atoms; 

however, the LUMO is delocalized on the edge-plane boron atoms. Interestingly in fh-

hBN-NR (O-N) and fh-hBN-NR (O-B), the LUMO molecular orbitals are delocalized 

on the oxygen atoms indicating that also oxygen passivation has a crucial role in 

enhancing electron-transfer through the 2D-hBN-NR structure. In addition, the energy 

gap involved in the process of electron transfer decrease significantly by adding 

hydrogen atoms to the edge planes of the nanoribbon. The narrowest energy gap was 

obtained in the fh-hBN (O-B). The energy gaps are in the order: mh-hBN-NR > fh-

hBN-NR > fh-hBN-NR (O-N) > fh-hBN-NR (O-B). This information explains the 

higher electrical conductivity (due to enhanced electron transfer) in the case of fh-

hBN-NR which contains a large number of edge-plane boron atoms passivated with 

oxygen. Consequently, increasing the number of oxygen-passivated edge-plane boron 

atoms results in the following transformation: insulator-semiconductor-metallic. 

Interestingly, the electrical resistivity of 2D-hBN-NR can reach zero in some cases 

where the degrees of passivation and hydrogenation are at the maxima. 
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Table 6.  Electronic clouds delocalization on Frontier molecular orbitals (HOMO and 

LUMO) and their corresponding energy gaps for mh-hBN-NR, fh-hBN-NR, fh-hBN-

NR (O-N) and fh-hBN-NR (O-B). The shown energy values were obtained by using 

B3LYP/LANL2DZ method of calculation. The iso value is 0.02.  The ELUMO-

EHOMO corresponds to the energy gap (i.e. band gap), which is the amount of energy 

required to transfer one electron from the highest occupied molecular orbital (HOMO) 

to the lowest unoccupied molecular orbital (LUMO), can indicate the possibility of 

electron transfer and allow for comparing this property among different structures. 

Colour code: blue: nitrogen; pink: boron; red: oxygen; white: hydrogen. 
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7.2.2.3 Total density of states (TDOS) 

In the studied 2D-hBN-NRs, the conduction bands are almost below -5 eV 

while the valence bands are at 2.5 eV for mh-hBN-NR and at 5 eV for the remaining 

nanoribbons. It is obvious from the depicted results (Figure 50) that the band gap in 

case of mh-hBN-NR is larger than its counterparts were in fh-hBN-NRs. Moreover, it 

is notable that some electronic states are added to the conduction band upon oxygen 

passivation (in other words, increasing the number of oxygen atoms will increase the 

number of electronic states in the conduction band). This elevation in the conduction 

band’s number of electronic states will increase the electrical conductivity of the 

nanoribbon; acquiring a semiconductor then a metallic character. Interestingly, 

passivation of edge-plane boron atoms increases the number of electronic states in the 

conduction band more significantly than the case where edge-plane nitrogen atoms are 

passivated instead. 

Figure 50. Total density of states (TDOS) of the investigated 2D-hBN 

nanoribbons (2D-hBN-NRs). The depicted TDOS values were calculated for the 
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above-mentioned structures optimized at the B3LYP/LANL2DZ method of 

calculation. 

The above confirms the conclusion that, fully hydrogenation and oxygen 

passivation (presence of N1s in the XPS results) at the edge-plane boron atoms may 

be an acceptable interpretation of the enhanced electron transfer and/or electrical 

conductivity of fh-hBN-NRs with larger number of edge planes (i.e. with induced line 

defects). In addition, it was found that the total energy of fh-hBN-NR (O-B) and fh-

hBN-NR (O-N) are -61787.2 and -61784.3 eV, respectively. This finding suggests that 

oxygen atoms attach favourably to edge-plane boron atoms on account of their 

neighbouring nitrogen atoms. Therefore, it is expected that, when line defects are 

induced, fh-hBN-NR (O-B) is formed in a larger amount compared to the fh-hBN-NR 

(O-N) counterpart (see Figure 55 for the respective structures).
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7.2.2 Electrochemical application 

2D-hBN, has been previously reported as a promising material when 

incorporated into PEM fuel cells, such as when protecting the membrane from 

degradation280-282. The production of molecular hydrogen due to the electrocatalytic 

reduction of water via the Hydrogen Evolution Reaction (HER) (2H+ + 2e- → H2) is a 

widely studied mechanism and a potential source of sustainable energy supply for the 

future. With this in mind, in order to test the electrochemical stability of PLD-2D-hBN 

when applied to electrochemical applications, it is explored herein the HER using a 

2D-hBN electrode, and a PLD-2D-hBN (with 1 to 6 PLDs on its surface as described 

previously herein); this is shown in Table 7 and in Figure 51 (HER stability test are 

explored only to study if the 2D-hBN sample might have electrochemical responses 

too when modified). Table 7 shows scanning stability experiments of PLD-2D-hBN 

towards the HER, which is an approach used to benchmark the system against 

literature reports. As is common practise within the literature, 0.5 M H2SO4 was used 

for the HER218, 219. Figure 51 shows the Linear Sweep Voltammogram (LSV) of the 

2D-hBN, 1 line 1PLD-2D-hBN and 6 lines 6PLD-2D-hBN respectively, depicting the 

evolution of the HET kinetics when defects upon the basal plane surface are created; 

leading to an increase in its edge plane-sites/defects when compared to the bare 2D-

hBN electrode. As it is evident in Table 7 and Figure 51, the electrode’s performance 

shifts from a ‘not possible’ (NP) HER reaction when unmodified to an onset potential 

occurring at ca. -1.19, -1.15, -1.1, -1.08, -0.99 and -0.98 V when 1 to 6 lines are drawn 

onto the surface respectively. A change in the current is also observed at -1.25 V from 

-5.23×10-2 μA when 1 line is drawn through to -6.56×10-1 μA when 6 PLD are drawn, 

due to the presence of newly generated electroactive sites, i.e. more PLD  result in a 

larger electroactive area. 
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Figure 51. Linear Sweep Voltammetry (LSV) of 2D-hBN, 1PLD-2D-hBN and 6PLD-

2D-hBN respectively with 0.5 M H2SO4, depicting the scanning stability experiments 

towards the HER, showing an increase in the current when more PLD are created (due 

to an increase in edge plane-sites/defects) when compared to the bare 2D-hBN 

electrode (Scan rate: 5 mV s-1; vs. Ag/AgCl). 
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Table 7. Hydrogen Evolution Reaction (HER) analysis for 2D-hBN and 1 to 6 lines 

PLD-2D-hBN, including HER onset and current at -1.25 V values. (Scan rate: 5 mV 

s-1; vs. Ag/AgCl). 

  

PLDs Onset / V Current at -1.25 V / µA 

0 NP -2.53 x 10-5 

1 -1.19 -5.23 x 10-2 

2 -1.15 -2.14 x 10-1 

4 -1.10 -3.15 x 10-1 

5 -1.08 -4.97 x 10-1 

6 -0.99 -5.03 x 10-1 
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In order to compare the stability of the 2D-hBN sheet towards consecutive 

electrochemical perturbation (in the form of scanning applications), Figure 54 

compares the electrochemical stability of a 6 lines 6PLD-2D-hBN electrode used for 

4 and 28 RuHex scans respectively. As is clearly depicted in Figure 54A, the PLD-

2D-hBN electrode used for 4 scans has an increased current and increased 

electrochemical reversibility than the one used for 28 times (Figure 54B).  Following 

this, physicochemical characterisation shows that the passing current clearly disrupts 

the nature of the film by creating rips and holes, as confirmed by Raman spectroscopy 

mapping (shown in Figure 54C) (by the presence/absence of the typical hBN Raman 

peak at ca. 1365 cm-1 (red-green areas)283-286). Similar damage has been previously 

reported for CVD grown mono- and few-layer graphene when applied towards the 

Hydrogen Evolution Reaction (HER)(See Chapter 5 of this thesis287).  

This confirms a drop in the electrochemical activity upon multiple scanning 

cycles (28 CV scans), which can be attributed to the damage/destruction of the 

electrode. This fact is likely due to the dissemination of rips across the surface of the 

electrode, leading to a lack of conductive pathway, and therefore, to a decrease of its 

electrochemical performance. 
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7.3 Conclusion 

It is shown for the first time, that the introduction of PLDs upon the surface of 

2D-hBN transforms it from electrochemically inert to that exhibiting 

electrochemically useful signatures. Tailoring the number of PLDs results in a change 

in the magnitude of the voltammetric current output. A thorough physicochemical (X-

ray photoelectron spectroscopy, Raman spectroscopy and Scanning Electron 

Microscopy), electrochemical (RuHex, Fe2+/3+ probes and application towards the 

Hydrogen Evolution Reaction) and computational (Density Functional Theory) 

characterisation of the 2D-hBN, both pre- and post- defect creation (i.e. PLDs) 

revealed the fully hydrogenated amine groups and edge-plane boron atoms passivated 

with oxygen at the newly created edge plane-sites/defects give rise to 

recordable/beneficial electrochemical reactivity. Physicochemical and computational 

characterisation demonstrate that mono hydrogenated 2D-hBN-NRs change from an 

insulating material with a band gap of 6.11 eV to semi-conducting material when fully 

hydrogenated with a band gap of 2.84 eV for oxygen-passivated boron and 2.36 eV 

for oxygen-passivated nitrogen. This transition from an insulator to a semiconductor 

explains the electrochemical observations when using 2D-hBN electrodes for 

voltammetric studies. It is important for further studies to note that it is observed, and 

documented within this chapter, that the repeated use of the 2D-hBN in voltammetric 

studies creates increasing numbers of defect sites on the nano-sheet electrode; and that 

these eventually decrease the electrode’s performance, likely due to a decrease in the 

number of electron pathways. 

