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Abstract: Problems relating to the abrasion of equipment is one of the most important issues in 

mining and associated industries. Hardening is a method of protecting metal equipment, metal 

tools, or important components against erosion, corrosion, and abrasion. This can be achieved by 

welding a thin layer of abrasion-resistant metal onto the surface of the work piece. The useful life of 

a piece of equipment or parts can be significantly increased by applying abrasion-resistant coatings, 

thereby reducing repair or replacement costs associated with damaged parts. This process is 

inexpensive in the production of parts and is often economically justifiable. This study focuses on 

measuring the abrasion resistance of a nano high-entropy alloy against copper oxide and high-grade 

iron ores. When a base alloy was coated with the nano high-entropy alloy, the abrasion indexes of 

iron and copper ores decreased from 0.0001647 kg to 0.0000908 kg and 0.0001472 kg to 0.0000803 kg, 

respectively. The standard deviation, repeatability, and reproducibility were calculated for the alloy 

steel blade covered with nano high entropy alloy (N-HEA), producing values of 0.00016, 0.00047, 

and 0.00040, respectively, while a standard alloy steel blade exhibited values of 0.0003, 0.00047, and 

0.00042, respectively. High-entropy alloys and high-entropy nano-alloys have not been used as 

practical coatings in the mineral industry in any form to date. Utilizing high-entropy nano-alloys in 

this industry would introduce innovative alternatives for customers, thereby increasing competitive 

advantages and providing international markets and customers = with the most efficient choices of 

operational materials. 

Keywords: nano high-entropy alloys (N-HEAS); hard coatings; iron and copper ores; abrasion index; 

ball mills; rods; lining material 

 

1. Introduction 

Minimizing energy consumption is one of the most important issues for industries. In the world 

of economy and industry, saving energy by applying a balanced set of price and non-price measures 

to continually reduce energy has always been the most important goal to keep the industry wheel 

turning [1]. Various types of materials are used in each sector of the mining industry. In alloying, 

various elements are added to a main element to improve its properties. However, a new class of 

alloys with at least five basic elements of equal or similar atomic compositions has recently been 

created made [2]. Usually, the atomic percentage of each element is more than 5%. The entropy of 
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incorporation of these alloys is maximal, resulting in high-entropy alloys, also known as multi-

element alloys. Unlike conventional alloys, the mechanical properties of high-entropy alloys are 

independent on their constituent elements. In fact, the type of structure is the determining parameter 

ultimately controlling the strength or hardness of the high-entropy alloy. High-entropy alloys have 

excellent properties [3], including high levels of hardness, fatigue resistance, and strength at ambient 

and high temperatures, as well as dramatic tensile properties [4]. The microstructure type and 

properties of high-entropy alloys depend on the types and amounts of constituent elements; careful 

selection of compounds and elements allow for a proportion of body-centered cubic (BCC) or face-

centered cubic (FCC) solid solutions to be obtained, therefore giving the best mechanical and physical 

properties to the alloy. 

Hard-facing is a method of protecting metal equipment, metal tools, or other important 

components to prevent wear [5], stress, and abrasion so that a thin layer of engineered (strong metal) 

metal that is wear-resistant is added onto the work piece surface (weak metal) [6]. In many industrial 

applications, parts with hard surfaces, but are still tough and impact-resistant, are essential. Some 

examples include camshafts, crankshafts, cogwheels, and other parts used in mineral processing 

plant equipment (wearing and crushing circuits). These components require very hard and wear-

resistant surfaces [7–12], as well as a high level of toughness and impact-resistance in mineral 

processing circuits during operation. 

