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Abstract
Better-informed mangrove conservation and management practices are needed as the ecosystem services provided by these 
intertidal forests continue to be threatened by increasing anthropogenic pressures and climate change. Multiple layers of 
knowledge are required to achieve this goal, including insights into population genetics of mangrove species. Understanding 
the importance of population-genetic insights to conservation, multiple research groups have developed microsatellite loci 
for the widespread, neotropical red mangrove, Rhizophora mangle. However, although a wealth of genetic markers exist, 
empirical research is limited in the number of these loci employed. Here, we designed two multiplex PCR panels that combine 
seven novel loci developed for this work and eight previously-developed loci from three research groups to generate 15-locus 
genotypes, more than twice the average number of loci used in previous research, in only two PCR. We demonstrated utility 
in R. mangle from four sites across ~ 2500 km near this species’ northern latitudinal limits, and that these multiplex panels 
were better able to delineate populations than data subsets with numbers of loci comparable to previous research. We focus 
our discussion on how this tool is a more-informative, efficient (both in terms of time and resources), and easily-modifiable 
alternative to address many pressing conservation and management issues, such as the generation of baseline genetic data 
for areas not yet studied, better defining management units, and monitoring genetic effects of restoration projects. We also 
provide a quick protocol that outlines each step in this procedure to facilitate the use of this tool by others.

Keywords Coastal management · Mangroves · Microsatellites · Multiplex PCR · Population genetics · Rhizophora

Introduction

Mangroves provide ecosystem services of both ecological 
and economic importance to coastal ecosystems worldwide 
(Lee et al. 2014). However, these intertidal forests are highly 

susceptible to increasing anthropogenic pressures and cli-
mate change (Alongi 2015; Friess et al. 2019). Effective 
conservation and management of mangrove ecosystems 
will require multiple layers of knowledge across diverse 
disciplines, including improved estimates of temporal 
changes in mangrove cover, standardized protocols to moni-
tor forests, and insights into connectivity across local and 
regional scales (Canty et al. 2018). Population genetic data 
can provide insights necessary to understand and continue 
to monitor species for conservation and management pur-
poses, including estimates of population structure, effective 
population sizes, and gene flow (Kramer and Havens 2009).

The pantropical genus Rhizophora (Rhizophoraceae) con-
sists of nine species and hybrids (Duke et al. 1998) whose 
large propagules are commonly used in reforestation pro-
jects. Three members of this genus exist in the Neotropics, 
where Rhizophora mangle is the most widespread, with a 
distribution that covers both the Pacific and Atlantic coasts 
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of the Americas and the Atlantic coast of Africa. Under-
standing the importance of population-genetic insights 
to mangrove conservation, multiple research groups have 
developed R. mangle microsatellite loci (Rosero‐Galindo 
et  al. 2002; Takayama et  al. 2008; Ribeiro et  al. 2013; 
Francisco et al. 2018a) and 17 peer-reviewed publications 
since 2007 have utilized these loci to characterize R. man-
gle population genetics from across this species’ distribu-
tion (Table 1). However, although we possess a wealth of 
genetic markers, this field still lacks cohesion in the imple-
mentation of these microsatellite loci. Empirical research is 
limited in the number of these loci employed (6.6 ± 2 loci; 
mean ± SD), presumably because most studies continue to 
amplify loci individually (Table 1). Amplification in sin-
gleplex can be excessively expensive and time consuming, 
and limit either the number of markers used or samples 
genotyped, as expressed in a recent study (Bologna et al. 
2019). In addition, many studies limit themselves to loci 
developed by a single research group and do not use previ-
ous research to inform their choice of loci from across all 
available microsatellites.

Here, we developed a new set of R. mangle microsatel-
lite loci and then designed two multiplex PCR panels that 
combine these novel loci with those of three other research 
groups. These multiplex panels generate 15-locus genotypes, 
more than twice the average number of loci used in previ-
ous research, in only two PCR. We demonstrate the utility 
of these multiplex panels in R. mangle from four collection 

sites across ~ 2500 km towards this species’ northern lati-
tudinal limits and how this increased number of loci can 
improve our ability to differentiate among populations of 
this species. We focus our discussion on how this tool can be 
an efficient alternative (both in terms of time and resources) 
to provide necessary baseline genetic data for pressing con-
servation and management questions, and how these mul-
tiplex can be easily modified to incorporate alternative loci 
from the pool of available microsatellites for this species.