The results described above help to de-convolute the electrochemical 

properties and responses expected when using 2D-hBN within electrochemical 

systems.  Future studies can apply this or other modifications to 2D-hBN and other 
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2D materials (and their derivatives, such as nanoribbons), which will help one take 

advantage of their unique electrochemical properties.  
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7.4 Experimental information 

The tested solutions were 0.5 M H2SO4, 1 mM (NH₄)₂Fe(SO₄)₂ (Fe2+/3+) in 0.2 

M HClO4 and outer-sphere 1 mM Ru(NH3)6Cl3
3+/2+ (RuHex) in 0.1 M KCl. Working 

electrodes were CVD grown mono-layer 2D-hBN (hBN) on a SiO2 wafer from 

Graphene Supermarket completing the circuit. 2D-hBN sample in contact with 

electrolyte was ca. 0.8 x 0.8 cm. 

Raman Mapping Spectroscopic analysis was performed using a Thermo 

Scientific DXR Raman Microscope fitted with a 532 nm excitation laser at a low 

power of 6 mW to avoid any heating effects. Spectra were recorded using a 10 seconds 

exposure time for 10 accumulations in each point. To collect the map we used a step 

size of 10 x 10 µm, to collect a Raman profile between the region of 1100 and 2000 

cm-1. Scanning electron microscope (SEM) images were obtained using a JSM-

5600LV (JEOL, Japan) model. 3D Raman map figures depict the intensity of the 

characteristic Raman for 2D (ca. 1365 cm-1) recorded from their full Raman spectra. 

The purposeful modification or deliberate creation of defects upon the mono-

layer films consisted of drawing/etching ca. 1 mm long-line across the surface of the 

electrode using a fine diamond scriber from Lattice Gear. Figure 53 presents Scanning 

Electron Microscope (SEM) images of the modification after and before running 

electrochemical experiments. Figure 53F depicts the Raman spectra of the diamond 

scriber tip, showing that there is no contamination on the samples from it.  

The X-ray photoelectron spectroscopy (XPS) data was acquired using an AXIS 

Supra (Kratos, UK), which was equipped with an Al X-ray source (1486.6 eV) 

operating at 300 W in order to perform survey scans and 450 W for narrow scans. All 

X-rays were mono-chromated using a 500 mm Rowland circle quartz crystal X-ray 

mirror. The angle between X-ray source and analyser was 54.7°. With an electron 
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energy analyser: 165 mm mean radius hemispherical sector analyser operating in fixed 

analyser transmission mode, pass energy 160 eV for survey scans and 40 eV narrow 

scans. A detector with a delay line detector with multichannel plate was utilised.  

7.4.1 Density Functional Theory (DFT) 

Density Functional Theory (DFT) calculations were performed to unravel the 

reasons underlying the enhanced electron-transfer properties of 2D-hBN after making 

line defects and edge plane sites. All DFT computations were performed using 

B3LYP/LANL2DZ functional implemented in Gaussian 09 package. GaussView 

Version 05 package was used for visualization of the optimized structures, highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO). A 6 × 3 (ring × raw) structure of 2D-hBN which was used to simulate 2D-

hBN nanoribbons (hBN-NR) as shown in Figure 52. The studied structure of hBN-NR 

were either mono- (mh-hBN-NR) or fully hydrogenated (fh-hBN-NR). 

The molecular geometry of hBN-NRs with fully-hydrogenated edge planes (fh-hBN-

NRs) were optimized using the B3LYP/LANL2DZ functional and the results were 

compared with the mono-hydrogenated structure (mh-hBN-NR) (Figure 55). As 

oxygen presence was detected in the XPS results, oxygen-passivation was also 

explored, bonding an oxygen atom to either an edge-plane nitrogen or boron in order 

to study both possibilities. It is worth to mention that, in this study the effect of only 

one atom of oxygen is investigated which means that the obtained results can be 

maximized by increasing the number of oxygen atoms used for passivating the edge 

plane nitrogen and/or boron atoms of the nanoribbon. Frequency calculations did not 

result in any imaginary frequencies indicating the stability of the proposed 2D-hBN-

NR structures.  
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Investigation of the HOMO and LUMO molecular orbitals can give valuable 

information about the electron-transfer properties through 2D sheets such as graphene 

and hBN materials171. The so called energy gap (i.e. band gap), is the amount of energy 

required to transfer one electron from the highest occupied molecular orbital (HOMO) 

to the lowest unoccupied molecular orbital (LUMO), can indicate the possibility of 

electron transfer and allow for comparing this property among different structures. 

This parameter is referred to as ELUMO-EHOMO. 

The total density of electronic states (TDOS) can give an insight on the 

electrical properties of materials. Density of states is a concept in solid-state physics, 

which represents the number of electronic states per unit energy interval. The DOS of 

a given quantum system/material is an important gadget in order to understand the 

electrical conductivity and other electronic parameters171.  
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7.5 Supporting information 

 

Figure 52. 2D chemical structure of the used 2D-hBN mono-layer (A) and the used 

hBN nanoribbon (B). 
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Creation of edges: 

Figure 53. Cyclic voltammetry of 1 mM RuHex/0.1 M KCL (A) and 1 mM Fe2+/3+/0.2 

M HClO4 (B) (Scan rate: 50 mVs-1, vs. Ag/AgCl) using a SiO2 wafer (no 2D-hBN) as 

an electrode. SEM image of a PLD-SiO2 wafer (C) and PLD-2D-hBN electrode (D) 

after being utilised towards voltammetric methods. Raman profiles of a PLD-2D-hBN 

electrode at its newly physical defects (after utilised towards voltammetric) (E) and 

diamond scriber tip with a typical diamond Raman peak288 at 1332 cm-1 (F) showing 

the lack of 2D-hBN or diamond Raman peak in Figure 53E. 
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Figure 54. Voltammetric scan rate study of 1 mM RuHex/0.1 M KCl using a 6PLD-

2D-hBN electrode used for 4 (54A) and 28 (54B) consecutive voltammetric scans to 

test their electrochemical stability towards multiple consecutive potential scanning. 

Optical image and Raman mapping characterisation (Figure 54C) of the PLD-2D-hBN 

after used in Figure S54B. Raman spectra is included, showing areas where 2D-hBN 

is present and its typical Raman peak (red and green colour) and some rips where there 

is no 2D-hBN peak (blue colour). (vs. Ag/AgCl). 
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Figure 55. Optimized structures of (A) mh-hBN-NR, (B) fh-hBN-NR, (C) fh-hBN-

NR with an edge-plane boron atom passivated with an oxygen atom and (D) fh-hBN-

NR with an edge-plane nitrogen atom passivated with an oxygen atom. The shown 

structures were optimized using B3LYP/LANL2DZ functional. Color code: blue: 

nitrogen; pink: boron; red: oxygen; white: hydrogen. 

 

  



170 

 

Chapter 8: An investigation into the influence of lateral flake size on 

the electroanalytical performance of graphene/graphite paste 

electrodes 

This chapter explores the electrochemical and electroanalytical properties of 

graphene and graphite paste electrodes comprising varying lateral flake sizes. This 

work demonstrates the sensing capabilities of varying lateral flake sizes at graphene 

and graphite paste electrodes. As seen that the edge plane like-sites/defects in 

monolayer graphene are the origin of electrochemical properties, this chapter applies 

that to paste electrodes and infers that higher electroanalytical responses can be 

obtained at smaller lateral flake sizes. Its application as sensor devices may lead to 

the improvement of future graphite and graphene-based electrodes, however this 

inference likely has wider implications in the energy sector too. 

8.1 Introduction  

Currently there is a global interest in the application of 2D materials such as 

graphene, graphene oxide, reduced graphene oxide, 2D-hBN, MoSe2, MoS2, WSe2, 

antimonene and phosphorene289-292 within electrochemical applications. Some of 

those application range from their use as basics of biosensors and also in 

electrochemical energy storage/generation, to name just a few. This global interest is 

due to the unique enhanced/beneficial properties of the 2D materials over traditional 

electrochemical materials, such as having higher surface areas and high absorption 

capacities over planar geometries than those traditionally used, high mechanical 

strength, wide potential windows, good electro-catalytic activities, thermal 

conductivity and tunable band gap to name a few, which will give benefits in a 

plethora of electrochemical applications293-297.  2D nanomaterials are able to 

assemble themselves into heterostructures due to van der Walls forces, producing 

structures that can combine properties of those materials that are present in the 
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different layers, offering the possibility of materials with numerous beneficial 

properties contained in a small volume289, 298.  