Welding is the deposition of a filler on the surface of a work piece to obtain desired properties 

or dimensions that are typically used to extend the work life of a piece or to replace metal that has 

been worn or corroded. Some common welding methods employed for this purpose include arc 

welding with a hood electrode [13], submerged arc welding [14], arc welding with a powdered 

electrode [15], laser hard-facing [15], gas welding (flame) [13,15], metal arc welding with protective 

gas [13], flame welding with powder [15,16], gas tungsten arc welding [16], and plasma arc welding 

[17]. Some coatings are precipitated by gas or arc welding processes or by thermal spraying processes, 

and manual, semi-automatic, or automatic methods can be applied to any of these processes. Suitable 

fillers are available in various shapes and types, such as welding rods, coating electrodes, pastes, and 

powders. 

Choosing a suitable alloy and a suitable hard coating to crush and scrub mineral equipment has 

always been a challenging issue in the process of economic production of alloying. Today, casting 

and molding of alloys such as FeCoNi, FeNiMo, SS304 [18], and D2 [19] are utilized in the 

manufacture of most mining equipment parts. By choosing a suitable coating and coating method, 

the base alloy of parts can be made of much cheaper materials. 

High-entropy alloys [3,19–22] and high-entropy nano-alloys [23,24] have not been used as a 

practical coating in the mineral industry in any form so far. The extraordinary characteristics of high-

entropy alloys in can be made us of in heavy industries [25–37] to produce unique compositions [38–45] 

and their behaviors and properties [46–48] can be manipulated to introduce innovative alternatives, 

such as filler metals [49], which are hard-facing [50–52] and wear resistant [53] to increase to shear 

failure, high cavitation erosion, and corrosion [54,55]. In general, the impact strength of hardened 

alloys decreases with increasing carbide content. In applications where impact resistance is very 

important, manganese austenitic steels can be used to repair parts [17]. The higher the number of 

alloying elements in the intermetallic compounds, the more complex the structure. Due to the limited 

solubility of the elements in the alloy, brittleness is increased [55,56]. 

High-entropy alloys are a group of materials that combine between 5 and 13 different elements 

with atomic percentages of 5–35% [20,23,57]. The essence of high-entropy alloys is that it combines 

maximum static entropy with equal atomic ratios according to the Boltzmann entropy hypothesis 

[58]. The high strength of the solid solution allows for industrial applications of these high-strength 

alloys as high-temperature tools, molds, and components with high wear and oxidation resistance 

[17]. Mechanical alloying [59,60] is a solid state-of-the-art method of producing nanocrystals [23,24] 

with potential strategic applications [17]. In applications where impact resistance is very important, 

manganese austenitic steels can be used for component reconstruction [61]. Some coatings are used 

to resist abrasion, cavitation, corrosion, and friction and include a wide range of metals and their 
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alloys, ceramics, cermets, carbides, and even low-friction plastics. The usual hardness of coatings 

varies from 20–70 Rockwell hardness (HRC) [16,62,63]. Metal surfaces are hardened by rapid 

freezing, where hard phases, such as chromium carbides, tungsten, titanium or tantalum, and hard 

oxide impurities, are added separately [64–66]. 

The choice of hardening alloy is based on two main factors, namely, wear rate and cost. 

However, other important factors, such as base metal type, deposition process, impact, corrosion, 

oxidation, etc., must also be considered. Hardened alloys are typically used as powders or coated 

rods, flax-coated rods, solid welds, and long powder-coated welds. The different methods of surface 

treatment are divided into several groups, including building up, buttering, cladding, and hard-

facing. This project may be the first of its kind in terms of using high-entropy nano-alloys as coatings 

in the above-mentioned industry. 

The statistical studies of standard deviation, repeatability, and reproducibility were performed 

to evaluate the accuracy of the bond abrasion index results [67,68]. Experimental data of each alloy 

were fitted and examined by calculation of the correlation factor (R2). Measurements regarding the 

standard alloy steel blade and alloy steel blade covered by N-HEA were calculated according to 

important statistical factors, such as standard deviation (s), test deviation (d), average standard 

deviation tests (𝑠𝑥̅) , standard deviation of repeatability ( 𝑆𝑟) , and standard deviation of 

reproducibility (𝑆𝑅), among others. 

To date, very few studies have been conducted on HEA containing Hf [50], and none on HEA 

containing Ba. This investigation explores the properties of HEA containing these two elements. 