Materials and methods

Novel microsatellites

Rhizophora mangle leaf tissue was collected from a single 
individual in Fort Pierce, Florida, USA (27.4974, − 80.3057) 
and immediately dried in silica gel. Genomic DNA from this 
individual was isolated from 20 mg of dried leaf tissue with 
the DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) 
according to manufacturer’s protocol, with an extended incu-
bation of 45 min. DNA for sequencing was purified with the 
High Pure PCR Product Purification Kit (Roche, Penzberg, 
Germany). We used 2 × 250-bp paired-end Illumina MiSeq 
genome sequencing and developed microsatellite markers 
with the Galaxy-based pipeline outlined by Griffiths et al. 
(2016), which identified 61,130 sequences with microsatel-
lite motifs and designed primers for 358 loci, of which 42 

Table 1  Research articles on Rhizophora mangle genetics that employed microsatellite loci

a Authors utilized multiplex PCR reactions

Authors Year Region Loci Publication

Bologna et al. 2019 St. John, USVI 7 https ://doi.org/10.3390/d1104 0065
Cisneros-de la Cruz et al. 2018 Atlantic Mexico 9 https ://doi.org/10.1002/ece3.4575
Francisco et al. 2018a Brazil 8 https ://doi.org/10.1002/ece3.3900
Francisco et al. 2018b Brazil 4 https ://dx.doi.org/10.1590/01047 76020 18240 42575 
Kennedy et al. 2017 Florida, USA 7a https ://doi.org/10.1111/jbi.12813 
Hodel et al. 2016 Florida, USA 8 https ://doi.org/10.3732/ajb.15002 60
Kennedy et al. 2016 Caribbean and Florida, USA 7 https ://doi.org/10.3732/ajb.15001 83
Cerón-Souza et al. 2015 Across distribution 6 https ://doi.org/10.1002/ece3.1569
Cerón-Souza et al. 2014 Pacific Panama 10 https ://doi.org/10.1007/s1125 8-014-0315-1
Sandoval-Castro et al. 2014 Atlantic and Pacific Mexico 6 https ://doi.org/10.1371/journ al.pone.00933 58
Bruschi et al. 2014 Pacific Nicaragua 3 https ://doi.org/10.1111/j.1756-1051.2013.00138 .x
Takayama et al. 2013 Across distribution 9a https ://doi.org/10.3732/ajb.12005 67
Cerón-Souza et al. 2012 Atlantic and Pacific Panama 6 https ://doi.org/10.1186/1471-2148-12-205
Sandoval-Castro et al. 2012 Pacific Mexico 6 https ://doi.org/10.1016/j.aquab ot.2012.01.002
Pil et al. 2011 Brazil 8 https ://doi.org/10.3732/ajb.10003 92
Cerón-Souza et al. 2010 Across distribution 6 https ://doi.org/10.3732/ajb.09001 72
Arbeláez-Cortes et al 2007 Pacific Colombia 3 https ://doi.org/10.1007/s1075 0-007-0622-9

Mean 6.6
SD 2.0

https://doi.org/10.3390/d11040065
https://doi.org/10.1002/ece3.4575
https://doi.org/10.1002/ece3.3900
https://dx.doi.org/10.1590/01047760201824042575
https://doi.org/10.1111/jbi.12813
https://doi.org/10.3732/ajb.1500260
https://doi.org/10.3732/ajb.1500183
https://doi.org/10.1002/ece3.1569
https://doi.org/10.1007/s11258-014-0315-1
https://doi.org/10.1371/journal.pone.0093358
https://doi.org/10.1111/j.1756-1051.2013.00138.x
https://doi.org/10.3732/ajb.1200567
https://doi.org/10.1186/1471-2148-12-205
https://doi.org/10.1016/j.aquabot.2012.01.002
https://doi.org/10.3732/ajb.1000392
https://doi.org/10.3732/ajb.0900172
https://doi.org/10.1007/s10750-007-0622-9
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had assembled read sequences. A subset of 34 of these loci 
was selected from across all possible perfect repeat motifs 
(di-, tri-, tetra-, and pentanucleotides) and tested with 16 
R. mangle individuals from two collection sites in Florida, 
USA (Avalon: 27.5468, -80.3297; Pine Island: 28.4841, 
− 80.7237; n = 8 per site). We used the DNeasy Plant Mini 
Kit to isolate genomic DNA from these 16 individuals, as 
described above.