Multiple carbon nanostructures (such as fullerenes299, carbon nanotubes 

(CNTs)300, 301, carbon nanodots (C-dots)302, 303, carbon nanofibers (CNFs)304 or 2D 

materials305, 306) have been applied towards biosensing applications. Electrochemical 

approaches offer a simple method, low instrumental cost, and ability in real-time and 

in vivo measurements307. Graphene electrochemical sensors, due to their high surface 

area to volume ratio in a layered material308, have already been reported towards the 

detection of biologically relevant molecules such as dopamine26, glucose27, 

hydrazine28, nitric oxide29, b-nicotinamide adenine dinucleotide (NADH)30, uric 

acid31, epinephrine31 or acetaminophen32 among others, allowing to reduce limits of 

detection32, 33.  

In terms of understanding the electrochemical properties of carbon-based 

electrodes, carbon paste electrodes (CPEs) are an easy, well-known, quick and low 

cost solution to prototype and benchmark different carbonaceous materials309.  CPEs 

are mixtures prepared from graphitic powders with various non-electrolytic binders, 

packed into an inert holder with an electrical connection at the back310, 311. Suitable 

graphitic materials should follow these criteria: micrometric particle size, uniform 

distribution of particles, high chemical purity and low adsorption capabilities312.  It 

is important to note that it has been reported the lack of observable differences in the 

electrochemical capabilities between graphene and graphite paste electrodes (when 

comparing similar sizes, due to the presence of multiple layers of graphene turns it 

into graphite)313. In terms of the electrochemical properties, it should be noted the 

reported distinction between two different structural contributions in graphitic 

materials, that is basal and edge planes20, where basal is considered almost 
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electrochemically inert169, 174, 175, 314, and edge plane like- sites/defects are considered 

to have “anomalously fast” heterogeneous electron transfer (HET) kinetics34, 169, 175, 

184-186. Regarding the electrochemical capabilities of edge plane like- sites/defects in 

graphitic materials, recent work involving the heterogeneous electron transfer (HET) 

kinetics of graphitic paste electrodes has shown a trend demonstrating that as lateral 

flake size (Fs) decreases, the edge plane to basal plane ratio shifts, leading to an 

increase in the amount of edge planes found on the electrode surface, increasing the 

electrochemical activity of such electrode171. However, there is an ongoing debate 

regarding the true contributions of edge and basal plane like- sites/defects at the 

macroscopic scale10, 175-179 with respect to their observed heterogeneous electron 

transfer (HET) kinetics. Recent work by Slate et al. suggests the presence of a lateral 

size threshold around 2 μm, below which the improvement of HET is negligible due 

to the proximity to the reversibility limit of the electrochemical process171. 

 Given the above insights, in this chapter it is reported the fabrication and 

electrochemical performance of a range of graphene nano-powders (AO1, AO2, 

AO3, AO4 and C1) and graphite (high crystalline natural graphite (HCNG) and 

nanostructured graphite-250 (G250)) paste electrodes with varying lateral flake sizes 

towards the detection of several relevant biological molecules. Seen that the 

differences between graphene and graphite capabilities do not enhance the 

electrochemical performance of paste electrodes, and in order to elucidate the 

presence (or not) of the Fs threshold, all our flake sizes are the variable factor under 

controlled investigation. Therefore investigations on graphite and graphene powders 

with lateral flake sizes from 0.5 μm to 12.2 μm to be tested in order to establish a 

correlation between Fs, their HET kinetics, and their sensitivity and LODs to detect 

and benchmark relevant biomolecules. 
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8.2 Results and discussion  

First, it is important to characterise and benchmark our electrochemical 

system to correlate the performance with reported literature to ensure is 

reliable/accurate. Herein, the electrochemical systems were benchmarked against the 

near-ideal outer sphere redox probe Hexaammineruthenium (III) chloride (RuHex) in 

order to calculate the Heterogeneous Electron Transfer (HET) rate constant (k0), real 

electroactive area (Areal) and its %RealArea (percentage comparison from Areal to 

geometrical area) for the range of graphitic-paste electrodes. The aforementioned 

values are calculated as described in the Experimental section, and are shown in Table 

8 (see voltammetric profiles at 15 mV s-1 in Figure 56).  

Table 8 shows the averaged lateral flake sizes, percentage of oxygen (EDX), 

averaged heterogeneous electron transfer kinetics (k0), peak-to-peak separation 

(ΔEp), electroactive area (Areal) and the percentage difference between Areal and 

geometrical area %RealArea). ΔEp values indicate a trend that, the use of smaller 

lateral flake size impacts the peak-to-peak separation by decreasing it. This indicates 

that electrochemical process becomes more reversible when the lateral flake size is 

decreased, and therefore, the averaged HET (k0) improves. This is likely to be due to 

the edge-to-basal plane ratio changing depending on the lateral flake size, as the 

amount of available edge sites increases when the lateral flake size decreases (and 

the ‘un-reactive’169 basal plane sites decreases in comparison to larger flake sizes). 

Resultantly, it was electrochemically estimated that graphite HCNG, with an average 

lateral flake size of 12.2 µm and a ΔEp of 68.36 mV (at 15 mV s-1), has an avg. HET 

value of 1.15 x 10-3 ± 2.62 x 10-4 cm s-1. The graphene AO1, with an estimated lateral 

flake size of 9.4 µm and a ΔEp of 86.67 mV (at 15 mV s-1), has an averaged HET 

value of 1.20 x 10-3 ± 2.39 x 10-4 cm s-1 and the graphene C1, with a lateral flake size 
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of 1.3 µm and a ΔEp of 68.36 mV (at 15 mV s-1), has a HET value of 1.21 x 10-3 ± 

3.31 x 10-4 cm s-1. Lastly, the graphite G250 with an avg. lateral flake size of 0.5 µm 

and ΔEp of 59 mV (at 15 mV s-1), has an avg. HET value of 1.21 x 10-3 ± 6.33 x 10-

4 cm s-1. The values/trend as discussed above correspond well with that previously 

reported171, confirming that our system is working and now the implication of this 

towards electrochemical sensing applications can be explored. 

Attention is turned now to estimate the real electroactive area of the different 

range of paste electrodes using the Randles–Ševćik equation1 (see equations 1.22, 

1.23 and 1.24). The electroactive area of the graphene and graphite electrodes is 

included in Table 8, with results that vary from 0.12 cm2 for graphene AO1 to a range 

between ca. 0.19-0.22 cm2 for the rest of the electrode materials. Overall, the above 

results indicate that as the reversibility of the electrochemical reaction increases (and 

therefore its HET), the lateral flake size of the carbon material comprised in the 

electrode decreases. An increase in the peak-to-peak separation is observed when 

larger lateral flakes are used, representing a lower k0 and therefore a less reversible 

process, however this does not appear to result in a clear trend to relate to the 

Areal/%Real. It is assumed from these observations the relationship between the edge 

plane contribution (assumed to be higher in smaller flake sizes) with the reversibility 

of the RuHex process, which is known to be independent on the oxygenated species 

on the electrode’s surface and therefore only related to the electronic density of 

states315.  
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Table 8. Electrochemical characterisation of graphene/graphite paste electrodes 

determined from cyclic voltammetry using 1 mM RuHex probe in 0.1 M KCl (N = 3) 

 

  
Size 

/ µm 

(N = 20)  

Oxygen 

average / 

% 

Avg. k0 

/ cm s-1 

ΔEp 

(at 15 mV s-1) 

Avg. 

Areal 

/ cm-2 

%Real 

GRAPHITE HCNG 12.2 (± 0.7) 2.88 
1.15 x 10-3 ± 

2.62 x 10-4 
0.063 0.195 122.48 

GRAPHENE  

AO1 9.4 (± 0.7) 4.56 
1.20 x 10-3 ± 

2.39 x 10-4 
0.087 0.120 75.45 

AO3 5.0 (± 0.3) 4.27 
1.12 x 10-3 ± 

2.2 x 10-4 
0.059 0.219 138.01 

AO4 4.0 (± 0.3) 3.18 
1.23 x 10-3 ± 

3.40 x 10-4 
0.061 0.214 134.67 

AO2 2.3 (± 0.5) 3.01 
1.22 x 10-3 ± 

2.23 x 10-4 
0.061 0.203 127.82 

C1 1.3 (± 0.1) 3.03 
1.21 x 10-3 ± 

3.31 x 10-4 
0.068 0.207 132.22 

GRAPHITE G250 0.5 (± 0.1) 3.56 
1.21 x 10-3 ± 

3.16 x 10-4 
0.059 0.192 120.83 
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(k0 values are the calculated averages of measurements carried out at 15, 50, 100 and 

500 mV s-1). 