2. Materials and Methods  

2.1. High-Entropy Nano-Alloy Coating Method 

In this paper, hardening operations were performed using welding. The manufactured powder 

of the high-entropy FeMoCrNiBaHf nano-alloy was formed into a flux-cored electrode and used as a 

coating on a sample of mild steel using the Oxyfuel powder spray (OFP) method. After welding, the 

thickness of the coating was 4 mm, as measured with a calipher, model IP 54 from the G.A.L Gage 

company (Bridgman, MI, USA). The most common hard-facing processes associated with the type of 

consumables appropriate to them are presented in Table 1. 

Table 1. Common hard-facing processes with different types of materials used in them [12]. 

Hardfacing Process Consumable 

Oxyfuel/Oxyacetylene (OFW/OAW) Bare cast or tubular rod 

Shielded metal arc (SMAW) Coated solid or tubular rod (stick electrode) 

Oxyfuel powder spray (OFP) Powder, tubular wire (flux-cored) 

Gas-tungsten arc (GTAW) Bare cast or tubular rod 

Gas-metal arc (GMAW) Tubular or solid wire 

Flux-cored open arc Tubular wire (flux-cored) 

Submerged arc (SAW) Tubular or solid wire 

Plasma transferred arc (PTA) Powder 

Laser beam Powder 

2.2. Characteristics of High-Entropy Nano-Alloy 

The nanoscale properties and X-ray diffraction data of this experimental trial are presented 

herein. According to the diffraction pattern of the FeMoCrNiBaHf advanced alloy sample, the peak 

bandwidth indicated a fine-grained and ultimately homogeneous solid network. In fact, the 

formation of a nano-crystalline structure and high lattice strain were the main factors of peak 

flattening, and the increase in lattice strain was due to the different atomic sizes of the intergranular 

components (Figure 1). 
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Figure 1. X-ray diffraction of high-entropy nano-alloy samples. 

The morphology of the high-entropy FeMoCrNiBaHf nano-alloy magnified by a Fe-SEM (Field 

Emission Scanning Electron Microscopes) instrument (Fe-SEM-MIRA3, TESCAN-XMU) is shown in 

Figure 2. The smaller particles tended to boil and produce larger particles, while the larger particles 

themselves became smaller particles during the manufacturing process; consequently, the particle 

size distribution was very small. As can be seen, the particle dimensions were less than 100 nm 

(Figure 2). 

  

Figure 2. FE–SEM microscopy image of high-entropy nano-alloy, with dimensions less than 100 nm 

(current 298 µA; voltage 15.0 kV). 

2.3. Preparation of Mineral Sample for the High-Entropy Alloy Wear Test 

Iron ore (hematite) with 94% Fe2O3 from Afghanistan (Figure 3a) and copper oxide (malachite 

and azurite) samples were selected (Figure 3b) for use in this investigation. These specimens, which 

were required to be completely dry, consisted of 1.6 kg with particle sizes of −0.019 + 0.0125 m (− 
3

4
 + 

1

2
 in), which were obtained by crushing larger particles and sorting using a screen. Usually, the initial 

value required for this experiment consisted of taking 5 kg of ore with a particle range of −0.019 + 

0.0125 m. The results of the XRF analysis are listed in Table 2. 
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(a) (b) 

Figure 3. (a) Hematite iron ore sample from Afghanistan. (b) Copper oxide ore sample from Iran. 

Table 2. XRF test results for titration of iron and copper oxide samples. 