We aimed to combine multiple loci into a limited number 
of multiplex reactions, so we performed singleplex testing 
for all loci with identical PCR conditions. We followed the 
PCR method for a single set of cycles outlined in Culley 
et al. (2013): 95 °C for 15 min; 35 cycles at 94 °C for 30 s, 
57 °C for 90 s, 72 °C for 60 s; 60 °C for 30 min. We used 
the Type-it® Microsatellite PCR Kit (Qiagen, Valencia, 
California, USA) with a total volume of 6 μL per reaction, 
with 2.5 μL Multiplex PCR Master Mix, 0.5 μL primer mix 
(0.2 μM of each forward and reverse), 1 μL  dH2O, and 2 μL 
of genomic DNA (~ 20 ng). We performed PCR on a Prime 
thermal cycler (Techne, Straffordshire, UK), and assessed 
amplification via electrophoresis on 1.5% agarose gels. Of 
the 34 loci, 18 produced consistent bands, whereas others 
did not amplify or produced multiple size bands. For these 
18 loci, we ordered new forward primers with additional 
sequences at the 5′ end that correspond to universal primers 
with fluorescent labels (6-FAM, HEX, or PET), and used a 
three-primer method to fluorescently label PCR products, as 
described in Culley et al. (2013). We analysed fragments on 
an Applied Biosystems 3730 DNA Analyzer (Applied Bio-
systems, Foster City, California, USA) and scored alleles in 
the R-package Fragman (Covarrubias-Pazaran et al. 2016). 
A total of 15 loci produced easily-identifiable peaks and nine 
were polymorphic in the 16 Florida samples (Table 2).

Multiplex design

Utilizing the same PCR conditions and three-primer method 
outlined above, we initiated multiplex testing with 28 loci 
(15 developed here and 13 published). We selected RM19, 
RM38, RM41 (Rosero‐Galindo et al. 2002), and RM50, 
RM86 (Takayama et al. 2008) based on our previous expe-
rience (Kennedy et al. 2016, 2017), and selected eight loci 
developed by Ribeiro et al. (2013): RmBra18, RmBra19, 
RmBra20, RmBra25, RmBra50, RmBra59, RmBra64, 
RmBra66. RmBra25 was discarded due to inconsistent 
singleplex amplification. We combined the remaining 27 
loci into three initial multiplexes based simply on fragment 
length differences. Loci were discarded due to inconsistent 
multiplex amplification (RzMg07, RzMg30, RM86), diffi-
cult-to-score peaks (RmBra66, RM41) or monomorphism 
(RzMg04, RzMg05, RzMg08, RzMg16, RzMg18, RzMg25, 
RmBra64).

We combined the remaining 15 loci into two multiplex 
reactions with seven and eight loci each (Table 3). We used 
the same PCR volumes and conditions described above (see 
Appendix S1 for a protocol outline).