Considering such results, next it is explored the electroanalytical performance of these 

graphitic paste electrodes towards the electrochemical detection of relevant biological 

analytes such as dopamine (DA) and uric acid (UA), ascorbic acid (AA), NADH, 

paracetamol (APAP) and p-Benzoquinone (p-Benzo) and will correlate the responses 

based upon the lateral flake size. Cyclic voltammetries (CV) can be observed in Figure 

56 and peak position for each CV and electrode materials are reported in Table 9. In 

order to see the bigger picture from the recorded data, it is time to compare the 

overpotential for the analytical detection of the analytes (Ep
ox for all of the molecules, 

except Ep
red for RuHex and p-benzoquinone) when using graphite HCNG (9.4 µm), 

graphene AO4 (4.0 µm) and graphite G250 (0.5 µm) electrodes as representative sizes. 
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Figure 56. Voltammetric profiles of 100 μM of dopamine (A), uric acid (B), ascorbic 

acid (C), NADH (D), acetaminophen (E) and p-Benzoquinone (F) in PBS pH 7 at the 

various paste electrodes (Scan rate 50 mV s-1; vs. Ag/AgCl). 

 

  



178 

 

Table 9. Comparison of the peak position (Ep; in V) obtained at the various paste 

electrodes towards the detection of 100 μM of dopamine, uric acid, ascorbic acid, 

NADH, acetaminophen and p-Benzoquinone in PBS pH 7 (Scan rate 50 mV s-1; vs. 

Ag/AgCl). 

Dopamine (DA) is a well-known neurotransmitter that plays an important role 

in the hormonal, renal and central nervous systems316. Figure 56A depicts typical 

dopamine cyclic voltammetric (CV) responses obtained using the range of graphitic 

electrodes described above and exhibits voltammetric peaks (Ep
ox) decreasing from 

0.220 V to 0.178 V and 0.147 V when using HCNG, AO4 and G250 respectively.   

 Uric acid (UA), the primary end compound of purine metabolism, is a 

neurochemical commonly encountered in biological samples317. Unusual levels of 

uric acid can indicate illnesses such as hyperuricaemia and gout317. Figure 56B 

depicts typical uric acid CV responses recorded using the different graphitic paste 

electrodes described herein, exhibiting Ep
ox values decreasing from 0.442 V to 0.315 

V and 0.283 V when using HCNG, AO4 and G250 respectively.  

Ascorbic Acid (AA), also known as Vitamin C, is an antioxidant and a co-

substrate of many important dioxygenases and its high presence in urine can interfere 

with other target molecules such as dopamine or uric acid26, 318, 319.  Figure 56C 

depicts the CV responses recoded, exhibiting Ep
ox shifts from 0.447 V to 0.310 V and 

0.163 V when using HCNG, AO4 and G250 respectively.  

 
 DA     

/ V 

UA   

/ V 

 AA  

/ V 

 NADH     

/ V 

APAP     

/ V 

P-BENZO     

/ V 

GRAPHITE HCNG 0.220 0.442 0.447 0.664 0.458 -0.164 

GRAPHENE 

AO1 0.162 0.296 0.195 0.397 0.373 -0.089 
AO3 0.170 0.293 0.266 0.446 0.408 -0.106 
AO4 0.178 0.315 0.310 0.489 0.393 -0.112 
AO2 0.195 0.337 0.373 0.588 0.414 -0.122 
C1 0.219 0.359 0.359 0.495 0.436 -0.133 

GRAPHITE G250 0.147 0.283 0.163 0.354 0.347 -0.071 
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β-Nicotinamide adenine dinucleotide (NADH) is part of the NAD+/NADH 

redox reaction, which is used in many cellular processes, mainly NAD+ acts as a 

substrate of enzymes that add or remove chemical groups from proteins, making 

NAD+ metabolism a target for drug discovery320.  Figure 56D depicts the CV 

responses recoded, exhibiting Ep
ox from 0.664 V to 0.489 V and 0.354 V when using 

HCNG, AO4 and G250 respectively. 

Lastly, acetaminophen and p-benzoquinone detection are depicted as Figure 

56E and F respectively. Acetaminophen, also known as paracetamol or APAP, is a 

widely used analgesic/antipyretic drug which requires routine monitoring in many 

biofluids and in quality assurance but is also associated to hepatic toxicity and renal 

failure32, 321. Figure 56D depicts the typical acetaminophen CV responses recorded 

using the different graphitic paste electrodes described above, exhibiting Ep
red from 

0.458 V to 0.393 V and 0.347 V when using HCNG, AO4 and G250 respectively. p-

Benzoquinone is a toxic metabolite of benzene that can be found in human blood, 

urine and adipose tissue and can be utilised to monitor the exposure to compounds 

containing benzene322-325. Figure 56E depicts the typical p-Benzoquinone CV 

responses recorded using the different graphitic paste electrodes described above, 

exhibiting Ep
red from -0.164 V to -0.112 V and -0.071 V when using HCNG, AO4 

and G250 respectively. 

It is clearly evident that the use of smaller lateral flake sizes deeply reduces 

the overpotential needed for the analytical detection of the molecules, due to a higher 

electron transfer kinetics and promoting charge transfer. 

Figure 57 depicts the calibration plot studies for DA, UA, AA, NADH, APAP 

and p-Benzo respectively, using the different graphitic pastes within a range of 5 to 
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100 μM in Phosphate Buffer Solution (PBS) pH 7. The sensitivity of such analytes is 

calculated from the slope of their respective calibration plots (in A M -1). Table 10 

shows the sensitivities of all analytes obtained from the slope of each calibration plot 

depicted in Figure 57.  
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Figure 57. Calibration plots of dopamine (A), uric acid (B), ascorbic acid (C), NADH 

(D), acetaminophen (E) and p-Benzoquinone (F) in PBS pH 7 at the various paste 

electrodes. Analytical sensitivities of such calibration plots shown in Table 10 (Scan 

rate 50 mV s-1; vs. Ag/AgCl). 
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Table 10. Comparison of the analytical sensitivities (in A M -1) obtained at the various 

paste electrodes towards the detection of dopamine, uric acid, ascorbic acid, NADH, 

acetaminophen and p-Benzoquinone in PBS pH 7 (Calculated from gradient of 

calibration plots between 0 and 100 μM depicted in Figure 57) (Scan rate 50 mV s-1; 

vs. Ag/AgCl). 

The electrochemical sensitivity of dopamine using these electrodes goes from 

a value of 0.126 A M-1 to 0.071 A M-1 and 0.190 A M-1 when using HCNG, AO4 and 

G250 respectively. In the case of uric acid, its sensitivity increases from a value 0.046 

A M-1, 0.064 A M-1 and 0.107 A M-1 for HCNG, AO4 and G250 electrodes 

respectively. The electrochemical sensitivity of ascorbic acid shifts from 0.023 A M-

1 to 0.030 A M-1 and 0.038 A M-1 for the electrodes made with HCNG, AO4 and G250 

respectively. Sensitivity studies for NADH go from a value of 0.009 A M-1 to 0.020 

A M-1 and to 0.025 A M-1 for the HCNG, AO4 and G250 electrodes respectively. In 

the case of acetaminophen, electrochemical sensitivity varies from 0.066 A M-1 to 

0.090 A M-1 and to 0.090 A M-1 1 for the HCNG, AO4 and G250 electrodes 

respectively. In the case of p-Benzoquinone, its sensitivity changes from a value of 

0.090 A M-1, to 0.091 A M-1 and 0.097 A M-1 for HCNG, AO4 and G250 respectively. 

It is clear the increase of the electroanalytical sensitivities when smaller lateral flakes 

sizes are used within the paste electrodes. 

 
 DA /    

A M -1 

UA /   

A M -1 

 AA /   

A M -1 

 NADH 

/ A M -1 

APAP 

/A M -1 

p-BENZO 

/ A M -1 
GRAPHITE HCNG 0.126 0.046 0.023 0.009 0.066 0.090 

GRAPHENE 

AO1 0.054 0.044 0.034 0.015 0.073 0.092 
AO3 0.079 0.069 0.037 0.021 0.077 0.081 
AO4 0.071 0.064 0.030 0.020 0.090 0.091 
AO2 0.080 0.059 0.026 0.021 0.089 0.101 
C1 0.133 0.049 0.031 0.023 0.069 0.092 

GRAPHITE G250 0.190 0.168 0.038 0.025 0.090 0.097 
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The electrochemical Limit of Detection (LODs; LOD = 3*σ M-1), presented 

in full in Table 11, were obtained from the data depicted in Figure 49.  One can easily 

see from the data presented in Table 11 that for most of the analytes, there is a trend 

where the LOD decreases, as the lateral flake size decreases. As an example, in the 

case of the detection of UA, the calculated LOD decreases from 1.42 to 1.06 and 0.85 

µM for the HCNG, AO4 and G250 electrodes respectively. In the case of AA, similar 

results are observed, with calculated LOD of 0.7, 0.5 and 0.19 µM, for HCNG, AO4 

and G250 respectively. LODs for NADH also show similar trend, with LODs of 3.43, 

1.57 and 1.3 µM, for HCNG, AO4 and G250 respectively.  