Element (%) Ore 

LOI SiO2 Al2O3 CaO FeT MgO MnO SO3 TiO2 Cu 
Copper Ore 

2.36 29.44 7.72 27.93 22.88 2.4 0.82 0.25 1.32 4.88 

LOI SiO2 Al2O3 CaO K2O MgO MnO SO3 TiO2 Fe2O3 
Iron Ore 

2.37 1.77 0.83 0.62 0.12 - - 0.33 - 93.96 

2.4. Preparation and Testing of Mineral Abrasion Measurement Using Blades Coated with High-Entropy 

FeMoCrNiBaHf Nano-Alloy 

Typically, the device consisted of 0.076 m × 0.013 m blades of a metal substrate and a base of 

hard alloy steel, which included some nickel and molybdenum (500 Brinell ~51 Rockwell). In this 

project, we tested the wear index once with a standard blade, and then again with the blade covered 

with high-entropy FeMoCrNiBaHf nano-alloy to a depth of 0.004 m. The test sample was obtained 

from Nano Mine Tech Co. The dimensions of both blades were selected using the same test. The blade 

was attached to a shaft that rotated at a speed of 624 rpm. The rotor was in the center of a cylinder, 

0.305 m in diameter and 0.114 m high. The cylinder also rotated in the direction of the blade at a speed 

of 51 rpm (Figure 4). 

 
 

 

 
  

 

(c) (b) (a) 

Figure 4. Mineral wear test of the band index, rotor, and mineral chamber (a); a blade coated with the 

high-entropy nano-alloy (b); full view of the mineral abrasive band index (Labtech Essa) (c). 

This test did not require any special working conditions and was performed at ambient pressure 

and temperature to determine the mineral wear index of the equipment for mineral processing. 

Wear studies were conducted using laboratory and pilot scale industrial samples according to 

the ASTM-G65 standard by exposing the metallic materials to scratching abrasions via the dry 

3 × 0.5 inch blade 
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sand/rubber wheel test. The abrasive used was 100% silica (SiO2). The test conditions for the 

equipment included a wheel diameter of 235 mm, a sand flow of 320 g/min, a test load of 130 rpm, a 

wheel width of 12.7 mm, a wheel speed of 5610 revolutions/min, and a wheel hardness of Durometer 

A-60. The results of the abrasion test were reported as volume loss per cubic millimeter. 

2.5. Measurement Procedure, Repeatability, and Reproducibility of Reduced Metal by Bond Abrasion Index 

As shown by the tests for the first day and second day structures in Table 3, the mean weight 

loss due to abrasion was measured for 10 standard alloy steel blade samples and 10 alloy steel blades 

covered with N-HEA samples. Three measurements for each test (A and B) for samples 1–10 were 

performed; the total mean for the standard alloy steel blade was 0.0803 × 10−3 kg and the total mean 

for the alloy steel blade covered by N-HEA was 0.0908 × 10−3 kg. The standard deviation, repeatability, 

and reproducibility values based on 95% confidence levels were performed for the alloy steel blade 

covered by N-HEA, yielding figures of 0.00016, 0.00047, and 0.00040, and 0.0003, 0.00047, and 0.00042 

for the standard alloy steel blade. The experimental data for each of the alloys were fitted and 

examined by calculation of the correlation coefficient (R2). It was found that the alloy steel blade 

covered by N-HEA had an R2 of 0.9423 and the standard alloy steel blade had an R2 of 0.9552, which 

were both close to 1.0.
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Table 3. The mean weight loss (kg) due to Bond abrasion process. 

First Day (A) Second Day (B) 

Abrasion Rate (AR) of Alloy Steel Blade Covered  

by N-HEA for Copper Ore  

Abrasion Rate (AR) of Alloy Steel Blade Covered 

by N-HEA for Iron Ore 

x n = 30  𝒙̅ , n = 10 d  𝑺𝒙̅  𝑿̅ x n = 30  𝒙̅ , n = 10 d  𝑺𝒙̅   𝑿̅  

1 0.0793 × 10−3 

0.0799 × 10−3 −0.4 × 10−3 0.52915 × 10−3 

0.0803 × 10−3 

1 0.0903 × 10−3 

0.0905 × 10−3 −0.2 × 10−3 0.2 × 10−3 

0.0908 × 10−3 

 