Multiplex testing

We assessed multiplexes with 103 R. mangle individuals 
from four collection sites: one site in Florida, USA with 
31 samples (Jupiter: 26.8179, − 80.0480), two sites in The 
Bahamas, at either end of the archipelago, with 35 sam-
ples (New Providence: 24.9920, − 77.3868) and 33 samples 
(Inagua: 21.0954, − 73.6300), and one site at this species’ 
northern limit in Texas, USA where only four trees were 
found (Río Bravo: 25.9526, − 97.1513) (Fig. 1). Distances 
between collection sites range from approximately 335 km 
(Jupiter–New Providence) to 2500 km (Río Bravo–Inagua). 
We used the DNeasy Plant Mini Kit to isolate genomic DNA 
from these individuals, as described above, and voucher 
material from each collection site was deposited at the 
Manchester Museum Herbarium (Table 4). We analysed 
PCR products and scored alleles as described above (see 
Appendix S2 for genotype data). For each collection site, 
we determined the number of alleles and private alleles per 
locus, calculated observed and expected heterozygosity, cal-
culated inter-site genetic differentiation  (FST), and tested for 
linkage disequilibrium and deviations from Hardy–Weinberg 
equilibrium after adjusting for multiple comparisons with 
FSTAT 2.9.3.2 (Goudet 2002). Only allele numbers were 
determined for the four Texas individuals.

We then evaluated the ability of the 15-locus genotypes 
generated from these multiplexes to differentiate among the 
three collection sites from Florida and the Bahamas (inter-
site distances ranged from 335–900 km; n = 99 individuals) 
compared to genotypes with fewer loci, comparable to num-
bers utilized in previous research (Table 1). To do this, we 
performed a discriminant analysis of principal components 
(DAPC) (Jombart et al. 2010) in the R-package adegenet 
2.1.1 (Jombart and Ahmed 2011) in R v3.4.2 (R Core Team 
2013). DAPC first transforms data with a principal com-
ponents analysis and then performs a discriminant analysis 
on the principal components retained (Jombart and Collins 
2015). We performed an initial analysis on the complete 
data set (i.e., individuals with 15-locus genotypes from both 
multiplexes), and then subsequent analyses on subsets with 
7-locus genotypes (i.e., only data from multiplex 1) and with 
8-locus genotypes (i.e., only data from multiplex 2). For 
each analysis, we retained the minimum number of princi-
pal components that explained ~ 90% of the total variance, 
which corresponded to 15, 9, and 8 principal components, 
respectively, and then retained both discriminant functions. 
We extracted each individual’s coordinates on the two 
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principal axes of the DAPC (i.e., ind.coord) to then plot in 
ggplot2 (Wickham 2011).

Results

We found that 14 of the 15 loci in the two multiplexes 
were polymorphic across these four collection sites 
(Table 4). We identified 57 total alleles (Table 3), with a 
range from 44 alleles (Jupiter, Florida) to only 20 alleles 
(Río Bravo, Texas). Alleles per locus within sites ranged 
from 1 to 6, with expected heterozygosity from 0.00 to 
0.72, and 16 private alleles were identified (Table 4).  FST 

indicated considerable genetic differences, with a range 
from 0.22 (Jupiter–New Providence) to 0.52 (Jupiter–Ina-
gua). Expected heterozygosity was generally higher than 
observed, but few loci deviated from Hardy–Weinberg 
equilibrium (Table 4). We found no evidence of linkage 
disequilibrium.

DAPC with the complete dataset of 15-locus genotypes 
(14 loci were polymorphic), identified clear delineations 
between the three collection sites in Florida and the Baha-
mas (Fig. 2A). In contrast, subsets with 7-locus and 8-locus 
genotypes (6 and 8 loci were polymorphic, respectively) 
identified a similar pattern, but were unable to clearly dif-
ferentiate these collection sites (Fig. 2B, C).

Table 2  Characteristics of 15 microsatellite loci developed for Rhizophora mangle 

Note Additional sequences at 5′ end and corresponding fluorescent labels outlined in Culley et al. (2013)
*M13(-21) tail: TGT AAA ACG ACG GCC AGT 
**T7term tail: CTA GTT ATT GCT CAG CGG T
***M13 modified B tail: CAC TGC TTA GAG CGA TGC 

Locus Primer sequences (5′-3′) (*,**,*** indicate additional 
sequence at 5′ end)

Repeat motif Approx size 
range (bp)