Table 11. Comparison of the electrochemical limits of detection (LODs; LOD = 3* 

σ M-1) (in μM) obtained at the various paste electrodes towards the detection of 

dopamine, uric acid, ascorbic acid, NADH, acetaminophen and p-Benzoquinone in 

PBS pH 7 (Calculated from gradient of calibration plots between 0 and 100 μM 

depicted in Figure 57) (Scan rate 50 mV s-1; vs. Ag/AgCl). 

Flake graphite and Kish graphite (FG and KISH respectively from now on), 

with lateral flake sizes of 608.0 (±40) μm and 1389.9 (±148) μm respectively were 

also explored and are presented in the Supporting Information for comparison 

purposes. Table 12 shows the averaged lateral flake sizes, percentage of oxygen 

(EDX), averaged heterogeneous electron transfer kinetics (k0), peak-to-peak 

separation, electroactive area and the percentage difference between Areal and 

 
 DA /   

μM 

UA /   

μM 

 AA /   

μM 

 NADH /   

μM 

APAP 

/   μM 

p-

BENZO 

/ μM 
GRAPHITE HCNG 0.25 1.42 0.70 3.43 0.48 0.35 

GRAPHENE 

AO1 0.59 0.94 0.73 2.11 0.44 0.35 
AO3 0.41 0.85 0.46 1.50 0.41 0.40 
AO4 0.45 1.06 0.50 1.57 0.35 0.35 
AO2 0.40 1.24 0.54 1.49 0.36 0.33 
C1 0.24 1.03 0.65 1.42 0.47 0.35 

GRAPHITE G250 0.17 0.85 0.19 1.30 0.48 0.32 
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geometrical area %RealArea) for FG and KISH electrodes. Figure 59 depicts the 

voltammetric profiles for RuHex using FG and KISH. Figure 60 shows the CVs of 

DA, UA, AA, NADH, APAP and p-Benzo using FG and KISH respectively.  Figure 

61 depicts the calibration plot studies for those same molecules using FG and KISH. 

As one can see, these much larger lateral flake size graphite powders exhibit a larger 

peak-to-peak separation resulting in slower HET k0 values. Additionally, the 

electroanalytical detection (via CVs) for the group of relevant biomolecules occurs, 

generally, at higher potentials and higher calibration ranges. All of these results make 

it not clear and/or appropriate to compare FG and KISH with the rest of the graphitic 

powders due to the major differences in lateral flake size and electrochemical 

performance.  

Considering the observations using a wide range of relevant biomolecules and 

the outer-sphere redox probe RuHex, it is observed that nanostructured graphite G250 

with the smallest lateral flake sizes, offer the best overall electrochemical 

performance from the studied in this chapter. These results indicate that smaller 

lateral flake (with improved HET kinetics) give an improved electrochemical 

sensitivity and lower limits of detection, in contrast to larger flake sizes. Depending 

on the electrode material, the presence of oxygen or other chemical species could also 

affect the performance (as it has been already reported in the literature for Dopamine 

or Ascorbic acid respectively). In the case of sensing applications, electrochemical 

processes that undergo through complex adsorption routes might lead to ambiguous 

results. 

This work shows the importance of lateral flake size when graphitic materials 

are considered as electrodes with improved/enhanced electrochemical sensitivities 

and LODs. Given the results showed above, one should choose higher edge plane 
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density materials in order to obtain higher sensitivity and LODs. Further attention 

needs to be put in which graphitic materials are used for applications such as energy 

storage and sensors. 

8.3 Conclusions 

It is shown herein that in the case of the analytes studied here, namely 

dopamine hydrochloride, uric acid, acetaminophen and p-benzoquinone, that the 

sensitivity of graphite and graphene based paste electrode with varying lateral flake 

sizes depends directly on its structural composition. Decreasing the lateral flake sizes 

at graphitic paste electrodes resulted in enhanced electrochemical responses, due to 

faster HET kinetics. This chapter infers that the observed improvement is related to 

the “edge plane” content from the different lateral flake sizes. The flake graphite 

electrode was highly sensitive to some inner-sphere redox probe due to the presence 

of oxygenated species (and ligands), having some interactions that might perturb the 

overall trend of the results.  
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8.4 Experimental information 

The tested solutions were: 1 mM RuHex (in 0.1 M KCl), dopamine, uric acid, 

ascorbic acid, acetaminophen and p-benzoquinone in phosphate buffer solution (PBS) 

pH 7. Working paste electrodes were in-house fabricated using a piston-driven 

polymeric-composite electrode shell with an inner diameter of 4.5 mm (0.159 cm2 of 

area) and graphite and graphene powders from Graphene Supermarket (Reading, MA, 

USA) as shown in Figure 62. The graphite powders are as follows: ‘High Crystalline 

Natural graphite (HCNG)’ and ‘Nanostructured graphite – 250 (G250)’ which 

comprised of an average lateral flake size of  0.7-2 mm, >150 µm, 12.2 (± 0.7) µm 

and 0.5 (± 0.1) µm respectively. The graphene powders are as follows: ‘AO1’, ‘AO3’, 

‘AO4’, ‘AO2’ and ‘C1’ which comprised of an average lateral flake size of 9.4 (± 0.7) 

µm, 5.0 (± 0.3) µm, 4.0 (± 0.3) µm, 2.3 (± 0.5) µm and 1.3 (± 0.1) µm respectively. 

Average lateral flake sizes and oxygen average percentages are extracted from Ref 

171. 

Figure 62 shows the fabrication process of graphite and graphene paste 

electrodes, that was the result of using a mixture of 60 % graphitic materials with 40 

% mineral oil (Nujol), and were used without any modification but polishing the 

surface of the electrode. A platinum wire counter/auxiliary electrode and a silver/silver 

chloride electrode (Ag/AgCl) reference electrode completed the circuit. 

All samples were degassed vigorously prior to electrochemical analysis with 

high purity, oxygen free nitrogen in order to remove any trace of oxygen, which could 

affect the analyte’s voltammetric current (analytical signal). 

The HET rate constants, 𝑘𝑜𝑏𝑠
0 , were calculated using the near ideal outer-sphere 

redox probe [Ru(NH3)6]
3+/2+ (in 0.1 M KCl) using the well-known190 and utilised 
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Nicholson method8, for electrochemical reactions via the equation 1.25 and 1.269 

described in Chapter 1.  

The electroactive area of the electrode, Areal, is calculated using the Randles-

Ševćik equations 1.22 to 1.24) 1, 5-7 at non-standard conditions as described in Chapter 

1 and 3. 

Following the calculation of Areal, the percentage of the geometrical area was 

calculated using the following: %Real = (Areal / Ageo) x 100.  

 Limit of Detection (LOD) were calculated as 3 times the standard deviation 

of the blank (σ) divided by the slope of the calibration plot (M). 
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8.5 Supporting information 

 

Figure 58. 1 mM RuHex in 0.1 M KCl voltammetric profiles using the range of 

graphite and graphene paste electrodes (Scan rate: 15 mV s-1; vs. Ag/AgCl). 

 

Figure 59. 1 mM RuHex in 0.1 M KCl voltammetric profiles using the range of FG 

and KISH paste electrodes (Scan rate: 15 mV s-1; vs. Ag/AgCl). 

 



189 

 

Table 12. Electrochemical characterisation of FG and KISH graphite paste electrodes 

determined from cyclic voltammetry using 1 mM RuHex probe in 0.1 M KCl (N = 3) 

(k0 values are the calculated averages of measurements carried out at 15, 50, 100 and 

500 mV s-1).  

 

 

  
Size 

/ µm 

(N = 20)  

Oxygen 

average 

/ % 

Avg. k0 

/ cm s-1 

ΔEp 

(at 15 

mV/s) 

Avg. 

Areal 

/ cm-2 

%Realarea 

GRAPHITE KISH 
1389.9 (± 

148) 
10.62 1.06 x 10-3 0.076 0.156 98.22 

GRAPHITE  FG 
608.0 (± 

40) 
3.45 1.15 x 10-3 0.073 0.135 84.81 
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Figure 60. Voltammetric profiles of 100 μM of dopamine (A), uric acid (B), ascorbic 

acid (C), NADH (D), acetaminophen (E) and p-Benzoquinone (F) in PBS pH 7 using 

FG and KISH graphite paste electrodes (Scan rate 50 mV s-1; vs. Ag/AgCl). 
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Figure 61. Calibration plots of dopamine (A), uric acid (B), ascorbic acid (C), NADH 

(D), acetaminophen (E) and p-Benzoquinone (F) in PBS pH 7 using the FG and KISH 

graphite paste electrodes (Scan rate 50 mV s-1; vs. Ag/AgCl). 
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Figure 62. A schematic shows that the graphite/graphene pastes are mixed with Nujol 

(60-40 % ratio respectively), are then inserted into a polymeric-composite electrode 

shell with an inner diameter of 4.5 mm. Electrode material is in contact with copper 

foil as electrode connector. After polishing treatment, electrodes are ready to be used 

in conjunction with reference (RE) and counter (CE) electrodes in a three-electrode 

cell configuration. B Depicts the different working electrodes used in this manuscript. 