2 0.0803 × 10−3 2 0.0905 × 10−3 

3 0.0801 × 10−3 3 0.0907 × 10−3 

4 0.0801 × 10−3 

0.0800 × 10−3 −0.3 × 10−3 0. 20817 × 10−3 

4 0.0905 × 10−3 

0.0906 × 10−3 −0.2 × 10−3 0.11547 × 10−3 5 0.0802 × 10−3 5 0.0905 × 10−3 

6 0.0798 × 10−3 6 0.0907 × 10−3 

7 0.0805 × 10−3 

0.0801 × 10−3 −0.2 × 10−3 0. 36055 × 10−3 

7 0.0905 × 10−3 

0.0908 × 10−3 0.1 × 10−3 0.35119 × 10−3 8 0.0800 × 10−3 8 0.0908 × 10−3 

9 0.0798 × 10−3 9 0.0912 × 10−3 

10 0.0799 × 10−3 

0.0804 × 10−3 0.0 × 10−3 0. 45092 × 10−3 

10 0.0907 × 10−3 

0.0909 × 10−3 0.1 × 10−3 0.20817 × 10−3 11 0.0804 × 10−3 11 0.0908 × 10−3 

12 0.0808 × 10−3 12 0.0911 × 10−3 

13 0.0798 × 10−3 

0.0806 × 10−3 0.2 × 10−3 0. 70946 × 10−3 

13 0.0909 × 10−3 

0.0910 × 10−3 0.3 × 10−3 0.1 × 10−3 14 0.0812 × 10−3 14 0.0910 × 10−3 

15 0.0807 × 10−3 15 0.0911 × 10−3 

16 0.0797 × 10−3 

0.0802 × 10−3 −0.1 × 10−3 0.55677 × 10−3 

16 0.0904 × 10−3 

0.0906 × 10−3 −0.2 × 10−3 0.15275 × 10−3 17 0.0808 × 10−3 17 0.0906 × 10−3 

18 0.0801 × 10−3 18 0.0907 × 10−3 

19 0.0803 × 10−3 

0.0803 × 10−3 −0.1 × 10−3 0.35119 × 10−3 

19 0.0907 × 10−3 

0.0907 × 10−3 0.0 × 10−3 5.7735 × 10−5 20 0.0806 × 10−3 20 0.0907 × 10−3 

21 0.0799 × 10−3 21 0.0908 × 10−3 

22 0.0805 × 10−3 

0.0804 × 10−3 0.1 × 10−3 0.36056 × 10−3 

22 0.0906 × 10−3 

0.0907 × 10−3 0.0 × 10−3 0.15275 × 10−3 23 0.0807 × 10−3 23 0.0907 × 10−3 

24 0.0800 × 10−3 24 0.0909 × 10−3 

25 0.0804 × 10−3 

0.0807 × 10−3 0.4 × 10−3 0.3 × 10−3 

25 0.0907 × 10−3 

0.0908 × 10−3 0.1 × 10−3 0.15275 × 10−3 26 0.0807 × 10−3 26 0.0908 × 10−3 

27 0.0810 × 10−3 27 0.091 × 10−3 

28 0.0805 × 10−3 

0.0808 × 10−3 0.5 × 10−3 0.3 × 10−3 

28 0.0908 × 10−3 

0.0909 × 10−3 0.1 × 10−3 1 × 10−4 29 0.0811 × 10−3 29 0.0909 × 10−3 

30 0.0808 × 10−3 30 0.0910 × 10−3 
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3. Results 

We first divided the 1.6 kg sample from each ore into four 0.4 kg samples with a separator to 

measure wear resistance. This test was used to check the wear resistance of hard coatings. Both 

standard blades and blades coated with high-entropy nano-alloy were weighed with a precision of 1 

× 10−7 kg using balancing. The blade was inserted into the rotor and secured by a clamp. The first 

sample (0.4 kg) was poured into the apparatus and sealed. The machine was turned on for 900 

seconds using an automatic timer. This was repeated for all four samples of iron ore and copper ore 

and the product was kept separately for each step. The blade was then removed from the enclosure 

and thoroughly cleaned and dried with alcohol and acetone. Then it was weighed again. Screening 

for the test materials was performed in four steps up to about 0.000075 m. The amount of wear was 

measured, weighed, and expressed in standard units, as shown in the corresponding tables. The 

calculated values of the wear rate and index are displayed in Table 4. As can be seen, using the high-

entropy alloy sample, the amount of metal was reduced significantly by pounds per kilowatt per 

hour of energy consumed. 