Fluorescent label GenBank accession no

RzMg04 F: *GGA GAG TTT GCT CCA AAG TCC AAA CC (ATT)27 378 6-FAM MN256326
R: GGT GAT GGA AAT GAA GAG AAT AAT GGC 

RzMg05 F: **CTA ATG CAT CGT CCA TCA TCGC (AAC)39 272–275 HEX MN256327
R: AGG TCT CTG AGA TAG CAA ATA CAT AACG 

RzMg08 F: ***TGG GAT TCA TTC ATT TCT GAG TAG GC (ATT)24 295 PET MN256328
R: GAA AGA AGC TTG CTT CAT CTT AGA ACC 

RzMg09 F: *AAT TTT GTT TCC ACA CAC GAT TCC G (ATT)39 336–340 6-FAM MN256329
R: CAA TAA ACG AGT CAC CAT ATA GGA ACC 

RzMg10 F: *GTG CTT TAA CCG TAA TGC ATC TAT CC (AAAT)32 317–325 6-FAM MN256330
R: ATG TCC CTC AAT GTG ACT CTT GGC 

RzMg15 F: **GCA ATT AGG TGC AGA CCA GGA TGG (AAAT)32 343 HEX MN256331
R: TGG CTC TGT TTC GTT TTG ATC ATG G

RzMg16 F: *TGT AAT CTC AAA TCG TAG CAT AGC G (ATT)33 266 6-FAM MN256332
R: GAA CTG TCT CAA TTG TTT CAA GTC TGC 

RzMg18 F: ***ACT ACC ACC AGT GGC AAA TCA CTG C (TCC)24 338 PET MN256333
R: GAC AAA TGA CAA CGG GAA AGC AAG C

RzMg21 F: *CAA ACG TCG CTC CTA TTT CCG TAC C (TTC)30 427–431 6-FAM MN256334
R: TTT ATG ACT GGA GGC AGC AAA GTG G

RzMg25 F: **AGA TCA CTA GCC GAG TTG CTT TGG C (AAC)27 337 HEX MN256335
R: TGT CTC TCT CAT CTG CTT ACG AAG TGC 

RzMg28 F: *CAC GAC AAA TAC GGA AAT AGA AGG G (ATC)30 355–378 6-FAM MN256336
R: TCG AAC TGC AAT GGA AAT AAA GTC G

RzMg30 F: ***AGA TTC GCC GTC CCA CTA ATC TGG (CGG)27 305–314 PET MN256337
R: AAA ACT AGA GCC GTA CCG TTG TTG C

RzMg32 F: ***TAG AGC AAT GGC TGC CGT GAT ATG G (TC)26 386–388 PET MN256338
R: AAG ATG AAG GGA CGG GAT TTA AGC G

RzMg33 F: **ACT GTC CAC TGA AGA ATC CAA ACG C (TC)34 390–400 HEX MN256339
R: CCA CAG TTT AAT GCT ACT TCA AAA GCC 

RzMg34 F: ***TCT CGA TCT CGT CAA GTG TAA CAT GC (TC)22 436–438 PET MN256340
R: ACC TCT AGC TCC CTG CTC CTT CAG C
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Discussion

Better-informed mangrove conservation practices are needed 
as the ecosystem services provided by these intertidal forests 
continue to be threatened by increasing anthropogenic pres-
sures and climate change (Friess et al. 2019). Population 
genetic data can provide insights necessary to understand 
and continue to monitor species for conservation and man-
agement purposes (Schwartz et al. 2007; Kramer and Havens 
2009). Understanding the importance of population-genetic 
insights to mangrove conservation, researchers have made 
a substantial effort to develop genetic markers for the wide-
spread neotropical red mangrove, Rhizophora mangle. There 
are now a total of 57 microsatellite loci available for R. man-
gle, with 42 previously-published loci (Rosero‐Galindo et al. 
2002; Takayama et al. 2008; Ribeiro et al. 2013; Francisco 
et al. 2018a) and 15 novel loci from this work. Yet, empirical 
research, on average, employs less than seven of these avail-
able loci, likely because few studies have incorporated mul-
tiplex reactions (Table 1). Here, we outlined multiplex PCR 
panels that combine efforts of four geographically-distant 
research groups into a tool that should enable us to better 
outline genetic patterns in this widespread species, and do so 
with considerable less investment in time and resources. In 
this discussion, we highlight the continued utility of genetic 

data in mangrove conservation in the era of next-generation 
sequencing and urge researchers to use, modify, and improve 
upon this genetic tool to characterize R. mangle population 
genetics across the Neotropics and answer pressing conser-
vation questions.