C Shows the different graphene (AO1, AO3, AO4, AO2 and C1) and graphite (HCNG 

and G250) powders used as electrode material in this manuscript. 
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Chapter 9: Tailorable Graphene/Polylactic(acid) thin films, 

printable filaments and 3D Printable electrodes for electrochemical 

applications 

This chapter investigates the electrochemical performance of in-house 

manufactured graphene/PLA thin films, 3D printable filaments and 3D printed 

electrodes, where the graphene content can be readily tailored and controlled over the 

range 5-40 % wt.. This chapter reports the physicochemical and electrochemical 

characterisation, allowing for optimisation of the graphene content to allow control 

over the 3D printability. Graphene/PLA polymeric materials are characterised and 

benchmarked as electrochemical systems against the inner-sphere redox probes 

dopamine, ascorbic acid, β-nicotinamide adenine dinucleotide (NADH) and Fe2+/3+, 

and against the near ideal outer-sphere redox probe RuHex. This chapter enhances the 

field of 3D printed graphene-based electrodes for future sensing and energy 

applications, and emphasises the importance of having accessible edge plane like-

sites/defects in graphene composites.  

9.1 Introduction  

Additive manufacturing (AM)/3D printing technologies create three-

dimensional objects from a digital design, allowing the fabrication of any shape and 

form in a single-step process, being able to tailor the printed material according to 

the desired final properties326. The most used 3D printing methods at the moment are 

fused deposition modelling (FDM), selective laser sintering (SLS) and 

stereolithography (SLA)327-329. 3D printing has developed as a prominent 

manufacturing practise for a wide range of applications, being tailorable to the needs 

of each application. In extrusion-based 3D printing, such as FDM, material properties 

are highly dependent on material preparation, composition and structural design330. 

FMD uses a continuous filament of a thermoplastic material, which is heated and 
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placed on the horizontal plane (or layer), once a layer is finished the heated bed is 

moved vertically to begin a new layer. There are many thermoplastic polymeric 

materials used in FDM, with Polylactic acid (PLA) being considered the green 

alternative to petroleum based plastics, due to being biodegradable, bio-absorbable 

and from natural sources331, 332. PLA is already being applied in the pharmaceutical, 

textile, chemical, automotive and biomedical industries333, 334. The mechanical, 

electron- and heat-transfer properties of PLA-based 3D printed devices have been 

reported to be enhanced with the use of nanofillers335, due to their unique 

enhanced/beneficial properties, such as thermal conductivity, resistance at low and 

high pH levels, improvements in band gap and electron transfer properties336. 

The understanding and application of nanomaterials has generally been 

focusing upon their utilisation as 2D printed devices, such as screen-printed 

electrodes, nonetheless research has now fixed the attention to the incorporation of 

these nanomaterials into the 3D world, by AM/3D printing, attracting great interest 

within the field of electrochemistry. Recently, the performance of these 3D 

nanomaterials-based structures has outperformed their 2D counterparts326, 337, 338. 

There is also a need to understand fundamentally how these 2D materials behave as 

electrodes in electrochemical systems339 and also develop these 2D materials into 

useful 3D structures, e.g. as biosensors340, energy storage systems (ESS)341, 342. One 

of the great advantages of utilising 2D materials in 3D structures is that they have 

higher surface areas and high absorption capacity over planar geometries which are 

traditionally used which will give benefits when used as the basis of a sensor343. As 

a result of the capability of 3D printing graphene structures, the architecture of ESS 

and sensing devices will give significant advantages from improved surface areas, 

electrical properties and hierarchical pore structures/porous channels. Through 
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developing and incorporating graphene powders with enhanced properties to create 

novel 3D structures for applications in electroanalytical devices, there is the 

possibility of improving the limit of detection (LODs), sensitivity and specificity in 

sensor devices. In energy applications it could increase the charge storage of batteries 

to meet possible future demands; next generation batteries with enhanced 

performance (e.g. improved cycle stability, specific energy, power density etc.).  

Currently, graphene oxide (GO)-based aerogels are the most common 3D 

printed graphene in the literature344, 345, where the self-assembly of the GO suspension 

takes place via hydrothermal346 or chemical reduction347, or direct cross-linking of 

GO sheets348; other common processing method is freeze-casting349; however the 

structure of these systems is extremely arbitrary, with limited mass transport and 

reduced mechanical properties350.  

In this chapter, the fabrication via FDM and application of AM/3D printed 

graphene electrodes is reported, where the graphene content can be readily tailored 

and controlled over the range 5–40 % wt.. Physicochemical and electrochemical 

characterisation is performed allowing for optimisation of the graphene content to 

allow control over the 3D printability, conductivity and electrochemical activity of 3D 

printed electrodes (3DEs); this approach allows an easy and tailorable manufacture of 

low cost and disposable electrodes for energy and sensing applications. 
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9.2. Results and discussion 

Herein it is reported the fabrication, characterisation (SEM, Raman spectroscopy and 

Thermogravimetric analysis (TGA) and electrochemical properties of graphene thin 

films, graphene 3D printable filaments and graphene additive manufacture (AM)/3D 

printed electrodes at different ratios via a facile fused deposition modelling technique. 

The graphene thin films, filaments and 3D printed electrodes evaluated were 

fabricated in-house by mixing varying graphene powders with a biopolymer 

(PolyLactic Acid, PLA), which acts as a binder different ratios.  

9.2.1 Development and Optimisation of the graphene/PLA polymers 

Graphene/polylactic acid (PLA) composites were fabricated by pre-mixing the 

graphene powder and PLA utilising a facile solution based mixing step (see 

experimental methods for further details). They consisted in a range of graphene nano-

platelets loaded into the composite containing 5, 10, 15, 20 and 40 % wt. graphitic 

powder, validated by thermogravimetric analysis (TGA), with their respective 

Scanning Electron Microscopy (SEM) images as depicted in Figure 63. 
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Figure 63. Thermogravimetric analysis and SEM images of 5-40 % wt. graphene/PLA 

material. A shows the thermogravimetric analysis (TGA) of 5, 10, 15, 20 and 40 % wt. 

graphene/PLA material. B to F show the SEM images of the 5, 10, 15, 20 and 40 % 

wt. graphene thin films respectively. 

First, the resulting graphene/PLA powder mix was made into a thin film using 

a hot press (see experimental methods for further details), 2 x 3 mm rectangular piece 

of the thin film then were characterised and benchmarked as electrochemical systems 

against the near-ideal outer sphere redox probe hexaammineruthenium (III) chloride 

(RuHex) in order to calculate the Heterogeneous Electron Transfer (HET) rate 

constant (k0) values, for the different graphene thin film electrodes as described in the 

Experimental section as shown in Table 13 (see voltammetric profiles in Figure 64).  

  



198 

 

 

 

 

 

Figure 64. Optical and RuHex scan rates studies for 5 to 40 % wt. graphene/PLA thin 

films. A shows the optical images of the graphene/PLA thin films with loading varying 

from 5 to 40 % wt. respectively. B depicts the respective scan rates studies of 1 mM 

RuHex from 5 to 500 mV s-1 (vs. Ag/AgCl). 
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k0 /  cm s-1 (at 
5 mV s-1) 

k0 /  cm s-1 (at 
15 mV s-1) 

k0 /  cm s-1 (at 
25 mV s-1) 

k0 /  cm s-1 (at 
50 mV s-1) 

k0 /  cm s-1 (at 
100 mV s-1) 

k0 /  cm s-1 (at 
150 mV s-1) 

k0 /  cm s-1 (at 
250 mV s-1) 

k0 /  cm s-1 (at 
500 mV s-1) Average k0 /  cm s-1 

7.30 x 10-4 1.04 x 10-3 1.27 x 10-3 3.01 x 10-4 2.72 x 10-4 2.47 x 10-4 2.37 x 10-4 2.14 x 10-4 5.39 x 10-4 

8.91 x 10-4 1.62 x 10-3 2.09 x 10-3 2.31 x 10-3 3.11 x 10-3 3.62 x 10-4 4.23 x 10-3 4.91 x 10-4 2.85 x 10-3 

9.84 x 10-4 1.70 x 10-3 2.09 x 10-3 2.82 x 10-3 3.61 x 10-3 4.20 x 10-3 5.16 x 10-3 5.98 x 10-3 3.32 x 10-3 

4.16 x 10-3 1.88 x 10-3 2.20 x 10-3 3.11 x 10-3 3.79 x 10-3 4.42 x 10-3 5.70 x 10-3 6.61 x 10-3 4.16 x 10-3 

3.96 x 10-3 1.79  x 10-3 2.31 x 10-3 3.11 x 10-3 4.40 x 10-3 4.64 x 10-3 5.99 x 10-3 6.61 x 10-3 4.10 x 10-3 
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Table 13. Electrochemical characterisation of graphene/PLA thin film electrodes 

determined from cyclic voltammetry using 1 mM RuHex probe in 0.1 M KCl (N = 7; 

vs. Ag/AgCl).  