Table 4. Calculated rates and wear indexes for both blades and the copper and iron ore samples. 

Ore Type 
The Bond Abrasion Index (Ai) and Abrasion Rate (AR) 

Copper Ore Iron Ore 

0.1472 × 10−3 0.1647 × 10−3 
Standard alloy steel blade, Ai (kg) 

(hardness 500 Brinell ~52 Rockwell–HRC) 

0.0803 × 10−3 0.0908 × 10−3 
Alloy steel blade covered by FeMoCrNiBaHf, Ai (kg) 

(hardness 746 Brinell ~67 Rockwell–HRC) 

0.0192 × 10−3 0.0203 × 10−3 0.05Ai0.5 Balls Dry ball mill 

(lb/kWh) Standard alloy steel 

blade 

Abrasion rate (AR) 

0.0019 × 10−3 0.0020 × 10−3 0.005Ai0.5 Liners 

0.0334 × 10−3 0.0350 × 10−3 (Ai + 0.22)/11 Liners 

Crushers (gyratory, 

jaw, cone) 

(lb/kWh) 
 

0.0142 × 10−3 0.0151 × 10−3 0.05Ai0.5 Balls Dry ball mill 

(lb/kWh) 

Alloy steel blade 

covered by 

Nano high-entropy 

alloy 

Abrasion rate (AR) 

0.0014 × 10−3 0.00151 × 10−3 0.005Ai0.5 Liners 

0.0273 × 10−3 0.0283 × 10−3 (Ai + 0.22)/11 Liners 

Crushers (gyratory, 

jaw, cone) 

(lb/kWh) 

The hardness test results for the alloy sample were calculated as 67 Rockwell based on ASTM-

G65 analysis. According to the abrasion rate parameters for the two samples of the hard alloy steel 

(including nickel and molybdenum) and the nano high-entropy alloy, the amount of alloy lost was 

reduced by 50%. For instance, for the dry ball grinder and crusher (gyratory, jaw and cone) the rate 

of abrasion in the balls and liners was different for the standard alloy. However, the rate was 

decreased using a nano high-entropy alloy. Alloy use is not only important from an economical 

standpoint, but also shows a direct effect on the breakdown time of equipment for repair and 

maintenance. Reducing the amount of the alloy lost by half could have a great effect on the mining 

economy. 

As can be seen from the SEM micrographs, the wear mechanisms for the metal matrix of the 

high-entropy nano-alloy were a mixture of impact, abrasion, and scratching wear (Figure 5). 
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Figure 5. FE–SEM micrograph of wear of the metal matrix high-entropy nano-alloy, which were a 

combination of impact, abrasion, and scratching wear (current 298 µA; voltage 15.0 kV). 

4. Conclusions 

Evaluation of the wear effect of natural and inorganic iron and copper samples on a high-entropy 

nano-alloy and a parent alloy in wear tests showed different weight losses of the blade. The 

experimental wear causing loss of mass due to the use of the iron ore and copper rock ranged from 

0.0001647 kg to 0.0000908 kg and 0.0001472 kg to 0.0000803 kg, respectively, for the uncovered and 

HEA covered materials. A substantial amount of hard-wearing coatings is required to meet the 

mining industry's annual needs. By creating a hard and accessible nano-coating, wear and tear of 

materials can be significantly reduced, which is both cost-effective and, with the application of this 

technical innovation, could save energy. The use of high-entropy alloys in heavy industries is a new 

innovational option to allow producers to gain a competitive advantage in the market place. 
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