Conservation research seems to be in a transition from 
genetics to genomics as we continue to improve our abil-
ity to generate and analyse high-throughput sequence data 
(Puckett 2017). Genomics will enable researchers to address 
many new questions and, in certain contexts, provide greater 
resolution, but the investment in increased data is not always 
needed (Shafer et al. 2015). To address certain questions, 
and at certain spatial-scales, genetic data sets may prove 
sufficient and much more cost effective (Shafer et al. 2015; 
Puckett 2017), and this certainly seems true in terms of 
many outstanding questions in mangrove conservation. A 
reliable panel of microsatellites would be more appropriate 
for smaller-scale studies with moderate sample sizes, which 
constitutes most R. mangle research to date (Table 1), or 
when repeated measures are needed, as in the case of moni-
toring ongoing reforestation projects, as genome sequenc-
ing is most cost effective with large numbers of samples 
(Puckett 2017). Low quantity and quality DNA, as is often 
the case in mangrove species because leaf tissues are rich 
in molecular by-products (Huang et al. 2002), can also be 

Fig. 1  Four Rhizophora mangle collection sites towards this species’ 
northern latitudinal limits. From left to right: Río Bravo, Texas (tri-
angle), Jupiter, Florida (circle), New Providence, The Bahamas and 

Inagua, The Bahamas (squares). Neotropical mangrove distribution 
shown in green (Giri et al. 2011)
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an impediment to sequence library preparation, but micros-
atellite amplification often requires limited DNA template. 
Marker development is the principal investment for micros-
atellites, but this cost has already been paid by the multiple 

research groups outlined above, and many of these markers 
have been tested in multiple published works. The multiplex 
PCR panels outlined here are the product of these diverse 
genetic resources and discoveries, and should provide an 

Table 4  Genetic diversity of multiplex PCR panels for Rhizophora mangle from four collection sites: Jupiter, Florida (USA); New Providence, 
The Bahamas; Inagua, The Bahamas; and Río Bravo, Texas (USA)

Voucher accession numbers: EM650682, EM650683, EM650684, and EM650685, respectively
A number of alleles, PA private alleles, HO observed heterozygosity, HE expected heterozygosity
a Significant deviation from Hardy–Weinberg equilibrium (*P < 0.05)

Locus Jupiter (n = 31) New Providence (n = 35) Inagua (n = 33) Río Bravo 
(n = 4)

A PA HO
a HE A PA HO HE A PA HO

a HE A PA

Rm Multiplex1 RmBra19 4 2 0.29 0.40 3 0.49 0.57 1 0.00 0.00 1
RM19 3 0.42 0.58 4 1 0.26 0.24 3 0.18 0.29 2 1
RmBra18 3 1 0.16 0.21 3 1 0.11 0.16 2 0.24 0.47 1
RmBra59 3 1 0.32 0.43 4 1 0.40 0.48 3 0.27* 0.58 1
RM50 3 0.16 0.31 3 0.69 0.67 3 0.42 0.57 1
RzMg15 1 0.00 0.00 1 0.00 0.00 1 0.00 0.00 1
RzMg28 6 1 0.32* 0.53 5 1 0.69 0.72 4 0.24* 0.44 1

Rm Multiplex2 RmBra20 4 1 0.26 0.36 3 1 0.43 0.53 1 0.00 0.00 2
RmBra50 2 0.23 0.25 3 1 0.37 0.43 2 0.00 0.06 1
RM38 2 0.45 0.49 3 0.63 0.55 2 0.00 0.06 2
RzMg09 3 1 0.39 0.50 2 0.34 0.39 2 0.31 0.50 2
RzMg32 2 0.19 0.32 1 0.00 0.00 2 0.03 0.03 1
RzMg33 3 1 0.52 0.57 3 1 0.40 0.53 2 0.03 0.09 1
RzMg21 3 0.48 0.64 3 0.43 0.61 3 0.06 0.12 2
RzMg34 2 0.06 0.06 2 0.40 0.44 2 0.15 0.28 1
Total 44 8 43 7 33 0 20 1
Mean 2.93 0.28 0.38 2.87 0.38 0.42 2.20 0.13 0.23 1.33
SD 1.16 0.15 0.19 1.06 0.21 0.23 0.86 0.14 0.23 0.49