The k0 values indicate a trend that, as the higher amount of active material 

(graphene) is added to the polymer, the electrochemical process becomes faster due to 

the higher availability of active edge plane like- sites (see Table 13). Resultantly, it 

was electrochemically estimated that the 5 % wt. thin film, with a ΔEp of 310 mV (at 

50 mV s-1), has an averaged HET value of 5.39 x 10-4 cm s-1, the 10 % wt. thin film, 

with a ΔEp of 105 mV (at 50 mV s-1), has an averaged HET value of 2.85 x 10-3 cm s-

1, the 15 % wt. thin film, with a ΔEp of 87 mV (at 50 mV s-1), has an averaged HET 

value of 3.32 x 10-3 cm s-1, the 20 % wt. thin film, with a ΔEp of 75 mV (at 50 mV/s), 

has an averaged HET value of 4.16 x 10-3 cm s-1 and lastly, the 40 % wt. thin film, 

with a ΔEp of 75 mV (at 50 mV s-1), has an averaged HET value of 4.10 x 10-3 cm s-

1. Overall, the above results indicate that the reversibility of the electrochemical 

reaction increases (and therefore its HET), as the ratio of the active material (graphene) 

is increased within the electrode, increasing the amount of available electrochemically 

reactive edge sites34, 313. 

Considering these results, it is time to explore the electrochemical performance 

of these graphene thin film electrodes towards the electrochemical detection of 

relevant biological analytes such as dopamine, ascorbic acid, β-nicotinamide adenine 

dinucleotide (NADH), RuHex and Fe2+/3+ sulphate respectively, as depicted in Figure 

65 and shown in Table 14. Table 14 shows a general trend of higher current response 

at lower potentials when higher percentages of graphene are incorporated into the thin 

films. It is important to note that some data does not follow this trend, which could be 

due to crack/rifts in the thin film, resulting in a higher surface area in contact with the 
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electrolyte solution at cases where the loading of the filler is lower than the rest of the 

comparison. 

 

Figure 65. Voltammetric profiles of 1 mM dopamine (A), ascorbic acid (B), β-

nicotinamide adenine dinucleotide (NADH) (C), RuHex (D) and Fe2+/3+ (F) when 

using the graphene thin film electrodes (Scan rate 50 mV s-1; vs. Ag/AgCl). 

Table 14. Comparison of the analytical voltammetric profiles obtained at the various 

graphene/PLA thin films electrodes towards the detection of 1 mM dopamine (DA), 

% wt.  

GRAP

HENE 

DA AA NADH RuHex Fe2+/3+ 

Ip 

/ μA 

Ep 

/ V 

Ip  

/ μA 

Ep 

/ V 

Ip   

/ μA 

Ep  

/ V 

Ip  

/ μA 

Ep  

/ V 

Ip  

/ μA 

Ep 

/ V 

5% 
14.33 0.37 7.77 0.46 7.26 0.66 -24.91 -0.39 10.29 1.12 

10% 
7.21 0.37 8.41 0.41 5.57 0.44 -15.84 -0.27 1.433 1.26 

15% 
26.16 0.18 10.37 0.31 8.86 0.46 -11.36 -0.25 11.85 1.06 

20% 
33.19 0.17 20.30 0.32 8.45 0.46 -15.71 -0.26 10.11 1.10 

40% 
57.75 0.36 13.13 0.24 5.71 0.45 -12.77 -0.25 17.96 1.12 
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ascorbic acid (AA), NADH, RuHex and Fe2+/3+ determined from cyclic voltammetry 

(Scan rate 50 mV s-1 vs. Ag/AgCl). 

9.2.2 Development and Optimisation of the graphene/PLA 3D printed electrodes 

Next, attention is turned to build a 3D printable filament by extruding the 

polymers (see experimental methods for further details), obtaining a 1.75 mm diameter 

filament. The graphene/PLA filaments were subjected to electrochemical 

characterisation utilising the near-ideal outer-sphere redox probe 1 mM RuHex/0.1 M 

KCl, which is commonly utilised redox probe in the academic literature.  

Finally, such graphene/PLA 3D printable filaments are printed as 3D printed 

electrodes (3 mm radius and 1 mm thickness; see experimental methods for further 

details). The fabrication of graphene/PLA 3D printed electrodes containing 

percentages over 20 % wt. is extremely brittle and unreproducible in terms of 

homogeneity, printability and structural integrity. It is found out that the 15 – 20 % 

are the optimal % wt. when one is considering graphene, as those filaments are the 

ones that are still printable and contain the higher amount of active material (and are 

more electroactive), creating a conductive network throughout the graphene/PLA 

filament, and still able to successfully 3D print useful electrochemical geometries.  

After optimisation of the graphene content, the 20 % graphene filaments were 3D 

printed producing working electrodes as shown in Figure 66. 
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Figure 66. Optical images of the 20 % wt. graphene/PLA 3D printable filament and 

3D printed electrodes (A) with a Raman inset showing the characteristic peaks of 

graphitic materials. Zoomed in section 20 % wt. 3D printed electrode with its 

measurements, including an inset showing the 3D printed working electrode, counter 

and reference electrodes (CE and RE respectively) in the electrolyte. 

Next, the 20 % wt. graphene/PLA 3D printed electrodes were characterised 

and benchmarked against the near-ideal outer sphere redox probe RuHex as shown in 

Figure 67, where it can be compared to the scan rate studies of RuHex using 20 % wt. 

graphene thin film (Figure 67A) and  the 20 % wt. graphene 3D printable filament in 

bulk (Figure 67B).  
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Figure 67. Scan rate studies of 1 mM RuHex using the 20 % wt. graphene electrodes 

in the following forms: thin film (A), 3D printable filament (B) and 3D printed 

electrode (C) respectively (Scan rate studies from 5 to 500 mV s-1; vs. Ag/AgCl). 

As shown in Table 15, the 20 % wt. graphene thin film electrode as it was 

electrochemically estimated that with a ΔEp of 87 mV (at 50 mV s-1), has an averaged 

HET value of 3.32 x 10-3 cm s-1. The 20 % wt. graphene 3D printable filament has a 

ΔEp of 130 mV (at 50 mV s-1), has an averaged HET value of 1.90 x 10-3 cm s-1 and 

the 20 % wt. graphene 3D printed electrode has a ΔEp of 220 mV (at 50 mV s-1), with 

an averaged HET value of 6.56 x 10-4 cm s-1. 
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Rate/ mV 

Graphene 

k0 /  cm s-

1 (at 5 mV 
s-1) 

k0 /  cm s-

1 (at 15 
mV s-1) 

k0 /  cm s-1 

(at 25 mV 
s-1) 

k0 /  cm s-1 

(at 50 mV 
s-1) 

k0 /  cm s-1 

(at 100 
mV s-1) 

k0 /  cm s-1 

(at 150 
mV s-1) 

k0 /  cm s-1 

(at 250 
mV s-1) 

k0 /  cm s-1 (at 
500 mVs-1) Average k0 

/  cm s-1 

Thin film 9.84 x 10-4 1.70 x 10-3 2.09 x 10-3 2.82 x 10-3 3.61 x 10-3 4.20 x 10-3 5.16 x 10-3 5.98 x 10-3 3.32 x 10-3 

Filament 7.67 x 10-4 1.20 x 10-3 1.48 x 10-3 1.80 x 10-3 2.09 x 10-3 2.31 x 10-3 2.57 x 10-3 2.98 x 10-3 1.90 x 10-3 

5.46 x 10-4 8.51 x 10-4 8.14 x 10-4 7.36 x 10-4 6.38 x 10-4 6.09 x 10-4 4.75 x 10-4 3.85 x 10-4 6.32  x 10-4 

polished 

5.42 x 10-4 9.86 x 10-4 1.21 x 10-3 1.48 10-3 1.80 10-3 1.99 10-3 2.22 x 10-3 2.33 x 10-3 1.57 x 10-3 
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Table 15. Comparison of the heterogeneous electron transfer (HET; k0) values 

obtained at the various graphene/PLA electrodes from 1 mM RuHex scan rate studies 

(N = 7; vs. Ag/AgCl). 

As per the aforementioned results, is clearly evident that at the same 20 % wt. 

graphene, the thin film electrodes are the ones with faster heterogeneous electron 

transfer kinetics (HET; k0), with an averaged HET value of 3.32 x 10-3 cm s-1. The 20 

% wt. graphene 3D printable filaments in comparison reported an averaged HET value 

of 1.90 x 10-3 cm s-1 and the 3D printed electrodes showed the slowest of them with 

an averaged HET value of 6.32 x 10-4 cm s-1. The HET kinetics value for the 3D printed 

electrodes was the slowest, which could be due to a not sufficient percolation due to 

the multiple extrusion process that creates an enriched outer layer of PLA in the 

filament and 3D printed electrode. In order to overcome this limitation, a polishing 

method on the surface of the electrode is tested, in order to reduce the presence of the 

thermoplastic upon the surface of the electrode, allowing more electrolyte to react with 

the 3D printed electrode, resulting in an averaged k0 value of 1.57 x 10-3 cm s-1 similar 

but not as fast as the one measured in the graphene bulk filament. 

 The effect of the polishing treatment on the surface of the electrode was also 

studied towards the voltammetric profiles of dopamine, ascorbic acid, β-nicotinamide 

adenine dinucleotide (NADH), RuHex and Fe2+/3+ respectively, as depicted in Figure 

68 and shown in Table 16, where it can be clearly seen that there is an improved current 

response recorded, due to a higher electroactive surface area of the electrode. 

  



207 

 

Figure 68. Voltammetric profiles of 1 mM dopamine (A), ascorbic acid (B), β-

nicotinamide adenine dinucleotide (NADH) (C), RuHex (D) and Fe2+/3+ (F) when 

using the 20 % wt. graphene 3D printed electrodes unmodified and polished 

respectively (Scan rate 50 mV s-1; vs. Ag/AgCl).  

 

Table 16. Comparison of the analytical voltammetric profiles obtained at the 

unmodified and polished 20 % wt. 3D printed Graphene/PLA electrode towards the 

detection of 1 mM dopamine (DA), ascorbic acid (AA), NADH, RuHex and Fe2+/3+ 

determined from cyclic voltammetry (Scan rate 50 mV s-1 vs. Ag/AgCl). 

Seen the results above, it is suggested that the graphene incorporated into 3D 

printable filaments and then printed into fully 3D printed electrodes is a suitable 

electrochemical platform, although can be enhanced via physical pre-treatment in 

order to increase the surface area of the graphene nano-platelets within the composite 

20 % wt. 
Graphene 

DA AA NADH RuHex Fe2+/3+ 

Ip / 
μA 

Ep /  
V 

Ip / 
μA 

Ep / 
V 

Ip / 
μA 

Ep / 
V 

Ip / 
 μA 

Ep / 
 V 

Ip /  
μA 

Ep / 
V 

Unmodified 
3.18 0.18 0.29 0.35 0.24 0.69 -3.10 -0.29 4.99 1.40 

Polished 
20.92 0.32 1.38 0.35 2.31 0.57 -12.10 -0.51 12.40 1.03 
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material to increase the exposure and coverage of edge plane like-sites/defects and 

increase the contact with electrolytes. Further research needs to explore different 

methods of surface activation/exposure of filler material within the prints, such as 

chemical, physical or electrochemical pre-treatments. The results presented herein 

enhances the field of additive manufacturing/3D printed graphene-based 

electrochemical devices with the utilisation of a tailorable graphene/PLA filament. 

9.3 Conclusions 

For the first time, it is reported the fabrication of additive manufacturing/3D 

printed graphene/PLA 3D printed electrode using a solution based mixing step. The 

3D printable graphene/PLA filament can be tailored and controlled (5-40 % wt.). It is 

found that the optimal graphene content is 20 % wt. in order to provide effective 

conductivity and 3D printability. The initial specific electrochemical sensing 

properties of these graphene 3D printed electrodes is poor, however there is a need of 

investigating further methods to increase the surface area or the porosity of such 

electrodes depending on the desired applications. These results presented herein 

enhance the field of additive manufacturing/3D printed graphene electrochemical 

devices demonstrating that useful 3D printable electrode can be manufactured. 
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9.4 Experimental Section 

The tested solutions were: 1 mM dopamine in pH 7 phosphate buffer 

solution(PBS)/0.1 M KCl; 1 mM ascorbic acid in pH 7 PBS/0.1 M KCl; 1 mM β-

nicotinamide adenine dinucleotide (NADH) in pH 7 PBS/0.1 M KCl; 1 mM 

hexaammineruthenium (III) chloride (RuHex) in 0.1 M KCl; 1 mM Fe2+/3+/0.2 M 

HClO4. Raman Spectroscopic analysis was performed using a Thermo Scientific DXR 

Raman Microscope fitted with a 532 nm excitation laser at a low power of 6 mW to 

avoid any heating effects. Spectra were recorded using a 3 seconds exposure time for 

3 accumulations in each point. To collect a Raman profile between the region of 1000 

and 3500 cm-1. Scanning electron microscope (SEM) images were obtained using a 

JSM-5600LV (JEOL, Japan) model. Thermogravimetric analysis (TGA) was 

conducted utilising a PerkinElmer TGA 4000. The PLA samples were subject to a 

gradual temperature increase of 10 °C per minute, over a range between 25–800 °C, 

under a flow of nitrogen (40 ml/min). 

The graphene/polylactic acid (PLA) composites were made by dispersing the 

graphene nanoplatelets within xylene and heated (under reflux) at 160 °C for 3 hours, 

the PLA was then added to the mixture and left for a further 3 hours. The resulting 

homogenous (solution phase) mixture then was then recrystallized within methanol, 

and left to dry (at 50 °C within a fan oven) until the xylene had evaporated, obtaining 

the final graphene/PLA powder mix. Thin films were made by using an industrial 

press, first under 180 °C and 15 ton of pressure for 180 seconds to make sure the 

homogeneous distribution of the heat and then left to cool down and pressed again at 

15 ton of pressure at room temperature for another 180 seconds. The 3D printable 

filaments were extruded placing the graphene loaded PLA powder mix into a 

MiniCTW twin-screw extruder (ThermoScientific) at a temperature of 200 °C and a 
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screw speed of 30 rpm, obtaining a 1.75 mm diameter filament (see Figure 66A). The 

3D printed designs were fabricated using a ZMorph® printer (Warsaw, Poland) with 

a direct drive extruder at a temperature of 190 °C. The 3D printed designs were drawn 

via Solidworks, to create a circular disc electrode with a diameter of 3mm and a 

thickness of 1 mm (see Figure 66A). 

The HET rate constants, 𝑘𝑜𝑏𝑠
0 , were calculated using the near ideal outer-sphere 

redox probe Ru(NH3)6
3+/2+ (in 0.1 M KCl) using the well-known190 and utilised 

Nicholson method8, for electrochemical reactions via the equation 1.25 and 1.269 

described in Chapter 1.  
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Chapter 10: Conclusions and future work 

10.1 Overall conclusions 

 This thesis has significantly contributed to the fundamental understanding of 

pristine graphene (mono-layer) electrochemistry and its application as electrode 

material. First, exploring the most recommended method to estimate the real 

electroactive area of graphene (polymer-free CVD mono-layer graphene). It is also 

shown that mono- and few-layer CVD graphene are not suitable platforms for energy 

applications that generate gas bubbles and/or need high positive and negative 

potentials. It is also demonstrated herein that 2D-hBN needs to be further studied in 

order to understand its fundamentals electrochemical properties. In addition, it is 

proven in this work that smaller lateral size graphitic powder have enhances 

electrochemical properties than the bigger ones, which could lead to easily improve 

current devices. Finally, it is also reported herein the fabrication and application of 3D 

printed graphene/PLA electrodes with tailored filler loadings as additive 

manufacturing/3D printed electrochemical platforms. 

10.2 Suggestions for future work 

Future work continuing this thesis is as follows: 

1. Future work should study in-situ the structural integrity of true monolayer graphene 

towards other electrochemical applications such as supercapacitors, fuel cells etc. to 

evaluate their usefulness and to compare the response obtained to other 2D materials. 

2. Since the electrochemical properties of CVD graphene arise from its edge plane 

like-sites/defects, different modifications (boron and nitrogen doping) and structural 

disposition of graphene (PVD CVD graphene and vertically aligned graphene, with 

different ratios of edge plane coverage) and other 2D nanomaterials (such as 2D-hBN, 

MoS2, MoSe2 etc.) as electrode materials should be explored in order to tailor the 

different electrochemical properties of those electrodes. 
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3. Polymer-free 2D-hBN true electrochemical properties should be explored at the 

edge plane like- sites/defects in order to elucidate the origin of the newly-seen 

electrochemical capabilities. In-situ physicochemical and electrochemical 

characterisation of both 2D-hBN and substrate (SiO2, CVD Graphene or others) could 

discern the true origin of the electrochemical response, differentiating if the arise from 

the doping of 2D-hBN or others. 

4. Smaller lateral flake sizes of graphitic powders should be explored to enhance 

current screen-printed and 3D printed electrodes/devices towards sensing and energy 

applications in order to bring these devices into a new range of capabilities. 
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