14 loci
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Fig. 2  Multiplex PCR panels performed better than data subsets with 
numbers of loci comparable to previous research. Scatterplots of dis-
criminant analysis of principal components (DAPC) for A the com-
plete data set (both multiplexes with 14 polymorphic loci), B only 

multiplex 1 (6 polymorphic loci), C only multiplex 2 (8 polymorphic 
loci). Individuals from Jupiter, Florida are shown with blue squares, 
New Providence, The Bahamas are shown with red circles, and Ina-
gua, The Bahamas are shown with green triangles
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easy-to-use and cost-effective (both in terms of time and 
resources) tool.

Of course, the utility of this tool relies on whether 
microsatellites provide sufficient polymorphism to answer 
conservation and management questions across the broad 
distribution of this species. We demonstrated that the 14 pol-
ymorphic loci in these multiplex panels, clearly delineated 
three populations near the northern limits of this species’ 
distribution and performed better than data subsets with loci 
numbers comparable to previous research. Although perhaps 
obvious, greater resolution with these multiplex panels is the 
result of genotyping twice as many loci as previous stud-
ies, congruent with observations based on SNP loci (Hodel 
et al. 2017), and of utilizing our previous experience to 
selectively choose loci that have proven informative. How-
ever, we have only shown that these multiplex panels are an 
efficient tool to genotype R. mangle from four populations 
across ~ 2500 km, a fraction of the entire distribution of this 
species. Although we are confident these multiplex panels 
will prove informative across a much broader spatial scale, 
we also envision this tool as a framework that can easily be 
modified depending on variation in the pool of available 
microsatellite loci for a particular region. For instance, Ken-
nedy et al. (2016) discarded two loci (RM21, RM46; Ros-
ero‐Galindo et al. 2002) due to monomorphism across much 
of the Caribbean, a pattern also observed in Atlantic Mexico 
(Cisneros-de la Cruz et al. 2018). These same loci exhib-
ited considerable polymorphism in Pacific R. mangle from 
Panama, Nicaragua, and Mexico (Cerón-Souza et al. 2012; 
Sandoval-Castro et al. 2012, 2014; Bruschi et al. 2014). 
Researchers can modify these multiplex primer mixes (see 
Appendix S1) to include additional informative loci and/or 
exclude loci that exhibit monomorphism, while maintaining 
only two PCR per sample. This framework is much more 
cost effective than protocols used in previous research and 
should enable the inclusion of more samples and collection 
sites in future research. These multiplex panels should also 
facilitate further genetic studies to address multiple pressing 
conservation questions, such as generating baseline genetic 
data from areas that have not been studied [i.e., much of 
Central America, Pacific South America, Caribbean islands, 
and West Africa (although considerable work has been done 
in R. racemosa; Ngeve et al. 2016)], better defining manage-
ment units to prioritize conservation measures (Wee et al. 
2019), and monitoring genetic effects of restoration projects 
(Granado et al. 2018).

Conclusions

We developed multiplex panels with novel and published 
Rhizophora mangle microsatellite loci to generate 15-locus 
genotypes, more than twice the average number of loci used 

in previous research, in only two PCR (see Appendix S1 for 
quick protocol). We demonstrated utility across ~ 2500 km 
of this species’ widespread distribution, and that these mul-
tiplex panels were better able to delineate three populations 
near the northern limits of this species’ distribution than 
data subsets with numbers of loci comparable to previous 
research. This tool improves our ability to characterize R. 
mangle genetic patterns while saving researchers consider-
able time and resources, enables future research to include 
more samples and collection sites, can be easily modified to 
incorporate alternative informative loci, and should facili-
tate studies to answer multiple pressing conservation and 
management questions.
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